
MDD Archive for Boosting the Pareto Constraint
Steve Malalel
Université Côte d’Azur, CNRS, I3S, Nice, France

Arnaud Malapert
Université Côte d’Azur, CNRS, I3S, Nice, France

Marie Pelleau
Université Côte d’Azur, CNRS, I3S, Nice, France

Jean-Charles Régin
Université Côte d’Azur, CNRS, I3S, Nice, France

Abstract
Multi-objective problems are frequent in the real world. In general they involve several incomparable
objectives and the goal is to find a set of Pareto optimal solutions, i.e. solutions that are incomparable
two by two. In order to better deal with these problems in CP the global constraint Pareto was
developed by Schaus and Hartert to handle the relations between the objective variables and the
current set of Pareto optimal solutions, called the archive. This constraint handles three operations:
adding a new solution to the archive, removing solutions from the archive that are dominated by a
new solution, and reducing the bounds of the objective variables. The complexity of these operations
depends on the size of the archive. In this paper, we propose to use a multi-valued Decision Diagram
(MDD) to represent the archive of Pareto optimal solutions. MDDs are a compressed representation
of solution sets, which allows us to obtain a compressed and therefore smaller archive. We introduce
several algorithms to implement the above operations on compressed archives with a complexity
depending on the size of the archive. We show experimentally on bin packing and multi-knapsack
problems the validity of our approach.

2012 ACM Subject Classification Applied computing → Multi-criterion optimization and decision-
making; Theory of computation → Constraint and logic programming; Mathematics of computing
→ Decision diagrams

Keywords and phrases Constraint Programming, Global Constraint, MDD, Multi-Objective Problem,
Pareto Constraint

Digital Object Identifier 10.4230/LIPIcs.CP.2023.24

Funding This work has been supported by the French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the National Research Agency (ANR) with the
reference number ANR-19-P3IA-0002.

1 Introduction

Multi-objective combinatorial optimization (MOCO) problems are present in many industrial
applications [13, 14]. They involve several incomparable objectives represented by objective
variables.

For the sake of clarity and without loss of generality, we will consider that we have to
solve a problem where all objective variables must be minimized.

A solution S1 of objective variables is dominated by another solution S2 if for each
objective variable obji the value of obji in S2 is better than or equal to the value of obji in
S1. For instance the solution (4, 6, 3, 1) is dominated by (4, 3, 2, 1) but it is not dominated by
(1, 1, 1, 3). The set of non dominated solutions defines the set of Pareto optimal solutions. In
MOCO, the goal is to compute that set of Pareto optimal solutions. Usually the set of non

© Steve Malalel, Arnaud Malapert, Marie Pelleau, and Jean-Charles Régin;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CP.2023.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 MDD Archive for Boosting the Pareto Constraint

dominated solutions are saved in an archive that is maintained during the search for solutions.
Two operations are involved: insert that manages the addition of a new non dominated
solution and delete that removes the solutions that are dominated by the new solution.

In addition, solvers dealing with MOCO problems have to deal with another question: Is
a new solution dominated by an archive solution?

In Constraint Programming, we answer this question by avoiding the generation of
dominated solutions. To do this, we add a constraint to the problem that ensures that no
dominated solution can be computed. This added constraint is called Pareto constraint and
was proposed by Schaus and Hartert [11, 4]. It implements the ideas of Gavanelli [3]. This
constraint reduces the bounds of the objective variables such that dominated solutions cannot
be produced. This result is obtained by preventing a new solution from being dominated
by a solution from the archive. In order to understand this process, let us create a tuple
composed of the current minimum of all objective variables. This tuple will dominate all
solutions that can be constructed from the current objective variables. Thus, if there is a
solution in the archive that dominates this tuple then clearly it will dominate all future
solutions and so we can stop the search. Now, consider the objective variable obji. If we
replace in our tuple the value of obji by its maximum possible value and if we found S, a
solution of the archive, dominating this tuple, then obji must take a value less than or equal
to that of S otherwise the future solutions will be dominated by S. By applying this process
for each variable, Schaus and Hartert establish the bound consistency of the constraint. We
will denote by filter this process. The complexity of this operation is not detailed in their
paper. A simple implementation will require to traverse n (the number of objectives) times
the archive. It is not straightforward to reach a time complexity linear in the size of the
archive.

It may be tempting to use multi-valued decision diagrams (MDDs) for this constraint
because MDDs are a compressive data structure for representing solution sets. Perez [7]
defined the MDD representing the Pareto constraint, i.e. the set of tuples allowed by the
constraint that are the possible future non-dominated solutions. As mentioned by Perez,
this approach failed mainly because at the beginning the MDD compresses very strongly the
set of solutions since everything is almost possible, then it will decompress because we only
delete tuples and the chances of recompression are low.

In this article we propose to use MDDs to represent the archive, that are the current non
dominated solutions. Currently the archive is often represented as lists. We can also use
quad-trees but this is only efficient if we have few objectives [6], which is not our case of
study. With lists (or quad-trees for that matter), the complexity of the operations insert
and delete is linear with the size of the archive (i.e. the number of elements multiplied by
the number of objectives). Representing the archive by an MDD will allow parts of common
solutions to be merged. As with an MDD, all the solutions are treated globally, we can
therefore hope to save time thanks to these groupings.

