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Abstract
Constraint programming is known for being an efficient approach to solving combinatorial problems.
Important design choices in a solver are the branching heuristics, designed to lead the search to
the best solutions in a minimum amount of time. However, developing these heuristics is a time-
consuming process that requires problem-specific expertise. This observation has motivated many
efforts to use machine learning to automatically learn efficient heuristics without expert intervention.
Although several generic variable-selection heuristics are available in the literature, the options
for value-selection heuristics are more scarce. We propose to tackle this issue by introducing a
generic learning procedure that can be used to obtain a value-selection heuristic inside a constraint
programming solver. This has been achieved thanks to the combination of a deep Q-learning
algorithm, a tailored reward signal, and a heterogeneous graph neural network. Experiments on graph
coloring, maximum independent set, and maximum cut problems show that this framework competes
with the well-known impact-based and activity-based search heuristics and can find solutions close
to optimality without requiring a large number of backtracks.
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1 Introduction

Combinatorial optimization has countless industrial applications, such as scheduling, routing,
or finance. Unfortunately, most of these problems are NP-hard and, thereby, challenging
to solve efficiently. It is why finding good solutions has motivated intense research efforts
for many years. Traditional methods for tackling them are somehow based on a search
procedure: A clever enumeration of the solution space is performed to find a feasible and
possibly optimal solution. Among these methods, constraint programming (CP) is an exact
procedure. It constitutes a popular approach as it offers the possibility to find the optimal
solution or good feasible approximations by stopping the search early. An additional asset
is its declarative paradigm in modeling, which makes the technology easier for the end-
user to grasp. Introducing solver-agnostic modeling languages, such as MiniZinc [35] has
greatly facilitated this aspect. Aligned with this goal, the propagation engine inside a CP
solver is mostly hidden from the end-user. However, ensuring a generic search procedure
is trickier as non-trivial heuristics must be designed to make the solving process efficient
for an arbitrary problem. That being said, generic variable-selection and value-selection
heuristics have been successfully designed. Notable examples are impact-based search [37]
or activity-based search [31], but they require computationally intensive initialization and
yield poor performance at the beginning of the search. This makes these methods not always
appropriate for general use. As a concrete example, the current version of MiniZinc1 does not
propose generic value-selection heuristics, except in(out)domain or impact-based search. In
practice, heuristics are often designed thanks to problem-specific expert knowledge, which is
often out of reach for end-users that do not have a solid background in artificial intelligence.

In another context, machine learning (ML) has been recently considered for automating
the design of branching heuristics, both in constraint programming [11], mixed-integer
programming [16, 23], or SAT solving [41]. Specifically, reinforcement learning (RL) [45]
or imitation learning [22] approaches, often combined with deep learning [27], have gained
special attention. Although this idea seems appealing, this is not an easy task to achieve in
practice as several technical considerations must be taken into account in order to ensure both
the efficiency and the genericity of the approach. In constraint programming, we identified
three questions to resolve when learning a generic branching heuristic inside a solver. They
are as follows:
1. How to train the machine learning model? An intuitive way is to leverage an RL agent

that would explore the tree search by making branching decisions and rewarding it based
on the quality of the solution found on a terminal node. This would typically be done with
a depth-first search traversal of the tree for getting a certificate of optimality. However,
as pointed out by several authors [38, 42], the backtracking operations inside a solver
raise difficulties when formalizing the task as a Markov decision process and may require
redefining it. Besides, this training scheme intensifies the credit assignment problem [32],
ubiquitous in reinforcement learning.

2. How to evaluate the quality of a value selection? A core component of an RL environment
is the reward function, which gives a score to each decision performed. The end goal for
the agent is to perform a sequence of decisions leading to the best-accumulated sum of
rewards. In our case, an intuitive solution would be to reward the agent according to
the quality of the solution found. However, this information is only available at terminal
nodes, and only a zero reward is provided in branching nodes. This is related to the
sparse reward problematic, which is known to complicate the training process.

1 https://www.minizinc.org/doc-2.7.0/en

https://www.minizinc.org/doc-2.7.0/en
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3. How to learn from a CP model? This question relates to the type of architecture that
can obtain a value-selection heuristic from a search node (i.e., a partially solved CP
model). A promising direction has been proposed by Gasse et al. [16] for binary mixed-
integer programs. They introduced a bipartite graph linking variables and constraints
(i.e., the two types of nodes) when a variable is involved in a given constraint. The
subsequent architecture is a heterogeneous graph neural network. However, this encoding
is not directly applicable in constraint programming, as a CP model generally involves
non-binary variables and combinatorial constraints. This has been partially addressed
by Chalumeau et al. [12], who introduced a tripartite graph where variables, values, and
constraints are specific types of nodes. However, this approach lacks genericity as the
method requires retraining when the number of variables changes.

