
Proven Optimally-Balanced Latin Rectangles
with SAT
Vaidyanathan Peruvemba Ramaswamy #Ñ

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider #Ñ

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Motivated by applications from agronomic field experiments, Díaz, Le Bras, and Gomes [CPAIOR
2015] introduced Partially Balanced Latin Rectangles as a generalization of Spatially Balanced Latin
Squares. They observed that the generation of Latin rectangles that are optimally balanced is a
highly challenging computational problem. They computed, utilizing CSP and MIP encodings, Latin
rectangles up to 12 × 12, some optimally balanced, some suboptimally balanced.

In this paper, we develop a SAT encoding for generating balanced Latin rectangles. We compare
experimentally encoding variants. Our results indicate that SAT encodings perform competitively
with the MIP encoding, in some cases better. In some cases we could find Latin rectangles that
are more balanced than previously known ones. This finding is significant, as there are many
arithmetic constraints involved. The SAT approach offers the advantage that we can certify that
Latin rectangles are optimally balanced through DRAT proofs that can be verified independently.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Theory of
computation → Constraint and logic programming; Mathematics of computing → Combinatoric
problems; Software and its engineering → Constraints; Theory of computation → Integer program-
ming; Mathematics of computing → Combinatorial optimization; Mathematics of computing →
Enumeration; Mathematics of computing → Solvers; Computing methodologies → Theorem proving
algorithms; Applied computing → Agriculture

Keywords and phrases combinatorial design, SAT encodings, certified optimality, arithmetic con-
straints, spatially balanced Latin rectangles

Digital Object Identifier 10.4230/LIPIcs.CP.2023.48

Category Short Paper

Supplementary Material Software (Script, Encodings and Models): https://doi.org/10.5281/
zenodo.8151905

Funding Supported by the Austrian Science Funds (FWF) within the project P36420, and the
Vienna Science and Technology Fund (WWTF) within the project ICT19-065.

Acknowledgements This work was carried out in part while the second author visited the Simons
Institute for the Theory of Computing, University of Berkeley, within the program Extended Reunion:
Satisfiability.

1 Introduction

A Latin square is an n × n array filled with n different symbols, each occurring exactly once
in each row and exactly once in each column. The notion goes back to the 18th century
and Leonard Euler, who studied the problem of generating Latin squares. More recently,
additional constraints have been added, making the combinatorial design problem even more
challenging. An interesting additional constraint asks for a Latin square to be spatially
balanced, i.e., any two symbols u, v have the same distance. The distance of u and v is

© Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 48; pp. 48:1–48:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vaidyanathan@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/vaidyanathan
https://orcid.org/0000-0002-3101-2085
mailto:sz@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/szeider
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2023.48
https://doi.org/10.5281/zenodo.8151905
https://doi.org/10.5281/zenodo.8151905
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Proven Optimally-Balanced Latin Rectangles with SAT

defined as the sum of their distances over all the rows. A polynomial-time algorithm is
known that constructs for any given n such that 2n + 1 is prime a spatially balanced Latin
square [10].

Díaz, Le Bras, and Gomes [3] introduced spatially balanced Latin rectangles, which are
arrays with n columns and k rows filled with n symbols, such that no symbol occurs more
than once in any row or column, and again the distance of any pair of symbols is the same.
As it turned out that spatially balanced Latin rectangles only exist for a relatively restricted
set of combinations of n and k, Díaz et al. defined a notation of imbalance and asked for Latin
rectangles where the imbalance is minimal. In a spatially balanced k × n Latin rectangle,
the distance between any two symbols is k(n + 1)/3. Therefore, the imbalance of a pair of
symbols i, j is naturally defined as I(u, v) = |d(u, v) − k(n + 1)/3|. The imbalance of a Latin
rectangle L is then I(L) =

∑
u<v I(u, v) =

∑
u<v|d(u, v) − k(n + 1)/3|. See Figure 1b for a

sample working out of this quantity. Latin squares are of general importance for the design of
agronomic experiments [9]. More specifically, however, the balanced version is essential to the
design of bias-free agronomic experiments, as they avoid unintentional patterns introduced
due to spatial auto-correlation [13].

