
SAT-Based Learning of Compact Binary Decision
Diagrams for Classification
Pouya Shati #

Department of Computer Science, University of Toronto, Canada
Vector Institute, Toronto, Canada

Eldan Cohen #

Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Sheila McIlraith #

Department of Computer Science, University of Toronto, Canada
Vector Institute, Toronto, Canada

Abstract
Decision trees are a popular classification model in machine learning due to their interpretability and
performance. However, the number of splits in decision trees grow exponentially with their depth
which can incur a higher computational cost, increase data fragmentation, hinder interpretability,
and restrict their applicability to memory-constrained hardware. In constrast, binary decision
diagrams (BDD) utilize the same split across each level, leading to a linear number of splits in total.
Recent work has considered optimal binary decision diagrams (BDD) as compact and accurate
classification models, but has only focused on binary datasets and has not explicitly optimized
the compactness of the resulting diagrams. In this work, we present a SAT-based encoding for a
multi-terminal variant of BDDs (MTBDDs) that incorporates a state-of-the-art direct encoding of
numerical features. We then develop and evaluate different approaches to explicitly optimize the
compactness of the diagrams. In one family of approaches, we learn a tree BDD first and model the
size of the diagram the tree will be reduced to as a secondary objective, in a one-stage or two-stage
optimization scheme. Alternatively, we directly learn diagrams that support multi-dimensional splits
for improved expressiveness. Our experiments show that direct encoding of numerical features leads
to better performance. Furthermore, we show that exact optimization of size leads to more compact
solutions while maintaining higher accuracy. Finally, our experiments show that multi-dimensional
splits are a viable approach to achieving higher expressiveness with a lower computational cost.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Com-
puting methodologies → Machine learning

Keywords and phrases Binary Decision Diagram, Classification, Compactness, Numeric Data,
MaxSAT

Digital Object Identifier 10.4230/LIPIcs.CP.2023.33

Supplementary Material Software (Source code): https://github.com/PouyaShati/BDD

Funding We gratefully acknowledge funding from Natural Sciences and Engineering Research Council
of Canada (NSERC) and the CIFAR AI Chairs program (Vector Institute).

1 Introduction

Classifiers are complete functions for assigning labels to datapoints, learned from a limited
set of supervised training data. A classifier is trained to focus on informative aspects of
the input and extract patterns from the data to make decisions. In complex black-box
classifiers such as deep and convoluted neural networks, it is often challenging to understand
the influential features of the data and the inner-workings of the decision-making [36, 38]. In
contrast, interpretable classifiers such as decision trees [1, 26, 33, 34] and diagrams [16, 24] are
concise and easy to understand [10]. The simplicity in interpretable solutions makes them the

© Pouya Shati, Eldan Cohen, and Sheila McIlraith;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pouya@cs.toronto.edu
mailto:ecohen@mie.utoronto.ca
mailto:sheila@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.CP.2023.33
https://github.com/PouyaShati/BDD
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

perfect candidates for when we need to formally analyze or explain the classifier’s behavior
[27, 19, 20]. Surprisingly, the benefit of interpretability does not come with significant cost
to accuracy in many applications [31, 25].

Binary decision diagrams (BDD) are graph representations of functions with binary inputs
and are widely used in logical synthesis and formal verification methods [8, 2, 28, 23]. While
equivalent to truth tables in purpose, BDDs are more compact since redundant sub-tables
can be eliminated and merged [23]. A multi-terminal BDD (MTBDD) is a BDD variant that
supports multiple outputs [11].

Decision trees are the most common form of interpretable classifiers (e.g., [7, 29, 30, 3,
37, 18, 5, 33, 34]). However, the number of splits double at each level of a decision tree,
making it challenging to interpret the solution as depth increases [15]. The large number
of splits in decision trees can hinder the learning performance given that the search space
grows exponentially with each level. Further, deep splits that only affect a small number of
datapoints can cause data fragmentation and overfitting [35, 21, 14]. Lastly, the exponential
number of splits in decision trees restricts their applicability to memory-constrained hardware
[35]. The sequential nature of decision-making in BDDs resembles that of decision trees, but
unlike decision trees, the same split is used across a level, leading to a linear number of splits.

In this paper, we choose BDDs as our interpretable classifiers in order to emphasize
compactness to an even greater degree compared to popular interpretable approaches, e.g.
ones based on decision trees. Alongside the primary objective of accuracy, the size of a BDD
classifier is also encoded and optimized. Our encoding for learning BDDs is inspired by
the encoding of numerical branchings in Shati et al. [33, 34], which allows us to directly
learn splits over numeric features without explicitly binarizing them. We then expand the
notion of learning splits to multiple dimensions in order to learn solutions from a limited but
distinctively interpretable family of diagrams.

The main contributions of this paper are as follows:
1. We present a novel SAT encoding of maximum accuracy BDD classifiers for numerical

datasets. Our model represents a non-reduced BDD which can be reduced according to
its sequence of terminals.

2. We extend our encoding by modelling the size of the final reduced BDD. The size encoding
can be used as a secondary weighted objective, or it can be optimized in a second stage.

3. We present a variant of our encoding which supports direct learning of diagrams through
multi-dimensional splits. Multi-dimensional BDDs enable learning more efficiently as
they provide more expressive solutions within the same number of splits.

4. We run extensive experiments which demonstrate that our base encoding outperforms the
state of the art in runtime and accuracy. Additionally, we show that explicitly optimizing
size leads to significantly more compact solutions while maintaining high accuracy. Finally,
we show that multi-dimensional BDDs scale better than BDDs due to their expressiveness
and the size of their encoding.

2 Related Work

Decision tree classifiers are traditionally constructed via local search and heuristics [7, 29, 30].
Recent advances in tools and techniques for exact optimization have enabled approaches for
finding optimal decision trees via branch-and-bound search [1], SAT-based encodings [33, 18,
3], Constraint Programming [37], or Mixed Integer Programming [5]. Exact optimization
produces solutions that are optimal in accuracy, size, or both [33]. The size of a decision tree is
often measured by its depth or number of nodes, which does not take into account the amount

P. Shati, E. Cohen, and S. McIlraith 33:3

of redundancy between nodes. Decision diagrams address redundancy directly by merging
equivalent nodes. Approaches to learn optimal decision diagrams via exact optimization
usually require a pre-determined skeleton as input. For example, Florio et al. [14] requires
user-provided width for each level, limiting solutions but guaranteeing compactness and
improving performance. Oblivious decision diagrams encourage compactness even further by
requiring all splits of the same level to be the same, leading to only a linear number of splits
instead of exponential as in ordinary decision trees.

Binary Decision Diagrams (BDD) are oblivious decision diagrams that can be reduced
and ordered, making them ideal candidates to represent boolean functions. While BDDs
are commonly used for hardware synthesis [8, 2, 28, 23], there has been a recent focus on
utilizing BDD classifiers as interpretable solutions [16, 9]. For example, Hu et al. [16] uses
MaxSAT to learn a maximum accuracy tree BDD which will then be reduced into a diagram.
On the other hand, Cabodi et al. [9] considers a SAT-based approach for learning BDDs of
minimum size that correctly classify all the training data.

