
Distribution Optimization in Constraint
Programming
Guillaume Perez #

Huawei Technologies Ltd, CSI Paris, Boulogne-Billancourt, France

Gaël Glorian #

Huawei Technologies Ltd, CSI Paris, Boulogne-Billancourt, France

Wijnand Suijlen #

Huawei Technologies Ltd, CSI Paris, Boulogne-Billancourt, France

Arnaud Lallouet #

Huawei Technologies Ltd, CSI Paris, Boulogne-Billancourt, France

Abstract
Stochastic Constraint Programming introduces stochastic variables following a probability distribu-
tion to model uncertainty. In the classical setting, probability distributions are given and constant.
We propose a framework in which random variables are given a set of possible distributions and
only one should be selected. A solution is obtained when all variable distributions are assigned, and
all decision variables are assigned too. In such a setting, a constraint on random variables limits
the possible distributions its random variables may take. We generalize the notion of chance as
the probability of satisfaction of a constraint, called probabilization, given variable distributions.
Probabilization can be seen as a generalization of reification in a random setting whose result is a
random variable. We define minimal arithmetic to work with stochastic variables having a variable
distribution. Using the introduced representation, our framework can in theory save an exponential
number of decisions, and represents problems that were previously not representable with finite
integer domains. Finally, we model and solve two industrial problems that require this extension –
virtual network configuration and assignment of chemical delivery – and show improvement in terms
of quality of solution and speed.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Solvers; Computing methodologies → Probabilistic reasoning

Keywords and phrases Constraint Programming, Optimization, Stochastic Optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2023.29

1 Introduction

Stochastic optimization and chance-constrained programming [6, 41] are classes of problems
in which uncertainty is present. In such a setting, both decision variables and random
variables are present. Usually the probability distributions of the random variables are known
and constant. The goal is to optimize a given objective function on these variable sets and to
satisfy a set of constraints with sufficient probability. Optimal production planning, optimal
power flow, textile manufacturing, vehicle sharing, and parcel delivery services are just a few
of the many industrial areas where stochastic optimization is required [28, 29, 34, 55, 21].

Learning probabilistic distributions, or distribution learning, is a machine learning
framework that consists of learning the probability distribution that could generate a given
set of samples [22, 24]. In the usual settings, the input is a set of samples drawn from an
unknown distribution and the goal is to uncover this unknown distribution. Since, many
methods have been proposed, for example using assumptions on the class of probability
distribution to be a mixture of Gaussian or a Poisson law etc. [10, 9], or directly using neural
networks [1].

© Guillaume Perez, Gaël Glorian, Wijnand Suijlen, and Arnaud Lallouet;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 29; pp. 29:1–29:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.perez06@gmail.com
https://orcid.org/0000-0001-6473-583X
mailto:gael.glorian@huawei.com
https://orcid.org/0000-0002-0843-5987
mailto:wijnand.suijlen@huawei.com
https://orcid.org/0000-0001-6450-5620
mailto:arnaud.lallouet@huawei.com
https://orcid.org/0000-0002-4318-356X
https://doi.org/10.4230/LIPIcs.CP.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Distribution Optimization in CP

Consider the virtual network functions design problem [12, 13, 16, 48]. The main part of
this problem consists of selecting the settings of different nodes of a network function, such
that the global computation latency is robust. Robustness here implies that the total latency
(i.e. the sum of the latency of each node) is smaller than a given value, with a probability of
at least γ. Locally, for each node the latency distribution is a given by a random variable
whose distribution is conditioned by the settings of the node. Different settings will lead to
different probability distributions for the nodes.

In this paper, we propose to work on probability distribution optimization. In this setting,
the input is a stochastic constraint optimization problem, and the goal is to find both the
assignment of the decision variables and the distribution of the random variables. This can
be seen as a generalization of distribution learning in the sense that it is not restricted to
the fitting constraints.

Constraint Programming (CP) is an expressive optimization framework often used to solve
combinatorial problems such as scheduling. In CP, optimization under chance, confidence,
probability, or statistical constraints is a prolific research area [32, 40, 38, 37, 19, 27]. The early
and impacting works on stochastic constraint programming defined the basics [14, 53]. Then,
optimization methods for chance constraints, Markov, or sampling probability distribution
constraints etc. have been proposed [49, 18, 46, 39, 30]. These works have focused either on
the multi-stage framework or on one global constraint to extend the optimization process to
a stochastic context. But they all consider random variables with fixed distributions.

In this paper, the stochastic CP framework is extended to handle distribution optimization.
It is another set of stochastic problems where random variables are given a domain of possible
distributions, from which only one should be selected. The abstract object probability
distribution variable is introduced for modeling purposes. It represents the variability of
its sample space and its probability. A random variable is assigned when its associated
probability distribution is known and fixed. Distribution variables are now one of the many
variables of the problem to solve. A solution is found when all the decision variables are
assigned, and when the distribution of all the random variables is fixed. In addition, we
propose the definition of distribution constraints, which are constraints involving distribution
variables. In the hard case, a distribution constraint restricts the possible distributions of
the random variables it involves. Using the introduced representation, our framework can
in theory save an exponential number of decisions, and represents problems that previously
could not be represented with a finite integer domain.

Then, we propose to focus on a particular case of constraints namely relational constraints.
These constraints represent the usual CP constraints, as they are defined by the set of allowed
tuples. For these constraints, we propose two new consistency levels, namely P consistency,
for probability consistency, and Ω consistency, which is a probability distribution encoding
of the usual arc consistency. A direct implication is that most existing stochastic constraints
(confidence, sampling, PMF, etc.) that consider the distribution as data of the problem,
can be upgraded to deal with variable distributions. That is why in this paper we extend
the Confidence/Chance of relational constraints [49, 30, 36]. Furthermore, the notion of
probabilization of a constraint is proposed. It is a generalization of the chance concept [49],
closely related to the reification of constraint, but for probability purpose. The probabilization
returns a Boolean random variable associated to a distribution variable representing the
probability of satisfaction of the constraint.

Distribution variables are abstract objects that can be implemented in diverse ways. We
propose an implementation of distribution variables using a direct encoding as a probability
mass function. For each possible value of a random variable, we define its probability as a
continuous variable. Then, we propose filtering rules defining the minimal arithmetic allowing
to model distribution optimization problems.

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:3

Finally, we exploit this implementation to solve two distribution optimization problems
in the experimental section. The first problem is the stochastic design of virtual network
functions, where a simple, yet efficient, model allows to find optimal designs. The second
problem we model is a chemical delivery application. It shows how using variable distributions
allows to have smaller search trees and higher quality solutions.

2 Related Work

Chance constrained optimization [6, 31, 33] is a prolific research area. They are classes of
problems in which uncertainty is present. In such setting, both decision variables and random
variables are present. Usually the probability distributions of the random variables are known
and constant. The first definition was given for discrete distributions and piece-wise linear
functions with linear inequalities involving random variables. These inequalities had to be
maintained at a given level of probability. In these problems, the random variables can be
defined using a joint probability distribution, making them conditional on each other [8],
which usually makes the problem harder to solve. This framework has been used for the case
where the distribution of random variables was conditioned on storage levels or stream flows
[20]. Moreover, joint chance constrained optimization problem are problems that contain
multiple uncertain constraints on multivariate random variables. They are jointly required to
be satisfied with probability exceeding a threshold [54]. However, it is uncommon to have the
probability distribution defined as conditioned by the decision variables, or even constrained.
The work proposed in this paper is part of chance constrained optimization and aims to use
a constraint programming solver as a modeling and solving framework for problems where
finding a distribution that satisfies constraints is also part of the problem.

