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Abstract
The Iterated Immediate Snapshot model (IIS) is a central model in the message adversary setting.
We consider general message adversaries whose executions are arbitrary subsets of the executions of
the IIS message adversary. We present a complete and explicit characterization and lower bounds
for solving set-agreement for general sub-IIS message adversaries.

In order to have this characterization, we introduce a new topological approach for such general
adversaries, closely associating executions to geometric simplicial complexes. This way, it is possible
to define and explicitly construct a topology directly on the considered sets of executions. We believe
this topology by geometrization to be of independent interest and a good candidate to investigate
distributed computability in general sub-IIS message adversaries, as this could provide both simpler
and more powerful ways of using topology for distributed computability.
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1 Introduction

The k−set-agreement problem is a standard problem in distributed computing and it is
known to be a good benchmark for topological approaches. The k−set-agreement problem is
a distributed task where processes have to agree on no more than k different initial values.
The set-agreement problem is the k−set agreement problem with k +1 processes. A review by
Raynal can be found in [23]. Since the seminal works of Herlihy-Shavit, Borowsky-Gafni and
Saks Zaharoglou [14, 3, 25], using topological methods has proved very fruitful for distributed
computing and for distributed computability in particular. In the shared memory model,
the impossibility of wait-free k−set agreement for more than k + 1 processes is one of the
crowning achievements of topological methods in distributed computing.

Since those first results, the topological framework has been refined to be presented in a
more effective way. In particular, the Iterated Immediate Snapshot model (IIS) is a special
message adversary that has been proposed as a central model to investigate distributed
computability. In this paper we consider the set-agreement problem in the context of message
adversaries defined as subsets of executions of the IIS message adversary.
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15:2 A Topology by Geometrization for Sub-IIS Message Adversaries

1.1 Main Contributions

The main contribution is the first complete and explicit characterization of sub-IIS message
adversaries for which set-agreement is solvable. We introduce in Section 3 a geometrization
mapping geo that associates a point in RN (with a large enough N) to any execution of
IISn, the set of IIS executions for n + 1 processes. The characterization of Th. 26 states
that set-agreement is solvable for M ⊂ IISn if and only if the geometrization of M has
a “hole”, i.e. geo(M) is a strict subset of the convex hull of Sn, the simplex of dimension
n. In Section 4, we describe and prove important properties of the geometrization geo. In
particular we give a combinatorial description of the sets geo−1(x), for x ∈ RN , in Th.25.
Interestingly, we show that these sets can have only three possible size: 1, 2 and infinite size.
Together with the previous theorem, this gives a explicit and complete characterization of
the subsets of the executions of the IIS message adversary for which set-agreement is solvable.
We also apply our technique to derive new lower bounds for general message adversaries
solving set-agreement.

The geo mapping is central to our characterization. The second main contribution is
to show that there is a natural topological interpretation of this mapping. Using geo, we
present in Section 3 a new topology that is defined directly on the set of IIS executions. We
believe this topology by geometrization to be of independent interest and a good candidate
to investigate distributed computability in general sub-IIS message adversaries, as this could
provide both simpler and more powerful ways of using topology for distributed computability
of any task.

In order to handle general message adversaries, we consider here simplicial complexes
primarily as geometric simplicial complexes. The standard chromatic subdivision is the
combinatorial topology representation of one round of the Immediate Snapshot model. Its
simple and regular structure makes topological reasoning attractive. In this paper, we
introduce a new universal algorithm and show its relationship with the standard chromatic
subdivision as exposed in the geometric simplicial complex setting. This new algorithm
is called the Chromatic Averaging algorithm, it averages with specific weights vectors of
RN at each node. Running the Chromatic Average Algorithm in the IISn model yields a
geometric counterpart in RN to any given infinite execution of IISn. The geometrization
mapping geo(w) of an execution w ∈ IISn is defined as the convergence value of running the
Chromatic Average Algorithm under execution w.

The topology on the set of executions is then the topology induced from the standard
topology in RN by the mapping geo : the open sets are pre-images geo−1(Ω) of the open sets
Ω of RN . The standard euclidean topology of RN is simple and well understood, however,
since geo is not injective, it is necessary to describe so-called “non-separable sets” in order
to fully understand the new topology. In topology, two distinct elements x, y are said to
be non-separable if for any two neighbourhoods Ωx of x and Ωy of y, we have Ωx ∩ Ωy ̸= ∅.
In our setting, two executions are non-separable when they have the same image via the
mapping geo, we call such pre-image sets geo−classes. Understanding those sets is central to
the characterization of solvability of set-agreement. It is also central to precisely describe the
properties of the geometrization topology. So we introduce first the geometrization topology
and in Section 4, we investigate the geo−classes. In Section 5, we apply our framework
to derive the characterization of computability of set-agreement and lower bounds. In the
conclusion, we discuss the perspective of possible application of the geometrization topological
framework to arbitrary tasks.
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1.2 Related Works
In [9], the “two generals problem”, that is the consensus problem for two processes is
investigated for arbitrary sub-IIS models by Godard and Perdereau. Given that consensus for
two processes is actually set-agreement, the characterization of solvability of set-agreement
presented here is a generalization to any number of processes of the results of [9].

