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Abstract

A graph is induced k-universal if it contains all graphs of order k as an induced subgraph. For over
half a century, the question of determining smallest k-universal graphs has been studied. A related
question asks for a smallest k-universal tournament containing all tournaments of order k.

This paper proposes and compares SAT-based methods for answering these questions exactly for
small values of k. Our methods scale to values for which a generate-and-test approach isn’t feasible;
for instance, we show that an induced 7-universal graph has more than 16 vertices, whereas the
number of all connected graphs on 16 vertices, modulo isomorphism, is a number with 23 decimal
digits Our methods include static and dynamic symmetry breaking and lazy encodings, employing
external subgraph isomorphism testing.
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Figure 1 A smallest induced 4-universal graph and how all 11 graphs of order 4 embeds into it.
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Figure 2 A smallest 4-universal tournament and how all 4 tournaments of order 4 embeds into it.

1 Introduction

A graph G is induced k-universal if it contains all k-vertex graphs as induced subgraphs; in
other words, any k-vertex graph can be obtained from G by deleting some of G’s vertices.
This notion of a universal graph, which extends naturally to directed graphs and tournaments
(orientations of complete graphs) was introduced by Rado in 1964 [25] and has since then
attracted much attention in combinatorics. Figures 1 and 2 provide examples of a universal
graph and a universal tournament, respectively. The fundamental question is to determine
for each integer k ≥ 1 the smallest n such that an induced k-universal graph with n

vertices exists; this number is denoted f(k) = n. In 1965, Moon [21] obtained the bounds
2(k−1)/2 ≤ f(k) ≤ O(k · 2k/2); Alstrup et al. [2] recently improved the upper bound to
f(k) ≤ 16 · 2k/2. The tight asymptotic upper bound of f(k) ≤ (1 + o(1))2(k−1)/2 is due to
Alon [1].

In contrast to these general bounds and asymptotic results, very little is known about
exact f(k) values, even for small k. Trimble [26] carried out a brute-force search, expanding
an approach suggested by Preen [24], and could determine the values of f(k) for k ≤ 6 and
the interval 16 ≤ f(7) ≤ 18. The brute-force search enumerates all candidate n-vertex graphs
up to isomorphism and tests for each of them whether it contains all the k-vertex graphs
as induced subgraphs. We refer to the k-vertex graphs that need to be checked as induced
subgraphs as pattern graphs. Tools exist for the isomorph-free enumeration of all connected
n-vertex graphs (we can assume that a candidate graph is connected), but the number of
such graphs exceeds eleven million for n = 10, and one billion for n = 11 [23, A001349].
Thus, the feasibility of the brute-force approach quickly hits a rigid boundary. In particular,
we cannot tighten the gap 16 ≤ f(7) ≤ 18 in this way, as enumerating all graphs with 16
vertices is far out of reach, although we can easily enumerate all the 7-vertex pattern graphs;
the exact number is 1044 [23, A000088].

This paper proposes new methods that allow us to break this boundary. The idea is
to formulate the problem as a synthesis problem for the universal graph rather than the
easier problem of testing a candidate graph for being universal. This way, we can avoid
the bottleneck of enumerating all candidate graphs. We formulate the synthesis problem in
propositional logic to harness the power of solvers for the propositional satisfiability problem
(SAT) [8]. Suppose the sought-for universal graph G has the numbers 1, . . . , n as its vertices.
For each pair 1 ≤ i < j ≤ n, we introduce a propositional variable ei,j (an edge variable)
whose truth value determines whether there is an edge between vertices i and j in G.

We propose and compare various strategies and techniques of encoding the property of G
being induced k-universal. Each of the encodings must combine two fundamental properties:
(i) to ensure that the found graph is indeed induced k-universal and (ii) to break symmetries
to minimize the enormous search space. We have two fundamentally different approaches for
properties (i) and (ii).

Our first approach for ensuring that the found graph is indeed induced k-universal uses
a direct SAT encoding. For the relevant cases, the number of pattern graphs is reasonably
small, and we can enumerate them up to isomophism. For each pattern graph, we obtain
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a formula which constrains the edge variables in such a way that the sought-for universal
graph contains an induced subgraph that is isomorphic to the pattern graph. A conjunction
over the formulas, one for each pattern graph, yields the SAT encoding.

Our second approach for ensuring universality utilizies the Glasgow subgraph solver
(GSS) [19], a powerful constraint-based tool for testing subgraphs. However, during the SAT
solver’s search we don’t have a candidate graph available for testing whether it accommodates
all the required induced subgraphs. A partial truth assignment instead sets a subset of
the edge variables to true or false, with some edge variables remaining undecided. Thus, a
partial truth assignment gives rise to a partially defined graph. Our objective is to find out
already for a partially defined graph whether it could be extended to a fully defined induced
k-universal graph. Indeed, we could achieve this by accessing GSS’s internal functionality.

Our first approach to breaking symmetries utilizes the SAT modulo Symmetries (SMS)
framework [17]. Also SMS works on partially defined graphs as represented by a partial truth
assignment to edge variables. Whenever the solver determines an edge, the partially defined
graph represented by the current partial truth assignment is sent to an external propagator,
which determines whether the partially defined graph can be extended to a fully defined
graph that is canonical (i.e., a unique graph within its ismorphism class). If not, a clause is
sent back to the solver.

Our second approach to symmetry breaking is based on the concept of templates which
serve two purposes: symmetry breaking and search space partition. In an offline phase, we
fix a small collection of highly symmetric pattern graphs and compute all possible ways these
pattern graphs can interact as induced subgraphs in the universal graph, up to isomorphism.
Each possible interaction gives rise to a template. By hardcoding a template, we get a formula
that is satisfiable if and only if there exists an induced k-universal graph on n vertices in
which the fixed collection of pattern graphs interact as prescribed in the template. f(k) ≤ n

if an only if for at least one of the templates, the corresponding formula is satisfiable. In
addition to the symmetry breaking aspect, the templates approach allows us to parallelize
the search, running SAT calls for various templates independently.