The probabilistic graphical model community proposed Bayesian networks and influence
diagram framework [35, 26] to represent the interactions between decision variables (agents)
and the probability distributions of random variables. Such influence diagrams, while
they tend to grow exponentially, could be powerful tools to represent the constrained
distribution during the optimization process. Several methods have been defined to solve
chance constrained optimization. In general, non-linear programming solvers are used [28]
and dedicated models are defined. For example, dynamic programming coupled with influence
diagram has been used to optimize agent decisions to maximize utility functions [50], in
a similar way as reinforcement learning. Furthermore, it is not unusual to use sampling
methods to approximate chance optimization [3, 33].

In CP, the chance constraint is defined as a policy under uncertainty, guaranteeing
robustness of the assignment [53, 49]. More precisely, consider a problem where first a set X1
of decision variables are assigned. Next, some random variables Y1 reveal their value, then
values are selected for the set of variables X2 and so on for as many iterations as it is required.
The solution of such problem is a tree, and no longer a tuple, for which the specified fraction
of the scenarios is satisfied. Since then, this work has been extended multiple times, [17, 18]
proposed generic algorithms reusing existing filtering for the global chance constraint. More
recently, [30] proposed to restrict the chance constraint to 2 stages optimization, as it is a
widely used approach. They proposed a filtering for the conjunction of binary inequalities.
Finally, [36] proposed to use MDDs as a new generic filtering for the confidence constraint.
All of these are different from the work proposed in this paper. On the one hand, policies
are not considered, the proposed framework is restricted to 2-stages similarly to [30, 36]. On
the other hand, the proposed framework is the first introducing variable distribution inside
of constraint programming. Note that it is one of the possible extensions to stochastic CP

CP 2023

29:4 Distribution Optimization in CP

as mentioned in the Extensions section of [53]. Finally, a recent trend called randomness
optimization [23, 2, 15]. is used to optimize the randomness of the solution of a decision
problem. For example randomness of solution is important for the design of systems to
prevent reverse engineering. Random solution as a constraint is already part of the constraint
programming framework [42].

3 Distribution Optimization

3.1 Preliminaries
A sample space Ω is a set representing all the possible outcomes of an experiment. In the
general case, the probability of an outcome v ∈ Ω is noted Pr[v]. An event is a set of
outcomes from the sample space and an event space F is a set of events. Events are often
useful for characterising particular subsets of outcomes. For example, the latency of a process
might be a real number, but the probability will be usually defined by segments of time
(i.e. intervals). Finally, P is a probability function that maps each element e of F to a
probability P (e) ∈ [0, 1]. These three elements form a probability space, denoted by the
triplet ψ = (Ω,F , P). A random variable y follows a probability space ψ if its distribution
is defined by the probability space ψ. This will be noted y ∼ ψ. When Ω is discrete or
countable, a probability mass function (PMF) pmf : Ω → R assigns a probability Pr[v] to
each value v ∈ Ω. Let Y = (y1, ..., yr) be a vector of r independent random variables. By
definition, the probability of a sample of independent variables (i.e. a tuple) is given by the
product of the probabilities of the selected values. More precisely, the probability of a tuple
t = (a1, ..., ar) is defined by: Pr[Y = t] =

∏r
i=1Pr[yi = ai]. When a subset Y is composed

of variables that are not independent, it is possible to replace them by a single random
variable Y ∗ representing their aggregation [7]. The domain of outcomes of this variable is
the Cartesian product of the outcomes of the variables of Y . So we can assume in this paper
that all random variables are independent.

In the rest of this paper, X = {x1, . . . , xr} denotes a set of variables (usually integer).
Y = {y1, . . . , yk} denotes a set of random variables. Given a constraint C, TC(v1, . . . , vn) = 1
(resp. = 0) implies that constraint C is satisfied by the tuple (v1, . . . , vn) (resp. unsatisfied).
D(x) denotes the current domain of variable x. We denote by D(x) (resp. D(x)) the upper
bound (resp. lower bound) of variable x. we denote by v ∈ D(x) the fact that a value v
belongs to the domain of a variable x. In a similar way, let ∀t ∈ D×(X) =

∏n
i=1 D(Xi)

denotes all the tuples in the Cartesian product of the current domain of variables in X.

3.2 Distribution Variables
In this section, we extend the CP framework with the definition of probability distribution
variables.

▶ Definition 1. A probability distribution variable r is a variable defining a probability space.
The domain D(r) of a distribution variable r is a set of probability spaces.

Recall that a probability space defines its sample space Ω, its event space F and the
probability P of each event in it. Distribution variables are now one of the many variables
of the problem, similar to any other decision variable. A probability distribution variable
is assigned when the probability of each value in its event space is known and fixed. Let
r be a random distribution variable. ψ ∈ D(r) denotes the membership of a probability
space ψ to the current domain of the distribution variable r. We denote by y ∼ r the

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:5

fact that the random variable y will be drawn following the distribution variable r, and
by y ∼ ψ that random variable y follows the distribution defined by the probability space
ψ (a constant). Let y1 and y2 be two random variables such that y1 ∼ r, y2 ∼ r. Such
notation implies that they are independent and identically distributed (IID). We denote D(y)
or D(r) the domain of the probability distribution variable of random variable y ∼ r. Let
∀Ψ ∈ D×(Y) denotes all the tuples of probability spaces in the Cartesian product of the
current domain of distribution variables of Y . Let Ωy be the set of all the outcomes such
that there exists a probability space in D(y) where the outcome has a non-zero probability.
Let ∀tY ∈ D×

Ω (Y) denote all the tuples of outcomes (i.e. value) in the Cartesian product
of the current sample space Ωy of random variables in y ∈ Y . We note by Pr[Y = t] (resp.
Pr[Y = t]) the upper bound (resp. lower bound) probability of tuple t to be drawn by
random variables in Y . We have Pr[Y = t] = max{Pr[Y ∼ Ψ = t] | Ψ ∈ D×(Y)} and
Pr[Y = t] = min{Pr[Y ∼ Ψ = t] | Ψ ∈ D×(Y)}. All along the paper, Ψ represents a vector
of probability spaces, ψ a probability space, and Ψ[{y}] the probability space associated to
variable y in Ψ. Finally, P is the space of all the possible probability spaces (i.e. ∀ψ ∈ P).

It is interesting to note that integer variables can be represented by the proposed
distribution variables.

▶ Proposition 2. A integer variable always has an equivalent distribution variable.