To our knowledge, answering such questions is still an open challenge in the research
community. This paper proposes to progress in this direction. It introduces a generic
learning procedure that can be used to obtain a value-selection heuristic from a constraint
programming model given as input. The approach has been designed to be generic in that it
can be used for any CP model given as input. In practice, a specific way to extract features
from a constraint should be designed for any available constraint, but this has to be done
only once per constraint type. In this proof of concept, we limit our experiments to three
combinatorial optimization problems, namely graph coloring, maximum independent set, and
maximum cut. Specifically, we propose three main contributions, each dedicated to addressing
one of the aforementioned difficulties. They are as follows: (1) a learning procedure, based
on restarts, for training a reinforcement learning agent directly inside a CP solver, (2) a
reward function able to assign non-zero intermediate rewards based on the propagation that
has been carried out on the node, and (3) a neural architecture based on a tripartite graph
representation and a heterogeneous graph neural network. Experimental results show that
combining these three ideas enables the search to find good solutions without requiring
many backtracks and competes with the well-known impact-based and activity-based search
heuristics.

The paper is structured as follows. The next section presents other approaches related to
our contribution. Then, Section 3 introduces succinctly technical background on reinforcement
learning and graph neural networks. The core contributions are then presented in Section 4.
Finally, Section 5 provides experimental results and closes with a discussion of the results.

2 Related Work

Bengio et al. [5] identified three ways to leverage machine learning for combinatorial opti-
mization. First, end-to-end learning aims to solve the problem only with a trained ML model.
This has been, for instance, considered for the traveling salesman problem [4, 25]. However,
such an approach does not guarantee the validity nor optimality of the solution obtained.
Second, learning to configure is dedicated to providing insights to a solver before its execution.
This can be, for instance, the decision to linearize the problem in the context of quadratic
programs [7] or to learn when a decomposition is appropriate [26]. This approach is also
referred to as parameter tuning [21]. We refer to the initial survey for extended information
about these two families of approaches. Third, learning within a search procedure uses
machine learning within the solver. Our contribution belongs to this last category of methods.
Although the idea of combining learning and searching for solving combinatorial optimization
problems was already discussed in the nineties [36], it has re-emerged recently with the rise
of deep learning. Most combinatorial optimization solvers are based on branch-and-bound
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and backtracking. In this context, ML is often used with branching rules to follow. Imitation
learning [22] has been for instance used to replicate the expensive strong branching strategy
for mixed-integer programming solvers [16, 23]. One limitation of imitation learning is that
the performances are bounded by the performance of the imitated strategy, which remains
heuristic and perfectible [43]. This opens the door for RL approaches that have the guarantee
to find the best branching strategy eventually [29]. A branching strategy can be split into
two challenging decisions, variable-selection and value-selection. Reinforcement learning
approaches have been considered for both of them.

Concerning the learning for selecting the next variable to branch on, Song et al. [42]
proposed to combine a double deep Q-network algorithm [49] with a graph neural network
for carrying out this task. The approach is trained to minimize the expected number of
nodes to reach a leaf node using the first-fail principle. Although this is a good proxy for
pruning a maximum of infeasible solutions for a constraint satisfaction problem, it does
not extend naturally to optimization variants, for which one should consider a trade-off
between the quality of the solution found and the number of nodes required to reach that
solution. Similarly, van Driel et al. [48] leveraged a graph neural network to initialize a
variable-selection heuristic for Chuffed, a hybrid CP-SAT solver. In an online setting, Doolard
and Yorke-Smith [15] also proposed to learn variable ordering heuristics where training time
is included in the total solving time. Bandit-based learning approaches were also considered
by Xia and Yap to automatically select search heuristics [50].

For the value-selection heuristic, Chu and Stuckey [13] introduced a scoring function which
gives a score indicating how good an assignation is, given the current domain. A training
phase is the carried out in a supervised manner to learn this scoring function. Cappart et
al. [11] proposed to train a model with reinforcement learning outside the CP solver and
to integrate the agent, once trained, subsequently in the solver. This has been achieved by
reaping the benefits of a dynamic programming formulation of a combinatorial problem. An
important limitation of this work is that no information related to the CP solver, such as
the propagation achieved on a node, can be used to drive the decision. Chalumeau et al. [12]
mitigated this issue by carrying out the learning inside the solver. The model is trained to
find the optimal solution and to prove it with the least number of explored search nodes.
However, this goal is disconnected from finding the best solution as quickly as possible and
is practically hard to achieve, even with a good heuristic. A more realistic goal is to find a
good solution quickly without closing the search. This is how the contribution of this paper
is positioned.

We want to point out that learning how to branch is not the only way to leverage ML
inside a combinatorial optimization solver. Related works have also been proposed on
learning tight optimization bounds [9] or for accelerating column generation approaches [34].
A recurrent design choice is an architecture based on graph neural networks. We refer to the
following survey for more information about combinatorial optimization with graph neural
networks [10].