We also evaluate our SAT-based approach to determining smallest k-universal tourna-
ments. A tournament is a directed graph that can be obtained from a complete undirected
graph by orienting its edges. The name tournament originates from such a directed graph’s
interpretation as the outcome of a round-robin tournament in which every player encounters
every other player exactly once, and in which no draws occur. Tournaments are a central
combinatorial object whose properties have been intensively studied. The notion of univer-
sality applies to tournaments in a natural way: we say that a tournament is k-universal if it
contains each tournament on k-vertices as a subgraph. Let t(k) denote the smallest number
of vertices a k-universal tournament can have. The study of k-universal tournaments goes
back more than 50 years to Moon’s book (entirely dedicated to tournaments [22]) where
he determined the bounds 2(k−1)/2 ≤ t(k) ≤ O(k · 2k/2). The improvements on the bounds
parallel the ones for induced k-universal graphs: f(k) ≤ 16 · 2⌈k/2⌉ by Alstrup et al. [2] and
f(k) ≤ (1 + o(1))2(k−1)/2 by Alon [1].

The situation regarding exact values for t(k) is even worse than for f(k). While the
number of tournaments up to isomorphism is for all k ≤ 19 [23, A000568], very little can
be found on the value of t(k) in the literature. The only obvious values are t(1) = 1 and
t(2) = 2. In Moon’s book [22], it is left as an exercise to the reader to determine the value of
t(3) and t(4), indicating that these numbers might be easily deduced.

We implemented our SAT-based approaches to obtain new results on smallest induced
k-universal graphs and smallest k-universal tournaments. In particular, we could improve the
known lower bound for the order of an induced 7-universal graph by showing that no induced
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Table 1 Overview of results along the order k of the pattern graphs or tournaments. G(k)/T (k)
give the number of pattern graphs/tournaments of order k, f(k)/t(k) give the order of a smallest
(induced) k-universal graph or tournament, and F (k)/T (k) their number modulo ismomorphism,
respectively. New results are indicated in bold face.

Graphs Tournaments

k G(k) f(k) F (k) T (k) t(k) T (k)

1 1 1 1 1 1 1
2 2 3 2 1 2 1
3 4 5 5 2 4 3
4 11 8 438 4 5 1
5 34 10 22 12 8 1643
6 156 14 >36294 56 10 1088
7 1044 [17,18] – 456 [13,15] –

7-universal graph with 16 vertices exists, leaving the possibilities 17 and 18 for the smallest
solution, and we could determine the exact order of smallest k-universal tournaments up to
k = 6 and leaving the possibilities 13,14, and 15 for the smallest solution for k = 7. We also
determined the precise number of optimal solutions for k-universal tournaments for k ≤ 6,
up to isomorphism, which is of independent interest for combinatorial research. Our main
results are summarized in Table 1, smallest k-universal tournaments that we identified are
shown in Figures 6 and 7 in the appendix.

2 Preliminaries

We denote the set {1, . . . , n} by [n] and the set {m,m+ 1, . . . , n} by [m,n] for m ≤ n.

2.1 Graphs
We consider simple undirected graphs G, denoting the vertex set and the edge set of G by
V (G) and E(G), respectively. The order or a graph is the number |V (G)| of its vertices. An
edge between vertices u, v ∈ V (G) is denoted uv or equivalently vu. A graph G′ is a subgraph
of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ of G is induced if for any
u, v ∈ V (G′), uv ∈ E(G) implies uv ∈ E(G′). Thus, an induced subgraph is determined by
its set of vertices.

The neighborhood of a vertex u ∈ V (G) is denoted NG(u), i.e., NG(u) := {x ∈ G | ux ∈
E(G) }. Two vertices v, v′ ∈ G are twins if they have the exact same neighbors excluding
each other, i.e., NG(u) \ {v} = NG(v) \ {u}.

The complement graph G of a graph G has V (G) = V (G) and E(H) := {uv | u ≠ v ∈
V (H), uv ̸∈ E(H) }.

We denote the complete graph of order k by Kk, the complete bipartite graph by Kl,r.
A monomorphism from H to G is an injective mapping ϕ : V (H) → V (G) such that for

all u, v ∈ V (H) we have ϕ(u)ϕ(v) ∈ E(G) if uv ∈ E(H). Such a monomorphism ϕ is faithful
if for all u, v ∈ V (H) we have uv ∈ E(H) if ϕ(u)ϕ(v) ∈ E(G) [11]. We say H embeds into
G if there is a faithful monomorphism from H to G. A bijective faithful monomorphism
is an isomorphism. We refer to H as the pattern graph and G as the target graph. For a
monomorphims ϕ from H to G we put ϕ(V (H)) := {ϕ(v) | v ∈ V (H) }.
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Let G(k) denote the class of all graphs of order k up to isomorphism. A graph G is
induced k-universal if all H ∈ G(k) embed into G. f(k) is the smallest order of an induced
k-universal graph, and F (k) is the number of non-isomorphic k-universal graphs of order
f(k).

2.2 Partially Defined Graphs
The notion of partially defined graphs was introduced in the context of SMS [17], for
capturing the combinatorial object represented by a partial truth assignment on the edge
variables. In this paper, we utilize this concept for two further purposes: to check with
an external subgraph solver whether the current branch of the search has the potential of
success (Section 4.5) and for the formulation of our template method for symmetry breaking
and search partition (Section 4.6).

A partially defined graph is a graph where some edges are undefined in the sense that
their presence in the graph is open. Formally, a partially defined graph G is a graph whose
edge set E(G) is split into disjoint sets Ed(G) and Eu(G), the sets of defined and undefined
edges, respectively. G is fully defined if Eu(G) = ∅. For a partially defined graph G, X (G)
denotes the set of all fully defined graphs G can be extended to, i.e., G′ ∈ X (G) if and only
if V (G′) = V (G), Ed(G) ⊆ E(G′) ⊆ E(G).