Díaz et al. computed Latin rectangles up to 12 × 12, trying to minimize the total
imbalance. They used CSP, local search, and MIP methods, with the latter being the most
efficient. In some cases, they could obtain optimal imbalance; in other cases, upper bounds.
They conclude that finding Latin rectangles with minimum imbalance seems to be a very
challenging computational problem and suggest it as an ideal benchmark for different search
and optimization approaches.

In this paper, we follow this insight and consider the research question of whether
propositional satisfiability (SAT) solvers [4] are competitive in finding optimally balanced
Latin rectangles. This question is particularly interesting as the definition of a partially
balanced Latin rectangle entails many arithmetic constraints, including addition, subtraction,
and absolute values, which adds to the challenge. A SAT approach that is competitive
with MIP brings the added value of certification: one can certify that a Latin rectangle is
optimally balanced through a DRAT proof that can be checked independently. This provides
an additional layer of confidence to the results.

In brief, the SAT encoding developed by us represents the position of each symbol on a row
by a set of propositional variables. The assignment of these variables is then propagated by
means of auxiliary variables and clauses through the rest of the encoding. This propagation
terminates at a set of variables which represent the total imbalance of the Latin rectangle
expressed in unary. Bounding these variables effectively bounds the imbalance. Special care
must be taken to encode the absolute value arithmetic and the nested summations with the
auxiliary variables and clauses.

From our experiments, we observe that the SAT approach is able to replicate 44 out of
the 63 upper bounds shown by the MIP approach and in 14 cases even find a tighter upper
bound. From the infeasibility side as well, the SAT approach is comparable to the MIP
approach and is able to confirm almost all the optimality results with the added bonus of
producing DRAT proofs with some minor overhead.

2 Preliminaries

We denote the set of integers {1, . . . , n} by [n]. For positive integers k ≤ n, a k × n

Latin rectangle is a matrix L with k rows and n columns with elements from [n] such that
L(i, j) ̸= L(i′, j′) whenever i = i′ ∧ j ̸= j′ or i ̸= i′ ∧ j = j′.

V. Peruvemba Ramaswamy and S. Szeider 48:3

Consider a k × n Latin rectangle L and i, j ∈ [n]. The row i distance between u, v, if
L(i, cu) = u and L(i, cv) = v, is

di(u, v) := |cu − cv|. (1)

The distance between u and v in L is

d(u, v) :=
∑
i∈[k]

di(u, v), (2)

and the imbalance of the pair u, v is

I(u, v) := |d(u, v) − k(n + 1)/3|. (3)

The imbalance of a Latin rectangle L is the sum of the pairwise imbalances, i.e.,

I(L) :=
∑
u<v

I(u, v). (4)

We are interested in finding Latin rectangles with low imbalance. A Latin rectangle L is
optimally balanced (or partially spatially balanced as Díaz et al. [3] call it) if I(L) is minimum
and suboptimally balanced otherwise. See Figure 1a for an example.

1 2 3 4 5
2 5 1 3 4
4 1 5 2 3

(a) 3 × 5 optimally balanced
Latin rectangle with imbal-
ance 6.

u, v d(u, v) |d(u, v) − Z| u, v d(u, v) |d(u, v) − Z|

1, 2 5 1 2, 4 9 3
1, 3 6 0 2, 5 5 1
1, 4 6 0 3, 4 6 0
1, 5 6 0 3, 5 6 0
2, 3 5 1 4, 5 6 0

(b) Breakdown (for each pair) of the total imbalance, where Z = k(n +
1)/3 = 6. For illustration, d(1, 2) = d1(1, 2) + d2(1, 2) + d3(1, 2) which is
1 + 2 + 2 = 5.

Figure 1 Example of an optimally balanced 3 × 5 Latin rectangle.

