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Abstract
The rapid rise of Artificial Intelligence (AI) and Machine Learning (ML) has invoked the need for

explainable AI (XAI). One of the most prominent approaches to XAI is to train rule-based ML models,
e.g. decision trees, lists and sets, that are deemed interpretable due to their transparent nature.
Recent years have witnessed a large body of work in the area of constraints- and reasoning-based
approaches to the inference of interpretable models, in particular decision sets (DSes). Despite being
shown to outperform heuristic approaches in terms of accuracy, most of them suffer from scalability
issues and often fail to handle large training data, in which case no solution is offered. Motivated by
this limitation and the success of gradient boosted trees, we propose a novel anytime approach to
producing DSes that are both accurate and interpretable. The approach makes use of the concept
of a generalized formal explanation and builds on the recent advances in formal explainability of
gradient boosted trees. Experimental results obtained on a wide range of datasets, demonstrate that
our approach produces DSes that more accurate than those of the state-of-the-art algorithms and
comparable with them in terms of explanation size.
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1 Introduction

Rapid development of Artificial Intelligence (AI) and Machine Learning (ML) have revolu-
tionized all aspects of human lives in recent years [30, 1]. However, decisions made by most
widely used ML models are hard for humans to understand hence the interest in the theory
and practice of Explainable AI (XAI) rises.

One major approach to XAI is to compute post-hoc explanations for ML predictions
to answer a “why” question [34, 44], i.e. why the prediction is made. Although heuristic
approaches to post-hoc explanations prevail [34, 44, 43], they suffer from a number of
weaknesses [21, 16, 49, 52]. Formal methods [48, 20, 37] provide alternative approaches
to explanations that avoid these weaknesses. Another alternative approach to XAI is to
compute interpretable ML models, i.e. logic-based models, including decision trees [40],

© Jinqiang Yu, Alexey Ignatiev, and Peter J. Stuckey;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 38; pp. 38:1–38:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jinqiang.yu@monash.edu
https://orcid.org/0000-0002-4376-7266
mailto:alexey.ignatiev@monash.edu
https://orcid.org/0000-0002-4535-2902
mailto:peter.stuckey@monash.edu
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2023.38
https://github.com/jinqiang-yu/cpl/
https://archive.softwareheritage.org/swh:1:dir:40fde451a732a518f78caa9ad372a7c267446836;origin=https://github.com/jinqiang-yu/cpl/;visit=swh:1:snp:a1abc10f6b24882c510c45c4006e97e19fea26b9;anchor=swh:1:rev:8acbf247da9860d2fa339b60240c82af7a9a5a20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


38:2 From Formal Boosted Tree Explanations to Interpretable Rule Sets

decision lists [46], and decision sets [29]. These models enable decision makers to obtain
succinct explanations from the models directly. In this paper, we focus on the decision
set (DS) models.

Decisions sets are particularly easy to explain: the rule that fired is an explanation of
the decision. This led to an upsurge in interest of decision sets that are both interpretable
and accurate. Recent work [50] uses propositional satisfiability (SAT) to generate minimum-
size decision sets that are perfectly accurate on the training data, and demonstrates that
decision sets that completely agree with the training data outperform others in terms of
accuracy. A more scalable maximum satisfiability (MaxSAT) approach [18] to this problem
was then proposed. Unfortunately, both of these methods are unable to provide any decision
information if a dataset is not completely solved.

Motivated by these works and their limitations, this paper aims at making a bridge
between formal post-hoc explainability and interpretable DS models. In particular, the paper
focuses on developing a novel anytime approach to computing decision sets that are both
interpretable and accurate, by compiling a gradient boosted tree model into a decision set
on demand with the use of formal explanations. This is done with the use of the recent
approach [17] to compute abductive explanations for gradient boosted trees using maximum
satisfiability (MaxSAT). Furthermore, the paper proposes a range of post-hoc model reduction
heuristics aiming at enhancing interpretability of the result models, done with MaxSAT
and integer linear programming (ILP). The experimental results show that compared with
other state-of-the-art methods, decision sets generated by the proposed approach are more
accurate, and comparable with the competition in terms of interpretability.

2 Preliminaries

SAT and MaxSAT. The standard definitions for propositional satisfiability (SAT) and
maximum satisfiability (MaxSAT) solving are assumed [3]. A propositional formula ϕ is
said to be in conjunctive normal form (CNF) if it is a conjunction of clauses. A clause is
a disjunction of literals, where a literal is either a Boolean variable b or its negation ¬b.
A truth assignment µ is a mapping from the set of variables to {0, 1}. A clause is said to
be satisfied by truth assignment µ if one of the literals in the clause is assigned value 1;
otherwise, the clause is falsified. If all clauses in formula ϕ are satisfied by assignment µ, ϕ is
satisfied; otherwise, assignment µ falsifies ϕ. A CNF formula ϕ is unsatisfiable if there exists
no assignment satisfying ϕ.

In the context of unsatisfiable formulas, the MaxSAT problem consists in finding a truth
assignment that maximizes the number of satisfied clauses. Hereinafter, we use a variant
of MaxSAT called Partial Weighted MaxSAT [3, Chapters 23 and 24]. The formula ϕ in
this variant is represented as a conjunction of hard clauses H, which must be satisfied, and
soft clauses S where each of them is associated with a weight representing a preference to
satisfy them, i.e. ϕ = H ∧ S. Partial Weighted MaxSAT problems aim at finding a truth
assignment µ that satisfies all hard clauses and maximizes the total weight of satisfied soft
clauses.

