
Improving Local Search for Pseudo Boolean
Optimization by Fragile Scoring Function and Deep
Optimization
Wenbo Zhou #

School of Information Science and Technology, Northeast Normal University, Changchun, China
Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China
Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE, Jilin University,
Changchun, China

Yujiao Zhao #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Yiyuan Wang1 #

School of Information Science and Technology, Northeast Normal University, Changchun, China
Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

Shaowei Cai #

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,
China

Shimao Wang #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Xinyu Wang #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Minghao Yin1 #

School of Information Science and Technology, Northeast Normal University, Changchun, China
Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

Abstract
Pseudo-Boolean optimization (PBO) is usually used to model combinatorial optimization problems,
especially for some real-world applications. Despite its significant importance in both theory and
applications, there are few works on using local search to solve PBO. This paper develops a novel
local search framework for PBO, which has three main ideas. First, we design a two-level selection
strategy to evaluate all candidate variables. Second, we propose a novel deep optimization strategy
to disturb some search spaces. Third, a sampling flipping method is applied to help the algorithm
jump out of local optimum. Experimental results show that the proposed algorithms outperform
three state-of-the-art PBO algorithms on most instances.

2012 ACM Subject Classification Computing methodologies → Search methodologies

Keywords and phrases Local Search, Pseudo-Boolean Optimization, Deep Optimization

Digital Object Identifier 10.4230/LIPIcs.CP.2023.41

Supplementary Material Software (Source Code): https://github.com/yiyuanwang1988/
DeepOpt-PBO, archived at swh:1:dir:a1d58cf93325bed3675f5872f42adf459a518a92

1 corresponding author

© Wenbo Zhou, Yujiao Zhao, Yiyuan Wang, Shaowei Cai, Shimao Wang, Xinyu Wang, and Minghao
Yin;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 41; pp. 41:1–41:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhouwb646@nenu.edu.cn
https://orcid.org/0000-0002-1009-4544
mailto:zhaoyj@nenu.edu.cn
https://orcid.org/0000-0001-9285-2793
mailto:yiyuanwangjlu@126.com
https://orcid.org/0000-0002-3071-3461
mailto:caisw@ios.ac.cn
https://orcid.org/0000-0003-1730-6922
mailto:wangsm928@nenu.edu.cn
mailto:wangxy435@nenu.edu.cn
mailto:ymh@nenu.edu.cn
https://orcid.org/0000-0002-6226-2394
https://doi.org/10.4230/LIPIcs.CP.2023.41
https://github.com/yiyuanwang1988/DeepOpt-PBO
https://github.com/yiyuanwang1988/DeepOpt-PBO
https://archive.softwareheritage.org/swh:1:dir:a1d58cf93325bed3675f5872f42adf459a518a92;origin=https://github.com/yiyuanwang1988/DeepOpt-PBO;visit=swh:1:snp:57d734b66a8ca0544ee1e37b4b8a65adc1596ca0;anchor=swh:1:rev:029c822442b47ad6e09a01d73f489b79e212ef9d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Improving Local Search for Pseudo Boolean Optimization

Funding This work is supported by the National Natural Science Foundation of China under
Grant No.61806050, the Natural Science Research Foundation of Jilin Province of China under
Grant Nos.YDZJ202201ZYTS412 and YDZJ202201ZYTS423, Ministry of Education under Grant
No.2021BCF01002, CCF-Huawei Populus Grove Fund, and the Fundamental Research Funds for the
Central Universities under Grant Nos.2412023YQ003, 2412022ZD015, 2412022ZD018, 2412022QD040
and 93K172022K10.

1 Introduction

The Boolean Satisfiability (SAT) problem is a prototypical NP-complete problem, whose
aim is to determine whether a given propositional formula is satisfiable or not. The SAT
problem plays a core role in many domains of computer science and artificial intelligence [14].
Many real-world problems can be encoded into SAT and its optimization version MaxSAT
and solved using their powerful solvers. However, due to the limited expressive power of
SAT and MaxSAT, their encodings often generate very large problem instances. For such
cases, pseudo-Boolean optimization (PBO) provides a more expressive and natural way to
express constraints than SAT and MaxSAT [23]. Besides, PBO is very close enough to SAT
to benefit from the recent advances in SAT solving [23].

The PBO consists of a set of pseudo-Boolean constraints and an objective function, whose
goal is to find a solution that minimizes the objective function and satisfies all pseudo-Boolean
constraints. Solvers for PBO can be divided into complete and incomplete solvers. Up to
now, many complete PBO solvers have been proposed, such as Sat4j [3], Open-WBO [21],
NaPS [24], RoundingSat [12, 10], RSCard [13], RS/lp [9] and PBO-IHS [26, 27].

Compared to complete PBO solvers, there are relatively fewer incomplete solvers on
PBO. The reason may be that PBO is more complicated than SAT and how to find a
suitable variable to flip is still difficult. As one of the most popular incomplete approaches,
local search can find an approximate solution within a reasonable time [32, 33]. Lei et al.
[18] proposed a novel local search algorithm called LS-PBO to handle PBO. Key features
of LS-PBO include a converting method to obtain corresponding objective constraints, a
weighting scheme to guide the search direction, and a well-designed scoring function to flip
some candidate variables. Besides, for some special cases of PBO such as NK-Landscapes
and MAX-kSAT, a new perturbation strategy called VIGbP was proposed [29]. According
to the literature, the current best incomplete algorithm for PBO is LS-PBO.

In this work, to further improve the performance of local search algorithms on solving
PBO, we propose a local search framework for PBO based on three main ideas.

First, we present a two-level selection strategy to choose which variable to flip. In our
proposed algorithm, we use the previous scoring function score [18] as a primary scoring
function, which is defined as the decrease of the total penalty of related constraints and
objective function. To address the issue about tie-breaking in the primary scoring function,
we propose a fragile scoring function hhscore as the secondary scoring function. The proposed
hhscore can greatly differentiate between two kinds of satisfied constraints by using the
definition of satisfied threshold.

Second, we propose a novel deep optimization strategy (DeepOpt) to deeply probe some
regions using locked and unlocked operations during the local search. Recently, the DeepOpt
strategy was first proposed by Chen et al. [8] and has been successfully applied in solving
dominating set problems. In our proposed DeepOpt strategy, we preferentially select some
variables in unsatisfied constraints as unlocked operations. Moreover, we use some trigger
conditions to decide whether the algorithm calls DeepOpt or not.

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:3

Third, we design a sampling flipping method to modify a current candidate solution
when the algorithm tramps into local optimum. In the proposed method, we adopt two
sampling ways to collect some samples among all unsatisfied constraints. We further employ
a probabilistic heuristic “best from multiple selections” (BMS) [6] to select a candidate
variable. Besides, we also apply a new scoring function to simultaneously flip two variables.