We extend the notion of a faithful monomorphism and an isomorphism to partially defined
graphs. Let H,G be partially defined graphs. An injective mapping ϕ : V (H) → V (G) is a
faithful monomorphism from H to G if for all u, v ∈ V (H) it holds that
1. uv ∈ Ed(H) if and only if ϕ(u)ϕ(v) ∈ Ed(G), and
2. uv ∈ Eu(H) if and only if ϕ(u)ϕ(v) ∈ Eu(G).
If there is a faithful monomorphism form H to G we say that H embeds into G. We say
that H and G are isomorphic if there is a bijective faithful monomorphism from H to G.

2.3 Directed Graphs and Tournaments
We denote a directed graph (or digraph) D by its vertex set V (D) and arc set A(D) ⊆
V (D) × V (D). A digraph D is an oriented graph if it has no directed digon {(u, v), (v, u)}.
(Induced) subdigraphs, isomorphisms, and faithful monomorphisms are defined for digraphs
analogously to graphs. A tournament is an oriented graph with a maximal number of arcs,
i.e., adding any further arc creates a digon. A tournament is transitive if it contains no
directed cycles. A tournament D′ is a subtournament of tournament D if it is a subdigraph
of D. If a tournament H is isomorphic to a subtournament of D, then we say that H
embeds into D. Hence H embeds into D if and only if there exists a faithful monomorphism
ϕ : V (H) → V (D).

Let T (k) denote the class of all tournaments of order k up to isomorphism. A tournament
D is k-universal if all H ∈ T (k) embed into D. Let T (k) denote the number of non-isomorphic
tournaments of order t(k) that are induced k-universal tournaments.

2.4 SAT
We consider propositional formals in conjunctive normal form (CNF). A CNF formula is
a conjunction of clauses, each clause is a disjunction of literals, a literal is a propositional
variable x or its negation ¬x. A propositional formula F is satisfiable if there exits a
mapping τ that assigns each variable a truth value ∈ {0, 1} such that each clause contains a
literal x with τ(x) = 1 or a literal ¬x with τ(x) = 0. A truth assignment is partial for a CNF
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formula if it is defined only for a subset of the formula’s variables. SAT solvers are tools that
decide whether a given CNF formula is satisfiable or not [8]. Today’s most powerful complete
SAT solvers follow the conflict driven clause learning (CDCL) paradigm. Modern CDCL
SAT solvers like Cadical [4] can certify the unsatisfiability of a CNF formula by producing
DRAT proofs (deletion, reverse asymmetric tautology) that can be independently checked
and verified [12, 27].

3 A Lower Bound for Induced k Universal Graphs

Trimble [26] showed that there is no graph of order less than 2k + 2 that is universal for
{Kk,Kk,K3,3,K3,3}, for all k ≥ 6. We extend this argument to show the following more
general proposition, which gives a strictly tighter lower bound for k ≥ 8.

▶ Proposition 1. 2k + 2⌊ k
2 ⌋ − 4 ≤ f(k) for all k ≥ 2.

Proof. Suppose G is an induced k-universal graph. Graphs Kk and Kk are both elements
of G(k), and therefore there exist faithful monomorphisms ϕK : V (Kk) → V (G) and
ϕI : V (Kk) → V (G). Let S1 := {ϕK(v) | v ∈ V (Kk) }, S2 := {ϕI(v) | v ∈ V (Kk) } and
S3 := V (G)/(S1 ∪ S2). Clearly, the subgraphs induced by S1 and S2 are a clique and an
independent set, respectively, and therefore may overlap by no more than one vertex. This
implies that |S1 ∪ S2| ≥ 2k − 1 and |S3| ≤ n − 2k + 1. Define H := K⌊ k

2 ⌋,⌊ k
2 ⌋+(k mod 2).

Let G1 be an induced subgraph of G that is isomorphic to H. Since there are no edges
between the two cliques of G1, it must be the case that at least one of the two cliques of G1
does not intersect S1. Denote this clique by C. Since S2 is an independent set in G, C
can only intersect S2 by at most one vertex. Since C has at least ⌊ k

2 ⌋ vertices, it follows
that C intersects S3 by at least ⌊ k

2 ⌋ − 1 vertices. In other words, the subgraph induced by
S3 contains a clique D of size ⌊ k

2 ⌋ − 1.
Now consider the graph H. Since H is an induced subgraph of G, it follows that H = H

is an induced subgraph of G. We can repeat the argument of the previous paragraph with the
roles of S1 and S2 reversed to show that the subgraph induced by S3 contains an independent
set of size ⌊ k

2 ⌋ − 1. Since this independent set can overlap with the clique D in at most
one vertex, it follows that the minimal size of S3 is 2(⌊ k

2 ⌋ − 1) − 1. In other words, for any
k-universal graph of order n where S1 ∩ S2 ̸= ∅, n− 2k + 1 ≥ 2(⌊ k

2 ⌋ − 1) − 1, which implies
that f(k) ≥ 2k + 2⌊ k

2 ⌋ − 4. Hence, the proposition is shown. ◀

Proposition 1 gives us f(2) ≥ 2, f(3) ≥ 4, f(4) ≥ 8, f(5) ≥ 10, f(6) ≥ 14 and f(7) ≥ 16.
Note that for k = 4, 5, 6, the lower bound given by the proposition is also the exact value of
f(k). Even though it does not give a tighter lower bound for f(7), it does improve on the
existing knowledge for k ≥ 8.

▶ Corollary 2. Let G be a k-universal graph. If there exist faithful monomorphisms ϕK :
V (Kk) → V (G) and ϕI : V (Kk) → V (G) with ϕK(V (Kk)) ∩ ϕI(V (Kk)) = ∅, then the order
of G is at least 2k + 2⌊ k

2 ⌋ − 3.