The operation delete will therefore potentially save time. The operation insert may be
slower because MDDs are a heavier data structure than lists. However, this operation takes
much less time than delete or filter. For this last operation, we will benefit from the global
view of the MDD. We propose to improve the algorithm of Schaus and Hartet in two ways:
we define an algorithm to find the tightest solutions (i.e. the largest possible value of an
objective) faster and we introduce a variant of this algorithm that processes all objective
variables at once, and not successively.

Our algorithms are based on the following idea: Consider the objective variable obji. Let
us remove from the MDD that represents the archive all the values of the objective variables
different from obji that are less than or equal to the minimum of their variable. Then we



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:3

perform a reduction of the MDD in order to obtain MDDD. If MDDD is not empty then it
means that there exist paths from root to tt in the MDD, that is solutions in the archive which
will dominate any new solution involving some values of obji. More precisely, there exist
solutions of the form (v1, v2, . . . , vi, . . . , vn) such that ∀j = 1 . . . n, j ̸= i : vj ≤ min(objj).
These solutions dominate (or are equal to) any future solution with obji ≥ vi. Hence, the
maximum possible value for obji is the smallest value of obji in MDDD. The obtained
algorithms have a linear time complexity in the size of the MDD, which improves the
algorithm of Schaus and Hartet.

The paper is organized as follows. First, we recall some concepts and definitions of
Constraint Programming, Multi-Objective Optimization Problems and Multi-valued Decision
Diagrams. Then, we introduce the representation of the archive by an MDD. We present
how the insert and delete operations are implemented. We detail two algorithms for the
operation filter that establishing the bound consistency of the Pareto Constraint associated
with an MDD. Next, we experiment with these methods on bin packing and multi-knapsack
problems. At last, we conclude.

2 Preliminaries

2.1 Constraint Programming
A finite constraint network N is defined as a set of n variables X = {x1, . . . , xn}, a set of
current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible values
for variable xi, and a set C of constraints between variables. If x is a variable, then
xmin = min(D(x)) and xmax = max(D(x)). We introduce the particular notation D0 =
{D0(x1), . . . , D0(xn)} to represent the set of initial domains of N on which constraint
definitions were stated. An element of D0(x1)× · · · ×D0(xn) on the ordered set D is called
a tuple and is denoted τ . In a tuple τ , the assignment of the ith variable is denoted τi.
A solution of N is a tuple τ that satisfies all the constraints in C. A constraint C on the
ordered set of variables X(C) = (xi1 , . . . , xir

) is a subset T (C) of the Cartesian product
D0(xi1)× · · · ×D0(xir

) that specifies the allowed combinations of values for the variables
xi1 , . . . , xir

.

2.2 Multi-Objective Optimization
A multi-objective problem in combinatorial optimization is a problem where several objectives
have to be improved while satisfying constraints. For the sake of clarity and without loss of
generality, these objectives are represented by integer variables and have to be minimized.
We denote by O = (obj1, . . . , objm) the ordered set of the objective variables in X, the set of
variables of the whole problem. Then, this problem can be modeled as follows:

Minimize O

Subject to C
(1)

However, the minimization of several objectives simultaneously may seem ambiguous.
Indeed, there is no order of priority between the different objectives and improving one often
means degrading at least one of the others. This generally introduces the need to make
compromises during the solving process: the goal is not to find only one optimal solution
but a set of solutions that are considered Pareto optimal.

In the rest of the paper, we will focus only on the objective variables. As a consequence,
a tuple will always be understood only in relation to the set O, and the same applies to a
solution. Thus, for a tuple τ , the assignment of the ith objective variable is denoted by τi.

CP 2023



24:4 MDD Archive for Boosting the Pareto Constraint

The following definitions are taken from [11]:

▶ Definition 1 (Pareto dominance). Let τ and τ ′ be two solutions of a multi-objective problem
represented by a constraint network N .
We say that τ dominates τ ′, denoted τ ≺ τ ′, if and only if:

∀i ∈ [1 . . . m] : τi ≤ τ ′
i

∧ ∃i ∈ [1 . . . m] : τi < τ ′
i

(2)

We say that τ weakly-dominates τ ′, denoted τ ⪯ τ ′, if and only if ∀i ∈ [1 . . . m] : τi ≤ τ ′
i .

▶ Definition 2 (Pareto optimality). Let S be the set of all the feasible solutions of a multi-
objective problem represented by a constraint network N . A solution τ is Pareto optimal if
and only if there is no solution τ ′ in S that dominates τ :

∄τ ′ ∈ S : τ ′ ≺ τ (3)

▶ Definition 3 (Pareto set). Let N be the constraint network representing a multi-objective
problem and S be the set of all the feasible solutions of N . The Pareto set of N is the set of
all the Pareto optimal solutions in S:

{τ ∈ S|∄τ ′ ∈ S : τ ′ ≺ τ} (4)

The search for the exact Pareto set of a multi-objective problem can be impossible to
achieve in a reasonable time. This leads to search for an approximation of the Pareto set:
the archive.

