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Abstract
Due to the limited connectivity of gate model quantum devices, logical quantum circuits must be
compiled to target hardware before they can be executed. Often, this process involves the insertion
of SWAP gates into the logical circuit, usually increasing the depth of the circuit, achieved by solving
a so-called qubit assignment and routing problem. Recently, a number of integer linear programming
(ILP) models have been proposed for solving the qubit assignment and routing problem to proven
optimality. These models encode the objective function and constraints of the problem, and leverage
the use of automated solver technology to find hardware-compliant quantum circuits. In this work,
we propose constraint programming (CP) models for this problem and compare their performance
against ILP for circuit depth minimization for both linear and two-dimensional grid lattice device
topologies on a set of randomly generated instances. Our empirical analysis indicates that the
proposed CP approaches outperform the ILP models both in terms of solution quality and runtime.
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1 Introduction

The quantum circuit model of computation specifies quantum algorithms as sequences of
logical quantum gates [12]. Quantum circuit compilation is the process of compiling a
logical quantum circuit to a target quantum device such that the compiled circuit adheres
to device-specific connectivity constraints. Commonly, this process involves the insertion of
SWAP gates into the original circuit enabling qubits to move to neighboring locations on the
hardware. Determining the initial qubit allocation as well as when and where these gates
should be inserted has been studied under the name qubit routing [6].

Figure 1 provides an illustration of an input logical quantum circuit, a quantum device
topology (represented as an undirected graph that specifies device connectivity), and a valid
compiled circuit that inserted a single SWAP gate. Due to the effects of quantum decoherence,
particularly in superconducting devices, it is often beneficial to solve the qubit assignment
and routing problem while minimizing circuit depth (where the depth is the number of layers
of parallelized gates). For this reason, additional gates should be used sparingly and with
high parallelization, when possible.

A variety of techniques have been proposed for solving this problem in the literature,
including both exact and heuristic approaches. Exact methods typically involve the use of
search-based solvers leveraging smart inference techniques that, given enough time, will find
and prove the optimal solution [4, 3, 10, 9, 14]. Alternatively, heuristic methods (which have,
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Figure 1 Qubit assignment and routing problem example specifying the input logical circuit (a),
target device topology (b) and a compiled circuit (c). The input circuit has a depth of 2 (gates
(q1, q3) and (q2, q4) can be executed in parallel), while the compiled circuit has a depth of 3.

until recently, been the focus of previous work) sacrifice completeness in favor of rapidly
producing high quality circuits [8, 15, 6]; these methods tend to scale more effectively to
larger problem instances as well.

In this short paper, we focus on the development of exact model-based approaches that
outperform those from the literature. Specifically, we introduce and report initial results
for two new CP models for the qubit assignment and routing problem. Our models have
a relatively simple implementation, and leverage constraints supported by a variety of CP
solvers. The first model is designed for linear array quantum device topologies, while the
second can be used to solve problems involving more general architectures. We conduct
an empirical analysis of the ILP models proposed by Boccia et al. [3] and Nannicini et al.
[10] using circuit depth minimization as our objective function. We demonstrate, through
empirical evaluation using different solvers, that our CP models outperform these existing
ILP approaches in terms of solution quality and runtime for depth minimization.

The remainder of this paper is organized as follows. In Section 2 we define the specific
variant of the qubit assignment and routing problem that we consider in this paper. In
Section 3 we present our new CP models for the studied problem. In Section 4 we conduct an
empirical assessment of the presented models on both linear array and 2D lattice architectures
of varying size. Finally, in Section 5 we provide concluding remarks.

2 Preliminaries and definitions

We follow previously used notation with minor alterations to ease the presentation of the
problem definition [10]. The input to the qubit assignment and routing problem consists of:
i) a sequence of quantum gate groups (e.g., Figure 1a), and a hardware graph (e.g., Figure
1b). The hardware graph, H = (V, E), consists of nodes i ∈ V , where each node represents
a physical qubit on the quantum computer. The graph has edges e ∈ E, where each edge
e = {i, j} dictates pairs of physical qubits that can execute two-qubit gates (i.e., qubits that
are neighboring each other on the architecture). Often, as in previous work [10], it is useful
to define a directed graph A such that each undirected edge in E corresponds to two directed
edges in A, (i, j) and (j, i). In this paper we study both linear and general hardware graphs
(e.g., lattices).

