
Constraint Programming with External Worst-Case
Traversal Time Analysis
Pierre Talbot #

University of Luxembourg, Luxembourg
Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

Tingting Hu #

University of Luxembourg, Luxembourg

Nicolas Navet #

University of Luxembourg, Luxembourg

Abstract
The allocation of software functions to processors under compute capacity and network links
constraints is an important optimization problem in the field of embedded distributed systems.
We present a hybrid approach to solve the allocation problem combining a constraint solver and a
worst-case traversal time (WCTT) analysis that verifies the network timing constraints. The WCTT
analysis is implemented as an industrial black-box program, which makes a tight integration with
constraint solving challenging. We contribute to a new multi-objective constraint solving algorithm
for integrating external under-approximating functions, such as the WCTT analysis, with constraint
solving, and prove its correctness. We apply this new algorithm to the allocation problem in the
context of automotive service-oriented architectures based on Ethernet networks, and provide a new
dataset of realistic instances to evaluate our approach.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computer systems organization → Real-time systems; Networks → Network performance evaluation

Keywords and phrases Constraint programming, external function, multi-objective optimization,
network analysis, worst-case traversal time analysis, abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.CP.2023.34

Supplementary Material Software: https://github.com/ptal/automotive-network-cp/tree/
cp2023, archived at swh:1:dir:e0fe246fdd3c6654293c9f5183cae7782b540d07

Funding Pierre Talbot: This work is supported by the Luxembourg National Research Fund (FNR)
– COMOC Project, ref. C21/IS/16101289.

Acknowledgements We are grateful to the reviewers for their detailed comments.

1 Introduction

The hardware architecture of automobiles consists of dozens of interconnected electronic
control units (ECUs). An important optimization problem in the field of distributed embedded
system, called the deployment problem, is to allocate software functions to the ECUs without
overloading their compute capacity and overloading the network communication links. Worst-
case traversal time analysis (WCTT) is critical to ensure the communications among software
functions meet hard deadlines. In most works on the deployment problem, the network
considered is a controller area network (CAN), whose operating principles are relatively
simple and for which an exact WCTT analysis is available [7, 39]. Therefore, the constraint
model can specify both the allocation problem and the WCTT analysis. However, the newest
automotive electrical-electronic (E/E) architectures rely on high-speed switched Ethernet
networks. WCTT analysis already exists for Ethernet networks but is much harder to model

© Pierre Talbot, Tingting Hu, and Nicolas Navet;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.talbot@uni.lu
https://orcid.org/0000-0001-9202-4541
mailto:tingting.hu@uni.lu
mailto:nicolas.navet@uni.lu
https://orcid.org/0000-0002-6417-358X
https://doi.org/10.4230/LIPIcs.CP.2023.34
https://github.com/ptal/automotive-network-cp/tree/cp2023
https://github.com/ptal/automotive-network-cp/tree/cp2023
https://archive.softwareheritage.org/swh:1:dir:e0fe246fdd3c6654293c9f5183cae7782b540d07;origin=https://github.com/ptal/automotive-network-cp;visit=swh:1:snp:dc666ec78e4a99551da4127e4bd126645d3c177b;anchor=swh:1:rev:9ed6b6d7df8fded001a60e931eba6007a50c2f6f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Constraint Programming with External Worst-Case Traversal Time Analysis

as a constraint problem, especially considering the wealth of complicated quality-of-service
mechanisms available in the time-sensitive networking standards (TSN, see [22]) that are
used on top of standard Ethernet.

Constraint programming is a declarative paradigm for solving combinatorial problems.
In general, the solvers are designed to work with a closed-world assumption, that is, they do
not interact with external entities during solving. However, in practice, there are often parts
of the model that are difficult to express as constraints, and are already programmed in
another language. This is the case of the WCTT analysis. Industrial constraint solvers such
as IBM ILOG CP Optimizer1 and Local Solver2 both propose black-box expressions to
plug external functions in the model. However, these extensions are “last resort solutions” as
they do not come with a semantics, and there is no guarantee on when the function is called,
and how it is used within the solver. We contribute to a rigorous approach to this problem
when the external function is under-approximating, i.e., it only produces valid solutions but
not necessarily all.

In this work, we integrate a constraint solver for the allocation problem and a WCTT
analyser for the timing constraints. We propose a general framework, based on abstract inter-
pretation [6], for integrating external under-approximating functions (here, the WCTT ana-
lyser) in a constraint solving algorithm, and prove its correctness. The under-approximating
external function validates each solution produced by the constraint solver. Moreover, when
the external function can explain its failure, we dynamically add a new constraint to the
constraint model, approximating the reason of the failure of the external function, to improve
the quality of the subsequent solutions. In the following, we call these constraints conflicts3.
Because the WCTT analysis is a black-box function, deriving useful over-approximating
conflicts – which do not remove solutions from the problem, but might accept non-solutions –
can be difficult, or even impossible depending on the information provided by the analyser.
Our main contribution is to propose cusolve_mo a multi-objective constraint solving al-
gorithm that is over-approximating even if the generated conflicts are not over-approximating.
This algorithm extends the well-known multi-objective constraint programming algorithm of
Gavanelli [13] which has been frequently used in constraint optimization [19, 31, 14]. Further,
our framework can be used on top of any constraint solvers. Finally, we contribute to a new
set of benchmarks for the deployment problem and evaluate our solving algorithms on them.

2 Service Deployment Problem

For the sake of conciseness, we present the service deployment problem in mathematical
notation. In Appendix A, we give the constraint model in the MiniZinc constraint modelling
language [25]. The MiniZinc model is very close from the mathematical definition given
here and does not contain any particular modelling trick.

Let ⟨H, L, hc, lc⟩ be a weighted graph where H is a set of hardware units connected by
communication links L ⊆ H ×H. Moreover, each unit h ∈ H has a compute capacity hc(h)
and each link ℓ ∈ L has a link capacity lc(ℓ). This graph represents a network of connected
heterogeneous hardware units such as processors and switches.

1 https://www.ibm.com/docs/en/icos/20.1.0?topic=2010-cp-optimizer-black-box-expressions
2 https://www.localsolver.com/docs/last/modelingfeatures/externalfunctions.html
3 We avoid using the terminology of nogood because as we will see later, these conflicting constraints

might not always preserve all solutions of the problem (over-approximating).

https://www.ibm.com/docs/en/icos/20.1.0?topic=2010-cp-optimizer-black-box-expressions
https://www.localsolver.com/docs/last/modelingfeatures/externalfunctions.html

P. Talbot, T. Hu, and N. Navet 34:3

Let ⟨S, Com, sc, cc⟩ be a weighted graph where S is a set of software functions that we call
services and Com ⊆ S × S is the set of communications between the services. Each service
s ∈ S consumes a certain amount of computational power sc(s) and for any communication
c ∈ Com, cc(c) represents the network utilization due to this communication.

The core of the service deployment problem is to find a deployment function d : S → H

allocating each service on a processor. We illustrate this problem in Figure 1 where the
software graph (Figure 1b) must be deployed on the hardware graph (Figure 1a) while
satisfying a number of constraints – several solutions to this particular instance are shown
on Figure 4. The first constraint is on the compute capacity of each processor:

∀h ∈ H,
∑

s∈d−1(h)

sc(s) ≤ hc(h)

It guarantees that the sum of the computational power required by all services allocated on
processor h does not exceed the compute capacity of h.

