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Abstract
Recognizing the satisfiability of Constraint Satisfaction Problems (CSPs) is NP-hard. Although
several Machine Learning (ML) approaches have attempted this task by casting it as a binary
classification problem, they have had only limited success for a variety of challenging reasons. First,
the NP-hardness of the task does not make it amenable to straightforward approaches. Second,
CSPs come in various forms and sizes while many ML algorithms impose the same form and size on
their training and test instances. Third, the representation of a CSP instance is not unique since the
variables and their domain values are unordered. In this paper, we propose FastMapSVM, a recently
developed ML framework that leverages a distance function between pairs of objects. We define
a novel distance function between two CSP instances using maxflow computations. This distance
function is well defined for CSPs of different sizes. It is also invariant to the ordering on the variables
and their domain values. Therefore, our framework has broader applicability compared to other
approaches. We discuss various representational and combinatorial advantages of FastMapSVM.
Through experiments, we also show that it outperforms other state-of-the-art ML approaches.
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1 Introduction

Constraints constitute a very natural and general means for formulating regularities in
the real world. A fundamental combinatorial structure used for reasoning with constraints
is that of the Constraint Satisfaction Problem (CSP). The CSP formally models a set of
variables, their corresponding domains, and a collection of constraints between subsets of
the variables. Each constraint restricts the set of allowed combinations of values of the
participating variables. A solution of a given CSP instance is an assignment of values to
all the variables from their respective domains such that all the constraints are satisfied.
Technologies for efficiently solving CSPs bear immediate and important implications on
how fast we can solve computational problems that arise in several other areas of research,
including computer vision, spatial and temporal reasoning, model-based diagnosis, planning
and scheduling, and language understanding.
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Unfortunately, solving CSPs is NP-hard since they generalize the Satisfiability (SAT)
problem. Although many technologies have been developed for solving CSPs in practice [4],
they do not sufficiently harness the power of Machine Learning (ML) techniques. While
there have been a lot of attempts to apply ML techniques to CSPs, none of these attempts
have yielded spectacular results: They do not consistently produce high-quality outcomes.
Examples of ML approaches used in the CSP domain include the application of Support Vector
Machines (SVMs) [2], linear regression [22], decision tree learning [7, 6], clustering [15, 8],
k-nearest neighbors [13], and others [9]. However, most of these approaches have had limited
success for a variety of challenging reasons.

First, from a complexity theory perspective, the NP-hardness of the task does not make
it amenable to straightforward ML approaches. For example, since a neural network (NN)
is essentially a continuous differentiable form of a circuit, it is not straightforward to make
NNs effective in the CSP domain. Second, CSPs come in various forms and sizes while
many ML algorithms use an architectural framework that imposes the same form and size
on their training and test instances. For example, an NN may have a fixed input layer
that it uses for the training and test instances alike. Third, the representation of a CSP
instance is not unique since the variables and their domain values are unordered. This
poses a significant combinatorial challenge for ML algorithms since they have to learn the
permutation invariance with respect to orderings on the variables and their domain values.
For example, an NN may pose the overhead of having to be trained on all permutations of
the same CSP instance to become effective.

In this paper, we consider the problem of predicting the satisfiability of CSP instances
using ML. In ML terminology, this is essentially a binary classification problem defined
on CSPs with the two possible classification labels “satisfiable” and “unsatisfiable”. This
classification problem is a cornerstone task for addressing the combinatorics of CSPs. It
also serves as a stepping stone for the task of solving CSPs. In fact, any ML framework
expected to be viable for solving CSPs should likely first demonstrate its success on solving
the aforementioned classification problem on CSPs.

We propose to solve the above classification problem on binary CSPs2 using a recently
developed ML framework called FastMapSVM [19]. While most ML algorithms learn to
identify characteristic features of individual objects in a class, FastMapSVM leverages a
domain-specific distance function on pairs of objects. It does this by combining the strengths
of FastMap [5] and SVMs. In its first stage, FastMapSVM invokes FastMap, an efficient
linear-time algorithm that maps complex objects to points in a Euclidean space, while
preserving pairwise distances between them. In its second stage, it invokes SVMs and kernel
methods for learning to classify the points in this Euclidean space.

FastMapSVM has demonstrated success on classifying complex objects such as seismo-
grams in Earthquake Science [19]. It offers several advantages over ML algorithms that reason
about individual objects instead of pairs of objects. First, FastMapSVM enables domain
experts to incorporate their domain knowledge using a distance function. This avoids relying
on complex ML models to infer the underlying structure in the data entirely. Second, because
the distance function encapsulates domain knowledge, FastMapSVM naturally facilitates
interpretability and explainability. In fact, it even provides a perspicuous visualization
of the objects and the classification boundaries between them. Third, FastMapSVM uses
significantly smaller amounts of time and data for model training compared to other ML
algorithms. Fourth, it extends the applicability of SVMs and kernel methods to domains
with complex objects.