By incorporating these three ideas and some other tricks, we develop two local search
algorithms for PBO. Extensive experiments are carried out to evaluate our algorithms on the
benchmarks used in the literature. Experimental results show that the proposed algorithms
outperform three state-of-the-art PBO algorithms on almost all the benchmarks.

2 Preliminaries

Since a non-linear pseudo-Boolean (PB) constraint can be translated into an equivalent set of
linear PB constraints [23], we only start with a review of the basics of linear PB constraints
here. A linear PB constraint is defined over a finite set of Boolean variables. Boolean variable
xi can take only two values false (0) and true (1). A literal li over a Boolean variable xi is
either xi or xi = 1 − xi. A linear PB constraint is a 0-1 integer inequality.∑

i

aili ▷ b (1)

where ai and b are integer constants, li are literals and ▷ ∈ {=, >, ≥, <, ≤} is one of the
classical relational operators. All PB constraints can be normalized into the following form.∑

i

aili ≥ b (2)

where all the literals li are distinct, and all the coefficients ai and the degree b are non-negative
integers.

A PB formula is a conjunction of PB constraints, denoted as F = C1 ∧ C2 ∧ · · · ∧ Cm,
where Cp (p ∈ Z, 1 ≤ p ≤ m) is a PB constraint. The PBO problem consists of a PB formula
F and an objective function O :

∑
i cili where ci is a non-negative integer coefficient. Given

a PB constraint Cp :
∑

i ap
i lp

i ≥ bp, the sum of its coefficients is defined as sum(Cp) =
∑

i ap
i ,

its average coefficient is defined as coeff (Cp) = sum(Cp)/|L(Cp)| where L(Cp) is the set of
literals in Cp, and its maximum coefficient ap

max is the maximum value of coefficients in
Cp. The average coefficient of an objective function O is defined as coeff (O) =

∑
i ci/|L(O)|

where L(O) is the set of literals in O.
Given a PB formula F , its complete assignment is a mapping that assigns 0 or 1 to each

variable. Given a complete assignment of F , if a literal evaluates to true, we say it is a
true literal and otherwise it is a false literal. A PB constraint Cp is satisfied when the left
and right terms of the constraint evaluate to integers which satisfy the relational operator.
Otherwise, Cp is unsatisfied. The sum of coefficients of true literals in Cp is denoted as
SatL(Cp) =

∑
lp
i

=1∧lp
i

∈Cp
ap

i . An assignment α of F is feasible if and only if α satisfies all
PB constraints in F . The value of the objective function of a feasible solution α is denoted
as obj(α). The PBO problem aims to obtain a feasible solution for F with the minimum
objective value.

2.1 Review for Weighting and Scoring Function
Constraint weighting techniques have usually been used to guide and diversify the search
process [31, 5, 15]. The weighting based scoring function score for PBO is recently proposed
by Lei et al. [18]. Each PB constraint Cp ∈ F and an objective function O have the property

CP 2023

41:4 Improving Local Search for Pseudo Boolean Optimization

of weighting, denoted as w(Cp) and w(O), respectively. Before introducing the weighting, we
first present a basic concept. Given a PB formula F and m is the number of constraints, the
average constraint coefficient of F is defined as avg_coeff =

∑m
p=1 w(Cp) × coeff (Cp)/m.

The property of weighting works as follows.
Weighting Rule 1: At first, w(O) = 1 and w(Cp) = 1 for an objective function O and each

PB constraint Cp.
Weighting Rule 2: For each unsatisfied constraint Cp, w(Cp) = w(Cp) + 1.
Weighting Rule 3: If the current obj(α) of the objective function is better than the current

best-found value of objective function during the search process so far and w(O) ×
coeff (O) − avg_coeff ≤ ζ, then w(O) = w(O) + 1. In our work, we use the same
parameter value of ζ as [18], i.e., ζ = 100.

Given an assignment α of F , if a PB constraint Cp :
∑

i ap
i lp

i ≥ bp is unsatisfied, the
penalty of Cp is defined as w(Cp) × (bp −

∑
i ap

i lp
i). For the objective function O :

∑
i cili,

the penalty of O is defined as w(O) ×
∑

i cili. Based on the definition of penalty, we
introduce two scoring functions including hard score hscore and objective score oscore as
below. For a Boolean variable xi, the respective hscore(xi) and oscore(xi) are the decrease
of the total penalty of unsatisfied PB constraints and the objective function caused by
flipping xi. Combing the above scoring functions, we define the score of a variable xi as
score(xi) = hscore(xi) + oscore(xi). Remark that after flipping some variables during the
search process, the corresponding score values should be updated accordingly.

3 Two-Level Selection Strategy

In this section, we introduce a secondary scoring function to reinforce local search algorithms
for PBO and then propose a two-level selection strategy to decide a candidate variable.

3.1 Fragile Scoring Function
As a core guidance for the search process, scoring functions play an important role in local
search algorithms, which measure the benefits of a candidate variable. In local search
algorithms for PBO, such benefits hscore can be set as the distance between the sum of
coefficients of true literals and the corresponding degree, whereas oscore can be set as the
distance between the current and best-found objective values [18].

In our algorithm, we consider the sum of hscore and oscore (i.e., score) as the primary
scoring function, which is the same method as LS-PBO [18]. According to our preliminary
experiments, 9% candidate variables on average have the same largest score value during
the search. To address the issue about tie-breaking in the primary scoring function, previous
work uses the age information of variables as the secondary scoring function, where age is
defined as the number of steps since the last time it is flipped. But the experimental results
show that the use of only age cannot effectively guide the search process. Thus, to further
choose a variable among these variables with the same best score value, we design a novel
fragile scoring function denoted as hhscore.

Before introducing hhscore, we first introduce a necessary concept. For a PB constraint
Cp, gap(Cp) = min{bp + ap

max, sum(Cp)} is used to denote the satisfied threshold of Cp,
which plays a key role in our proposed hhscore. Based on the satisfied threshold of PB
constraints, we define a fragile satisfied PB constraint in the following.

▶ Definition 1. For a satisfied PB constraint Cp (i.e., SatL(Cp) ≥ bp), the Cp is a fragile
satisfied PB constraint if and only if SatL(Cp) < gap(Cp).

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:5

On the one hand, if a satisfied PB constraint Cp is fragile, we think that flipping any
variable in this PB constraint would probably make this constraint become unsatisfied. On
the other hand, if a satisfied PB constraint is not fragile (i.e., SatL(Cp) ≥ gap(Cp)), we
think this PB constraint is solid, which means that flipping any true literal in Cp would not
make Cp become unsatisfied with a high probability. Although we have also tried a similar
property that measures the number of true literals in a satisfied PB constraint Cp, such as
gap(Cp) = bp + 1, we did not find it useful in our algorithm.