3 Encoding

In this section, we describe the details of the SAT encoding. We describe the clauses that
are conjuncted together to form the CNF formula F(k, n, t). This formula is satisfiable
if and only if there exists a k × n Latin rectangle L such that I(L) ≤ t. For the sake of
convenience, we sometimes shorten F(n, k, t) to F , and use ∆n to denote all ordered pairs
(u, v) such that u < v ∈ [n]. We also use Z := k(n + 1)/3, assuming that 3 divides k(n + 1).
We address the case of indivisibility later. Further, we make extensive use of higher-level
cardinality constraints written as { vi | i ∈ [ℓ] }≤k, { vi | i ∈ [ℓ] }=k, or { vi | i ∈ ℓ }≥k to
encode the condition that only at most k, exactly k, or at least k variables, respectively, from
the set {v1, . . . , vℓ} are set to true. Each higher-level constraint can then be rewritten as a
conjunction of several elementary clauses utilizing auxiliary variables.

The core variables in F(n, k, t) are p(i, u, j) for u, j ∈ [n], i ∈ [k] which are true if and
only if the column where element u appears in the ith row is j. The following cardinality
constraint encodes the condition that each cell of the matrix contains exactly one element:∧

i∈[k], j∈[n]

{ p(i, u, j) | u ∈ [n] }=1

CP 2023

48:4 Proven Optimally-Balanced Latin Rectangles with SAT

The following cardinality constraints encode the requirement that each element appears
exactly once within a row:∧

i∈[k], u∈[n]

{ p(i, u, j) | j ∈ [n] }≥1 ∧ { p(i, u, j) | j ∈ [n] }≤1

Lastly, the following cardinality constraint encodes the requirement that no element appears
twice within the same column:∧

u,j∈[n]

{ p(i, u, j) | i ∈ [k] }≤1

Then, to capture Equation (1), we introduce the auxiliary variables c(i, u, v, d) which are
true if di(u, v) ≥ d and constraint them using the following three sets of clauses:∧

i∈[k]
(u,v)∈∆n

j1 ̸=j2∈[n]

(p(i, u, j1) ∧ p(i, v, j2)) → c(i, u, v, |j1 − j2|)

∧
i∈[k]

(u,v)∈∆n

j1 ̸=j2∈[n]

(p(i, u, j1) ∧ p(i, v, j2)) → ¬c(i, u, v, |j1 − j2| + 1)

∧
i∈[k]

(u,v)∈∆n

d∈[n−1]

c(i, u, v, d) → c(i, u, v, d − 1)

Then we represent the inner sum d(u, v) =
∑

i di(u, v) from Equation (2) using the two
sets of auxiliary variables; sg(u, v, p) which when falsified enforces the condition d(u, v) ≤ p

and similarly sl(u, v, p) which when falsified enforces the condition
∑

i d(u, v) ≥ p. This is
achieved using the following conditional cardinality constraints:∧

i∈[k]
(u,v)∈∆n

k≤p≤k(n−1)

¬sg(u, v, p) → { c(i, u, v, d) | d ∈ [n − 1] }≤p

∧
i∈[k]

(u,v)∈∆n

k≤p≤k(n−1)

¬sl(u, v, p) → { c(i, u, v, d) | d ∈ [n − 1] }≥p

Recall from Equations (3) and (4), that our final goal is to bound the quantity I(L) =∑
(u,v)∈∆n

|d(u, v) − Z|, where Z = k(n + 1)/3. The redundancy in the form of two sets of
variables sg and sl is to allow us to later deal with the expression |d(u, v) − Z| and help
count up from Z in either direction. We thus introduce auxiliary variables which encode
the sign of the term d(u, v) − Z. s0(u, v) is true if and only if d(u, v) = Z; s+(u, v) is true
if d(u, v) > Z, false if d(u, v) < Z, and undefined otherwise. The following sets of clauses
encode these auxiliary variables:∧

(u,v)∈∆n

s0(u, v) → ¬sg(u, v, Z) ∧ ¬sl(u, v, Z)

∧
(u,v)∈∆n

(¬s0(u, v) ∧ s+(u, v)) → ¬sl(u, v, Z + 1)