2 Binary CSPs have at most two variables per constraint but are allowed to have non-Boolean variables.
Binary CSPs are representationally as powerful as general CSPs with bounded arity of the constraints.
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Figure 1 The left panel shows the (0, 1)-matrix representation of a single constraint C(X1, X2).
The right panel shows the (0, 1)-matrix representation of an entire binary CSP instance.

In applying FastMapSVM to the CSP domain, we define a novel distance function
between two CSP instances. This distance function uses maxflow computations and is
well defined for CSP instances of different sizes. It is also invariant to the ordering on
the variables and their domain values in the CSP instances. Therefore, FastMapSVM has
broader applicability compared to other ML approaches in the CSP domain. Moreover, since
it uses the intelligence of SVMs, kernel methods, and maxflow computations, it is able to
significantly outperform competing ML approaches. It is also able to outperform procedures
that invest polynomial time in establishing local consistency—such as arc-consistency—to
discover unsatisfiable CSP instances. This demonstrates that a trained FastMapSVM model
acquires an intelligence beyond that of prominent polynomial-time procedures.3 We discuss
various other representational and combinatorial advantages of FastMapSVM and, through
experiments, we also demonstrate its superior performance.

2 Preliminaries and Definitions

A CSP instance is defined by a triplet ⟨X ,D, C⟩, where X = {X1, X2 . . . XN} is a set of
variables and C = {C1, C2 . . . CM} is a set of constraints on subsets of them. Each variable
Xi is associated with a finite discrete-valued domain Di ∈ D, and each constraint Ci is a pair
⟨Si, Ri⟩ defined on a subset of variables Si ⊆ X , called the scope of Ci. |Si| is referred to as
the arity of the constraint. Ri ⊆ DSi (DSi = ×Xj∈SiDj) denotes all compatible tuples of DSi

allowed by the constraint. The absence of a constraint on a certain subset of the variables is
equivalent to a constraint on the same subset of the variables that allows all combinations of
values to them. A solution of a CSP instance is an assignment of values to all the variables
from their respective domains such that all the constraints are satisfied. A binary CSP
instance has at most two variables per constraint. Binary CSPs are representationally as
powerful as general CSPs with bounded arity of the constraints [4].

A binary CSP is arc-consistent if and only if for all variables Xi and Xj , and for every
instantiation of Xi, there exists an instantiation of Xj such that the direct constraint between
them is satisfied. Similarly, a binary CSP is path-consistent if and only if for all variables

3 This is an important hallmark of an ML algorithm. In [20], a deep NN model is presented to recognize
the satisfiability of CSP instances with Boolean variables and binary constraints. However, this class of
CSP instances is equivalent to 2-SAT and can be solved in polynomial time, diminishing the advantages
of an ML framework over polynomial-time reasoning.

CP 2023
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(b) projection onto a hyperplane that is
perpendicular to OaOb

Figure 2 The figure, borrowed from [3], illustrates how coordinates are computed and recursion
is carried out in FastMap.

Xi, Xj and Xk, and for every instantiation of Xi and Xj that satisfies the direct constraint
between them, there exists an instantiation of Xk such that the direct constraints between
Xi and Xk and between Xj and Xk are also satisfied.

For a given binary CSP instance, we can build a matrix representation for it using a
simple mechanism. First, we assume that the domain values of each variable are ordered
in some way. (We can simply use the order in which the domain values of each of the
variables are specified.) Under such an ordering, we can represent each binary constraint
as a 2-dimensional matrix with all its entries set to either 1 or 0 based on whether the
corresponding combination of values to the participating variables is allowed or not by that
constraint. The left panel of Figure 1 shows the (0, 1)-matrix representation of a binary
constraint between two variables X1 and X2 with domain sizes of 5 each. The combination
of values (X1 ← d12, X2 ← d21) is an allowed combination, and the corresponding entry in
the matrix is therefore set to 1. However, the combination of values (X1 ← d14, X2 ← d22)
is a disallowed combination, and the corresponding entry is therefore set to 0. In general, dip

denotes the p-th domain value of Xi assuming an index ordering on the domain values of Xi.

The (0, 1)-matrix representation of an entire binary CSP instance can be constructed
simply by stacking up the matrix representations for the individual constraints into a bigger
“block” matrix. The right panel of Figure 1 illustrates how a binary CSP instance on 3
variables X1, X2, and X3 can be represented as a “mega-matrix” with 3 sets of rows and 3
sets of columns. Each block-entry inside this mega-matrix is the matrix representation of the
direct constraint between the corresponding row and column variables. Therefore, the matrix
representation of an entire binary CSP instance has

∑N
i=1 |Di| rows and

∑N
i=1 |Di| columns.