3 Technical Background

This section introduces the required background on reinforcement learning and graph neural
network to grasp the technical aspects of the paper.
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3.1 Reinforcement Learning
Let ⟨S, A, T, R⟩ be a 4-tuple representing a Markov decision process where S is the set of
states in the environment, A is the set of actions that the agent can do, T : S × A → S is a
transition function leading the agent from one state to another, given the action taken, and
R : S × A → R is a reward function of taking an action from a specific state. The sequence
[s1, . . . , sT ] from the initial state (s1) of an agent towards a terminal state (sT ) is referred to
as an episode. The returned reward within a partial episode [st, . . . , sT ] can be formalized
as follows: Gt =

∑T
i=t R(si, ai). We intentionally omitted the discounting factor as we do

not want to discount the late rewards in our application. The agent is governed by a policy
π : S → A, which indicates the action that must be taken on a given state. The agent’s goal
is to find the policy that will lead it to maximize the accumulated reward until a terminal
state is reached. The core idea of reinforcement learning is to determine this policy by letting
the agent interact with the environment and increasing the probability of taking action if it
leads to high subsequent rewards. There are a plethora of reinforcement learning algorithms
dedicated to this task, such as trust region policy optimization [40] or soft actor-critic [18].
We refer to SpinningUp website for explanations of the main algorithms [1].

This section presents the core principles of deep Q-learning [33], which is the algorithm
used in this paper. The idea is to compute an action-value function Qπ(st, at) = Gt.
Intuitively, this function gives the accumulated reward that the agent will obtain when
performing the action a at state s while subsequently following a policy π. The output of
this function for a specific action is referred to as a Q-value. Provided that the action-value
function can be computed exactly, the optimal policy π⋆ turns to be simply the selection of the
action having the highest Q-value on a specific state: π∗ = argmaxπQπ(s, a), ∀(s, a) ∈ (S, A).
Although the exact computation of Q-values can theoretically be performed, a specific value
must be computed for each pair of states and actions, which is not tractable for realistic
situations. It is why a tremendous amount of work has been carried out to approximate
accurately and efficiently Q-values. Among them, deep Q-learning aims to provide a neural
estimator Q̂(s, a, θ) ≈ Q(s, a), where θ is a tensor of parameters that must be learned during
a training phase. This algorithm is commonly enriched with other mechanisms dedicated to
speed-up or stabilizing the training process, such as the double deep Q-network variant [49] or
prioritized experience replay [39]. Concerning the neural architecture, we opted for a graph
neural network, which is explained in the next section.

3.2 Graph Neural Network
Intuitively, the goal of a graph neural network (GNN) is to embed information contained in
a graph (e.g., the structure of the graph, spatial properties, features of the nodes, etc.) into
a d-dimensional tensor for each node u ∈ V of the graph. To do so, information on a node
is iteratively refined by aggregating information from neighboring nodes. Each iteration of
aggregation is referred to as a layer of the GNN and involves parameters that must be learned.
Let hk

u ∈ Rd×1 be the tensor representation of node u at layer k of the GNN, hk+1
u ∈ Rl×1

be the tensor representation of this node at the next layer (l being the dimension of a node
at the layer k + 1), and θ1 ∈ Rl×d and θ2 ∈ Rl×d be two matrices of parameters, respectively.
Each GNN layer carries out the following update:

hk+1
u = g

(
θ1hk

u ⋆ (
⊕

v∈N(u)

θ2hk
v)

)
∀u ∈ V (1)

Three operations are involved in this update: (1)
⊕

is an aggregation operator that is
dedicated to aggregating the information of neighbors (e.g., mean-pooling or sum-pooling), (2)
⋆ is a merging which enables to combine of the information of a node with the ones from the
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neighbors (e.g., a concatenation), and (3) g is an element-wise non-linear activation function,
such as the ones commonly used in fully-connected neural networks (e.g., ReLU [17]). Without
loss of generality, the bias term is not included in the equation. A concrete implementation
of a GNN defines these three functions adequately. The training is conducted in a fully-
connected neural network through back-propagation and an optimizer based on stochastic
gradient descent such as Adam [24].

4 Learning a Value-Selection Heuristic Inside a Solver

This section presents how a value-selection heuristic can be learned with reinforcement
learning in a CP solver from a model given as input. This is the core contribution of the
paper. Three mechanisms are introduced: (1) a training procedure based on restarts, (2) a
reward function leveraging propagation of domains, and (3) a heterogeneous graph neural
network architecture. They are described individually in the next subsections. They have been
implemented in the recently introduced SeaPearl.jl solver [12]. Inspired by the architecture
of MiniCP [30], the main specificity of SeaPearl is to natively integrate support for learning
inside the search procedure. This greatly facilitates the prototyping of new search algorithms
based on learning.

4.1 Restart-Based Training
Generally speaking, the performance of a reinforcement learning agent is tightly correlated
with the definition of an episode. This corresponds to the agent’s interactions with the CP
solver’s search procedure and is related to the goal desired for the agent. Two options are
discussed in this section, (1) an episode based on depth-first search, introduced by Chalumeau
et al. [12], and (2) an episode based on restarts, which is our first contribution.

Building branching heuristics for solving exact combinatorial optimization problems often
concurrently targets two objectives: finding quickly good solutions and proving the optimality
of a solution. The approach of Chalumeau et al. [12] relies heavily on the second objective
and aims to minimize the number of visited search nodes before proving optimality (e.g.,
closing the search). To do so, they defined a training episode as a complete solving process
carried out by the depth-first search of a solver and penalized through the reward function
the generation of each node. This is illustrated in the left picture of Figure 1. However,
this approach suffers from an important difficulty. An episode only terminates when the
search is completed, which is often intractable for realistic problems as it requires exploring
an exponentially large search tree. This is especially problematic during training, where
the heuristic is still mediocre. In addition, using a depth-first search algorithm in a Markov
Decision Process (MDP) framework required additional considerations not considered by
Chalumeau et al. [12]. For example, using a backtracking algorithm in a regular temporal
MDP renders their method prone to the credit assignment problem [32]. These considerations
have been pointed out by Scavuzzo et al. [38] for mixed-integer programming.

