
Guided Bottom-Up Interactive Constraint
Acquisition
Dimosthenis C. Tsouros #

KU Leuven, Belgium

Senne Berden #

KU Leuven, Belgium

Tias Guns #

KU Leuven, Belgium

Abstract
Constraint Acquisition (CA) systems can be used to assist in the modeling of constraint satisfaction
problems. In (inter)active CA, the system is given a set of candidate constraints and posts queries
to the user with the goal of finding the right constraints among the candidates. Current interactive
CA algorithms suffer from at least two major bottlenecks. First, in order to converge, they require a
large number of queries to be asked to the user. Second, they cannot handle large sets of candidate
constraints, since these lead to large waiting times for the user. For this reason, the user must
have fairly precise knowledge about what constraints the system should consider. In this paper,
we alleviate these bottlenecks by presenting two novel methods that improve the efficiency of CA.
First, we introduce a bottom-up approach named GrowAcq that reduces the maximum waiting
time for the user and allows the system to handle much larger sets of candidate constraints. It
also reduces the total number of queries for problems in which the target constraint network is
not sparse. Second, we propose a probability-based method to guide query generation and show
that it can significantly reduce the number of queries required to converge. We also propose a
new technique that allows the use of openly accessible CP solvers in query generation, removing
the dependency of existing methods on less well-maintained custom solvers that are not publicly
available. Experimental results show that our proposed methods outperform state-of-the-art CA
methods, reducing the number of queries by up to 60%. Our methods work well even in cases where
the set of candidate constraints is 50 times larger than the ones commonly used in the literature.

2012 ACM Subject Classification Computing methodologies → Discrete space search; Computing
methodologies → Supervised learning by classification; Theory of computation → Constraint and
logic programming; Computing methodologies → Active learning settings

Keywords and phrases Constraint acquisition, Constraint learning, Active learning, Modelling

Digital Object Identifier 10.4230/LIPIcs.CP.2023.36

Supplementary Material Software: https://github.com/Dimosts/ActiveConLearn

Funding This research received funding from the European Research Council (ERC) under the EU
Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt) and from the
European Union’s Horizon 2020 research and innovation programme under grant agreement No
101070149, project Tuples

1 Introduction and related work

Constraint programming (CP) is considered one of the main paradigms for solving com-
binatorial problems, with many successful applications in a variety of domains. However,
there are still challenges to be faced in order for CP technology to become even more widely
used. One of the most important challenges is to ease the modeling process. The current
assumption in CP is that the user first models the problem and that a solver is then used to

© Dimosthenis C. Tsouros, Senne Berden, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 36; pp. 36:1–36:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dimos.tsouros@kuleuven.be
https://orcid.org/0000-0002-3040-0959
mailto:senne.berden@kuleuven.be
https://orcid.org/0000-0002-6473-5757
mailto:tias.guns@kuleuven.be
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2023.36
https://github.com/Dimosts/ActiveConLearn
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Guided Bottom-Up Interactive Constraint Acquisition

solve it. However, modeling is a non-trivial task. Expressing a combinatorial problem as
a set of constraints over decision variables is not straightforward and requires substantial
expertise [12]. As a result, modeling is considered a major bottleneck for the widespread
adoption of CP [12, 13, 14].

This obstacle has led to research into a very different approach to modeling: that of
learning the constraint problem from data, as opposed to manually constructing it. This is the
focus of the research area of constraint acquisition (CA), in which CP meets machine learning.
In CA, the model of a constraint problem is acquired (i.e., learned) (semi-)automatically from
a set of examples of solutions, and possibly non-solutions. CA methods can be categorized
as active or passive on the basis of whether a user provides feedback during learning or not.

In passive acquisition, a dataset of examples of solutions and non-solutions is provided by
the user upfront. Based on these examples, the system learns a set of constraints modeling
the problem [4, 5, 7, 9, 11, 17, 18, 19, 21]. Approaches vary in the types of constraints they
are able to learn and the methodologies they employ: Conacq.1 is a version space algorithm
for learning fixed-arity constraints [7, 9, 11], ModelSeeker learns global constraints that are
taken from a predefined constraint catalog [4], and COUNT-CP is a generate-and-aggregate
approach that can learn expressive first-order constraints [18]. None of these approaches are
robust to errors in the labeled data. To this end, SeqAcq and BayesAcq were introduced,
being robust to noise in the training set. In SeqAcq, a statistical approach based on
sequential analysis is used [22], while in BayesAcq, a naive Bayes classifier is trained, from
which a constraint network is then derived [23].

In contrast to passive learning, active or interactive acquisition systems learn the con-
straints through interaction with the user, by asking queries. The main type of query used is
the membership query, which asks the user to classify a given example (i.e., an assignment
to the variables of the problem) as a solution or a non-solution. An early work in active
CA is the Matchmaker agent [15], where users, when they answer a membership query
negatively, also have to provide a violated constraint. In order to lower the expertise level
required from the user, Bessiere et al. later proposed Conacq.2 [10, 11] – an active version
of Conacq.1 that uses membership queries and does not require the user to provide any
violated constraints. In [24], Conacq.2 was in turn extended to also accept arguments
regarding why examples should be rejected or accepted.

As the number of membership queries needed can be exponentially large for these
methods [11], a new family of interactive algorithms was proposed that use partial queries
instead [3, 8, 20, 25, 26, 27, 28, 29]. A partial query asks the user to classify a partial
assignment to the variables. Using partial queries, CA systems are able to converge faster.
QuAcq was the first system to use partial queries [6, 8], and was later extended into
MultiAcq [3]. MQuAcq was later introduced to reduce the number of queries needed per
learned constraint [25, 29], and MQuAcq-2 further improved the performance by exploiting
the structure of the constraints already learned [27].

Despite these advancements in active CA, there are still significant obstacles for the
technology to become usable in practice. One of the main limitations is that it typically still
requires asking a large number of queries to the user in order to find all constraints. In addition,
existing systems cannot handle large sets of candidate constraints in reasonable run times, and
thus require significant expertise from the user in limiting the constraints the system should
consider (and thus the size of the candidate set) upfront. Finally, query generation – a highly
important part of the CA process – currently requires the use of customized solvers that are
not publicly available and are not as well-maintained as conventional solvers. Without the
use of such customized solvers, current active CA algorithms can lead to very high query
generation times or are sometimes unable to converge to the correct set of constraints when
time limits are imposed [1, 25].

D. C. Tsouros, S. Berden, and T. Guns 36:3

We focus on the above limitations, and contribute the following improvements:
We present a novel query generation method named PQ-Gen that allows conventional
constraint solvers to be used by CA algorithms while also ensuring convergence, removing
the dependency on customized solvers.
We propose a bottom-up learning approach named GrowAcq that uses any other CA
algorithm to learn the constraints of an increasingly large problem. It starts learning
with only a subset of variables and an associated subset of candidate constraints, and
incrementally grows this set of variables and constraints. This allows it to handle
significantly larger sets of candidate constraints and reduces the maximum waiting time
for the user.
Finally, we introduce a better way to guide the query generation process, with the goal
of generating queries that learn the set of constraints faster. We propose an objective
function for query generation that uses probabilistic estimates of whether constraints are
likely to hold or not. We demonstrate the potential of this method by using a simple
counting-based approach as probabilistic estimator.

The rest of the paper is structured as follows. Some background on CA is given in
Section 2. Sections 3–5 present our proposed methods. An experimental evaluation is given
in Section 6. Finally, Section 7 concludes the paper.

