
Self-Stabilizing Clock Synchronization in
Probabilistic Networks
Bernadette Charron-Bost #

DI ENS, École Normale Supérieure, 75005 Paris, France

Louis Penet de Monterno #

École polytechnique, IP Paris, 91128 Palaiseau, France

Abstract
We consider the fundamental problem of clock synchronization in a synchronous multi-agent system.
Each agent holds a clock with an arbitrary initial value, and clocks must eventually indicate the
same value, modulo some integer P . A known solution for this problem in dynamic networks is the
self-stabilization SAP (for self-adaptive period) algorithm, which uses finite memory and relies solely
on the assumption of a finite dynamic diameter in the communication network.

This paper extends the results on this algorithm to probabilistic communication networks: We
introduce the concept of strong connectivity with high probability and we demonstrate that in any
probabilistic communication network satisfying this hypothesis, the SAP algorithm synchronizes
clocks with high probability. The proof of such a probabilistic hyperproperty is based on novel tools
and relies on weak assumptions about the probabilistic communication network, making it applicable
to a wide range of networks, including the classical push model. We provide an upper bound on
time and space complexity.

Building upon previous works by Feige et al. and Pittel, the paper provides solvability results and
evaluates the stabilization time and space complexity of SAP in two specific cases of communication
topologies.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Self-stabilization, Clock synchronization, Probabilistic networks

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.12

Acknowledgements We would like to thank Patrick Lambein-Monette, Stephan Merz, and Guillaume
Prémel for very useful discussions.

1 Introduction

There is a considerable interest in distributed systems consisting of multiple, potentially
mobile, agents. This is mainly motivated by the emergence of large scale networks, character-
ized by the lack of centralized control, the access to limited information and a time-varying
connectivity. Control and optimization algorithms deployed in such networks should be
completely distributed, relying only on local observations and information, and robust against
unexpected changes in topology such as link or node failures.

A canonical problem in distributed control is clock synchronization: In a system where
agents are equipped with local discrete clocks with common pulses, the objective is that
all clocks eventually synchronize despite arbitrary initializations. That corresponds to
synchronization in phase, as opposed to the problem of synchronization in frequency (e.g. for
instance in [34, 21, 23, 32]).

Clock synchronization is a fundamental problem arising in a number of applications,
both in engineering and natural systems. A synchronized clock is a fundamental basic
block used in many engineering systems, e.g. in the universal self-stabilizing algorithm
developed by Boldi and Vigna [9], or for deploying distributed algorithms structured into

© Bernadette Charron-Bost and Louis Penet de Monterno;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bernadette.charron-bost@ens.fr
mailto:penetdemonterno@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Self-Stabilizing Clock Synchronization in Probabilistic Networks

synchronized phases (e.g., the Two-Phase and Three-Phase Commit algorithms [6], or many
consensus algorithms [5, 20, 31, 14]). Clock synchronization also corresponds to a ubiquitous
phenomenon in the natural world and finds numerous applications in physics and biology,
e.g., the Kuramoto model for the synchronization of coupled oscillators [35], synchronous
flashing fireflies, collective synchronization of pancreatic beta cells [29].

In the model we consider, we assume agents take steps in synchronous rounds, but do not
have a consistent numbering of the rounds (e.g., agents regularly receive a common pulse).
The communication pattern at each round is captured by a directed graph that may change
continually from one round to the next, and the history of communications in the network
is modeled as a whole by a dynamic graph, that is an infinite sequence of directed graphs
with the same set of nodes. For a given set of agents (nodes), a communication model is
thus naturally represented by a subset of dynamic graphs, and corresponds to a probability
distribution on the set of dynamic graphs (or, equivalently, to a probability distribution on
the communication graph at each round) in the probabilistic setting.

In deterministic communication models, Charron-Bost and Monterno [12] proposed a
synchronization algorithm of periodic clocks, termed SAP (for self-adaptive period), which
is finite state and self-stabilizing, i.e., the complete initial state of each agent (not just
its clock value) can be arbitrary. This algorithm does not assume any global knowledge
on the network, and tolerates time-varying topologies. It is proved to solve the mod P -
synchronization problem in any dynamic network with a finite dynamic diameter, that is,
from any time onward and for every pair of agents i and j, there is a temporal path of
bounded length connecting i to j. In this paper, we focus instead on the probabilistic setting,
and explore the behavior of the SAP algorithm in a general probabilistic network.

In a deterministic communication model, each execution of SAP is considered individually,
and the property of mod-P synchronization must be satisfied by each possible execution
in this model. By contrast, in the probabilistic framework, the set of executions of SAP
is considered as a whole, and the correctness of SAP then corresponds to the following
hyperproperty [16]: the probability of executions of SAP in which mod P -synchronization is
achieved is greater than a chosen real p ∈ [0, 1).

Unfortunately, verifying probabilistic hyperproperties is technical, and requires to develop
novel proof strategies and new analysis tools. In particular, the notion of dynamic diameter,
which is central in the correctness proof of SAP in [12], is no more relevant in a probabilistic
framework. Indeed, we may see that in most of probabilistic networks, the dynamic diameter
is almost surely infinite (cf. Section 2.4). Instead, we provide a suitable notion of probabilistic
diameter, and define a probabilistic network to be strongly connected with high probability.

Importantly, SAP uses a finite but unbounded amount of memory, that is, in each
execution, the memory usage of each node eventually stops growing. Regarding memory
size issue, the SAP algorithm appears to be optimal since, in an unpublished companion
paper [13], we prove that there is no self-stabilizing and bounded-memory algorithm solving
the mod P -synchronization problem in a deterministic communication model if no bound on
the dynamic diameter is known.

1.1 Related work
Self-stabilizing clocks have been extensively studied in different communication models and
under different assumptions. In particular, clocks may be unbounded, in which case they are
required to be eventually equal, instead of only congruent. The synchronization problem of
unbounded clocks admits simple solutions in strongly connected networks, namely the Min
and Max algorithms [22, 27].

B. Charron-Bost and L. Penet de Monterno 12:3

Periodic clocks require more sophisticated synchronization mechanisms. In addition to
strong connectivity and static networks, the pioneer papers on periodic clock synchroniz-
ation [3, 28, 10, 1] all assume that a bound on the diameter is available. Then Boldi and
Vigna [9] proposed a synchronization algorithm, based on a self-adaptive period mechanism,
that dispenses with the latter assumption.

More recently, periodic clock synchronization has been studied in the Beeping model [17] in
which agents have severely limited communication capabilities: given a static and connected
bidirectional communication graph, in each round, each agent can either send a “beep” to all
its neighbors or stay silent. A self-stabilizing algorithm has been proposed by Feldmann et
al. [25], which is optimal both in time and space, but which requires to know a bound on the
network size. As explained above, without this global information available at each node,
such an algorithm does not exist: The best we can do with a self-stabilizing synchronization
algorithm in a network of unknown dynamic diameter1 is to use finite memory as achieved
in SAP.