Unlike this approach, we propose to train the model to find high-quality solutions quickly.
To do so, we followed the approach proposed by Cappart et al. [11]: an episode is defined as
a single dive in the search tree. No backtrack is allowed; the episode stops when a complete
solution is found or a failure is generated. Once the episode is terminated, a restart from
the root node is performed, and a new episode is generated, hence the name of restart-based
episode. This is illustrated in the right picture of Figure 1. One limitation of Cappart et
al. [11] is that episodes are executed outside the CP solver during the training and cannot
use the information updated during propagation for the branching. Inspired by Song et
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Figure 1 The two training procedures (left: depth-first search [12], right: restart-based - ours).

al. [42] for variable-selection heuristics, we addressed this limitation by executing each episode
inside the solver during the training. Formally, this requires defining the dynamics of the
environment as a Markov Decision Process (i.e., a tuple ⟨S, A, T, R⟩, see Section 3.1). It is
defined as follows.

Set of states Let P = ⟨X, D(X), C, O⟩ be the expression of a combinatorial optimization
problem (COP), defined by its variables (X), the related domains (D), its constraints
(C), and an objective function (O). Each state st ∈ S is defined as the pair st = (Pt, xt),
where Pt is a partially solved COP (i.e., some variables may have been assigned), and
xt ∈ X is a variable selected for branching, at step t of the episode. The initial state
s1 ∈ S corresponds to the situation after the execution of the fix-point at the root node.
A terminal node is reached either if all the variables are assigned (∀x ∈ X : |Dt(x)| = 1),
or if a failure is detected (∃x ∈ X : |Dt(x)| = 0). The variable selected for branching is
obtained through a standard heuristic such as first-fail.

Set of actions Given a state st = (Pt, xt), an action at corresponds to the selection of a
value v ∈ D(xt) for branching at step t. Finding the most promising value to branch on
is the problem addressed in this paper.

Transition function Given a state st = (Pt, xt) and an action at = v, the transition function
executes three successive operations. First, it assigns the value v to the variable x

(i.e., D(xt+1) = v). Second, it executes the fix-point on Pt in order to prune the
domains (i.e., Pt+1 = fixPoint(Pt)). Third, it selects the next variable to branch on (i.e.,
xt+1 = nextVariable(Pt+1)). This results in a new state st+1 = (Pt+1, xt+1). Integrating
the propagation inside the transition is one important difference with Cappart et al. [11].

Reward function The function is defined separately in Section 4.2.

Concerning the training, we opted for a double deep Q-learning algorithm [49], known
to perform well for discrete action spaces. However, other RL algorithms could also be
used. We compared our restart-based training procedure using a simple terminal reward
based on the solution’s score with the backtracking-based approach of Chalumeau et al. [12]
using their reward at each step (penalty of 1 for each explored node). We selected the
maximum independent set problem for this comparison with instances with 50 nodes. Results
are presented using performance profiles [14] in Figure 2. A detailed explanation of the
experimental protocol is proposed in Section 5.

We evaluated both methods on two metrics matching the objective for which they were
specifically trained. We look at the value of the solution obtained after a single dive (Figure 2a)
in the tree search and the number of nodes visited to prove optimality using a depth-first
search (Figure 2b). As expected, we observe that the agent trained with the restart-based
learning strategy allows good results regarding the optimality gap for the first solution found
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after a single dive. Remarkably, our method yields a comparable ability to prove optimality
compared to Chalumeau et al. [12], whose primary aim was specifically to solve the problem
in the minimum number of nodes. This last result has to be mitigated as both RL-based
methods lie in the range of the random strategy (shaded blue area).

(a) Score of the first solution obtained. (b) Number of node visited until optimality.

Figure 2 Comparison of both training methods on maximum independent set (50 nodes). As
a non-learned baseline, we added the performances of an agent performing only random decisions.
Training is carried out on randomly generated Barabási-Albert graphs [2]; we selected this type of
distribution as the generated graphs are known to mimic human-made and natural organizations.
The evaluation is performed on 20 other graphs following the same distribution.

Finally, as shown in Figure 2a, it is important to notice that the optimality gap returned
by our method is still non-negligible at the first solution obtained. The complexity of a
combinatorial problem lies mainly in closing this gap, which is why backtracking is required.
Experiments with backtracking are proposed in Section 5.