2 Background

We now introduce some basic notions regarding constraint satisfaction problems and inter-
active constraint acquisition.

2.1 Constraint satisfaction problems

A constraint satisfaction problem (CSP) is a triple P = (X, D, C), consisting of:
a set of n variables X = {x1, x2, ..., xn}, representing the entities of the problem,
a set of n domains D = {D1, D2, ..., Dn}, where Di ⊂ Z is the finite set of values for xi,
a constraint set (also called constraint network) C = {c1, c2, ..., ct}.

A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope of the constraint
and rel(c) is a relation over the domains of the variables in var(c) that specifies (implicitly
or explicitly) what assignments are allowed. |var(c)| is called the arity of the constraint.
The constraint set C[Y], where Y ⊆ X, denotes the set of constraints from C whose scope is
a subset of Y . The set of solutions of a constraint set C is denoted by sol(C). A redundant
or implied constraint c ∈ C is a constraint in C such that sol(C) = sol(C \ {c}).

A (partial) assignment eY is an assignment over a set of variables Y ⊆ X. eY is rejected
by a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables in the scope
var(c), is not in rel(c), that is, is not allowed by the constraint. κC(eY) represents the subset
of constraints from C[Y] that reject eY , i.e., κC(eY) = {c | c ∈ C[Y] ∧ evar(c) /∈ rel(c) }.

A complete assignment e that is accepted by all the constraints in C is a solution to C,
i.e., e ∈ sol(C). A partial assignment eY is called a partial solution to C iff it is accepted by
all the constraints in C[Y]. Note that a partial solution to C may not be extendable to a
complete one, due to constraints not in C[Y].

CP 2023

36:4 Guided Bottom-Up Interactive Constraint Acquisition

Algorithm 1 Constraint Acquisition through partial queries.

Input: X, D, B, Cin (X: the set of variables, D: the set of domains, B: the bias, Cin: an
optional set of known constraints)

Output: CL : a learned constraint network
1: CL ← Cin

2: while True do
3: Generate an e accepted by CL and rejected by B

4: if e = nil then return CL ▷ Stopping condition
5: if ASK(e) = Yes then ▷ Ask (partial) membership query e

6: Remove the constraints rejecting e, namely κB(e), from B

7: else
8: Find one (or more) minimal scopes S in e for which |κB(eS)| ≥ 1 and ASK(eS) =

No
9: Find all {c ∈ CT | var(c) = S} through partial queries; add to CL, remove from

B

2.2 Active constraint acquisition with partial membership queries
In CA, the pair (X, D) is called the vocabulary of the problem at hand and is common
knowledge shared by the user and the system. Besides the vocabulary, the learner is also
given a language Γ consisting of fixed-arity constraint relations. Using the vocabulary (X, D)
and the constraint language Γ, the system generates the constraint bias B, which is the set
of all possible candidate constraints for the problem.

Let CT , the target constraint network, be an unknown set of constraints such that for
every assignment e over X it holds that e ∈ sol(CT) iff e is a solution to the problem the
user has in mind. The goal of CA is to learn a constraint set CL ⊆ B that is equivalent
to CT . Like other works, we assume that the bias B can represent CT , i.e., there exists a
C ⊆ B s.t. sol(C) = sol(CT).

In active CA, the system interacts with the user while learning the constraints. A
membership query [2] in this setting is a question ASK(eX), asking the user whether a
complete assignment eX is a solution to the problem that the user has in mind. A partial
query ASK(eY), with Y ⊂ X, asks the user to determine if eY , which is an assignment in
DY , is a partial solution with respect to CT [Y]. We use the notation c ∈ CT iff ∀ e ∈ DY

with var(c) ⊆ Y ⊆ X, ASK(eY) = True =⇒ evar(c) ∈ sol(c).
While in passive acquisition there are methods that can handle noisy answers [22, 23], this

is not the case for active acquisition. For this reason, in this work, we follow the assumption
that the user answers all queries correctly.

A query ASK(eY) is called irredundant iff the answer is not implied by any information
already available to the system. That is, the query is irredundant iff eY is rejected by at
least one constraint from the bias B and is not rejected by the network CL learned thus far.
The first condition captures that κB(eY) cannot be empty, since if κB(eY) would be empty,
the answer to the query ASK(eY) would have to be “yes”, based on the assumption that
CT is representable by the constraints in B. The second condition captures that eY should
not be rejected by any constraint in the learned network CL, since otherwise the user would
certainly answer “no” to the query.

Algorithm 1 presents the generic process followed by active CA methods with partial
queries. The learned set CL is first initialized either to the empty set or to a set of constraints
given by the user that is known to be part of CT (i.e., Cin ⊂ CT) (line 1). Then the main

D. C. Tsouros, S. Berden, and T. Guns 36:5

loop of the acquisition process begins, where, in every iteration, the system first generates an
irredundant query (line 3) and posts it to the user (line 5). If the query is answered positively,
then the candidate constraints from B that violate it are removed (line 6). Otherwise, the
system has to find one or more constraints from CT that violate the query. This is done in
two steps. First, queries are asked to find the scope of a constraint in κCT

(e) (line 8). Then,
queries are asked to find all constraints c ∈ CT with that scope (line 9).

The acquisition process has converged on the learned network CL ⊆ B iff CL agrees with
the set of all labeled examples E, and for every other network C ⊆ B that agrees with E,
it holds that sol(C) = sol(CL). This is proved if no query could be generated at line 3, as
in this case, all remaining constraints in B (if any) are redundant. If the first condition is
true but the second condition has not been proved when the acquisition process finishes,
premature convergence has occurred. This can happen when the query generation at line 3
returns e = nil, but without having proved that an irredundant query does not exist (e.g.,
because of a time limit).

Existing algorithms like QuAcq [6, 8], MQuAcq [25, 29] and MQuAcq-2 [27] follow
this template, but differ mainly in how they implement lines 3, 8 and 9, and hence how many
constraints they are able to learn in each iteration. Examples of functions used to locate the
scope of a constraint (line 8) are FindScope [6, 8] or the more efficient FindScope-2 [25]. To
learn the constraints in the scope found (line 9), the FindC function is typically used [6, 8].

3 Using conventional solvers for query generation

Query generation (line 3 of Algorithm 1) is one of the most important parts of the CA
process. It aims to find an irredudant membership query (i.e., a (partial) assignment that
does not violate CL but violates at least one c ∈ B) that will be asked to the user. Thus, it
can be formalized as follows:

find eY s.t. eY ∈ sol(CL[Y] ∧
∨

ci∈B[Y]

¬ci),

which can be formulated as a CSP with variables Y and constraints CL[Y] ∧
∨

ci∈B[Y] ¬ci.

3.1 Problems when using conventional solvers
In principle, this CSP could be solved using any conventional CP solver. However, this can
lead to issues for the following two reasons.

A large bias. At the start of the acquisition process, the set of candidate constraints B can
be very large. This makes the propagation of the constraint

∨
ci∈B[Y] ¬ci time-consuming,

and severely slows down the query-generation process.

Indirectly implied constraints. At the end of the acquisition process, only constraints that
are implied by CL remain in B, if any. In this case, it will be impossible to generate a query
that does not violate CL and violates at least one constraint from B. However, propagation is
often unable to prove such implications when they are indirect and involve multiple variables
and constraints. For this reason, solvers internally end up enumerating all possible variable
assignments satisfying CL and checking if the constraint

∨
ci∈B[Y] ¬ci can be satisfied. This

can be very time-consuming, and a time limit is usually imposed on query generation, leading
to premature convergence.