There are also numerous results for mod P -synchronization with faulty agents. The fault-
tolerant solutions that have been proposed in various failure models, including the Byzantine
failure model, using algorithmic schemes initially developed for consensus (e.g., see [18, 19]).
They typically require a bidirectional connected (most of the time fully-connected) network.

All these works assume a static network. In [12], Charron-Bost et al. tackled the
dynamic setting: they extended the method of self-adaptive periods developed in [9] to
dynamic networks, and proposed the SAP algorithm for this type of networks with “dynamic
disconnectivity”.

For probabilistic communication models, the problem of clock synchronization has been
addressed by Boczkowski et al. [8] and later on by Bastide et al. [4], both in the particular
framework of the pull model [30] over the fully-connected graph: In each round each agent
receives a message from an agent sampled uniformly at random. Their focus is on minimizing
message size and they both obtain a stabilization time of O(log n) in a network of size n.
Unfortunately, the algorithms in these papers are specific to the pull model, and their good
performances highly rely on the assumption of a fully-connected network. Observe that, in
the case where P is not a power of 2, those algorithms are not bounded-memory.

Clock synchronization has been studied in another probabilistic communication model,
namely, the model of population protocols, consisting of a set of agents, interacting in randomly
chosen pairs. This is basically an asynchronous model, where the synchronization task is
quite different from the one studied in this paper since it amounts to implementing the
abstraction of rounds [2]. In other words, the point in the population protocol model is to
achieve synchronization in frequency instead of synchronization in phase.

1.2 Contribution

Our main contribution in this paper is the probabilistic correctness proof of the SAP algorithm:
we show that it synchronizes periodic clocks in the large class of networks that are strongly
connected with high probability. The probabilistic communication model is totally general in
the sense that we only assume it to be memoryless, meaning that the communication graph
at each round does not depend on the previous rounds. As a byproduct, our correctness
proof provides upper bounds on the stabilization time and the space complexity of SAP.

1 or unknown size in the static case.

DISC 2023

12:4 Self-Stabilizing Clock Synchronization in Probabilistic Networks

Verifying probabilistic hyperproperties requires to develop novel proof strategies and
analysis tools. In particular, we devise new parameters for probabilistic dynamic graphs,
namely, a hierarchy of probabilistic diameters, and prove several basic properties on these
diameters that are interesting on their own.

Finally, we apply our results for general probabilistic communication models to the
classical push model: Leveraging the fundamental properties of this rumor spreading model
established by Feige et al. [24] and Pittel [33], we prove the probabilistic correctness of SAP
in the push model and provide an estimate of its stabilization time and its space complexity,
first for a general bidirectional network, and then for the case of a fully-connected network.

2 Preliminaries

2.1 The computing model
We consider a networked system of n agents (nodes), denoted 1, 2, . . . , n. Computation
proceeds in synchronized rounds, which are communication closed in the sense that no
message received in round t is sent in a round different from t. In round t (t = 1, 2, · · ·),
each node successively (a) broadcasts a message at the beginning of round t, (b) receives
some messages, and (c) undergoes an internal transition to a new state. Communications
that occur at round t are modeled by a directed graph (digraph) G(t) = ([n], Et) where
[n] = {1, . . . , n}. We assume a self-loop at each node in all these digraphs since a node can
communicate with itself instantaneously. An infinite sequence of digraphs G = (G(t))t⩾1 is
called a dynamic graph and the set of dynamic graphs of size n is denoted Gn.

An algorithm A is given by a set Q of local states, a set of messages M, a sending
function σ : Q →M, and a transition function τ : Q×M⊕ → Q, where M⊕ is the set of
finite multisets over M. Every state in Q is a possible initial state (self-stabilization model).

An execution of A with the dynamic graph G then proceeds as follows: In round (t =
1, 2 . . .), each node applies the sending function σ to its current state to generate the message
to be broadcasted, then it receives the messages sent by its incoming neighbors in the
digraph G(t), and finally applies the transition function τ to its current state and the list of
messages it has just received to go to a next state. It is entirely determined by the collection
of initial states and the dynamic graph G.

Given an execution of A, the value of any local variable xi at the end of round t is denoted
by xi(t), and xi(0) is the initial value of xi.

2.2 Dynamic graphs and probability measure
Let us first recall that the product of two digraphs G1 = (V, E1) and G2 = (V, E2), denoted
G1 ◦G2, is the digraph with the set of nodes V and with an edge (i, j) if there exists k ∈ V

such that (i, k) ∈ E1 and (k, j) ∈ E2. For any dynamic graph G and any integers t′ ⩾ t ⩾ 1,
we let

G(t : t′) def= G(t) ◦ · · · ◦G(t′).

By convention, G(t : t) = G(t), and when 0 < t′ < t, G(t : t′) is the digraph with only a
self-loop at each node. The set of i’s in-neighbors in G(t : t′) is denoted by Ini(t : t′), and
simply by Ini(t) when t′ = t. Every edge (i, j) in G(t : t′) corresponds to a path in the round
interval [t, t′]: there exist t′ − t + 2 nodes i = k0, k1, . . . , kt′−t+1 = j such that (kr, kr+1) is
an edge of G(t + r) for each r = 0, . . . , t′ − t.

B. Charron-Bost and L. Penet de Monterno 12:5

For a fixed n ∈ N+, and a triple i ∈ [n], t ∈ N, δ ∈ N+, we let

Γt,δ
i

def= {G ∈ Gn | ∀j ∈ [n], (i, j) is an edge of G(t + 1 : t + δ)}.

If Σn denotes the Borel σ-algebra on Gn, then (Gn, Σ n) is a measurable space. Then, we
consider a probability measure on (Gn, Σ n), denoted Prn, or simply Pr. The pair (Gn, Prn)
is called a probabilistic communication network of size n.

By analogy with the terminology used in game theory (e.g., see [7]), we say that Pr is
memoryless if the random variables G(1),G(2),G(3), . . . are mutually independent.

Each execution of an algorithm A in a system with n nodes is characterized by an initial
global state in Qn and a communication graph in Gn. Hence, the set of executions of A
starting at q ∈ Qn, denoted Eq(A), is isomorphic to Gn. Thus Pr induces a probabilistic
measure on Eq(A), which will also be denoted by Pr as no confusion can arise.