▶ Definition 4 (Archive). An archive A is a set of solutions such that there is no solution τ ′

in the archive that dominates another solution τ in the archive. This property is known as
the domination-free property:

τ ∈ A,∄τ ′ ∈ A : τ ′ ≺ τ (5)

A basic way to maintain an archive A is to verify if a solution τ found during the search
is dominated by a solution of the archive:

If τ is dominated by at least one solution, do not add it in A.
If τ is not dominated by any solution, add it and remove from A all the solutions
dominated by τ .

2.3 Pareto Constraint
We reformulate the definition introduced in [11] in order to avoid the notion of “next
discovered solution”.

▶ Definition 5 (Pareto Constraint). Let X be a set of objective variables and A be an archive
defined on O. A Pareto constraint is a constraint C associated with A defined by
Pareto(O,A) = {τ s.t. τ is a tuple on O and ∄τ ′ ∈ A with τ ′ ⪯ τ }.

When using this constraint during the search for solutions, newly found solutions must be
inserted in the archive. One could notice that this constraint prevents finding a solution τ

such that τ ′ ∈ A and τ = τ ′.



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:5

D(obj1) = {2, 4}
D(obj2) = {1, 2, 5}
D(obj3) = {1, 3, 4, 5}
D(obj4) = {2, 5, 6}

∧ (3, 1, 3, 1)
(2, 1, 4, 2)

A

=⇒ obj3 < 4

Figure 1 Application of the propagator of the Pareto constraint.

We adapt the definition of ideal point of multi-objective problems to our purpose:

▶ Definition 6 (Ideal tuple). Let C =Pareto(O,A) be a Pareto constraint with
O = (obj1, . . . , objn).

The ideal tuple of C denoted by τ∗(O) is the tuple composed of the best objective values,
that is (objmin

1 , . . . , objmin
n ).

The ideal tuple for the value a of the variable obji denoted by τ∗(O, i, a) is the tuple
composed of obji = a and the best objective values for the other objective variables, that is
(objmin

1 , . . . , objmin
i−1 , a, objmin

i+1 , . . . , objmin
n ).

▶ Proposition 7. Let C =Pareto(O,A) be a Pareto constraint; the following two properties
are equivalent:

C is consistent;
τ∗(O) is not weakly-dominated by any tuple of A

Proof. By definition τ∗(O) weakly-dominates any tuple defined on O, thus if τ∗(O) is not
weakly-dominated then it is a possible solution and the constraint is consistent. Otherwise,
there is no solution and C is not consistent. ◀

We reformulate the filtering algorithm associated with the Pareto constraint given in [11].

▶ Proposition 8. Let C =Pareto(O,A) be a Pareto constraint. The value a of the objective
variable obji is not consistent with C if and only if ∃τ ∈ A such that τ ⪯ τ∗(O, i, a).

Proof. ⇒ If the value a of obji is not consistent with C then every tuple τ of C with τi = a

is weakly-dominated by a tuple of A. Therefore τ∗(O, i, a) is weakly-dominated by a tuple
of A.
⇐ The tuple τ∗(O, i, a) weakly-dominates all the possible tuples τ of C with τi = a. Thus
if this tuple is weakly-dominated then there is no tuple with τi = a consistent with the
constraint and the value a of obji is not consistent with C. ◀

From this proposition we can identify all values of all variables that are inconsistent with the
constraint and so we can establish the arc consistency of the constraint which is equivalent
in our case to the bound consistency. Figure 1 gives an example of domain reduction.

2.4 Multi-valued Decision Diagram
The decision diagrams considered in this paper are reduced ordered multi-valued decision
diagrams (MDD) [5, 12, 1], which are a generalization of binary decision diagrams [2].
They use a fixed variable ordering for canonical representation and shared sub-graphs for
compression obtained by means of a reduction operation. An MDD is a rooted directed acyclic
graph (DAG) used to represent some multi-valued functions f : {0 . . . d− 1}n → true, false.

CP 2023



24:6 MDD Archive for Boosting the Pareto Constraint

root

a b

tt

1
2 3

1
3 1

2

Figure 2 An MDD representing the tuple set {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

Given the n input variables, the DAG contains n+1 layers of nodes, such that each variable is
represented at a specific layer of the graph. Each node on a given layer has at most d outgoing
arcs to nodes in the next layer of the graph. Each arc is labeled by its corresponding integer.
The arc (u, a, v) is from node u to node v and labeled by a. Sometimes it is convenient
to say that v is a child of u. The set of outgoing arcs from node u is denoted by ω+(u).
All outgoing arcs of the layer n reach tt, the true terminal node (the false terminal node is
typically omitted). There is an equivalence between f(a1, . . . , an) = true and the existence
of a path from the root node to the tt whose arcs are labeled a1, . . . , an. Figure 2 shows an
example of MDD and the kind of compression it can offer.

The reduction of an MDD is one of the most important operations that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have no successor and
merging equivalent nodes, i.e., nodes having the same set of neighbors associated with the
same labels. This means that only nodes of the same layer can be merged. Other operations
used in this paper are the addition and deletion of tuples of an MDD. They can be performed
with in-place operations provided by Perez and Régin [8].