3 FastMap and FastMapSVM

In this section, we describe FastMap and FastMapSVM to set up the groundwork for our
approach. Both these rely on a domain-specific distance function D(·, ·) on pairs of objects.
D(·, ·) is required to be a non-negative symmetric function.
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3.1 FastMap
FastMap [5] is a Data Mining algorithm that embeds complex objects—like audio signals,
seismograms, DNA sequences, electrocardiograms, or magnetic-resonance images—into a
K-dimensional Euclidean space, for a user-specified value of K and a user-supplied distance
function D(·, ·) on pairs of objects. The Euclidean distance between any two objects in the
embedding approximates the domain-specific distance between them. Therefore, similar
objects, as quantified by D(·, ·), map to nearby points in Euclidean space while dissimilar
objects map to distant points. Although FastMap preserves O(N2) pairwise distances
between N objects, it generates the embedding in only O(KN) time. Because of its efficiency,
FastMap has already found numerous real-world applications, including in Data Mining [5],
shortest-path computations [3], solving combinatorial optimization problems on graphs [12],
and community detection and block modeling [11].

FastMap embeds a collection of complex objects in an artificially created Euclidean
space that enables geometric interpretations, algebraic manipulations, and downstream ML
algorithms. It gets as input a collection of complex objects O, where D(Oi, Oj) represents the
domain-specific distance between objects Oi, Oj ∈ O. It generates a Euclidean embedding
that assigns a K-dimensional point pi ∈ RK to each object Oi. A good Euclidean embedding
is one in which the Euclidean distance ∥pj − pi∥2 between any two points pi and pj closely
approximates D(Oi, Oj).

In the first iteration, FastMap heuristically identifies the farthest pair of objects Oa and
Ob in linear time. Once Oa and Ob are determined, every other object Oi defines a triangle
with sides of lengths dai = D(Oa, Oi), dab = D(Oa, Ob), and dib = D(Oi, Ob), as illustrated
in Figure 2a. The lengths of the sides of the triangle define its entire geometry, and the
projection of Oi onto the line OaOb is given by

xi = (d2
ai + d2

ab − d2
ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, equal to xi. In the
subsequent K − 1 iterations, the same procedure is followed for computing the remaining
K− 1 coordinates of each object; however, the distance function is adapted for each iteration.
For example, for the first iteration, the coordinates of Oa and Ob are 0 and dab, respectively.
Because these coordinates fully explain the true distance between these two objects, from the
second iteration onward, the rest of pa and pb’s coordinates should be identical. Intuitively,
this means that the second iteration should mimic the first one on a hyperplane that is
perpendicular to the line OaOb. Figure 2b illustrates this. Although the hyperplane is
never explicitly constructed, it conceptually implies that the distance function for the second
iteration should be changed for all i and j in the following way:

Dnew(O′
i, O′

j)2 = D(Oi, Oj)2 − (xi − xj)2, (2)

in which O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyperplane,
and Dnew(·, ·) is the new distance function. The distance function is recursively updated
according to Equation 2 at the beginning of each of the K − 1 iterations that follow the first.

In each of the K iterations, FastMap heuristically finds the farthest pair of objects
according to the distance function defined for that iteration. These objects are called pivots
and are stored as reference objects. There are very few, that is, ≤ 2K, reference objects.
Technically, finding the farthest pair of objects in any iteration takes O(N2) time. However,
FastMap uses a linear-time “pivot changing” heuristic [5] to efficiently and effectively identify
a pair of objects Oa and Ob that is very often the farthest pair. It does this by initially

CP 2023
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choosing a random object Ob and then choosing Oa to be the farthest object away from Ob.
It then reassigns Ob to be the farthest object away from Oa, reassigns Oa to be the farthest
object away from Ob, and so on, until convergence or a maximum of C iterations, for a small
constant C ≤ 10.

3.2 FastMapSVM

FastMapSVM [19] elegantly combines the strengths of FastMap and SVMs. In the first phase,
it invokes FastMap for efficiently mapping complex objects to points in a Euclidean space,
while preserving pairwise distances between them. In the second phase, it invokes SVMs and
kernel methods for learning to classify the points in this Euclidean space. FastMapSVM has
several advantages over other methods.

First, FastMapSVM leverages domain-specific knowledge via a distance function. There
are many real-world domains in which feature selection for individual objects is hard. While
a domain expert can occasionally identify and incorporate domain-specific features of the
objects to be classified, doing so becomes increasingly hard with increasing complexity of the
objects. Therefore, many existing ML algorithms for classification find it hard to leverage
domain knowledge when used off the shelf. However, in many real-world domains with
complex objects, a distance function on pairs of objects is well defined and easy to compute.
In such domains, FastMapSVM is more easily applicable than other ML algorithms that
focus on the features of individual objects. FastMapSVM also enables domain experts to
incorporate their domain knowledge via a distance function instead of relying on complex
ML models to infer the underlying structure in the data entirely. Examples of such real-
world objects include audio signals, seismograms, DNA sequences, electrocardiograms, and
magnetic-resonance images. While these objects are complex and may have many subtle
features that are hard to recognize, there exists a well-defined distance function on pairs of
objects that is easy to compute. For instance, individual DNA sequences have many complex
and subtle features but the edit distance4 between two DNA sequences is well defined and
easy to compute. Similarly, the Minkowski distance [1] is well defined for images and the
cosine similarity [16] is well defined for text documents.