3 Background

3.1 Binary Decision Diagrams
In this section, we first define standard Binary Decision Diagrams which can be used for
binary classification. To support multi-class classification, we extend the BDD definition to
its multi-terminal variant.

▶ Definition 1 (Binary Decision Diagram). Given a boolean function operating on boolean
input, a Binary Decision Diagram (BDD) is a graph representation of the function. A BDD
is a rooted, directed, and acyclic graph with sink nodes as terminals (NT) and the rest as
decision nodes (ND). Each decision node is labelled with a split and has two outgoing edges,
corresponding to the two (1/0) possible values of the boolean input. The terminal nodes are
assigned output values 0 or 1. The size of a BDD is the number of its decision nodes.

▶ Definition 2 (Multi-Terminal Binary Decision Diagram). Given a function operating on binary
features with constant range [1..k], a Multi-Terminal Binary Decision Diagram (MTBDD) is
a graph representation of the function. An MTBDD is a BDD with its terminals supporting
k output values instead of 2.

Throughout the paper, we will simply refer to MTBDDs as BDDs to be more concise. We
adopt standard BDD terminology with minor exceptions. As a concise way of addressing the
nodes, we borrow from the decision tree literature to view the outgoing edges as parent-child
relationships. Specifically, we address the node connected via the 1 (0) outgoing edge as the
left (right) child. Moreover, we refer to the boolean inputs assigned to decision nodes as
splits rather than features or variables, to avoid confusion with the features of our data and
the variables of our encoding. Finally, considering that the features in our data are numerical
rather than binary, we overload the definition of splits to represent pairs of numerical features
and a valid threshold.

▶ Definition 3 (Split). Given a finite set of numerical features F , a split is a binarization of
a numerical feature through pairing with a threshold value (f, α) ∈ F × R. A split assigns a
value of 1 to each point x that comes before the threshold (x[f] ≤ α). Similarly, it assigns a
value of 0 to each point x that comes after the threshold (x[f] > α).

CP 2023

33:4 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

(a) Ordered and reduced. (b) Non-ordered and non-reduced.

Figure 1 Two BDDs representing the same boolean function. Solid (dotted) lines correspond to
value 1 (0).

In order to calculate the value of a function for a given input using its BDD representation,
we start from the root, move to the left (right) child if the input has value 1 (0) for the
current split, and assign an output when a terminal is reached. A node is said to contain an
input if the node is on the input’s path from the root to a terminal.

The same function with binary splits can be represented with multiple BDDs. In order
to uniquely represent a function, we define the BDD properties of being ordered and reduced.
The ordered property enforces the same sequence of splits along each path, making BDDs
practically equivalent to Oblivious Read-Once Decision Graphs (OODGs). The reduced
property requires all equivalent parts of the BDD to be merged and all of the redundant
parts to be removed. Given a function and an ordering of splits, there only exists one ordered
and reduced BDD representing the function.

▶ Definition 4 (Ordered BDD and Split Sequence). A BDD is said to be ordered if the splits
observed along every path from the root to a terminal respect a singular total ordering, called
its split sequence.

▶ Definition 5 (Node Equivalency and Redundancy). Given a binary decision diagram T and
two of its nodes t1, t2 ∈ N , t1 and t2 are equivalent if they are both decision nodes with the
same split and the sub-graph of t1 and its descendants is isomorphic to the sub-graph of t2
and its descendants, or if they are both terminal nodes with the same label. Furthermore, a
decision node t ∈ ND is redundant if its left and right children are equivalent.

▶ Definition 6 (Reduced BDD). A BDD is said to be reduced if all of its equivalent nodes
are merged and all of its redundant nodes are replaced with their children.

We assume a BDD to be ordered and reduced unless noted otherwise. Figure 1 depicts
two BDDs representing the same boolean function, one ordered and reduced and the other
one not. It has been shown in the literature that independent of the merging and elimination
process, the final result of reducing a BDD is always the same. We formally state the
uniqueness of reduced BDDs in Proposition 7 and refer the reader to the BDD literature for
more details [23].1

▶ Proposition 7. Every function operating on splits and a given split sequence is represented
by exactly one ordered and reduced BDD up to renaming.

1 Note that when employing standard BDD terminology, redundant and equivalent nodes are defined
through binary sequences called beads. Beads correspond to nodes of the uniquely reduced BDD
described in Proposition 7.

P. Shati, E. Cohen, and S. McIlraith 33:5

3.2 Weighted Partial MaxSAT

In this section, we describe the MaxSAT paradigm which we use to learn binary decision
diagrams. A SAT formula is a conjunction of clauses, where each clause is a disjunction of
literals, and each literal is either a Boolean variable or its negation. In a weighted partial
MaxSAT instance, clauses are categorized into hard and weighted soft clauses. The goal
is then to find a truth assignment to variables which satisfies all of the hard clauses and
maximizes the total weight of the satisfied soft clauses.

4 MaxSAT Encoding of BDD Classifiers

In this section, we propose a MaxSAT encoding to find a BDD classifier with maximum
accuracy. The inputs to our problem are: a training dataset X over a set of numerical
features F and labels K, a ground-truth label yi for each point xi ∈ X, and a maximum
number of splits smax. The outputs are smax splits θ ∈ {F × R}smax with terminal labelling
γ : {0, 1}smax 7→ K. Similar to previous work of Hu et al. [16], we learn an ordered yet
non-reduced (tree) BDD first. We then focus on merging and replacing nodes towards a
reduced BDD. Inspired by the numerical branching in Shati et al. [33, 34], we encode splits
(Definition 3) without the need for prior binarization of data which was shown to lead to
significant performance degradation in decision trees. We instead directly encode how each
split directs each point, while making sure the order of values is respected given a selected
feature.

4.1 Variables

The following set of binary variables represents different aspects of modeling splits, labels,
and accuracy in our BDD encoding.

as,j : The feature chosen at split s is or comes before j.
ds,i: Point xi is directed to the left child at split s.
ct,l: Output label l is assigned to terminal node t.
oi: Point xi is classified correctly.

4.2 Clauses

We propose the following sets of Conjunctive Normal Form (CNF) clauses for modelling a
non-reduced ordered BDD. The clauses in Eqs. (1-2) guarantee that one feature is selected
at each split by enforcing the ordered encoding of as,j variables. The clauses in Eqs. (3-5)
guarantee that for each split and chosen feature, the points directed to the left (resp. right)
have a lesser (resp. greater) value compared to a threshold. The clauses in Eqs. (6-7)
guarantee that one output label is chosen for each terminal node. The clauses in Eq. (8)
guarantee that a point can only be considered classified if it ends up in a terminal node with
the same label as its ground truth. We use Oj(X) to denote the set of all consecutive pairs
when the members of X are sorted based on their j values, O=

j (X) to denote the subset of
pairs with equal j values, i.e., Oj(X) ∩ {(i1, i2) | xi1 [j] = xi2 [j]}, and #1

j to denote the index
of the point with the smallest j value. Furthermore, we set as,|F | to the false constant and
define AR(t) (AL(t)) as the set of right (left) ancestors of terminal t.