V. Peruvemba Ramaswamy and S. Szeider 48:5

∧
(u,v)∈∆n

(¬s0(u, v) ∧ ¬s+(u, v)) → ¬sg(u, v, Z − 1)

Then, using the auxiliary variables f(u, v, q), we represent the condition |d(u, v) − Z| ≤ q.
We encode these variables using the following set of clauses:∧

(u,v)∈∆n

1≤q≤k(n−1)−Z

(¬s0(u, v) ∧ s+(u, v) ∧ sg(u, v, Z + q)) → f(u, v, q)

∧
(u,v)∈∆n

1≤q≤Z−k

(¬s0(u, v) ∧ ¬s+(u, v) ∧ sl(u, v, Z − q)) → f(u, v, q)

And finally, we express the bound I(L) ≤ t by adding the cardinality constraint:

{ f(u, v, q) | (u, v) ∈ ∆n, 1 ≤ q ≤ max(k(n − 1) − Z, Z − k) }≤t

Symmetry Breaking

We refer to the encoding so far as the base version and denote the formula by F(n, k, t). We
optionally add two sets of symmetry-breaking clauses which reduce the size of the search
space by identifying equivalent solutions. These constraints are identical to those mentioned
by Díaz et al. [3], however, in our approach, we selectively enable or disable these constraints
depending on whether we are seeking a SAT instance (i.e., upper bound) or an UNSAT
instance (i.e., infeasibility). The following set of clauses fixes the first row to be the identity
permutation:∧

u∈[n]

p(1, u, u)

We refer to the encoding with these additional clauses as F ′(n, k, t). Similarly, the following
set of clauses forces the first column to follow a strictly increasing order, i.e., a lexicographic
order: ∧

(u,v),i∈[k−1]

p(i, v, 1) → ¬p(i + 1, u, 1)

We refer to the encoding with both these sets of additional clauses as F ′′(n, k, t). These two
sets of symmetry breaking clauses enforce that the Latin rectangle is in its reduced form [3].

Non-integral Instances

In the description of the encoding above, we made the assumption that 3 divides k(n + 1). In
this case, we do not need to deal with fractional 1

3 values. We call these the integral instances
and all other instances non-integral instances. To deal with the non-integral instances, we
modify our encoding by multiplying the distances by 3. To this end, we use Z = k(n + 1)
instead of Z = k(n + 1)/3. We use 3|j1 − j2| instead of |j1 − j2| and we also multiply the
bounds for d, p, and q by 3.

4 Experimental Evaluation

To analyze the performance of our proposed encodings, we implemented a method for
generating the encodings in Python 3.10.6 with help from the PySAT 0.1.7 library [8] for
handling some of the higher-level cardinality constraints [12, 1, 5]. We then ran the SAT solver

CP 2023

48:6 Proven Optimally-Balanced Latin Rectangles with SAT

kissat [2] with default settings on the generated encodings. We ran all our experiments on
a 10-core Intel Xeon E5-2640 v4, 2.40 GHz CPU, with each process having access to 8GB
RAM.

kissat, like other state-of-the-art CDCL solvers, is capable of producing a proof in the
DRAT (Deletion Resolution Asymmetric Tautology) format for formulas which it claims
to be unsatisfiable. Similar to how a mathematical proof of a theorem follows a sequence
of smaller lemmas, a DRAT proof also consists of lemmas (in the form of a set of literals)
and lemma deletion instructions. Due to the elementary nature of the proof format, it is
straightforward for a CDCL solver to emit a DRAT proof with minimal overhead. This proof
can then be independently verified using tools such as DRAT-trim [6, 15]. DRAT-trim takes
as input the original CNF formula and the DRAT proof produced by the SAT solver and
can verify, in time comparable to original proof producing time, that the proof indeed holds.