CP 2023

36:6 Guided Bottom-Up Interactive Constraint Acquisition

Algorithm 2 PQ-Gen: Projection-based Query Generation.

Input: CL, B, l, t (B: the set of candidate constraints (bias), CL: set of known constraints,
l: size limit, t: time limit)

Output: e: the query generated
1: timer.start()
2: Y ←

⋃
c∈B var(c)

3: if |B| > l then
4: e← solve(CL[Y])
5: if ∃c ∈ B : e /∈ sol(c) then
6: return e

7: e← solve(CL[Y] ∧
∨

ci∈B[Y] ¬ci)
8: if timer.end() < t then
9: e′ ← solve(CL[Y] ∧

∨
ci∈B[Y] ¬ci, maximize: obj, time limit:t− timer.end())

10: if e′ ̸= nil then
11: return e′

12: return e

In order to limit the large runtimes in a more advanced way than by simply imposing a
time bound t, Addi et al. proposed a method using conventional solvers named TQ-Gen [1].
It iteratively tries to solve the query generation problem, by gradually reducing the number
of variables taken into account by a proportion α ∈]0, 1[, until a query can be generated
within a small time limit τ . This is repeated until either an irredundant query is generated,
or a global time bound t is reached, leading to premature convergence. However, choosing
the right hyperparameters for t and τ is problem-specific [1] and requires tuning, and thus
more interaction with the user.

3.2 Customized solvers
To avoid premature convergence, a CP solver can be customized to store partial assignments
that satisfy every c ∈ CL[Y] and violate at least one c ∈ B[Y] during the search. Given an
objective function, such as maximizing the number of assigned variables, in every non-failing
node of the search tree it will check the above property and, if fulfilled, store the best-scoring
partial assignment.

As these customized solvers are guaranteed to find valid partial solutions, their use will
never lead to premature convergence. In addition, finding a partial query to return is not
time-consuming (especially when combined with specialized search heuristics [25]), even
when the bias is large. However, such custom solvers are not publicly available and are
typically not based on the latest version of state-of-the-art solvers. This also means that the
corresponding active CA methods are heavily tied to those particular customized solvers.

3.3 Projection-based Query Generation
We now introduce a method named Projection-based Query Generation (PQ-Gen) that
makes it possible to use state-of-the-art conventional solvers for query generation, without
premature convergence. Our proposed method is shown in Algorithm 2.

Avoiding indirectly implied constraints. A key observation we make is that when generating
a query on line 3, it might be that

⋃
c∈B var(c) ⊂ X, that is, some variables have no more

candidate constraints in B. These have become irrelevant, as both lines 6 and 8 are only

D. C. Tsouros, S. Berden, and T. Guns 36:7

concerned with κB(e), which will not include these variables. So, to generate an irredundant
query, it is sufficient to consider only the variables in B. This is not only faster, but also
avoids indirectly implied constraints, as these are indirect through variables not used in B.

Thus, our proposed query generator projects the variables down to Y ⊆ X, with Y =⋃
c∈B var(c), thereby simplifying the problem to finding an assignment over Y ⊆ X. This

will inherently result in a partial assignment when Y is a strict subset of X, without requiring
a custom solver. Thus, we first compute the set of variables Y relevant to the query (line 2),
and project CL down to those variables (on lines 4 and 7). The solver then has to prove that
there exists a query that satisfies CL[Y] and violates at least one constraint from B.

Dealing with large biases. As mentioned above, having a large bias B can severely slow
down the solver during query generation because propagating the

∨
ci∈B[Y] ¬ci constraint

takes a long time. However, we observe that when B contains many constraints, the property
that a query e violates at least one of these is usually satisfied without needing to enforce
this. Hence, we propose not using this constraint when the bias is larger than some threshold
(lines 3 to 6 in Algorithm 2). If in a post-hoc check, it turns out that the generated query
violates at least one c ∈ B, it is directly returned (line 6). Otherwise, we again generated a
query, this time with the constraint enforcing that there must exist a constraint in B that is
violated (line 7).

Optimizing the query. The above ensures that we will always find a valid query. However,
much better queries – according to some objective function – can often be found. This would
take additional time, but is safe because, since a valid query has already been found, the
optimization can always safely be interrupted. Given a time limit, we can hence call an
optimization solver for the remaining time after a first valid query has been found (lines
8-11).

As expressed in Proposition 1, Algorithm 2 is correct.

▶ Proposition 1. Given a bias B, with an unknown target network CT being representable
by B, and a learned constraint set CL, if nil is returned by Algorithm 2, then the system has
converged on CT [X].

Proof. When nil is returned by Algorithm 2, it means that ∄e ∈ sol(CL[Y] ∧
∨

ci∈B[Y] ¬ci),
with Y =

⋃
c∈B var(c), i.e., ∄e ∈ sol(CL[Y] ∧

∨
ci∈B[Y] ¬ci). In order to prove convergence

over all of X, we must have ∄e ∈ sol(CL[X] ∧
∨

ci∈B[X] ¬ci). We will now show that when
Y =

⋃
c∈B var(c), it means that

∄e ∈ sol(CL[Y] ∧
∨

ci∈B[Y] ¬ci) =⇒ ∄e ∈ sol(CL[X] ∧
∨

ci∈B[X] ¬ci)

Assume that Algorithm 2 returns nil, i.e., that no assignment exists in a Y ⊂ X that is
accepted by CL[Y] and rejected by B[Y]. This means that all the constraints in B[Y] are
proved to be implied by the constraints in CL[Y]. Thus, the remaining constraints in B,
that are not proved to be redundant, are the constraints c ∈ B \B[Y]. When we know that
Y =

⋃
c∈B var(c) it means that B[Y] = B, so B \B[Y] = ∅. As a result, in this case, all the

constraints in B are proved to be implied. Hence, no assignment that is accepted by CL and
rejected by B exists in X. ◀

4 Bottom-up Constraint Acquisition

We start by observing that all current active CA algorithms always consider either the full
set of variables X, or a large subset Y ⊆ X, in their top-level loop (lines 2-9 in Algorithm 1).
This generally leads to complete or almost-complete queries getting generated (line 3 of

CP 2023

36:8 Guided Bottom-Up Interactive Constraint Acquisition

Algorithm 3 Growing Acquisition.

Input: Γ, X, D, Cin (Γ: the language, X: the set of variables, D: the set of domains, Cin:
an optional set of known constraints)

Output: CL : a constraint network
1: CL ← ∅
2: Y ← ∅
3: while |Y | ≤ |X| do
4: x← x ∈ (X \ Y)
5: Y ← Y ∪ {x}
6: B ← {c | rel(c) ∈ Γ ∧ var(c) ⊆ Y ∧ x ∈ var(c)}
7: CL ← Acq(Y , DY , B, CL ∪ Cin[Y])
8: return CL

Algorithm 1). However, larger queries are generally harder to answer than smaller queries [25].
Also, a large initial query leads to many additional queries getting posed in the scope-finding
method on line 8. That is because the worst-case complexity of the best scope-finding
methods, in terms of the number of queries required, is Θ(log(|Y |)), where Y ⊆ X is the set
of variables considered [25].