One of the most advanced results toward the investigation of general sub-ISS adversary
are presented in the work of Kuznetsov and Rieutord [24, 17]. Their adversaries are iterated
and are related to so-called affine task. Our work consider more general sub-IIS adversaries,
including non-iterated adversaries, but the distributed computability is presented only for
the set-agreement task.

In [8], Gafni, Kuznetsov and Manolescu investigate models that are more general subsets
of the Iterated Immediate Snapshot model, where the execution sets are closed under a
specific relation. We believe our tools can provide a simpler, and less error-prone (see [9,
Section 5.1]), framework to investigate distributed computability of sub-IIS models. In
particular, their closure relation is nicely interpreted here as exactly the non-separability
relation of the geometrization topology.

In a series of works, averaging algorithms to solve relaxed versions of the Consensus
problem, including approximate Consensus, have been investigated. In [6], Charron-Bost,
Függer, and Nowak have used matrix oriented approaches to show the convergence of
different averaging algorithms. We use a similar stochastic matrix technique here to prove
the convergence of the Chromatic Average Algorithm. In [7], Függer, Nowak and Schwarz
have shown tight bounds for solving approximate and asymptotic Consensus in quite general
message adversaries.

In [20], Nowak, Schmid, and Winkler propose knowledge-based topologies for all message
adversaries. It is then used to characterize message adversaries that can solve Consensus.
The scope of [20] is larger than the scope of this paper, however, note that contrary to
those topologies, that are implicitly defined by indistinguishability of local knowledge, the ge-
ometrization topology here is explicitly defined and fully described by Th. 25. Recently, in [2],
Attiya, Castañeda and Nowak presented a corrected version of the general characterisation
of [8] in this framework. They also give as application a characterisation for set-agreement
based upon terminating subdivisions [2, Thm. 4.2]. We believe the characterisation given
in Thm. 26 to be more precise. An interesting open question would be to compare the
geometrization topology to the knowledge-based ones defined in [20, 2].

2 Models and Definitions

2.1 Message Adversaries
We introduce and present here our notations. Let n ∈ N, we consider systems with n + 1
processes. We denote Πn = [0, .., n] the set of processes. Since sending a message is an
asymmetric operation, we will work with directed graphs. We recall the main standard
definitions in the following.

We use standard directed graph (or digraph) notations: given G, V (G) is the set of
vertices, A(G) ⊂ V (G)× V (G) is the set of arcs.

▶ Definition 1. We denote by Gn the set of directed graphs with vertices in Πn.
A dynamic graph G is a sequence G1, G2, · · · , Gr, · · · where Gr is a directed graph with

vertices in Πn. We also denote by G(r) the digraph Gr. A message adversary is a set of
dynamic graphs.

DISC 2023



15:4 A Topology by Geometrization for Sub-IIS Message Adversaries

Since that n will be mostly fixed through the paper, we use Π for the set of processes
and G for the set of graphs with vertices Π when there is no ambiguity.

Intuitively, the graph at position r of the sequence describes whether there will be, or not,
transmission of some messages sent at round r. A formal definition of an execution under a
scenario will be given in Section 2.3.

We will use the standard following notations in order to describe more easily our message
adversaries [21]. A sequence is seen as a word over the alphabet G.

▶ Definition 2. Given A ⊂ G, A∗ is the set of all finite sequences of elements of A, Aω is
the set of all infinite ones and A∞ = A∗ ∪Aω.

Given G ∈ Gω, if G = HK, with H ∈ G∗
n, K ∈ Gω

n , we say that H is a prefix of G, and K
a suffix. Pref(G) denotes the set of prefixes of G. An adversary of the form Aω is called an
oblivious adversary or an iterated adversary. A word in M⊂ Gω is called a communication
scenario (or scenario for short) of message adversaryM. Given a word H ∈ G∗, it is called a
partial scenario and len(H) is the length of this word. The prefix of G of length r is denoted
G|r (not to be confused with G(r) which is the r-th letter of G, it the digraph at time r).

The following definitions provide a notion of causality when considering infinite word
over digraphs.

▶ Definition 3 ([5]). Let G a sequence G1, G2, · · · , Gr, · · · . Let p, q ∈ Π. There is a journey
in G at time r from p to q, if there exists a sequence p0, p1, . . . , pt ∈ Π, and a sequence
r ≤ i0 < i1 < · · · < it ∈ N where we have

p0 = p, pt = q,
for each 0 < j ≤ t, (pj−1, pj) ∈ A(Gij

)
This is denoted p

r
⇝
G

q. We also say that p is causally influencing q from round r in G.

2.2 Iterated Immediate Snapshot Message Adversary

We say that a graph G has the Immediacy Property if for all a, b, c ∈ V (G), (a, b), (b, c) ∈ A(G)
implies that (a, c) ∈ A(G). A graph G has the containment Property if for all a, b ∈ V (G),
(a, b) ∈ A(G) or (b, a) ∈ A(G).