Second, FastMapSVM facilitates interpretability, explainability, and visualization. Many
existing ML algorithms produce results that are hard to interpret or explain. For example, in
NNs, a large number of interactions between neurons with nonlinearities makes a meaningful
interpretation or explanation of the results very hard. In fact, the very complexity of the
objects in the domain can hinder interpretability and explainability. FastMapSVM mitigates
these challenges and thereby supports interpretability and explainability. While the objects
themselves may be complex, FastMapSVM embeds them in a Euclidean space by considering
only the distance function defined on pairs of objects. In effect, it simplifies the description of
the objects by assigning Euclidean coordinates to them. Moreover, since the distance function
is itself user-supplied and encapsulates domain knowledge, FastMapSVM naturally facilitates
interpretability and explainability. In fact, it even provides a perspicuous visualization of the
objects and the classification boundaries between them. This aids human interpretation of
the data and results. It also enables a human-in-the-loop framework for refining the processes
of learning and decision making. As a hallmark, FastMapSVM produces the visualization
very efficiently since it invests only linear time in generating the Euclidean embedding.

4 The edit distance between two strings is the minimum number of insertions, deletions, or substitutions
that are needed to transform one to the other.



K. Zheng, A. Li, H. Zhang, and T. K. S. Kumar 40:7

Third, FastMapSVM uses significantly smaller amounts of time and data for model
training compared to other ML algorithms. While NNs and other ML algorithms store
abstract representations of the training data in their model parameters, FastMapSVM stores
explicit references to some of the original objects, referred to as pivots. While making
predictions, objects in the test instances are compared directly to the pivots using the
user-supplied distance function. Thereby, FastMapSVM obviates the need to learn a complex
transformation of the input data and thus significantly reduces the amounts of time and
data required for model training. Moreover, given N training instances, that is, N objects
and their classification labels, FastMapSVM leverages O(N2) pieces of information via the
distance function that is defined on every pair of objects. In contrast, ML algorithms that
focus on individual objects leverage only O(N) pieces of information.

Fourth, FastMapSVM extends the applicability of SVMs and kernel methods to complex
objects. Generally speaking, SVMs are particularly good for classification tasks. When
combined with kernel methods, they recognize and represent complex nonlinear classification
boundaries very elegantly [17]. Moreover, soft-margin SVMs with kernel methods [14] can
be used to recognize both outliers and inherent nonlinearities in the data. While the SVM
machinery is very effective, it requires the objects in the classification task to be represented as
points in a Euclidean space. Often, it is very difficult to represent complex objects as precise
geometric points without introducing inaccuracy or losing domain-specific representational
features. In such cases, deep NNs have gained more popularity compared to SVMs for
the reason that it is unwieldy for SVMs to represent all the features of complex objects in
Euclidean space. However, FastMapSVM revives the SVM approach by leveraging a distance
function and creating a low-dimensional Euclidean embedding of the complex objects.

4 Distance Function on CSPs

In this section, we describe a distance function on binary CSPs. This distance function is
based on maxflow computations and is illustrated in Figure 3. It is well defined for CSP
instances I1 and I2 that may have different sizes. The maxflow computations are utilized in:
(a) a single high-level “maximum matching of minimum cost” problem posed on the variables
of I1 and I2, and (b) multiple low-level “maximum matching of minimum cost” problems
posed on the domain values of pairs of variables, one from each of I1 and I2.

The high-level “maximum matching of minimum cost” problem is posed on a complete
bipartite graph, in which the two partitions of the bipartite graph correspond to the variables
of I1 and I2, respectively. If the number of variables in I1 does not match the number of
variables in I2, dummy variables are added to the CSP instance with fewer variables. Figure 3
(top panel) illustrates this for I1 and I2 with variables {X1, X2, X3, X4} and {X ′

1, X ′
2, X ′

3},
respectively. A dummy variable X ′

4 is added to I2. The dummy variable has a single domain
value that is designed to be consistent with all domain values of all other variables, since
this does not change the CSP instance.

The distance between I1 and I2 is defined to be the cost of the “maximum matching of
minimum cost” on the high-level bipartite graph. This bipartite graph has an edge between
every Xi in I1 and every X ′

j in I2. The cost annotating an edge between Xi and X ′
j is itself

set to be the cost of the “maximum matching of minimum cost” posed at the low level on
the domain values of Xi and X ′

j . Figure 3 (bottom-left panel) shows the high-level bipartite
graph and highlights an edge between X1 and X ′

2 for explanation of the low-level “maximum
matching of minimum cost”.
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Figure 3 The top panel shows two CSP instances with variables {X1, X2, X3, X4} (left) and
{X ′

1, X ′
2, X ′

3} (middle), respectively. A dummy variable X ′
4 with a singleton domain is added to the

CSP instance with fewer variables (right). The bottom panel (left) shows how a “maximum matching
of minimum cost” problem is posed on a complete bipartite graph with the variables of the two CSP
instances in each partition. The cost annotating the edge between Xi and X ′

j is itself derived from
a “maximum matching of minimum cost” problem posed on the domain values of Xi and X ′

j . The
bottom panel (right) shows this “maximum matching of minimum cost” problem for the variables
X1 and X ′

2. It is posed on a complete bipartite graph with the domain values {d11, d12, d13} and
{d′

21, d′
22, d′

23, d′
24, d′

25, d′
26} in each partition. The cost annotating the edge between d11 and d′

21
is the absolute value of the difference between the average compatibility of d11 and the average
compatibility of d′

21.