Classification Problems. We consider classification problems with a set of classes1 K =
{1, . . . , k}, and a set of features F = {1, . . . , m}. The value of each feature i ∈ F is taken
from its corresponding (numeric) domain Di. As a result, the entire feature space is defined as

1 Non-integer class labels can be mapped to a set {1, . . . , |K|}.
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IF “petal.length” < 2.60 THEN class = “setosa”
IF 2.60 ≤ “petal.length” < 4.95 ∧ “petal.width” < 1.75 THEN class = “versicolor”
IF “petal.length” ≥ 2.60 ∧ “petal.width” ≥ 1.75 THEN class = “virginica”
IF “petal.length” ≥ 4.95 THEN class = “virginica”

(a) Decision set.
t1 (setosa)

petal.length

0.42604 -0.21885

< 2.60 ≥ 2.60

t2 (versicolor)
petal.length

petal.width-0.21302

0.35085 -0.19565

< 2.60 ≥ 2.60

< 1.75 ≥ 1.75

t3 (virginica)
petal.width

petal.length 0.39408

-0.21845 0.21724

< 1.65 ≥ 1.65

< 4.95 ≥ 4.95

t4 (setosa)

petal.length

0.29324 -0.19609

< 2.60 ≥ 2.60

t5 (versicolor)
petal.length

petal.length-0.18951

0.25718 -0.16426

< 2.60 ≥ 2.60

< 4.95 ≥ 4.95

t6 (virginica)
petal.length

petal.width petal.length

-0.19479 -0.08968 0.05263 0.28251

< 4.75 ≥ 4.75

< 1.45 ≥ 1.45 < 4.95 ≥ 4.95

(b) BT model [5] consisting of 2 trees per class, each of depth ≤ 2, adopted from [17].

Figure 1 Example DS and BT models computed on the well-known Iris classification dataset.

F ≜
∏m

i=1 Di. A concrete point represented by v = (v1, . . . , vm) ∈ F, s.t. each vi is a constant
value taken by feature i ∈ F , together with its corresponding class c ∈ K, represented by a
pair (v, c), indicate a data instance or example. With a slight abuse of notation and whenever
convenient, a data point v ∈ F is also referred to as an instance. Finally, x = (x1, . . . , xm)
denotes a vector of feature variables xi ∈ Di, i ∈ F , used for reasoning over points in F.

A classifier defines a classification function τ : F → K. The objective of classification
problems is to learn a function τ to generalize well on unseen data given a training dataset E =
{e1, e2, . . . , en}, where each instance ed ∈ E is a pair of (vd, cd). Classification problems are
conventionally posed as an optimization problem, i.e. either to minimize the complexity of τ ,
or maximize its accuracy, or both.

Rules, Decision Sets and Gradient Boosted Trees. Multiple ways exist to learn classifiers
given data E . This paper focuses on arguably one of the most interpretable models, i.e.
decision sets, trained by compiling gradient boosted trees.

A decision rule is in the form of “IF antecedent THEN prediction”, where the antecedent
is a set of feature literals. Informally, a rule is said to classify an instance v ∈ F as class
c ∈ K if its antecedent is compatible with v (or matches v) and its prediction is c. A decision
set (DS) is an unordered set of decision rules R. An instance (v, c) ∈ E is misclassified by a
DS if either there exists no rule in R matching v, or there exists a rule classifying v as a
class c′ ∈ K s.t. c′ ̸= c.

A gradient boosted tree (BT) is a tree ensemble T defining sets of decision trees Tc ∈ T

for each class c ∈ [|K|], where Tc comprises N ∈ N>0 trees tkz+c, z ∈ {0, . . . , N − 1}, k = |K|.
Given an instance v ∈ F, its class is obtained by computing the sum of scores assigned by
trees for each class w(v, c) =

∑
t∈Tc

t(v) and assigning the class which has the maximum
score, i.e. argmaxc∈[|K]|w(v, c). Whenever convenient, n ∈ t denotes a non-terminal node,
where t ∈ T represents an arbitrary decision tree. Moreover, each such n indicates a feature
condition in the form of xi < d, where feature i ∈ F and splitting threshold d ∈ Di.

CP 2023
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Table 1 Several instances extracted from Iris dataset.

# sepal.length sepal.width petal.length petal.width class

e1 5.1 3.5 1.4 0.2 setosa
e2 7.7 2.6 6.9 2.3 virginica
e3 5.6 2.5 3.9 1.1 versicolor
e4 6.2 2.8 4.8 1.8 virginica
e5 5.6 2.8 4.9 2.0 virginica

▶ Example 1. Figure 1 shows DS and BT models trained on the Iris dataset, which has
4 numeric features and 3 classes: “setosa”, “versicolor”, and “virginica”. Observe that
instance v1 ∈ e1 shown in Table 1 is classified as “setosa” by the first rule of the DS.
In the BT model, each class c ∈ [3] is represented by 2 trees t3z+c, z ∈ {0, 1}. Thus, it
also classifies v1 as “setosa”, since the score of this class w(v1, 1) = t1 + t4 = 0.71928
is higher than the score of “versicolor” w(v1, 2) = t2 + t5 = −0.40253 and the score of
“virginica” w(v1, 3) = t3 + t6 = −0.41324. ⌟

Interpretability and Explanations. Interpretability is not formally defined as it is considered
to be a subjective concept [33]. In this paper interpretability is defined as the overall
succinctness of the information offered by an ML model to justify a provided prediction.
Moreover, following earlier work [48, 20], we equate explanations for ML models with abductive
explanations (AXps), which are subset-minimal sets of features sufficient to explain a given
prediction. Concretely, given an instance v ∈ F and a prediction c = τ(v) ∈ K, an AXp is a
subset-minimal set of features X ⊆ F such that

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→ (τ(x) = c) (1)

▶ Example 2. Consider the setup of Example 1. Given instance v1, observe that for any
instance with “petal.length” = 1.4, the BT is guaranteed to predict “setosa” independently of
the values of other features, since the weights for “setosa” and “versicolor” are 0.71928 and
−0.40253 respectively as before, and the maximal weight for “virginica” is 0.39408−0.08968 =
0.30440. Thus, the (only) AXp X for the prediction for e1 made by the BT model is
{“petal.length”}. ⌟