Proof. Let x be an integer variable with domain D(x). Let r be a distribution variable such
that D(r) = {({v}, {∅, {v}},Pr[v]=1)|∀v ∈ D(x)}. In other words, for each value v in the
domain of x, there is a probability space whose sample space Ω = {v} is restricted to value
v. There is a one-to-one correspondence between the values in the domains of r and x, hence
x and r are equivalent. Note that the converse is not true as the number of probability
spaces in a distribution variable may not be countable. In the rest of this paper, without
loss of generality, we assume that all the integer variables have been replaced by equivalent
distribution variables for simplicity of notation. ◀

3.3 Distribution Constraints
A random distribution variable being a modeling object of CP, it can be constrained. In this
section, we propose a basic definition of distribution constraints. We use this definition to
derive a generalization of arc consistency to distribution variables. Finally, we propose to
focus on a sub-part of the constraint space, namely relational constraints, that generalizes
usual CP constraints.

Distribution constraints are all the constraints involving random variables with variable
distribution. A distribution constraint defines the possible probability spaces of the random
variables it involves. Integer constraints can always be defined by the set of satisfying tuples.
This basic notion is extended to distribution constraints:

▶ Definition 3. Let C be a constraint defined on random variables Y . C is defined by a set
of tuples TR such that ∀Ψ ∈ TR, Ψ is a tuple of valid probability spaces for the probability
distribution of random variables in Y .

▶ Example 4. Table of PMFs The following table represents a constraint on two variables:
integer variable x and random variable y ∼ r.

Pr[x = 0] Pr[x = 1] Pr[y = 1] Pr[y = 2] Pr[y = 3] Pr[y = 4] Pr[y = 5] Pr[y = 6]

1 0 1
6

1
6

1
6

1
6

1
6

1
6

0 1 1
3

1
3

1
12

1
12

1
12

1
12

CP 2023

29:6 Distribution Optimization in CP

Such a table restricts the distribution variables of x and y to two probability spaces, defined
by probability mass functions. x is a integer variable encoded as a probability distribution.
The possible probabilities are either 0 or 1. y is a true random variable. Depending on the
assigned value of x, random variable y will behave differently. Note that PMFs are not the
only way to encode probability spaces.

The notion of consistency is of utmost important in constraint programming [45]. We
propose to directly map the generalized arc consistency to distribution variables. The
principal difference is that the domain of a distribution variable is a set of probability spaces,
and not a set of integers as for integer variables for example. Let C be a constraint defined
on random variables Y defined by a set of tuples of probability spaces TR. The consistency
properties are defined by:

A probability space ψ ∈ D(y) of y ∈ Y is consistent with C if it exists a support Ψ ∈ TR
such that Ψ[{y}] = ψ and Ψ ∈ D×(Y).
A distribution variable of y ∈ Y is consistent if each probability space in its domain is
consistent.
A constraint C is generalized arc consistent if all its variables are consistent.

3.4 Relational Constraints
Relational constraints are a subset of distribution constraints. They consider the sampled
values of the random variables for the satisfiability check of the constraint. In other words,
the constraint can always be defined by the possible assignments for the integer variables
and for the random variables. They are composed of all the usual constraints of the CP
framework but generalized to variable distributions.

▶ Definition 5. Let C be a relational constraint defined on random variables Y . C is defined
by a table of tuples TC , such that ∀t ∈ TC is a valid sample that can be drawn for random
variables in Y .

Note that, for each table TC , an infinite number of probability spaces are valid. Indeed,
consider the binary constraint defined by the tuples [(0, 0), (0, 2)] on variables x and y. This
constraint restricts the sampled value of x to be 0, and restricts the probability distribution
of y to any distribution such that Pr[y = 0]+Pr[y = 2] = 1. This implies that such a
definition can be highly compressing, as an infinite number of distributions satisfy this
equality. On the other hand, such a definition is not expressive enough to restrict to all
subsets of probability spaces. For example, it is impossible to define E(y) = 3 (expectation),
or simply the constraint defined by the table from the example in section 3.3. That is the
reason why relational constraints are a subset of distribution constraints.

▶ Definition 6 (Relational Constraint). Let TC(t) = 1 if t ∈ TC and 0 otherwise be a predicate
function for constraint C. We propose to use the following definition for the relational
constraint:∫

t∈D×
Ω (Y)

Pr[Y = t]TC(t) = 1 ;
∫
t∈D×

Ω (Y)
Pr[Y = t]¬TC(t) = 0 (1)

The most intuitive description of such constraint is that it does not imply that all valid
tuples must be reached, but that all reachable tuples must be valid.

The notion of consistency of a probability space in the case of a relational constraint can
be redefined using its definition. Given a relational constraint C defined on random variables
Y by the relational table TC .

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:7

▶ Definition 7. A probability space ψ ∈ D(y) of y ∈ Y is consistent with C if and only if:

∃Ψ ∈ D×(Y),Ψ[{y}] = ψ ∧ ∀tY ∈ D×
Ω (Y),Pr[Y ∼ Ψ = tY] ≤ TC(t) (2)

It is a direct rewriting of the consistency of distribution constraints using the relational
definition (equation (1)). Then, the domain of probability variable y ∈ Y is consistent with
constraint C if all the probability spaces in it are consistent with C. Finally, a constraint C
is consistent if all the variables in it are consistent.

Let ψ be a probability space and Y ψy be a random distribution variable vector where vari-
able y is restricted to probability space ψ. A weaker consistency can be defined for relational
constraints and distribution variables. This consistency is close to bound-consistency. It
considers the bounds of the probability of events given the current domain of a distribution
variable.

▶ Definition 8. A probability space ψ ∈ D(y) of y ∈ Y is P-bound consistent with C if:

∀t ∈ D×
Ω (Y ψy),Pr[Y ψy = t] ≤ TC(t) (3)

Then, the domain of probability variable y ∈ Y is P-bound consistent with constraint C if all
the probability spaces in it are P-bound consistent with C. Finally, a constraint C is P-bound
consistent if all the variables in it are P-bound consistent: ∀t ∈ D×

Ω (Y),Pr[Y = t] ≤ TC(t).
Now that the P-bound consistency is defined, we propose to focus on the case TC(t) = 0 as
it is the only one able to invalidate probability spaces. Let Y\{y} be the vector of variables
Y without variable y. Let t\{y} be the tuple t without the value at the position of variable
y. Propagating the following logical implication is enough to enforce P-bound consistency
constraint C:

∀y ∈ Y, ∀t ∈ D×
Ω (Y),Pr[Y\{y} = t\{y}] > TC(t) =⇒ Pr[y = ty] = 0 (4)

This pruning rule implies that all the probability spaces that could lead to an invalid tuple
should be removed. It will later be derived to extract filtering rules for the implementation
of this framework.

▶ Definition 9. Given a relational constraint C defined on random variables Y by the
relational table TC . A probability space ψ ∈ D(y) of y ∈ Y is Ω-consistent with C if:

∃t ∈ D×
Ω (Y ψy),TC(t) (5)

Ω-consistency ensures that it exists at least one tuple with non-zero probability to satisfy the
predicate given the other domains. Ω-consistency, when all the variables are integer variables
encoded as distribution variables, is equivalent to global arc consistency as it finds a support
for each value in the domain of each variable.

Consider a total order on the outcomes of Ωy. Let Ωy (resp. Ωy) be the largest (resp.
smallest) element of Ωy with respect to the total order. Let D×

Ω
(Y) denote the Cartesian

product of the intervals [Ωy,Ωy],∀y ∈ Y .