CP 2023

33:6 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

(as,j , ¬as,j+1) s < smax, j ∈ F (1)
(as,0) s < smax (2)
(¬as,j , as,j+1, ds,i1 , ¬ds,i2) s < smax, j ∈ F, (i1, i2) ∈ Oj(X) (3)
(¬as,j , as,j+1, ¬ds,i1 , ds,i2) s < smax, j ∈ F, (i1, i2) ∈ O=

j (X) (4)
(¬as,j , as,j+1, ds,#1

j
) s < smax, j ∈ F (5)

(¬ct,l1 , ¬ct,l2) t ∈ NT , l1, l2 ∈ K (6)

(
∨
l∈L

ct,l) t ∈ NT (7)

(
∨

s∈AL(t)

¬ds,i,
∨

s∈AR(t)

ds,i, ct,yi
, ¬oi) t ∈ NT , xi ∈ X (8)

In order to model the objective, we include the soft clauses in Eq. (9) with unit weights,
which represent correctly classifying as many training points as possible.

(oi) xi ∈ X (9)

4.3 Decoding

An assignment to the variables in Section 4.1 which is satisfying with regard to the hard
clauses in Section 4.2 is decoded into a reduced BDD in two steps. First, the assignment
is decoded into a non-reduced BDD. Specifically, the labels of terminals are decoded from
the selected labels (ct,l) and the sequence of splits are decoded from the pairings of selected
features (as,j values) and thresholds (ds,i values). Second, the resulting BDD is reduced by
merging equivalent nodes and eliminating redundant nodes.

5 Size Optimization

In the encoding presented in Section 4, not all terminals are guaranteed to contain training
points. Thus, we may end up with empty terminals, which we can relabel without affecting
the training accuracy. However, the labels of such terminals can affect the prediction on
unseen datapoints as well as the size of the final reduced BDD. In Hu et al. [16], the labels
of empty terminals are decided arbitrarily by the solver and they investigate the impact of
two post-processing relabelling heuristics on the testing accuracy (i.e., accuracy on unseen
data). The first heuristic assigns the majority label of the terminal’s first non-empty ancestor.
The second heuristic finds and merges equivalent nodes in a greedy top-down search. Hu et
al.’s experiments showed that the heuristics do not have significant impact on the testing
accuracy. However, as we demonstrate in Figure 2a and Figure 2b, such heuristic approaches
can increase the size of the final reduced BDDs.

In this section, we propose to use exact optimization for solving the same problem as
in Section 4, with additional compactness considerations via deciding the labels of empty
terminals. Specifically, we aim to model the size of the BDD after the merging of its equivalent
nodes and the removal of its redundant nodes. The variables and clauses introduced in this
section can either be added to the encoding in Section 4 as a secondary objective (i.e. 1-stage
approach), or they can be used as a separate post-processing stage alongside variables ct,l and
the clauses in Eqs. (6-7) with the labels of non-empty terminals fixed (i.e. 2-stage approach).

P. Shati, E. Cohen, and S. McIlraith 33:7

(a) Parent Majority. (b) Greedy Subgraph Merge.

Figure 2 Examples for heuristics of assigning labels to empty terminals where size is increased.
Black labels represent non-empty terminals, red labels are chosen by the heuristics, and green labels
are the original labels which lead to a more compact solution.

5.1 Variables
The following set of binary variables represents uniqueness and repetition aspects of terminal
labels, required for modelling the size of the ultimately reduced BDD.

σt1,t2 : Terminals t1 and t2 have been assigned different output labels.
bt,∆: The sequence of ∆ labels starting from terminal node t (inclusive) cannot be divided
into two equal sub-sequences.
rt1,t2,∆: The sequence of ∆ labels starting from terminal node t1 is equal to the sequence
of ∆ labels starting from terminal node t2 (both inclusive).

Note that the terminal order which is referred to in the variable definitions, is the order
of appearance in the depth-first search of the tree with the left outgoing edges prioritized.
We say a sequence of terminals correspond to a decision node, if they are the sequence of
terminals in the decision node’s sub-graph. Moreover, we say a single terminal coincides with
a decision node if it marks the beginning the node’s sequence of terminals.

Note that variables σt1,t2 , bt,∆, and rt1,t2,∆ are not defined for all possible index combin-
ations. Specifically, ∆ always refers to the length of a sequence of terminals corresponding
to a decision node (a power of 2), and can uniquely determine the node, if paired with a
coinciding terminal. Consequently, bt,∆ is only used to represent that the decision node at
level smax − log2(∆) + 1 coinciding with t is not redundant. Moreover, rt1,t2,∆ is only used
to represent that the two decision nodes at level smax − log2(∆) + 1 coinciding with t1 and
t2 are equivalent. Lastly, σt1,t2 is only used when it affects the equivalency of two decision
nodes.

5.2 Clauses
We first define two sets to help with the clause construction. The set P (smax) contains all
possible lengths of terminal sequences corresponding to decision nodes except for the root (i.e.,
all 2p′ where p′ < smax). The set G(smax) contains all triples (t1, t2, ∆) where comparing
the labels of terminals t1 and t2 has impact on a decision node at level smax − log2(∆) + 1
being redundant.

G(1) = {(0, 1, 2)}
G(p) = G(p − 1) ∪ {(t1 + 2p−1, t2 + 2p−1, ∆)|(t1, t2, ∆) ∈ G(p − 1)}

∪ {(t, t + 2p−1, 2p)|0 ≤ t < 2p−1}

We propose the following sets of CNF clauses for modelling the size of a reduced BDD
given its terminal labels. The clauses in Eqs. (10-12) guarantee that σt1,t2 variables correctly
represent the difference in labels. The clauses in Eq. (13) guarantee that each decision node

CP 2023

33:8 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

can only be redundant if all of the corresponding terminal pairs have the same label. The
clauses in Eqs. (14-15) guarantee that a pair of decision nodes can only be equivalent if their
corresponding sequence terminals have the same labels.

(¬ct1,l, ¬ct2,l, ¬σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (10)
(¬ct1,l, ct2,l, σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (11)
(ct1,l, ¬ct2,l, σt1,t2) (t1, t2, ∆) ∈ G(smax), l ∈ K (12)
(b∆⌊t1/∆⌋,∆, ¬σt1,t2) (t1, t2, ∆) ∈ G(smax) (13)
(¬rt1∆,t2∆,∆, ¬ct1∆+δ,l, ct2∆+δ,l) ∆ ∈ P (smax), t1 < t2 < 2smax/∆, δ < ∆, l ∈ K (14)
(¬rt1∆,t2∆,∆, ct1∆+δ,l, ¬ct2∆+δ,l) ∆ ∈ P (smax), t1 < t2 < 2smax/∆, δ < ∆, l ∈ K (15)

To model our objective, we include the soft clauses in Eq. (16) which represent each
decision node to be either redundant or equivalent to a previous one. Maximizing the number
of redundant of equivalent decision nodes will consequently minimize the size of our reduced
BDD. Note that if size is being considered as a secondary objective to accuracy, the clauses
in Eq. (16) can be weighted against the clauses in Eq. (9) proportionately. Otherwise, if size
is our second-stage objective, we can use the clauses in Eq. (16) with unit weights.