▶ Definition 4 ([12]). We set ISn = {G ∈ Gn | G has the Immediacy and Containment pro-
perties}. The Iterated Immediate Snapshot message adversary for n + 1 processes is the
message adversary IISn = ISω

n .

The Iterated Immediate Snapshot model was first introduced as a (shared) memory
model and then has been shown to be equivalent to the above message adversary first as
tournaments and iterated tournaments [4, 1], then as this message adversary [12, 13]. See
also [22] for a survey of the reductions involved in these layered models.

We show how standard fault environments are conveniently described in our framework.

▶ Example 5. Consider a message passing system with n + 1 processes where, at each round,
all messages could be lost. The associated message adversary is Gω

n .

▶ Example 6. Consider a system with two processes {◦, •} where, at each round, only one
message can be lost. The associated message adversary is {◦↔•, ◦←•, ◦→•}ω. This is IIS1.
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2.3 Execution of a Distributed Algorithm
Given a message adversary M and a set of initial configurations I, we define what is an
execution of a given algorithm A subject to M with initialization I. An execution is
constituted of an initialization step, and a (possibly infinite) sequence of rounds of messages
exchanges and corresponding local state updates. When the initialization is clear from the
context, we will use scenario and execution interchangeably.

An execution of an algorithm A under scenario w ∈ M and initialization ι ∈ I is the
following. This execution is denoted ι.w. First, ι affects an initial state to all processes of Π.

A round is decomposed in 3 steps: sending, receiving, updating the local state. At round
r ∈ N, messages are sent by the processes using the SendAll() primitive. The fact that the
corresponding receive actions, using the Receive() primitive, will be successful depends on
G = w(r), G is called the instant graph at round r.

Let p, q ∈ Π. The message sent by p is received by q on the condition that the arc
(p, q) ∈ A(G). Then, all processes update their state according to the received values and A.
Note that, it is usually assumed that p always receives its own value, that is (p, p) ∈ A(G)
for all p and G.

Let w ∈ M, ι ∈ I. Given u ∈ Pref(w), we denote by sp(ι.u) the state of process p at
the len(u)-th round of the algorithm A under scenario w with initialization ι. This means
that sp(ι.ε) represents the initial state of p in ι, where ε denotes the empty word.

A task is given by a set I of initial configurations, a set of output values Out and a
relation ∆, the specification, between initial configurations and output configuration1. We
say that a process decides when it outputs a value in Out. Finally and classically,

▶ Definition 7. An algorithm A solves a Task (I, Out, ∆) for the message adversary M if
for any ι ∈ I, any scenario w ∈ M, there exist u a prefix of w such that the states of the
processes out = (s0(ι.u), . . . , sn(ι.u)) satisfy the specification of the task, ie ι∆out.

3 A Topology by Geometrization

In this paper we present a new topological approach for investigating distributed computability.
It extends the known simplicial complexes-based known method for finite executions to
infinite executions without considering infinite additional complexes like in [8]. This enables
to define directly a topology on the set of executions of the standard Iterated Immediate
Snapshot model IISn.

3.1 Combinatorial Topology Definitions

3.1.1 Geometric Simplicial Complexes
Before giving the definition of the geometrization topology in Sect. 3.2.2, we state the
definition of simplicial complexes, but not first as abstract complex, as is usually done
in distributed computing, but primarily as geometrical objects in RN . This is the reason
we call this definition the geometrization topology. Intuitively we will associatea point in
RN to any execution via a geometrization mapping geo. The geometrization topology is
the topology induced by geo−1 from the standard topology in RN . This also makes geo

1 Note that the standard definition in the topological setting involves carrier map that we do not consider
here for we will consider only one specific task, the Set Agreement problem.

DISC 2023



15:6 A Topology by Geometrization for Sub-IIS Message Adversaries

continuous by definition. In the standard approach, geometric simplices are also used but
they are introduced as geometric realizations of the abstract simplicial complexes. As will be
seen later, when dealing with infinite complexes, the standard topology of these simplices
does not enable to handle the computability of distributed tasks since we will need to define
an other topology. We show that the topology on infinite complexes, as defined in standard
topology textbook, is different from the one we show here to be relevant for distributed
computability. Note that to be correctly interpreted, the topology we construct is on the set
of infinite executions, not on the complexes corresponding to finite executions.

The following definitions are standard definitions from algebraic topology [19]. We fix
an integer N ∈ N for this part. We denote ||x|| the euclidean norm in RN . For a bounded
subset X ⊂ Rn, we denote diam(X) its diameter.

▶ Definition 8. Let n ∈ N. A finite set σ = {x0, . . . , xn} ⊂ RN is called a simplex of
dimension n if the vectors {x1 − x0, . . . , xn − x0} are linearly independent. We denote by |σ|
the convex hull of σ.

▶ Definition 9 ([19]). A simplicial complex is a collection C of simplices such that:
(a) If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C,
(b) If σ, τ ∈ C and |σ| ∩ |τ | ̸= ∅ then there exists σ′ ∈ C such that |σ| ∩ |τ | = |σ′|,

σ′ ⊂ σ, σ′ ⊂ τ.

We denote ≀C≀ =
⋃

S∈C

|S|, this is the geometrization of C.