To maintain the information of “fragile” for each literal during the search process, we
define inner as below.

▶ Definition 2. Suppose that a Boolean variable xi whose literal li appears in some PB
constraints (e.g., Cp) and the coefficient of li in Cp is ap

i . The value of inner(xi, Cp) is
calculated as follows.
(a) Cp is an unsatisfied PB constraint, i.e., SatL(Cp) < bp:

If li is a true literal in Cp, inner(xi, Cp) = 0;
If li is a false literal in Cp, inner(xi, Cp) = max{ap

i − (bp − SatL(Cp)), 0}.
(b) Cp is a fragile satisfied PB constraint, i.e., bp ≤ SatL(Cp) < gap(Cp):

If li is a true literal in Cp, inner(xi, Cp) = −min{ap
i , SatL(Cp) − bp};

If li is a false literal in Cp, inner(xi, Cp) = min{ap
i , gap(Cp) − SatL(Cp)}.

(c) Cp is satisfied but not a fragile PB constraint, i.e., gap(Cp) ≤ SatL(Cp):
If li is a true literal in Cp, inner(xi, Cp) = −max{ap

i − (SatL(Cp) − gap(Cp)), 0};
If li is a false literal in Cp, inner(xi, Cp) = 0.

The value of inner(xi , Cp) is subject to three distinct factors including the state of Cp

(i.e., satisfied or unsatisfied), the value of li (i.e., true or false), and the coefficient of li (i.e.,
ap

i). To make the readers easily understand the above Definition 2, we list all the situations
corresponding to different inner values in Figure 1.

Considering all the PB constraints in which variable x’s literal appears, the proposed
fragile scoring function hhscore of variable xi is defined as below.

hhscore(xi) =
nx∑

p=1
inner(xi, Cp) (3)

where nx is the number of PB constraints including the literal of xi.

3.2 Selection Rule
Combining the respective advantages of score and hhscore, we propose a two-level selection
strategy as follows.

Flipping Rule. Flip a variable xi with the biggest score(xi) value, breaking ties by preferring
the one with the biggest hhcore(xi) value, further ties are broken randomly.

The proposed secondary scoring function is inspired by subscore [7], but has two essential
differences. First, our proposed scoring function can be considered as a general version of
subscore because the value of satisfied threshold gap is equal to 2 for the SAT problem,
which is the same function as subscore. Second, previous work uses a linear combination
of subscore and another scoring function as the primary scoring function, whereas our work
considers a two-level scoring function to guide the search process. In addition, experiments
show that the trigger fraction of using hhscore at least once for all tested instances is about
99.6%.

CP 2023

41:6 Improving Local Search for Pseudo Boolean Optimization

bp

SatL(Cp)

(a) SatL(Cp) < bp

 Cp unsatisfied
 li false

max(ai
p- (bp - SatL(Cp)), 0)

coefficient of false literal

SatL(Cp)

bp

coefficient of true literal

gap(Cp)

+ the positive value of inner

the negative value of inner-

(a) SatL(Cp) < bp

 Cp unsatisfied
 li true

0

(b) bp ≤ SatL(Cp) < gap(Cp)

 Cp satisfied
 li false

min(ai
p, gap(Cp) - SatL(Cp))

(b) bp ≤ SatL(Cp) < gap(Cp)

Cp satisfied
 li true

-min(ai
p, SatL(Cp) - bp)

 (c) gap(Cp) ≤ SatL(Cp)

Cp satisfied
 li true

-max(ai
p- (SatL(Cp) - gap(Cp)), 0)

(c) gap(Cp) ≤ SatL(Cp)

 Cp satisfied
 li false

0

SatL(Cp)

bp

gap(Cp)

SatL(Cp)

bp

+

bp

SatL(Cp)

gap(Cp)

-

gap(Cp)

bp
SatL(Cp)

gap(Cp)

-

SatL(Cp)

bp

bp

SatL(Cp)

+

+

bp
SatL(Cp)

gap(Cp)

bp

SatL(Cp)

-

gap(Cp)

bp

SatL(Cp)

gap(Cp)

Figure 1 A graphical explanation of inner .

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:7

Algorithm 1 DeepOpt.
Input: PBO instance F and a perturbation initialization assignment α

Output: A perturbation solution α of F

1 UnSatSet := unsat(α) and SatSet := F \ UnsatSet;
2 CandSet := ∅;
3 while |CandSet| ≤ γ × n do
4 if UnSatSet ̸= ∅ then
5 select a random unsatisfied PB constraint C;
6 UnSatSet := UnSatSet \ {C};
7 for each variable x ∈ C do
8 if x’s literal is true && with 50% probability then α := α with x flipped ;
9 CandSet := CandSet ∪ {x};

10 else
11 select a random satisfied PB constraint C;
12 SatSet := SatSet \ {C};
13 for each variable x ∈ C do
14 CandSet := CandSet ∪ {x};

15 if |unsat(α)| > MaxHard then break ;
16 for step = 0; step < Lopt; step++ do
17 select a variable x among |CandSet|/2 samples from CandSet based on Flipping Rule;
18 α := α with x flipped;
19 return α;

4 Deep Optimization for PBO

Local search algorithms usually search the entire space and focus on exploring some promising
spaces using several heuristic strategies. Recently, a general perturbation mechanism called
deep optimization has been proposed by Chen et al. [8], which can deeply probe some regions
based on locked and unlocked operations and then converge to a new solution quickly. Note
that deep optimization is somewhat similar to some classic search frameworks such as large
neighborhood search [25]. According to this general framework, we propose a new deep
optimization approach DeepOpt for PBO.

The pseudo-code of our proposed DeepOpt is reported in Algorithm 1 and the corres-
ponding trigger conditions of DeepOpt will be displayed in the next section. We use the
unsat(α) function to denote the set of unsatisfied PB constraints under an assignment α.
At first, the algorithm uses UnSatSet and SatSet to store unsatisfied and satisfied PB
constraints under a perturbation initialization assignment, respectively (Line 1). Afterward,
a candidate variable set CandSet is initialized to an empty set (Line 2), which stores all
unlocked variables in the following search. Note that, in our work, we use CandSet to store
all unlocked variables which means that these variables can be flipped in the following search
phase, while the remaining variables can be seen as locked variables.

The DeepOpt usually consists of two phases including a selection phase (Lines 3–15) to
generate several candidate local search spaces and a search phase (Lines 16–18) to repair
these search spaces.