4.2 Propagation-Based Reward
The definition of our reward must be aligned with our objective of finding quickly good
solutions for the combinatorial problem. Based on our training procedure, an intuitive
function is to reward the agent proportionally to the solution quality found at the end of an
episode. In case of an infeasible solution found, a penalty can be given. The main drawback
of this rewarding scheme is that this information is only available at terminal nodes, and no
reward is provided in branching nodes. This is related to the sparse reward problem, which
complicates the training process [47]. To address this challenge, one should find a way to
give informative intermediate rewards along the solving process. To this end, we propose
a new rewarding scheme based on the domain reduction of the objective variable (i.e., the
variable that must be minimized or maximized). This reduction happens either thanks to the
branching assignment or the application of the fix-point. There are two main components:
(1) an intermediate reward (rmid) collected at branching nodes, and (2) terminal reward (rend)
collected only at the end of an episode.

Assuming a minimization problem, the intermediate reward follows two principles: each
domain reduction of the largest values of the domain is rewarded, and each domain reduction
of the lowest values of the domain is penalized. It is important to note that following these
principles does not guarantee the discovery of a good solution at the end of the branch.
The rationale is to lead the agent to a situation where the minimum cost can be eventually
obtained while removing costly solutions. It is formalized in Equations (2) to (4), where rmid

t

is the reward obtained at step t, and is illustrated in Figure 3. As shown in Equation (5),
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the terminal reward is set to -1 if the leaf node corresponds to an infeasible solution and 0 if
it is feasible. Finally, the total reward (racc) accumulated during an episode of T steps is the
sum of all intermediate rewards with the final term, as proposed in Equation (6).

rub
t = #

{
v ∈ Dt(xobj)

∣∣∣ v /∈ Dt+1(xobj) ∧ v > max
(
Dt(xobj)

)}
(2)

rlb
t = #

{
v ∈ Dt(xobj)

∣∣∣ v /∈ Dt+1(xobj) ∧ v < min
(
Dt(xobj)

)}
(3)

rmid
t = rub

t − rlb
t∣∣D1(xobj)

∣∣ (4)

rend
t = −1 if unfeasible solution found (0 otherwise) (5)

racc =
( T −1∑

t=1
rmid

t

)
+ rend

T (6)

Figure 3 Intermediate reward when four values are pruned from the domain.

An experimental analysis of this new reward scheme (propagation-based reward) is carried
out for the graph coloring, maximum cut, and maximum independent set problems; we look
at the quality of the solution found after a single dive in the search tree. As a baseline, we
consider a reward (score reward) that only gives a value at terminal nodes (rend

T ) without
an intermediate reward. Besides, we also consider the solutions returned by a random
value-selection heuristic as a baseline. Figure 4 shows the evolution of the quality of the first
solution returned (y-axis, averaged on 20 instances of the validation step) with the training
time (number of episodes in the x-axis) using for training our restart-based search strategy
defined in Section 4.1. Instances are Barabási-Albert randomly generated graphs with 50
nodes. Except for the rewarding scheme, the other parts of the architecture are unchanged.
We observe that the propagation-based reward provides a more stable training (Figure 4a)
and can converge to a better model or, at least, to an equally good model as the terminal
score reward (Figures 4b and 4c).

It should be noted that depending on the problem, the reward signal may remain sparse
inside episodes even with our definition; this explains the discrepancy across the three class
problems. Indeed, constraint propagation might take several steps to reach the objective
variable, meaning that for related intermediate decisions, no value will be pruned from the
domain of the objective variable. The graph coloring problem is thus the problem for which
taking these intermediate rewards is the most beneficial. Indeed, any previously unused color
added will negatively impact the domain of the objective function, yielding an insightful
negative reward. Conversely, branching on the maximum independent set problem does
not consistently impact the objective function domain through the mechanism of constraint
propagation, particularly at the beginning of the search. Our method yields no worse result
than the usual reward signal in this setting. This worst-case scenario empirically validates
the robustness of this reward.
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(a) Graph coloring. (b) Maximum cut. (c) Maximum independent set.

Figure 4 Training curve for the two rewarding schemes, each validation step corresponds to
performing a single dive in the search tree, the score obtained refers to the quality of the solution
found on the leaf node.

4.3 Heterogeneous Graph Neural Network Architecture
An important part of the framework is the neural network architecture that we designed to
perform a prediction of the next value to branch on. A high-level representation is proposed
in Figure 5. Four steps are carried out: (1) a CP model encoder, (2) a graph neural network
encoder, (3) a neural network decoder, and (4) an action-selection policy. They are detailed
in the next subsections.

Figure 5 High-level overview of the neural architecture designed.

Step 1: CP Model Encoder
The core idea is to learn for any CP model given as input, unlike Cappart et al. [11], who
require a specific encoding for each combinatorial problem. This has been achieved for mixed-
integer programs thanks to a bipartite graph representation [16] and by Chalumeau et al. [12]
for CP models thanks to a tripartite graph. This last work does not leverage any feature
related to the variables, values, or constraints. We built upon this last approach by adding
such features. Specifically, let P = ⟨X, D(X), C, O⟩ be the combinatorial problem we want to
encode. The idea consists in building a simple undirected graph G(V1, V2, V3, f1, f2, f3, E1, E2)
encoding all the information of Pt from a state st = (Pt, xt). In this representation, V1, V2,
and V3 are three sets of vertices, f1, f2, and f3 are three sets of feature vectors, and E1 with
E2 are two distinct sets of edges. This yields a graph with three types of nodes decorated
with features. The first part of the encoding we propose is as follows: (1) each variable,
constraint, and value corresponds to a specific type of node (V1 = X, V2 = C, and V3 = D),
(2) each time a variable x ∈ V1 is involved in a constraint c ∈ V2, an edge (x, c) ∈ E1 is added
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between both nodes, (3) each time a value v ∈ V3 is in the domain of a variable x ∈ V1, an
edge (v, x) ∈ E2 is added between both nodes. This gives a tripartite graph representation
of a CP model generically. This is illustrated in Figure 6. The second part of the encoding is
to add features to each node. Intuitively, the features will provide meaningful information
and thus improve the quality of the model. The features we considered are proposed below.
We note that we can easily extend this encoding by integrating new features.