The advantage of using MDDs instead of the usual data structures is their compression
capability which is useful for reducing memory consumption. Moreover, this compression
may also improve the time performance of algorithms computing on a set.

3 Pareto Constraint Using MDD

We propose to use MDDA, an MDD, to represent the solution archive. Consider τ a new
solution. Without loss of generality, we assume that τ is not weakly-dominated by any tuple
of the archive. As mentioned in the introduction we need to implement the operations insert
and delete:

insert: τ has to be added to MDDA.
delete: All the tuples dominated by τ must be removed from MDDA.

In addition we need to design algorithms for implementing the filter operation of the Pareto
constraint.

3.1 Insert and Delete Operations
Adding τ to MDDA can be done thanks to the in-place addition operation [8]. The deletion
from MDDA of all the tuples that are dominated by τ can be done by creating MDDdom(τ),
the MDD of all the tuples weakly-dominated by τ . MDDdom(τ) is really simple: each layer
contains only one node, and for each layer i ∈ [1 . . . (n− 1)] there are arcs labeled with all the
values that belong to the range [τi . . . max(D0(obji))] between the node of layer i and the
node of layer i + 1. Figure 3 shows an example of such an MDD. Then, the operation MDDA



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:7

root

a

b

tt

2 3 4 5

5 6

1 2 3

Figure 3 An MDD representing all the tuples weakly-dominated by (2, 5, 1) with D0(obj1) =
[1 . . . 5], D0(obj2) = [1 . . . 6] and D0(obj3) = [1 . . . 3].

− MDDdom(τ) can be performed in-place thanks to the in-place difference operator [8]. It
should be noted that this operation also deletes the tuple τ from MDDA, so it is better to
perform first the delete operation and then the insert operation.

3.2 Filtering algorithm of the Pareto Constraint
Let C =Pareto(O, MDDA) be a Pareto constraint whose archive is represented by an MDD.
We present two methods that eliminate all values of the variables satisfying Proposition 8
(i.e., that are not consistent with C). That establishes the bound consistency of C. The first
one has to be executed for each objective variable, and the second one uses the concept of
the first method to filter all the objective variables at the same time.

3.2.1 Unidirectional Marking
This method operates only on one objective variable obji at a time. It must be repeated for
each objective variable to be complete.

MDDA is traversed using a Depth-First Search (DFS) procedure from root following two
rules:

For each layer j ̸= i it is possible to go only through arcs whose values are less than or
equal to objmin

j .
For the layer i, it is possible to go only through arcs whose values are less than or equal
to objmax

i .
Each time the node tt is reached, the value of the arc of the layer i belonging to the current
path is memorized if it is less than the previous memorized value. Then, objmax

i takes the
lower value between the current upper bound and the memorized value minus one. Figure
4 shows two examples based on the same archive with different states for the domains.
Algorithm 3.1 is a possible implementation of this filtering for all the objective variables.

▶ Proposition 9. The unidirectional marking method eliminates all the values of obji that
are not consistent (c.f. Proposition 8).

Proof. The unidirectional marking method finds paths corresponding to the tuples that
weakly-dominate τ∗(O, i, objmax

i ) and it eliminates all the values a such that τ∗(O, i, a) is
weakly-dominated, by setting the maximum of obji to minV − 1 where minV = min({a such
that τ∗(O, i, a) is weakly-dominated}). ◀

The time complexity of this method for one objective variable is linear in the size of the
MDD, because it traverses the MDD with a DFS. However, as it is repeated for each objective
variable and the size of the MDD depends on the number of objective variables, the overall

CP 2023



24:8 MDD Archive for Boosting the Pareto Constraint

root

ba c

ed f

hg

tt

3 1 9

3 4 3 2

3 4 3

3 4

(a)
D(obj1) = {2, 4}
D(obj2) = {2, 3, 4}
D(obj3) = {1, 2, 3, 4, 5}
D(obj4) = {3, 5, 6}

tt is never reached, so obj3 does not need to be
filtered.

root

ba c

ed f

hg

tt

3 1 9

3 4 3 2

3 4 3

3 4

(b)
D(obj1) = {4, 5, 8}
D(obj2) = {3, 7}
D(obj3) = {1, 2, 3, 4, 5}
D(obj4) = {5, 6}

tt is reached two times with the tuples (3, 3, 3, 3)
and (1, 3, 4, 4). The domain of the obj3 becomes
{1, 2}.

Figure 4 Application of the unidirectional marking in MDDA for the objective variable obj3.
MDDA contains the set of tuples {(3, 3, 3, 3), (1, 4, 3, 3), (1, 3, 4, 4), (9, 2, 3, 4)}. All the nodes
and arcs reached with the unidirectional marking method are represented with plain lines while
those not reached with dotted lines.

time complexity is then quadratic in the number of objectives. This method takes advantage
of the compression offered by MDDs. Nonetheless, we can notice that a large part of the
DFS is shared between the filtering of each objective variable, that is to say there are many
repetitions. We then propose an improvement of this method that will execute only two
DFSs.