The sequence of quantum gate groups is represented by G = (G1, G2, . . . , G|L|) where
L is the set of layers in the original circuit and Gℓ indicates the set of gates that must be
executed in the ℓth layer. In this paper, we consider two-qubit quantum gates, g = {p, q},
involving a pair of logical qubits p, q ∈ Q such that Gℓ = {gℓ

1, gℓ
2, . . . }. All of the two-qubit
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gates executed in a given layer involve a set of non-overlapping pairs of qubits. This way,
the gates in a layer are parallelized. To account for inserted SWAP gates, we augment the
original circuit with a number of “auxiliary layers” between each of the logical circuit layers.
We denote the total set of layers as L′, and use LSW AP to specify the auxiliary layers only.

Qubit assignment involves producing an initial mapping of logical qubits, Q, to physical
qubits, V , on the quantum hardware. For simplicity, we refer to logical qubits and physical
qubits as qubits and nodes from now on, respectively. We also assume that |Q| = |V |.1

Qubit routing is the process of moving qubits around the hardware architecture such
that the gates at each layer can be executed in a way that satisfies the connectivity of the
device. In this work, we consider routing accomplished via the use of SWAP gates (although
we note there are other routing techniques [2]), two-qubit gates which exchange the position
of two neighboring qubits. These SWAP gates are inserted into the auxiliary layers between
the layers of the idealized quantum circuit and (often) increase its overall depth.

The objective of the qubit assignment and routing problem studied in this paper is to: i)
assign qubits to nodes on the hardware, and ii) route the positions of the qubits such that
the gates at each layer can be executed while satisfying the connectivity of the device. We
seek to minimize the number of auxiliary layers utilized, effectively resulting in circuits with
lower depth. This problem is known to be NP-Complete [5].

Following previous work, our assumptions on the formulation of the problem include:
Qubits involved in a two-qubit gate can also swap positions. This is also called “merging”
SWAPs with adjacent two qubit gates [7].
Two-qubit gates are undirectional (i.e., the cost of executing a two-qubit gate in the
forward configuration is the same as in the reverse configuration).
We restrict our attention to circuits involving two-qubit gates, since single qubit gates
can be merged with two-qubit gates and thus do not need to be considered.

3 Constraint programming models

For each of our proposed models, the main decision variable is xqℓ ∈ {1, . . . , |V |} which
represents the node location of logical qubit q ∈ Q at layer ℓ ∈ L′. Since ILP is less flexible
than CP (e.g., due to linearity restrictions) the ILP models from the literature [10, 3, 9] must
introduce additional variables to properly model the problem. In our models, we exploit the
structure of the problem such that it is sufficient to constrain the values of xqℓ from one
layer to the next and avoid additional variable overhead.

3.1 Linear array architectures
The first CP model we present is applicable to linear array architectures (such as the
one presented in Figure 1b). The linear array is represented as a graph with nodes V =
{1, 2, . . . , |V |} and edges E = {(i, i + 1) : i ∈ V \ |V |}. This model is motivated by previous
work in ILP [9], and employs absolute value constraints to ensure that qubit movement
between layers is valid, and to ensure that qubits involved in a gate are at adjacent locations
on the device.2

1 Note that, in the case where |Q| < |V |, we can just introduce and route auxiliary qubits.
2 We note that the work in [9] does not minimize circuit depth, but rather the number of SWAPs inserted,

and so we do not compare to it in this paper (non-trivial changes to the model must be made in order
to express a depth minimization objective).
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The first constraint in our model ensures that, at each layer, each logical qubit is located
at one node on the architecture, and all of the locations of the logical qubits are different.
We use the alldifferent global constraint [13] to accomplish this:

alldifferent({x1ℓ, . . . , x|Q|ℓ}), ∀ℓ ∈ L′ (1)

The next set of constraints ensure that the gates specified in each layer are executed while
adhering to the connectivity constraints of the target hardware. These constraints are
expressed as follows:

|xpℓ − xqℓ| = 1, ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (2)

Intuitively, these constraints specify that the locations of logical qubits (p, q) involved in
two-qubit gate g must be neighboring. Note that, since this model is for a linear architecture
(as defined above), this constraint is enough to ensure the gates in a layer can be executed;
more complex architectures require more sophisticated modeling (as described in the next
section).