There are several ways of translating the higher-level cardinality constraints into el-
ementary CNF clauses. Thus, we conducted a preliminary investigation to identify the
most promising translations from those provided by the PySAT library1. We also tested
the three versions of the encoding with different levels of symmetry breaking F , F ′, F ′′

in combination with the different cardinality encoding types. From this investigation, we
found that F ′ combined with the bitwise cardinality encoding [12] and F ′′ combined with
the ladder cardinality encoding [1] were the two best performing encodings for SAT and
UNSAT instances, respectively. Hence, we stuck with these two combinations for the main
experiments. In this preliminary investigation, we worked with instances which were already
known to be either SAT or UNSAT. In the main experiments, typically, we don’t know
beforehand if the instance is SAT or UNSAT, thus we try both these encodings.

This paper focuses on the obtained bounds and their verification rather than on exact
running times; the results reported by Díaz et al. serve as a basic comparison of the runtime
performance with other methods. We conducted cursory experiments with a CSP model
formulated with MiniZinc [11] for a direct and reproducible comparison on the same hardware.
We tested on the solvers Gecode 6.3.0 and Chuffed 0.11.0, the former outperforming the
latter. On small rectangles, up to around 5 × 7, the CSP approach is significantly faster than
our SAT approach, but its performance quickly deteriorates as the size grows. For example,
the CSP approach fails to replicate known bounds for 6 × 8 within 10 hours even though, on
the other hand, our approach produced solutions in under an hour.

Apart from the prototyping experiments, we conducted two main experiments rigorously.
The first was for showing upper bounds and consequently generating Latin rectangles matching
those bounds, and the second was to show lower bounds and consequently generating DRAT
proofs of infeasibility. We worked with the same set of instances as Díaz et al. and used
a timeout of 24 hours. We used our proposed encodings to replicate their upper bounds,
produce verifiable proofs for their lower bounds, and also in some cases improve their upper
bounds. The results of these experiments are summarized in Table 1. Table 2 shows some
attributes of the proofs generated by our method for a representative set of instances. Figure 2
shows some of the Latin rectangles that witness the new upper bounds shown by us. In
the supplementary material, we include the script used to generate the encodings and some
generated encodings along with their corresponding models (if satisfiable) or DRAT proofs (if
unsatisfiable).

1 List of cardinality encoding types: pysat.card.EncType

https://pysathq.github.io/docs/html/api/card.html#pysat.card.EncType

V. Peruvemba Ramaswamy and S. Szeider 48:7

Table 1 Table of results. The top row indicates the value of k and the left column indicates
the value of n. Grey cells indicate values claimed optimal by Díaz et al. using CSP/MIP. The
cells with bold text indicate upper bounds that we could replicate. Cells with a ‘∗’ indicate lower
bounds that we could confirm and certify with a DRAT proof (not applicable for rectangles with
minimum imbalance 0). Green cells indicate an earlier upper bound (strike-through text) that we
could improve.

2 3 4 5 6 7 8 9 10 11 12

4 2.6* 4* 5.3*

5 8* 6* 8* 0

6 16* 12* 13.3* 16* 0

7 28* 22* 22.6* 22.6* 20* 18.6*

8 40* 36* 32 30 24 28 0

9 65.3* 56 56.6
56.0

56
54

52
48

66
64.6

60
58.6 0

10 92* 86
84

92
91.3 66.6 102

96
100
99.3 99.3 80 40

11 124* 120
118

122
118

122
120

126
124

136
132 132 128 110 0

12 168 158 162.6 170.6 120 183 184.6 178 174.6 147.3 0

Table 2 Encoding size for some representative instances along with time required to prove
optimality and the size of the generated DRAT proof. All these proofs were generated by running
the SAT solver with the --unsat preset on F ′′ combined with the ladder cardinality encoding.
Notice that the encoding size for the non-integral instance 4 × 6 is much bigger than that of the
integral instance 6 × 7.

k × n #variables #clauses Unsat Time Proof Overhead Proof Size

3 × 5 2364 5750 <1 s <1 s 20 KB
4 × 6 73184 147903 45 s 2 s 11 MB
6 × 7 37809 84906 1 hr 12 min 1 hr 45 min 1.6 GB

CP 2023

48:8 Proven Optimally-Balanced Latin Rectangles with SAT

1 2 3 4 5 6 7 8 9 10
4 10 2 8 7 5 1 6 3 9
7 3 8 1 4 9 2 10 6 5

(a) 3 × 10 rectangle with imbalance 84 (32 min).