3.2.2 Bidirectional Marking
The first step is to identify in MDDA, for all j ∈ (1 . . . n), all the beginning of tuple
τ(1...j) = (τ1, . . . , τj) such that τ(1...j) weakly-dominates (objmin

1 , . . . , objmin
j ). This can be

done by using a DFS from root to find the corresponding paths by following one rule: for the
layer j it is possible to go only through arcs whose values are less than or equal to objmin

j .
All the nodes reached with this method are considered as marked from root.

▶ Proposition 10. If tt is reached by the first step of the bidirectional marking method, then
the Pareto constraint C is not consistent.

Proof. If tt is reached by the first step of the bidirectional marking method it means that
there exists a path corresponding to a tuple that weakly-dominates τ∗(O). Then C is not
consistent according to Proposition 7. ◀



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:9

Algorithm 3.1 unidirectional marking algorithm.

// min is passed by reference
recursiveDFS(MDDA, D, i, l, u, path[], current, min)

1 u.isV isited← true
2 path[l]← u

3 for each arc (u, a, v) do
4 if (l = i and a ≤ objmax

i ) or a ≤ objmin
l then

5 if l = i then current← a

6 if v = tt then
7 for each node ∈ path do node.reachT t← true
8 if current ≤ min then min← current

else
9 if v.reachT t and l ≥ i and current ≤ min then min← current

10 if not v.isV isited then
11 recursiveDFS(MDDA, D, i, l + 1, v, path, current, min)

oneWayMarkingFiltering(O, D, MDDA)
12 for each obji ∈ O do
13 for each node ∈ MDDA do
14 node.isV isited← false
15 node.reachT t← false
16 path[]← ∅ for each index
17 currentV alue← MAX_INTEGER
18 minV alue← MAX_INTEGER
19 recursiveDFS(MDDA, D, i, 1, root, path, currentValue, minValue)
20 objmax

i ← min(objmax
i , minV alue− 1)

The second step is similar to the first one. It consists of identifying in MDDA, for all
j ∈ (1 . . . n), all the end of tuple τ(j...n) = (τj , . . . , τn) such that τ(j...n) weakly-dominates
(objmin

j , . . . , objmin
n ). This time the DFS starts from tt, takes arcs only in reverse, and follows

the same rule as for the first step. All the nodes reached during this step are considered as
marked from tt.

The inconsistent edge can now be identified: these are the arcs (u, a, v) on the layer i,
such that u is marked from root and v is marked from tt. More formally we have:

▶ Proposition 11. Let Λi be the set of all the arcs (u, a, v) on the layer i, such that u is
marked from root and v is marked from tt. The value a of obji satisfies Proposition 8 if and
only if ∃(u, a, v) ∈ Λi

Proof. For all the arcs (u, l, v) in Λi there is at least one path going from root to u that
weakly-dominates (objmin

1 , . . . , objmin
i−1 ), and there is also at least one path going from v to

tt that weakly-dominates (objmin
i+1 , . . . , objmin

n ). It means that there is at least one tuple
τ such that τi = l and τ ⪯ τ∗(O, i, l). Conversely, if there exists one tuple τ such that
τi = l and τ ⪯ τ∗(O, i, l), then there is at least one path going from root to u that weakly-
dominates (objmin

1 , . . . , objmin
i−1 ), and there is also at least one path going from v to tt that

weakly-dominates (objmin
i+1 , . . . , objmin

n ). Therefore (u, l, v) belongs to Λi ◀

CP 2023



24:10 MDD Archive for Boosting the Pareto Constraint

root

ba c

ed f

hg

tt

7 2 3

1 6 1 5

1 4 2

5 3

(a)
D(obj1) = {4, 5, 8}
D(obj2) = {3, 4, 6, 8}
D(obj3) = {2, 3, 4, 7}
D(obj4) = {3, 6}

The nodes b, c and e are marked from root, and
the nodes f and h are marked from tt. D(obj2)
becomes {3, 4} and D(obj3) becomes {2, 3}.
obj1 and obj4 do not need to be filtered.

root

ba c

ed f

hg

tt

7 2 3

1 6 1 5

1 4 2

5 3

(b)
D(obj1) = {4, 6}
D(obj2) = {3, 4, 6, 8}
D(obj3) = {4, 9}
D(obj4) = {3, 5, 6}

tt is reached from root: the constraint is not
consistent.

Figure 5 Application of the bidirectional marking in MDDA. It represents the set of tuples {(7,
1, 1, 5), (2, 6, 1, 5), (2, 1, 4, 3), (3, 5, 2, 3)}. All the nodes and arcs reached with the bidirectional
marking method are represented with plain lines while those not reached with dotted lines.

We immediately have:

▶ Proposition 12. The bidirectional marking method finds and eliminates for each objective
variable obji all the value a such that τ∗(O, i, a) is weakly-dominated, by setting the maximum
of obji to minV − 1 where minV = min({a such that τ∗(O, i, a) is weakly-dominated}).