▶ Definition 10. A probability space ψ ∈ D(y) of y ∈ Y is Ω-bound-consistent with C if:

∃t ∈ D×
Ω

(Y ψy),TC(t) (6)

When all the variables are integer variables encoded as distribution variables and the total
order is defined by the operator <, Ω-bound-consistency is equivalent to bound-consistency.

Consider the Confidence constraint that restricts the decision variables to values such
that the probability of satisfaction is greater than a given threshold [49, 30, 36]. We propose
to generalize it by considering variable distributions for random variables.

CP 2023

29:8 Distribution Optimization in CP

▶ Definition 11. Given a relational constraint C(Y), with Y a vector of random variables
with variable distributions. Given a confidence threshold γ. The generalized confidence is:∫

t∈D×
Ω (Y)

Pr[Y = t]TC(t) > γ (7)

Previously, propagation of chance constraint was only removing values from integer variables
that could not lead to a robust enough solution. The new propagation of this constraint
will impact both the integer variables (here encoded as distributions) and the distribution
variables as probability spaces that are not robust enough will be removed too.

3.5 Views on Random Variables
We propose to make a clear distinction between the three equality operators: “y1 = y2”,
“y1 ≃ y2”, and “y1 ≡ y2 + y3”. First, y1 = y2 is the classic equality constraint, it implies that
the value of the random variables must be equal, but they are considered different random
variables. Second, the constraint y1 ≃ y2 ensures that y1 ∼ r1 and y2 ∼ r2 are equal in
law. More precisely it ensures that r1 = r2. This implies that their random assignment
might be different, but the constraint is satisfied if they follow the same distribution. From a
probability point of view, they are independent. Finally, y1 ≡ y2 + y3, where y1 is the actual
summation of the two random variables y2 and y3. From a probability point of view, they
are dependent.

Views are a useful abstraction in constraint programming [47, 51]. They prevent the
creation of intermediate variables representing some function on a variable (x′ = f(x)).
Views can be adapted to random variables directly. Consider for example the affine view
y1 ≡ ay+ b. Iterating on the values of y1 is done by iterating on the values of y and applying
the affine transformation. In addition, Pr[y = i]=Pr[y1 = ai+ b]. In the rest of this paper,
notations such as −y represent a view on random variable y.

3.6 Probability Valuation of Constraints
In constraint programming, the reification of a constraint is very useful while modeling a
problem. The reification variable is usually a Boolean variable denoting the satisfiability of
the related constraints. Other valuations of constraints have been proposed, such as soft
constraints [52, 25] and cost-version of constraints [44]. In this paper, we introduce the
probability valuation of a constraint. It is a generalization of the chance from [18] for the
case of variable distributions as the result is a Boolean random variable.

▶ Definition 12. Let C be a relational constraint defined on the random variables Y . Let pC
be a Boolean random variable. The probability valuation pC ≡ C(Y) is defined by:

Pr[pC = 1] =
∫
t∈D×

Ω (Y)
Pr[Y = t]TC(t) (8)

Note that in the general case processing the probability of satisfaction of a constraint C is
hard because the table TC of the constraint may be untractable.

▶ Proposition 13. The probabilization of a constraint is a generalization of the reification.

Proof. Let C be a relational constraint defined on the random variables Y . Let pC ∈ [0, 1]
be a Boolean random variable such that Pr(pC = 1) = Pr[C(Y)]. The two possible values for
the reification of a constraint are satisfied and unsatisfied. If Pr(pC = 1) = 1 the constraint
is always satisfied, if Pr(pC = 1) = 0, the constraint is always unsatisfied. For all the other
values, pC represents the probability of satisfaction of the constraint. ◀

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:9

Note that the probabilization can be seen as a random variable representing the projection
of the distribution of the random variables on the constraint. This implies that pC and the
random variables in C are dependents. In the rest of this paper, pC will be used to denote
Pr[pC = 1] when no ambiguity is present.

3.7 Multiple Stochastic Relational Constraints
In chance-constrained optimization, applications can be made of several independent parts
[54], and the joint probability must be satisfied. Those are problems for which constraints of
the problem can be split into independent ones. Let 1 be the vector of ones. More formally,
these problems can be reformulated as:

arg min
Y ∈D

F (Y) (9)

subject to p1 ≡ C1(Y1) (10)
. . . (11)
pn ≡ Cn(Yn) (12)
Pr[(p1, . . . , pn) = 1] ≥ γ (13)

Where Yi
⋂
Yj = ∅,∀i, j, and

⋂
being the set intersection operator. Using the probability

valuation of constraints (10-12), the global chance or confidence constraint is (13). This
implies that the hard part of the chance constraining will be located into the probability
valuation of the constraints.

4 Implementation

4.1 Distribution Implementation
In the rest of this paper, a possible implementation for the discrete random variables is
proposed. Then, propagation algorithms are proposed using the proposed implementation.
Implementing a variable distribution random variable inside a solver might be challenging,
as probability distributions can be expressed in very diverse ways [26]. Indeed, as for set or
sequence variables [11], the choice of implementation will impact the design of propagation
algorithms, and the capability of representation. For known probabilistic distributions, a
straightforward implementation would be the parameters that describe it. For example,
it would be sufficient to have two continuous variables µ and σ for a normal distribution.
Indeed, with such a definition, the propagation could use the closed form of the cumulative
distribution function and probability density functions. In this paper, for the implementation
of the distribution, we assume that random variables are independent and discrete. We
propose to represent distribution variables using probability mass function variables pmf.

▶ Definition 14. Let y be a discrete independent random variable with sample space Ωy =
{v1, . . . , vd}. The pmf variable of y is represented as a vector dy = (dyv)v∈Ωy

of continuous
variables where D(dyv) ⊆ [0, 1] represents the probability Pr[y = v] and

∑
i d
y
i = 1.

Note that using continuous or floating point variables inside of CP solver is a known topic
[5, 43]. They are usually represented by intervals. For evident reasons, integer variables are
considered encoded as usual.

▶ Example 15. Consider a Constraint Satisfaction Problem (CSP) with one decision variable
x ∈ {0, 1} and one random variable y ∈ [1, 6]. The CSP contains two constraints: one
distribution constraint and one relational constraint. The first one defines the possible

CP 2023

29:10 Distribution Optimization in CP

distributions of y and is defined by the table from the example in section 3.3. The second
constraint is the constraint Pr[y > 2] ≥ γ with γ = 0.6. A solution of such a CSP is an
assignment of both x and the dyi variables that satisfies both constraints.

Consider the propagation of the y > 2 constraint. For each of the variables dy3 to dy6, the
lower bound is set to γ − 3 1

6 = 0.1. Indeed, for each of the possible values, the cumulative
probability must be at least equal to γ. Once the propagation of constraint y > 2 is done,
the distribution constraint can filter out value 1 from x as the associated distribution is no
longer valid (dy4 = 0.1 > 1

12). Values of dy are assigned to the tuple (1
6 , ...,

1
6), and a solution

is found.

▶ Example 16 (Probability valuation). Consider again the problem of the previous example.
Once y is assigned, the probability valuation of constraint y > 2 is py>2 =

∑6
i=3 d

y
i = 4

6 .