Note that these definitions do not require complexes to be a finite collection of simplices.
The simplices of dimension 0 (singleton) of C are called vertices, we denote V (C) the set of
vertices of C. A complex is pure of dimension n if all maximal simplices are of dimension
n. In this case, a simplex of dimension n− 1 is called a facet. The boundary of a simplex
σ = {x0, . . . , xn} is the pure complex

⋃
i∈[0,n]{xj | j ∈ [0, n], i ̸= j} of dimension n− 1. It is

denoted δ(σ), it is the union of the facets of σ.
Let A and B be simplicial complexes. A map f : V (A)→ V (B) defines a simplicial map

if it preserves the simplices, i.e. for each simplex σ of A, the image f(σ) is a simplex of B.
By linear combination of the barycentric coordinates, f extends to the linear simplicial map
f : ≀A≀ → ≀B≀, which is continuous. See [19, Lemma 2.7].

We also have colored simplicial complexes. These are simplicial complexes C together
with a function χ : V (C)→ Π such that the restriction of χ on any maximal simplex of C is
a bijection. A simplicial map that preserves colors is called chromatic.

Finally, S. will denote “the” simplex of dimension n. Through this paper we assume a
fixed embedding in RN for S. = (x∗

0, . . . , x∗
n). We will also assume that its diameter diam(S.)

is 1.

3.1.2 The Standard Chromatic Subdivision
Here we present the standard chromatic subdivision, [12] and [15], as a geometric complex.
We start with subdivisions and chromatic subdivisions.

▶ Definition 10 (Subdivision). A subdivision of a simplex S is a simplicial complex C with
≀C≀ = |S|.

▶ Definition 11 (Chromatic Subdivision). Given (S,P) a chromatic simplex, a chromatic
subdivision of S is a chromatic simplicial complex (C,PC) such that

C is a subdivision of S(i.e.≀C≀ = |S|),
∀x ∈ V (S),PC(x) = P(x).
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x•

x◦
x•=ζ{x•}(x•)

ζ{x◦,x•,x•}(x•)

ζ{x◦,x•}(x•) ζ{x◦,x•}(x◦)

(a) Images by ζV for various V ⊂ {◦, •, •}. (b) Chr(S2).

Figure 1 Standard chromatic subdivision construction for dimension 2. On the left, the association
between an instant graph of IS2 (top) and a simplex of Chr(S2) (grey area) is illustrated.

Note that it is not necessary to assume V (S) ⊂ V (C) here, since the vertices of the
simplex S being extremal points, they are necessarily in V (C).

We start by defining some geometric transformations of simplices (here seen as sets of
points). The choice of the coefficients will be justified later.

▶ Definition 12. Consider a set V = (y0, . . . , yd) of size d + 1 in RN . We define the function
ζV : V −→ RN by, for all j ∈ [0, d]

ζV (yj) =
1− d

2d+1
d + 1 yj +

∑
i ̸=j

1 + 1
2d+1

d + 1 yi

We now define in a geometric way the standard chromatic subdivision of colored simplex
(S,P), where S = {x0, x1, . . . , xn} and P(xi) = i.

The chromatic subdivision Chr(S) for the colored simplex S = {x0, . . . , xn} is a simplicial
complex defined by the set of vertices V (Chr(S)) = {ζV (xi) | i ∈ [0, n], V ⊂ V (S), xi ∈ V }.

For each pair (i, V ), i ∈ [0, n] and V ⊂ V (S), there is an associated vertex y of Chr(S),
and conversely each vertex has an associated pair. The color of (i, V ) is i. The set V is
called the view. We define Φ the following presentation of a vertex y, Φ(y) = (P(y), Vy)
where P(y) = i and Vy = V .

The simplices of Chr(S) are the set of d + 1 points {ζV0(xi0), · · · , ζVd
(xid

)} where
there exists a permutation π on [0, d] such that Vπ(0) ⊆ · · · ⊆ Vπ(d),
If ij ∈ P(Vℓ) then Vj ⊂ Vℓ.

In Fig. 1, we present the construction for Chr(S2). For convenience, we associate
◦, •, • to the processes 0, 1, 2 respectively. In Fig. 1a, we consider the triangle x◦, x•, x•
in R2, with x◦ = (0, 0), x• = (1, 0), x• = ( 1

2 ,
√

3
2 ). We have that ζ{x◦,x•}(x•) = ( 1

3 , 0),
ζ{x◦,x•}(x◦) = ( 2

3 , 0) and ζ{x◦,x•,x•}(x•) = ( 1
2 ,

√
3

10 ). The relation between instant graph (top)
and simplex

{
( 2

3 , 0), (1, 0), ( 1
2 ,

√
3

5 )
}

(grey area) is detailed in the following section.
In the following, we will be interested in iterations of Chr(Sn,P). The last property of

the definition of chromatic subdivision means with we can drop the C index in the coloring
of complex C and use P to denote the coloring at all steps. From its special role, it is called
the process color and we drop P in Chr(S,P) using in the following Chr(S) for all simplices
S of iterations of Chr(Sn).