In the first phase, we flip several variables to achieve the purpose of early preparation.
There are two exit conditions in this phase. The first one is that |CandSet| is larger than
γ × n where n is the number of variables (Line 3), whereas the second one is that the number
of unsatisfied constraints under the current assignment is larger than MaxHard (Line 15)

CP 2023

41:8 Improving Local Search for Pseudo Boolean Optimization

where γ and MaxHard are two parameters in DeepOpt. At each iteration, if UnSatSet is
not empty, the algorithm preferentially chooses a random unsatisfied PB constraint C from
UnSatSet (Lines 4–5) and puts all variables of C into CandSet (Line 9). For each variable
x ∈ C, if x’s literal in C is true, it occurs with 50% probability to flip x (Line 8). If the
algorithm selects a random satisfied constraint C, the algorithm only adds all variables
of C into CandSet (Line 14). Note that according to our preliminary experiments, if the
first phase only selects the candidate variables and does not flip these variables, then the
performance of DeepOpt will become bad.

In the second phase, the algorithm applies the search process to perturb the assignment α

until the limit of iterations Lopt is reached (Line 16). The algorithm employs the BMS strategy
[6] in the process of selecting a candidate variable, i.e., randomly choosing |CandSet|/2
variables to compose a candidate set. Afterward, the algorithm flips a variable x among a
candidate set based on the flipping rule (Lines 17–18). At last, the algorithm returns the
final assignment α (Line 19).

5 DeepOpt-PBO Algorithm

In this section, we propose an effective local search algorithm DeepOpt-PBO for PBO, whose
main framework is presented in Algorithm 2. The DeepOpt-PBO is mainly divided into the
initialization and search phases.

In the initialization phase (Lines 1–3), the best solution α∗ is set to ∅ and its objective
value obj∗ is set to +∞. To obtain an initial assignment α, all variables are set to 0. The
algorithm initializes the related weight information according to the weighting rule 1.

In the following, there is an outer loop (Lines 4–32) and an inner loop (Lines 7–31).
During the search, whenever a better feasible assignment is obtained, α∗ and obj∗ are updated
accordingly (Line 12). After each inner loop, the algorithm uses the RestartV ar function to
restart a current assignment (Line 32), which will be presented in Section 5.2. Finally, the
algorithm returns α∗ and obj∗ when reaching a time limit.

In each inner loop (step < L), the algorithm searches for a local optimal assignment α.
The algorithm uses GoodSet to store variables whose score is larger than 0 (Line 15). If
GoodSet is not empty, the algorithm flips a candidate variable based on the proposed flipping
rule (Lines 16–18). Otherwise, it means that the algorithm tramps into local optimum. The
algorithm uses the modified weighting rule 2 and weighting rule 3 to update the corresponding
weight value (Lines 20–21). Specifically, we optimize previous weighting rule 2, resulting in
a novel modified weighting rule 2, which will be mentioned in Section 5.2. Moreover, the
algorithm will use a sampling technique SampleF lip to flip one or more variables to help the
algorithm itself jump out of local optimum, which will be introduced in the next subsection
(Line 22).

Trigger Conditions of DeepOpt. In the below part, we will introduce some trigger conditions
of DeepOpt in our proposed algorithm. At first, three variables are defined as below.
1) unhard is used to denote the number of unsatisfied PB constraints. Before each inner

loop, unhard is initialized to the number of unsatisfied constraints under the current
assignment (i.e., |unsat(α)|) (Line 6). In the inner loop, whenever |unsat(α)| < unhard,
unhard is updated accordingly (Lines 8–9). After calling the DeepOpt method, unhard

will be updated by |unsat(α)| (Line 31).

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:9

Algorithm 2 DeepOpt-PBO.
Input : PBO instance F and cutoff time cutoff
Output : An assignment α∗ of F and its objective value

1 α∗ := ∅ and obj∗ := +∞;
2 α := all variables are set to 0;
3 initialize the weight value of the objective function and each constraint to 1;
4 while elapsed time < cutoff do
5 stepopt := 1 and coff := 1;
6 unhard := |unsat(α)|;
7 for step = 1; step < L; step++ do
8 if |unsat(α)| < unhard then
9 unhard := |unsat(α)|;

10 stepopt := stepopt/2 and step := step/2;
11 if α is feasible && obj(α) < obj∗ then
12 α∗ := α and obj∗ := obj(α);
13 stepopt := step := 1;
14 if coff ̸= 1 then coff := coff /2;
15 GoodSet := {x | score(x) > 0};
16 if GoodSet ̸= ∅ then
17 select a variable x in GoodSet based on Flipping Rule;
18 α := α with x flipped;
19 else
20 update the weight of each constraint based on Modified Weighting Rule 2;
21 update the weight of the objective function based on Weighting Rule 3;
22 SampleF lip(F, α);
23 stepopt := stepopt + 1;
24 if stepopt%(coff × MinStep) == 0 then
25 if |unsat(α)| ≤ MinHard && with 50% probability then
26 if coff ̸= δ then coff := coff × 2;
27 DeepOpt(F, α);
28 else if α∗ ̸= ∅ then
29 α := α∗;
30 DeepOpt(F, α);
31 unhard := |unsat(α)| and stepopt := 1;

32 RestartV ar(F, α);
33 return (α∗, obj∗);

2) stepopt records the non-improvement steps after the initialization phase or the last
DeepOpt operation. Before each inner loop, the algorithm sets stepopt to 1 (Line 5). In
each iteration of the inner loop, stepopt is increased by 1 (Line 23). When the algorithm
obtains a better assignment (Line 13) or the algorithm calls the DeepOpt method (Line
27 or 30), stepopt will be set to 1 (Line 31). If |unsat(α)| < unhard, then stepopt will be
cut in half (Lines 8 and 10).

3) coff is used to control the frequency of using the DeepOpt method. Before each inner
loop, coff is initialized to 1 (Line 5). When the algorithm finds a better assignment,
the value of coff is divided by 2 to reduce the frequency of perturbations (Line 14). If
|unsat(α)| is smaller than parameter MinHard, it means unsatisfied PB constraints are
few enough to consider perturbations, avoiding tramping into a local optimum. The value
of coff will be doubled with a 50% probability (Line 26). During this process, parameter
δ controls the maximum value of coff .

CP 2023

41:10 Improving Local Search for Pseudo Boolean Optimization

The algorithm judges whether to call the DeepOpt method under each (coff × MinStep)
iteration (Line 24). If |unsat(α)| ≤ MinHard, the algorithm calls the DeepOpt method with
a 50% probability (Line 27). Otherwise, if α∗ is not empty, the algorithm will use α∗ as a
perturbation initialization assignment and then employ the DeepOpt method (Lines 28–30).