A similar set of constraints is used to constrain the movement of qubits from one layer to
the next. These are expressed as follows:

|xqℓ − xqℓ+1| ≤ 1, ∀ℓ ∈ {1, . . . , |L′| − 1}, q ∈ Q (3)

The above constraints dictate that, from one layer to the next, a given qubit cannot move more
than one location away from its current location (preventing, for example, two simultaneous
SWAP gates involving the same qubit). Additional constraints must be added to ensure that
pairs of qubits, where qubit is involved in a gate at a given layer and the other is not (recall
that the qubit pairs involved in a gate are permitted to SWAP), cannot SWAP from that
layer to the next. This constraint is expressed as follows:

|xpℓ − xqℓ+1| ≤ 1, ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (4)

Constraint (4) ensures that the qubit pair involved in a gate are still neighboring at the next
layer. Note that this permits the qubit pair to exchange positions, but it does not allow
either qubit to swap with another qubit not involved in the gate.

Finally, we encode the objective function of the optimization which is to minimize the
number of auxiliary layers added to the circuit to support SWAP insertions; this is effectively
the same as circuit depth, and follows previous work [10]. To express this objective, we
introduce a binary decision variable zℓ ∈ {0, 1} for each layer, ℓ ∈ LSW AP . We constrain
the variable such that it takes on a value of 1 whenever a SWAP gate is inserted into an
auxiliary layer:

zℓ ≥ |xqℓ − xqℓ+1|, ∀q ∈ Q, ℓ ∈ LSW AP . (5)

Constraint (5) tracks each time a qubit changes locations from one layer to the next, and the
location change is not due to a (non-SWAP) gate operation. Finally, the objective function
is expressed as:

min
∑

ℓ∈LSW AP

zℓ (6)

Note that if all qubit routing operations can be achieved by merged SWAPs, the optimal
solution will be zero as no auxiliary SWAP gates need to be introduced.
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The linear architecture CP model has O(|Q||L′|) variables, each with a domain of O(|V |),
and O(|Q||L′|) constraints. While the model is designed according to the assumptions stated
in Section 2, it can be altered fairly easily to accommodate problem variations. For example,
if qubits involved in a two-qubit gate cannot also SWAP places, we could simply constrain
the locations of the qubits involved in the gate as necessary; though this would undoubtedly
increase the depth of the produced circuits.

3.2 General architectures
When the problem is extended to more general architectures, the linear architecture model
is no longer valid. This is because in the linear model, there is a clear mapping between
the locations of the logical qubits and the chip connectivity; any qubits whose positions are
within one of each other could have a gate applied between them. In the more general case,
however, this is no longer true.3

Our model for general architectures is similar to that for linear array architectures,
however, instead of using absolute value constraints we use table constraints. The table
constraint specifies the list of tuples (solutions) to which a vector of variables can be fixed.
For example, the constraint table((y1, y2), {(1, 2), (2, 3)}) specifies that, in a solution, the
variables y1 and y2 can be assigned values (1, 2) or (2, 3), respectively.

For our model, we utilize the table constraint to conveniently encode the connectivity of
the hardware device, using A as the list of tuples representing the locations of neighboring
pairs of qubits. Our model for general architectures is given as follows:

min
∑

ℓ∈LSW AP

zℓ (7)

alldifferent({x1ℓ, . . . , x|Q|ℓ}) ∀ℓ ∈ L′ (8)
table((xpℓ, xqℓ), A) ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (9)
table((xqℓ, xqℓ+1), A ∪ {(i, i) : i ∈ V }) ∀q ∈ Q, ∀ℓ ∈ {1, . . . , |L′| − 1} (10)
xqℓ = xqℓ+1 ∨ xqℓ = xpℓ+1 ∀ℓ ∈ L, g = (p, q) ∈ Gℓ (11)
zℓ|Q| ≥ |xqℓ − xqℓ+1| ∀ℓ ∈ LSW AP , q ∈ Q (12)

The first constraint in the general architecture model, Constraint (8), is the same as
Constraint (1) in the linear array model, leveraging the alldifferent global constraint.

Constraint (9) uses the table constraint to enforce that, at each gate layer, the qubits
involved in each gate are at neighboring locations on the architecture (i.e., at locations
represented by one of the tuples in arc set A).