Explanations in BTs. Formal reasoning has been recently applied to computing AXps for
BT models, with the key difficulty being how to effectively reason about the aggregation
over a large number of trees in a BT model. Recent work applied satisfiability modulo
theory (SMT) [21] or mixed integer linear programming (MILP) solvers [42, 27] to directly
address the linear summations arising in the BT encoding. Hereinafter, we build on the
recent MaxSAT approach [17], which maps the aggregation reasoning to a set of MaxSAT
queries to avoid a costly encoding of the linear constraints into CNF. Also, [17] demonstrates
how a MaxSAT query can be made such that (1) holds if and only if the optimal value of
the constructed objective function is negative.2 In general, assuming that each feature i ∈ F
is numeric (continuous), the approach orders the set of splitting thresholds {di1, ..., dihi}
in a BT T for each feature i, where hi is the total number of thresholds of feature i in T

and dij ∈ Di for j ∈ [hi]. Given an instance v = (v1, . . . , vm) ∈ F, the above approach

2 The reader is referred to [17] for the details.
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associates each value vi with a single interval I ′
i from the set of disjoint intervals Di = {

Ii1 ≡ [min(Di), di1), Ii2 ≡ [di1, di2), . . . , Iihi+1 ≡ [dihi
, max(Di)] }. Thus, AXp extraction

boils down to finding a subset-minimal subset X ∈ F s.t.

∀(x ∈ F).
[∧

i∈X
xi ∈ I ′

i

]
→ (τ(x) = c) (2)

▶ Example 3. Recall Example 2 and assume “petal.length” and “petal.width” have indices 3
and 4. Note that the sets of splitting thresholds for feature “petal.length” {d31 = 2.60, d32 =
4.75, d33 = 4.95} and for feature “petal.width” {d41 = 1.45, d42 = 1.65, d43 = 1.75}. Let
min(D3) = −∞ and min(D4) = 0.1. Then we can associate the values of features 3 and
4 in our instance v1 ∈ e1 with intervals I31 ≡ (−∞, 2.60) and I41 ≡ [0.1, 1.45). Hence
by (2), the AXp shown in Example 2 can in fact be seen as a rule ⟨IF “petal.length” <

2.60 THEN class = “setosa” ⟩. ⌟

3 Related Work

Interpretable decision sets are logic-based ML models that can be traced back to the 70s and
80s [39, 15, 4, 45]. To the best of our knowledge, [6] proposed the first approach to decision
sets, which were introduced as the variant of decision lists [45, 7]. The first method making
use of logic and optimization to synthesize a disjunction of rules that match a given dataset
was proposed in [26]. Recent work [29] argued that decision sets are more interpretable than
the other logic-based models, i.e. decision lists and decision trees. This work uses smooth
local search to generate a set of rules first and heuristically minimizes a linear combination
of criteria afterwards, e.g. the size of a rule, their maximum number, overlap or error.

Since then a number of works proposed the use of logic reasoning and optimization
procedures to train DS models [22, 36, 12, 50, 18] claiming to significantly outperform the
approach of [29] in terms of accuracy and performance. Among those, the works closest
to ours are [22, 50, 18]. They proposed SAT-based approaches to computing smallest-size
decision sets that perfectly agree with the training data by minimizing either the number
of rules [22, 18] or the number of literals [50, 18] used in the model. Additionally, [50] is
capable of computing sparse decisions sets that trade off training accuracy for model size.
Despite the dramatic performance increase achieved in [18], all the approaches above suffer
from scalability issues.

Post-hoc explainability is one of the major approaches to XAI. Besides a plethora of
heuristic sampling-based methods to post-hoc explainability [43, 34, 44], a formal reasoning
based approach to computing abductive explanations [48, 20] stands out. AXps can be
related with prime implicants of the decision function (hence an alternative name prime
implicant explanations, PI-explanations) associated with ML predictions and are guaranteed
to capture the semantics of the ML models in the entire feature space. Although hard to
compute in general, AXps were shown to be effectively computable for BT models by an
incremental MaxSAT-based approach [17].

Our work aims at making a bridge between interpretable DS models and AXp computation
by exploiting the latter for training the former. Given a BT model, it focuses on generating
decision rules that agree with the BT. Each rule represents an AXp for the prediction made
by the BT model, resulting in a DS model in a way guided by the original BT model. The
approach is shown to outperform the prior logic-based approaches to DS inference in terms
of test accuracy and performance. Note that despite prior attempts to train sparse models
guided by tree ensembles [38], to our best knowledge, none of the existing works have applied
formal post-hoc explanations to compile interpretable models.

CP 2023
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Finally, our approach can be related to the existing line of work on knowledge distilla-
tion [11, 13], where an interpretable model is trained to approximate a hard-to-interpret
black-box model, which is often seen as teacher-to-student knowledge transfer. Note that in
contrast to knowledge distillation, our approach is able to compile a BT into an equivalent
DS if we consider the entire feature space, as shown below.

4 Decision Sets by Boosted Tree Compilation

Based on [17], this section details a MaxSAT-based approach to compiling a BT into a DS
where each rule in the DS is equivalent to a prime implicant of the BT classification function.