Algorithm 3.2 is a possible implementation of this method.
Figure 5 shows two examples based on the same archive with different states for the

domains. In Figure 5 (a), obj1 and obj4 are not filtered because for both cases there is no arc
between a node marked from root and a node marked from tt at their corresponding layer.
Concerning obj2 there is the arc (c, 5, f) that satisfies this condition so objmax

2 = min(8, 5 -
1) and the domain becomes {3, 4}. For obj3, the arc (e, 4, h) is the only one that satisfies
this condition so objmax

3 = min(7, 4 - 1) and the domain becomes {2, 3}. In Figure 5 (b), tt

is reached from root during the first step of the bidirectional marking. Therefore there is no
possible assignment with current domains.

The MDD is traversed two times with DFS and one time with the search of minimal
value for each objective variable, then the time complexity of this method is linear in the
size of the MDD.



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:11

Algorithm 3.2 Bidirectional marking algorithm.

topDownMarking(MDDA, D, l, u, markedFromRoot)
1 markedFromRoot[l].add(u)
2 for each arc (u, a, v) do
3 if a ≤ objmin

l and v /∈ markedFromRoot[l + 1] then
4 topDownMarking(MDDA, D, l + 1, v, markedFromRoot)

bottomUpMarking(MDDA, D, l, v, markedFromTt)
5 markedFromTt[l + 1].add(v)
6 for each arc (u, a, v) do
7 if a ≤ objmin

l and u /∈ markedFromTt[l] then
8 bottomUpMarking(MDDA, D, l - 1, u, markedFromTt)

twoWaysMarkingFiltering(O, D, MDDA)
9 size← O.size

10 for i ∈ 1 . . . size + 1 do
11 markedFromRoot[i]← ∅
12 markedFromTt[i]← ∅
13 topDownMarking(MDDA, D, 1, root, markedFromRoot)

// If tt si reached, it means that there is no
// more possible assignment with current domains.

14 if tt ∈ markedFromRoot[size + 1] then
15 backtrack
16 else
17 bottomUpMarking(MDDA, D, size, tt, markedFromTt)
18 for i ∈ 1 . . . size do
19 minV alue← MAX_INTEGER
20 for each u ∈ markedFromRoot[i] do
21 for each arc (u, a, v) do
22 if v ∈ markedFromTt[i + 1] and a < minV alue then
23 minV alue← a

24 objmax
i ← min(objmax

i , minV alue− 1)

4 Experiments

The methods presented in this paper have been implemented in Java 17 using Choco-solver
version 4.10.10 [9]. All the experiments were run in sequential on a machine with an Intel(R)
Xeon(R) W-2175 CPU @ 2.50GHz using Ubuntu 20.04.6 LTS version 5.4.0-146-generic.

In these experiments, three implementations of the Pareto constraint are compared:
List: the Pareto constraint of Choco, using a list for representing the archive. When
a new solution is inserted, all the solutions in the list are compared with this solution
to determine if they must be removed from the list. Concerning the filtering, for each
objective variable obji the inconsistent values are found by comparing all the solutions in
the list with the dominated point DPi, defined in [11, 3].
M-U: the Pareto constraint associated with an MDD for representing the archive and
using the Unidirectional marking algorithm as filtering algorithm.

CP 2023



24:12 MDD Archive for Boosting the Pareto Constraint

Table 1 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with
10 objectives. The search ends when all solutions are found or if 30000 solutions are found, or if it
exceeds 30 minutes (TO).

n Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-U M-B List M-U M-B List M-U M-B

12

b1 6770 1687 11 46 9 3 23 8 6 0.7 0.8
b2 7443 3004 36 61 11 7 26 6 25 0.8 0.9
b3 7351 2651 29 55 11 6 23 7 19 0.6 0.7
b4 7754 3187 40 61 13 7 32 8 29 0.8 0.9
b5 8502 3284 49 129 18 10 65 13 35 0.9 0.9

16

b6 30000 4894 420 781 103 87 360 70 309 4 4
b7 30000 5805 708 TO 239 170 TO 166 487 TO 5
b8 30000 5015 615 901 159 106 460 116 478 3 3
b9 30000 7763 1336 1171 178 236 467 128 1055 6 5

b10 30000 7144 1150 TO 312 215 TO 236 881 TO 5

20

b11 30000 2085 265 504 115 100 247 67 123 5 5
b12 30000 3812 386 938 142 131 508 86 207 6 6
b13 30000 1198 143 827 159 56 439 77 17 3 4
b14 30000 2647 246 1430 205 107 709 108 56 3 3
b15 30000 2707 713 TO 406 427 TO 216 108 TO 5

M-B: the Pareto constraint associated with an MDD for representing the archive and
using the Bidirectional marking algorithm as filtering algorithm.

The considered problems are the bin packing and the multi-criteria knapsack problems.

4.1 Bin Packing Problem

The bin packing problem is a problem where n items have to be placed into bins. Each
item has m types of weight, and each bin has a limit for each type of weight. For each type
of weight the objective is to minimize the maximum weight among all the bins, so there
are m objectives. These objectives encourage an equitable distribution of weights. The
datasets used involve items with weights randomly chosen between 1 and 40, and a limit of
120 for each type of weight for each bin. These items have to be distributed between 8 bins.
The problem is modeled using the matrix-based symmetry-breaking constraints proposed by
Salem and Kieffer [10].