(
∨

0≤t2<t

rt2∆,t∆,∆, ¬bt∆,∆) ∆ ∈ P (smax), t < 2smax/∆ (16)

5.3 Decoding
We first show the soundness of the size encoding.

▶ Proposition 8. Given a sequence of terminal labels ct,l, the encoding in Sections (5.1,5.2)
has an optimal objective value equal to the reduced size of an ordered tree BDD with the given
terminals.

Proof Sketch. Given the alternative interpretation of variables described in Section 5.2, we
can conclude that the objective clauses in Eq. (16) aim to minimize the number of decision
nodes that are not redundant and not equivalent to any of the nodes that come before them
in the same level. Considering that equivalent decision node pairs can only appear in the
same level, we can restate the objective as minimizing the number of decision nodes that
remain when all of equivalent ones are merged and redundant ones are eliminated. According
to Proposition 7, this objective will lead to a unique reduced BDD in its most compact form,
proving that our encoding correctly models and minimizes the size of our solution. ◀

To decode the solution, we simply need to do as we did in Section 4.3, since the additional
variables for size encoding are not involved in structuring the BDD. Once we decode and
reduce the solution as before, we will end up with one decision node for every unsatisfied
soft clause in Eq. (16).

6 MaxSAT Encoding of Multi-Dimensional BDDs

In Section 4 and Section 5, we consider learning BDDs by finding trees and reducing them
to diagrams. However, the clauses in Eq.(8) are exponential in the number of splits and
multiplied by the size of the dataset. Learning diagrams directly can help us consider more
expressive solutions without increasing the number of splits, resulting in smaller encodings.
In this section, we look at a family of diagrams that contain splits over multiple features at
each level, i.e., multi-dimensional splits which themselves are BDDs with two labels.

P. Shati, E. Cohen, and S. McIlraith 33:9

▶ Definition 9 (Directional Inner BDD). Given a finite set of numerical features F and a
dimension D, a directional inner BDD T ↔ is a BDD operating on D splits θ↔ ∈ {F × R}D

with 0 and 1 as labels.

A multi-dimensional BDD operates on multi-dimensional splits. A multi-dimensional
split uses a directional inner BDD to direct points towards left (label 1) and right (label 0),
rather than using a single split.

▶ Problem 10 (Multi-dimensional BDD Learning Problem). Given a finite set of numerical
features F , a finite set of labels K, a set of training points xi ∈ X with corresponding
labels yi ∈ K, a sequence of dimensions D = {D0, D1, Dsmax−1}, and a number of multi-
dimensional splits smax, the goal is to find a sequence of directional inner BDDs θM =
{T ↔

0 , T ↔
1 , ..., T ↔

smax−1} of respective dimensions D0, D1, ..., Dsmax−1 with terminal labelling
γM : {0, 1}smax 7→ K to construct a BDD with the directional inner BDDs as splits. The
objective for learning Multi-dimensional BDDs is high accuracy.

A multi-dimensional split is a generalization of an ordinary split, which makes a multi-
dimensional BDD more expressive compared to an ordinary BDD with the same number of
splits. Previous works have considered other representations that are designed to be more
expressive than BDDs, such as sentential decision diagrams [12] or read-k-times branching
programs [6, 22]. Next, we formally compare the expressiveness of BDDs against their
multi-dimensional variants in the other direction.

▶ Theorem 11. Consider a multi-dimensional BDD T M operating on smax directional inner
BDDs T ↔

s with split sequences θ↔
s and terminal labellings γ↔

s , which itself has a terminal
labelling γM . The binary function that T M represents is the same as the binary function
represented by a BDD T with split sequence θ(#(s, h)) = θ↔

s (h) and terminal labelling
γ(t) = γM (γ↔

0 (t0)γ↔
1 (t1)...γ↔

smax−1(tsmax−1)) where #(s, h) produces a complete ordering
of SH by concatenating the split sequences of each directional inner BDD, and t0, t1, ...,
tsmax−1 are sub-sequences of t divided based on the sequence of dimensions.

Proof Sketch. The BDD using multi-dimensional splits can be transformed into a tree BDD
with ordinary splits. In the transformation, every split of dimension D will correspond to D

levels where nodes are expanded 2D-fold. With each expansion, we add annotations to the
nodes specifying the label which they were assigned to by the corresponding directional inner
BDD. Once all multi-dimensional splits are added, the final level of nodes are considered
as terminals and are labelled according to how γM labels their annotations. Note that the
resulting tree can be turned into a diagram by merging all of the nodes that have equal
annotations and replacing all of redundant nodes with their children. ◀

We can conclude from Theorem 11, that multi-dimensional BDDs operating on dimensions
{D0, D1, ..., Dsmax−1} with Dtotal =

∑
i<smax

Di are less expressive than BDDs operating
on Dtotal splits. Combining with the aforementioned fact that multi-dimensional BDDs
operating on {D0, D1, ..., Dsmax−1} dimensions are trivially more expressive than BDDs
operating on smax splits, we have shown a lower and upper bound number of BDD splits
when discussing the expressiveness of a multi-dimensional BDD.

Figure 3 shows how a multi-dimensional BDD can operate on two directional inner BDDs
and how it can be unfolded to operate on ordinary splits.

CP 2023

33:10 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

(a) T ↔
2 . (b) T M . (c) T ↔

1 . (d) Unfolded T M .

Figure 3 Multi-dimensional BDD T M operating on directional inner BDDs T ↔
1 and T ↔

2 and its
unfolded version.

6.1 Variables
In order to encode a multi-dimensional BDD, we use the same set of variables as Section 4.1
but remove as,j variables since multi-dimensional splits require more features to be selected
at each split. Furthermore, we add the following variables to encode the inner-workings of
each directional inner BDD.

â(s,h),j : The feature chosen at split h of directional inner BDD s is or comes before j.
d̂(s,h),i: Point xi is directed to left at split h of directional inner BDD s.
ĉs,t: Terminal t of directional inner BDD s is assigned the label 1.

6.2 Clauses
We discard clauses Eqs. (1-6) from the original encoding since splits are learned differently
than before. We keep the clauses Eqs. (6-9) however, since we still need the labels and the
appearance of points at terminals to be modelled correctly. Lastly, we add CNF clauses for
modelling multi-dimensional splits, in order to complete our encoding of a multi-dimensional
BDD.

The clauses in Eqs. (17-18) guarantee that one feature is selected at each split of each
directional inner BDD by enforcing the ordered encoding of â(s,h),j variables. The clauses in
Eqs. (19-21) guarantee that each split of each directional inner BDD conforms to a pairing of
selected feature and threshold. The clauses in Eqs. (22-23) guarantee that the direction of a
point in a multi-dimensional split matches the label of its containing leaf in the corresponding
directional inner BDD. The clauses in Eq. (24) guarantee the leftmost leaf in each directional
inner BDD to be assigned the 0 label (analogous to Eq. (5), see Shati et al. [33, 34] for further
discussion). The set SH contains all pairs of directional inner BDDs and their corresponding
splits SH = {(s, h) | s < smax, h < Ds}, N s

T contains the terminals of directional inner BDD
s, AR(s, t) (AL(s, t)) contains the right (left) ancestors of terminal t within directional inner
BDD s, and â(s,h),|F | is set to the false constant.