4.1 Rule Extraction
Recall that an AXp, as defined in (1) and (2), can be seen as an if-then rule. Given a
hard-to-interpret BT model, the AXp extraction approach of [17] can be modified to compute
an interpretable DS consisting of a set of AXps for the BT. However, when the features
are continuous (numeric), this potential approach suffers from the following issue. Recall
that an AXp X ∈ F indicates a set of concrete feature values that are sufficient to explain a
prediction c = τ(v) for a certain instance v ∈ F. Although this same AXp can explain other
instances compatible with it, its applicability in general is at the mercy of expressivity of the
feature literals used in the AXp, i.e. equality literals and succinct interval membership in
the case of (1) and (2), respectively. Motivated by this limitation, we propose to compute
AXps over the literals intrinsic to the BT model aiming at getting feature intervals that are
as general as possible, as detailed below.3

In contrast to the work of [17], which associates each feature value vi ∈ Di with a single
narrowest interval I ′

i covering the value, we exploit all the splitting points used by the BT
for feature i and identify all of the corresponding literals satisfied by the feature value vi.
Note that the original MaxSAT encoding [17] introduces a single Boolean variable oij for
each literal xi < dij with dij being a j’th threshold used in the BT for feature i, s.t. oij = 1
iff xi < dij holds true. This way, each positive oij represents an upper bound on the value of
xi while each negative ¬oij represents a lower bound on xi.

▶ Example 4. Feature 3 (“petal.length”) from Example 3 has 3 thresholds: d31 = 2.60,
d32 = 4.75, d33 = 4.95. Boolean variables o31, o32, and o33 are set to true iff x3 < 2.60,
x3 < 4.75, and x3 < 4.95, respectively. Let feature 3 take value 3.9 in the instance we want
to explain. Observe how we can immediately assign literals ¬o31, o32, and o33 to true. ⌟

Next, given an instance v = (v1, . . . , vm) ∈ F, let us construct a complete conjunction∧
i∈F,j∈[hi] õij of literals õij s.t. õij is to be replaced by oij if vi < dij and replaced by ¬oij

otherwise. By construction, this conjunction holds true for instance v. Now, given this
conjunction of literals, we can apply the existing approach of [17] to extract a subset-minimal
explanation Y ⊆ {õij | i ∈ F , j ∈ [hi]} for instance v over literals õij s.t.

∀(x ∈ F).
[∧

l∈Y
l
]
→ (τ(x) = c) (3)

Such an explanation Y may (or may not) define either a lower bound on feature i, an upper
bound, or both, aiming to construct the most general interval for each feature i ∈ Y. Hence,
we informally refer to such explanations as generalized AXps or simply rules (hereinafter, we
use both interchangeably).

3 An alternative to our approach is inflation of abductive explanations, which is discussed in [23, 24].
Given an AXp, it aims at extending the set of values covered by each feature literal in the AXp while
the AXp condition (1) still holds.
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Algorithm 1 Deletion-based Rule Extraction.
Function: RuleExtract(T, v, c, E)
Input: T: BT defining τ(x), v: Instance, c: Prediction, i.e. c = τ(v) E : Training data
Output: Y: Subset-minimal rule

1: ⟨H,S⟩ ← Encode(T)
2: Y ← Init(T, v)
3: Y ← Sort(Y, E)
4: for l ∈ Y do
5: if EntCheck(⟨H,S⟩, c,Y \ {l}) then
6: Y ← Y \ {l}
7: return Y

▶ Example 5. Consider instance v3 predicted as “versicolor” by the BT (observe that
v3 = 3.9 and v4 = 1.1) and recall the thresholds for features 3 and 4 discussed in Example 3.
We can compute a generalized AXp Y = {¬o31, o33, o43} representing the second rule of the
DS shown in Figure 1a. The original approach of [17] would instead compute an AXp defining
the narrowest intervals for features 3 and 4, representing a rule: ⟨IF 2.60 ≤ “petal.length” <

4.75∧“petal.width” < 1.45 THEN class = “versicolor”⟩, which is far less general than Y . ⌟

A possible rule extraction procedure is outlined in Algorithm 1. (Please ignore line 3 for
now; feature sorting is described in Section 4.2). The input BT model T is encoded into
MaxSAT by applying the approach of [17]. Given an instance v ∈ F, the initial set of literals
Y = {õij | i ∈ F , j ∈ [hi]} is created. Note that any feature i ∈ F unused in the BT T is
excluded from Y. The rest of the procedure implements the standard deletion-based AXp
extraction [20], i.e. it iterates through all literals in Y one by one, and checks which of the
them can be safely removed such that entailment (3) still holds.

▶ Example 6. Consider our running example model and instance v2 ∈ e2 from Table 1
predicted as “virginica” by the BT T. Given the thresholds for features 3 and 4 in Example 3,
set Y is initialized to {¬o31,¬o32,¬o33,¬o41,¬o42,¬o43}. The other two features are excluded
from Y since they are irrelevant to the classification function in T. Applying Algorithm 1
results in extracting a subset-minimal generalized AXp Y = {¬o33}, which represents the
rule ⟨IF petal.length ≥ 4.95 THEN class = “virginica”⟩. ⌟

▶ Remark 7. Algorithm 1 relies on deciding whether formula (3) holds for each feature
in explanation Y. Here, this is done by means of a series of incremental core-guided
MaxSAT oracle calls [19, 17]. One may wonder whether or not incomplete anytime MaxSAT
solving [31, 35, 2, 32] can be applied in this setting. Although this may look plausible at
first glance, time-restricted anytime MaxSAT algorithms can only over-approximate exact
MaxSAT solutions while (3) holds if and only if the exact value of the objective function
is negative. Therefore, an over-approximation of a MaxSAT solution is never able to prove
the validity of (3) and so none of the features being tested can be discarded in the case of
incomplete MaxSAT algorithms, which defies the purpose of Algorithm 1.