2.3 The mod P-synchronization problem
Let P and n be two positive integers, and let A be an algorithm where each node i maintains
an integer variable Ci, called the clock of i. An execution of A, over a network of n agents,
is said to achieve mod P -synchronization in τ rounds if

∃c ∈ N,∀t ⩾ τ,∀i ∈ [n], Ci(t) ≡P t + c,

in which case the network is said to be synchronized (for mod P -synchronized) from round τ ,
i.e.,

∀t ⩾ τ,∀i, j ∈ [n], Ci(t) ≡P Cj(t).

Then we say that the algorithm A with n agents solves the mod P -synchronization problem
in τ rounds with probability p if for every initial state q ∈ Qn of A, the measure of the set of
executions of A achieving mod P -synchronization in τ rounds is at least equal to p.

2.4 Probabilistic diameters
Let us fix a global state q ∈ Qn. For any real p ∈ [0, 1] and any integer k ∈ [n], we define the
probabilistic order k diameter as the minimum number of rounds required for k arbitrary
nodes to communicate with all the nodes in the network with probability at least p. Formally,
we let

D̂(k)(p) def= inf{δ ∈ N+ | inf
i1,··· ,ik∈[n],t∈N

Pr(Γt,δ
i1
∩ · · · ∩ Γt,δ

ik
) ⩾ p}.

Clearly, we have that D̂(1)(p) ⩽ · · · ⩽ D̂(n)(p), with equalities when p = 1. As a matter of
fact, the probabilistic proof of the SAPg algorithm that we develop in the following section
only involves the probabilistic diameters D̂(1)(p) and D̂(2)(p).

As an example, let us consider the memoryless probability measure Pr on G 2 defined by

Pr(G(t) = G1) = Pr(G(t) = G2) = 1
2 ,

where G1 and G2 are the two-node digraphs defined in Figure 1. For any round t and any
positive integer δ, we have:

Pr(Γt,δ
1) = 1− Pr

(
δ⋂

d=1
(G(t + d) = G2)

)
= 1−

δ∏
ℓ=1

Pr(G(t + d) = G2) = 1− 2−δ.

DISC 2023

12:6 Self-Stabilizing Clock Synchronization in Probabilistic Networks

1 2

(a) digraph G1.

1 2

(b) digraph G2.

Figure 1 Two digraphs.

Similarly, Pr(Γt,δ
2) = 1− 2−δ. Moreover,

Pr(Γt,δ
1 ∩ Γt,δ

2) = 1− Pr(Γt,δ
1 ∪ Γt,δ

2)

= 1− Pr
(

δ⋂
d=1

(G(t + d) = G2) ∪
δ⋂

d=1
(G(t + d) = G1)

)
= 1− 2−δ+1.

Using the definition of the probabilistic diameters and the two equations above, we obtain
the values of D̂(1)(p) and D̂(2)(p) in our example:

D̂(1)(p) = inf{δ ∈ N+ | 1− 2−δ ⩾ p} = ⌈− log2(1− p)⌉ and

D̂(2)(p) = inf{δ ∈ N+ | 1− 2−δ+1 ⩾ p} = 1 + ⌈− log2(1− p)⌉.

This simple example shows why it is not appropriate to use the parameter D(p) simply
defined by:

D(p) def= inf{δ ∈ N+ | Pr(DG ⩽ δ) ⩾ p},

where DG = inf{δ ∈ N+ | ∀i ∈ [n],∀t ∈ N,G ∈ Γt,δ
i } is the dynamic diameter of the dynamic

graph G [11]. Indeed, for each node i ∈ {1, 2}, we have:

Pr(DG ⩽ δ) ⩽ Pr
(∞⋂

ℓ=0
Γℓδ,δ

i

)
=

∞∏
ℓ=0

Pr(Γℓδ,δ
i) = 0,

and thus D(p) is infinite if p is positive. In other words, the dynamic diameter of almost all
dynamic graphs is infinite in this example, while D̂(1)(p) is finite when p < 1.

We now state some general properties on the probabilistic diameters D̂(1)(p) and D̂(2)(p).

▶ Lemma 1. For any memoryless probability measure and all real numbers p ∈
[1

2 , 1
]
, if

D̂(1)(p) is finite, then D̂(2)(p) is finite and D̂(2)(p) ⩽ 2D̂(1)(p).

Proof. Because of the self-loops, the digraphs G(t + 1 : t + δ) and G(t + δ + 1 : t + 2δ) are
both subgraphs of G(t + 1 : t + 2δ), and hence Γt,δ

i ∪ Γt+δ,δ
i ⊆ Γt,2δ

i . It follows that:

Pr
(

Γt,2D̂(1)(p)
i ∩ Γt,2D̂(1)(p)

j

)
⩾ 1− Pr

(
Γt,2D̂(1)(p)

i

)
− Pr

(
Γt,2D̂(1)(p)

j

)
⩾ 1− Pr

(
Γt,D̂(1)(p)

i ∩ Γt+D̂(1)(p),D̂(1)(p)
i

)
− Pr

(
Γt,D̂(1)(p)

j ∩ Γt+D̂(1)(p),D̂(1)(p)
j

)
⩾ 1− 2(1− p)2.

The second inequality holds because of the above-proved inclusion, and the third one because
of the memoryless assumption. If p ∈

[1
2 , 1
]
, then 1−2(1−p)2 ⩾ p and D̂(2)(p) ⩽ 2D̂(1)(p). ◀

B. Charron-Bost and L. Penet de Monterno 12:7

Using a similar proof, it is possible to show that, for all p ∈ [1
2 , 1], for all ℓ1 and ℓ2 ⩽ ℓ1

such that ℓ1 + ℓ2 ⩽ n, if D̂(ℓ1)(p) and D̂(ℓ2)(p) are finite, then D̂(ℓ1+ℓ2)(p) is finite and
D̂(ℓ1+ℓ2)(p) ⩽ 2D̂(ℓ1)(p). Therefore, by induction on ℓ ⩽ n, if D̂(1)(p) is finite, then all
D̂(ℓ)(p) are finite and D̂(ℓ)(p) ⩽ 2⌈log2 ℓ⌉D̂(1)(p). Finally, we prove the following finiteness
result for D̂(1)(p).

▶ Lemma 2. For any memoryless probability measure, if D̂(1)(p0) is finite for some p0 ∈ (0, 1],
then D̂(1)(p) is finite for all real numbers p ∈ [0, 1).

Proof. For every node i, for every integers t ⩾ 0 and ℓ > 0, we have

Pr
(

Γt,ℓD̂(1)(p0)
i

)
⩾ Pr

(
ℓ−1⋃
h=0

Γt+hD̂(1)(p0),D̂(1)(p0)
i

)

= 1−
ℓ−1∏
h=0

Pr
(

Γt+hD̂(1)(p0),D̂(1)(p0)
i

)
⩾ 1− (1− p0)ℓ.