1. Features attached to variables (f1): the current domain size, the initial domain size, a
binary indication if the variable is already assigned, and a binary indication if the variable
corresponds to the objective.

2. Features attached to constraints (f2): the constraint type (one-hot encoding), and a binary
indication if the constraint propagation has reduced domains.

3. Features attached to values (f3): its numerical value.

Figure 6 Representation computed by the CP encoder on a simple example.

Step 2: Graph Neural Network Encoder

Once the CP model has been encoded as a graph, the next step is to embed this representation
as a latent vector of features for each node of the graph (see Section 3.2). We propose to
carry out this operation with a graph neural network. Unlike the standard prediction scheme
presented in Equation (1), our graph has three types of nodes. For this reason, we opted
for a heterogeneous architecture. Concretely, a specific convolution is carried out for each
node type. The architecture is detailed in Equations (7) to (9), where

⊕
is the sum-pooling

or mean-pooling aggregation, operator (.∥.) is a concatenation of vectors, Nx(n) is the set
of neighbouring nodes of n from V1 (variable), Nc(n) is the set of neighbouring nodes of n

from V2 (constraint), Nv(n) is the set of neighbouring nodes of n from V3 (value), θk
1,...,10

are weight matrices at layer k, and g is the leakyReLU activation function [28]. Another
difference with the canonical GNN equation is the integration of skip connections (h0

x, h0
c ,

and h0
c) allowing to keep at each layer information from the input features. This technique

is ubiquitous in deep convolutional networks such as in ResNet [20]. Finally, the initial
embedding are initialized as follows: h0

x = θ11f1, h0
c = θ12f2, and h0

v = θ13f3, where θ11,...,13
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are new weight matrices.

hk+1
x = g

(
θk

1 h0
x

∥∥ θk
2 hk

x

∥∥ (
⊕

c∈Nc(x)

θk
3 hk

c )
∥∥ (

⊕
v∈Nv(x)

θk
4 hk

v)
)

∀x ∈ V1 (7)

hk+1
c = g

(
θk

5 h0
c

∥∥ θk
6 hk

c

∥∥ (
⊕

x∈Nx(c)

θk
7 hk

x)
)

∀c ∈ V2 (8)

hk+1
v = g

(
θk

8 h0
v

∥∥ θk
9 hk

v

∥∥ (
⊕

x∈Nx(v)

θk
10hk

x)
)

∀v ∈ V3 (9)

Step 3: Neural Network Decoder
At this step, a d-dimensional tensor is obtained for each graph node. Let x ∈ V1 be the
node representing the current variable selected for branching, and Vx ⊆ V3 the subset of
nodes representing the values available for x (i.e., the values that are in the domain of the
variable). The goal of the decoder is to predict a Q-value (see Section 3.1) for each v ∈ Vx.
The computation is formalized in Equation (10), where hK

x and hK
v are the node embedding

of variable x and value v, respectively, after K iterations of the GNN architecture. The
functions φx : Rd → Rl, φv : Rd → Rl, φq : R2l → R are fully-connected neural networks.
Such a Q-value must be computed for each value v ∈ Vx. It is internally done thanks to
matrix operations, allowing a more efficient computation.

Q̂(hK
x , hK

v ) = φq

(
φx(hK

x )
∥∥ φv(hK

v )
)

∀v ∈ Vx (10)

Step 4: Action-Selection Policy
Once all the Q-values have been computed for the current variable, the policy is defined
by an explorer that can decide to exploit the approximated Q-values by greedily choosing
the best action as shown in Equation (11) or decide to select unpromising action associated
with a lower Q-value (for example, by selecting a random action with probability ϵ). This
behavior derives from the trade-off between exploitation and exploration, which is necessary
for early learning when the estimates of Q-values are poor, and when only a few states have
been visited. Once trained, the Q-values should represent the branching choice leading to
the best decision according to the reward of Equation (6).

π(v|x) = argmaxv∈Vx
Q̂(hK

x , hK
v ) (11)

Assembling all the pieces, this architecture gives a generic approach to obtaining a
data-driven value-selection heuristic inside a CP solver. Concerning the search strategy
used for evaluation (which is different from the restart-based one used for training), we
propose to embed our predictions inside an iterative limited discrepancy search (ILDS) [19].
This strategy is commonly used when we are confident in the quality of the heuristic. The
core idea is to restrict the number of branching choices deviating from the heuristic (i.e., a
discrepancy). By doing so, the search will explore a subset of solutions expected to be good
while giving a chance to reconsider the value-heuristic selection which is nevertheless prone
to errors. This mechanism is enriched with a procedure that iteratively increases the number
of discrepancies allowed once a level has been explored.