The second constraint is on the communication network:

∀ℓ ∈ L,
∑

c∈Com
com(c, ℓ) ≤ lc(ℓ)

where the function com(c, ℓ) returns the cost on the link ℓ of communication c, and is defined
by:

com(c, ℓ) =
{

cc(c) iff ℓ ∈ path(d(x), d(y)), c = (x, y)
0 otherwise

This constraint guarantees that the maximal capacity of a network link ℓ is never exceeded
by all communications c ∈ Com deployed on processors communicating through this link ℓ.
The function path(h1, h2) returns a path in the hardware graph between two hardware units
h1 and h2. In our implementation, this function represents the routing table and is given
by the user as a parameter of the model. Shortest path is the standard routing strategy
in automotive networks, that we use in our experiments. Follow-up work may consider the
routing table as a decision variable of the model.

Finally, we note that additional constraints may be considered in similar deployment
problems [15, 11]. For instance, a service might need to be allocated on a specific processor
(locality constraint) or on the same processor than another service (co-location constraint).
For brevity and because these constraints can be taken into account in standard ways, we
choose to focus on the core problem presented above.

2.1 Multi-Objective Optimization
In automotive applications, we usually want to find a deployment function d optimizing
various objectives such as reliability [21], extensibility and cost reduction [11, 17]. We focus
on two new extensibility objectives and a well-known cost reduction objective. Typically,
once the services are deployed on the processors, they cannot be moved to other processors.
This poses challenges when updating the system with new services. Therefore, an important
goal is that the deployment function favours extensibility, that is the ability to add further
services over the lifetime of the vehicle. This requirement is captured by two extensibility
objectives as follows:

min max
h∈H

∑
s∈d−1(h)

sc(s)

CP 2023

34:4 Constraint Programming with External Worst-Case Traversal Time Analysis

Switch1ECU1 ECU3

ECU2

(a) Hardware graph with 3 ECUs and 1 switch.
The values of hc are displayed in white and those
of lc in blue.

(b) Software graph with 5 services and 5 com-
munications. The values of sc are displayed in
red and those of cc in blue.

Figure 1 An example of the software deployment problem.

which minimizes the maximum utilization rate of a processor, and

min max
ℓ∈L

(
∑

c∈Com
com(c, ℓ))/lc(ℓ)

which minimizes the maximum utilization rate of a network link. The maximum value is
considered as the corresponding hardware resource will be the bottleneck of the system.
Indeed, we want to avoid a processor to be fully occupied in case a new service requires to
be placed on this processor in a system update, e.g., due to the proximity of a sensor.

At the same time, we want to minimize the number of processors in order to reduce the
costs:

min |d(S)|

Of course, this objective directly conflicts with the first one. The tradeoffs between extensib-
ility and cost of the architecture are exposed to the system expert through a Pareto front of
solutions. The final decision will involve many factors that are external to the model, such
as re-use of existing processors and safety concerns.

3 Constraint Programming with External Function

3.1 Constraint Programming
A constraint satisfaction problem (CSP) is a tuple (X, D, C) where X is a set of variables,
D = D1 × . . .×Dn the sets of values taken by each variable xi ∈ X, and C a set of relations
over variables, called constraints. An assignment is a function asn(xi) = vi from variable
xi ∈ X to values where vi ∈ Di. Let asn be an assignment and c ∈ C a constraint defined
on the variables x1, . . . , xn. Then the constraint c is satisfied when c(asn(x1), . . . , asn(xn))
holds, or for short c(asn). An assignment asn is a solution when each constraint is satisfied.
We write asn the set of all assignments. We call the concrete domain the powerset lattice
D♭ = ⟨P(asn),⊇⟩ where the least element is the set of all assignments asn and the greatest
element is the empty set (no solution). The set of solutions of a CSP P = (X, D, C) is an
element of D♭ computed by the following function:

sol(P) := {asn ∈ asn | ∀c ∈ C, c(asn)}

P. Talbot, T. Hu, and N. Navet 34:5

A multi-objective constraint optimization problem M = (X, D, C,⪯) extends the previous
definition with a partial order relation ⪯: asn|obj × asn|obj where asn|obj is the restriction
of the assignments4 to a set of objective variables obj ⊆ X. In contrast to a single-objective
optimization problem, there can be several solutions such that none is better than the others,
which is why we need a partial order. Let a, b ∈ asn|obj. In the case of maximization over
integer variables, we can define a ⪯ b⇔ ∀x ∈ obj, a(x) ≤ b(x), that is, all the objectives of
b are greater or equal to the ones of a. We say that b dominates a when a ⪯ b. We write
a ≻ b for a ̸= b ∧ a ⪰ b and we have a ⪰ b ⇔ b ⪯ a and a ≻ b ⇔ b ≺ a. Importantly, due
to the partial order, the fact that a does not dominate b (a ̸⪰ b) does not imply that a is
dominated by b (a ≺ b).

For the sake of clarity, we overload ⪯ to work on arbitrary assignments. For any
a, b ∈ asn, we have a ⪯ b ⇔ a|obj ⪯ b|obj, and similarly for ≺, ⪰ and ≻. In that case, ⪯
is a preorder since two assignments with the same objective values might not be equal: ⪯
lacks antisymmetry. This is not an issue since antisymmetry can be recovered by considering
classes of equivalent assignments, but we do not need this construction here. The solution
function for a multi-objective constraint optimization problem is then defined as:

sol(X, D, C,⪯) := {a ∈ sol(X, D, C) | ∀b ∈ sol(X, D, C), b ̸≻ a}

Multi-objective optimization in the context of constraint programming is described in greater
length in, e.g., [13, 31, 14].

In the following, we will also need to merge and generate constraints from the Pareto front.
The type of a Pareto front is a set of assignments PF := P(ASN). We define the operator
⊔ : PF×PF→ PF merging two Pareto fronts as A⊔B := {c ∈ A∪B | ∀d ∈ A ∪B, d ̸≻ c}.
An equivalent definition of the solutions set is possible using ⊔:

sol(X, D, C,⪯) :=
⊔
{{a} | a ∈ sol(X, D, C)}

where
⊔
{s1, . . . , sn} := s1 ⊔ . . . ⊔ sn.

Finally, we define the function opt : asn→ C which returns a constraint ensuring that
for all solutions a ∈ sol(X, D, C), no solution in b ∈ sol(X, D, C ∧ opt(a)) is dominated by a,
i.e. a ̸⪰ b. This function is defined by:

opt(a) :=
∨

x∈obj
x < a(x)

It generates a constraint requiring at least one of the objective variables to be strictly better
than the one obtained in a. This approach to multi-objective optimization was pioneered by
Gavanelli [13].

3.2 Abstract Constraint Programming
In general, the set sol(P) might not be efficiently computed on the concrete domain. In
constraint reasoning by abstract interpretation [10, 27, 33, 35], they design an abstract solving
function sol♯

o(P) which over-approximates the solution set, i.e., sol♯
o(P) ⊇ sol(P). Dually,

we can also design an under-approximating solving function such that sol♯
u(P) ⊆ sol(P).