Constraint (10) uses the table constraint to dictate the permissible movement of qubits
from one layer to the next. Specifically, this constraint requires a qubit to stay in the same
location (represented by the value (i, i)), or move to a neighboring location on the hardware.
Constraint (11) adds some additional restriction regarding the movement of qubits involved
in a two-qubit gate, similar to Constraint (4) in the linear array model. Finally, Constraint
(12) links the objective function to the main variables, acting as a flag each time a qubit
changes positions from one layer to the next (not including original circuit layers).

As with the linear array model, the general architecture model has O(|Q||L′|) variables
and constraints.

3 In a simple square toplogy with four nodes, v1 and v4 can be neighboring, but the absolute value of the
difference of their node labels is not equal to one.

CP 2023
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4 Experiments

We present an empirical analysis of our models on a benchmark set of randomly generated
instances. Following previous work [10] we generate “square” circuits (similar to those used
for quantum volume testing) where |Q| = |L| (e.g., 4 × 4 indicates a circuit with four qubits
and four layers). For a given problem size, we generate a random permutation of the qubits
{1, 2 . . . , |Q|} for each ℓ ∈ L. Based on this permutation, we group neighboring pairs of
qubits into the ⌊ |Q|

2 ⌋ two-qubit gates for that layer (e.g., permutation 3-1-2-4 would yield
gates (3, 1) and (2, 4)). By increasing the size of Q and L, we test the scalability of our
models (e.g., a 10 × 10 instance will involve an initial circuit with 50 two-qubit gates). For
each problem size, we generate ten problem instances.

The target devices used for experimentation include a linear array and two-dimensional
lattice grids of increasing size. We generate the devices such that the number of hardware
vertices, |V |, is equal to the number of logical qubits, |Q|.4 The linear array device topologies
are straightforward. The lattice grids are generated for |Q| ∈ {4, 6, 8, 9, 10}, where Q ∈ {4, 9}
corresponds to square lattices, and the remainder are rectangular lattices.

The CP models are implemented with the CP-SAT solver in OR-Tools (v9.3) [11] using the
Python interface. We include the symmetry breaking constraints used in previous ILP models
[10]. The absolute value expressions in the CP models were implemented using auxiliary
variables and the AddAbsEquality constraint, while the table constraint was implemented
using the AddAllowedAssignments constraint. Finally, in the general architecture CP model,
the dijsunction in Constraint (11) was implemented using auxiliary boolean variables and
the OnlyEnforceIf enforcement literal. Following previous work [10], we set the number of
auxiliary layers between each original layer to four.

To thoroughly assess the previously proposed ILP models, we implement them in SCIP [1],
Xpress (v8.13.5), and using the CP-SAT solver in OR-Tools.5 For the SCIP experiments, we
use the OR-Tools modeling interface and select SCIP as the backend solver. All experiments
are run with default search and inference settings on a machine with a 2.6 GHz 6-Core Intel
i7 processor and 16GB of RAM. Additionally, some modifications to the model presented by
Boccia et al. [3] are made to enable fair comparison. Specifically, auxiliary variables and
constraints were added to permit the merged SWAP functionality.

4.1 Linear array architectures
Our first set of experiments involve linear array architectures. For these experiments, both
of the CP models we propose can be used to solve the problem. The results are visualized
in Figure 2. Our proposed models are denoted “CP-linear” (for the linear array model)
and “CP-general” (for the general model). We split the instances into two classes: the first
involves randomly generated square circuits of size 4 × 4, 5 × 5, 6 × 6, and 7 × 7 while the
second involves square circuits of sizes 8 × 8, 9 × 9, 10 × 10, and 11 × 11.

In Figure 2a, we illustrate the performance of all of the implementations on Class 1
instances with a solver time limit set to 10 seconds. The figure details the number of
instances solved to proven optimality vs. runtime. We can see that all of the methods
implemented with the CP-SAT solver in OR-Tools are able to quickly find and prove the
optimal solution to all 30 problems in less than two seconds. Conversely, the ILP models

4 Our approaches are not restricted to this case; auxiliary qubits can be used to handle the situation
where |V | > |Q|.

5 Since the ILP models do not contain continuous variables, this is straightforward.
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(a) Class 1 instances (|Q| ∈ {4, 5, 6, 7}).
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(b) Class 2 instances (|Q| ∈ {8, 9, 10, 11}).