The first inequality holds because of the self-loops, as explained in the proof of Lemma 1.
The second one is due to the memoryless assumption on the Pr probability measure.

If p0 is positive, then limℓ→∞ 1− (1− p0)ℓ = 1. Thus, for any real number p less than
one, there exists some integer ℓ0 such that Pr(Γt,ℓ0D̂(1)(p0)

i) ⩾ p, which implies that D̂(1)(p)
is finite and D̂(1)(p) ⩽ ℓ0D̂(1)(p). ◀

Since all D̂(ℓ) are non-decreasing, Lemmas 1 and 2 imply that if D̂(1)(p0) is finite for
some p0 ∈ (0, 1], then all probabilistic diameters are finite for all p ∈ [0, 1), in which case the
network (Gn, Prn) is said to be strongly connected with high probability. This notion is linked
to the notion of dynamic diameter. Assume that a dynamic graph G has a finite dynamic
diameter DG. Let Pr be the probability measure such that Pr({G}) = 1, then for all real
numbers p ∈ (0, 1],

DG = D̂(1)(p) = D̂(2)(p) = · · · = D̂(n)(p).

3 The SAP algorithm

We present the self-stabilizing SAP algorithm designed in [12] for the mod P -synchronization
problem in dynamic networks with a finite dynamic diameter, and recall its basic properties.

3.1 Description of the algorithm
A typical approach to solve the mod P -synchronization problem consists in the following
algorithm: at each round, each node sends its own variable Ci ∈ {0, . . . , P − 1} and applies
the following update rule:

Ci ←
[

min
j∈ Ini

Cj + 1
]

P
,

where Ini denotes the current set of i’s incoming neighbors, and [c]
P

is the remainder of
the Euclidean division of c by P . Unfortunately, this naive algorithm does not work2 when
D̂(1)(p) is too large compared to the period P . To overcome this problem, the SAP algorithm
uses self-adaptive periods and the basic fact that for any positive integer M , we have

2 see Theorem 4.13 in [1].

DISC 2023

12:8 Self-Stabilizing Clock Synchronization in Probabilistic Networks

[[c]
P M

]
P

= [c]
P

.

More precisely, each node i uses two integer variables Mi and Ci, and computes the clock
value Ci not modulo P , but rather modulo the time-varying period PMi. The variable Mi is
used as a guess to find a large enough multiple of P so to make the clocks eventually stabilized.
Until synchronization, the variables Mi increase so that the shortest period PMi eventually
becomes large enough compared to the largest clock value in the network. In the rest of this
paper, St denotes the set of executions in which the system is synchronized in round t. Once
all clocks are congruent modulo P , they remain congruent forever, meaning that St ⊆ St+1.
The update rule for Mi is parametrized by a function g : N → N. The corresponding
algorithm is denoted SAPg, and its code is given below. Line 5 in the pseudo-code implies
that Ci(t) < PMi(t), and for the sake of simplicity, we assume that this inequality also holds
initially, that is, Ci(0) < PMi(0).

Algorithm 1 Pseudo-code of node i in the SAPg algorithm.
Variables:
1: Ci ∈ N;
2: Mi ∈ N+;

In each round do:
3: send ⟨Ci, Mi⟩ to all
4: receive ⟨Cj1 , Mj1⟩, ⟨Cj2 , Mj2⟩, . . . from the set Ini of incoming neighbours
5: Ci ←

[
min

j∈ Ini

Cj + 1
]

P Mi

6: Mi ← max
j∈ Ini

Mj

7: if Cj ̸≡P Cj′ for some j, j′ ∈ Ini then
8: Mi ← g(Mi)
9: end if

In the rest of the paper, the function g is supposed to be a non-decreasing and inflationary
function, i.e., x < g(x) for every positive integer x. Therefore, each Mi variable is non-
decreasing. If ℓ is a positive integer, gℓ denotes the ℓ-th iterate of g. For every positive real
number x, we let

g∗(x) def= inf{ℓ ∈ N+ | gℓ(1) ⩾ x}.

Since g is inflationary, g∗(x) is finite for all integers x, and g∗(x) ⩽ x. The algorithm is
parametrized by such a function g, and the corresponding algorithm will be denoted SAPg.

3.2 Properties of SAP’s executions
Let us consider an execution ϵ of the SAPg algorithm over a network of size n, with the
dynamic graph G. We start with three basic properties of ϵ which directly come from the
pseudo-code.

▶ Lemma 3. If (i, j) is an arc in G(s : t), then Cj(t) ⩽ Ci(s− 1) + t− s + 1.

▶ Lemma 4. If (i, j) is an arc in G(s : t), then one of the following statements is true:
1. Cj(t) ≡P Ci(s− 1) + t− s + 1;
2. Mj(t) ⩾ g(Mi(s− 1)).

▶ Lemma 5. Let d be a positive integer. If Ci(t) + d ⩽ PMi(t) holds for all nodes i, then
all the clocks Ci are greater than 0 in the round interval [t + 1, t + d− 1].

B. Charron-Bost and L. Penet de Monterno 12:9

For the probabilistic correctness proof of SAPg, we will use another property of its
executions, stated in the lemma below, which is a refinement of an analogous property
established in the deterministic case under the condition of a finite dynamic diameter [12].
The proof is given in the Appendix.

▶ Lemma 6. Let d be any positive integer, and k be a node such that Ck(t) = minj∈[n] Cj(t).
If the execution ϵ belongs to Γt,d

k and all the clocks Ci are greater than 0 in the round interval
[t + 1, t + d− 1], then the network is synchronized in round t + d.

4 Probabilistic correctness of SAP

Our approach for the correctness proof of the SAPg algorithm relies on a fundamental
probabilistic hyperproperty relating the adaptive mechanism for the periods in SAPg to the
order one probabilistic diameter of the network.

We fix some integer n, some real p ∈ (0, 1) and some initial state q ∈ Qn of SAPg. We
consider a memoryless probability measure Pr on (Gn, Σ n), and so on the set Eq of SAPg’s
executions starting in q. We assume that the probabilistic network (Gn, Prn) is strongly
connected w.h.p., and we let

t0
def= D̂(2)(p)

log
(
(1− p)−1)

p

√g∗
(2D̂(1)(p)

P

)
+
√

2

2 (1)

which is finite since g is inflationary. For all positive integers t, we consider the random
variable M(t) def= mini∈[n] Mi(t).