Additionally, by directly considering the whole set of variables, the CA algorithm has to
represent and operate on the entire set of candidate constraints (i.e., the bias B) at once.
The bias is used in many parts of the acquisition process. Hence, the memory requirements
and the run time of the acquisition process increase significantly as the bias grows, either
because the problems contain more variables or because the language Γ given to the system
includes a larger number of relations. This means that, in practice, state-of-the-art active
CA methods are only applicable to problems with not too many variables or problems for
which the user already has relatively precise knowledge about what constraints the system
should consider (which corresponds to the bias being small).

To improve on this, we propose a novel meta-algorithm named GrowAcq (Algorithm 3).
The key idea is to call a CA algorithm on an increasingly large subset of the variables Y ⊆ X,
each time using only a relevant unexplored subset of the bias. GrowAcq begins with
Y = ∅ (line 2) and gradually incorporates more variables (lines 3-5). Once a new variable
xi ∈ X has been added to Y , the new problem becomes to find the new CT [Y]. However, as
CT [Y \ {xi}] was already found in the previous iterations, the set of constraints to seek is
actually CT [Y]\CT [Y \{xi}]. To find CT [Y]\CT [Y \{xi}], any existing active CA algorithm
can be used. We represent this with the function Acq (line 7). In every iteration, only a
part of the bias B is needed, namely B[Y] \B[Y \ {xi}], and as shown in Lemma 1, the bias
constructed at line 6 is equivalent to B[Y] \B[Y \ {xi}].

▶ Lemma 1. Let Yi be the set of variables Y in iteration i after line 5 of Algorithm 3 and
Bi = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈ var(c)} be the bias B constructed at line 6 in
iteration i. It holds that Bi = B[Yi] \B[Yi−1].

Proof. At line 6 of Algorithm 3, the bias B is constructed. For each iteration i, it is
constructed as Bi = {c | rel(c) ∈ Γ∧ var(c) ⊆ Yi∧xi ∈ var(c)}. For a set of variables Yi, the
full bias, which includes all candidate constraints, is B[Yi] = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi}.
For the previous iteration, as Yi−1 = Yi \ {xi}, we know that B[Yi−1] = {c | rel(c) ∈
Γ∧ var(c) ⊆ Yi \ {xi}}. Thus, the additional constraints that are in B[Yi] and not in B[Yi−1]

D. C. Tsouros, S. Berden, and T. Guns 36:9

are the ones with a scope var(c) ⊆ Yi for which xi ∈ var(c):

B[Yi] \B[Yi−1] = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi} \ {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi \ {xi}}
= {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈ var(c)} = Bi

Hence, it holds that Bi = B[Yi] \ B[Yi−1] for Bi = {c | rel(c) ∈ Γ ∧ var(c) ⊆ Yi ∧ xi ∈
var(c)}. ◀

This bottom-up approach alleviates the problems described above, i.e., starting from
large initial queries and having to represent the whole bias from the beginning, in two ways.
First, it naturally leads to partial queries of increasing size in the first step of the “inner” CA
system (Algorithm 1 line 5). This is valuable since smaller queries are generally easier for
the user to answer [25], and also a smaller initial query leads to a lower worst-case number of
additional queries to locate scopes. Second, since the algorithm only stores and uses a small
part of the bias at a time (line 6 of Algorithm 3), it is able to handle significantly larger
biases than the state-of-the-art. Not representing the whole bias in every iteration does not
affect the algorithm’s correctness, as we state in Proposition 2.

▶ Proposition 2. Given a bias B built from a language Γ, with bounded arity constraints, and
a target network CT representable by B, GrowAcq is correct (i.e., will learn a constraint set
CL that is equivalent to CT), as long as a correct (i.e., sound and complete) CA algorithm is
used in line 7.

Proof. (Sketch)
Let us now prove that if any correct algorithm is used in line 7 of Algorithm 3 – like QuAcq,

MQuAcq or MQuAcq-2 – GrowAcq remains correct. We will subscript sets with the
number of the iteration that they occur in to distinguish between the iterations. Even though
the full bias B is never constructed and never kept in memory all at once in GrowAcq, we
will still refer to it in this proof and denote it with B, i.e., B = {c | rel(c) ∈ Γ∧ var(c) ⊆ X}.
When we instead write Bi, we refer to the part of the bias that is constructed and used in
iteration i (line 6 of Algorithm 3), which is B[Yi] \B[Yi−1] (Lemma 1).

Soundness. GrowAcq adds constraints to CL only at line 7 of Algorithm 3. At that line,
only constraints returned from the inner interactive CA algorithm are added to CL. Since
the assumption is that a sound algorithm is used in the Acq function, GrowAcq is sound.

Completeness. We prove that GrowAcq is complete by proving by induction that, after
each iteration i, CL is equivalent to CT [Yi], meaning that after the last iteration, CL is
equivalent to CT [X]. GrowAcq starts with Y1 = ∅, so both CT [Y1] and B1 are empty. The
first iteration where the algorithm has to actually learn any constraints will be the one where
Y grows large enough so that CT [Y] ̸= ∅. Assume that this happens at iteration k. In this
case, CT [Yk] will be representable by Bk, because Bk = B[Yk] \B[Yk−1] and we know that
CT [Yk−1] = ∅. Since CT [Yk] is representable by Bk, it will be successfully learned in line 7,
as long as a complete interactive CA algorithm is used.

Assuming now that CL = CT [Yn] holds at the end of the n-th iteration, let us now prove
that CL = CT [Yn+1] will hold at the end of the n+1-th iteration. From the assumption
that CL = CT [Yn], it follows that (B[Yn] \ CL) ∩ CT = ∅. As a result, Bn+1, being equal to
B[Yn+1] \B[Yn] does not exclude any constraint from CT [Yn+1] that has not already been
learned. From this, it follows that (CT [Yn+1] \ CL) ⊆ Bn+1, and thus this set of constraints
will be learned in line 7 as long as a complete interactive CA algorithm is used. Hence,
GrowAcq is complete. ◀

CP 2023

36:10 Guided Bottom-Up Interactive Constraint Acquisition

5 Guided query generation

We now turn our attention to the objective function used at line 9 of Algorithm 2. Since
when GrowAcq is used, the size of B used in every iteration is reduced, query generation is
now often fast, leaving sufficient room for using optimization to find a good query.

The objective function used in existing query generation systems [6, 25] tries to maximize
the number of constraints from B that are violated by the generated query e. The motivation
is that this can potentially help shrink the bias faster. The objective function is

e = arg max
e

∑
c∈B

Je ̸∈ sol({c})K

where J·K is the Iverson bracket which converts True/False into 1/0.
However, looking only at the number of violated constraints in B does not fully capture

what a good query is:
We want queries that lead to a positive answer to violate many constraints from the bias
B, as these can then all be removed from B, shrinking it faster.
On the other hand, we want queries that lead to a negative answer to violate a small
number of constraints from B, as it allows the CA system to find the conflicting constraint
faster.

Based on this, in order to generate good queries regardless of the user’s answer, we want
query generation to minimize the violation of constraints that are in the unknown target
set CT , seeking a query to which the user’s answer will be “yes”. At the same time, we
want to maximize the violation of constraints in B that are not in CT , so that positive
answers can shrink the bias faster (the first bullet point above). Note that we also have
the constraint ensuring that at least one constraint from B has to be violated. This means
that when B \ CT = ∅, we want a minimum number of constraints in CT that we have not
already learned to be violated. This leads to negative queries that violate a small number of
constraints in B (the second bullet point above).