4.2 Filtering Algorithms for Relational Constraints on Random variables
It is stated in [28] that the major challenge towards solving chance constrained optimization
problems lies in the computation of the probability and its derivatives of satisfying inequality
constraints. In this section, probability filtering is provided for several constraints. Assump-
tions made by these filtering algorithms are that all random variables are independent and
implemented using the distribution variables proposed in this paper. Given pC ≡ C(X,Y)
the probability valuation of a constraint, the filtering algorithm should filter inconsistent
values from X, from the distributions of Y and pC .

Let C be a relational constraint defined on the random variables Y . We propose here a
few filtering rules deriving from equations (4) and (8).

▶ Example 17 (Unary Equal). Let py=c ≡ (y = c) be the probability valuation of the equal
constraint. In such settings, Pr[py=c = 1]= dyc . In addition for all the other values, another
filtering can be defined by ∀v ̸= c, dyv ≤ 1−Pr[py=c = 1]. Note that this filtering should be
directly done by the domain definition of the probability distribution.

▶ Example 18 (Unary Greater Than). Let py>c ≡ (y > c) be the probability valuation of the
unary greater-than constraint. We propose to decompose equation (8) into two equations
on the bounds of the random variable: py>c ≥

∑Ω(y)
vi=c+1 d

y
vi

; py>c ≤
∑Ω(y)
vi=c+1 d

y
vi

. This
rewriting is usual in CP, and linear propagation can be applied. Moreover, analogously to
the reification, filtering can also be defined for values lower than, or equal to c. Indeed, as
py>c is the probability of satisfaction of the constraint, py≤c = 1 − py>c is the probability of
violating the constraint. This implies that the two filtering rules above should be used to
propagate dyv, ∀v ≤ c.

▶ Example 19 (Binary Equal). Let py1=y2 = Pr[y1 = y2] be the probability valuation of the
equal constraint between two random variables. A filtering can be extracted from equation:
py1=y2 =

∑
i d
y1
i d

y2
i .

▶ Example 20 (Constraints y ≃ y1 op y2). y ≃ y1 + y2 is the definition of the distribution of
variable y from the distributions of variables y1 and y2. It is a probability-based constraint.
In the general case, the probability distribution of the sum of two independent variables is
given by the convolution: Pr[y = k] =

∑∞
i=−∞ Pr[y1 = k − i]Pr[y2 = i]. This convolution

can be used to extract propagation rules for the ternary constraint. For each value vk of
the possible values of y, a constraint of the form of dyvk

=
∑
i d
y1
vk−i

dy2
vi

is posted. Note that
the same equation can be defined for the multiplication, subtraction, division, and modulo
constraints.

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:11

▶ Example 21 (Constraints y = y1 op y2). For example, y = y1 + y2 is the test of equality
between the sampled values of y and the sum of the sampled values of y1 and y2. This
constraint can be expressed using the two constraints above. First, let y1+2 ≡ y1 + y2 be the
distribution of the addition of y1 and y2. Second, let py=y1+y2 be the probability valuation
of y = y1+2. Finally, py=y1+y2 = Pr[y = y1+2].

4.3 Filtering Relational Constraints on Integer and Random Variables
Consider a relational constraint C on decision variables X and on random variables Y .

▶ Proposition 22. Set the variable dyi
vi

from yi ∈ Y for constraint C to 0 if:

∀tX ∈ D×(X),∃tY ∈ D×
Ω (Y), tYi

= vi ∧
∏

∀vj∈tY\{vi}

dyj
vj
> TC(tX , tY) (14)

This proposition is a direct rewriting of equation equations (4) and (8). In addition to the
classical filtering of values in the decision variables if they do not have a valid tuple, another
filtering should be defined.

▶ Proposition 23. Filter value vi from the domain of xi ∈ X for constraint C if:

∃tY ∈ D×
Ω (Y),∀tX = (. . . , vi, . . .) ∈ D×(X),

∏
∀vj∈tY

dyj
vj
> TC(tX , tY) (15)

Let pC(X,Y) ≡ C(X,Y) be the probability valuation of the constraint. A direct simple
filtering can be extracted from equation (8). In addition, the filtering should be propagated
back to the decision variables, for example:

▶ Proposition 24. Filter value vi from the domain of xi ∈ X for constraint C if:

∀tx = (. . . , vi, . . .) ∈ D×(X),Pr[C(tx, Y)] ̸= pC (16)

Here, equation (8) is applied to each tuple containing the value vi. If none of them satisfies
the probability valuation, then the value can be safely removed. Recall that pC represents
Pr[pC = 1]. Moreover, in general, the ̸= will be checked for > and < to filter the bounds of
the variables. The exact rule depends on the expression of the satisfaction of the constraint
in terms of distribution variables, as shown in the following examples.

▶ Example 25 (Lower Than). Let px<y ≡ (x < y) be the probability valuation of the
lower-than constraint. This constraint is one of the most used in chance optimization as
it can be used to model the deviation of scheduled amounts [8]. Analogously to the equal
constraint, the pruning of variable x can be defined by the following rule: x < max{vj ∈
x |

∑Ω(y)
vi=vj

D(dyvi) > D(px<y)} First, the opposite rule can also be defined by using D(px<y).
Then, note that this pruning rule, when both the dyv and px<y are fixed, is equivalent to the
pruning of [30]. In addition, as the authors proposed, a closed formula may be used to directly
extract the bounds of x. Now that x is propagated, the probability distribution and valuation
should be filtered. This can be done by using the following sum: px<y =

∑Ω(y)
vi=x+1 d

y
vi

.

▶ Example 26 (Equal). Let px=y ≡ (x = y) be the probability valuation of the equal
constraint. First the pruning of variable x can be defined using the following rule:

∀v ∈ Ω(y), D(dyv) < D(px=y) ∨D(dyv) < D(px=y) =⇒ x ̸= v (17)

CP 2023

29:12 Distribution Optimization in CP

Then, the pruning of the probability valuation px=y can be defined using:

px=y ≥ min({D(dyv)|∀v ∈ x}); px=y ≤ max({D(dyv)|∀v ∈ x}) (18)

Finally, the pruning of the distribution of y is an adaptation of the usual propagation:

x = v =⇒ dyv = px=y (19)

4.4 Rewriting of constraints

In the previous sections, several constraints and propagation algorithms have been proposed.
In this section, it is shown how to combine these constraints to model most use cases. Consider
the not equal constraint. Even though no dedicated algorithm has been defined, propagation
can be based on other ones. Let px ̸=y ≡ (x ̸= y) be the probability valuation of the not-equal
constraint, px ̸=y = 1 − px=y. This is analogous to the reification, indeed, (x1 = x2) =
¬(x1 ̸= x2). Several more constraints can be reformulated, for example the greater-less-than
relationship: px≤y = px−1<y; px>y = p−x<−y (alternatively, px≥y = p−x−1<−y). The in-not
in relationship: py ̸∈X = 1−py∈X . And the many logical relationships such as pc1∧c2 = pc1pc2 ;
pc1∨c2 = 1−(1−pc1)(1−pc2); and pc1⊕c2 = pc1(1−pc2)+(1−pc1)pc2 . With ⊕ the xor logical
operator. Note that some of these reformulations are direct encodings of the probability
rules, such as for the and and or constraints.