The low-level “maximum matching of minimum cost” problem posed on the domain
values of Xi and X ′

j also uses a complete bipartite graph. The two partitions consist of the
domain values of Xi and X ′

j , respectively. The cost annotating the edge between dip and
d′

jq is the absolute value of the difference between the average compatibility of dip and the
average compatibility of d′

jq. Figure 3 (bottom-right panel) shows the low-level “maximum
matching of minimum cost” problem posed on the domain values of X1 and X ′

2. The domains
of X1 and X ′

2 are {d11, d12, d13} and {d′
21, d′

22, d′
23, d′

24, d′
25, d′

26}, respectively. Consider the
edge between d11 and d′

21. The average compatibility of d11 is the fraction of “1”s in the
column “d11” in the matrix representation of I1. This fraction is equal to 8/16. The average
compatibility of d′

21 is the fraction of “1”s in the column “d′
21” in the matrix representation

of I2 after adding the dummy variable X ′
4. This fraction is equal to 4/11. Therefore, the

cost annotating the edge between d11 and d′
21 is equal to |8/16− 4/11|.

The “maximum matching of minimum cost” problems in the high level and the low level
are posed on bipartite graphs. Since the costs annotating the edges of the bipartite graphs in
the high level and the low level are non-negative, the distance function is also non-negative.
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Moreover, since the two partitions of any bipartite graph can be viewed interchangeably
without affecting the “maximum matching of minimum cost”, the overall distance function is
symmetric. It is also easy to observe that the distance between two identical CSP instances
is always 0. These properties of the distance function satisfy all the requirements imposed
on it by the FastMap component of FastMapSVM.

The high-level bipartite graph is invariant to the orderings on the elements within each
partition. That is, it is invariant to the orderings on the variables of I1 and I2. Similarly,
all low-level bipartite graphs are invariant to the orderings on the domain values of the
participating variables. Therefore, the overall distance function is invariant to variable-
orderings as well as domain value-orderings. This allows us to bypass data augmentation
methods typically required for training other ML models.5 In the context of CSPs, a CSP
instance is typically augmented by changing the ordering on its variables or the ordering
on the domain values of individual variables. However, doing so generates an exponential
number of CSP training instances within the same equivalence class. This drawback of
traditional ML algorithms of having to learn equivalence classes is now intelligently addressed
within the framework of FastMapSVM by utilizing a distance function that is invariant to
both variable-orderings and domain value-orderings.

We note that the above distance function could have been defined in many other ways.
For example, we could have introduced dummy domain values in the low-level “maximum
matching of minimum cost” problems to equalize the domain sizes of the participating
variables. We could have also chosen not to use dummy variables in the high-level “maximum
matching of minimum cost” problem. In addition, we could have defined the costs annotating
the edges of the bipartite graphs using many other characteristics of the CSPs. These
variations of the distance function are not of fundamental importance to this paper. Instead,
in this paper, we focus on the advantages of the FastMapSVM framework as a whole. The
study of more refined distance functions is delegated to future work.

5 Experimental Results

In this section, we describe the comparative performance of FastMapSVM against other
state-of-the-art ML approaches on predicting CSP satisfiability.

5.1 Experimental Setup
We evaluate FastMapSVM against three competing approaches. The first is a state-of-the-art
deep graph convolutional neural network (DGCNN) [23]. The second is a state-of-the-art
graph isomorphism network (GIN) [21]. Both these networks ingest a CSP instance in the
form of a graph, as shown in Figure 4. In the graphical representation of a binary CSP
instance, a vertex represents a domain value and is tagged with the name of the variable that
it belongs to. Information in these tags is utilized by the DGCNN and the GIN. An edge
between two vertices v1 and v2 with tags Xi and Xj , respectively, represents the compatible
combination (Xi ← v1, Xj ← v2) allowed by the direct constraint between Xi and Xj .6
DGCNN and GIN do not require the CSP training and test instances to be of the same size.

The third is a polynomial-time algorithm based on establishing arc-consistency. This
algorithm first establishes arc-consistency and then checks whether any variable’s domain is
annihilated. If so, it declares the CSP instance to be “unsatisfiable”. Otherwise, it declares

5 Data augmentation refers to transformations of data without changing their labels, known as label-
preserving transformations. For example, to generate more training data serving object recognition
tasks in computer vision applications, an image can be augmented by translating it or reflecting it
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Figure 4 The left panel shows the matrix representation of a binary CSP instance. The right
panel shows its graphical representation. The vertices represent domain values and are clustered
into four groups, corresponding to the four variables {X1, X2, X3, X4}.

the CSP instance to be “satisfiable”. This algorithm is used in our evaluation to demonstrate
that FastMapSVM’s capabilities go beyond that of a polynomial-time algorithm.7 Of course,
a polynomial-time algorithm based on establishing path-consistency could also have been
used. But we excluded this algorithm since arc-consistency already provides the required
proof of concept and establishing path-consistency is prohibitively expensive.