Assume we have access to an oracle O that tells us whether a constraint c belongs to the
unknown target set or not: O(c) = (c ∈ CT). Using this oracle we can formulate an objective
function for query generation, using the reasoning above, as follows:∑

c∈B

Je ̸∈ sol({c})K · (1− |Γ| · JO(c)K),

On the one hand, every time that the oracle returns False for a constraint from the
bias that is violated by e, the objective function is increased by 1, thereby maximizing the
violation of these constraints. Conversely, for constraints where O returns True, we aim
to minimize the violations, which requires a reduction in the objective value for each such
violated constraint. However, it is possible that violating a set of constraints C (where
∀ci ∈ C | O(ci) = False) may imply the violation of a constraint cj with O(cj) = True. In
such cases, if the reduction in the objective value for violating cj is not large enough, the
system will violate both C and cj , maximizing the objective. To address this issue, we
introduce a “penalty” of |Γ|, which is equal to the upper bound of the number of constraints
in each scope. This ensures that the system prioritizes satisfying a constraint with O(cj) =
True, over violating other constraints from B.

Modeling the oracle. Observe how the current objective of maximizing violations corres-
ponds to using a model of the oracle M that always answers False, i.e., that assumes that
none of the candidate constraints belong to CT . On the other hand, if we used an oracle M

D. C. Tsouros, S. Berden, and T. Guns 36:11

that always answers True, then the query generation would try to violate as few constraints
as possible. However, the

∨
ci∈B[Y] ¬ci constraint would still need to be satisfied, in the

extreme case leading every query to violate exactly one constraint from B. Based on this
observation, we propose to model the oracle using the following model M , which tries to
determine for every constraint c whether violating or satisfying c would lead to the least
amount of queries later on in the algorithm.

M(c) =
(1

P [c ∈ CT] ≤ log(|Y |)
)

On the one hand, in the extreme case, the constraints for which M(c) answers True will
be violated one by one in the later queries (once most of the constraints for which M(c)
answers False have been dealt with). Let P [c ∈ CT] be a probabilistic estimate of whether c is
part of CT . Then, if the generated queries would violate the constraints with that probability
one by one, we would in expectation need 1/P [c ∈ CT] queries to find a constraint from CT .
For example, for a set of constraints that each has a probability of 25%, 1 in every 4 queries
is expected to lead to a c ∈ CT being learned.

On the other hand, for each constraint c ∈ CT for which M(c) answers False, a scope-
finding procedure is needed to locate the violated constraint. The most efficient functions
commonly used to do it (i.e., FindScope [6] or FindScope-2 [25]) have been shown to require
Θ(log(|Y |)) queries to find a violated constraint c ∈ CT in the worst case, where Y is the
number of variables considered in query generation. As a result, we estimate the number of
queries needed in this case as k · log(|Y |), with k a constant. We found k = 1 to work well in
practice.

Probability estimation. To compute the probability P (c ∈ CT) of a constraint c ∈ B, we use
a simple approach, considering only information from the relations rel(c) of the constraints.
More specifically, to compute P (c ∈ CT), we count the number of times a constraint with
relation rel(c) has been added to CL, and divide it by the total number of times that such a
constraint has been removed from B. Much more advanced estimation techniques, including
machine learning methods, can be used for more accurate estimation. We leave this for
future work.

6 Experimental evaluation

In this section, we empirically answer the following research questions:
(Q1) Does using PQ-Gen with conventional solvers avoid premature convergence, and how

do CA systems perform when they use it?
(Q2) Does GrowAcq (using MQuAcq-2) perform better than using MQuAcq-2 directly?
(Q3) How does our probability-guided query generation objective function perform compared

to the one used in current CA systems?
(Q4) How does the combination of our methods perform?
(Q5) How do our methods perform on problems with a huge bias B?

6.1 Benchmarks
We used the following benchmarks:
Jigsaw Sudoku. The Jigsaw Sudoku is a variant of Sudoku in which the 3 × 3 boxes are

replaced by irregular shapes. It consists of 81 variables with domains of size 9. The target
network consists of 811 binary ̸= constraints, on rows, columns, and shapes. The bias B

was constructed using the language Γ = {≥,≤, <, >, ̸=, =} and contains 19 440 binary
constraints.

CP 2023

36:12 Guided Bottom-Up Interactive Constraint Acquisition

Murder. The Murder puzzle problem consists of 20 variables with domains of size 5. The
target network contains 4 cliques of 10 ̸= constraints and 12 additional binary constraints.
The bias was initialized with 760 constraints based on the language Γ = {≥,≤, <, >, ̸=, =}.

Random. We used a problem with 100 variables and domains of size 5. We generated a
random target network with 495 ̸= constraints. The bias was initialized with 19 800
constraints, using the language Γ = {≥,≤, <, >, ̸=, =}.

Golomb rulers. The problem is to find a ruler where the distance between any two marks
is different from that between any other two marks. We built a simplified version of
a Golomb ruler with 8 marks, with the target network consisting only of quaternary
constraints.1 The bias, consisting of 238 binary and quaternary constraints, was created
with the language Γ = {≥,≤, <, >, ̸=, =, |xi − xj | ≠ |xk − xl|}.

Job-shop scheduling. The job-shop scheduling problem involves scheduling a number of
jobs, consisting of several tasks, across a number of machines, over a certain time horizon.
The decision variables are the start and end times of each task. There is a total order over
each job’s tasks, expressed by binary precedence constraints. There are also constraints
capturing the duration of the tasks and that tasks should not overlap on the same machine.
The language Γ = {≥,≤, <, >, ̸=, =, xi + c = xk} was used, with c being a constant from
0 up to the maximal duration of the jobs. We used a problem instance containing 10 jobs,
3 machines (i.e., |X| = 60) and a time horizon of 15 steps, leading to a bias containing
14 160 constraints.

6.2 Experimental setup
Let us now give some details about the experimental settings:

All the experiments were conducted on a system carrying an Intel(R) Core(TM) i9-11900H,
2.50 GHz clock speed, with 16 GB of RAM.
We measure the total number of queries #q, the average time of the query generation
process T̄gen (line 3 of Algorithm 1), the average waiting time T̄ per query for the user,
and the total time needed (to converge) Ttotal. All times are presented in seconds. The
difference between T̄gen and T̄ is that the latter takes into account also the queries posed
on lines 8-9 of Algorithm 1, which are very fast to compute.
We evaluate our methods in comparison with the state-of-the-art method MQuAcq-2 [27].
All methods and benchmarks were implemented in Python 2 using the CPMpy constraint
programming and modeling library [16], except for the experiments using custom solvers.3
The results presented in each benchmark, for each algorithm, are the means of 10 runs.

We now discuss the results of our experimental evaluation, based on the questions we
posed at the beginning of the section.