Over-approximation contains all solutions but might contains non-solution assignments as
well, while under-approximation only contains solutions but not necessarily all solutions. For

4 Formally, asn|obj := {asn|obj | asn ∈ asn} where asn|obj(x) = asn(x) for all x ∈ obj.

CP 2023

34:6 Constraint Programming with External Worst-Case Traversal Time Analysis

instance, discrete constraint programming solvers are both under- and over-approximating [10,
35], and continuous constraint programming solvers are over-approximating [27]. Incomplete
discrete solvers, such as those based on local search, can be viewed as under-approximating
solving functions.

3.3 Abstract Constraint Model
We can also use the abstraction framework at the level of the constraint model. In industry,
some elements of a constraint model might already be available and tested, and it is usually
not practical to spend time redeveloping those parts as a constraint problem. Sometimes, the
problem is just too difficult to be expressed as a constraint model in a reasonable amount of
time; this is the case of the WCTT analysis for instance. In these cases, the problem P is never
explicitly written as a constraint model. Instead, we can rely on an over-approximating model
O of P , such that sol(O) ⊇ sol(P). We often have an idea of some constraints that must be
satisfied in any solution of the model but we do not necessarily know them all. This model O

can be solved by an over-approximating function sol♯
o(O) ⊇ sol(O) – although O simplifies

P , it might still not be efficiently computable. If O is unsatisfiable (sol♯
o(O) = {}), then the

problem P is unsatisfiable as well since only sol(P) = {} satisfies sol♯
o(O) ⊇ sol(P). In the

following, we denote osolve(O) ∈ sol♯
o(O), the solving algorithm computing a single solution

of O and returning {} if O is unsatisfiable. Its definition in terms of abstract interpretation
can be found in [1, 10, 27]. Dually, we can also propose an under-approximating model U of P

and its solving function sol♯
u(U) such that sol♯

u(U) ⊆ sol(U) ⊆ sol(P). If U is satisfiable, then
the problem P is satisfiable as well. An under-approximation makes additional assumptions
about the reality, and therefore might discard solutions of P . Therefore, the real problem P

is framed between an over-approximating model O and an under-approximating model U ,
which is summarized by sol♯

o(O) ⊇ sol(O) ⊇ sol(P) ⊇ sol(U) ⊇ sol♯
u(U).

3.4 Under-Approximating External Function
We must go one step further for our abstract framework to be useful in practice. If we
cannot explicitly list the constraints of the concrete problem P , it seems unlikely that we
could list more constraints in an under-approximating model U . Nevertheless, when given
a solution to O, it can often be validated by existing code developed by domain experts.
For instance, worst-case analysis such as WCTT and feasibility tests fall in this category.
They conservatively analyse the network architecture, and discard some solutions that would
be valid but could not be proven valid by the analysis. In practice, worst-case analysis are
not directly working with constraints and domains, and thus do not explicitly define an
under-approximating constraint model U , but they work on assignments.

We formally define the analysis as an under-approximating function uf : asn→ C. The
function uf returns a conflict constraint when the assignment generated by osolve is not in
sol(U), or true if it is in sol(U). Actually, we define the solutions of the under-approximating
model U as the set of all solutions accepted by uf :

sol(U) := uf −1(true) = {asn ∈ asn | uf (asn) = true}

A general conflict automatically available to all functions uf , is the logical negation of the
assignment (NA): ¬asn := ¬(x1 = asn(x1)∧ . . .∧xn = asn(xn))⇔ x1 ̸= asn(x1)∨ . . .∨xn ≠
asn(xn). However, it is a weak conflict since it only prevents osolve from returning to this
assignment, without providing additional pruning. A conflict is over-approximating if it
does not remove valid solutions: for all assignments asn, we have sol(U) ⊆ sol(O ∧ uf (asn)).

P. Talbot, T. Hu, and N. Navet 34:7

function usolve(O, ufo)
S ← {}
asn ← osolve(O)
while asn ̸= {} do

if ufo(asn) = true then
S ← S ∪ {asn}
O ← O ∧ ¬asn

else
O ← O ∧ ufo(asn)

end if
asn ← osolve(O)

end while
return S

end function
(a) Find all satisfiable solutions.

function usolve_mo(O, ufo, ⊔, opt)
F ← {}
asn ← osolve(O)
while asn ̸= {} do

if ufo(asn) = true then
F ← F ⊔ {asn}
O ← O ∧ opt(asn)

else
O ← O ∧ ufo(asn)

end if
asn ← osolve(O)

end while
return F

end function
(b) Multi-objective version of usolve.

Figure 2 Constraint solving with external under-approximating function producing over-
approximating conflicts.

We say that a conflict c is sound if it implies NA; in other terms, it excludes the current
assignment: asn ̸∈ sol(c). NA is a sound over-approximating conflict. We denote by ufo an
under-approximating external function returning sound over-approximating conflicts.

Let O be an over-approximating model and ufo a sound under-approximating external
function. The function usolve presented in Algorithm 2a constructs the solutions set S

of the under-approximating model U . Constraint programming helps us navigating in the
under-approximated solution space of the external function more efficiently. Without it,
we would need to call ufo on many more unsatisfiable assignments, since those would not
be removed by a constraint solver. The next proposition shows that usolve computes an
under-approximation of P .

▶ Proposition 1. usolve is a sound under-approximating function, that is, usolve(O, ufo) =
ufo−1(true) ⊆ sol(P).

Proof. Let Oi and Si be the variables O and S at the ith iteration of the loop where O0 = O

and S0 = {}. We must show that at the final iteration n, we have ufo−1(true) = Sn. We
proceed inductively by defining Oi+1 and Si+1 as follows:
1. If asn is a solution to ufo: Oi+1 = Oi ∧¬asn and Si+1 = S ∪{asn}. In that case we have

sol(Oi) ∪ Si = sol(Oi+1) ∪ Si+1.
2. If asn is not a solution to ufo: Oi+1 = Oi ∧ ufo(asn) and Si+1 = S. In that case we

have sol(Oi) ∪ Si ⊇ sol(Oi+1) ∪ Si+1. Since the conflict must be over-approximating, no
assignment removed from Oi is in ufo−1(true) and therefore ufo−1(true) ⊆ sol(Oi+1) ∪
Si+1.

The final iteration is necessarily with On = {}, hence we must have ufo−1(true) ⊆ Sn.
Since we only add in Sn the assignments asn such that ufo(asn) = true, we also have
ufo−1(true) ⊇ Sn. ◀

The extension to multi-objective optimization is a small modification of usolve. The set
F represents the Pareto front of the problem. To compute the Pareto front, we introduce the
algorithm usolve_mo in Figure 2b, and we highlight the differences with usolve in green.

CP 2023

34:8 Constraint Programming with External Worst-Case Traversal Time Analysis

▶ Proposition 2. usolve_mo is a sound under-approximating function. Moreover, we have:
1. usolve_mo(O, ufo,⊔, opt) = sol(U,⪯),
2. usolve_mo(O, ufo,⊔, opt) ⊆ usolve(O, ufo), and
3. usolve_mo(O, ufo,⊔, opt) = {} ⇔ usolve(O, ufo) = {}.