Figure 2 Empirical results: CP models against ILP models from the literature for linear array
device topologies. Number of instances solved to proven optimality over time. Time limit of 10
seconds (Class 1) and five minutes (Class 2).

implemented in SCIP and Xpress are much slower at finding and proving optimal solutions.
For these approaches, the SCIP implementations seem to perform the worst, and Xpress
provides a modest improvement. The experiments indicate that ILP (and ILP-based solvers)
may not be the best candidate approach for this problem; this is in-line with previously
reported results that showed ILP (implemented with an ILP solver) struggled to solve square
circuit instances to proven optimality in short runtimes beyond six qubits [10]. As such,
we elect to only investigate the models solved with OR-Tools CP-SAT for larger problem
instances.

Figure 2b illustrates the performance of the CP-based implementations on medium-sized
instances with a solver time limit of 5 minutes. From the figure, it is evident that our
proposed CP models outperform the ILP models even when using the OR-Tools CP-SAT
solver for all methods. Further, the linear array model (using absolute value constraints)
performs slightly better than the more general model. Both models are able to find and prove
optimality for all problem instances in less than 50 seconds, whereas the implementations of
the ILP models require significantly more time.

Recall that, due to the insertion of SWAP gates as a result of our optimization, the
number of layers in the final compiled circuits almost always increases. In Table 1 we detail
the average circuit depth for each of the problem sizes, obtained by our depth-optimal CP
methods. From the table, we can see that the inclusion of SWAP gates often doubles the
depth of the circuit.

4.2 General architectures

Our second set of experiments involve 2D grid lattice topologies, and are visualized in Figure
3. We use the same solvers and settings as in the linear array experiments (recall that we
cannot run the proposed linear array model for these lattice topology problems). For these
tests, Class 1 instances are 4 × 4 and 6 × 6 (to permit grid lattice construction), while Class
2 instances are 8 × 8, 9 × 9, and 10 × 10.

CP 2023
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Figure 3 Empirical results: CP models against ILP models from the literature for 2D grid lattice
device topologies. Number of instances solved to proven optimality over time. Time limit of 10
seconds (Class 1) and five minutes (Class 2).

In Table 2 we summarize the average depths of the optimally compiled circuits for each of
the problem sizes. Comparing to the linear array results in Table 2, it is immediately apparent
that the increased connectivity offered by 2D lattice topologies results in significantly shorter
circuits. In the 10 × 10 case, for example, only 5.4 layers were added (on average) to permit
SWAP operations, versus the 17.0 layers added (on average) in the linear case.

In terms of model/solver runtime performance, from Figure 3a we see a similar trend to
the linear topology case: the ILP methods implemented in SCIP and Xpress struggle to find
and prove optimal solutions within the runtime limit, while the OR-Tools implementations
rapidly solve these problems (in less than one second). Figure 3b illustrates the performance
of the OR-Tools implementations for the larger class of instances. As visualized in the
figure, our proposed CP approach is able to find provably optimal solutions to all instances
significantly faster than the ILP models from the literature.

5 Conclusions

In this paper we propose CP models for depth-optimal qubit assignment and SWAP-based
routing. Our first model is specific to linear array topologies, while our second model
is applicable to more general architectures (e.g., grid lattices). We conduct a series of
experiments on randomly generated circuits, and demonstrate that the CP-based approaches

Table 1 Empirical results: CP model solution circuit depths by class, linear array device
topologies.

Class 1 Compiled circuit depth (avg.) Class 2 Compiled circuit depth (avg.)

4 × 4 6.1 8 × 8 18.0
5 × 5 6.2 9 × 9 20.9
6 × 6 10.9 10 × 10 27.0
7 × 7 12.4 11 × 11 30.7
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Table 2 Empirical results: CP model solution circuit depths by class, 2D grid lattice device
topologies.

Class 1 Compiled circuit depth (avg.) Class 2 Compiled circuit depth (avg.)

4 × 4 4.0 8 × 8 10.3
6 × 6 6.5 9 × 9 12.2

− − 10 × 10 15.4

provide superior performance over their ILP counterparts. Our results suggest that CP is a
promising technology for producing provably depth-optimal circuits when qubit routing is
accomplished via SWAP gate insertion.
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