In our experiments, we do not include results from the CSP-cNN framework of [20] for
the following reasons. First, this framework has the drawback that it is applicable only
to CSP training and test instances of the same size. (FastMapSVM does not have this
drawback since the distance function does not require the CSP instances to be of the same
size.) Second, the success of CSP-cNN critically depends on data augmentation methods: For
each CSP training instance, a very large number of other training instances that permute the
variables and their domain values also have to be generated. (This requirement is completely
obviated by FastMapSVM since the distance function is invariant to such permutations.)
Third, CSP-cNN has been shown to be successful only on Boolean binary CSP instances,
that is, the polynomial-time solvable 2-SAT problems. (FastMapSVM does not have this
limitation; below, we demonstrate its success on general binary CSP instances.)

We implemented FastMapSVM and arc-consistency in Python3 and ran them on a
laptop with an Apple M2 chip with 16 GB memory. We ran DGCNN and GIN on a Linux
system with an Intel(R) Xeon(R) Silver 4216 CPU at 2.10 GHz. The different platforms
are inconsequential to the comparative performances of these algorithms with respect to
effectiveness. For each dataset, we trained DGCNN and GIN for 100 epochs with a learning
rate of 0.0001 and a minibatch size of 100 to obtain representative results.

5.2 Instance Generation
We generate the binary CSP instances for both training and testing using the Model A
method in [18, 20]. We generate a CSP instance by first picking the number of variables N

uniformly at random to be an integer within the range [1, 100]. Then, we pick the domain

horizontally without changing its label [10].
6 The graphical representation of a binary CSP instance is obtained by parsing its matrix representation.

Thus, we correctly represent the compatible tuples of domain values between every pair of variables,
even if there does not exist a direct constraint between those variables.

7 This is done to avoid the pitfalls of [20], as mentioned before.



K. Zheng, A. Li, H. Zhang, and T. K. S. Kumar 40:11

size of each variable independently and uniformly at random to be an integer within the
range [1, 10]. We use a probability parameter P1 to independently determine the existence of
a direct constraint between each pair of distinct variables. That is, for each pair of distinct
variables Xi and Xj , we introduce a direct constraint between them with probability P1.
Moreover, we use a probability parameter P2 to determine the compatible tuples of a direct
constraint. For a pair of variables Xi and Xj with a direct constraint between them, each
tuple (Xi ← dip, Xj ← djq) is independently deemed to be compatible with probability
1− P2. We set P1 = 1 and P2 = 0.4 to obtain representative results for all approaches.

Model A has a tendency to produce mostly unsatisfiable CSP instances with increasing
N [18, 20]. Therefore, we use a “hidden solution” method to generate satisfiable CSP
instances whenever required. In this method, a set of hidden solutions of the CSP instance is
chosen a priori.8 A hidden solution (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

) is utilized as
follows: While generating the direct constraints using Model A, a direct constraint between
variables Xi and Xj reserves the tuple (Xi ← dipi

, Xj ← djpj
) as being compatible before

the other tuples are set using the probability parameter P2. Therefore, (X1 ← d1p1 , X2 ←
d2p2 . . . XN ← dNpN

) satisfies all the direct constraints and, consequently, qualifies as a
solution. Similarly, multiple hidden solutions can be utilized with the following modification
in the generation procedure: A direct constraint between variables Xi and Xj reserves
multiple tuples as being compatible. For generating satisfiable CSP instances, we pick the
number of hidden solutions uniformly at random to be an integer within the range [1, 10]. We
pick a hidden solution itself by assigning a domain value chosen independently and uniformly
at random for each variable from its domain.

We generate three datasets: Dataset-1, Dataset-2, and Dataset-3. For each dataset, we
generate 1000 training instances and 1000 test instances. Each training and test set has an
equal number of satisfiable and unsatisfiable instances.

In Dataset-1, we generate the instances using Model A. Since Model A frequently generates
unsatisfiable instances, we use a complete CSP solver to identify and collect such instances.
We generate the satisfiable instances using the hidden solution method, as described above.

In Dataset-2, we generate the satisfiable instances as in Dataset-1. However, we design
and generate the unsatisfiable instances to be more challenging. We do this by hiding
two complementary pseudo-solutions (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

) and (X1 ←
d1q1 , X2 ← d2q2 . . . XN ← dNqN

). We identify a pair of distinct variables Xi and Xj such
that dipi

̸= diqi
and djpj

̸= djqj
. All direct constraints between distinct variables Xs

and Xt such that {Xs, Xt} ≠ {Xi, Xj} are generated as before by reserving the tuples
(Xs ← dsps

, Xt ← dtpt
) and (Xs ← dsqs

, Xt ← dtqt
) as being compatible. However, the

direct constraint between Xi and Xj reserves the tuples (Xi ← dipi
, Xj ← djqj

) and
(Xi ← diqi , Xj ← djpj ) as being compatible and reserves the tuples (Xi ← dipi , Xj ← djpj )
and (Xi ← diqi