6.3 [Q1] Performance of PQ-Gen
Both PQ-Gen, our projection-based query generation approach, and TQ-Gen [1] (discussed
in Section 3.1) involve hyperparameters that affect their performance. Thus, we first
performed a hyperparameter sensitivity analysis to assess their performance under different

1 The ternary constraints derived when i = k or j = l in |xi − xj | ̸= |xk − xl| were excluded, as also done
in the literature [25, 27]

2 Our code is available online in: https://github.com/Dimosts/ActiveConLearn
3 For the custom solver based query generators from [6, 25], we obtained the implementations (in C++)

through personal communication with the authors.

https://github.com/Dimosts/ActiveConLearn

D. C. Tsouros, S. Berden, and T. Guns 36:13

configurations. In tandem with TQ-Gen, we also used the adjust function described in [1]. We
used the JSudoku benchmark for this comparison. For TQ-Gen, we fixed the hyperparameter
α to 0.8 as recommended in [1], and used τ = {0.05, 0.1, 0.2, 0.3} and t = {0.5, 1, 1.5, 2}. For
PQ-Gen hyperparameters, we used l = {3000, 5000, 7500, 10000} and t = {0.5, 1, 1.5, 2}.
Thus, we examined 16 different configurations for each. A summary of the results are shown
in Table 1.4

Table 1 A summary of the performance of TQ-Gen and PQ-Gen with different configurations.

Problem Conv #q Tmax Ttotal

MQuAcq-2 with TQ-Gen [1] 32% 7 555 20.66 2 371.40
MQuAcq-2 with PQ-Gen (ours) 100% 6 551 4.42 728.25

Confirming our analysis, with our PQ-Gen there is never a case of premature convergence,
no matter what hyperparameters are used. On the other hand, when TQ-Gen is used, the
system fails to converge in the majority of cases, and specific hyperparameter values have to
be chosen to ensure convergence. In addition, our PQ-Gen shows much better performance
both in terms of the number of queries needed and, especially, in terms of runtime.

In more detail, we compared our projection-based query generation (PQ-Gen) with
a baseline where we run a conventional CP solver to directly solve the query generation
problem, using a one-hour time limit, as well as with query generation methods from the
literature, i.e., TQ-Gen and the custom solver based query generators from [6, 27]. For
PQ-Gen and TQ-Gen we used the best configuration found in the previous experiment.
That is, we run PQ-Gen with l = 5000 and t = 1 and TQ-Gen with τ = 0.2 and t = 2. We
used benchmarks that are similar to the ones used in [6, 27]. For consistency, we used the
same state-of-the-art query generation objective function across all methods that accept one,
i.e., our PQ-Gen and the custom solvers, which tries to maximize the number of violated
constraints from B. The results are shown in Table 2.

We can observe that convergence was reached in all cases, except for the baseline in which
a conventional solver was used directly using a time limit. Our method, PQ-Gen, and the
baseline show similar performance in terms of the number of queries needed. while being
much better than TQ-Gen in JSudoku and Random, where B is larger, especially when
considering time performance.

On the other hand, when custom solvers are used, we can see that the time performance
has improved and the number of queries has decreased. This happens because the custom
solver can return a partial assignment of any size, trying only to maximize the value of the
objective function used, and utilizing heuristics from the literature, while when our PQ-Gen
is used, the query generated has to be a solution in a specific (sub)set of variables, which
takes more time to compute. As a result, we observed that custom solvers often return
queries that violate more constraints from B, which helps MQuAcq-2 shrink the bias faster
in terms of the number of queries needed.

6.4 [Q2 - Q4] Evaluating GrowAcq and guided query generation
Hereafter, we continue our experiments using PQ-Gen, as the motivation was to investigate
techniques that work with any solver. As using PQ-Gen allows us to use conventional solvers,
able to run on any given benchmark, in contrast to the custom solvers from [6, 27], where
specific constraint relations are implemented, from now on we will use all of the benchmarks
mentioned in Section 6.1.

4 More details regarding this experiment can be found in Appendix A.

CP 2023

36:14 Guided Bottom-Up Interactive Constraint Acquisition

Table 2 Comparing PQ-Gen with state-of-the-art query generators.

Method Problem #q T̄gen T̄ Tmax Ttotal Convergence

Using conventional solvers
JSudoku 6 337 2.05 0.21 11.67 - 0%
Murder 347 0.09 0.01 0.31 4.69 100%MQuAcq-2 baseline

Random 5 694 2.90 0.05 20.78 294.94 100%
JSudoku 7 153 0.26 0.13 8.46 919.34 100%
Murder 394 0.04 0.01 0.32 5.22 100%MQuAcq-2 TQ-Gen [1]

Random 5787 5.26 1.23 17.61 7100.44 100%

JSudoku 6 458 0.77 0.10 3.19 666.91 100%
Murder 370 0.66 0.03 1.10 12.28 100%MQuAcq-2 PQ-Gen (ours)

Random 5 708 0.60 0.04 2.22 233.62 100%
Using custom solvers

JSudoku 5 321 0.99 0.06 2.04 336.42 100%
Murder 421 0.76 0.13 1.02 53.21 100%MQuAcq-2 GenerateQuery.cutoff [6]

Random 5 349 0.94 0.04 3.24 198.65 100%
JSudoku 5 042 1.00 0.06 2.34 277.36 100%
Murder 325 0.86 0.04 1.01 12.90 100%MQuAcq-2 maxB [25]

Random 5 012 0.94 0.02 1.52 95.21 100%

[Q2] Using GrowAcq within MQuAcq-2. We now evaluate the performance of GrowAcq,
our proposed bottom-up CA approach. To evaluate it, we used MQuAcq-2, as the inner CA
algorithm within GrowAcq (line 7 of Algorithm 3) and compared this to using MQuAcq-2,
directly on the full-sized problem. Table 3, top two blocks, presents the results.

We can observe that the usage of GrowAcq results in a reduction of the number of
queries in JSudoku, Murder, and Random, while a slight increase can be seen in Golomb. In
Job-shop, the increase in the number of queries is somewhat larger (25%). This is the case
because the target constraint network in this benchmark is sparse, with most of the iterations
of GrowAcq in a Y ⊂ X not learning any constraint from CT and only shrinking the bias.
So, when the full-sized problem is looked at directly when MQuAcq-2 is used, the bias B

can shrink with fewer queries. On the other hand, when the target network is not sparse,
there is a decrease in the number of queries of up to 19%, due to the fact that the system
can locate the scopes of the constraints faster, starting from a Y ⊂ X every time. Based on
the above observations, we can see that using GrowAcq leads to learning constraints in a
lower amount of queries, but on the other hand, needs more queries to shrink the bias.

Finally, although the total time is almost the same in most problems, and slightly increased
in JSudoku and Golomb, the average time per query has not noticeably increased, while the
maximum time the user has to wait between two queries has decreased significantly (up to
88% in the Job-shop benchmark), due to the overall reduction in the time needed in query
generation in almost all problems (as indicated by the T̄qgen column). As the (maximum)
waiting time for the user is of paramount importance for interactive settings, we can see that
GrowAcq improves this aspect of time performance of interactive CA systems.

[Q3] Guided query generation. In order to evaluate the performance of our proposed
objective function for guiding query generation, we compare it with the use of the most
popular objective function used in state-of-the-art CA systems, i.e., maximizing violations of
constraints from B. The objective functions are utilized in line 9 of Algorithm 2. For this
comparison, GrowAcq is used, again with MQuAcq-2 as the inner acquisition algorithm at

D. C. Tsouros, S. Berden, and T. Guns 36:15

Table 3 Evaluation of GrowAcq and the proposed approach for guiding query generation.