(â(s,h),j , ¬â(s,h),j+1) (s, h) ∈ SH , j ∈ F (17)
(â(s,h),0) (s, h) ∈ SH (18)

(¬â(s,h),j , â(s,h),j+1, d̂(s,h),i1 , ¬d̂(s,h),i2) (s, h) ∈ SH , j ∈ F, (i1, i2) ∈ Oj(X) (19)

(¬â(s,h),j , â(s,h),j+1, ¬d̂(s,h),i1 , d̂(s,h),i2) (s, h) ∈ SH , j ∈ F, (i1, i2) ∈ O=
j (X) (20)

(¬â(s,h),j , â(s,h),j+1, d̂(s,h),#1
j
) (s, h) ∈ SH , j ∈ F (21)

(
∨

h∈AR(s,t)

d̂(s,h),i,
∨

h∈AL(s,t)

¬d̂(s,h),i, ds,i, ¬ĉs,t) s ∈ S, xi ∈ X, t ∈ N s
T (22)

P. Shati, E. Cohen, and S. McIlraith 33:11

(
∨

h∈AR(s,t)

d̂(s,h),i,
∨

h∈AL(s,t)

¬d̂(s,h),i, ¬ds,i, ĉs,t) s ∈ S, xi ∈ X, t ∈ N s
T (23)

(ĉs,0) s ∈ S (24)

6.3 Decoding
A satisfying assignment to the variables in Section 6.1 with regard to the clauses in Section 6.2,
can be decoded into a tree BDD operating on multi-dimensional splits. In order to further
transform the results into a BDD operating on 1-dimensional splits, we unfold the multi-
dimensional splits and multiply the terminals according to the proof sketch for Theorem 11.
Note that the number of splits in the resulting BDD is equal to the sum of dimensions from
the multi-dimensional BDD.

The size optimization presented in Section 5 can also be utilized as a second stage
after the solution is decoded. Specifically, we consider the multiplied sequence of terminal
labels as input and treat empty terminals as before. In order to respect the structure
of a multi-dimensional BDD, we also need to have additional clauses guaranteeing that
multiplied instances of the same original terminal have the same label. Note that the size
encoding cannot be employed in a 1-stage approach since the structure of the BDD is not
yet determined at first.

7 Experiments

In this section, we perform studies to experimentally analyze the performance of our tree
(Section 4), size (Section 5), and multi-dimensional (Section 6) encodings for learning BDDs.
We compare the performance of our approach against state-of-the-art BDD learning baseline
and investigate the trade-off between size, accuracy, and performance in 1-stage, 2-stage, and
multi-dimensional approaches to learning compact diagrams. Throughout the experiments,
we seek to find out whether compactness can be achieved without significant compromise,
and investigate its impact on testing accuracy. Furthermore, we aim to understand if the
added expressiveness of multi-dimensional BDDs allows us to achieve high quality solutions
with lower number of splits.

7.1 Setup
We use the Java programming language to produce encodings and the Loandra MaxSAT
solver [4] to solve each instance. We set the solver timeout limit to 15 minutes and use the
best found solution in case of a timeout. Our experiments are run on an AMD EPYC 7502
32-core processor and 256GB of RAM.

7.2 Baseline
We compare our approach against the recent work on SAT-based learning of BDDs. Hu et al.
[16] aims to find BDD classifiers similar to our approach. However, unlike our approach, they
only support binary classification and require pre-processing of each numeric feature into
a set of binary features. Furthermore, they do not explicitly model the size of the reduced
BDD.

Note that Hu et al. [16, 17] have compared optimal BDDs against optimal decision trees
and heuristic decision trees and found that BDDs are competitive in terms of testing accuracy
and have smaller size. Our approach aims to improve the performance of Hu et al. and
learn more compact BDD classifiers with comparable accuracy. We therefore compare our
approach to Hu et al. in terms of runtime, accuracy, and size of BDDs.

CP 2023

33:12 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

7.3 Datasets
We run our experiments over a range of datasets from the UCI repository [13] covering
different number of labels, both numerical and binary features, and different dataset sizes.

7.4 Results
Results on Comparing Our Base Encoding Against Hu et al. [16]

In our first set of results, we compare the performance of our approach in terms of runtime
and solution quality against Hu et al. for different numbers of splits. Note that while our
approach learns multi-terminal BDDs, Hu et al.’s approach learns standard BDDs and is
unable to support datasets with more than two labels. Furthermore, since the objective
in Hu et al. does not include compactness considerations, we use our base encoding that
only optimizes accuracy as well (Section 4). As both approaches explore the same space of
(feasible and) optimal BDD solutions, we focus our comparison on optimization performance
(i.e., training accuracy and runtime). In contrast, in the next two sets of experiments, we
will also evaluate the testing accuracy over 5-fold cross-validation.

Based on the results presented in Table 1, we see that our approach is able to achieve a
higher than or equal to Hu et al. [16] accuracy in all but one case. Furthermore, the runtimes
of non-timeout cases show that our approach can also prove optimality much faster. As we
expected given our direct encoding of non-binary values, the improvement is most noticeable
in datasets with highly numerical features, namely Banknote and Ionosphere.

Results on 1-Stage and 2-Stage Size Optimization

Next, we evaluate the encoding presented in Section 5 to minimize the size of our learned
BDDs. We perform size optimization in 1-stage and 2-stage approaches. In the 1-stage
approach, we use different values for the weight of the size objective against the accuracy
objective. Given a weight β and smax splits, the combined size and accuracy objective aims
to find a solution f with maximum β(acc(f)) − (2smax − 1)|N f

D|, where N f
D is the set of

decision nodes in the reduced version of f . We use β = ∞2 to denote the 2-stage approach,
β = ∞1 to denote that accuracy is completely prioritized over size in the 1-stage approach,
and Def. to denote the approach without any size optimization. Note that even in the 1-stage
approach, running the second stage can further optimize the size if the first stage have yielded
a sub-optimal solution (timeout). However, we opt against mixing the two approaches for
the sake of clarity in comparison between the two. We use 5-fold cross validation and report
the average value across folds to understand the effects of compactness on generalization and
testing accuracy.

The results are presented in Figure 4. As expected, we see increase in training accuracy
and size as we shift the priority to accuracy by changing the β value from 1 to ∞2. However,
the improvement in accuracy stagnates while the size continues to grow, indicating that a
large enough β value can act as complete prioritization of accuracy. Interestingly, testing
accuracy stagnates sooner and suffers from a larger variability as β increases, demonstrating
a limited but positive effect of compactness on testing accuracy and generalization.

The solutions for lower β values in the 1-stage approaches are significantly smaller than
the β = ∞2 case, highlighting the importance of adding size considerations while the solution
is being learned. However, optimizing size as a second stage still provides a significant size
reduction compared to the case with no size optimization. For a detailed report of the results
per dataset, we refer the reader to Table 2 in Appendix A.1.

P. Shati, E. Cohen, and S. McIlraith 33:13

Table 1 Results for learning max-accuracy BDDs.