4 Encodings for Induced k universal Graphs

Throughout this section, we fix an integer n and consider a potential universal graph G with
V (G) = [n] whose edges are represented by edge variables eu,v, 1 ≤ u < v ≤ n.
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4.1 Encoding Universality
First, we define a CNF formula M(H,n) that ensures that (mu,v)u∈V (H),v∈V (G) encodes an
injective mapping from V (H) to V (G).

M(H,n) :=
∧

u∈V (H)

( ∨
x∈[n]

mu,x

)
∧

∧
u ̸=v∈V (H)

x∈[n]

(¬mu,x ∨ ¬mv,x) ∧
∧

u∈V (H)
x̸=y∈[n]

(¬mu,x ∨ ¬mu,y)

Now, we specify a CNF formula F (H,n) which is satisfiable if and only if H embeds into
G. F (H,n) encodes the existence of a faithful monomorphism ϕ from H to G in terms of
variables mu,v, u ∈ V (H), v ∈ V (G), which are true if and only if ϕ(u) = v.

F (H,n) := M(H,n) ∧
∧

uv∈E(H)
1≤x<y≤n

(¬mu,x∨¬mu,y ∨ex,y)∧
∧

u̸=v∈V (H)
s.t. uv /∈E(H)

1≤x<y≤n

(¬mu,x∨¬mv,y ∨¬ex,y).

The second and third conjunct ensure that the mapping preserves edges and non-edges,
respectively. The formula

U(k, n) =
∧

H∈G(k)

F (H,n)

is satisfiable if and only if there exists a k-universal graph on n vertices. From a satisfying
assignment we can read off a k-universal graph.

4.2 Symmetry-breaking Based on Twins
A basic symmetry-breaking can already be achieved by observing the symmetries of a pattern
graph H ∈ G(k). Specifically, if v, v′ ∈ V (H) are twins and ϕ is a faithful monomorphism
from H to G, then ϕ′ : V (H) → V (G) defined as

ϕ′(x) :=


ϕ(v′) if x = v,

ϕ(v) if x = v′,

ϕ(x) otherwise,

is also a faithful monomorphism. This means that we can always require that the faithful
monomorphism encoded by (mu,v)u∈V (H),v∈V (G) preserves the order of vertices (seen as
integers) for twins. The following CNF formula encodes this additional requirement.

Twin(k) :=
∧

H∈G(k)
u<v∈V (H)

s.t. u,v are twins
1≤x<y≤n

¬mv,x ∨ ¬mu,y

4.3 Embedding Kk and Kk

From preliminary experiments we observed that fixing (or “hardcoding”) some edges/non-
edges of the target graph can drastically speed up the solving process. Trimble [26] hardcodes
Kk and Kk in his experiments, and we agree that it is a good place to start. Since the two
subgraphs can have at most one overlapping vertex, we have the following two formulas, each
hardcoding one of the two possibilities. We assume n ≥ 2k.

KIdisjoint(k) :=
∧

1≤x<y≤k

ex,y ∧ ¬ex+k,y+k, KIoverlap(k) :=
∧

1≤x<y≤k

ex,y ∧ ¬ex+k−1,y+k−1.

CP 2023
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In Section 4.6, we will extend this idea by hardcoding more pattern graphs.
To sum up, the following two encodings are shared by all methods.

Ud(k, n) := U(k, n) ∧ Twin(k) ∧ KIdisjoint(k),
Uo(k, n) := U(k, n) ∧ Twin(k) ∧ KIoverlap(k).

Note that U(k, n) is satisfiable if and only if Ud(k, n) or Uo(k, n) is satisfiable.

4.4 SAT Modulo Symmetries (SMS)
If a SAT solver checks the satisfiability of Ud(k, n) or Uo(k, n), it does not break symmetries
and considers isomorphic copies of graphs implicitly represented by the edge variables, making
the approach impractical. Fortunately, the SAT modulo Symmetries (SMS) framework [17]
offers a solution.

For two (fully defined) graphs G1, G2, let G1 ⪯ G2 if and only the adjacency matrix of G1
is lexicographically smaller or equal to the adjacency matrix of G2 (we consider the matrix
as the string obtained by concatenating the rows of the matrix).

SMS works as follows. Whenever the SAT solver decides on an edge variable eu,v, the
partially defined graph G represented by the current truth assignment on the edge variables
is sent to an external propagator. With a certain pre-determined probability the propagator
checks a necessary condition for X (G) containing a ⪯-minimal graph. If the condition is not
met, then this branch of the search can be terminated: a clause that excludes G is learned
and sent back to the SAT solver.

In our context, while the satisfiability of U(k, n) and Twin(k) are unaffected by our
choice of the ⪯-minimal graph as the representative target graph for each isomorphic class,
KIdisjoint(k) and KIoverlap(k) might cause an otherwise satisfying assignment to fail the
minimality check.

The solution to this is to take advantage of the following functionality of SMS. When
SMS checks the ⪯-minimality of a partially defined graph G, one can specify a partition P

of the vertex set such that ⪯-minimality is only checked among all partially defined graphs
that can be obtained from G by permuting vertices within an equivalence class of P . For
Ud(k, n), we give SMS the partition {[k], [k + 1, 2k], [2k + 1, n]}, and for Uo(k, n), we give
the partition {[k− 1], [k, k], [k+ 1, 2k− 1], [2k, n]}. The disadvantage of this adaption is that
we are not able to trim down search branches as efficiently, but the advantage is that we can
enjoy the speed-up brought by hardcoding a part of the target graph.