5 Application: Virtual Network Design

In virtual network functions design, the main performance criterion is the total latency of
the virtual network [12, 13, 16, 48]. In such a graph, each node is either a machine or a
virtual machine, and has to process blocks of data. The processing time of a data block by
a node is following a random distribution, which is conditioned by its configuration (both
hardware and software). The global latency is the sum of the processing times of the nodes
of the network. The goal of the virtual network design problem is to set the configurations
for all the nodes such that the global latency is below L milliseconds with probability γ,
while the cost is minimized and other configuration constraints are satisfied.

Figure 1 Example of virtual network graph.

Consider the network from Figure 1. This network contains 4 nodes (c1, ..., c4). In this
graph, when a data block needs to be sent, it will go through c1, then c2, then c3 and
finally c4. Note that in practice, the depth of the graph is often shallow. In our industrial
application the number of nodes was 3. Moreover, each node contains several settings (cpu
redundancy, queue maximum read times, queue batch pkt num, dpe, etc.) The latency of a
node is influenced by all these settings. In addition, each node serves a particular role, and
some operations must be done in at least one node. All of these requirements are contained
in the constraints on the settings variables. The influence of the setting variables on the
random variables’ distribution is encoded as a table Ts for each node.

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:13

5.1 Model
Let N = (n1, ..., nk) be the nodes to configure. Let yi ∼ Dyi be the random variable
representing the latency of node ni. Let S = (S1, ...Sk) with Si = si1, ..., s

i
m being the

settings variables associated to each node. Let L be the maximum latency and γ the minimal
probability. Let acci ∈ (acc2, ..., acck) be the accumulated sum of the i first random variables.
Let ci be the cost associated with node ni.

arg min
S∈Z,Y ∈P

∑k
i=1 ci (20)

such that Table(Si, ci, yi, Ts), ∀i ∈ [1, k] (21)
acc1 ≃ y1 (22)

acci ≃ acci−1 + yi, ∀i ∈ [2, k] (23)
Pr[acck < L] ≥ γ (24)
ValidSettings(S) (25)

5.2 Data
A large number of configurations have been heavily sampled to extract the distribution of
probability. Once those were built, they have been used to extrapolate to unknown configur-
ations. The latency is given in micro-seconds, with values in the set (50, 100, ..., 1450, 1500).
Each node may be defined by around 100 configurations (valid assignment of the settings).
The number of nodes varies between 2 to 5. Two algorithms are compared. First, Variable
is the work proposed by this paper, where distribution variables are used. The second one
is Fixed, it is an adaptation of the algorithm from [30, 36]. In Fixed, the distributions are
considered unknown until all the setting variables used to define them are instantiated. It can
be seen as a form of generate and test. The search strategy is the same for both algorithms.
It starts by assigning the possible settings. Note that this is the only fair comparison with
Fixed as the setting variables are the one influencing the possible distributions. In the general
case, better strategies could be defined for Variable. Time out is set to 30 minutes. The
integer CP solver used for all the experiments of this paper is our internal solver. The
continuous part is solved by call to IBEX [4], analogously to CHOCO-solver [43].

5.3 Results
First, consider the results from Table 1. As we can see, finding a solution for the fixed model
is not too hard, but as the size increases, it is not able to find the optimal one, or to prove it.
In contrast, for the variable model, the optimal solution is always found and proved. The
main reason is that invalid distributions are removed by the latency constraint before any
decision leading to them is taken.

Table 1 For each instance set, the values are #SAT (#OPT). The last row is the mean time in
seconds for proving optimality.

Nodes 2 3 4 5
Fixed (baseline) 30 (30) 30 (22) 30 (0) 30 (0)
Variable 30 (30) 30 (30) 30 (30) 30 (30)
Variable avg time 0.57 s 10.2 s 125.4 s 752.3 s

CP 2023

29:14 Distribution Optimization in CP

Moreover, consider the plots from Figure 2. Instances are sorted by size. On the middle,
the comparison on the objective value is made. As we can see, the objective value of the
fixed method is optimal for small instances, even if no proof can be reached. Then, for larger
instances, it is often quite far from the optimal (objective ∈ [0, 3]). In addition, on the left
and right plots, it is seen that most of the time, the fixed method reaches the timeout. Note
that the time increases exponentially with the number of nodes for both methods, but not
the number of decisions for the variable method.

0 20 40 60 80 100 120
instance

2

3

4

5

De

cis
io

ns
 (l

og
(1

0)
)

Variable
Fixed

0 20 40 60 80 100 120
instance

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ob
je

ct
iv

e
va

lu
e

Variable
Fixed

0 20 40 60 80 100 120
instance

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

tim
e

(lo
g(

10
))

Variable
Fixed

Figure 2 Instances are ordered w.r.t. size. (left) Number of decision (log base 10). (middle) Best
objective value comparison. (right) Running time (log base 10).

In conclusion, this experiment shows that the variable method proposed in this paper
is better both in terms of quality of solution and in terms of time. In practice, solving the
industrial instances of size 3 takes 17.75 seconds on average for the optimal solution.

6 Application: Chemical Deliveries

The following problem is part of a pipeline of chemicals processing and is composed of
two assignment problems. First, chemicals are received by the factory every day. Once
received, they must be stored into containers. These containers are restricted to some type of
products. Each container already contains a known amount of products and has a maximum
storage capacity. In addition, for some chemicals the total amount delivered is larger than
the remaining storage capacity of the containers, given their currently stored quantities.
In practice, this is not an issue as the chemicals are also processed, hence emptying the
containers. The second problem concerns product assignment. Indeed, the chemicals are
used to manufacture bio-sourced bases for perfumes. Those are later used by home-perfume
makers to create reeds, candles, etc. A dozen of teams are spread over 4 buildings. Each
building/team is specialized in a set of types of product, yet there are overlaps. Every day,
in addition to the incoming deliveries, the factory must produce a given amount of several
products. Selecting which team should work on which product is part of the problem to
solve. The probability of emptying a container depends on the products associated to the
teams in the building. A solution is an assignment of products to teams and deliveries to
containers such that the stored quantity in each container minus the quantity that will be
used does not exceed the maximum capacity with a high confidence.

More formally, this is an assignment problem. Each product p ∈ P must be produced by
a team t ∈ T . Each team t ∈ T has a work capacity Wt, and work in a building bt ∈ B. Each
product w requires an given amount of work wp, and is compatible to a subset of the teams
Tp ∈ T . Each delivery j ∈ D stores a quantity qj in a container ci ∈ C. Each container ci
has a maximum capacity Ci. Each container ci will be emptied in parallel of a quantity yi
unknown in advance. The exact quantity yi is unknown, but its distribution is influenced by
the products processed in its building.

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:15

6.1 Data
The dataset contains 40 instances, with |P | ∈ [15, 25], |C| ∈ [4, 10], T = 12,B = 4,|D| ∈
[20, 50]. Maximum running time is set to 30 minutes. The dataset is based on past data for
the generation of probabilistic distributions. Figure 3 (left) shows an example of a set of
distribution for one container. As we can see, the more the building has to make products,
the higher the chance to consume.