Dataset Splits Accuracy (%) Time (s)
Ours Hu et al. [16] Ours Hu et al. [16]

Banknote 4 96.8 96.8 843.01 TO
|X| |F | |K| 5 97.6 90.4 TO TO
1372 4 2 6 98.5 91.8 TO TO

Breast 4 89.7 89.7 TO TO
|X| |F | |K| 5 92.2 91.4 TO TO
116 9 2 6 94.8 94.8 TO TO

Cryotherapy 4 97.8 97.8 1.23 2.43
|X| |F | |K| 5 98.9 98.9 3.97 9.41
90 6 2 6 100 100 0.44 1.64

Immunotherapy 4 95.6 95.6 8.18 26.65
|X| |F | |K| 5 96.7 96.7 74.08 290.99
90 7 2 6 97.8 97.8 433.35 TO

Ionosphere 4 94.9 90.6 TO TO
|X| |F | |K| 5 95.2 85.8 TO TO
351 34 2 6 96.6 90.6 TO TO

Iris 4 98.7 - 0.67 -
|X| |F | |K| 5 99.3 - 0.62 -
150 4 3 6 100 - 0.43 -

User 4 94.2 - 54.57 -
|X| |F | |K| 5 95.7 - 828.34 -
258 5 4 6 97.7 - TO -

Vertebral 4 88.1 87.7 TO TO
|X| |F | |K| 5 89.7 90 TO TO
310 6 2 6 91 90.3 TO TO

Wine 4 99.4 - 29.29 -
|X| |F | |K| 5 100 - 2.07 -
178 13 3 6 100 - 1.14 -

Car 4 92.5 92.5 316.88 TO
|X| |F | |K| 5 92.9 92.9 TO TO
1728 6 2 6 95.4 95.4 TO TO

Monk2 4 74.6 74.6 85.49 473.43
|X| |F | |K| 5 84.6 84.6 185.3 416.37
169 6 2 6 100 100 0.35 1.09

Results on Learning Multi-Dimensional BDDs

In our next set of experiments, we evaluate our approach for directly learning multi-
dimensional BDDs. Our goal is to understand whether the added expressiveness of multi-
dimensional BDDs allows us to find high quality solutions with a lower number of splits.
Furthermore, we aim to study the effects of dimension division for multi-dimensional BDDs

CP 2023

33:14 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

Figure 4 Distributional result of size, training accuracy, and testing accuracy across datasets for
different β values.

by considering one balanced diagram with three multi-dimensional splits (2-2-2) and one
unbalanced diagram with one 3-dimensional split followed by three 1-dimensional splits
(3-1-1-1). Finally, we have used the size encoding in Section 5 to optimally decide the
labels of empty terminals towards compactness in a second stage. Note that the size of a
multi-dimensional BDD is considered to be its number of decision nodes (|N f

D|) after it is
unfolded and reduced.

Figure 5 Distributional result of size, accuracy, number of clauses, and average clause length for
BDDs of two number of splits and Multi-dimensional BDDs of two dimensions.

The results of the third set of experiments presented in Figure 5 show the two multi-
dimensional approaches achieve training accuracy that is higher than a one-dimensional
diagram with 5 splits and lower than a one-dimensional diagram with 6 splits. Since the
sum of dimensions equal 6 both case, the upper bound is expected according to Theorem 11.
However, the comparison against 5 splits, shows that the multi-dimensional approaches

P. Shati, E. Cohen, and S. McIlraith 33:15

perform better than the theoretical lower bound (resp. 3 and 4 splits) in practice. The same
comparison is observed in testing accuracy and size. However, the 3-1-1-1 approach is able
to achieve smaller variability in testing accuracy while still being close to the best approach
in size. Finally, we see a lower number of clauses and a significantly shorter average clause
length for our multi-dimensional approaches against ordinary BDDs of similar expressiveness.
We refer the reader to Table 3 in Appendix A.1 for the complete results of this experiment
with a larger set of dimension sequences considered.

Next, we run experiments for a significantly larger dataset, namely the Adult dataset
(|X| = 32561, |F | = 105, |K| = 2), to investigate the difference in encoding size and
performance between one-dimensional and multi-dimensional approaches on large datasets.
Given the scale of the tasks, we increase the timeout limit to 60 minutes. We compare,
one-dimensional BDDs against ones with 2, 3, and 4-dimensional splits according to their
total number of dimensions in Figure 6 and Figure 7. Figure 7 depicts the exponential
growth of encoding size for the one-dimensional approach. The training accuracy presented in
Figure 6 shows that the exponential size causes the ordinary approach to decrease in quality
and finally cease to produce any solutions due to memory overflow. We observe that by using
two dimensional splits, we maintain a higher accuracy over a significantly larger number of
dimensions. Three-dimensional and four-dimensional splits prove to be more challenging
compared to two-dimensional splits. However, we are still able to find solutions for higher
total number of dimensions compared to the one-dimensional splits. In this experiment, we
avoid 5-fold cross-validation as we focus on the optimization performance of the two methods.

4 5 6 7 8 9 10111213141516
50%

60%

70%

80%

90%

Sum of Dimensions

Ac
cu

ra
cy

1-D 2-D 3-D 4-D

Figure 6 Training accuracy for the Adult
dataset for different dimensions and number
of total splits.

4 5 6 7 8 9 10111213141516

2.108

108

0

10

7

4

Sum of Dimensions

Cl
au

se
#

Clause
Len.

Clause#
Clause Len.

Figure 7 Number and average length of clauses
of the encoding for the Adult dataset for different
dimensions and number of total splits.

8 Conclusion

In this paper, we present a novel MaxSAT encoding for learning Binary Decision Diagrams.
Our BDD encoding represents a tree which can be reduced to an equivalent diagram. We
extend our encoding with optimization for the size of the reduced diagram. The size objective
can be balanced against accuracy in a 1-stage approach or optimized as a second stage.
Furthermore, we present a variant of our encoding using multi-dimensional splits, which are
inner BDDs themselves. Our experiments show that we outperform the state-of-the-art SAT-
based BDD learning baseline due to our direct encoding of numerical splits. We further show
that our 1-stage and 2-stage size optimization approaches lead to significantly more compact
solutions while maintaining testing accuracy. Finally, we show that the expressiveness of our
multi-dimensional BDDs allows us to produce high quality solutions in smaller number of
splits, mitigating the exponential growth in the size of the encoding.

CP 2023

33:16 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

Our work, can be extended in a number of ways. Our size encoding for the 2-stage
optimization can be extended by allowing more than empty terminal labels to be changed,
e.g., feature ordering or splits. Moreover, nested directional BDDs can be added to our
multi-dimensional BDD encoding to improve expressiveness and avoid exponentiation even
further. Other interesting directions for future work involve investigating different strategies
for balancing the two objectives, e.g., producing Pareto optimal solutions, or a more com-
prehensive analysis of parameters including but not limited to the dimension sequences.
Finally, investigating the impact of more expressive BDDs such as free BDDs, which are not
constrained to be ordered [32], is also an interesting direction for future research.

References
1 Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching

branch-and-bound search. In AAAI Conference on Artificial Intelligence (AAAI), pages
3146–3153, 2020.

2 Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on computers, 27(06):509–516,
1978.