4.5 External Subgraph Isomorphism Testing
Next we lay out a lazy encoding strategy where we check during the SAT solver’s run whether
the partially defined graph represented by the current partial assignment to the edge variables
can be extended to a k-universal graph. We utilize the Glasgow subgraph solver (GSS) [19] to
achieve this. The GSS is a state-of-the-art solver for the subgraph isomorphism problem based
on constraint programming. Given a pattern graph H and a target graph G, the subgraph
isomorphism problem asks whether there exists a monomorphism from H to G. One of the
key concepts underlying the GSS’s functionality is to generate auxiliary graphs H1, . . . ,Hm

with V (H) = V (Hi), 1 ≤ i ≤ m, and G1, . . . , Gm with V (G) = V (Gi), 1 ≤ i ≤ m, such that
a mapping from V (G) to V (H) is a (faithful) monomorphisms from H to G if and only if
it is a monomorphisms from Hi to Gi, for every 1 ≤ i ≤ m. Now the solver searches for a
mapping from V (G) to V (H) that is a monomorphism from Hi to Gi, for every 1 ≤ i ≤ m.
For instance, the GSS can decide whether H is isomorphic to an induced subgraph of G by
setting H1 = H, G1 = G, H2 = H, and G2 = G.
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We utilize this functionality of the GSS to check whether a partially defined graph can
be extended to an inducted k-universal graph.

For a partially defined graph G we define two fully defined graphs G¬0 and G¬1 by setting
V (G¬0) = V (G¬0) = V (G),

E(G¬0) = {uv | u ̸= v ∈ V (G), uv ∈ Ed(G) ∪ Eu(G) }, and
E(G¬1) = {uv | u ̸= v ∈ V (G), uv ̸∈ Ed(G) }.

▶ Proposition 3. Let H be a graph and G a partially defined graph G. H embeds into some
graph in X (G) if and only if there is a mapping from V (H) to V (G) that is a monomorphism
both from H to G¬0 and from H to G¬1,

Thus, we can use the GSS with a minimal change to its interface to check whether
H embeds into some graph in X (G). We integrate the subgraph solver into the external
propagator of the SMS framework. Whenever the SAT solver decides on an edge variable
eu,v, the partially defined graph G represented by the current truth assignment on the edge
variables is sent to the propagator. The propagator checks whether all graphs from a set of
randomly selected pattern graphs of a certain size are embeddable into G. If the check fails,
this branch of the search can be terminated: a clause that excludes G is learned and sent
back to the SAT solver. We set up three parameters for this process to control the usage of
the subgraph solver: Sample size specifies the number of randomly selected pattern graphs.
Threshold specifies the minimal number of determined edges/non-edges that is required to
present in G for the embedability check to be performed. Finally, frequency specifies the
likelihood the embedability check is performed and is indicated as an integer f . Everytime
the SAT solver decides on an edge variable eu,v, if the threshold is met, then there is a 1/f
chance the emdedability check will be performed.

4.6 Templates
Next we propose a different approach, based on the concept of a template, which extends
the simple method of hardcoding edges or non-edges for speeding up the solving process
discussed in Section 4.3.

As it turned out, templates can be defined as partially defined graphs, but with a different
purpose than the partially defined graphs used in SMS. Fix a small collection of graphs
from G(k). We want each template to provide a distinct way in terms of how this small
collection of graphs can be embedded at simultaneously in the universal graph. Ideally, these
templates should allow us to hardcode as many edges/non-edges into the universal graph
as possible for the benefit of speed-up. At the same time, there should not be too many of
them, as we set a separate SAT instance of each template and need to show that all of them
are unsatisfiable to establish a lower bound. In the end, we also want them to be easy to
generate.

Let H ⊆ G(k). An (n,H)-template is a partially defined graph G such that there exists a
family of faithful monomorphism (δH : V (H) → V (G))H∈H with the additional condition
that for all x, y ∈ V (G), if there is no H ∈ H such that x, y ∈ δH(V (H)), then xy ∈ Eu(G).
Let H(n) denote the set of all (n,H)-templates modulo ismomorphism.

▶ Proposition 4. Let k < n integers and H ⊆ G(k). Then f(k) ≤ n if and only if X (G)
contains a k-universal graph for some G ∈ H(n).

According to this proposition, we can limit the search for an induced k-universal graph to the
graphs in X (G) for some G ∈ H(n). It remains to generate H(n) for suitable sets H for which

CP 2023



39:10 Searching for Smallest Universal Graphs and Tournaments with SAT

H(n) remains reasonably small. We accomplish that by representing templates (i.e., partially
defined graphs) as directed graphs and utlizing SMS for directed graphs as introduced by
Kirchweger et al. [16], as follows.

Let us define a mapping D from the set of partially defined undirected graphs to the set of
(fully defined) directed graphs: for each partially defined graph G, we put V (D(G)) := V (G)
and A(D(G)) := {uv ∈ Ed(G) | u > v }∪Eu(G). We also define the reverse mapping D′ from
directed graphs to partially defined undirected graphs: for each directed graph D, we put
V (D′(D)) := V (D), Ed(D′(D)) := {uv | uv ∈ A(D), vu ̸∈ A(D) } ∪ {uv | vu ∈ A(D), uv ̸∈
A(D) } and Eu(D′(D)) := {uv | uv, vu ∈ A(D) }. For any partially defined graph G we have
that D′(D(G)) and G are isomorphic.

We encode into CNF the condition for a directed graph D to be D(G) for some template
G of H(n), use SMS for digraphs to enumerate all such D modulo isomorphism, and then
apply D′ to recover the corresponding G. We encode the condition for a directed graph D to
be D(G) for some template G of H as follows.

D(H, n) :=
∧

H∈H

(
M(H,n) ∧

∧
uv∈E(H)
1≤x<y≤n

(mu,x ∧mv,y) → (¬ax,y ∧ ay,x) ∧
∧

uv ̸∈E(H)
1≤x<y≤n

(mu,x ∧mv,y) → (¬ax,y ∧ ¬ay,x)
)

∧
∧

1≤x<y≤n

(
(ax,y ∧ ay,x) ∨

∨
H∈H

(
∨

i∈V (H)

mi,x ∧
∨

i∈V (H)

mi,y)
)
.

The first three conjuncts in D(H, n) enforce that H is an induced subgraph of G, and the
last conjunct ensures that for all pairs u, v of V (G) such that u, v are not both in the range
of δH for all H ∈ H, where δH refers to the faithful monomorphism from H to G, we have
uv ∈ U(G).