DISC 2023



15:8 A Topology by Geometrization for Sub-IIS Message Adversaries

In [16], Kozlov showed how the standard chromatic subdivision complex relates to Schlegel
diagrams (special projections of cross-polytopes), and used this relation to prove the standard
chromatic subdivision was actually a subdivision.

In [12, section 3.6.3], a general embedding in Rn parameterized by ϵ ∈ R is given for the
standard chromatic subdivision. The geometrization here is done choosing ϵ = d

2d+1 in order
to have “well balanced” drawings.

3.2 Encoding Iterated Immediate Snapshots Configurations
3.2.1 Algorithms in the Iterated Immediate Snapshots Model
It is well known, see e.g. [12, Chap. 3&4, Def. 3.6.3], that each maximal simplex S =
{ζV0(xi0), · · · , ζVn(xin)} from the chromatic subdivision of Sn can be associated with a graph
of ISn denoted Θ(S). We have V (Θ(S)) = Πn = [0, n] and set Θ(ζVj

(xij
)) = P(xij

).The
arcs are defined using the representation Φ of points, A(Θ(S)) = {(i, j) | i ≠ j, Vi ⊆ Vj}. The
mapping θ will denote Θ−1. We can transpose this presentation to an averaging algorithm
called the Chromatic Average Algorithm presented in Algorithm 1.

Algorithm 1 The Chromatic Average Algorithm for process i.

1 x← x∗
i ;

2 Loop forever
3 SendAll((i, x));
4 V ←Receive() // set of all received messages;
5 d← sizeof(V )− 1 // i received d + 1 messages including its own ;

6 x = 1− d
2d+1

d+1 x +
∑

(j,xj)∈V,j ̸=i

1+ 1
2d+1

d+1 xj ;

Executing one round of the loop in Chromatic Average for instant graph G, the state of
process i is x′

i = ζVi
(x∗

i ), where Vi is the view of i on this round, that is the set of (j, xj) it
has received; with Θ({ζV0(x∗

0), · · · , ζVn
(x∗

n)}) = G. See eg. in Fig. 1a, the simplex of the grey
area corresponds to the ordered sequence of views {x•} ⊂ {x•, x◦} ⊂ {x•, x◦, x•}, associated
to the directed graph depicted at the top right. Adjacency for a given i corresponds to the
smallest subset containing xi. By iterating, the chromatic subdivisions Chrr(Sn) are given
by the global state under all possible r rounds of the Chromatic Average Algorithm. Finite
rounds give the Iterated Chromatic Subdivision (hence the name). This is an algorithm that
is not meant to terminate (like the full information protocol). The infinite runs are used
below to define a topology on IISn.

The Chromatic Average algorithm is therefore the geometric counterpart to the Full
Information Protocol that is associated with Chr [12]. In particular, any algorithm can be
presented as the Chromatic Average together with a terminating condition and an output
function of x.

This one round transformation for the canonical Sn can actually be done for any simplex
S of dimension n of RN . For G ∈ ISn, we denote µG(S) the geometric simplex that is the
image of S by one round of the Chromatic average algorithm under instant graph G.

The definitions of the previous section can be considered as mostly textbook (as in [12]),
or folklore. To the best of our knowledge, the Chromatic Average Algorithm, as such, is
new, and there is no previous complete proof of the link between the Chromatic Average
Algorithm and iterated standard chromatic subdivisions. However, one shall remark that
people are, usually, actually drawing standard chromatic subdivisions using the Chromatic
Average Algorithm.
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3.2.2 A Topology for IISn

Let w ∈ IISn, w = G1G2 · · · . For the prefix of w of size r, S a simplex of dimension n, we
define geo(w|r)(S) = µGr ◦µGr−1 ◦ · · · ◦µG1(S). Finally, we set geo(w) = lim

r−→∞
geo(w|r)(Sn).

We prove in Section A.1 that this actually converges.
We define the geometrization topology on the space IISn by considering as open sets the

sets geo−1(Ω) where Ω is an open set of RN . A collection of sets can define a topology when
any union of sets of the collection is in the collection, and when any finite intersection of sets
of the collection is in the collection. This is straightforward for a collection of inverse images
of a collection that satisfies these properties.

A neighbourhood for point x is an open set containing x. In topological spaces, a pair of
distinct points x, y is called non-separable if there does not exist two disjoint neighbourhoods
of these points. The pre-images geo−1(x) that are not singletons are non-separable sets. We
will see that we always have non-separable sets and that they play an important role for task
solvability.

Subset of IISn will get the subset topology, that is , for M⊆ IISn, open sets are the
sets geo−1(Ω)∩M where Ω is an open set of RN . We set ≀M≀ = geo(M) the geometrization
of M.

Note that the geometrization should not be confused with the standard geometric realiza-
tion. They are the same at the set level but not at the topological level, see in Section A.2.
At times, in order to emphasize this difference, for a simplex S ⊂ RN , we will also use ≀S≀
instead of |S|. The geometrization of C, denoted ≀C≀, that is the union of the convex hulls
|σ| of the simplices σ of C, is endowed with the standard topology from RN . We also note
this topological space as ≀C≀.