Problem #q T̄gen T̄ Tmax Ttotal

MQuAcq-2
JSudoku 6 458 0.77 0.10 3.19 666.91
Murder 370 0.66 0.03 1.10 12.28
Random 5 708 0.60 0.04 2.22 233.62
Golomb 233 0.96 0.22 1.22 50.89
Job-shop 590 1.03 0.10 5.36 56.23

GrowAcq + MQuAcq-2
Sudoku 5 863 0.15 0.12 1.98 721.15
Murder 357 0.04 0.02 0.11 7.97
Random 4 804 0.14 0.05 1.30 230.36
Golomb 270 0.80 0.29 1.30 78.47
Job-shop 786 0.13 0.06 0.66 48.18

GrowAcq + MQuAcq-2 guided

JSudoku 3 963 0.15 0.24 1.96 963.42
Murder 250 0.04 0.04 0.27 9.07
Random 4 820 0.14 0.05 1.19 229.47
Golomb 100 0.16 0.27 0.95 27.44
Job-shop 776 0.13 0.06 0.64 47.53

line 7 of Algorithm 3. The results using the guided query generation can be seen in Table 3,
bottom-two blocks, comparing GrowAcq + MQuAcq-2 against GrowAcq + MQuAcq-2
guided.

We can see that, when using our probability-based guidance for query generation, the
number of queries has significantly decreased in JSudoku, Murder, and Golomb, while it
has remained nearly the same in Random and Job-Shop. In the latter cases, the number
of queries has not decreased because these are under-constrained problems, and thus the
probability derived from the constraints’ relations was small. This led to maximizing the
violations of all constraints in B (i.e., the same behavior as with the existing objective). On
the other hand, in the problems that do not have a sparse constraint network, where using
the simple counting method to compute the probabilities of the constraints could effectively
guide the acquisition system, the decrease observed in the number of queries is substantial
(32% in JSudoku, 30% in Murder, and 64% in Golomb). However, as violating constraints
one-by-one leads to more queries generated at line 3 of Algorithm 1, yet fewer queries at lines
8-9, which are very fast to compute, there is a small increase in the total time on JSudoku.

[Q4] Combination of our methods. Comparing the combination of our methods (i.e.,
GrowAcq + MQuAcq-2 guided) with MQuAcq-2 (Table 3), we can see that combining
our bottom-up approach with guiding the query generation greatly outperforms MQuAcq-2
in terms of the number of queries needed to achieve convergence on most of the benchmarks.
The number of queries has decreased on all benchmarks except Job-shop, where, because of
its sparse target network, we need 23% more queries, as GrowAcq increases the number of
queries to converge in underconstrained problems, due to the reasons described in section
6.4, while guiding the query generation does not improve it, as the probabilities estimated
are always low. In the rest of the problems, we observe a total decrease of 16% in Random,
39% in JSudoku, 32% in Murder, and up to 60% in Golomb.

CP 2023

36:16 Guided Bottom-Up Interactive Constraint Acquisition

These results demonstrate the effectiveness of the proposed methods in reducing the
number of queries needed for CA algorithms, which is crucial in interactive scenarios.

6.5 [Q5] Dealing with larger biases
To answer this question, we evaluated GrowAcq and the combination of our methods on
larger instances of the Job-shop benchmark, using the same language as before. We used
two instances: one with 15 jobs, 11 machines, and 40 steps (denoted as JS-15-11), which
resulted in a bias consisting of 542 850 constraints, and one with 19 jobs, 12 machines, and
again 40 steps (denoted as JS-19-12), resulting in a bias of 1 037 400 constraints. The results
are presented in Table 4.

On the one hand, GrowAcq needs more queries to converge (like on the smaller Job-Shop
instance) because the constraint network of this problem is sparse. Yet the total time needed
to converge is one order of magnitude lower than in MQuAcq-2, being 24.4 times faster in
the instance with a bias size of 0.5 million constraints and 25.6 times faster in the instance
with |B| > 1M . In addition, the maximum waiting time has drastically decreased by using
GrowAcq (and the combination GrowAcq and guiding query generation), from 5 499
seconds to only 3 (resp. 8) seconds in JS-15-11 and from more than 20 371 seconds to only 7
(resp. 6) seconds in JS-19-12. Importantly, the average waiting time is more than 30 times
lower when using GrowAcq. Note that, as in the smaller job-shop instance, guiding does
not lead to improvement in terms of the number of queries. However, it does not noticeably
worsen the time performance of the system.

Hence, the experiments confirm that the proposed methodology can efficiently handle
significantly larger sets of candidate constraints than the state of the art, up to 50 times
larger than the ones commonly used in the literature [6, 8, 27, 29].

Table 4 Experimental results on instances with a large bias.

Problem |B| #q T̄qgen T̄ Tmax Ttotal

MQuAcq-2
JS-15-11 ≈ 0.5M 5 456 66.12 6.25 5 499.76 34 085.73
JS-19-12 ≈ 1M 8 012 80.99 9.75 20 371.74 78 124.41

GrowAcq + MQuAcq-2
JS-15-11 ≈ 0.5M 7 015 0.44 0.20 2.84 1 422.93
JS-19-12 ≈ 1M 10 309 0.62 0.29 6.92 2 984.77

GrowAcq + MQuAcq-2guided

JS-15-11 ≈ 0.5M 7 062 0.44 0.20 7.88 1 399.63
JS-19-12 ≈ 1M 10 219 0.64 0.30 6.19 3 054.68

7 Conclusions

Some of the most important limitations of interactive CA methods are the large number
of queries needed to converge, as well as the size of the candidate constraint set that they
can handle efficiently. In this work, we presented novel methods to alleviate these issues,
improving the efficiency of CA systems. We proposed a bottom-up approach, which allows
the system to handle significantly larger biases, reducing the maximum waiting time for
the user, and also reducing the total number of queries needed when the target constraint
network is not sparse. We also introduced a probabilistic method to guide query generation,

D. C. Tsouros, S. Berden, and T. Guns 36:17

further reducing the number of posted queries when our simple counting method could guide
the acquisition system to learn constraints more efficiently. In addition, we presented a
new query generation technique, named PQ-Gen, that allows the use of conventional CP
solvers, removing the dependency of existing methods on customized solvers to converge.
Our experimental evaluation showed that our proposed methods outperform state-of-the-art
systems in terms of the number of queries in problems with non-sparse constraint networks,
reducing this number up to 60%. In addition, the experiments show that GrowAcq can
handle up to 50 times larger biases than the ones commonly used in the literature, allowing
CA to tackle increasingly large and complex problems. The biggest avenue for future work is
to further investigate additional ways to reduce the number of queries needed, e.g., by using
guidance in all parts of the acquisition process (not just the query generation), and with
more advanced probabilistic models. Another important avenue is to consider the setting in
which user answers can be noisy as has been investigated for passive systems.

References
1 Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir, and Nadjib Lazaar. Time-bounded

query generator for constraint acquisition. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pages 1–17. Springer,
2018.

2 Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.
3 Robin Arcangioli, Christian Bessiere, and Nadjib Lazaar. Multiple constraint aquisition. In

IJCAI: International Joint Conference on Artificial Intelligence, pages 698–704, 2016.
4 Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models

from positive examples. In Principles and practice of constraint programming, pages 141–157.
Springer, 2012.

5 Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns. Learning max-sat models from
examples using genetic algorithms and knowledge compilation. In 28th International Conference
on Principles and Practice of Constraint Programming (CP 2022), 2022.