▶ Lemma 7. For every real number p ∈ (0, 1), we have

Pr
((

M(t0) ⩾ 2D̂(1)(p)
P

)
∪ St0

)
⩾ p. (2)

Proof. For ease of notation, we let ḡ = g∗
(

2D̂(1)(p)
P

)
and ℓ0 = t0/D̂(2)(p). In the first part

of the proof, we construct a family of independent random variables Bt that all follow a
Bernoulli distribution. In each execution in Eq that is not synchronized at round t, there
exist two nodes i1(t) and i2(t) such that

Ci1(t)(t) ̸≡P Ci2(t)(t). (3)

Then i1 and i2 can be viewed as two random variables that map any execution of SAPg to a
sequence of type N→ [n]. Let Bt be the random variable equal to 1 on Γt,D̂(2)(p)

i1(t) ∩ Γt,D̂(2)(p)
i2(t)

and equal to 0, otherwise. By definition of D̂(2)(p), each Bt follows a Bernoulli distribution
whose parameter Pr(Bt = 1) is greater than or equal to p. Since Pr is memoryless, the
random variable

B
def=

ℓ0−1∑
ℓ=0

BℓD̂(2)(p)

is a sum of independent Bernoulli variables.
We now show that in all executions in Eq that are not synchronized in round ℓ0D̂(2)(p),

it holds that

M(ℓ0D̂(2)(p)) ⩾ gB(1). (4)

DISC 2023

12:10 Self-Stabilizing Clock Synchronization in Probabilistic Networks

For that, we fix such an execution and prove by induction on ℓ0 that Eq. (4) holds in this
execution.
1. Base case: ℓ0 = 0. Then we have B = 0, and so M(ℓ0D̂(2)(p)) ⩾ 1 = gB(1) as needed.
2. Inductive case: Assume that

M(ℓ0D̂(2)(p)) ⩾ g
∑ℓ0−1

t=0
B

tD̂(2)(p)(1)

holds for for some ℓ0 ∈ N and that the system is not synchronized in round (ℓ0 +1)D̂(2)(p).
Then, the nodes i1 = i1(ℓ0D̂(2)(p)) and i2 = i2(ℓ0D̂(2)(p)) satisfy Eq. (3). Therefore, for
every node i, there exists some x ∈ {1, 2} such that

Ci((ℓ0 + 1)D̂(2)(p)) ̸≡P Cix(ℓ0D̂(2)(p)) + D̂(2)(p). (5)

If Bℓ0D̂(2)(p) = 0, then the inductive case immediately follows. Otherwise, Bℓ0D̂(2)(p) = 1,
and so the digraph G(ℓ0D̂(2)(p) + 1 : (ℓ0 + 1)D̂(2)(p)) contains all the arcs of the form
(i1, i) and (i2, i). Then for every node i, it holds that

Mi((ℓ0 + 1)D̂(2)(p)) ⩾ g(Mix
(ℓ0D̂(2)(p))) ⩾ g(M(ℓ0D̂(2)(p))). (6)

The first inequality holds by Lemma 4 and Eq. (5), and the second one because g is
non-decreasing. Using the induction hypothesis, we get

M((ℓ0 + 1)D̂(2)(p)) ⩾ g

(
g
∑ℓ0−1

t=0
B

tD̂(2)(p)(1)
)

= g
∑ℓ0

t=0
B

tD̂(2)(p)(1).

We now let x0 = 1
p

(
ḡ + log(1− p)−1 +

√
2ḡ log(1− p)−1 + log2(1− p)−1

)
, and easily check

that

ℓ0 ⩾
1
p

(
√

ḡ +
√

2 log(1− p)−1)2 ⩾
1
p

(ḡ +2 log(1−p)−1 +2
√

2ḡ log(1− p)−1) ⩾ x0 > 0. (7)

Moreover, x0 satisfies

−x0p

2

(
1− ḡ

x0p

)2
= log(1− p). (8)

We obtain

Pr
((

M(t0) ⩾ 2D̂(1)(p)
P

)
∪ St0

)
⩾ Pr

(
B ⩾ g∗

(2D̂(1)(p)
P

))

⩾ 1− Pr
(

B ⩽
ḡ

x0p
E(B)

)
⩾ 1− e

− E(B)
2

(
1− ḡ

x0p

)2

⩾ 1− e
− x0p

2

(
1− ḡ

x0p

)2

= p.

The first inequalities comes from Eq. (4). The second and the fourth inequalities hold because,
by definition of B and Eq. (7), we have E(B) ⩾ ℓ0p ⩾ x0p. The third inequality is a Chernoff
bound [15] applied to B, which is a sum of independent Bernoulli variables. The last equality
is by Eq. (8). ◀

B. Charron-Bost and L. Penet de Monterno 12:11

Combined with the basic properties of the SAPg’s executions stated in the previous
section, Lemma 7 allows us to show our main result:

▶ Theorem 8. If g is a non-decreasing and inflationary function, then the SAPg algorithm
solves the mod P -synchronization problem in any probabilistic network that is strongly
connected w.h.p. More precisely, for all p ∈ (0, 1), nodes synchronize within

D̂(2)(p)
⌈

log
(
(1− p)−1)

p

(√
g∗
(2D̂(1)(p)

P

)
+
√

2
)2
⌉

+ 3D̂(1)(p)

rounds with probability p4, if D̂(1)(p) and D̂(2)(p) denote the order one and two probabilistic
diameters of the network.

Proof. For ease of notation, we let D̂(1) = D̂(1)(p). We first define four random variables:
1. Let i0 be any node satisfying Ci0(t0) = min

i∈[n]
Ci(t0).

2. Let t1 be the smallest integer greater than or equal to t0, such that at least one node
holds a clock equal to 0 in round t1 if it exists, or is equal to infinity otherwise.

3. If t1 is finite, let i1 be any node such that Ci1(t1) = 0. Otherwise, let i1 be an arbitrary
node.

4. If t1 is finite, let i2 be any node satisfying Ci2(t1 + D̂(1)) = min
i∈[n]

Ci(t1 + D̂(1)). Otherwise,

let i2 be an arbitrary node.
Then we define the events E and E′ as

E
def= {ϵ ∈ Gn | t1 < t0 + D̂(1)} and E′ def= {ϵ ∈ Gn | M(t0) ⩾ 2D̂(1)

P }.

By Lemma 6, we have Γt0,D̂(1)

i0
∩ E ⊆ St0+D̂(1) . Since St0+D̂(1) ⊆ St0+3D̂(1) , it follows that

Pr
(
St0+3D̂(1) | Γt0,D̂(1)

i0
∩ E ∩ (E′ ∪ St0)

)
= 1. (9)

In any execution belonging to E, t1 is finite and Ci1(t1) = 0. Therefore, in any execution in
E′ ∩ E ∩ Γt1,D̂(1)

i1
, every variable Mi satisfies

PMi(t1+D̂(1)) ⩾ PM(t1+D̂(1)) ⩾ PM(t0) ⩾ 2D̂(1) = Ci1(t1)+2D̂(1) ⩾ Ci(t1+D̂(1))+D̂(1).