6.2 Model
For each product p, variables pp,t∀t ∈ T indicates if the product is made by the team t. For
each delivery d, variable dd,c∀c ∈ C indicates if the delivery is stored in container c. For
each container c, yc is the emptying random variable. For each building b, qb is the quantity
of product produced in the building. Let q = (q1, . . . , q|B|) be a vector of all qb variables.
Let xc∀c ∈ C be the additional capacity required by container c such that it is no longer
overflowing.

arg max
x∈Z,Y ∈P

γ (26)

Such that
∑|T |
t=1 pi,t = 1, ∀i ∈ P (27)∑|P |

i=1 pi,twi ≤ Wt, ∀t ∈ T (28)

qb =
∑|P |
i=1

∑
t∈{ti|bti

=b} pi,t, ∀b ∈ B (29)∑|D|
i=1 di,cqi ≤ Cc + xc, ∀c ∈ C (30)∑|C|

c=1 di,c = 1, ∀i ∈ D (31)
Table(q, yc), ∀c ∈ C (32)

pxc≤yc
≡ xc ≤ yc, ∀c ∈ C (33)

Pr[(px1≤y1 , . . . , px|C|≤y|C|) = 1] ≥ γ (34)

6.3 Results
Figure 3 shows the results of the fixed and variable (this paper) methods. First, it is
interesting to see that for some instances a confidence of 1 can be found. For these instances,
no consumption was required to find a solution. In contrast, we can also see that for some
instances, is is hard to find solutions with more than 2 percent confidence. Those instances
are hard instances, where the delivered amount is too large. Then in the middle of the plot,
it is shown that the confidence of solutions found by the variable method is higher in general
than the fixed method. In addition, the variable method makes one order of magnitude less
decisions to find better or equivalent solutions. When profiled, the reason why less decisions
are made is the repetitive call to the continuous integrated solver. An actual hybrid CP
solver would be drastically more efficient. Nevertheless, even with this drawback, in both
experiments, the variable showed significant improvements in term both of quality of solution
and time.

7 Conclusion and Future works

This paper proposed to extend the CP framework to distribution optimization. First, random
variables have been extended to the case of distribution variables, then the CP constraints
have been extended to deal with this extension. We proposed a generalization of integer

CP 2023

29:16 Distribution Optimization in CP

0 2 4 6 8
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

0 5 10 15 20 25 30 35 40
instance

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

Variable
Fixed

0 5 10 15 20 25 30 35 40
instance

3

4

5

6

7

8

De

cis
io

ns
 (l

og
(1

0)
)

Variable
Fixed

Figure 3 Instances are ordered w.r.t. size. (left) Range of probability distributions for a random
variable having 9 possible values. The gradient of color indicate the increase of q. (middle) Best
confidence comparison. (right) Number of decisions (log base 10).

variables and new consistencies for probability distributions. In addition, generic filtering
algorithms have been proposed, pruning invalid distributions. We defined an implementation
based on a probability mass function decomposition and the minimal arithmetic to model
most problems, together with the associated filtering algorithms. Finally, as shown in the
experimental section, we used the proposed framework to solve two optimization problems
where the distributions of probability are not fixed at the beginning of the problem.

The main future direction is to no longer restrict the search to a finite set of distributions
using a table as done in our experiments, but to be able to search directly into the distribution
space, which is closer to known methods in machine learning. Doing this would bring CP
as one of the main frameworks to do constrained distribution learning, and will require
hybridization of CP solvers. Other future directions include the design of specialized global
constraints filtering, the generalization of the reuse of existing filtering algorithms [18], and
the implementation of different types of encoding of the probability distribution variables.
Another important direction is the encoding of dependent random variables. In this paper,
we purposely introduced the event space of probability space to encode the dependency
between random variables. In future works, constraints on the event spaces will lead to
efficient dependency implementation. Finally, this paper is restricted to 2-stage policy, it
will be important in the future to extend it to multi-stages.

References
1 Eric Baum and Frank Wilczek. Supervised learning of probability distributions by neural

networks. In Neural information processing systems, 1987.
2 N Bharanidharan and Harikumar Rajaguru. Improved chicken swarm optimization to classify

dementia mri images using a novel controlled randomness optimization algorithm. International
Journal of Imaging Systems and Technology, 30(3):605–620, 2020.

3 Giuseppe Calafiore and Marco C Campi. Uncertain convex programs: randomized solutions
and confidence levels. Mathematical Programming, 102(1):25–46, 2005.

4 Gilles Chabert et al. Ibex, an interval-based explorer, 2007.
5 Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence, 173(11):1079–

1100, 2009.
6 Abraham Charnes and William W Cooper. Chance-constrained programming. Management

science, 6(1):73–79, 1959.
7 Abraham Charnes and William W Cooper. Deterministic equivalents for optimizing and

satisficing under chance constraints. Operations research, 11(1):18–39, 1963.
8 Abraham Charnes, William Wager Cooper, and MJL Kirby. Chance-constrained programming:

an extension of statistical method. In Optimizing methods in statistics, pages 391–402. Elsevier,
1971.

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:17

9 Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A Servedio. Learning poisson binomial
distributions. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 709–728, 2012.

10 Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal algorithms for
proper learning mixtures of gaussians. In Conference on Learning Theory, pages 1183–1213.
PMLR, 2014.

11 Augustin Delecluse, Pierre Schaus, and Pascal Van Hentenryck. Sequence variables for
routing problems. In 28th International Conference on Principles and Practice of Constraint
Programming (CP 2022), 2022.

12 Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward predictable performance
in software {Packet-Processing} platforms. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), pages 141–154, 2012.

13 Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. Assessing soft-and
hardware bottlenecks in pc-based packet forwarding systems. ICN 2015, 90, 2015.

14 Hélène Fargier and Jérôme Lang. Uncertainty in constraint satisfaction problems: a prob-
abilistic approach. In Symbolic and Quantitative Approaches to Reasoning and Uncertainty:
European Conference ECSQARU’93 Granada, Spain, November 8–10, 1993 Proceedings 2,
pages 97–104. Springer, 1993.

15 Jakob Feldtkeller, David Knichel, Pascal Sasdrich, Amir Moradi, and Tim Güneysu. Random-
ness optimization for gadget compositions in higher-order masking. Cryptology ePrint Archive,
2022.

16 Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A comprehensive
survey. IEEE Transactions on Network and Service Management, 13(3):518–532, 2016.

17 Brahim Hnich, Roberto Rossi, S Armagan Tarim, and Steven Prestwich. Synthesizing filtering
algorithms for global chance-constraints. In Principles and Practice of Constraint Programming-
CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009
Proceedings 15, pages 439–453. Springer, 2009.

18 Brahim Hnich, Roberto Rossi, S Armagan Tarim, and Steven Prestwich. Filtering algorithms
for global chance constraints. Artificial Intelligence, 189:69–94, 2012.

19 JN Hooker. Stochastic decision diagrams. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pages 138–154.
Springer, 2022.

20 Mark H Houck. A chance constrained optimization model for reservoir design and operation.
Water Resources Research, 15(5):1011–1016, 1979.