Proof. We prove each statement in turn:
1. Each time we reach a solution asn, we add the constraint opt(asn) to O. By definition,

all solutions removed by this constraint are dominated by asn, and therefore it cannot
remove solutions from sol(U,⪯).

2. Notice that opt(asn)⇒ ¬asn, and therefore it can only prune more solutions in comparison
to usolve.

3. Before reaching the first solution, the algorithm behaves in the same way than usolve. ◀

The risk when navigating in an under-approximating solution space is to find no solution
at all. Therefore, it is useful to notice that the multi-objective algorithm returns an empty
set of solution only if usolve does as well (by Proposition 2(3)).

4 Worst-Case Traversal Time Analysis

We focus on the worst-case traversal time (WCTT) analysis, which verifies if the network com-
munications among the deployed services meet timing constraints, i.e., deadline constraints
in this work. In an automotive network, we must ensure the deadlines of network packets
are met, which is crucial for safety reasons (e.g., a message sent to an airbag arrives on
time) and other non-functional requirements (e.g., the speakers must be synchronized when
playing music). WCTT analysis is a formal method which provides upper bounds on the
worst-case delay of every packet sent in the network. It is therefore an under-approximating
external function because all deployments passing this analysis will also fulfill the real-time
constraints in reality. But some deployments, that in fact meets all timing constraints, will
not pass the WCTT analysis because it only gives an upper-bound on the delay: it is a
sufficient but not necessary condition.

The WCTT analysis for Ethernet networks, based on network calculus [18], is mathemat-
ically complicated (see for instance [28]). We think it would take tremendous efforts to model
WCTT analysis as a constraint problem if the goal is to develop an implementation that is
sufficiently accurate to be used on real-world problems, given the complexity of the WCTT
analysis after 30 years of research. As an illustration, the network calculus engine from
the company RTaW we use in the paper has been developed for 15 years and implements
state-of-the-art techniques such as [34, 3]. We take a more pragmatic approach where we reuse
an existing WCTT analyser, and integrate it in our framework as an under-approximating
external function.

Let us first describe the output of a WCTT analysis. For each communication (x, y) ∈
Com, the WCTT analysis outputs the worst-case end-to-end delay of a packet traversing the
network from d(x) to d(y). A negative delay means the deadline for that communication
cannot be met and thus the deployment d is unsatisfiable from the point of view of the
analysis. From an unsatisfiable assignment, we can think of various conflicts such as forcing
the network load of the problematic link to be smaller, or forbidding to allocate the services
x or y on their current processors. Unfortunately, conflicts that are intuitive are often not
over-approximating. To complicate the finding of over-approximating conflicts, the WCTT
analysis is non-monotonic w.r.t. the network load. Indeed, it can happen that increasing the
load of an unsatisfiable network turns it into a satisfiable network according to the WCTT
analysis. This is a well-known phenomenon referred to as timing anomaly (see, e.g., [23]),
that may occur with non-preemptive scheduling as in communication networks.

P. Talbot, T. Hu, and N. Navet 34:9

function cusolve_mo(F , O, C, uf , ⊔, opt)
asn ← osolve(O ∧ C)
if asn ̸= {} then

co ← uf (asn)
if co = true then

F ← F ⊔ {asn}
O ← O ∧ opt(asn)
cusolve_mo(F , O, C, uf , ⊔, opt)

else
cusolve_mo(F , O, C ∧ co, uf , ⊔, opt)
cusolve_mo(F , O, C ∧ ¬co ∧ ¬asn, uf , ⊔, opt)

end if
end if
return F

end function

Figure 3 Multi-objective constraint solving with under-approximating external function returning
conflicts that are not over-approximating.

Although the conflicts mentioned above are not over-approximating, they can nevertheless
be useful as heuristics to find a solution faster. In Figure 3, we extend usolve_mo in the case
where uf is returning sound conflicts that are not over-approximating. The intuition is that
the conflict is viewed as a branching decision, and thus backtracked when the sub-problem
has been fully explored. Doing so, we do not lose the completeness of our solving algorithm.
We provide an example unrolling this algorithm in Section 4.2.

We note that if the conflict co is over-approximating, then O ∧ ¬co is necessarily
unsatisfiable. In that case, cusolve_mo remains correct but the second recursive call
cusolve_mo(F, O, C ∧ ¬co, uf ,⊔, opt) is unnecessary.

▶ Proposition 3. cusolve_mo({}, O, {}, uf ,⊔, opt) = sol(U,⪯)

Proof. The difference with Proposition 2, is that uf does not necessarily produce over-
approximating conflicts. However, given any constraint problem O and any constraint co,
we always have sol(O ∧ co) ∪ sol(O ∧ ¬co) = sol(O). Therefore, the same solution space is
eventually explored, and the same Pareto front is found. However, the conflicting assignment
asn might be reexplored in the right branch. Indeed, sol(¬co) = asn \ sol(co) and therefore
asn ∈ sol(¬co). By forbiding revisiting this assignment in both the left and right branches,
we guarantee progress and thus termination of the algorithm. ◀

4.1 Conflicts for WCTT
Let asn be the current assignment for which WCTT detected that the communication
(x, y) ∈ Com does not meet its deadline. Among the possible conflicts, we experiment with
the following ones in the next section:

Forbid the source service x to be allocated on its current hardware unit or the one of y:

d(x) ̸∈ {asn(x), asn(y)} (FS)

Forbid the target service y to be allocated on its current hardware unit or the one of x:

d(y) ̸∈ {asn(x), asn(y)} (FT)

CP 2023

34:10 Constraint Programming with External Worst-Case Traversal Time Analysis

Decrease the number of hops in the network between x and y:

|path(d(x), d(y))| < |path(asn(x), asn(y))| (DH)

We also test two conflicts that are global to the network, thus do not consider a specific
communication. It is based on the observation that a communication can fail to meet its
deadline because of other communications. We let the variable loadℓ =

∑
c∈Com com(c, ℓ) to

be the network load of the link ℓ in the current assignment asn.
Decrease the load of at least one network link:∨

ℓ∈L

∑
c∈Com

com(c, ℓ) ≤ loadℓ (D1L)

Decrease the load of the most occupied network link, with m = maxargℓ∈L(loadℓ/lc(ℓ)):∑
c∈Com

com(c, m) ≤ loadm (DML)

Taking the conjunction of any two conflicts will further prune the search tree, while taking
their disjunction will create a weaker conflict. In the experiments, we test the conjunction
of FS and FT that we name FST. In our investigations, we found that, in general, the
disjunction of conflicts did not help to reach a (better) solution faster.

4.2 An Example of the Algorithm cusolve_mo
We unroll the algorithm cusolve_mo with the DH conflict strategy on the software
deployment problem given in Figure 1. Initially, the Pareto front F and the set of conflicts
C are empty. The first call to osolve returns a solution to the problem as depicted in the
orange box labelled A. Because one of the network link is used at 100% capacity, we suppose
the communication between S1 and S4 fails to meet its deadline, hence the WCTT analysis
fails on this solution. The conflict |path(d(S1), d(S4))| < 1, reducing the number of hops
between S1 and S4, is added to the conflicts set C. In this case, this conflict forces both
services to be allocated on the same processor.