The first and third inequalities above are by definition of M and E′, respectively. The second
one holds because M is non-decreasing, and the last one comes from Lemma 3 and the fact
that the execution is in Γt1,D̂(1)

i1
. Lemma 5 then applies, and Lemma 6 shows that

E′ ∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
⊆ St1+2D̂(1) .

Since the random variable t1 is greater than t0, we get St0 ⊆ St1+2D̂(1) , and so

Pr
(
St1+2D̂(1) | (E′ ∪ St0) ∩ E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),2D̂(1)

i2
∩ Γt0,D̂(1)

i0

)
= 1. (10)

We are now in position to bound the probability Pr(St0+3D̂(1)) from below. For the sake
of readability, the conditional probability given the event (E′ ∪St0)∩Γt0,D̂(1)

i0
is now denoted

Pr′. Then we have

DISC 2023

12:12 Self-Stabilizing Clock Synchronization in Probabilistic Networks

Pr(St0+3D̂(1)) ⩾ Pr(St0+3D̂(1) ∩ Γt0,D̂(1)

i0
∩ (E′ ∪ St0))

= Pr′(St0+3D̂(1))× Pr(Γt0,D̂(1)

i0
| E′ ∪ St0)× Pr(E′ ∪ St0)

⩾ p2 Pr′(St0+3D̂(1))

= p2 Pr′(St0+3D̂(1) | E) Pr′(E) + p2 Pr′(St0+3D̂(1) | E) Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) | E) Pr′(E) + p2 Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
| E) Pr′(E) + p2 Pr′(E)

⩾ p2 Pr′(St1+2D̂(1) | E ∩ Γt1,D̂(1)

i1
∩ Γt1+D̂(1),D̂(1)

i2
)

× Pr′(Γt1+D̂(1),D̂(1)

i2
| E ∩ Γt1,D̂(1)

i1
)

× Pr′(Γt1,D̂(1)

i1
| E) Pr′(E) + p2 Pr′(E)

⩾ p4 Pr′(E) + p2 Pr′(E)
⩾ p4

Lemma 7 and the fact that Pr is memoryless are used in the second inequality. The
third inequality is based on Eq. (9) and the fact that, in any execution in E, it holds
that St1+2D̂(1) ⊆ St0+3D̂(1) . Sixth inequality relies on Eq. (10) and the fact that Pr is
memoryless. ◀

As in the deterministic analysis of SAPg, the above bound on its stabilization time
provides an upper bound on its space complexity, namely each node uses at most

log2 P + 2 log2

(
gt0+3D̂(1)(p)(M0)

)
bits with probability p4, if t0 is defined by Eq. (1) and M0 = maxi∈[n] Mi(0). The time
bound and the space bound thus depend respectively on the functions g∗ and g, leading to a
time-space trade-off for choosing g: the faster g grows, the lower the synchronization time is,
and the higher its space complexity is.

5 The SAP algorithm in the Application to push-based models

The previous section demonstrates that the notion of probabilistic diameter is a powerful
tool for the probabilistic analysis of distributed algorithms. This section applies our general
result in Theorem 8 to a probablistic communication model, called the push model [26].
This popular model in rumor spreading consists in the following: Given a base network G

of size n, in each round t, each node randomly selects one of its outgoing neighbors in G

with equal probability to send its round t message. This communication strategy yields a
probablity measure on Gn which is clearly memoryless.

The push model has been extensively studied with various base networks. In this section,
we use two seminal works for this model: First, Feige et al. [24] introduced the notion of
almost sure rumor coverage time, denoted T (G), and provided a general upper bound on
this parameter. Interestingly, T (G) is equal to our probabilistic order one diameter for the
specific value p = 1 − 1/n, namely D̂(1)(1 − 1/n). Second, Pittel [33] refined this general
bound on T (G) in the particular case where G is fully-connected.

5.1 The push model in a general symmetric network
In the push communication model, Feige et al. [24] showed that a rumor reaches the n nodes
of a symmetric and connected network within 12n log2 n rounds with probability 1− 1/n. In
other words, the order one probabilistic diameter satisfies:

B. Charron-Bost and L. Penet de Monterno 12:13

D̂(1)(1− 1/n) ⩽ 12n log2 n.

Using Lemma 1 and the inequalities (1− 1/n)4 ⩾ 1− 4/n and g∗ ⩾ 1, Theorem 8 then yields
the following result.

▶ Corollary 9. Let g be any non-decreasing and inflationary function. For the push model in
a general symmetric connected network with n nodes, the SAPg algorithm achieves mod P -
synchronization within 324 n (log2 n)2g∗(24 P −1 n log2 n) rounds with probability 1− 4

n .

In the context of Corollary 9, Table 1 provides the probabilistic time and space complexities
of SAPg for two different choices of g, namely g = x 7→ x + 1 and g = x 7→ 2x (recall the
notation M0 = maxi∈[n] Mi(0)). It illustrates the general space-time trade-off that we have
just pointed out, at the end of Section 4.

Table 1 The SAPg algorithm for the push model in a symmetric network of size n.

g stabilization time space complexity

g = x 7→ x + 1 O
(
n2 log3 n

)
O
(
log
(
M0 + n

))
g = x 7→ 2x O

(
n log3 n

)
O
(
log M0 + n log3 n

)

5.2 The push model in fully-connected networks
In the particular case of fully-connected networks, Frieze and Grimmett [26] improved the
above upper bound on the time complexity of rumor spreading in the push model. Their
bound as well as its refinement by Pittel [33] are asymptotic in the sense that they hold for
sufficiently large networks. This is why our new bound on the stabilization time of the SAPg

algorithm in the particular case of a fully-connected network will be proved to hold only in
sufficiently large networks.

Let us briefly recall the main result in [33]: Pittel first defines the random variable Sn as

Sn(G) def= inf{δ ∈ N | G ∈ Γ0,δ
i0
},

where G ∈ Gn, and i0 is a fixed node. Since the network is fully-connected, all nodes play
the same role and Sn does not actually depend on the choice of the origin node i0.

▶ Theorem 10 (Theorem 1 in [33]). If ω : N→ N tends to infinity, then

lim
n→∞

Prn(|Sn − log n− log2 n| ⩽ ω(n)) = 1.

It follows that for every p ∈ [0, 1) and every such function ω, there exists a positive
integer Np(ω) such that for all integers n ⩾ Np(ω), it holds that

Prn

(
Sn − log n− log2 n ⩽ ω(n)

)
⩾ Prn

(
|Sn − log n− log2 n| ⩽ ω(n)

)
⩾ p. (11)

Here, log denotes the natural logarithm. In the push model, all random variables G(t) are
identically distributed. Hence, for all nodes i, and all non-negative integers t and δ, we have
Pr(Γt,δ

i) = Pr(Γ0,δ
i0

), and thus

D̂(1)(p) = inf
{

δ ∈ N | Pr(Γ0,δ
i0

) ⩾ p
}

.