5 Experiments

The goal of this section is to evaluate the quality of the learned value-selection heuristic and
the efficiency of the approach. Three combinatorial optimization problems are considered:
graph coloring (COL), maximum independent set (MIS), and maximum cut (MAXCUT).
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5.1 Experimental Protocol
Three configurations for the distribution of the problems generated are proposed for each
problem: small (20 to 30 nodes), medium (40 to 50 nodes), and large (80 to 100 nodes)
instances, except for MAXCUT which was already challenging for the medium size. Training
is carried out on randomly generated Barabási-Albert graph [2] with a density factor varying
between 4 and 15 according to the size of the instances. A specific model is trained for each
configuration of each combinatorial problem. The training is done using randomly generated
instances. Evaluation is then performed on 20 new graphs following the same distributions.
The models are trained on an Nvidia Tesla V100 32Go GPU until convergence. It took up to
72 hours of training time for the most difficult cases (graph coloring with 80 nodes) and less
than 1 hour for the simplest cases (graph coloring with 20 nodes). Each operation of the
CP solver during training and evaluation is carried out on a CPU Intel Xeon Silver 4116
at 2.10GHz. The approach has been implemented in Julia and is integrated into the solver
Seapearl. The implementation is available on GitHub with BSD 3-Clause licence2.

We compared our approach (Learned, ILDS) with two other generic value selection
heuristics: impact-based search (Impact) [37] and activity-based search (Activity) [31]. The
standard minDomain heuristic is used for the variable selection. Comparisons with Chalumeau
et al. [12] have been provided in Section 4.1. As it has been highlighted that this approach is
not suited to find good solutions quickly, it is not included again in the next experiments.
Each approach is evaluated with a fixed node budget depending on the parameters of the
distribution used to generate the problems. For our approach, the performance obtained
after the first dive in the tree search is also monitored (Learned, 1st dive). As Impact and
Activity are online learning methods, they perform similarly to a random selection at the
beginning of the search. For this reason, the performance obtained after the first dive in the
tree search with such methods is omitted. Finally, we also included a comparison with a
random selection using DFS with the same node budget (Random). Finally, the optimal cost
(OPT) has been obtained with an exact approach without any restriction on the budget.

5.2 Quantitative Results
Table 1 summarizes the main results of our approach. As a general comment, our approach
can find solutions of superior quality given a node budget or find the optimal solution by
exploring fewer nodes than the baselines. Interestingly, our approach (Learned, ILDS) can
learn a branching strategy giving high-quality solutions, even without backtracking (1st

dive). For instance, a single dive for maximum cut with 50 nodes yields almost instantly a
solution with an optimality gap of 0.16, whereas a depth-first search with a random selection
(Random, DFS) required 19 seconds and roughly 53,000 nodes explored to find a solution
with the same gap. Within this same budget, (Learned, ILDS) significantly improves the
solution and achieves an optimality gap of 0.09. It is worth highlighting that (Learned, ILDS)
took 130 seconds to explore 38,744 nodes and has, thereby, an exploration rate slower than
the other methods. This significantly increased execution time is mainly because calling
the graph neural network architecture (Section 4.3) at each tree search node is much more
computationally expensive than calling a simple heuristic. This difficulty is further discussed
in Section 5.3.

Concerning Activity and Impact heuristics, they yield no improvement on graph coloring
compared to a random strategy. This can be explained by the fact that this class of problem
has many possible combinations of variables and values for branching. This requires a

2 https://github.com/corail-research/SeaPearl.jl
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Table 1 Results for the three problems given a fixed node budget. The average result (rounded)
on the 20 test instances is reported for each configuration. Gap indicates the optimality gap, Node
gives the number of nodes explored before finding the best solution within the budget, and Time
gives the time (seconds) before finding this solution.

Learned Activity-Based Impact-Based Random
1st dive ILDS DFS DFS DFS

Size OPT Gap Gap Node Time Gap Node Time Gap Node Time Gap Node Time Budget

COL
20 5.05 0.06 0 27 < 1 0 378 < 1 0 374 < 1 0 378 < 1 103

40 7.90 0.08 0 104 < 1 0 1,664 < 1 0 1732 < 1 0 1735 < 1 104

80 8.75 0.06 0 120 1 0 7,051 2 0 7,057 2 0 7,211 2 105

MIS
30 9.90 0.08 0 88 < 1 0 215 < 1 0 297 < 1 0 293 < 1 103

50 15.00 0.09 0 539 1 0 5,807 1 0 7,474 1 0 8,942 1 104

100 21.70 0.20 0.02 28,392 253 0.09 35,536 7 0.10 38,154 8 0.10 41,774 9 105

MAXCUT 20 46.70 0.15 0.03 3,714 5 0.04 4,635 1 0.03 5,959 2 0.04 4877 1 104

50 222.00 0.16 0.09 38,744 130 0.17 44,664 14 0.17 47,970 17 0.17 53,110 19 105

significantly larger number of explored nodes to initialize these two heuristics efficiently.
For the two other problems, characterized by a binary domain for the values to branch on,
Activity and Impact provide significantly better results than the random strategy, which is the
expected behavior. In all the tested situations, (Learned, ILDS) provides the best optimality
gap within the node budget. Additional results are proposed in Figure 7 using performance
profiles [14] for the two hardest situations (100 for maximum independent set, and 50 for
maximum cut) given a node budget of 100 or 1000 nodes.