1 2 3 4 5 6 7 8 9 10 11
2 6 5 7 11 8 1 3 10 9 4
3 5 11 8 9 2 10 4 1 6 7
5 1 9 10 7 3 6 2 11 4 8

(b) 4 × 11 rectangle with imbalance 118 (102 min).

1 2 3 4 5 6 7 8 9 10
5 8 6 1 9 3 10 4 2 7
6 5 9 3 2 7 4 10 1 8
7 6 1 5 10 2 8 9 4 3
9 1 7 10 4 5 6 3 8 2
10 3 5 7 1 8 9 2 6 4

(c) 6 × 10 rectangle with imbalance 96 (40 min).

1 2 3 4 5 6 7 8 9 10 11
2 11 7 6 4 5 1 9 8 3 10
3 7 9 5 10 2 6 1 11 4 8
5 1 11 10 7 3 8 6 4 2 9
6 10 1 3 8 7 2 11 5 9 4
7 4 10 1 9 11 3 2 6 8 5

(d) 6 × 11 rectangle with imbalance 124 (5.5 hr).

Figure 2 Examples of Latin rectangles witnessing new upper bounds along with the time required
by the SAT solver to find these solutions in parentheses. All these rectangles were found by the
version of the encoding that combines F ′′ with the ladder cardinality encoding. Note that, no lower
bounds are known for these sizes.

5 Conclusion

This work presented a SAT approach to the balanced Latin rectangle problem treating
complex arithmetic expressions by translating them into propositional logic. Our approach
is competitive with the prior CSP/MIP-based techniques with a slight advantage. On the
one hand, the SAT approach can find tighter upper bounds for realizing Latin rectangles.
On the other hand, our approach performs comparably to the MIP approach when it comes
to proving the infeasibility of particular Latin rectangles. This finding is significant, as
propositional logic is often considered inferior to MIP when handling complex arithmetic
expressions. A key advantage of our SAT approach is its ability to produce DRAT proofs of
optimality that can be independently verified. The proof generation causes only some minor
computational overhead. On a more technical level, our work shows how to handle non-trivial
nested summations in a SAT encoding by chaining ladders and cardinality counters. We
observe that it is sometimes beneficial to construct two different encodings tailored towards
SAT and UNSAT instances in problems where one is interested in both upper and lower
bounds. For instance, these encodings can use different levels of symmetry-breaking and
different types of cardinality encodings.

We see many potential avenues for future work. One could use techniques such as
cubing [7] to tackle the instances for which proving optimality is still challenging. The cubing
can be performed by either fixing the values of the first column, fixing the imbalance of certain
pairs to be 0, or bounding the number of pairs with 0 imbalance. We can enumerate all
unique (up to isomorphism) Latin rectangles of a particular size and imbalance by extending
the SAT approach to an incremental solving approach. Lastly, another natural direction is
to apply Pseudo-Boolean solving to this problem. Pseudo-Boolean solving can also produce
cutting planes proofs for verification [14] and might be even better suited to handle the
arithmetic constraints involved in this problem.

V. Peruvemba Ramaswamy and S. Szeider 48:9

References
1 Carlos Ansótegui and Felip Manyà. Mapping problems with finite-domain variables to

problems with boolean variables. In Holger H. Hoos and David G. Mitchell, editors, Theory
and Applications of Satisfiability Testing, 7th International Conference, SAT 2004, Vancouver,
BC, Canada, May 10-13, 2004, Revised Selected Papers, volume 3542 of Lecture Notes in
Computer Science, pages 1–15. Springer Verlag, 2004. doi:10.1007/11527695_1.

2 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020. URL:
https://tuhat.helsinki.fi/ws/files/142452772/sc2020_proceedings.pdf.