Algorithm 3 SampleFlip.
Input : PBO instance F and an assignment α

Output : A modified assignment α

1 if |unsat(α)| == 0 then
2 select a random variable x with oscore(x) > 0;
3 α := α with x flipped;
4 return α;
5 select a random unsatisfied constraint C;
6 CSet := V Set := ∅;
7 if |unsat(α)| ≥ β then
8 for i = 1 to β do
9 select a random unsatisfied constraint Ci;

10 CSet := CSet ∪ {Ci};

11 if |L(C)| == 1 then
12 select only variable x in C and α := α with x flipped;
13 else if |L(C)| == 2 then

/* Two variables x1 and x2 in C */
14 select a variable xi with the largest scoret(x1, xi) value, breaking ties randomly;
15 select a variable xj with the largest scoret(x2, xj) value, breaking ties randomly;
16 if scoret(x1, xi) > 0 || scoret(x2, xj) > 0 then
17 if scoret(x1, xi) > scoret(x2, xj) then
18 α := α with x1 and xi flipped;
19 else α := α with x2 and xj flipped;
20 else
21 select a variable x among xi and xj based on Flipping Rule and α := α with x

flipped;

22 else
23 if |unsat(α)| ≥ β then
24 for each constraint Cp ∈ CSet do
25 select |L(Cp)|/2 samples from L(Cp) and put them into V Set;

26 else
27 select |L(C)|/2 samples from L(C) and put them into V Set;
28 select a variable x from V Set based on Flipping Rule;
29 α := α with x flipped;
30 return α;

5.1 Sampling Flipping
The pseudo-code of SampleF lip is outlined in Algorithm 3. First, we introduce a new
scoring function, which is used in our SampleF lip method. When flipping two variables
xs and xz simultaneously, scoret(xs, xz) is defined as the sum of the decrease of the total
penalty of unsatisfied PB constraints and the objective function. Although it is easy to see
the computation complexity of score is quite lower than scoret, scoret can find a better

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:11

flipping operation compared to score. The method of selecting more candidate elements
simultaneously has also been used in some different NP-hard problems [28, 34]. Moreover,
in the SampleF lip method, we only consider scoret in a special case that the number of
literals in the selected constraint C is 2 (i.e., |L(C)| = 2).

In the beginning, if there are no unsatisfied constraints, the algorithm selects and flips
a random variable x with oscore(x) > 0 (Lines 1–4). There are two main important
components, including clause sampling (Lines 5–10) and variable flipping (Lines 11–29) in
the algorithm. In the phase of clause sampling, the algorithm adopts two kinds of sampling
ways. The first sampling method is to select a random unsatisfied constraint C (Line 5). If
|unsat(α)| > β, then the algorithm activates the second sampling method, i.e., adding β

unsatisfied constraints into CSet (Lines 7–10).
In the phase of variable flipping, if C is a unit clause (i.e., |L(C)| = 1), the algorithm

flips the only variable x in C (Lines 11–12). If C is a binary clause (i.e., L(C) = {x1, x2}),
the algorithm tries to find two pairs of variables {x1, xi} and {x2, xj} with the largest scoret

value (Lines 14–15). If there exists a positive flipping operation among these two pairs, the
algorithm flips a pair with the better scoret value (Lines 16–19). Otherwise, the algorithm
still flips only one variable among x1 and x2 based on the flipping rule (Lines 20–21). In the
subsequent process, the algorithm will depend on the value of parameter β to collect some
samples from CSet or C into V Set (Lines 23–27). At last, the algorithm selects and then
flips the best variable x from V Set (Lines 28–29).

The intuitive explanations behind SampleF lip come from two aspects. First, single
flipping mechanism for local search is easy to fall into a local optimum, while sampling
strategy can explore the solution space more effectively in a look-ahead way. Second, the
sampling strategy selects variables from various unsatisfied constraints, providing more search
directions. In addition, we specially focus on the case of two literals, to keep running time
low but a good performance.

5.2 Some Other Techniques
Based on the main part as shown above, we also introduce some additional heuristics to
further improve the efficiency, including a weighting rule and a restart strategy.

Modified Weighting Rule 2. The weighting scheme plays an important role in the
search process. By increasing the weight of unsatisfied constraints, we can accurately guide
the search process toward more efficient directions. In each iteration of the inner loop, if
GoodSet is empty, the visited times of each unsatisfied constraint will be increased by 1. For
an unsatisfied constraint Cp, when its visited times are larger than bp/coeff (Cp), the value
of w(Cp) will be increased by 1, and the value of its visited times is reset to 0.

Restart Strategy. The second adopted technique is the restart strategy. Under a current
assignment α, we can change the original value of each variable with a certain probability,
i.e., from 1 (0) to 0 (1). Besides, the restart strategy will reset the weight value of each
constraint according to the weighting rule 1. If the number of literals in an objective function
O is larger than β (i.e., |L(O)| > β), then w(O) will be reset based on the weighting rule 1,
too.

6 Experimental Evaluation

We first introduce the seven selected benchmarks, three state-of-the-art PBO competitors,
and the adopted experimental setup. Then, we carry out extensive experiments to evaluate
the performance of our proposed algorithm.

CP 2023

41:12 Improving Local Search for Pseudo Boolean Optimization

6.1 Experiment Preliminaries
Since the literature on local search algorithms for handling PBO is very sparse, we selected all
used instances from [18, 10]. To be specific, we considered 3738 instances obtained from three
application benchmarks and four standard benchmarks: (1) 24 instances from the minimum-
width confidence band problem (MWCB) [2]. These MWCB instances were obtained based
on the MIT-BIH arrhythmia database2. (2) 18 instances from the wireless sensor network
optimization problem (WSNO) [16, 17]. We used the same encoding as previous work [18] to
obtain an optimization version of WSNO. (3) 21 instances from the seating arrangements
problem (SAP) [1]. These instances were originally proposed in the MaxSAT Evaluation
2017. (4) 1600 OPT-SMALL-INT instances from the most recent PB Competition in 2016
(PB2016)3. The PB2016 benchmark is often considered as the main target for comparing
against some other PB solvers [10, 27]. (5) The 0-1 integer linear programming optimization
benchmark (MIPLIB) contains 267 instances from the mixed integer programming library
MIPLIB 20174. (6) 1025 crafted combinatorial instances (CRAFT) are provided in the
literature [30]. (7) The Knapsack benchmark (KNAP) consists of a total of 783 instances
[22].

Table 1 Tuned parameters of our proposed algorithms.