In order to compare the different methods, we focused on the time taken to find at most
30000 solutions. Moreover, we measured the total time taken by the filtering of the Pareto
constraint throughout the search (Filtering time), and the total time taken to maintain the
domination-free property of the archive throughout the search (Deletion and Insertion time,
or D&I time). Table 1 shows the evolution of these times depending of the number of items
n while Table 2 shows this evolution depending of the number of objectives m.

The first thing that comes out of the results of Table 1 is that M-B generally performs
better than the list for this problem. These performances seem to depend on the size of the
archive: the larger it is, the more the compression of MDDs shows its advantage. When we
look at the time spent on the different operations, we can notice that this time saving is
mainly done during the D&I part. For example with data b9, which has the largest archive
with 7763 solutions, M-B is 7.5 times faster than the list and its D&I part is 200 times faster
than the D&I part of the list. Concerning the filtering part M-B is sometimes slower than
the list but when this is the case, it is not much slower. Moreover, when M-B is faster on
the filtering it can be up to almost 2 times faster as with data b15.

The experiments in Table 2 show another interesting phenomenon about the filtering



S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:13

Table 2 Time (s) comparison between the use of lists and MDDs for the Pareto constraint
with 16 items. The search ends when all solutions are found or if 30000 solutions are found, or if it
exceeds 30 minutes (TO).

m Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-U M-B List M-U M-B List M-U M-B

5

b16 4619 121 7 17 9 0.5 5 2 0.1 0.2 0.2
b17 5452 640 14 58 19 4 28 9 1 0.3 0.3
b18 5679 382 3 12 5 0.6 6 2 0.3 0.3 0.3
b19 8078 597 16 52 20 4 24 9 2 0.6 0.7
b20 4658 234 3 6 4 0.3 2 1 0.1 0.2 0.2

10

b6 30000 4894 420 781 103 87 360 70 309 4 4
b7 30000 5805 708 TO 239 170 TO 166 487 TO 5
b8 30000 5015 615 901 159 106 460 116 478 3 3
b9 30000 7763 1336 1171 178 236 467 128 1055 6 5

b10 30000 7144 1150 TO 312 215 TO 236 881 TO 5

15

b21 30000 2242 78 290 44 16 179 30 53 2 2
b22 30000 4651 583 1005 116 105 545 91 456 4 4
b23 30000 3442 271 363 68 70 180 39 178 3 4
b24 30000 3379 296 1180 97 54 614 63 223 5 4
b25 30000 8421 1359 1213 121 305 532 77 1014 10 9

20

b26 30000 7145 911 1098 77 185 568 47 706 6 5
b27 30000 6828 1059 TO 149 202 TO 108 828 TO 7
b28 30000 5327 684 889 87 140 529 61 521 5 5
b29 30000 5791 819 TO 247 243 TO 176 516 TO 6
b30 30000 7142 864 855 106 178 342 63 650 7 7

part: compared to the list, the more objectives there are, the faster the filtering with M-B.
For example with data b26 where there are 20 objectives, the filtering with M-B is almost 4
times faster than the filtering with the list. However, when there are few objectives the list
is globally better as shown by the results for m = 5.

The results with M-U are not as good as those with M-B, and are even worse than those
with the list. Indeed, even if M-U has an advantage on the D&I part compared to the list,
the filtering takes too much time which negates totally the advantage.

4.2 Multi-Criteria Knapsack Problem

This problem is a variant of the knapsack problem with n items: the goal is not to maximize
only one type of profit but m types of profit. Then, each item has m values and there
are m objectives to maximize. The data sets used represent items with weights and values
randomly chosen between 1 and 40. For each data set, the limit of the knapsack is equal to
(
∑n

i=1 wi)/2 with wi the weight of the i-th item.

We took the same types of measures as for the bin packing problem (i.e. the total time,
the filtering time and the D&I time) but we only ran the methods with the list and M-B.
Table 3 lists the results obtained.

The results between the methods are similar for this problem, the solving times are more
or less equivalent for each instance. However, we can observe a behavior that we have already
seen with the bin packing problem: M-B is generally better when the size of the archive is
large. The results show also that for this problem the list is generally more efficient for the
filtering while M-B is better for the D&I.

CP 2023



24:14 MDD Archive for Boosting the Pareto Constraint

Table 3 Time (s) comparison between the use of lists and MDDs for the Pareto constraint with
10 objectives. The search ends when all solutions are found or if 10000 solutions are found.

n Data # Solutions
found

#Solutions
in A

Total time Filtering time Deletion and
insertion time

List M-B List M-B List M-B

20
k1 1809 640 182 186 1 4 0.3 0.2
k2 3667 1750 309 317 6 13 4 0.9
k3 1661 1661 134 135 0.5 2 0.2 0.2

21
k4 10000 6714 786 672 52 97 175 6
k5 7806 3265 865 868 27 59 15 2
k6 4537 815 472 467 5 11 1 1