The model is solved again with this new conflict and osolve returns a solution as depicted
in the box B. This time the WCTT analysis succeeds, and the solution is added to the Pareto
front F . The objectives are (100, 80, 2) where 100 is the maximum utilization rate among all
processors, 80 is the maximum utilization among all network links and 2 is the number of
cores used.

As long as the WCTT analysis succeeds, the osolve procedure is iteratively called with
the updated Pareto front. In the box C, we have a solution (90, 90, 3) incomparable to
(100, 80, 2), hence the Pareto front now contains both. In the box D, we find the solution
(90, 80, 3) which dominates the previous one. Afterwards, the osolve procedure finds the
problem unsatisfiable, which means there is no solution better than the ones found previously.
However, we have previously added a conflict which was not over-approximating, and therefore
we might have missed solutions of the problem. Therefore, we need to backtrack and explore
the problem with the negation of the conflict. In box E, the model is solved again with the
latest Pareto front, and a new non-dominated solution (80, 90, 3) is found. This is repeated
and a better solution (70, 90, 3) is found in box F. As long as the WCTT analysis succeeds,
the solving procedure continues, and when it fails we branch as we did in the first node.

This example demonstrates that conflicts are heuristics which are used in a way that
do not prevent to find all solutions. This is also why the non-monotonicity of the WCTT
analysis is not an issue: the entire solution space is eventually explored.

P. Talbot, T. Hu, and N. Navet 34:11

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

Switch1ECU1 ECU3

ECU2

(...)

A

D

C F

EB

Figure 4 An example unrolling cusolve_mo on a small network. The orange boxes represent
the solutions found by osolve. F is the current Pareto front and is automatically added to the
model before solving; note that the Pareto front is preserved on backtracking.

CP 2023

34:12 Constraint Programming with External Worst-Case Traversal Time Analysis

5 Implementation and Experiments

The code of the MiniZinc model, the data of the instances and the implementation of the al-
gorithms used can be found online at https://github.com/ptal/automotive-network-cp/
tree/cp2023.

5.1 Experimental Setting
We run all the experiments on an AMD Epyc ROME 7H12 processor (64 cores, 280W).
The constraint programming solver implementing the osolve solving function is Gecode
6.3.0 [32] in parallel mode with 8 cores and 16 threads. We use a first-fail variable selection
strategy (the variable with the smallest domain is chosen first) and a random value selection,
as it shows better performance than the free search strategy of Gecode. We also tried
Chuffed 0.10.4 [26], a hybrid solver between SAT and constraint programming, but it did
not outperform Gecode on our problem. Due to the lack of open-source alternative, the
WCTT analysis is performed by the proprietary software RTaW-Pegase-4.3.7 [29], which
implements state-of-the-art network calculus algorithms [18, 2, 4]. The WCTT analysis takes
on average 1.5 seconds to run, and this time remains stable across instances. The algorithms
presented in this paper – usolve, usolve_mo and cusolve_mo – are implemented in
Python using MiniZinc Python 0.9.0 [9]. In addition we provide osolve_mo which
implements the multi-objective optimization solving procedure of [13] – it is the same
than usolve_mo but without the external function filtering. Although multi-objective
optimization is very important in practice, it is not natively available in every constraint
programming solver (for instance in Gecode, Chuffed or ortools). Similarly to [14],
our approach does not require to modify the constraint solver, but the solver state is lost
between two calls to osolve which might be less efficient – although the issue is mitigated
since we use a random search strategy. It can be seen as a restart strategy triggered on every
solution. It is also similar to what is done in MiniSearch [30] to design search strategies
generically across solvers.

5.2 Dataset Description
The instances are derived from a realistic automotive Ethernet network, shown in Figure 5,
consisting of 19 network devices (14 ECUs and 5 switches) provided by the company RealTime-
at-Work5. The experiments consider 5 problem instances of 50 services, 5 instances of 75
services and 8 instances of 100 services. The numbers of communications vary among the
instances, but are between 125% and 135% of the number of services. An information missing
in the network description is the CPU usage for each service. For each of the 18 instances,
we generated 10 versions where the sum of all computational requirements is 20%, 40%, 60%,
80% and 90% of the total computational capacity of all ECUs with a uniform distribution
among services. To summarize, an instance named I5_75-14-u60 has 75 services allocated
on 14 processors and using 60% of the total computational power, and I5 denotes the fifth
instance with 75 services. In total, we have a new dataset of 90 MiniZinc instances for the
deployment problem. In the following, we present experimental results for a subset of these
instances (I{1,2,5}_{50,75,100}-14-u{20,40,60,80,90}), totalizing 45 instances. We
set a timeout on the constraint solver of 30 minutes for each instance, and unlimited time
for the WCTT analysis.

5 https://www.realtimeatwork.com/

https://github.com/ptal/automotive-network-cp/tree/cp2023
https://github.com/ptal/automotive-network-cp/tree/cp2023
https://www.realtimeatwork.com/

P. Talbot, T. Hu, and N. Navet 34:13

Figure 5 Realistic automotive Ethernet network used in the experiments.

DH∧ DH∨ DMLMO_UF D1L FS∨ FT∨ NA FST∨ FS∧ FT∧ FST∧

0

10

20

30

40

Sc
or

e

uf conflicts
uf solutions

Figure 6 Cumulated hypervolume score for each experiment over all instances.

5.3 Evaluation of cusolve_mo
We evaluate the algorithm cusolve_mo on NA and the seven strategies presented in
Section 4.1. For a single assignment, it is possible that several communications cannot meet
their deadlines, and thus several conflicts are generated. We write FS∨ when these conflicts
are combined disjunctively and FS∧ when they are combined conjunctively. It only impacts
the conflicts that are local to a communication (FS, FT, DH and FST), thus we have 11
conflicts in total.

Our main comparison metrics is the hypervolume of the Pareto front which is standard in
multi-objective optimization. For all 45 instances, none of the algorithms tested could find
the optimum within the time limit. We give a general picture of the situation in Figures 6
and 7. Overall, the decreasing hops strategy is the best, and finds the best hypervolumes on
19 of the 45 instances. We also witness a smaller number of conflicts, which means that DH
is effective to search the state-space of sol(U). When considering the score, forbidding the

CP 2023

34:14 Constraint Programming with External Worst-Case Traversal Time Analysis

DH∧ DH∨ FST∧ FST∨ DML D1L FS∧ FS∨ MO_UF NA FT∧ FT∨

0

5

10

15

B
es

t
hy

pe
rv

ol
um

es

Figure 7 Number of times each experiment computed the best hypervolume.

source and target services on a particular ECU are usually not better than simply using the
NA conflict. These strategies are still superior regarding the number of times they find the
best hypervolume.