4.2 Boosted Tree Compilation
As mentioned above, generalized AXps can be seen as general decision rules that can be
applied to an enormous number of instances. Therefore, it makes little sense to extract
such rules for each instance in the feature space F. Instead, one can devise an on-demand

CP 2023
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Algorithm 2 Compile a BT into a DS.
Function: Compile(T, τ, C)
Input: T: BT defining τ(x), τ : Classification function in T, C: Coverage set
Output: R: Set of Rules

1: R ← ∅
2: Cu ← C
3: while Cu ̸= ∅ do
4: v← GetInst(Cu)
5: Y ← RuleExtract(T, v, c = τ(v), Cu)
6: Cc ← GetCover(Y, Cu)
7: Cu ← Cu\Cc

8: R ← R∪ Y
9: return R

compilation process, i.e. given a yet uncovered instance v ∈ F, we can apply Algorithm 1 to
extract a rule covering v (and some other instances). Clearly, exhaustive compilation of a
BT, i.e. if the target is to cover all the instances in F with generalized AXps of the BT, is
computationally expensive given that AXp extraction for tree ensembles is hard for DP [25].
This can also lead to the large size of the resulting DSes making them hard to interpret. In
practice, local compilation aiming at capturing the behavior of the BT on the training data
only, is sufficient to generate a DS, which is both accurate and interpretable.

The proposed approach to compiling a BT T into a DS R is shown in Algorithm 2.
We initialize the set Cu of currently uncovered instances to be equal to C, i.e. the set of
examples we wish to cover. The algorithm represents a loop generating rules until the
set of computed rules R covers all instances in coverage set data C, i.e. until there is no
uncovered instances in C. Each iteration of the algorithm selects an instance v from Cu.
Afterwards, a generalized AXp Y for the prediction c = τ(v) by the BT T (recall that T is
meant to compute classification function τ(x)) is extracted by invoking Algorithm 1. The
iteration proceeds by updating the set of rules R and the set of uncovered instances Cu. The
algorithm terminates when all the instances in the coverage set C are covered and returns a
compiled DS R.

▶ Proposition 8. Let T be a BT and R be a DS returned by Algorithm 2 for T. Then R ≡ T

with respect to C.

We consider two usages of the algorithm: for exhaustive compilation the coverage set C = F
is all possible feature combinations (in practice we model this coverage set implicitly, rather
than in its explicit exponential sized form), and for training set compilation where C = E is
the training set. Based on the properties of prime implicants, Proposition 8 states that as a
generalized AXp Y ∈ R is a formal explanation for a prediction made by BT T, a compiled
DS captures the semantics of the original model T on coverage set C, assuming everything
else is a don’t care. Furthermore, if the process is applied subject to coverage set C = F,
i.e. when we target the entire feature space F, then R and T behave identically, i.e. they
compute the same classification function τ(x).

▶ Corollary 9. Let Algorithm 2 return a DS R for a BT T. Then there is no instance
in feature space F covered by two distinct rules Y1,Y2 ∈ R predicting inconsistent classes
c1 ̸= c2.
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As each generalized AXp for T represents a prime implicant of the decision function τ(x)
computed over literals õij , the above corollary claims that there are no overlapping rules in
the result DS R. This contrasts with other modern approaches to DS inference, where rule
overlap is known to be a problem [29, 22]. Note that this approach still suffers from another
common issue of DS models: namely, if DS R is computed for the training data E , there
may still be instances in F uncovered by R.

▶ Example 10. Consider the running example BT model shown in Figure 1b. Its compiled
DS representation computed by Algorithm 2 is shown in Figure 1a. Observe that there is
no rule overlap in the DS computed. In fact, as the DS is computed by taking into account
feature space F, it computes the same classification function as the original BT model. ⌟

Feature Sorting. Intuitively, how general and hence how applicable a rule is depends on
how frequently the features used in it appear in the training data E labeled with the target
class. Thus, a simple heuristic to apply when extracting a rule for prediction c = τ(v) is to
sort the initial state of Y = {õij | i ∈ F , j ∈ [hi]} based on how frequently the corresponding
literals õij apply in examples E labeled with c. This feature sorting represented by line 3 in
Algorithm 1 in practice (according to our experiments) results in significantly more general
rules and so overall smaller DSes.

Anytime Property. Most widely used reasoning-based algorithms to infer DSes provide
a solution only if the computation is completed; otherwise, no decision set is reported. In
contrast to these, the proposed approach is an anytime algorithm, i.e. it can return a valid
DS R even though the compilation process is interrupted before all the coverage set instances
C are covered. Furthermore, it can generate a more comprehensive DS R, which covers more
instances as it keeps going, i.e. after we have covered C ⊆ F we can continue running the
algorithm for the (unseen) instances of F.

4.3 Post-Hoc Model Reduction
The compiled DS R can be large (in terms of either the number of rules or the total number
of literals) since each generalized AXp Y ∈ R may need a significant number of literals to
explain a prediction made by BT T, or/and many rules are required to explain all instances
of C. Once the target DS is obtained, we can apply post-hoc heuristic methods for reducing
its size and so making it more interpretable. The methods below are in a way inspired by
the optimization problems studied in [18, 50]. Although these ideas are applicable to any DS
inference method once the result model is devised, they do not look necessary for standard
DS inference algorithms as they minimize the model while training. On the contrary, no
minimization is applied in the rule enumeration process described above and so post-hoc
model reduction plays a vital role in our approach to reduce the size of final DS models.

Reducing the Number of Rules. Given a set of rules R, we can compute a minimum
subset R⋆ ⊆ R that is still equivalent to the BT T wrt. the coverage set C using discrete
optimization, e.g. integer-linear programming (ILP). Concretely, the approach aims at
selecting the smallest-size subset R⋆ ⊆ R that covers all instances in C, where R is the
compiled DS from T. Here, the size of R⋆ is measured as the total number of literals used.
This can be done by solving the following set cover problem [28]. Namely, for each rule
Yj ∈ R, we introduce a Boolean variable uj such that uj = 1 iff Yj is included in R⋆.
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Additionally, a Boolean variable yij is used to indicate that Yj covers ei ∈ C. As a result,
the weighted set cover problem for minimizing the total number of literals used is as follows:

minimize
|R|∑
j=1

(|Yj |+ 1) · uj (4)

subject to ∀i∈[n]

|R|∑
j=1

yij · uj ≥ 1 (5)

Reducing the Number of Literals. Additionally, one can minimize the total number of
literals used in the rules of R. Given a rule Y ∈ R, this can be done either lexicographically
by maximizing rule accuracy followed by size minimization, or by optimizing both, or trading
off misclassifications for rule size – in either case, a single MaxSAT call per rule to minimize
can be made. The intuition is that if a rule Y misclassifies k instances then its optimized
version Y⋆ ⊆ Y should not result in many more misclassifications on training data E . Recall
that a rule misclassifies an instance vk ∈ C if it matches vk but assigns it to a wrong class.