4 Geometrization Equivalence

As will be be shown later, the geometrization has a crucial role in order to understand the
relationship between sets of possible executions and solvability of distributed tasks. In this
section, we describe more precisely the pre-images sets, that is subsets of IISn of the form
geo−1(x) for x ∈ |Sn|. In particular, we will get a description of the non-separable sets of
execution.

4.1 Definitions

We say that two executions w, w′ ∈ IISn are geo-equivalent if geo(w) = geo(w′). The set of
all w′ such that geo(w) = geo(w′) is called the equivalence class of w. Since the topology
we are interested in for ≀IISn≀ is the one induced by the standard separable space RN via
the geo−1 mapping, it is straightforward to see that non-separable sets are exactly the
geo-equivalence classes that are not singletons. In this section, we describe all equivalence
classes and show that there is a finite number of possible size for these sets.

We define the sets Solo(P ), that correspond to subsets of instant graphs where the
processes in P ⊂ Π have no incoming message from processes outside of P . We have
Solo(Π) = ISn.

▶ Definition 13. In the complex Chr(Sn), with P ⊂ Π, Solo(P ) is the set of simplices
T ∈ Chr(Sn) such that ∀(p, q) ∈ A(Θ(T )), q ∈ P ⇒ p ∈ P .
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We denote by KΠ the instant graph that is complete on Π. An execution w is said fair for
P , w ∈ Fair(P ), if w ∈ Solo(P )ω and for all p, q ∈ P , ∀r ∈ N, we have p

r
⇝
w

q. Fairness for P

means that processes in P are only influenced by processes in P , and that any process always
influence other processes infinitely many times. We have the equivalent, and constructive
definition:

▶ Proposition 14. Let w ∈ Solo(P )ω. An execution w is Fair for P if and only if w has no
suffix in

⋃
Q̸=∅,Q⊊P Solo(Q)ω.

Proof. Assume we have a suffix s for w in Solo(Q)ω with Q ⊊ P .Let p ∈ P \Q and r the
starting index of the suffix. Then ∀q ∈ Q, we must have p

r
⇝
w

q by definition of fairness for P .
Denote q0 the first element of Q to be causally influenced by p at some time t ≥ r. So q0
receive a message from some p′ ∈ Π, p′ ̸= q0 at time t. Since s ∈ Solo(Q)ω, this means that
q0 can only receive message from processes in Q. Hence p′ ∈ Q and p′ was influenced by p at
time t− 1. A contradiction with the minimality of q0. So w is not in Fair(P ).

Conversely, assume that w /∈ Fair(P ). Then ∃p, q ∈ P,∃s,∀r ≥ s, ¬p
r
⇝
w

q. We set Q as
the set of processes that causally influence q for all r ≥ s. We have p /∈ Q so Q ⊊ P . We
denote s0, a time at which no process of Π \Q influence a process in Q. By construction,
the suffix at step s0 is in Solo(Q)ω. ◀

4.2 First Results on Geometrization
We start by presenting a series of results about geometrization. Lemma 35 gives the following
immediate corollaries.

▶ Corollary 15. Let w a run in IISn, then ∀r ∈ N, geo(w) ∈ |geo(w|r)(Sn)|.

▶ Proposition 16. Let w, w′ two geo-equivalent runs in IISn, then ∀r ∈ N, geo(w|r)(Sn) ∩
geo(w′

|r)(Sn) ̸= ∅.

Proof. The intersection of the geometrizations |geo(w|r)(Sn)| and |geo(w′
|r)(Sn)| contains at

least geo(w) by previous corollary. Since the simplices geo(w|r)(Sn) and geo(w′
|r)(Sn) belong

to the complex Chrr(Sn), they also intersect as simplices. ◀

▶ Proposition 17. Let S a maximal simplex of the chromatic subdivision ChrSn that is not
θ(K(Π)). Then there is P ⊊ Π such that Θ(S) ∈ Solo(P ).

Conversely we can describe Solo(P ) more precisely. We denote by δ(Sn, P ) the sub-
simplex of Sn corresponding to P ⊂ Π. This is the boundary relative to P in Sn, and we
have that

⋃
P⊊Π δ(Sn, P ) =

⋃
p∈Π δ(Sn, π \ p) = δ(Sn).

▶ Proposition 18 (Boundaries of Chr are Solo). Let P a subset of Π. Then Solo(P ) = {S |
S a maximal simplex of Chr(Sn), |S| ∩ |δ(Sn, P )| ≠ ∅}.

Proof. Denote q such that Π = P ∪ {q}. Then by construction, Solo(P ) corresponds exactly
to the simplex where the processes in P do not receive any message from q, ie the simplex
intersecting the boundary δ(Sn, P ). ◀

For a given size s of P , the Solo sets are disjoint, however this does not form a partition of
Chr. Finally, by iterating the previous proposition, the boundaries of Sn are described by
Solo(P )ω.

▶ Proposition 19. Let P a subset of Π. We have ≀Solo(P )ω≀ = |δ(Sn, P )|.
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We can now state the main result that links geometrically fair executions and corresponding
simplices: in a fair execution, the corresponding simplices, that are included by convexity,
have to eventually be strictly included in the interior.