3 Mateo Díaz, Ronan Le Bras, and Carla P. Gomes. In search of balance: The challenge
of generating balanced Latin rectangles. In Domenico Salvagnin and Michele Lombardi,
editors, Integration of AI and OR Techniques in Constraint Programming - 14th International
Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, volume 10335 of Lecture
Notes in Computer Science, pages 68–76. Springer, 2017. doi:10.1007/978-3-319-59776-8_6.

4 Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider. The silent (r)evolution
of SAT. Communications of the ACM, 66(6):64–72, June 2023. doi:10.1145/3560469.

5 Ian P. Gent and Peter Nightingale. A new encoding of alldifferent into SAT. In International
Workshop on Modelling and Reformulating Constraint Satisfaction, volume 3, pages 95–110,
2004.

6 Marijn Heule, Warren A. Hunt Jr., Matt Kaufmann, and Nathan Wetzler. Efficient, verified
checking of propositional proofs. In Mauricio Ayala-Rincón and César A. Muñoz, editors,
Interactive Theorem Proving - 8th International Conference, ITP 2017, Brasília, Brazil,
September 26-29, 2017, Proceedings, volume 10499 of Lecture Notes in Computer Science,
pages 269–284. Springer Verlag, 2017. doi:10.1007/978-3-319-66107-0_18.

7 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving very hard problems:
Cube-and-conquer, a hybrid SAT solving method. In Carles Sierra, editor, Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 4864–4868. ijcai.org, 2017. doi:10.24963/ijcai.2017/
683.

8 Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for pro-
totyping with SAT oracles. In SAT, pages 428–437, 2018. doi:10.1007/978-3-319-94144-8_
26.

9 Marcus Jones, Richard Woodward, and Jerry Stoller. Increasing precision in agronomic
field trials using latin square designs. Agronomy Journal, 107(1):20–24, 2015. doi:10.2134/
agronj14.0232.

10 Ronan LeBras, Carla P. Gomes, and Bart Selman. From streamlined combinatorial search to
efficient constructive procedures. In Jörg Hoffmann and Bart Selman, editors, Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada. AAAI Press, 2012. doi:10.1609/aaai.v26i1.8147.

11 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In International Conference
on Principles and Practice of Constraint Programming, volume 4741 of Lecture Notes in
Computer Science, pages 529–543. Springer, 2007. doi:10.1007/978-3-540-74970-7_38.

12 Steven David Prestwich. CNF encodings. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, pages 75–97. IOS Press, 2009.

13 H.M. Van Es and C.L. Van Es. Spatial nature of randomization and its effect on the outcome
of field experiments. Agronomy Journal, 85(2):420–428, 1993.

14 Marc Vinyals, Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström. In
between resolution and cutting planes: A study of proof systems for pseudo-boolean SAT

CP 2023

https://doi.org/10.1007/11527695_1
https://tuhat.helsinki.fi/ws/files/142452772/sc2020_proceedings.pdf
https://doi.org/10.1007/978-3-319-59776-8_6
https://doi.org/10.1145/3560469
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.24963/ijcai.2017/683
https://doi.org/10.24963/ijcai.2017/683
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.2134/agronj14.0232
https://doi.org/10.2134/agronj14.0232
https://doi.org/10.1609/aaai.v26i1.8147
https://doi.org/10.1007/978-3-540-74970-7_38

48:10 Proven Optimally-Balanced Latin Rectangles with SAT

solving. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
volume 10929 of Lecture Notes in Computer Science, pages 292–310. Springer Verlag, 2018.
doi:10.1007/978-3-319-94144-8_18.

15 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing –
SAT 2014, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer Verlag,
2014. doi:10.1007/978-3-319-09284-3_31.

https://doi.org/10.1007/978-3-319-94144-8_18
https://doi.org/10.1007/978-3-319-09284-3_31

	1 Introduction
	2 Preliminaries
	3 Encoding
	4 Experimental Evaluation
	5 Conclusion