By trial and error, we determined that an ideal set of pattern graphs to generate templates
for the task of determining f(7) is H4 := {K7,K7,K3,4,K3,4 }. Running SMS on D(H4, 16)
and D(H4, 17) gives us 350 and 2772 solutions, respectively. We recover the templates
from these solutions by applying D′. Then, we filter out isomorphic templates using Nauty
with the method explained in the Nauty and Traces User’s Guide [20], which converts
detecting isomorphisms between graphs with edge-colorings to that between graphs with
vertex-colorings. This leaves us with 40 and 359 templates, respectively. Hence we have
established the following result.

▶ Proposition 5. |H(16)
4 | = 40 and |H(17)

4 | = 359.

5 Encodings for k Universal Tournaments

5.1 Basic Encoding

For a fixed integer n, we consider a potential k-universal tournament G with V (G) = [n]
whose arcs are represented by arc variables au,v, u ̸= v ∈ [n]. The truth value of au,v

indicates whether there is an arc from u to v.
First, we specify a CNF formula F ′(H,n) which is satisfiable if and only if H embeds

into G, i.e., if H is isomorphic to a subtournament of G. The following CNF formula encodes
the existence of a faithful monomorphism ϕ from H to G, in a similar way F (H,n) encodes



T. Zhang and S. Szeider 39:11

the universality condition for universal graphs.

F ′(H,n) := M(H,n)∧
∧

x ̸=y∈[n]

(
(¬ax,y∨¬ay,x)∧(ax,y∨ay,x)

)
∧

∧
uv∈A(H)
1≤x<y≤n

(¬mu,x∨¬mv,y∨ax,y).

M(H,n) ensure that (mu,v)u∈V (H),v∈V (G) encodes an injective mapping from V (H) to
V (G). The second conjunct ensures that there is exactly one arc between any two distinct
vertices. The third conjunct ensures that the mapping preserves arcs. The formula

U ′(k, n) =
∧

H∈T (k)

F ′(H,n)

is satisfiable if and only if there exists a k-universal tournament on n vertices. From a
satisfying assignment we can read off a k-universal tournament.

5.2 Approaches to Universal Tournaments
For the SMS approach, we use a recent extension of the framework to directed graphs [16].

For the SAT approach, there are two more features that we add to the basic encoding.
The first feature is to hardcode an embedding of the transitive tournament onto [k].

TT(k) =
∧

1≤i<j≤k

ai,j

The second feature is to utilize the perfect symmetry-breaking clauses from Lohn et al.’s
work [18] who defined a series of CNF formulas I(t), 1 ≤ t ≤ 8, which they call isolators.
These isolators restrict arc variables to achieve a perfect symmetry-breaking for tournaments
in the sense that the satisfying assignments to I(t) are in 1-1 correspondence with the
tournaments of order t modulo isomorphism. Since the size of I(t) grows quickly in t, we
only utilize isolators for t ≤ 6.

Given l ≤ r, we write I(l, r) to denote the isolator resulting from considering [l, r] instead
of [r − l + 1] to be the underlying vertex set. To obtain the overall encoding TTI(k, n), we
start with TT(k) and see how many vertices there are in [k + 1, n]. If n− k ≤ 6, then we
add I(k + 1, n) to the encoding and finish. If n− k > 6, then we add I(k + 1, k + 6) to the
encoding and repeat this process with [k + 7, n]. For example, TTI(6, 10) = TT(6) ∧ I(7, 10)
and TTI(7, 16) = TT(7) ∧ I(8, 13) ∧ I(14, 16).

6 Certificates

There is a long tradition of computer-assisted proofs in mathematics; a famous example is the
proof of the Four-Color Theorem by Apple and Haken [3]. There are mathematical statements
whose proof seems to require extensive brute-force search, which is impossible for a human to
check [13]. For trusting mathematical statements established by such computational methods,
certifying the computational result with a formal proof that can be independently checked is
highly desirable. Proof checking should ideally be accomplished through a simple algorithm
whose correctness can be trusted or even fully verified. Most of the SAT-based methods
described in our paper can be independently verified. In particular, the runs of a CDCL
SAT solver on our encodings can produce a DRAT proof, for which a verified proof checker
DRAT-trim is available [12, 27]. This approach extends to SMS as follows [15]. During
the SMS run, we collect all the generated symmetry-breaking clauses and add them to the
clauses generated from the encoding. We can run a plain CDCL SAT solver on this extended
set of clauses that generates a DRAT proof. The validity of the symmetry-breaking clauses
can also be checked offline with a simple tool.
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One could extend the our current verification tool chain in various ways. One can formally
verify SAT encodings themselves [5, 6, 9] to provide additional trust in the obtained results.
To certify the correctness of auxiliary computations provided by the Glasgow subgraph
solver, one can utilize a Cutting Planes proof logging format [10]. What remains is the
usage of Nauty [20] for generating pattern graphs and occasionally for filtering isomorphic
copies, which does not support independent certification. The former usage, the generation
of pattern graphs, can easily be replaced by SMS. For the latter, if an isomorphism between
two objects has been found, it is easy to verify whether this is indeed a correct isomorphism.
On the other hand, if Nauty fails to identify two objects as being isomorphic, this would
only make our overall approach less efficient but would not alter the final results.

7 Experiments

7.1 Configurations

Based on the techniques discussed in Sections 4 and 5, we consider several configurations that
we test in our experiments. We use a naming convention for configurations, where a name
starting with UG indicates a configuration for universal graphs and a name starting with
UT indicates a configuration for universal tournaments. All UG configurations contain the
following basic encoding: the encoding for universality (Section 4.1), the symmetry breaking
for twins (Section 4.2), and the hardcoded Kk,Kk (Section 4.3). We distinguish between the
use of SMS and the use of SAT without SMS (plain SAT).