▶ Proposition 20 (Geometric interpretation of Fair). Let w an execution that is Fair for Π,
then ∀s ∈ N,∃r > s ∈ N, such that δ(geo(w|s)(S)) ∩ geo(w|r)(S) = ∅.

Proof. Let s ∈ N, and an execution w. We denote T = geo(w|s. Consider a process p ∈ Π,
for all process q ̸= p we have p

s
⇝
w

q. Since w is fair in Π, we can consider r > s the time at
which p is influencing all q from round s. At his step, for all q ̸= p, the barycentric coordinate
of the vertex of geo(w|r(S) of colour q relative to the vertex of geo(w|r(S) of colour p is
strictly positive. This means that geo(w|r(S) does not intersect δ(T, Π \ p).

Since w is fair in Π, we can repeat this argument for any p ∈ Π. We denote the r∗

the maximal such r and since
⋃

p∈Π δ(T, Π \ p) = δ(T ), we have that δ(geo(w|s)(S)) ∩
geo(w|r∗)(S) = ∅. ◀

4.3 A Characterization of Geo-Equivalence
We start by simple, but useful, sufficient conditions about the size of geo-classes.

▶ Proposition 21 (Fair(Π) is separable). Let w ∈ IISn, denote Σ the geo-class of w. If w

is Fair on Π, then #Σ = 1.

Proof. Let w′ ∈ Σ. We will show that w′ shares all prefixes of w. Let r ∈ N. From Prop. 20
and Lemma 35, we get that geo(w) does not belong to the boundary of geo(w|r)(S), nor
to the boundary of geo(w′

|r)(S). Assume that w and w′ have not the same prefix of size r,
that is geo(w|r)(S) ̸= geo(w′

|r)(S). From Prop. 16 geo(w|r)(S), geo(w′
|r)(S) have to intersect

(as simplices), and since they are different, they can intersect only on their boundary. This
means that geo(w) would belong to the boundary, a contradiction.

So they have the same prefixes and w′ = w. ◀

▶ Proposition 22 (Infinite Cardinal). Let n ≥ 2. Let w, w′ two distinct executions such that
geo(w) = geo(w′) and there exist s ∈ N such that ∀r > s∃Tgeo(w|r)(S) ∩ geo(w′

|r)(S) = T

with T a simplex of dimension k ≤ n− 2. Then, the geo-equivalence class of w is of infinite
size.

Proof. Let w, w′ two executions with geo(w) = geo(w′) and ∀r > s, geo(w|r)(S) ∩
geo(w′

|r)(S) = T with T of dimension k ≤ n− 2. Denote P the colors of T . Since k ≤ n− 2,
we have at least p1 ̸= p2 ∈ Π \ P . The suffix at length s of w is in Solo(P ).

Hence, for the processes in P , when running in w or w′, it is not possible to distinguish
these 3 cases about the induced subgraph by {p1, p2} in the instant graphs: p1 ← p2, p1 ↔ p2
and p1 → p2.

So ∀r > s, we have 3 possible ways of completing what is happening on the induced
subgraph by processes in P in G ∈ Solo(P ). So we have infinitely many different executions,
the cardinality of the geo-class of w is infinite. ◀

Let’s consider the remaining cases. Let w ∈ IISn, denote Σ the geo-class of w.

▶ Proposition 23 (Boundaries of Sn are separable). If w is Fair on Π \ {p} for some p ∈ Π
then #Σ = 1.
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Proof. We denote Q = Π \ {p}. We apply Prop. 21 for n− 1 to w′ the restriction of w to the
set of processes Q (this is possible by definition of Fair: no process of Q receives message
from outside of Q). Since w′ satisfies the condition for Prop. 21 (by definition of Fair), which
means that the geo-class of w′ is of size 1.

Since there is only one unique way of completing an execution restricted to Q to one in
Solo(Q) (adding (q, p),∀q ∈ Q), we get that there is only w in the equivalence class. ◀

A suffix of a word w is strict if it is not equal to w.

▶ Proposition 24. If w has only a strict suffix that is Fair on Π \ {p} for some p ∈ Π then
#Σ = 2.

Proof. We denote Q = Π \ {p}. We can write w = uav where u ∈ IS∗
n, a ∈ ISn and v is

Fair on Q but av is not. We can choose u such that u has the shortest length.
We consider w′ such that geo(w′) = geo(w). Let r be the length of ua. We denote by

T the facet of geo(ua)(Sn) with colors Q. Since v is Fair for Q, we can apply to v|Q the
restriction of v to Q Prop. 20. So geo(w) is not on the boundaries of T which means, from
Prop. 16, that either geo(w′

|r)(Sn) = geo(w|r)(Sn) either geo(w′
|r)(Sn) ∩ geo(w|r)(Sn) = T .

In both cases, we can apply Prop. 21 to v′ the restriction of w to Q. Which means that
there is only one restricted execution in Q. Since there is only one way to complete to p,
there are as many elements in the class that simplices at round r that include T . Since we
have a subdivision, we have exactly two simplices sharing the facet T .