, Xj ← djqj
) as being not compatible. We finally use a complete CSP solver

to verify that the CSP instance is indeed unsatisfiable.9

In Dataset-3, we generate the satisfiable instances as in Dataset-1. However, we design
and generate the unsatisfiable instances differently from in Dataset-2. We do this by
first hiding two complementary pseudo-solutions (X1 ← d1p1 , X2 ← d2p2 . . . XN ← dNpN

)
and (X1 ← d1q1 , X2 ← d2q2 . . . XN ← dNqN

), as in Dataset-2. However, we gather all
variables Xr1 , Xr2 . . . XrM̄

for which the two pseudo-solutions have different assignments

8 The CSP instance can have other solutions as well.
9 This procedure frequently generates unsatisfiable instances, as required. However, satisfiable instances

that are generated occasionally are filtered out by the CSP solver.
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of domain values, that is, drmprm
̸= drmqrm

, for all 1 ≤ m ≤ M̄ . For any two distinct
variables Xi and Xj in {Xr1 , Xr2 . . . XrM̄

}, we reserve the tuples (Xi ← dipi
, Xj ← djqj

)
and (Xi ← diqi

, Xj ← djpj
) as being not compatible. Finally, we pick two distinct variables

Xs and Xt from {Xr1 , Xr2 . . . XrM̄
} and overwrite the tuples (Xs ← dsps , Xt ← dtqt) and

(Xs ← dsqs
, Xt ← dtpt

) as being compatible and reserve the tuples (Xs ← dsps
, Xt ← dtpt

)
and (Xs ← dsqs , Xt ← dtqt) as being not compatible. As before, we use a complete CSP
solver to verify that the CSP instance is indeed unsatisfiable.

5.3 Results
We show three sets of results pertaining to FastMapSVM. First, we show the 2-dimensional
and the 3-dimensional embeddings that FastMapSVM produces to aid visualization. Second,
we show the behavior of FastMapSVM with respect to the hyperparameter K, that is, the
number of dimensions and with respect to the size of the training data. Third, we show the
comparative performance of FastMapSVM against DGCNN, GIN, and arc-consistency.

FastMapSVM used the SVM classifier from the scikit-learn library. Its hyperparameter
settings were determined by grid search. For Dataset-1 and Dataset-3, the hyperparameters
were regularization parameter = 8, kernel = “rbf”, and kernel coefficient = “scale”. For
Dataset-2, the hyperparameters were regularization parameter = 8, kernel = “poly”, and
kernel coefficient = “scale”.

Figure 5 shows a perspicuous visualization of the CSP test instances for all three datasets.
This visualization capability is unique to FastMapSVM. We note that while the accuracy,
recall, precision, and the F1 score of FastMapSVM typically increase with increasing K,
K = 2 and K = 3 are the only two values that support visualization. Still, in most
cases, Figure 5 shows a clear separation between the satisfiable and unsatisfiable instances.
Moreover, the separation is clearer in the 3-dimensional embeddings compared to their
2-dimensional counterparts.

Figure 6a shows the behavior of FastMapSVM with respect to the number of dimensions
K on Dataset-1. Its behavior on the other datasets is similar. The performance metrics,
that is, the accuracy, recall, precision, and the F1 score, improve with increasing K. This
is intuitively expected since the distances between the CSP instances can be embedded
with lower distortion in higher dimensions. However, Figure 6a also shows that a point of
diminishing returns is attained rather quickly at around K = 8. This shows that K = 8, 9, or
10 is good enough for the CSP domain. Finally, Figure 6a also shows that the improvements
in the performance metrics are significant between K = 2 and K = 8.

Figure 6b shows the behavior of FastMapSVM with respect to the size of the training data
on Dataset-1. Its behavior on the other datasets is similar. The performance metrics improve
with increasing size of the training data. Figure 6b also shows that the improvements in the
performance metrics are significant between 128 and 256 training data instances. Further
improvements are gradual between 256 and 1000 training data instances. This shows that
FastMapSVM has the capability to achieve good performance from relatively small amounts
of training data and training time.

Table 1 shows a comparison of all the competing methods on all three datasets with
respect to all of the performance metrics. It uses K = 8 for FastMapSVM. It also shows two
versions of DGCNN and GIN: the “labeled” version and the “unlabeled” version.

We recollect that in the graphical representation of a binary CSP instance, a vertex
represents a domain value and is tagged with the name of the variable that it belongs to.
Information in these tags is available to be utilized by the DGCNN and the GIN. The labeled
versions of DGCNN and GIN utilize this information while the unlabeled versions ignore this



K. Zheng, A. Li, H. Zhang, and T. K. S. Kumar 40:13

(a) Dataset-1 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(b) Dataset-1 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

(c) Dataset-2 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(d) Dataset-2 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

(e) Dataset-3 CSP instances embedded in a 2-
dimensional Euclidean space by FastMapSVM

(f) Dataset-3 CSP instances embedded in a 3-
dimensional Euclidean space by FastMapSVM

Figure 5 The figure shows the low-dimensional Euclidean embeddings produced by FastMapSVM
for classifying CSP instances. Mostly, there is a clear separation of satisfiable instances (blue) and
unsatisfiable instances (red).

information. Table 1 shows that the unlabeled versions perform better than their labeled
counterparts. While this is a little surprising, it is likely that the unlabeled versions indirectly
perform permutation reasoning on the tags (names of variables) much more efficiently.