In addition, we evaluate cusolve_mo against a more straightforward two-steps algorithm
osolve_mo_then_uf (denoted by MO_UF) where the Pareto front is first fully generated,
and then filtered by the uf function. To improve this method, we keep all intermediate
solutions when building the Pareto front in a set S. During the filtering step, if a solution a

is discarded by the function uf , we remove a from the Pareto front and reconstruct it with⊔
{{b} | b ∈ S \ {a}}. It does not make this algorithm over-approximating as it can still

discard assignments accepted by uf , but it improves the filtered Pareto front.
As shown in Figure 6, MO_UF ranks fourth, and therefore is a good approach to solve

the deployment problem when we do not seek (or cannot find) the true optimal solution.
Interestingly, for 18 instances over the 45, the hypervolume before and after filtering is
the same, which means that all solutions of the Pareto front were valid w.r.t. uf . This is
particularly true with 50 services where 14/15 instances have the same hypervolume before
and after filtering. This result is explained by noticing that adding more services has a higher
impact on the network load, and thus the WCTT analysis fails more often. Over the 30
instances with 75 and 100 services, there are 24 instances that have a filtered hypervolume
within 3% of the unfiltered hypervolume. It is not always the case as for the instances
I1_100-14-u60 and I1_100-14-u80, the filtered hypervolume is respectively 57% and 73%
of the unfiltered hypervolume. An advantage of the offline filtering proposed by MO_UF is
to call uf an order of magnitude less than with DH. Over all instances, MO_UF calls uf
1180 times while DH calls uf 12245 times. Therefore, depending on the time taken by the
external function and the number of conflicts, MO_UF can be better – especially for low
number of conflicts and long evaluation time.

From an implementation perspective, using MiniZinc Python allowed us to implement
an algorithm generic across solvers, but it incurs a cost. Besides losing the state of the
solver between calls, we must call the MiniZinc (source of the model) to FlatZinc (simpler
format supported by solvers) translator, and it takes on average around 40% of the total
solving time. An improvement to MiniZinc Python would be to directly add FlatZinc
constraints to avoid recompiling the MiniZinc model each time.

P. Talbot, T. Hu, and N. Navet 34:15

6 Related Work

6.1 CAN Networks
The deployment problem has been extensively studied due to its importance in distributed
real-time embedded systems. It was pioneered in [38] for tasks allocation on controller area
network (CAN). In CAN network, the hardware units are all connected on a broadcast bus,
and therefore the hardware network is fully connected. The main difference with our work
is that we consider a more general switch-based network. In the context of real-time and
critical systems, such as those found in the automotive industry, it is crucial to ensure the
network will not be overloaded by communication, and when required, that the network
packet deadlines are met. The WCTT analysis on switch-based networks is more complicated
and under-approximating (it does not give an exact upper bound), while it is an exact
analysis for CAN network [37, 7, 39].

Due to its simpler nature, schedulability analysis, such as WCTT, over CAN networks has
been directly incorporated in the constraint model before. The work of Hladik et al. [15] is
the first to model the deployment problem over CAN network using constraint programming.
They model the schedulability analysis as a global constraint. Alternatively, they also
use a method inspired by logic-based Benders decomposition (LBBD) [16] to separate the
allocation problem solved using constraint programming and the schedulability analysis
solved by an ad-hoc algorithm. It differs from our approach mainly because there is no notion
of approximation, and the conjunction of both parts models the problem exactly. Moreover,
they consider only the satisfiability of the problem, and they do not seek to optimize one or
more objectives.

Other techniques were proposed to solve the deployment over CAN networks with
multi-objective optimization, for instance, evolutionary optimization [21], ant colony system
with constraint propagation and without searching [36], mixed integer linear programming
(MIP) [24] and satisfiability modulo theories (SMT) [11]. These methods are either incomplete
(no proof of optimality or unsatisfiability) and thus under-approximating, or they are complete
(MIP and SMT) which is only possible because they model a simpler problem (CAN network).

6.2 Switched Networks
To the best of our knowledge, Kugele et al. [17] are the first to configure and analyse an
application distributed over a switched network using a SMT solver. Similarly to osolve_mo,
they generate a Pareto front and then verify the produced solutions. However, the verification
is performed using simulation, which does not give a formal worst-case guarantee. Therefore,
their solving method is over-approximating and the obtained solutions are not guaranteed to
be valid. Besides, they do not provide the constraint model and only tested their algorithm
on a small network of 3 ECUs and 25 services.

6.3 Other Applications
Campeanu et al. [5] study the deployment problem in heterogeneous architectures (CPU,
GPU and FGPA), but with communication still happening over a CAN network. Satisfiability
Modulo Discrete Event Simulation [20] combines a SAT solver with discrete event simulation
(DES) for a railway construction planning problem. The combination of both techniques
share similarities with cusolve_mo since the DES simulator is encapsulated as a theory
and provide conflict to the SAT solver – but, like us, only on full assignments. However,
simulation is an over-approximating technique and therefore the global method remains
over-approximating. Moreover, the algorithms are specialized to the railway construction
problem and no general algorithm or correctness proof is given.

CP 2023

34:16 Constraint Programming with External Worst-Case Traversal Time Analysis

6.4 Online and Dynamic Constraint Programming

Our work is related to online constraint programming [12] – also called dynamic constraint
programming [8] – as in both approaches the model is incrementally refined. A difference
is that online constraint programming is primarily designed when the solutions generated
are used in real-time, and variables impacting the past decisions cannot be modified in the
subsequent solving steps. We do not have such real-time requirements since the new data are
obtained from an offline analysis. Moreover, in [12], they propose to internalize the dynamic
part of the problem inside the model. Here, we purposely delegated a part of the model to
an external function, which would have been prohibitively complicated to model otherwise.

7 Conclusion

We study the deployment problem, an important problem in the field of distributed real-time
embedded systems, and more specifically in the automotive industry. This problem has a
task allocation part, which is efficiently solved by constraint programming, and a scheduling
network analysis part, which is efficiently solved by a WCTT analysis. The integration
of both techniques is difficult since both parts are black-box functions. We propose the
algorithm cusolve_mo which combines both parts in a loosely coupled manner, thus
making our framework reusable on other similar problems. Our approach is based on abstract
interpretation, a formal method allowing us to prove properties of our algorithms. Finally,
we evaluated our approach on a new dataset for the deployment problem – since none existed
before – and conclude that the cooperation scheme proposed by cusolve_mo works better
than solving each part in sequence.

References

1 Krzysztof R. Apt. The essence of constraint propagation. Theoretical computer science,
221(1-2):179–210, 1999. doi:10.1016/S0304-3975(99)00032-8.

2 Anne Bouillard and Éric Thierry. An algorithmic toolbox for network calculus. Discrete Event
Dynamic Systems, 18(1):3–49, 2008. doi:10.1007/s10626-007-0028-x.

3 Marc Boyer and Hugo Daigmorte. Improved service curve for element with known transmission
rate. IEEE Networking Letters, 5(1):46–49, 2023. doi:10.1109/LNET.2022.3150649.

4 Marc Boyer, Jörn Migge, and Nicolas Navet. An efficient and simple class of functions to
model arrival curve of packetised flows. In Proceedings of the 1st International Workshop on
Worst-Case Traversal Time, WCTT ’11, pages 43–50, New York, NY, USA, 2011. Association
for Computing Machinery. doi:10.1145/2071589.2071595.

5 Gabriel Campeanu, Jan Carlson, and Severine Sentilles. Component Allocation Optimization
for Heterogeneous CPU-GPU Embedded Systems. In 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 229–236, Verona, Italy, 2014. IEEE.
doi:10.1109/SEAA.2014.29.

6 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 238–252, New York, NY, USA, 1977. Association for Computing Machinery.
doi:10.1145/512950.512973.