3 Florent Avellaneda. Efficient inference of optimal decision trees. In AAAI Conference on
Artificial Intelligence (AAAI), pages 3195–3202, 2020.

4 Jeremias Berg, Emir Demirović, and Peter J Stuckey. Core-boosted linear search for incomplete
MaxSAT. In International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR), pages 39–56. Springer, 2019.

5 Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039–
1082, 2017.

6 Allan Borodin, Alexander Razborov, and Roman Smolensky. On lower bounds for read-k-times
branching programs. Computational Complexity, 3:1–18, 1993.

7 Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
regression trees. Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

8 Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

9 Gianpiero Cabodi, Paolo E Camurati, Alexey Ignatiev, Joao Marques-Silva, Marco Palena,
and Paolo Pasini. Optimizing binary decision diagrams for interpretable machine learning
classification. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1122–1125. IEEE, 2021.

10 Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability:
A survey on methods and metrics. Electronics, 8(8):832, 2019.

11 Edmund M Clarke, Masahiro Fujita, and Xudong Zhao. Multi-terminal binary decision
diagrams and hybrid decision diagrams. Representations of discrete functions, pages 93–108,
1996.

12 Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

13 Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL: http://archive.
ics.uci.edu/ml.

14 Alexandre M Florio, Pedro Martins, Maximilian Schiffer, Thiago Serra, and Thibaut Vidal.
Optimal decision diagrams for classification. arXiv preprint arXiv:2205.14500, 2022.

15 Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg.
Optimal decision trees for categorical data via integer programming. Journal of Global
Optimization, pages 1–28, 2021.

16 Hao Hu, Marie-José Huguet, and Mohamed Siala. Optimizing binary decision diagrams with
maxsat for classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36(4), pages 3767–3775, 2022.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

P. Shati, E. Cohen, and S. McIlraith 33:17

17 Hao Hu, Marie-José Huguet, and Mohamed Siala. Optimizing binary decision diagrams with
maxsat for classification, 2022. arXiv:2203.11386.

18 Hao Hu, Mohamed Siala, Emmanuel Hébrard, and Marie-José Huguet. Learning optimal
decision trees with MaxSAT and its integration in AdaBoost. In International Joint Conference
on Artificial Intelligence and Pacific Rim International Conference on Artificial Intelligence
(IJCAI-PRICAI), 2020.

19 Alexey Ignatiev and Joao Marques-Silva. SAT-based rigorous explanations for decision lists.
In Theory and Applications of Satisfiability Testing–SAT 2021: 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings 24, pages 251–269. Springer, 2021.

20 Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and Joao Marques-Silva. A SAT-based
approach to learn explainable decision sets. In Automated Reasoning: 9th International Joint
Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings 9, pages 627–645. Springer, 2018.

21 Dmitry Ignatov and Andrey Ignatov. Decision stream: Cultivating deep decision trees. In 2017
ieee 29th international conference on tools with artificial intelligence (ictai), pages 905–912.
IEEE, 2017.

22 Stasys Jukna. A note on read-times branching programs. RAIRO-Theoretical Informatics and
Applications, 29(1):75–83, 1995.

23 Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 2009.

24 Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs. In Machine
Learning: ECML-94: European Conference on Machine Learning Catania, Italy, April 6–8,
1994 Proceedings 7, pages 154–169. Springer, 1994.

25 Benjamin Letham, Cynthia Rudin, Tyler H McCormick, and David Madigan. Interpretable
classifiers using rules and bayesian analysis: Building a better stroke prediction model, 2015.

26 Breiman LI, Jerome Friedman, RA Olshen, and C.J. Stone. Classification and regression trees
(CART). Biometrics, 40:358, September 1984. doi:10.2307/2530946.

27 Joao Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through formal XAI. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36(11), pages 12342–
12350, 2022.

28 Bernard ME Moret. Decision trees and diagrams. ACM Computing Surveys (CSUR), 14(4):593–
623, 1982.

29 J Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
30 J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
31 Cynthia Rudin. Stop explaining black box machine learning models for high stakes de-

cisions and use interpretable models instead. nat mach intell 1: 206–215. DOI: https://doi.
org/10.1038/s42256-019-0048-x, 2019.

32 Petr Savickỳ and Ingo Wegener. Efficient algorithms for the transformation between different
types of binary decision diagrams. Acta Informatica, 34(4):245–256, 1997.

33 Pouya Shati, Eldan Cohen, and Sheila McIlraith. SAT-based approach for learning optimal
decision trees with non-binary features. In 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

34 Pouya Shati, Eldan Cohen, and Sheila A. McIlraith. SAT-based optimal classification trees
for non-binary data. Constraints, July 2023. doi:10.1007/s10601-023-09348-1.

35 Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and Antonio
Criminisi. Decision jungles: Compact and rich models for classification. Advances in neural
information processing systems, 26, 2013.

36 Hazem Torfah, Shetal Shah, Supratik Chakraborty, S Akshay, and Sanjit A Seshia. Synthesizing
pareto-optimal interpretations for black-box models. In 2021 Formal Methods in Computer
Aided Design (FMCAD), pages 153–162. IEEE, 2021.

CP 2023

https://arxiv.org/abs/2203.11386
https://doi.org/10.2307/2530946
https://doi.org/10.1007/s10601-023-09348-1

33:18 SAT-Based Learning of Compact Binary Decision Diagrams for Classification

37 Hélene Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre Schaus.
Learning optimal decision trees using constraint programming. Constraints, 25(3):226–250,
2020.

38 Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726–742, 2021.

A Appendix

A.1 Additional Experimental Results

Table 2 Average 5-fold results for learning BDDs with the combined objective of accuracy and
compactness.

D.S. Splits Size Training Acc. (%) Testing Acc. (%)

β 1 3 10 ∞1 ∞2 1 3 10 ∞1 ∞2 1 3 10 ∞1 ∞2

B
an

kn
ot

e 4 1 3.6 4 4 4.4 85.3 95.8 96.8 96.8 96.8 85.2 95 96.6 96.6 96.4
5 3 4 5 11 6 94 96.8 97.6 97.5 97.6 93.7 96.4 96.9 96.8 96.7
6 4 6 5.8 19.8 6.4 96.8 98.6 98.4 98.6 98.6 96.5 97.4 97.4 97.2 97.2

B
re

as
t 4 1 4 5.2 6.4 6.8 72.4 88.8 90.7 90.7 90.7 71.5 75.9 75.9 78.4 77.6

5 3.8 5.4 11.4 11.8 11 88.8 91.8 94 94 94 74.1 70.7 74.1 72.4 72.5
6 5.6 9.4 22.2 22.4 16 92.9 96.1 97 97.2 97.2 75 71.6 63 71.6 65.5

C
ry

o.