Denoting by Np the integer Np(log) defined in Eq. (11), we obtain that for all integers
n ⩾ Np,

D̂(1)(p) ⩽ log2 n + 2 log n. (12)

DISC 2023

12:14 Self-Stabilizing Clock Synchronization in Probabilistic Networks

▶ Corollary 11. Let g be a non-decreasing inflationary function. For any real number
p ∈ [1

2 , 1) and any integer n ⩾ Np, the SAPg algorithm achieves mod P -synchronization within
81 log(1 − p)−1 (log2 n) g∗ (6 P −1 log2 n

)
rounds with probability p4 in the fully-connected

graph of size n and the communication push model.

As a complement to Eq. (12), we now compute the value of D̂(1)(p) in small fully-connected
networks, and thus obtain an approximation of Np. For that, we fix a node i0 ∈ [n] and an
integer t0 ∈ N, and we define the random variable Rn(t) by

Rn(t) =
∣∣∣{j ∈ [n] | (i0, j) is an arc of G(t0 + 1 : t0 + t)}

∣∣∣.
Observe that for the push model in a fully-connected graph, the probability distribution of
Rn(t) does not depend on the choices of i0 and t0. Moreover, the probability Prn is perfectly
described by the sequence of the random variables Rn(1), Rn(2), . . .

▶ Lemma 12. Let a, b ∈ {0, . . . , n}. If a ⩽ b ⩽ 2a, then

Prn(Rn(t + 1) = b | Rn(t) = a) = 1
na

a∑
ℓ=b−a

(
a

ℓ

)(
n− a

a− ℓ

){
ℓ

b− a

}
aa−ℓ(b− a)!

where { a
b } is the Stirling number of the second kind. Otherwise, Prn(Rn(t+1)=b |Rn(t) = a)

is null.

Proof. We denote by A and B the two sets of nodes that are the targets of an arc whose
source is i0 in the digraphs G(1 : t) and G(1 : t + 1), respectively. Thus a node j belongs to
B if and only if there exists an arc from A to j in G(t + 1).

In round t + 1, each node in A picks one node uniformly, among all nodes. Then the total
number of draws is na. Since each draw is equiprobable, we only have to count the number
of favorable draws, that is, the draws such that |B| = b. Let ℓ0 be the number of nodes in A

that pick a node in [n] \A in round t + 1; we have

Prn(|B| = b | |A| = a) =
a∑

ℓ=0
Prn(|B| = b ∩ ℓ0 = ℓ | |A| = a).

We now fix some ℓ0 ∈ {0, · · · , a}, and sample ℓ0 nodes among the a nodes in A. For that,
there are

(
a
ℓ0

)
possibilities. Moreover, we partition the set [n] \ A into two parts: B \ A,

of size b − a and [n] \ B. The number of possible partitionings is
(

n−a
b−a

)
. Then there are

exactly
{

ℓ0
b−a

}
(b− a)! surjective mappings from the previously chosen set of ℓ0 nodes in A

into the set B \A [36]. Finally, a− ℓ0 nodes in A pick a node belonging to A in round t + 1.
There are aa−ℓ0 possibilities. Gathering all mentioned terms, and removing terms in which{

ℓ0
b−a

}
= 0, we obtain the final expression of the lemma. ◀

Interestingly, a different expression of Prn(|B| = b | |A| = a) was used by Pittel in [33].
Lemma 12 shows that (Rn(t))t⩾1 is a Markov process, and provides an effective and efficient
way for computing the probability distribution of each random variable Rn(t) as well as the
value of D̂(1)(p). Figure 2 reports our results: The straight line represents the theoretical
bound provided by Eq. (12) as a function of the logarithm of the network size log n. For
each p ∈ {0.5, 0.95, 0.99}, the values of D̂(1)(p) provided by Lemma 12 are denoted by dots.

Figure 2 yields an estimation of Np: Choosing p = 0.5, all the values of D̂(1)(0.5) that
we have computed are smaller that the bound provided by Eq. (12). This suggests that
Corollary 11 holds for all n, that is, N0.5 = 1. Similarly, Figure 2 suggests that N0.95 = 59.
By contrast, an estimate for N0.99 would require to compute D̂(1)(0.99) for larger values of n.

B. Charron-Bost and L. Penet de Monterno 12:15

100 101 102

log n

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

D̂
(1

) (p
)

p = 0.99
p = 0.95
p = 0.50

Figure 2 Some values of D̂(1)(p) in the push model, in a fully-connected network of size n.

6 Concluding Remarks

This paper provides a general solution to the mod P -synchronization problem in general
probabilistic communication models. Our proof is based on two basic assumptions on the
probabilistic network, making it applicable to a broad range of models. The case of the
push model for a general symmetric network that we have examined at the end of the paper,
provides an example of probabilistic networks for which no clock synchronization algorithms
have been yet devised.

Our paper extends the findings of [12], which proved the correctness of SAPg in a wide
class of dynamic networks, including networks that have an infinite dynamic diameter. The
probabilistic study developed in this paper significantly enlarges the scope of correctness for
SAPg, and demonstrates the versatility of this algorithm.

References

1 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to distributed
self-stabilizing algorithms. Synthesis Lectures on Distributed Computing Theory, 8(1):1–165,
2019.

2 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

3 Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.
Parallel Processing Letters, 1:11–18, 1991.

4 Paul Bastide, George Giakkoupis, and Hayk Saribekyan. Self-stabilizing clock synchronization
with 1-bit messages. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2021, pages 2154–2173, 2021.

DISC 2023

https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2

12:16 Self-Stabilizing Clock Synchronization in Probabilistic Networks

5 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In Proceedings of the Second Symposium on Principles of Distributed Computing,
pages 27–30, 1983.

6 Philip. A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

7 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. Memoryless determinacy of parity
and mean payoff games: a simple proof. Theoretical Computer Science, 310(1-3):365–378,
2004.

8 Lucas Boczkowski, Amos Korman, and Emanuele Natale. Minimizing message size in stochastic
communication patterns: fast self-stabilizing protocols with 3 bits. Distributed Comput.,
32(3):173–191, 2019.

9 Paolo Boldi and Sebastiano Vigna. Universal dynamic synchronous self-stabilization. Distrib-
uted Computing, 15(3):137–153, 2002.

10 Christian Boulinier, Franck Petit, and Vincent Villain. Synchronous vs. asynchronous unison.
Algorithmica, 51(1):61–80, 2008.

11 Bernadette Charron-Bost and Shlomo Moran. The firing squad problem revisited. Theoretical
Computer Science, 793:100–112, 2019.