7 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller Area Network
(CAN) Schedulability Analysis: Refuted, Revisited and Revised. Real-Time Systems, 35(3):239–
272, 2007. doi:10.1007/s11241-007-9012-7.

https://doi.org/10.1016/S0304-3975(99)00032-8
https://doi.org/10.1007/s10626-007-0028-x
https://doi.org/10.1109/LNET.2022.3150649
https://doi.org/10.1145/2071589.2071595
https://doi.org/10.1109/SEAA.2014.29
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/s11241-007-9012-7

P. Talbot, T. Hu, and N. Navet 34:17

8 Rina Dechter and Avi Dechter. Belief Maintenance in Dynamic Constraint Networks. In
Proceedings of the Seventh AAAI National Conference on Artificial Intelligence, AAAI’88,
pages 37–42. AAAI Press, 1988.

9 Jip J. Dekker. MiniZinc Python, 2023. URL: https://github.com/MiniZinc/
minizinc-python.

10 Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract satisfaction. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
- POPL ’14, pages 139–150, San Diego, California, USA, 2014. ACM Press. doi:10.1145/
2535838.2535868.

11 Johannes Eder, Sebastian Voss, Andreas Bayha, Alexandru Ipatiov, and Maged Khalil.
Hardware architecture exploration: automatic exploration of distributed automotive hard-
ware architectures. Software and Systems Modeling, 19(4):911–934, 2020. doi:10.1007/
s10270-020-00786-6.

12 Alexander Ek, Maria Garcia de la Banda, Andreas Schutt, Peter J. Stuckey, and Guido Tack.
Modelling and Solving Online Optimisation Problems. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(02):1477–1485, 2020. doi:10.1609/aaai.v34i02.5506.

13 Marco Gavanelli. An algorithm for multi-criteria optimization in CSPs. In ECAI 2002: 15th
European Conference on Artificial Intelligence, July 21-26, 2002, Lyon France: Including
Prestigious Applications of Intelligent Systems (PAIS 2002): Proceedings, volume 77, page
136. IOS Press, 2002.

14 Tias Guns, Peter J. Stuckey, and Guido Tack. Solution Dominance over Constraint Satisfaction
Problems, 2018. arXiv:1812.09207 [cs]. URL: http://arxiv.org/abs/1812.09207.

15 Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and Narendra Jussien.
Solving a real-time allocation problem with constraint programming. Journal of Systems and
Software, 81(1):132–149, 2008. doi:10.1016/j.jss.2007.02.032.

16 J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical Programming,
96(1):33–60, 2003. doi:10.1007/s10107-003-0375-9.

17 Stefan Kugele, Philipp Obergfell, and Eric Sax. Model-based resource analysis and synthesis of
service-oriented automotive software architectures. Software and Systems Modeling, 20(6):1945–
1975, December 2021. doi:10.1007/s10270-021-00896-9.

18 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus. In Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet, pages 3–81. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001. doi:10.1007/3-540-45318-0_1.

19 Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. Solving Multi-
objective Pseudo-Boolean Problems. In Theory and Applications of Satisfiability Testing –
SAT 2007, pages 56–69. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/
978-3-540-72788-0_9.

20 Bjørnar Luteberget, Koen Claessen, Christian Johansen, and Martin Steffen. SAT modulo
discrete event simulation applied to railway design capacity analysis. Formal Methods in
System Design, 57(2):211–245, August 2021. doi:10.1007/s10703-021-00368-2.

21 Irene Moser and Sanaz Mostaghim. The automotive deployment problem: A practical
application for constrained multiobjective evolutionary optimisation. In IEEE Congress on
Evolutionary Computation, pages 1–8, Barcelona, Spain, July 2010. IEEE. doi:10.1109/CEC.
2010.5585991.

22 Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing Shao, Martin
Reisslein, and Hesham ElBakoury. Ultra-Low Latency (ULL) Networks: The IEEE TSN and
IETF DetNet Standards and Related 5G ULL Research. IEEE Communications Surveys &
Tutorials, 21(1):88–145, 2019. doi:10.1109/COMST.2018.2869350.

23 Mitra Nasri, Sanjoy Baruah, Gerhard Fohler, and Mehdi Kargahi. On the Optimality of
RM and EDF for Non-Preemptive Real-Time Harmonic Tasks. In Proceedings of the 22nd
International Conference on Real-Time Networks and Systems - RTNS ’14, pages 331–340,
Versaille, France, 2014. ACM Press. doi:10.1145/2659787.2659806.

CP 2023

https://github.com/MiniZinc/minizinc-python
https://github.com/MiniZinc/minizinc-python
https://doi.org/10.1145/2535838.2535868
https://doi.org/10.1145/2535838.2535868
https://doi.org/10.1007/s10270-020-00786-6
https://doi.org/10.1007/s10270-020-00786-6
https://doi.org/10.1609/aaai.v34i02.5506
http://arxiv.org/abs/1812.09207
https://doi.org/10.1016/j.jss.2007.02.032
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.1007/s10270-021-00896-9
https://doi.org/10.1007/3-540-45318-0_1
https://doi.org/10.1007/978-3-540-72788-0_9
https://doi.org/10.1007/978-3-540-72788-0_9
https://doi.org/10.1007/s10703-021-00368-2
https://doi.org/10.1109/CEC.2010.5585991
https://doi.org/10.1109/CEC.2010.5585991
https://doi.org/10.1109/COMST.2018.2869350
https://doi.org/10.1145/2659787.2659806

34:18 Constraint Programming with External Worst-Case Traversal Time Analysis

24 Asef Nazari, Dhananjay Thiruvady, Aldeida Aleti, and Irene Moser. A mixed integer linear
programming model for reliability optimisation in the component deployment problem. Journal
of the Operational Research Society, 67(8):1050–1060, August 2016. doi:10.1057/jors.2015.
119.

25 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In Principles and Practice
of Constraint Programming—CP 2007, pages 529–543. Springer, 2007.

26 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via Lazy Clause
Generation. Constraints, 14(3):357–391, September 2009. doi:10.1007/s10601-008-9064-x.

27 Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A Constraint Solver
Based on Abstract Domains. In Verification, Model Checking, and Abstract Interpretation,
pages 434–454. Springer, 2013. doi:10.1007/978-3-642-35873-9_26.

28 R. Queck. Analysis of Ethernet AVB for automotive networks using Network Nalculus. In
2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012), pages
61–67, July 2012. doi:10.1109/ICVES.2012.6294261.

29 RealTime-at-Work. Rtaw-pegase, 2022. URL: https://www.realtimeatwork.com/
rtaw-pegase/.

30 Andrea Rendl, Tias Guns, Peter J. Stuckey, and Guido Tack. MiniSearch: a solver-independent
meta-search language for MiniZinc. In Principles and Practice of Constraint Programming,
pages 376–392. Springer, 2015. doi:10.1007/978-3-319-23219-5_27.

31 Pierre Schaus and Renaud Hartert. Multi-Objective Large Neighborhood Search. In Prin-
ciples and Practice of Constraint Programming, volume 8124, pages 611–627. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-40627-0_46.