Parameter Range Final value

DeepOpt
MinStep {103,104,105,106} 105

δ {64,128,256} 128
γ {0.02,0.05,0.08,0.11} 0.05
MaxHard {30,50,70,90} 50
MinHard {5,10,15} 10
Lopt {10,30,50,70} 50
Some other parameters in our proposed algorithms
β {50,100,150,200} 100
L {102,103,104,105} 104

According to the frequency of using the proposed restart strategy, we propose two
versions of DeepOpt-PBO, resulting in DeepOpt-PBO-v1 and DeepOpt-PBO-v2. In detail,
DeepOpt-PBO-v1 does not use the restart strategy (i.e., parameter L is set to INT_MAX).
DeepOpt-PBO-v2 is run for half of the computation time given to the algorithm with the
restart strategy, while the second half of the available computation time of DeepOpt-PBO-
v2 is given to the algorithm without the restart strategy. We also attempted to use the
restart strategy during the whole time, and the result is not satisfactory. According to our
preliminary experiments by using the automatic configuration tool irace [20], Table 1 shows
the parameter values. Specifically, since these benchmarks have different scales, we built a
training set and randomly selected 10 instances from the corresponding tested benchmark.
The tuning process is given a budget of 5000 runs for the training set with a time budget of
3600s per run.

The proposed algorithms are compared against three state-of-the-art PBO algorithms,
including a local search algorithm LS-PBO [18] and two exact PBO solvers, i.e., RoundingSat
[10] and PBO-IHS [27]. Although mixed integer programming solvers (e.g., SCIP [4]) and

2 http://physionet.org/physiobank/database/mitdb/
3 http://www.cril.univ-artois.fr/PB16/
4 http://miplib.zib.de

http://physionet.org/physiobank/database/mitdb/
 http://www.cril.univ-artois.fr/PB16/
 http://miplib.zib.de

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:13

MaxSAT solvers (e.g., CASHWMaxSAT-CorePlus [19]) can be directly applied to solving
PBO, we mainly focus on evaluating the performance of specialized solvers for PBO. The
codes of all competitors were kindly provided by the authors. As for LS-PBO, RoundingSat
and PBO-IHS, we employ the default parameters in the corresponding literature, respectively.
Our code will be made publicly available. All algorithms are implemented in C++ and
compiled by g++ with -O3 option. All the algorithms are run on Intel Xeon Gold 6238 CPU
@ 2.10GHz with 512GB RAM under CentOS 7.9.

For the application benchmarks, our proposed algorithms and LS-PBO are both run 20
times whose seed is from 1 to 20 on each instance, whereas the exact solvers are run once
on each instance. For the other four standard benchmarks (i.e., PB2016, MIPLIB, CRAFT
and KNAP), following the settings of previous works [10, 27], all the algorithms are run only
once on each instance. We test the algorithms with a time limit of 3600 seconds.

For the application benchmarks, we use min to denote the best solution value found and
avg to denote the average value over the 20 runs. For all the benchmarks, we report the number
of instances where the algorithm finds the best solution value among all algorithms, denoted
by #win. There are some unsatisfied instances in the PB2016 benchmark. RoundingSat and
PBO-IHS can guarantee the optimality of the solutions they obtain and thus can prove some
of these unsatisfied instances, whereas DeepOpt-PBO and LS-PBO cannot do it because these
two algorithms belong to incomplete algorithms. For the above case, following the similar
method from the literature [18], if all the algorithms fail to obtain any feasible solution for
such an unsatisfied instance, then #win value of all the algorithms for this instance needs
to be increased by 1. The bold value indicates the best solution value obtained by all the
algorithms. In detail, the bold value of each avg column indicates the best average solution
when some algorithms obtain the same minimal solution values. For one instance, if only one
algorithm finds the best minimal solution value, only its corresponding min column should
be marked.

6.2 Experimental Results
Note that for the application benchmarks, two exact solvers RoundingSat and PBO-IHS can
obtain the same best solution as our proposed algorithms for only 4 instances. Thus, for the
sake of space, we do not report the detailed results of these two exact solvers. We mainly
compare DeepOpt-PBO-v1 and DeepOpt-PBO-v2 with LS-PBO. The experimental results
on the application benchmarks are presented in Tables 2–4. According to our results, our
proposed algorithms are consistently superior on the MWCB and SAP benchmarks. For
the WSNO benchmark, two proposed algorithms and LS-PBO can obtain the same best
solution values. Furthermore, LS-PBO can find a minimal average solution for 15 instances,
while our proposed algorithms do it for only 6 instances. Our proposed algorithms adopt
some perturbation mechanisms, which may make them difficult for the algorithms to steadily
obtain a good solution.

Table 5 gives a summary on all the benchmarks. According to the experimental results,
DeepOpt-PBO-v2 outperforms other algorithms in terms of obtaining more optimal solution
values on PB2016, MIPLIB and CRAFT, except for the benchmark KNAP where PBO-IHS
has a better performance. In addition, under a given time limit, we observe that PBO-IHS
can prove the optimality of a solution for more instances compared to RoundingSat in all
benchmarks. Although our proposed algorithms cannot prove the optimality due to the
natural property of local search, DeepOpt-PBO-v2 can find more minimal solution values
overall. Because some instances from the above benchmarks have different kinds of problem
structures and all the local search algorithms are run only once on each instance, the restart

CP 2023

41:14 Improving Local Search for Pseudo Boolean Optimization

Table 2 Experiment results on MWCB.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

1000_200_90 103363 104188.35 103430 104233 110450 111314.25
1000_250_90 140223 141182.2 140237 141194.9 148181 149828.65
1200_200_90 104063 104572.25 104063 104589.1 110993 112897.1
1200_250_90 141211 142310.6 141238 142343.2 150212 152888.7
1400_200_90 103948 104867.35 104057 104901.55 110792 112975.65
1400_250_90 141567 142675.7 141746 142722.15 150981 152932.9
1600_200_90 119226 120182.4 119226 120215.9 136944 143371.9
1600_250_90 162651 163893.3 162656 163937.1 183797 196547.75
1800_200_90 203135 205888.75 203135 205959.2 219536 224144.95
1800_250_90 253073 257501.75 253078 257715.25 276336 283192.95
2000_200_90 227294 229591.95 227424 229676.1 246109 250958.4
2000_250_90 286970 289889.4 286970 290058.1 309645 314528.5
1000_200_95 113384 114749.8 113501 114855.95 117064 117945.7
1000_250_95 151882 153581.05 152007 153622 156543 157976.1
1200_200_95 114585 115920.2 114675 115975 118045 119544.4
1200_250_95 153104 155765.8 153138 155798.35 159310 161454.1
1400_200_95 114195 115231.3 114195 115305.95 118913 119779.4
1400_250_95 155158 156149.65 155174 156180.15 161658 162917.95
1600_200_95 168271 171985.9 168271 172024.6 185707 190763.55
1600_250_95 215266 218013.5 215316 218069.55 236547 244060.35
1800_200_95 238699 241690.55 238702 241779.85 251744 256988.75
1800_250_95 297981 302487.3 297981 302927.25 314968 318961.25
2000_200_95 257696 262062.9 257696 262113.6 272832 277406.7
2000_250_95 324379 328952.6 324379 329032.9 340859 346007.95

Table 3 Experiment results on WSNO.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