UG-SAT basic encoding with plain SAT.
UG-SMS basic encoding with SMS.
UG-SMS-GSS basic encoding with SMS extended with the Glasgow Subgraph Solver.
UG-SAT-Temp basic encoding together with templates from Section 4.6 with plain SAT.
UT-SMS encoding for universality from Section 5.1 with SMS.
UT-SAT-TTI encoding for universality with fixed transitive tournament and isolators from

Section 5.2 and plain SAT.

Theoretically, it is also possible to run SMS extended with GSS without the basic encoding.
However, the preliminary experiments we conduct show that this is impractical given the
drastically increased running time. Hence, we do not use this method in our main experiments.

7.2 Setup

The setup for the experiments is as follows. We generate G(k) and T (k) with Nauty 2.8.6 [20].
For configurations based on SMS, we use a recent SMS version that invoke a recent version
of the Cadical SAT solver through the new IPASIR-UP interface [7]. For configurations that
do not use SMS we employ Cadical as provided by the PySAT package [14]. We made minor
changes to GSS [19] to access its internal functionality. All non-standard tools can be found
in the supplementary material.

The experiments are run on a Sun Grid Engine (SGE) with Ubuntu 18.04.6 LTS. The
architecture of the nodes in the SGE are among the following: 2× Intel Xeon E5540 with
2.53 GHz Quad Core, 2× Intel Xeon E5649 with 2.53 GHz 6-core, 2× Intel Xeon E5-2630 v2
with 2.60GHz 6-core, 2× Intel Xeon E5-2640 v4 with 2.40GHz 10-core and 2× AMD EPYC
7402 with 2.80GHz 24-core.
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7.3 Universal Graphs

7.3.1 Verifying f(k) and F (k) for 1 ≤ k ≤ 5

We run the configurations UG-SMS and UG-SAT-Temp to verify values f(k) and F (k) for
1 ≤ k ≤ 5 as obtained by Trimble [26]. To verify the values of f(k), we run both configurations
on n = f(k) − 1 and n = f(k) to see whether the former gives a negative answer (unsat) and
the latter a positive (sat). To verify the values of F (k), we solve incrementally, i.e., every
time a universal graph is discovered, a clause that prohibits the generation of this particular
graph is added to the solver and the solver continues. For UG-SMS, we do not hardcode
Kk and Kk and start with ([n]) as the initial partition. This way, the minimality check is
enough to filter out non-isomorphic solutions. For UG-SAT-Temp, we detect and exclude
isomorphic copies among the found universal graphs using Nauty. It turns out, that both
configurations can verify each of the vaules within a couple of seconds.

7.3.2 Comparing the Efficiency of Computing f(6)

The case of k = 6 serves as a good benchmark for testing the efficiency of different methods,
since it is neither too hard nor too easy. The value f(6) = 14 was determined by Trimble [26].
Hence, we test various configurations on k = 6, n = 13 and k = 6, n = 14. In the experiments
described below, we run all instances 5 times and take the average running time.

For the case of k = 6, n = 13, we only test UG-SAT and UG-SMS since this case is
computationally easy. The configurations use 0.61s and 1.39s, respectively.

For the case of k = 6, n = 14, we test UG-SAT, UG-SMS, and UG-SMS-GSS. The
first two configurations use 13.9s and 521s, respectively. With UG-SMS-GSS, we try all
possible combinations of the following parameter values: threshold ∈ {40, 50, 60, 70, 80},
frequency ∈ {5, 20, 50, 100, 500, 1000}, and sample size ∈ {5, 20, 60, 100, 156}. We record the
total time used in solving and the time used by the embedability check.

Figure 3 Data points for UG-SMS-GSS on k = 6, n = 14, grouped according to the value of
frequency. We cast the data points in a two-dimensional space where the x-axis represents the
percentage of time taken by the embedability check, and the y-axis represents the total time used.
We draw a red horizontal line standing for the case of SMS, and a black horizontal line standing for
the case of pure SAT.
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Table 2 Running times for UG-SMS-GSS on the unsatisfiable case with k = 7 and n = 16.

case sample size frequency threshold total time/h time used in
embedability check/h

1 1044 500 100 73.63 0.12
2 1044 1000 80 71.34 3.40
3 1044 500 70 82.36 11.63
4 1044 1000 110 76.34 0

To understand the parameters’ influence on the running time, and how the three configu-
rations compare with each other, we present our findings in Figure 3. We first observe that
UG-SAT uses significantly less time than UG-SMS or UG-SMS-GSS. Second, the introduction
of the embedability check slightly decreases the running time in some cases and drastically
increases the running time in others. Third, the solving time positively correlates with
the percentage of the time used by the embedability check. In general, UG-SAT is clearly
the most efficient among the configurations and the benefit of UG-SMS-GSS compared to
UG-SMS is not obvious.

In Figure 3, data points of different frequency are shown in different colors. We see that
data points of the same color form loose clusters. A further check into the distribution in
terms of sample size and threshold within each group does not yield any meaningful pattern.
We also tried grouping the same data points according to sample size and threshold, but did
not obvious any obvious patterns. This indicates that the frequency parameter might be the
only useful one among the three in terms of tuning for efficiency, and giving it a reasonably
large value (which corresponds to the infrequent invocation of the embedability check) is
preferred.

We also tried to determine the value of F (6) incrementally with UG-SAT. After a few
days we terminated the program. At that state, it had generated 36294 non-isomorphic
6-universal graphs of order 14.

7.3.3 f(7) > 16
To show f(7) > 16, we use UG-SAT, UG-SMS, UG-SMS-GSS, and UG-SAT-Temp. All four
configurations conclude that a 7-universal graph with 16 vertices does not exist. UG-SAT takes
39 hours and UG-SMS takes 68 hours. For UG-SMS-GSS, we narrow down the choices of the
possible values for the parameters based on previous experiments, and test all combinations
with sample size = 1044, frequency ∈ {500, 1000} and threshold {70, 80, 90, 100, 110}. Only 4
test cases out of 50 terminate within 97 hours. Table 2 provides some details. For UG-SAT-
Temp, there are |H(16)

4 | = 40 templates to consider. The easiest template takes 0.4s, the
hardest 38 minutes. The total time spent on all 40 templates is 3.6 hours, making the average
time spent on each template 322.4s.