32 Christian Schulte, Guido Tack, and Mikael Lagerkvist. Modeling and Programming with
Gecode, 2020.

33 Joseph Scott. Other Things Besides Number: Abstraction, Constraint Propagation, and String
Variable Types. PhD thesis, Acta Universitatis Upsaliensis, Uppsala, 2016. OCLC: 943721122.

34 Seyed Mohammadhossein Tabatabaee, Marc Boyer, Jean-Yves Le Boudec, and Jörn Migge.
Efficient and accurate handling of periodic flows in time-sensitive networks. In 2023 IEEE 29th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 303–315,
2023. doi:10.1109/RTAS58335.2023.00031.

35 Pierre Talbot, Éric Monfroy, and Charlotte Truchet. Modular Constraint Solver Cooperation
via Abstract Interpretation. Theory and Practice of Logic Programming, 20(6):848–863, 2020.
doi:10.1017/S1471068420000162.

36 Dhananjay Thiruvady, I. Moser, Aldeida Aleti, and Asef Nazari. Constraint Programming and
Ant Colony System for the Component Deployment Problem. Procedia Computer Science,
29:1937–1947, 2014. doi:10.1016/j.procs.2014.05.178.

37 Tindell, Hansson, and Wellings. Analysing real-time communications: controller area network
(CAN). In Proceedings Real-Time Systems Symposium REAL-94, pages 259–263, San Juan,
Puerto Rico, 1994. IEEE Comput. Soc. Press. doi:10.1109/REAL.1994.342710.

38 K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks: An NP-Hard
problem made easy. Real-Time Systems, 4(2):145–165, June 1992. doi:10.1007/BF00365407.

39 P. M. Yomsi, D. Bertrand, N. Navet, and R. Davis. Controller Area Network (CAN): Response
Time Analysis with Offsets. In 9th IEEE International Workshop on Factory Communication
Systems, pages 43–52, United States, May 2012. IEEE. doi:10.1109/WFCS.2012.6242539.

A MiniZinc Model

We describe the full MiniZinc constraint model implementing the mathematical model given
in Section 2. We first give the parameters of the model with the corresponding mathematical
notations in blue comments:

https://doi.org/10.1057/jors.2015.119
https://doi.org/10.1057/jors.2015.119
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-642-35873-9_26
https://doi.org/10.1109/ICVES.2012.6294261
https://www.realtimeatwork.com/rtaw-pegase/
https://www.realtimeatwork.com/rtaw-pegase/
https://doi.org/10.1007/978-3-319-23219-5_27
https://doi.org/10.1007/978-3-642-40627-0_46
https://doi.org/10.1109/RTAS58335.2023.00031
https://doi.org/10.1017/S1471068420000162
https://doi.org/10.1016/j.procs.2014.05.178
https://doi.org/10.1109/REAL.1994.342710
https://doi.org/10.1007/BF00365407
https://doi.org/10.1109/WFCS.2012.6242539

P. Talbot, T. Hu, and N. Navet 34:19

% I. The hardware graph ⟨H, L, hc, lc⟩.
int: locations ;
set of int: LOCATIONS = 1.. locations ; % H
int: num_links ;
set of int: NUM_LINKS = 1.. num_links ; % L
array [LOCATIONS] of int: cpu_capacity ; % hc
array [NUM_LINKS] of int: capacity ; % lc

% II. The software graph ⟨S, Com, sc, cc⟩.
% Com is implicitly represented by the adjacency matrix coms where

coms[si][sj] = 0 if the services si and sj do not communicate .
int: services ;
set of int: SERVICES = 1.. services ; % S
array [SERVICES] of int: services_cpu_usage ; % sc
array [SERVICES , SERVICES] of int: coms; % cc

% III. The path function
% shortest_path[hi, hj] contains all the edges belonging to the shortest path

between hi and hj .
% Interestingly , we do not need to know the order of the edges on the

shortest path , thus we can use a set.
array [LOCATIONS , LOCATIONS] of set of NUM_LINKS : shortest_path ;

% IV. Not part of the mathematical specification : this is to display the
solutions with locations and services names instead of indexes .

array [LOCATIONS] of string : locations2names ;
array [SERVICES] of string : services2names ;

The decision variable is the function d : S → H which is modelled as a MiniZinc array:

array [SERVICES] of var LOCATIONS : services2locs ; % d : S → H

The constraints are defined using intermediate arrays of variables to simplify their definitions.

% I. CPU load constraint .
% ∀h ∈ H,

∑
s∈d−1(h) sc(s) ≤ hc(h)

array [LOCATIONS] of var int: cpu_usage ;
constraint forall (l in LOCATIONS)

(cpu_usage [l] =
sum(s in SERVICES)

(services_cpu_usage [s] * (services2locs [s] == l)))
;

constraint forall (l in LOCATIONS)(cpu_usage [l] >= 0 /\ cpu_usage [l] <=
cpu_capacity [l]);

% II. Network load constraint .
% ∀ℓ ∈ L,

∑
c∈Com com(c, ℓ) ≤ lc(ℓ)

array [NUM_LINKS] of var int: slack;
constraint forall (link in NUM_LINKS)(

slack[link] = capacity [link] -
sum(s1 ,s2 in SERVICES)(

coms[s1 ,s2] * (link in shortest_path [services2locs [s1],
services2locs [s2]])

));
% Then we ensure the slack is always greater or equal to 0.
constraint forall (link in NUM_LINKS)(slack[link] >= 0 /\ slack[link] <=

capacity [link]);

CP 2023

34:20 Constraint Programming with External Worst-Case Traversal Time Analysis

The multi-objective aspect of the problem is not treated within the MiniZinc model itself,
but by the MiniZinc Python interface. To communicate which objectives we seek to minimize,
we use a special array variable objs describing all three objectives described in Section 2.1.
array [1..3] of var int: objs;

% min maxh∈H

∑
s∈d−1(h) sc(s)

constraint objs [1] = max(l in LOCATIONS)(cpu_usage [l]);

% min maxℓ∈L(
∑

c∈Com com(c, ℓ))/lc(ℓ)
% We use an intermediate array charge and channeling constraint to

represent the charge of a link in percentage .
array [NUM_LINKS] of var 0..100: charge ;
constraint forall (link in NUM_LINKS)(charge [link] == (capacity [link] -

slack[link]) div (capacity [link] div 100));
constraint objs [2] = max(link in NUM_LINKS)(charge [link]);

% min |d(S)|
constraint objs [3] = sum(l in LOCATIONS)(cpu_usage [l] > 0);

	1 Introduction
	2 Service Deployment Problem
	2.1 Multi-Objective Optimization

	3 Constraint Programming with External Function
	3.1 Constraint Programming
	3.2 Abstract Constraint Programming
	3.3 Abstract Constraint Model
	3.4 Under-Approximating External Function

	4 Worst-Case Traversal Time Analysis
	4.1 Conflicts for WCTT
	4.2 An Example of the Algorithm cusolve_mo

	5 Implementation and Experiments
	5.1 Experimental Setting
	5.2 Dataset Description
	5.3 Evaluation of cusolve_mo

	6 Related Work
	6.1 CAN Networks
	6.2 Switched Networks
	6.3 Other Applications
	6.4 Online and Dynamic Constraint Programming

	7 Conclusion
	A MiniZinc Model