12 Bernadette Charron-Bost and Louis Penet de Monterno. Self-Stabilizing Clock Synchronization
in Dynamic Networks. In 26th International Conference on Principles of Distributed Systems
(OPODIS 2022), volume 253 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 28:1–28:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

13 Bernadette Charron-Bost and Louis Penet de Monterno. Impossibility of self-stabilizing
synchronization with bounded memory. ., 2024.

14 Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

15 Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

16 Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

17 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In 24th
International Symposium on Distributed Computing, DISC 2010, volume 6343 of Lecture Notes
on Computer Science, pages 148–162. Springer, 2010.

18 Shlomi Dolev. Possible and impossible self-stabilizing digital clock synchronization in general
graphs. Real Time Syst., 12(1):95–107, 1997.

19 Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM, 51(5):780–799, 2004.

20 Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

21 Shimon Even and Sergio Rajsbaum. Unison, canon, and sluggish clocks in networks controlled
by a synchronizer. Mathematical systems theory, 28(5):421–435, 1995.

22 Shimon Even and Sergio Rajsbaum. Unison, canon, and sluggish clocks in networks controlled
by a synchronizer. Math. Syst. Theory, 28(5):421–435, 1995.

23 Rui Fan and Nancy Lynch. Gradient clock synchronization. In Proceedings of the twenty-third
annual ACM symposium on Principles of distributed computing, pages 320–327, 2004.

24 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. Random Structures and Algorithms, 1(4):447–460, 1990.

25 Michael Feldmann, Ardalan Khazraei, and Christian Scheideler. Time- and space-optimal
discrete clock synchronization in the beeping model. In 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA, pages 223–233. ACM, 2020.

26 Alan M Frieze and Geoffrey R Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

B. Charron-Bost and L. Penet de Monterno 12:17

27 Mohamed Gouda and Ted Herman. Stabilizing unison. Inf. Process. Lett., 35(4):171–175,
1990.

28 Ted Herman and Sukumar Ghosh. Stabilizing phase-clocks. Information Processing Letters,
54(5):259–265, 1995.

29 Ali Jadbabaie. Natural algorithms in a networked world: technical perspective. Commun.
ACM, 55(12):100, 2012.

30 Ronald Kempe, Joseph Y. Dobra, and Moshe Y. Gehrke. Gossip-based computation of
aggregate information. In Proceeding of the 44th IEEE Symposium on Foundations of Computer
Science, FOCS, pages 482–491, Cambridge, MA, USA, 2003.

31 Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, May 1998.

32 Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight bounds for clock synchron-
ization. Journal of the ACM (JACM), 57(2):1–42, 2010.

33 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223,
1987.

34 TK Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM (JACM),
34(3):626–645, 1987.

35 Steven H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D, 143(1-4):1–20, 2000.

36 Horst Wegner. Stirling numbers of the second kind and bonferroni’s inequalities. Elemente
der Mathematik, 60(3):124–129, 2005.

A Extra proofs

First, we state the following lemma, which is a reformulation of Lemma 2 in [12]. We fix any
execution ϵ of SAPg.

▶ Lemma 13. If the clock value of the agent i is greater than 0 at round t, then it is equal to

Ci(t) = 1 + min
j∈ Ini(t)

Cj(t− 1).

▶ Lemma 5. Let d be a positive integer. If Ci(t) + d ⩽ PMi(t) holds for all nodes i, then
all the clocks Ci are greater than 0 in the round interval [t + 1, t + d− 1].

Proof. Let i be any node, and let ℓ ∈ [d− 1]. We have

1 + min
j∈ Ini(t+ℓ)

Cj(t + ℓ− 1) ⩽ 1 + Ci(t + ℓ− 1) ⩽ ℓ + Ci(t) < PMi(t) ⩽ PMi(t + ℓ− 1).

The first inequality is due to the self-loop at node i in G(t+ℓ), the second one is a consequence
of the self-loop and Lemma 3, the third inequality is the assumption of the lemma. The
fourth one comes from the fact that Mi is non-decreasing. It follows from line 5 that
Ci(t + ℓ) ̸= 0. ◀

▶ Lemma 6. Let d be any positive integer, and k be a node such that Ck(t) = minj∈[n] Cj(t).
If the execution ϵ belongs to Γt,d

k and all the clocks Ci are greater than 0 in the round interval
[t + 1, t + d− 1], then the network is synchronized in round t + d.

Proof. We fix an execution ϵ and a positive integer d. First, we prove by induction on
ℓ ∈ [d− 1] that

∀i ∈ [n], Ci(t + ℓ) = ℓ + min
j∈ Ini(t+1:t+ℓ)

Cj(t). (13)

DISC 2023

12:18 Self-Stabilizing Clock Synchronization in Probabilistic Networks

1. The base case ℓ = 1 is an immediate consequence of Lemma 13.
2. Inductive step: let us assume that Eq. (13) holds for some ℓ with 1 ⩽ ℓ < d − 1. For

every node i in [n], we have

Ci(t + ℓ + 1) = 1 + min
j∈ Ini(t+ℓ+1)

Cj(t + ℓ)

= 1 + ℓ + min
j∈ Ini(t+ℓ+1)

(
min

j′∈ Ini(t+1:t+ℓ)
Cj′(t)

)
= 1 + ℓ + min

j∈ Ini(t+1:t+ℓ+1)
Cj(t).

The first equality is a direct consequence of Lemma 13, the second one is by inductive
hypothesis, and the third one is due to the fact that G(t + 1 : t + ℓ + 1) = G(t + 1 :
t + ℓ) ◦G(t + ℓ + 1).

This completes the proof of Eq (13) for every integer ℓ ∈ [d− 1].
Then for each node i, we get

Ci(t + d) =
[
1 + min

j∈ Ini(t+d)
Cj(t + d− 1)

]
P Mi(t+d−1)

=
[
d + min

j∈ Ini(t+1:t+d)
Cj(t)

]
P Mi(t+d−1)

= [d + Ck(t)]P Mi(t+d−1) .

The second equality comes from a reasoning similar to the inductive case above, using Eq (13)
at round t + d− 1. It follows that all the counters Ci(t + d) are equal modulo P , i.e., the
system is synchronized in round t + d. ◀

	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 Preliminaries
	2.1 The computing model
	2.2 Dynamic graphs and probability measure
	2.3 The mod P-synchronization problem
	2.4 Probabilistic diameters

	3 The SAP algorithm
	3.1 Description of the algorithm
	3.2 Properties of SAP's executions

	4 Probabilistic correctness of SAP
	5 The SAP algorithm in the Application to push-based models
	5.1 The push model in a general symmetric network
	5.2 The push model in fully-connected networks

	6 Concluding Remarks
	A Extra proofs