100_40_4 210 210 210 210 210 210
150_60_4 602 612.85 602 602 602 602.2
200_80_4 715 719.45 715 716.65 715 715.1
250_100_4 1305 1401.2 1305 1330.05 1305 1305
300_120_4 1257 1330.25 1257 1373 1257 1257.05
350_140_4 1737 1957.4 1737 1997.95 1737 1744.05
400_160_4 2240 2509.55 2241 2598.85 2240 2240.5
450_180_4 1869 2780.7 1878 2598.7 1869 1889.25
500_200_4 2577 3676.8 2674 3637.95 2577 2616.2
100_40_6 140 140 140 140 140 140
150_60_6 402 402 402 402 402 402
200_80_6 477 480 477 477.05 477 477.7
250_100_6 870 893.35 870 870.1 870 870.5
300_120_6 839 866.55 839 862.15 839 839.3
350_140_6 1158 1267.7 1158 1288.25 1158 1158.85
400_160_6 1493 1671.8 1493 1656.5 1493 1494.25
450_180_6 1246 1588.45 1265 1641.6 1246 1247.8
500_200_6 1718 1984.05 1718 1927 1718 1727.65

strategy plays a key role in the performance of DeepOpt-PBO-v2. To sum up, for three
application benchmarks, PB2016, MIPLIB, and CRAFT, our algorithm totally dominates all
the competitors, whereas PBO-IHS performs better than other PBO solvers for the KNAP
benchmark.

Additionally, we evaluate the performance of all the solvers on seven benchmarks using
performance profile [11]. As shown in Figure 2, the plot captures the probability of reaching
a fixed quality in a time, at most a factor τ slower than the optimal algorithm. Specially,

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:15

Table 4 Experiment results on SAP.

Instance DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO
min avg min avg min avg

100 579 579.7 579 579.8 580 583
110 618 618.75 618 618.85 619 626.05
120 675 677.15 675 677.8 679 685.6
130 733 736.9 734 738.4 738 744.6
140 750 751.9 750 753.75 757 763.65
150 803 808.4 803 810.3 821 828.45
160 849 854.85 849 855.75 867 872.75
170 880 884.4 880 885.55 897 907.5
180 939 948.45 941 951.7 971 977.4
190 965 973.2 970 977 996 1005.25
200 1029 1040 1029 1042.55 1067 1073.4
210 1067 1074.7 1068 1077.9 1094 1112.75
220 1114 1127.3 1114 1129.6 1151 1163.1
230 1151 1166.85 1162 1169.7 1195 1205.75
240 1179 1192.6 1183 1195.5 1219 1234.55
250 1235 1243.1 1237 1245.5 1274 1290.55
260 1275 1286.15 1277 1287.45 1318 1334.9
270 1344 1353.1 1348 1356.1 1392 1403.55
280 1348 1370.75 1354 1375.35 1407 1424.3
290 1403 1416.35 1405 1419.5 1448 1471.15
300 1471 1491.5 1480 1496.1 1538 1548.4

Table 5 Summary results of comparing our proposed algorithms to its competitors on all the
benchmarks. #inst denotes the number of instances in each benchmark.

Benchmark #inst DeepOpt-PBO-v1 DeepOpt-PBO-v2 LS-PBO RoundingSat PBO-IHS
#win #win #win #win #win

MWCB 24 24 9 0 0 0
WSNO 18 18 14 18 4 4
SAP 21 21 9 0 0 0
PB2016 1600 1141 1226 1060 1195 1101
MIPLIB 267 163 168 135 125 130
CRAFT 1025 903 930 878 882 917
KNAP 783 695 693 649 392 778
Total 3738 2965 3049 2740 2598 2930

Table 6 Comparative results for DeepOpt-PBO-v1 and its modified versions with different
strategies on the application benchmarks. #better and #worse denote the number of instances
where DeepOpt-PBO-v1 obtains better and worse solution values, respectively.

Benchmark #inst vs. v1+nohh vs. v1+nodo vs. v1+nosf
#better #worse #better #worse #better #worse

MWCB 24 11 8 24 0 24 0
WSNO 18 1 0 1 0 0 0
SAP 21 11 5 18 0 20 0
Total 63 23 13 43 0 44 0

when τ equals 1, we obtain the probability that the algorithm is the fastest. Figure 2 (a)
demonstrates the superior performance of DeepOpt-PBO-v1 on the first three application
benchmarks. It can be observed that DeepOpt-PBO-v1 has a higher probability of finding
the optimal solution for each τ . In Figure 2 (b), LS-PBO performs the best within a short
time scale. However, DeepOpt-PBO-v2 surpasses LS-PBO around τ = 6 and maintains its
leadership consistently.

CP 2023

41:16 Improving Local Search for Pseudo Boolean Optimization

0 1 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(r

)

DeepOpt-PBO-v1
DeepOpt-PBO-v2
LS-PBO

(a) Three application benchmarks.

0 1 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
(r

)

DeepOpt-PBO-v1
DeepOpt-PBO-v2
LS-PBO
RoundingSat
PBO-IHS

(b) Four standard benchmarks.

Figure 2 Performance profiles for DeepOpt-PBO and all competitors for reaching the best solution
on the three application benchmarks (a) and four standard benchmarks (b).

For three application benchmarks, to determine better solution values, we increase the
execution time to 5400 seconds, and once again our algorithms perform better than LS-PBO.
For the PB2016 benchmark, when increasing the execution time to 5400 seconds, although
the solution values obtained by RoundingSat and PBO-HIS are better than before, our
algorithm can still find more best solution values than RoundingSat and PBO-IHS for 29
and 140 instances, respectively.

To verify the effectiveness of the proposed strategies, we compare DeepOpt-PBO-v1
with three alternative versions: 1) v1+nohh utilizes the age strategy instead of hhscore; 2)
v1+nodo does not use the DeepOpt method; 3) v1+nosf does not employ the SampleF lip

function. The results in Table 6 demonstrate that all proposed strategies are effective. In
addition, we randomly select 20 instances for each standard benchmark. In total, 80 instances
are picked. We also test the performance of our proposed algorithm and three alternative
versions on these picked instances. All the algorithms are run 20 times on each instance.
Once again, the results show that our proposed algorithm obviously performs better than
three alternative versions.

Here, we give a discussion to compare our algorithm with MIP solvers and MaxSAT
solvers. First, although MaxSAT solvers (e.g., CASHWMaxSAT-CorePlus [19]) can be
directly applied to solving PBO, Lei et al. [18] observed that several of the instances from
some benchmarks, such as PB2016, are too large to admit practical encodings into MaxSAT.
Thus, MaxSAT solvers have usually poor performance for PBO. Second, more general solvers
(e.g., MIP solvers) could also be used for comparison, but in our work, we mainly focus
on evaluating the performance of specialized solvers for PBO. We have also tested the
performance of the non-commercial MIP solver SCIP [4] on all the seven benchmarks. In
detail, for the KNAP benchmark, the performance of PBO-IHS and SCIP is better than our
algorithm. But, for the remaining six benchmarks, our algorithms perform better than SCIP.