Inspired by [18], we introduce a Boolean variable pk, which is true iff rule Y covers vk –
this holds if Y does not use any literals incompatible with vk. If Yvk

= {õij | i ∈ F , j ∈ [hi]}
are all the literals compatible with vk then this can be modeled with constraints

∀k∈[|C|]. pk ↔
∧

l∈Y\Yvk

¬l (6)

Furthermore, let rule Y predict c ∈ K and let C⊖ ⊆ C contain all instances labeled with any
other class. Thus, we can apply the objective below when minimizing rule Y:∑

l∈Y

l +
∑

k∈[|C⊖|]

W · pk (7)

If W is large enough, say |C|+ 1, this lexicographically minimizes misclassifications and then
literals. If W is small, e.g. 1/λ·|C|, this trades off λ · |C| misclassifications for one literal.

5 Experimental Results

This section compares the proposed approach with the state-of-the-art DS learning algorithms
on a variety of publicly available datasets in terms of accuracy, scalability, model and
explanation size. The experiments are performed on an Intel Xeon 8260 CPU running
Ubuntu 20.04.2 LTS, with the time limit of 3600s and the memory limit of 8GByte. Our
experiments contain two parts, namely, exhaustive BT compilation and training-set BT
compilation.

Prototype implementation. A prototype of the compilation-based approach to generating
DSes was developed as a set of Python scripts using C = E , hereinafter referred to as cpl.
The implementation of BT compilation exploits [17] and, therefore, makes use of the RC2
MaxSAT solver [19].4 The BTs to be compiled are computed by XGBoost [5]; the number
of trees per class in a BT model is 50 and the maximum depth of each tree is 3. Post-hoc

4 Real weights in the objective function are not conventionally supported by MaxSAT solvers; the only
other solver to support real weights besides RC2 is LMHS [47].
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literal reduction is done again with RC2 [19]. Let cpl l denote the implementation applying
lexicographic optimization while cpl lλ1 trades off model accuracy for the number of literals
used, with λ1 = 0.005. Let cplr denote the implementation with post-hoc rule reduction
applied using the Gurobi ILP solver [14]. The configuration with both post-hoc lexicographic
optimization and rule reduction is denoted cpl lr. Finally, the proposed approach applying
exhaustive compilation C = F is referred to as cplf .

Competition. Our approach is compared against: twostg a two-stage MaxSAT approach [18]
for DSes perfectly accurate on the training data; opt another MaxSAT approach [50] for
perfectly accurate DSes; spλ1 a sparse alternative to opt by the same authors (with λ1 = 0.005)
optimizing like cpl lλ1 ; imli1 and imli16 using MaxSAT-based IMLI [12] to minimize the
number of literals given a predefined number of rules (we use 1 or 16); ids a state-of-the-
art approach [29] based on smooth local search;5 ripper a popular heuristic DS algorithm
RIPPER [8]; and CN2 (referred to as cn2 ) another heuristic algorithm [7, 6].6

Datasets. For the evaluation, 59 publicly available datasets from UCI Machine Learning
Repository [9] and Penn Machine Learning Benchmarks [41] are considered. We apply 5-fold
cross validation, resulting in 295 pairs of training and test (unseen) data. For the sake of a fair
comparison, the datasets used are preprocessed so that each original feature i ∈ F is replaced
with a number of non-intersecting feature intervals xi < dij defined by the XGBoost model
(see Section 2). This guarantees that all competitors tackle the same problem instances.

5.1 Exhaustive BT Compilation
The first experiment compares exhaustive compilation, where C = F is the entire feature
space. This is impractical except for 6 small benchmarks.

Results. Here we compare cplf with the competition in terms of accuracy, the total number
of literals used and explanation size. We present the results as cactus plots showing the
number of datasets that e.g. reach a certain accuracy, or finish in a certain runtime, for each
method. These experimental results are shown in Figures 2 and 3 as well as the average
results across folds are described in Table 2 where only the results of the datasets completely
solved by compared competitors are presented. Note that cplf is nowhere near as scalable as
the approaches described in the later experiments, but it is the most accurate approach to
creating DSes we are aware of.

Test accuracy. An instance is considered misclassified if either there exists a rule of a
wrong class that covers it, or it is not covered by any rule of the correct class. Thus, the test
accuracy in this paper is calculated as n−g

n , where n is the total number of instances in the
test data and g is the total number of misclassified instances. If an approach fails to train a
model within the time limit, we assume its accuracy to be 0% for this dataset.

5 Since the original implementation performs poorly [22], here we consider the new implementation of
IDS [10], which is claimed to be orders of magnitude faster than the original implementation.

6 Note that since RIPPER and IMLI compute a single class only given the training data, both of these
competitors are augmented with a default rule predicting a class (1) different from the target class
and (2) represented by the majority of training instances. Other algorithms, including our approach,
incorporate a default rule that assigns a class based on the majority class in the training instances.
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Figure 2 Accuracy of exhaustive compilation. The standard interpretation of cactus plots is
assumed, i.e. a plot sorts the datapoints for each method by the y-axis value, and then shows them
in increasing order independently of other methods. Thus, the order of datasets/folds differs for
different methods. Also, the order of datasets for the same method differs in different subplots.
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(b) Explanation size.