6 Christian Bessiere, Clement Carbonnel, Anton Dries, Emmanuel Hebrard, George Katsirelos,
Nina Narodytska, Claude-Guy Quimper, Kostas Stergiou, Dimosthenis C Tsouros, and Toby
Walsh. Learning constraints through partial queries. Artificial Intelligence, 319:103896, 2023.

7 Christian Bessiere, Remi Coletta, Eugene C Freuder, and Barry O’Sullivan. Leveraging the
learning power of examples in automated constraint acquisition. In International Conference
on Principles and Practice of Constraint Programming, pages 123–137. Springer, 2004.

8 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, Toby Walsh, et al. Constraint acquisition via partial
queries. In IJCAI, volume 13, pages 475–481, 2013.

9 Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-based version
space algorithm for acquiring constraint satisfaction problems. In European Conference on
Machine Learning, pages 23–34. Springer, 2005.

10 Christian Bessiere, Remi Coletta, Barry O’Sullivan, Mathias Paulin, et al. Query-driven
constraint acquisition. In IJCAI, volume 7, pages 50–55, 2007.

11 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017.

12 Eugene C Freuder. Modeling: the final frontier. In The First International Conference on The
Practical Application of Constraint Technologies and Logic Programming (PACLP), London,
pages 15–21, 1999.

13 Eugene C Freuder. Progress towards the holy grail. Constraints, 23(2):158–171, 2018.
14 Eugene C Freuder and Barry O’Sullivan. Grand challenges for constraint programming.

Constraints, 19(2):150–162, 2014.

CP 2023

36:18 Guided Bottom-Up Interactive Constraint Acquisition

15 Eugene C Freuder and Richard J Wallace. Suggestion strategies for constraint-based match-
maker agents. In International Conference on Principles and Practice of Constraint Program-
ming, pages 192–204. Springer, 1998.

16 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

17 Mohit Kumar et al. Acquiring integer programs from data. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. IJCAI, 2019.

18 Mohit Kumar, Samuel Kolb, and Tias Guns. Learning constraint programming models from
data using generate-and-aggregate. In 28th International Conference on Principles and Practice
of Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

19 Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On learning constraint
problems. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, volume 1, pages 45–52. IEEE, 2010.

20 Nadjib Lazaar. Parallel constraint acquisition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 3860–3867, 2021.

21 Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model learning.
Artificial Intelligence, 244:343–367, 2017.

22 Steven D Prestwich. Robust constraint acquisition by sequential analysis. Frontiers in Artificial
Intelligence and Applications, 325:355–362, 2020.

23 Steven D Prestwich, Eugene C Freuder, Barry O’Sullivan, and David Browne. Classifier-based
constraint acquisition. Annals of Mathematics and Artificial Intelligence, pages 1–20, 2021.

24 Kostyantyn Shchekotykhin and Gerhard Friedrich. Argumentation based constraint acquisition.
In Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pages 476–482.
IEEE, 2009.

25 Dimosthenis C Tsouros and Kostas Stergiou. Efficient multiple constraint acquisition. Con-
straints, 25(3):180–225, 2020.

26 Dimosthenis C Tsouros and Kostas Stergiou. Learning max-csps via active constraint acquisi-
tion. In 27th International Conference on Principles and Practice of Constraint Programming
(CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

27 Dimosthenis C Tsouros, Kostas Stergiou, and Christian Bessiere. Structure-driven multiple
constraint acquisition. In International Conference on Principles and Practice of Constraint
Programming, pages 709–725. Springer, 2019.

28 Dimosthenis C Tsouros, Kostas Stergiou, and Christian Bessiere. Omissions in constraint
acquisition. In International Conference on Principles and Practice of Constraint Programming,
pages 935–951. Springer, 2020.

29 Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis. Efficient methods
for constraint acquisition. In 24th International Conference on Principles and Practice of
Constraint Programming, 2018.

D. C. Tsouros, S. Berden, and T. Guns 36:19

A Hyperparameter evaluation for PQ-Gen and TQ-Gen

(a) (b)

Figure 1 Performance of PQ-Gen with different hyperparameters values, in terms of: a) the
number of queries posted and b) the time (s) needed (in brackets we show the maximum waiting
time for the user).

(a) (b)

Figure 2 Performance of TQ-Gen with different parameters, in terms of: a) the convergence rate
(in brackets we show the number of queries posted when it converged) and b) the time (s) needed
(in brackets we show the maximum waiting time for the user).

Both PQ-Gen, our projection-based query generation approach, and TQ-Gen [1] (dis-
cussed in Section 3.1) involve hyperparameters that affect their performance. As mentioned
in Section 6.3, we performed a sensitivity analysis of the performance with respect to the
hyperparameter configuration used of PQ-Gen and TQ-Gen [1]. In this comparison, both
query generation methods were used within the state-of-the-art active CA method MQuAcq-
2. We used the JSudoku benchmark for this comparison, as from the benchmarks considered
in this paper, this is shown to be the hardest one to reach convergence on (see Table 2).

In more detail, we varied the hyperparameters of both PQ-Gen and TQ-Gen to assess
their performance under different configurations. While we fixed the hyperparameter α

of [1] to 0.8 as recommended in [1], we had to try different values for the time-related
hyperparameters, τ and t. We did not use the values proposed by the authors in [1] because
we use a different solver and system, and this can affect significantly the time performance.

CP 2023

36:20 Guided Bottom-Up Interactive Constraint Acquisition

In our evaluation we used τ = [0.05s, 0.1s, 0.2s, 0.3s] and t = [0.5s, 1s, 1.5s, 2s] for TQ-
Gen. We also used the adjust function described in [1], as it has been shown to improve
its performance. For PQ-Gen hyperparameters, we used l = {3000, 5000, 7500, 10000} and
t = {0.5, 1, 1.5, 2}. Thus, we examined 16 different configurations for each. The results of
our experiments are presented in Figures 1 and 2, respectively, for PQ-Gen and TQ-Gen.

Focusing on Figure 1, we can see that the performance of PQ-Gen is stable across
all configurations, both in terms of the number of queries and time performance, having
also converged in all cases. Let us now shift our focus to Figure 2 and the performance of
TQ-Gen. The first observation is that in the majority of the cases, MQuAcq-2 failed to
converge when using TQ-Gen as the query generator. Only when the time limit was set
to 2s, we see at least one run achieving convergence for all values of τ . In addition, the
performance of MQuAcq-2 using TQ-Gen is highly sensitive to changes in hyperparameter
values, particularly with respect to time.

Overall, comparing the results of PQ-Gen and TQ-Gen, we observe that PQ-Gen
exhibits superior performance in terms of convergence rate, fully overcoming the issue of
premature convergence. PQ-Gen also requires a lower number of queries to reach convergence
and offers improved time performance, resulting in reduced waiting times for the user.

	1 Introduction and related work
	2 Background
	2.1 Constraint satisfaction problems
	2.2 Active constraint acquisition with partial membership queries

	3 Using conventional solvers for query generation
	3.1 Problems when using conventional solvers
	3.2 Customized solvers
	3.3 Projection-based Query Generation

	4 Bottom-up Constraint Acquisition
	5 Guided query generation
	6 Experimental evaluation
	6.1 Benchmarks
	6.2 Experimental setup
	6.3 [Q1] Performance of PQ-Gen
	6.4 [Q2 - Q4] Evaluating GrowAcq and guided query generation
	6.5 [Q5] Dealing with larger biases

	7 Conclusions
	A Hyperparameter evaluation for PQ-Gen and TQ-Gen