22
k7 3705 2750 1011 1050 20 35 8 1
k8 1895 601 450 446 2 6 0.3 0.3
k9 10000 5192 1123 1073 59 92 73 6

23
k10 10000 4561 1116 1101 54 99 66 6
k11 4634 1593 1360 1420 21 46 3 1
k12 5390 2816 1225 1193 22 40 11 2

24
k13 1791 823 848 873 4 12 0.5 0.3
k14 10000 5781 1402 1335 77 112 89 5
k15 10000 3528 1545 1570 54 92 45 5

5 Conclusion

In this paper we presented methods to use an MDD as an archive for the Pareto Constraint.
The insertion of a new solution into the MDD and the deletion from the MDD of the solutions
dominated by this new solution are made by applying classical operators. We presented two
methods for establishing the bound consistency of this constraint: the unidirectional marking
method and the bidirectional marking method. The second method is linear in the size of
the MDD.

We have shown that, depending on the problem, using an MDD as an archive with the
bidirectional marking method can be very effective compared to the classical list representation
of the archive. The use of MDDs is particularly well suited to maintaining the dominance-free
relation of the archive. It is also interesting for the filtering algorithm. These performances
are even more important as the number of objectives increases.

References
1 David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N. Hooker. Decision

Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms.
Springer, 2016. doi:10.1007/978-3-319-42849-9.

2 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.

3 Marco Gavanelli. An algorithm for multi-criteria optimization in csps. In ECAI’02: Proceedings
of the 15th European Conference on Artificial Intelligence, pages 136–140, January 2002.

4 Renaud Hartert and Pierre Schaus. A support-based algorithm for the bi-objective pareto
constraint. Proceedings of the National Conference on Artificial Intelligence, 4:2674–2679,
June 2014. doi:10.1609/aaai.v28i1.9119.

5 T.Y.K. Kam and Robert K. Brayton. Multi-valued decision diagrams. Technical Report
UCB/ERL M90/125, EECS Department, University of California, Berkeley, 1990. URL:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html.

6 Sanaz Mostaghim and Jürgen Teich. Quad-trees: A Data Structure for Storing Pareto Sets in
Multiobjective Evolutionary Algorithms with Elitism, pages 81–104. Springer London, London,
2005. doi:10.1007/1-84628-137-7_5.

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1609/aaai.v28i1.9119
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html
https://doi.org/10.1007/1-84628-137-7_5


S. Malalel, A. Malapert, M. Pelleau, and J.-C. Régin 24:15

7 Guillaume Perez. Decision diagrams: constraints and algorithms. PhD thesis, Université Côte
d’Azur, 2017.

8 Guillaume Perez and Jean-Charles Régin. Constructions and in-place operations for mdds
based constraints. In Claude-Guy Quimper, editor, Integration of AI and OR Techniques in
Constraint Programming, pages 279–293, Cham, 2016. Springer International Publishing.

9 Charles Prud’homme and Jean-Guillaume Fages. Choco-solver: A java library for constraint
programming. Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.04708.

10 Khadija Salem and Yann Kieffer. An experimental study on symmetry breaking constraints
impact for the one dimensional bin-packing problem. In Conference: 2020 Federated Conference
on Computer Science and Information Systems, pages 317–326, September 2020. doi:10.
15439/2020F19.

11 Pierre Schaus and Renaud Hartert. Multi-objective large neighborhood search. In Christian
Schulte, editor, Principles and Practice of Constraint Programming, pages 611–627, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

12 A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. Algorithms for discrete function
manipulation. In 1990 IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers, pages 92–95, 1990. doi:10.1109/ICCAD.1990.129849.

13 Taha Vafaeenezhad, Reza Tavakkoli-Moghaddam, and Naoufel Cheikhrouhou. Multi-objective
mathematical modeling for sustainable supply chain management in the paper industry.
Computers & Industrial Engineering, 135:1092–1102, 2019. doi:10.1016/j.cie.2019.05.027.

14 Yihan Wang, Zongguo Wen, Jianguo Yao, and Christian Doh Dinga. Multi-objective optim-
ization of synergic energy conservation and co2 emission reduction in china’s iron and steel
industry under uncertainty. Renewable and Sustainable Energy Reviews, 134:110128, 2020.
doi:10.1016/j.rser.2020.110128.

CP 2023

https://doi.org/10.21105/joss.04708
https://doi.org/10.15439/2020F19
https://doi.org/10.15439/2020F19
https://doi.org/10.1109/ICCAD.1990.129849
https://doi.org/10.1016/j.cie.2019.05.027
https://doi.org/10.1016/j.rser.2020.110128

	1 Introduction
	2 Preliminaries
	2.1 Constraint Programming
	2.2 Multi-Objective Optimization
	2.3 Pareto Constraint
	2.4 Multi-valued Decision Diagram

	3 Pareto Constraint Using MDD
	3.1 Insert and Delete Operations
	3.2 Filtering algorithm of the Pareto Constraint
	3.2.1 Unidirectional Marking
	3.2.2 Bidirectional Marking


	4 Experiments
	4.1 Bin Packing Problem
	4.2 Multi-Criteria Knapsack Problem

	5 Conclusion