Table 1 shows that FastMapSVM generally outperforms all other competing methods by
a significant margin. Even on a particular dataset where it is not the top performer with
respect to a particular performance metric, it is a close second. Overall, Dataset-1 seems to
be the easiest for all methods and Dataset-2 seems to be the hardest for all methods.

In comparison to arc-consistency, FastMapSVM is significantly better on Dataset-2 and
Dataset-3. On these datasets, arc-consistency declares all test instances as being “satisfiable”,
leading to a perfect recall score but very poor precision, accuracy, and F1 scores. On the one
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Figure 6 The figure shows the behavior of FastMapSVM with respect to the number of dimensions
and with respect to the size of the training data. The performance metrics include the accuracy,
recall, precision, and the F1 score.

hand, this shows that arc-consistency is ineffective in recognizing unsatisfiable CSP instances.
On the other hand, it also shows that CSP instances generated as in Dataset-1 are insufficient
to conclusively evaluate competing ML methods. In contrast, FastMapSVM performs well
on all three datasets.

In comparison to DGCNN and GIN, FastMapSVM is significantly better on all three
datasets. On the accuracy, recall, and F1 scores, FastMapSVM is better than DGCNN, which
in turn is better than GIN. GIN generally has high precision scores but very poor recall
scores. This shows that it is poor in identifying satisfiable instances but is mostly correct
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Table 1 The table shows all performance metrics for all competing methods on all datasets. “AC”
represents arc-consistency.

Dataset Model Accuracy Recall Precision F1

Dataset-1

FastMapSVM 96.7% 97.0% 96.4% 96.7%
AC 99.3% 100.0% 96.7% 98.3%
DGCNN (unlabeled) 94.2% 92.2% 96.0% 94.1%
DGCNN (labeled) 82.3% 82.0% 82.5% 82.2%
GIN (unlabeled) 84.1% 67.0% 99.4% 80.0%
GIN (labeled) 56.4% 52.6% 56.9% 54.7%

Dataset-2

FastMapSVM 82.9% 72.8% 91.2% 81.0%
AC 50.1% 100.0% 50.1% 66.8%
DGCNN (unlabeled) 73.4% 61.4% 80.8% 69.8%
DGCNN (labeled) 53.9% 51.2% 54.1% 52.6%
GIN (unlabeled) 71.9% 49.0% 90.4% 63.6%
GIN (labeled) 54.4% 51.6% 54.7% 53.1%

Dataset-3

FastMapSVM 95.4% 94.4% 96.3% 95.3%
AC 50.0% 100.0% 50.0% 66.7%
DGCNN (unlabeled) 90.3% 86.6% 93.5% 89.9%
DGCNN (labeled) 74.7% 71.8% 76.2% 73.9%
GIN (unlabeled) 78.4% 53.6% 98.5% 69.4%
GIN (labeled) 57.4% 53.8% 58.0% 55.8%

when it does so. FastMapSVM does not have this drawback. Moreover, on the accuracy and
F1 scores, FastMapSVM outperforms the closest competitor (DGCNN) by larger margins
with increasing hardness of the CSP instances, that is, in the order of Dataset-1, Dataset-3,
and Dataset-2. Even on the metric of efficiency, FastMapSVM outperforms DGCNN and
GIN.10

6 Conclusions and Future Work

In this paper, we introduced a novel ML framework, called FastMapSVM, for the task
of predicting CSP satisfiability. FastMapSVM overcomes the hurdles faced by other ML
approaches in the CSP domain. It leverages a distance function on CSPs that is defined
via maxflow computations. FastMapSVM is applicable to CSP training and test instances
of different sizes and is invariant to both variable-orderings and domain value-orderings.
This allows it to bypass the onus of having to learn equivalence classes of CSP instances
and, therefore, requires significantly smaller amounts of time and data for model training
compared to other ML algorithms. FastMapSVM also uses the intelligence of SVMs, kernel
methods, and maxflow computations, accounting for its superior empirical performance,
even over state-of-the-art graph neural networks. Moreover, it facilitates a perspicuous
visualization of the CSP instances, their distribution, and the classification boundaries
between them. Overall, the FastMapSVM framework for CSPs has broader applicability and
various representational and combinatorial advantages compared to other ML approaches.

There are many avenues for future work. These include the design of better distance
functions on CSPs, the application of FastMapSVM to optimization variants of CSPs, and the
general facilitation of integrating constraint reasoning and ML methods via FastMapSVM.

10 DGCNN and GIN ran on a different platform compared to FastMapSVM. However, the ballpark results
are still conclusive.
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