Since UG-SAT-Temp seems to be the most effective among the considered configurations,
we also tried using it to determine whether there exists a 7-universal graph of order 17. Here
we have |H(17)

4 | = 359 templates to consider. Unfortunately, this approach does not seem
to be able to bring the problem down to the reach of modern SAT solvers. By the time
of the writing, 25 out of the 359 cases still have not terminated. The 334 cases that have
terminated spent 4237 CPU days, all returning with a negative answer. Figure 4 shows the
time spent on each template in an ascending order. Even though we have no definitive result,
the facts that (i) most cases could be shown unsatisfiable, and (ii) the SAT solver was not
able to find a counter example on the remaining cases even after a long runtime, provide
some evidence that a 7-universal graph of order 17 might not exist.
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Table 3 Overview of running times in seconds for finding one or all solutions up to isomorphism.

t(k) − 1 t(k)

UT-SAT-TTI UT-SMS UT-SAT-TTI UT-SMS

k T (k) t(k) T (k) one all one all

5 12 8 1643 0.03 0.17 0.00 48.28 0.06 3.27
6 56 10 1088 6.41 30.68 11.83 N/a 105.36 47033.06

Figure 4 Time spent on each template ordered by their value. The blue bars represent the time
spent by templates that have terminated, and the red bars show the time spent on templates that
have not terminated by the time of writing.

7.4 Universal Tournaments

7.4.1 t(k) and T (k) for 1 ≤ k ≤ 6
We run the configurations UT-SMS and UT-SAT-TTI to calculate t(k) and T (k) for 1 ≤ k ≤ 6.
To calculate the value of f(k), we start with the lower bound

t(k) ≥ max({k, t(k − 1),min{x | Cx
k ≥ |T (k)| }})

where Cx
k denotes the number of k-combinations from a given set of x elements, i.e., Cx

k =
x!

k!(x−k)! . We test TTI(k, n) while increasing n until we find a universal tournament. To
calculate T (k), we modify the two methods similarly as we did for verifying F (k). Table 3
shows the time spent on the case n = t(k) − 1 and n = t(k). The time consumed in all
applicable cases for 0 ≤ k ≤ 4 are under 0.005s, so we omit them in the table. The process
of finding out all non-isomorphic 6-universal tournaments of order 10 with UT-SAT-TTI does
not terminate within a couple of days.
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7.4.2 13 ≤ t(7) ≤ 15
An obvious lower bound for t(7) is 11 since C10

7 = 120 < 456 = |T (7)|. Neither UT-SMS
nor UT-SAT-TTI gives a result on k = 7, n = 11 within half an hour. We generate separate
SAT instances where we hardcode each of the four non-isomorphic tournaments of order 4
onto [8, 11] ⊆ V (G) in addition to TTI(7, 11). The four instances terminate with a negative
answer in 14.55s, 458.32s, 1399.09s, and 1212.89s, respectively. This way, we have shown
that t(7) > 11. To show that t(7) > 12, we generate and test the following SAT instance for
each a⃗ = (ai)i∈[7], ai ∈ [4],

TTI(7, 12) ∧
∨

i∈[7]

ψai
(i)

where

ψ1(i) := |{ j ∈ [8, 12] | ei,j = 1 }| ≤ 1, ψ2(i) := |{ j ∈ [8, 12] | ei,j = 1 }| = 2
ψ3(i) := |{ j ∈ [8, 12] | ei,j = 1 }| = 3, and ψ4(i) := |{ j ∈ [8, 12] | ei,j = 1 }| ≥ 4.

This gives us 16384 instances in total and all of them return with a negative answer. Thus,
t(7) > 12. The sum of the time spent is around 2002 CPU days, making the average running
time for each case 2.9 hours. More than half of the cases terminate within 40 minutes, and
the hardest case takes almost 4 days.

The upper bound t(7) ≤ 15 is obtained with UT-SAT-TTI, which finds a 7-universal
tournament of order 15 within 57.95s. As for the cases of TTI(7, 13) and TTI(7, 14), UT-
SAT-TTI does not terminates within a few days, and it is not practical to generate separate
SAT instances in the way we did for TTI(7, 12), given the large number of instances and the
estimated time per case from our preliminary experimentation.

8 Conclusion

We have proposed several methods to compute the smallest order of induced k-universal
graphs and tournaments as a synthesis problem that does not require the enumeration of
all potential candidates. Our approaches make use of state-of-the-art CDCL SAT solvers.
For the SAT encoding, we proposed a direct encoding and a lazy encoding that utilizes the
Glasgow subgraph solver (GSS); for symmetry breaking, we proposed using the SAT modulo
Symmetries (SMS) framework and a new templates approach.

We tested and compared these methods, which let us understand their strengths and
weaknesses. The template approach was the fastest for unsatisfiable instances; SMS was
particularly strong for enumerating all solutions; the GSS was able to speed up the SMS
approach. We could improve the known lower bound and show that no induced 7-universal
graph with 16 vertices exists, leaving possibilities 17 and 18 for the smallest solution.

We could determine the exact order of smallest k-universal tournaments up to k = 6 and
the interval [13,15] for k = 7. We determined the precise number of optimal solutions, which
is of independent interest for combinatorial research.

As future work, determining the exact order of a smallest induced 7-universal graph might
be within reach by refining our methods and additional cubing. It would be interesting to
see whether it is possible to combine SMS with the templates approach, as this might give a
significant boost to possibly allow us to attack the k-universality problems for even larger
values of k.
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Figure 5 Smallest induced k-universal graphs and their incidence matrices.
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Figure 6 All smallest k-universal tournaments for k = 1, 2, 3, 4, and their incidence matrices.
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