Figure 3 Succinctness of exhaustive compilation.

As can be seen in Figure 2b and Table 2, the best accuracy is achieved by BTs and cplf .
In fact, these models share the same accuracy (this is also confirmed in Figure 2a), which
should not come as a surprise given that cplf replicates the behavior of the BT in the entire
feature space F (see Proposition 8).

Model Complexity. In general, complexity of a DS model can be measured by the total
number of literals used in this DS. The total number of literals used in DS models is compared
in Figure 3a and Table 2. Though the accuracy of DSes trained by cplf outperforms the
other competitors, these models are significantly larger, which is no surprise given that cplf

computes many more rules with no post-hoc reduction applied.

Explanation size. Explanation size is defined as the number of literals required to explain
an instance.7 This is arguably more important than the model size, since it defines “how
hard” it is to understand an individual explanation. A small DS model tends to provide

7 See [51] for details.
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Table 2 Accuracy, number of literals used, and explanation size across folds.

Approach Dataset
cardiotocography hayes-roth iris new-thyroid orbit zoo

Accuracy (%)
bt 100.0 84.38 96.0 96.74 99.66 96.0

cplf 100.0 84.38 96.0 96.74 99.66 96.0
spλ1 100.0 73.44 94.0 91.63 99.43 89.05
opt 100.0 70.63 93.33 91.63 99.54 93.05

twostg 100.0 71.25 92.67 92.09 99.54 91.1
cn2 100.0 62.5 92.67 93.02 99.54 89.1

ripper 45.3 66.25 57.33 80.93 94.11 60.33
ids 27.23 43.75 58.67 76.28 85.29 40.62

imli16 27.23 38.75 25.34 69.77 70.55 43.33
imli1 45.3 39.37 32.67 26.98 8.93 60.33

Number of literals used
cplf 3120.0 76.0 214.0 3614.2 729.8 1422
spλ1 21.0 33.5 9.0 15.4 10.0 23.2
opt 21.0 63.6 19.4 23.0 11.8 30.0

twostg 21.0 64.2 19.8 22.6 11.8 29.8
cn2 21.0 116.2 27.2 36.6 13.2 40.8

ripper 3.0 12.8 5.0 8.2 4.0 3.0
ids 21.0 21.6 19.8 20.0 25.0 14.2

imli16 5.0 2.2 7.4 7.4 6.4 5.0
imli1 3.0 2.2 3.0 4.2 3.0 3.0

Explanation size
cplf 7.26 3.76 3.02 4.9 3.18 5.4
spλ1 2.0 6.31 2.45 4.13 2.86 3.64
opt 2.0 5.41 2.76 4.3 2.94 2.96

twostg 2.0 5.4 2.87 4.23 2.94 3.33
cn2 2.0 6.94 3.02 4.47 3.02 4.05

ripper 2.73 10.15 4.3 4.3 3.15 2.59
ids 16.08 18.23 13.06 7.74 6.23 9.28

imli16 2.0 2.2 2.1 1.97 2.8 2.46
imli1 2.18 2.2 3.0 4.0 3.0 2.2

compact explanations but it is not always accurate. As can be seen in Figure 3b and Table 2
and similar to the total number of literals used in DSes, cplf requires more literals to explain
an instance than all competitors except ids.

A crucial observation to make here is that we test explanation size for each of the test
instances available. Although test data are meant to extrapolate the overall unseen data,
such approximation of the unseen feature space is not ideal. As a result, there may be
numerous instances in F uncovered by all the approaches but cplf , in which case it will
be the only approach providing a user not only with a prediction but also with a succinct
explanation of the prediction made.

5.2 BT Compilation Targeting Training Data
Compilation to cover the training set C = E is much more efficient, and the main usage we
expect of our algorithms.

Scalability. Figure 4a depicts scalability of all selected algorithms on the 295 considered
datasets. Note that runtime of our approach includes BT training time. The best performance
is demonstrated by the proposed implementation, i.e. cpl and cpl∗, ∗ ∈ {l, r, lr, lλ1}, where
all selected datasets are solved within the time limit. This is not surprising since the approach
is an anytime algorithm that can always return a valid DS. As for other competitors, the
heuristic method ripper and the MaxSAT approaches imli1 as well as imli16 also solve all
considered datasets. Next is the heuristic algorithm cn2, where 235 datasets are solved
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Figure 4 Summary of experimental results when the competitors aim at training a DS given
training data E (i.e. C = E).

within the 3600s time limit. Followed by ids, which solves 166 considered datasets. The
two-stage MaxSAT approach twostg successfully addresses 130 datasets, while the other
MaxSAT algorithm for perfect decision sets opt and its sparse alternative spλ1 solve 65 and
63 datasets respectively.

Test Accuracy. The accuracy among the selected approaches is shown in Figure 4b. The
average accuracy among all selected datasets for BTs is 77.34%, beating all DS approaches.
The highest accuracy among DSes is achieved by all the configurations of the proposed
approach, i.e. cpl and cpl∗, where the average accuracy ranges from 54.01% (cpl lλ1) to
57.49% (cpl lr).8 Unsurprisingly, the accuracy in cpl lλ1 is lower than the other configurations
since cpl lλ1 trades off training accuracy on the number of literals in the computation process.

Next most accurate are the heuristic methods cn2 (48.03%) followed by ripper (44.81%).
The average accuracy of imli16 and imli1 is 35.47% and 29.7% respectively, while the average
accuracy of twostg is 29.6% and ids is 26.78. Finally, the worst accuracy is demonstrated
by spλ1 and opt (18.84% and 18.27% on average respectively) as these tools fail to provide
prediction information for many datasets within the time limit. We will omit further
discussion of sp and optλ1 since they solve so few datasets.