21 Bahareh Kargar, Mir Saman Pishvaee, Hamed Jahani, and Jiuh-Biing Sheu. Organ trans-
portation and allocation problem under medical uncertainty: A real case study of liver trans-
plantation. Transportation Research Part E: Logistics and Transportation Review, 134:101841,
2020.

22 Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E Schapire, and Linda
Sellie. On the learnability of discrete distributions. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pages 273–282, 1994.

23 Lin Kemeng, Wang Xiaoyan, Xia Weijie, Zhang Jiaming, et al. Optimization of the randomness
in einstein which based on monte carlo algorithms. In 2019 Chinese Control And Decision
Conference (CCDC), pages 6305–6309. IEEE, 2019.

24 Stefan Kern, Sibylle D Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and Petros
Koumoutsakos. Learning probability distributions in continuous evolutionary algorithms–a
comparative review. Natural Computing, 3:77–112, 2004.

25 Minh Thanh Khong, Christophe Lecoutre, Pierre Schaus, and Yves Deville. Soft-regular with
a prefix-size violation measure. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 333–343. Springer, 2018.

26 Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

CP 2023

29:18 Distribution Optimization in CP

27 Anna LD Latour, Behrouz Babaki, Daniël Fokkinga, Marie Anastacio, Holger H Hoos, and
Siegfried Nijssen. Exact stochastic constraint optimisation with applications in network
analysis. Artificial Intelligence, 304:103650, 2022.

28 Pu Li, Harvey Arellano-Garcia, and Günter Wozny. Chance constrained programming approach
to process optimization under uncertainty. Computers & chemical engineering, 32(1-2):25–45,
2008.

29 Xiaoxia Lin, Stacy L Janak, and Christodoulos A Floudas. A new robust optimization approach
for scheduling under uncertainty:: I. bounded uncertainty. Computers & chemical engineering,
28(6-7):1069–1085, 2004.

30 Alexandre Mercier-Aubin, Ludwig Dumetz, Jonathan Gaudreault, and Claude-Guy Quimper.
The confidence constraint: A step towards stochastic cp solvers. In International Conference
on Principles and Practice of Constraint Programming, pages 759–773. Springer, 2020.

31 Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4):969–996, 2007.

32 François Pachet, Pierre Roy, Alexandre Papadopoulos, and Jason Sakellariou. Generating 1/f
noise sequences as constraint satisfaction: The voss constraint. In Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

33 Bernardo K Pagnoncelli, Shabbir Ahmed, and Alexander Shapiro. Sample average approx-
imation method for chance constrained programming: theory and applications. Journal of
optimization theory and applications, 142(2):399–416, 2009.

34 M Arenas Parra, A Bilbao Terol, B Pérez Gladish, and MV Rodrıguez Urıa. Solving a
multiobjective possibilistic problem through compromise programming. European Journal of
Operational Research, 164(3):748–759, 2005.

35 Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan kaufmann, 1988.

36 Guillaume Perez, Steve Malalel, Gael Glorian, Victor Jung, Alexandre Papadopoulos, Marie
Pelleau, Wijnand Suijlen, Jean-Charles Régin, and Arnaud Lallouet. Generalized confidence
constraints. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

37 Guillaume Perez, Brendan Rappazzo, and Carla Gomes. Extending the capacity of 1/f noise
generation. In International Conference on Principles and Practice of Constraint Programming,
pages 601–610. Springer, 2018.

38 Guillaume Perez and Jean-Charles Régin. MDDs are efficient modeling tools: An application
to dispersion constraints. In Integration of AI and OR Techniques in Constraint Programming,
2017.

39 Guillaume Perez and Jean-Charles Régin. Mdds: Sampling and probability constraints. In
International Conference on Principles and Practice of Constraint Programming, pages 226–242.
Springer, 2017.

40 Gilles Pesant. Achieving domain consistency and counting solutions for dispersion constraints.
INFORMS Journal on Computing, 27(4):690–703, 2015. doi:10.1287/ijoc.2015.0654.

41 Warren B Powell. A unified framework for stochastic optimization. European Journal of
Operational Research, 275(3):795–821, 2019.

42 Steven D Prestwich, Roberto Rossi, and S Armagan Tarim. Randomness as a constraint. In
Principles and Practice of Constraint Programming: 21st International Conference, CP 2015,
Cork, Ireland, August 31–September 4, 2015, Proceedings 21, pages 351–366. Springer, 2015.

43 Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco solver documentation.
TASC, INRIA Rennes, LINA CNRS UMR, 6241:13–42, 2016.

44 Jean-Charles Régin. Arc consistency for global cardinality constraints with costs. In Inter-
national Conference on Principles and Practice of Constraint Programming, pages 390–404.
Springer, 1999.

45 Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

https://doi.org/10.1287/ijoc.2015.0654

G. Perez, G. Glorian, W. Suijlen, and A. Lallouet 29:19

46 Roberto Rossi, Brahim Hnich, S Armagan Tarim, and Steven Prestwich. Confidence-based
reasoning in stochastic constraint programming. Artificial Intelligence, 228:129–152, 2015.

47 Christian Schulte and Guido Tack. View-based propagator derivation. Constraints, 18(1):75–
107, 2013.

48 Kalika Suksomboon, Nobutaka Matsumoto, Shuichi Okamoto, Michiaki Hayashi, and Yusheng
Ji. Configuring a software router by the erlang-k-based packet latency prediction. IEEE
Journal on Selected Areas in Communications, 36(3):422–437, 2018.

49 S Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic constraint programming:
A scenario-based approach. Constraints, 11:53–80, 2006.

50 Joseph A Tatman and Ross D Shachter. Dynamic programming and influence diagrams. IEEE
transactions on systems, man, and cybernetics, 20(2):365–379, 1990.

51 Pascal Van Hentenryck and Laurent Michel. Domain views for constraint programming.
In International Conference on Principles and Practice of Constraint Programming, pages
705–720. Springer, 2014.

52 Willem-Jan Van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On global warming:
Flow-based soft global constraints. Journal of Heuristics, 12(4):347–373, 2006.

53 Toby Walsh. Stochastic constraint programming. In ECAI, volume 2, pages 111–115, 2002.
54 Weijun Xie and Shabbir Ahmed. On deterministic reformulations of distributionally robust joint

chance constrained optimization problems. SIAM Journal on Optimization, 28(2):1151–1182,
2018.

55 Hui Zhang and Pu Li. Chance constrained programming for optimal power flow under
uncertainty. IEEE Transactions on Power Systems, 26(4):2417–2424, 2011.

CP 2023

	1 Introduction
	2 Related Work
	3 Distribution Optimization
	3.1 Preliminaries
	3.2 Distribution Variables
	3.3 Distribution Constraints
	3.4 Relational Constraints
	3.5 Views on Random Variables
	3.6 Probability Valuation of Constraints
	3.7 Multiple Stochastic Relational Constraints

	4 Implementation
	4.1 Distribution Implementation
	4.2 Filtering Algorithms for Relational Constraints on Random variables
	4.3 Filtering Relational Constraints on Integer and Random Variables
	4.4 Rewriting of constraints

	5 Application: Virtual Network Design
	5.1 Model
	5.2 Data
	5.3 Results

	6 Application: Chemical Deliveries
	6.1 Data
	6.2 Model
	6.3 Results

	7 Conclusion and Future works