4 1 3 4.8 4.8 6 86.1 94.7 97.8 97.8 97.8 75.6 88.9 92.2 92.2 94.4
5 2.4 5.2 5.8 5.8 8 93.1 99.2 99.4 99.4 99.4 83.3 94.4 91.1 91.1 90
6 4.6 5.8 5.8 5.8 10.4 98.3 100 100 100 100 95.6 87.8 90 90 82.2

Im
m

un
o. 4 1 2.2 5.4 5.4 6.8 87.2 91.4 95.6 95.6 95.6 82.2 83.3 83.3 83.3 85.6

5 1.6 4.4 5.4 5.4 8.4 89.7 95.3 96.7 96.7 96.7 81.1 81.1 78.9 81.1 73.3
6 3.8 7.2 10 10 14 94.7 98.3 99.2 99.2 99.2 80 76.7 73.3 72.2 75.6

Io
no

. 4 1.8 2.4 4 5.6 4 90 92 95.2 94.9 95.2 87.2 90.9 90.9 90.3 92.3
5 2 3.6 5.2 10.2 8.4 91.2 94.4 95.9 95.7 95.9 89.7 91.7 89.5 85.8 89.2
6 2.4 6 7 17.2 12.8 92 96.3 96.9 97.2 97.1 90.9 88.6 88 86.9 86.3

Ir
is

4 2 2.4 3.8 3.8 4.2 96.3 97.3 98.8 98.8 98.8 94 94 94.7 94.7 94
5 2 2.8 5.2 5.2 6 96.3 98 99.5 99.5 99.5 94 95.3 96.7 96 96
6 2.8 5.4 5.8 5.8 7 98 99.8 100 100 100 95.3 95.3 94.7 96 94.7

U
se

r 4 2.2 4.4 6 6 6 82.8 91.5 94.3 94.3 94.3 79.8 87.6 93.4 93.4 93.4
5 4 6 6.2 9.2 7 90.5 95.9 96 96 96 86 93 91.9 93.8 92.2
6 6 7 8 31.6 9.2 96.2 97.2 97.8 97.8 97.8 93 93 95.7 95.7 95.4

Ve
rt

eb
ra

l 4 1.2 2.4 4 5.4 4.6 81.8 86.8 89.8 89.8 89.8 76.8 76.5 79 78.1 77.7
5 2.2 4.2 5.2 10.6 8.6 86.1 89.4 89.8 90.8 91 74.8 81.6 81.9 79.7 76.1
6 3.4 6.2 10.2 20.6 15 88.5 91.6 92.4 92.8 92.7 80.3 80.3 79 76.8 78.7

W
in

e 4 2.2 3 4 5 6.4 93.8 98.5 99.6 99.9 99.9 87.7 96.6 93.3 93.3 93.9
5 3 3.6 4.6 4.6 9.4 98.5 99.3 100 100 100 95 95 96.7 95.5 92.7
6 3 4.6 4.6 4.6 10 98.5 100 100 100 100 95 93.3 92.2 93.3 93.3

C
ar

4 2 4 4 4 5.4 85.5 92.5 92.5 92.5 92.5 85.5 92.5 92.5 92.5 92.5
5 3.2 4 4.6 6.8 7.4 90 92.5 92.9 93.1 93.1 88.6 92.5 91.7 92.1 92.1
6 4 6.6 6.8 12.2 9.6 89 95 95 95.4 95.4 87.6 93.8 93.9 94.7 94.7

M
on

k2 4 0 3.4 5.4 5.4 6.6 62.1 71.7 75.4 75.4 75.4 62.1 63.3 64.5 65.6 63.9
5 0.6 7.8 9 9 13 64.6 84.3 84.9 84.9 84.9 59.7 79.3 76.4 77.6 74.6
6 7.6 11.8 11.8 11.8 13.4 86.2 100 100 100 100 81.7 98.2 98.8 98.2 99.4

P. Shati, E. Cohen, and S. McIlraith 33:19

Table 3 Results for learning max-accuracy multi-dimensional BDDs.

Dataset Dimensions Accuracy (%) Size Time (s)Training Testing Stage 1 Stage 2

Banknote 2-2-2 98.6 97.5 7.4 6.6 TO
3-3 98.4 97.5 6.6 6.6 TO

1-2-3 98.6 96.9 8.2 6.8 TO
3-1-1-1 98.6 97.7 8.8 6.8 TO

Breast 2-2-2 94.6 74.1 8.6 8.6 TO
3-3 92.9 64.6 8.8 8.8 TO

1-2-3 94.2 68.1 9.6 9.6 TO
3-1-1-1 94.2 72.4 11 9.8 TO

Cryotherapy 2-2-2 99.7 86.7 10.6 10.2 6.18
3-3 99.4 92.2 10.6 10 25.29

1-2-3 99.7 90 10.6 9.8 13.66
3-1-1-1 100 86.7 10 9.4 6.45

Immunotherapy 2-2-2 97.2 75.6 9.2 8.6 515.83
3-3 96.9 76.7 10.2 10.2 750.07

1-2-3 97.2 76.7 11.6 11.2 767.69
3-1-1-1 98.1 84.4 9.8 9.6 489.51

Ionosphere 2-2-2 96.9 90 6.6 6.6 TO
3-3 95.4 88.3 8.8 8.8 TO

1-2-3 97 90.3 7.4 7.4 TO
3-1-1-1 96.7 91.5 8.2 8.2 TO

Iris 2-2-2 99.5 95.3 10.4 8.4 1.17
3-3 99.5 94.7 11.2 11.2 0.67

1-2-3 99.8 94 14.6 8 1.2
3-1-1-1 100 93.3 12.4 8.8 0.44

User 2-2-2 95.6 91.1 12 11.6 TO
3-3 93 88.7 12.2 12.2 143.96

1-2-3 97.7 96.1 18.2 18.2 494.02
3-1-1-1 97.7 95.4 13.6 9.8 783.39

Vertebral 2-2-2 91.3 79.4 7.6 7.2 TO
3-3 91.8 80 7.4 7.4 TO

1-2-3 91.1 79.4 9.4 8.2 TO
3-1-1-1 90.9 77.4 10.6 8.6 TO

Wine 2-2-2 100 93.9 9 8.8 3.43
3-3 100 90.5 9.6 9.6 1.03

1-2-3 100 93.3 14.2 11.6 5.29
3-1-1-1 100 95 9 7.6 9.03

Car 2-2-2 94 92.5 6.4 6.4 TO
3-3 93 92.3 6.4 6.4 TO

1-2-3 92.8 92.6 6.2 5.8 TO
3-1-1-1 94.1 93.2 6.8 6.8 TO

Monk2 2-2-2 87.9 79.3 12.2 12.2 TO
3-3 89.6 80.5 10.6 10.6 TO

1-2-3 90.1 74.6 13 13 TO
3-1-1-1 92.9 85.8 11.8 11.8 695.58

CP 2023

	1 Introduction
	2 Related Work
	3 Background
	3.1 Binary Decision Diagrams
	3.2 Weighted Partial MaxSAT

	4 MaxSAT Encoding of BDD Classifiers
	4.1 Variables
	4.2 Clauses
	4.3 Decoding

	5 Size Optimization
	5.1 Variables
	5.2 Clauses
	5.3 Decoding

	6 MaxSAT Encoding of Multi-Dimensional BDDs
	6.1 Variables
	6.2 Clauses
	6.3 Decoding

	7 Experiments
	7.1 Setup
	7.2 Baseline
	7.3 Datasets
	7.4 Results

	8 Conclusion
	A Appendix
	A.1 Additional Experimental Results