8 Note that most datasets we used represent non-binary classification. Also, DSes are not to be compared
with BTs. As Figure 4b shows (and as our work aims to demonstrate), our approach outperforms the
state-of-the-art DS inference methods in terms of accuracy.
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Figure 5 Comparison of cpllr vs. cn2 and ripper in terms of accuracy and explanation size.
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Figure 6 cpllr vs. imli16 and twostg in terms of accuracy and explanation size.
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Model Complexity. Figure 4c illustrates the comparison among selected approaches regard-
ing the total number of literals used in each DS solution. The average number of literals are
in order: imli1 (2.77), imli16 (8.26), ids (21.14), ripper (38.47), cpl lλ1 (118.47), cpl lr (157.53),
cpl l (213.27), twostg (265.98), cplr (584.39) cpl (620.82), cn2 (700.49). Clearly, rule reduction
and literal reduction can significantly reduce the size of the model without significantly
affecting accuracy. Note how our approaches while significantly larger than the least accurate
competitors, are significantly smaller than the most accurate competitor cn2.

Explanation Size. Figure 4d shows the explanation size for each competitor. The aver-
age explanation sizes are in order: imli1 (2.61), imli16 (3.00), cpl lλ1 (12.14), ids (15.28),
twostg (17.5), cpl lr (25.34), cpl l (26.18), ripper (29.08), cn2 (81.93), cplr (234.46), cpl (240.88).
Figure 4d demonstrates that post-hoc literal reduction not only helps decrease the number
of literals required to explain DS models, but also enables DSes to remain accurate, whereas
rule reduction does not contribute to smaller explanations. With literal reduction applied
our approaches are very competitive in terms of explanation size.

Detailed Comparison. While cactus plots allow us to compare many methods over a large
suite of benchmarks, they do not allow direct comparison on individual benchmarks. We
provide a detailed comparison of cpl lr versus other decision set inference approaches in
Figures 5 and 6, including cn2, ripper, twostg, and imli16.9 The scatter plots depicting
explanation size are obtained for the datasets solvable by both competitors. Note that cpl lr

can generate more accurate DSes than the competitors. Also observe that the explanation
size of DSes computed by cpl lr is smaller than cn2 and comparable with twostg. Although
the explanation size of DSes in cpl lr is larger than ripper and imli16, the two approaches are
less interpretable as they compute DSes representing only one class.

Summary. The experimental results were performed on various datasets, demonstrating
that our approach computes DSes that outperform the state-of-the-art competitors in terms
of accuracy and yield comparable explanation size to them.

6 Conclusions

This paper introduced a novel anytime approach to generating decision sets by means of
on-demand extraction of generalized abductive explanations for boosted tree models. It
can be used for exhaustive compilation of a BT model wrt. the entire feature space, or
target a set of training instances. Augmented by a number of post-hoc model reduction
techniques, the approach is shown to compute decision sets that are more accurate than
decision sets computed by the state-of-the-art algorithms and comparable with them in terms
of explanation size.

As the proposed approach targets generating a decision set by compiling a BT, a natural
line of future work is to extend the proposed approach to compile BTs into the other
interpretable models, i.e. decision trees and decision lists, making use of AXp extraction for
BTs. Additionally, another future work is to apply AXp extraction to compile other accurate
black box models, e.g. neural networks, into decision sets.

9 The average results across the folds are given in the appendix.
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A Summaries of Results Across Folds
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(a) Runtime.
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(b) Accuracy.

Figure 7 Experimental results of runtime and accuracy across folds.
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(b) Explanation Size.

Figure 8 Experimental results of model complexity and explanation size across folds.

Figures 7 and 8 illustrate the average experimental results across folds regarding scalability,
accuracy, model complexity, and explanation size. Since 5-fold cross validation is used, these
results for each dataset are obtained from the average of 5 pairs of training and test data.
Here, observations similar to those described in Section 5 can be made, i.e. the best
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scalability and accuracy among selected DS competitors are both demonstrated by cpl and
cpl∗, ∗ ∈ {l, r, lr, lλ1} , while imli1 and imli16 show the smallest model complexity and
explanation size.
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Figure 9 cpllr vs. CN2 and RIPPER across folds in terms of accuracy and explanation size.
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Figure 10 cpllr vs. imli16 and twostg Across Folds in terms of accuracy and explanation size.

B Detailed Comparisons Across Folds

In this appendix, we provide a detailed comparison of cpl lr versus other decision set inference
approaches across folds.

Figure 9 and Figure 10 detail the comparisons of cpl lr with CN2, RIPPER, imli16 and
twostg in terms of average accuracy and explanation size across folds. As can be seen in
Figure 9a, the accuracy of DSes generated by cpl lr is higher than the accuracy of CN2,
where the average accuracy is 57.49% and 48.03%, respectively. Additionally, Figure 9b
demonstrates that the explanation size of DSes produced by CN2 (81.93 on average) can be
two orders of magnitude larger than the explanation size of cpl lr (25.88 on average).

Figure 9c illustrates that the average accuracy in RIPPER is 44.81%, which is 12.68%
lower than the accuracy in cpl lr. Although Figure 9d depicts that RIPPER is comparable
with cpl lr regarding explanation size (29.08 and 25.34 on average respectively), RIPPER is
less interpretable as it computes DSes representing only one class.

As can be observed in Figure 10a, the accuracy of twostg (29.67% on average) is 27.82%
lower than the accuracy in cpl lr while Figure 10b illustrates that the explanation size is
comparable between the two approaches. Finally, Figure 10c demonstrates that the accuracy
of imli16 is 22.02% lower than the accuracy of cpl lr on average. However, as can be seen
in Figure 10d, the explanation size of imli16 is smaller than the explanation size of cpl lr

but imli16 generates DSes targeting only a single class, which significantly diminishes the
interpretability of computed DSes.
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