7 Conclusion

In this paper, we propose a two-level selection strategy, a novel deep optimization strategy,
and a sampling flipping method. Based on the above strategies and some other tricks,
we develop two local search algorithms. Experiments show that the proposed algorithms
significantly outperform the state-of-the-art PBO algorithms.

W. Zhou, Y. Zhao, Y. Wang, S. Cai, S. Wang, X. Wang, and M. Yin 41:17

References

1 Carlos Ansotegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT evaluation
2017: Solver and benchmark descriptions, 2017.

2 Jeremias Berg, Emilia Oikarinen, Matti Järvisalo, and Kai Puolamäki. Minimum-width
confidence bands via constraint optimization. In Proceedings of the Twenty-Third Principles
and Practice of Constraint Programming, volume 10416, pages 443–459, 2017.

3 Daniel Le Berre and Romain Wallon. On dedicated CDCL strategies for PB solvers. In
Proceedings of the Twenty-Fourth Theory and Applications of Satisfiability Testing, volume
12831, pages 315–331, 2021.

4 Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al.
The SCIP optimization suite 8.0. arXiv:2112.08872, 2021.

5 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting system-
atic search by weighting constraints. In Proceedings of the Sixteenth Eureopean Conference on
Artificial Intelligence, volume 16, pages 146–150, 2004.

6 Shaowei Cai, Jinkun Lin, and Chuan Luo. Finding a small vertex cover in massive sparse
graphs: Construct, local search, and preprocess. Journal of Artificial Intelligence Research,
59:463–494, 2017.

7 Shaowei Cai and Kaile Su. Comprehensive score: Towards efficient local search for SAT with
long clauses. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pages 489–495, 2013.

8 Jiejiang Chen, Shaowei Cai, Yiyuan Wang, Wenhao Xu, Jia Ji, and Minghao Yin. Improved
local search for the minimum weight dominating set problem in massive graphs by using a
deep optimization mechanism. Artificial Intelligence, 314:103819, 2023.

9 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 26(1):26–55,
2021.

10 Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter J. Stuckey.
Cutting to the core of pseudo-Boolean optimization: Combining core-guided search with
cutting planes reasoning. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence, volume 35, pages 3750–3758, 2021.

11 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.

12 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
pages 1291–1299, 2018.

13 Jan Elffers and Jakob Nordström. A cardinal improvement to pseudo-Boolean solving. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, volume 34, pages
1495–1503, 2020.

14 John Franco and John Martin. A history of satisfiability. In Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, pages 3–74. 2009.

15 Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The MIT press,
2009.

16 Gergely Kovásznai, Balázs Erdélyi, and Csaba Biró. Investigations of graph properties in terms
of wireless sensor network optimization. In Proceedings of the IEEE International Conference
on Future IoT Technologies, pages 1–8, 2018.

17 Gergely Kovásznai, Krisztián Gajdár, and Laura Kovács. Portfolio SAT and SMT solving of
cardinality constraints in sensor network optimization. In Proceedings of the Twenty-First
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages
85–91, 2019.

CP 2023

41:18 Improving Local Search for Pseudo Boolean Optimization

18 Zhendong Lei, Shaowei Cai, Chuan Luo, and Holger H. Hoos. Efficient local search for
pseudo Boolean optimization. In Proceedings of the Twenty-Fourth Theory and Applications
of Satisfiability Testing, volume 12831, pages 332–348, 2021.

19 Zhendong Lei, Yiyuan Wang, Shiwei Pan, Shaowei Cai, and Minghao Yin. CASHWMaxSAT-
CorePlus: Solver description. MaxSAT Evaluation, page 8, 2022.

20 Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

21 Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A modular maxsat solver.
In Proceedings of the Seventeenth Theory and Applications of Satisfiability Testing, volume
8561, pages 438–445, 2014.

22 David Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32(9):2271–2284, 2005.

23 Olivier Roussel and Vasco Manquinho. Pseudo-Boolean and cardinality constraints. In
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 1087–1129. 2021.

24 Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint
in band form and related techniques for PB-solvers. IEICE Transactions on Information and
Systems, E98.D(6):1121–1127, 2015.

25 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Proceedings of the Fourth Principles and Practice of Constraint Programming,
volume 1520, pages 417–431, 1998.

26 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-Boolean optimization by implicit
hitting sets. In Proceedings of the Twenty-Seventh Principles and Practice of Constraint
Programming, volume 210, pages 51:1–51:20, 2021.

27 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Improvements to the implicit hitting set
approach to pseudo-Boolean optimization. In Proceedings of the Twenty-Fifth International
Conference on Theory and Applications of Satisfiability Testing, volume 236, pages 13:1–13:18,
2022.

28 Zhouxing Su, Qingyun Zhang, Zhipeng Lü, Chu-Min Li, Weibo Lin, and Fuda Ma. Weighting-
based variable neighborhood search for optimal camera placement. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence, volume 35, pages 12400–12408, 2021.

29 Renato Tinós, Michal W. Przewozniczek, and Darrell Whitley. Iterated local search with
perturbation based on variables interaction for pseudo-Boolean optimization. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 296–304, 2022.

30 Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström. In
between resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT
solving. In Proceedings of the Twenty-First Theory and Applications of Satisfiability Testing,
volume 10929, pages 292–310, 2018.

31 Chris Voudouris and Edward Tsang. Partial constraint satisfaction problems and guided local
search. In Proceedings of the Practical Application of Constraint Technology, pages 337–356,
1996.

32 Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. Sccwalk: An efficient local search
algorithm and its improvements for maximum weight clique problem. Artificial Intelligence,
280:103230, 2020.

33 Yiyuan Wang, Dantong Ouyang, Liming Zhang, and Minghao Yin. A novel local search for
unicost set covering problem using hyperedge configuration checking and weight diversity.
Science China Information Sciences, 60:062103, 2017.

34 Jiongzhi Zheng, Jianrong Zhou, and Kun He. Farsighted probabilistic sampling based local
search for (weighted) partial maxsat. CoRR, abs/2108.09988, 2021.

	1 Introduction
	2 Preliminaries
	2.1 Review for Weighting and Scoring Function

	3 Two-Level Selection Strategy
	3.1 Fragile Scoring Function
	3.2 Selection Rule

	4 Deep Optimization for PBO
	5 DeepOpt-PBO Algorithm
	5.1 Sampling Flipping
	5.2 Some Other Techniques

	6 Experimental Evaluation
	6.1 Experiment Preliminaries
	6.2 Experimental Results

	7 Conclusion