(a) Maximum cut with 50 nodes. (b) Maximum independent set with 100 nodes.

Figure 7 Best solutions found within a restricted node budget on largest instances for the three
problems considered. We set a small budget to evaluate the ability of each approach to find quickly a
good solution, which is the objective aimed by this work. The performance profile ratio is computed
using the optimal solution as a reference. Within the same maximal number of nodes visited (1000),
we observe that (Learned, ILDS) dominate all the other methods. Besides, we still perform better
than the baselines when restricting ten times the budget for ILDS-Learned.

5.3 Discussions and Opportunities of Further Research

The previous experiments showcased the promise of this framework to quickly find good
solutions towards a generic value-selection heuristic inside a CP solver. There are nonetheless
open challenges that must be considered for practical use. Four of them are discussed.
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Challenge 1: Scalability of the Representation
Our approach faces a double penalty regarding its scaling capability: as the problem grows
larger, the tripartite representation increases significantly in size, which results in a longer
computation time required to make one branching decision. This impacts both training
and evaluation. Additionally, the number of nodes (and, therefore, decisions to be made) in
the search tree grows exponentially with the problem size, exacerbating the aforementioned
phenomenon. Consequently, our approach is penalized twice due to the exponential behavior
of combinatorial problems. As a concrete example, graph coloring instances with 80 nodes
require 72 hours of training on a GPU, while only 1 hour is required for the smallest instances.
An interesting research direction to mitigate this difficulty is to build a mechanism to compact
the representation, for instance, thanks to network pruning tools [51] or with transfer learning.
Another idea is to call the model only in a few nodes, in a similar fashion as Cappart et
al. [9] did for decision-diagram-based branch-and-bound [6]. On a lower level of computation,
standard constraint programming solvers perform sequential decisions and are therefore
optimized for CPU architecture. Concerning the training, it is carried out on a GPU. In the
current implementation, each branching decision requires loading the entire tripartite graph
on the Video RAM, which is inefficient. We believe much work could be done to optimize
this CPU/GPU architecture, for instance by delegating other operations on the GPUs, such
as the propagation of few constraints [8, 46].

Challenge 2: Tackling Highly Constrained Problems
The experiments proposed in the paper considered combinatorial problems where the difficulty
lay in finding the best solution. Still, it was easy to find a feasible solution, even of poor
quality. We empirically observed that the learning performance largely depends on the
abundance of feasible solutions in the search space. This is explained by the definition
of the reward, which is based on the propagation occurring on the objective variable (see
rmid

t in Section 4.2). However, when feasible solutions are not easily obtained, such as in
highly constrained problems, the reward signal becomes less informative. Addressing such
combinatorial problems remains an open challenge. We believe an extension of the reward
signal can address this in order to handle other situations.

Challenge 3: Learning a Combined Variable/Value Heuristic
Although this work proposes to learn a value-selection heuristic, learning how to branch on
variables has already been considered in the literature [42]. An interesting research direction
is to adapt this architecture to learn a variable-selection and a value-selection heuristic in a
unified way. A possible direction is to consider a model with a double-head decoder, the first
for selecting the variable and the second for selecting the value. On the training aspect, two
reinforcement learning agents could be trained, with an the incentive to cooperate with the
information sharing [44].

Challenge 4: Proving the Optimality of a Solution
The goal pursued in this paper is to find the best solution as quickly as possible. Another
direction is to guide the search to speed-up the optimality proof. It is what has been proposed
by Chalumeau et al. [12]. In practice, finding good solutions and proving optimality are
complementary aspects inside a constraint programming solver and should be both considered.
Possible directions to do so could be to redefine the reward function appropriately or to
revise the definition of an episode, as proposed by Scavuzzo et al. with TreeMDPs [38].
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6 Conclusion

The efficiency of constraint programming solvers is partially due to the branching heuristics
used to guide the search. In practice, value-selection heuristics are often designed thanks to
problem-specific expert knowledge, often out of reach for non-practitioners. In this paper,
we proposed a method based on reinforcement learning for obtaining such a heuristic, thanks
to historical data, characterized by problem instances following the same distribution of
the one that must be solved. This has been achieved thanks to a restart-based training
procedure, a non-sparse reward signal, and a heterogeneous graph neural network architecture.
Experiments on three combinatorial optimization problems show that the framework can
find better solutions close to optimality in fewer nodes visited than other generic baselines.
Several limitations and challenges (e.g., tractability for larger or real-world instances, transfer
learning, sparsity of the reward signal) have been identified, and addressing them is part
of future work. We also plan to consider other combinatorial problems, such as the ones
proposed in XCSP3 competitions [3].
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