In the first case, this means that w′
|r = ua and w = w′.

In the second case, we have that w′
|r = ub for some b ̸= a. We remark that if w′

|r−1 ̸= u

this would contradict the minimality of u. Indeed, the prefixes of length r − 1 are different,
this means that av is Fair for Q. ◀

Using these previous propositions, and remarking that for any w, there exists P such
that w has a suffix in Fair(P ), we can now present our main result regarding the complete
classification of geo-equivalence classes. Let n ∈ N and Σ a geo-equivalence class on Sn. Then
there are exactly 3 cardinals that are possible for Σ (only 2 when n = 1, the case of [9]):

▶ Theorem 25. Let w ∈ IISn, denote Σ the geo-class of w.
C1: If w is Fair on Π or on Π \ {p} for some p ∈ Π, then #Σ = 1;
C2: w has only a strict suffix that is Fair on Π \ {p} for some p ∈ Π then #Σ = 2;
C∞: otherwise Σ is infinite.

5 The Set-Agreement Problem

For all n, the set-agreement problem is defined by the following properties [18]. Given initial
init values in [0, n], each process outputs a value such that

Agreement the size of the set of output values is at most n,
Validity the output values are initial values of some processes,
Termination All processes terminates.

We will consider in this part sub-IIS message adversaries M, that is M ⊆ IISn. It
is well known that set-agreement is impossible to solve on IISn, we prove the following
characterization.

▶ Theorem 26. Let M⊂ IISn. It is possible to solve Set-Agreement on M if and only if
≀M≀ ≠ |Sn|.
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5.1 Impossibility Result
On the impossibility side, we will prove a stronger version with non-silent algorithms. An
algorithm is said to be non-silent if it sends message forever. Here, this means that a process
could have decided a value while still participating in the algorithm.

▶ Theorem 27. Let M ⊂ IISn. If ≀M≀ = ≀IISn≀ = |Sn| then it is not possible to solve
Set-Agreement on M, even with a non-silent algorithm.

We will need the following definition from combinatorial topology.

▶ Definition 28 (Sperner Labelling). Consider a simplicial complex C that is a subdivision
of a chromatic simplex (S, χ). A labelling λ : V (C) −→ Π is a Sperner labelling if for all
x ∈ V (C), for all σ ⊂ S, we have that x ∈ |σ| ⇒ λ(x) ∈ χ(σ).

▶ Lemma 29 (Sperner Lemma [26]). Let a simplicial complex C that is a subdivision of
a chromatic simplex (S, χ) with Sperner labelling λ. Then there exists σ ∈ C, such that
λ(σ) = Π.

A simplex σ with labelling using all Π colors is called panchromatic.

Proof of Theorem 27. By absurd, we assume there is a non-silent algorithm A (in full
information protocol form) solving set-agreement on M. We run the algorithm on initial
inputs init(i) = i. We translate the full information protocol to the chromatic average,
non-silent form: the initial value of i is x∗

i ; when the decision value is given, we still compute
and send the chromatic average forever. We can also assume a “normalized” version of the
algorithm: when a process receives a decision value from a neighbour, it will decide instantly
on this value. Such a normalization does not impact the correctness of the algorithm since
set-agreement is a colorless task.

The proof will use the Sperner Lemma with labels obtained from the eventual decision
value of the algorithm. However it is not possible to use directly the Sperner Lemma for the
“full subdivision under M” (which we won’t define), since this subdivision could be infinite.
The following proof will use König Lemma to get an equivalent statement.

Given t ≥ 0, we consider Chrt(Sn) under our algorithm with initial values init(i) = i.
For any vertex, we define the following labelling λt: if the process i has not terminated at
time t with state x ∈ V (Chrt(Sn)), then the Sperner label λt(x) = i, otherwise it is the
decided value. Since the decided value depends only on the local state, the label of a vertex
at time t is independent of the execution leading to it. The goal of the following is to show
that there is an entire geo-equivalence class that does not belongs to M.

By Integrity property, we have that the value decided on a face of Sn of processes i1, . . . , in,
ie for Solo(i1, . . . , in)ω are taken in i1, . . . , in. From Prop. 19, at any t, this labelling defines
therefore a Sperner labelling of a (chromatic) subdivision of S.

We consider the set S of all simplices S of dimension n of Chrt(Sn), for all t. For a given
t, from Sperner Lemma, there is at least a simplex of Chrt(Sn), that is panchromatic. There
is therefore an infinite number of simplices S that are panchromatic in S. We consider now
T ⊂ S, the set of simplices T ∈ S such that there is an infinite number of panchromatic
simplex S such that |S| ⊂ |T |. Note that T needs not be panchromatic. Since the number of
simplices of Chrt(Sn) is finite for a given t, there is at least one simplex of Chrt(Sn) that is
in T . Therefore the set T is infinite.

We build a rooted-tree structure over T : the root is Sn (indeed it is in T ), the parent-child
relationship between T and T ′ is defined when T ′ ∈ Chr(T ). We have an infinite tree with
finite branching. By König Lemma, we have an infinite simple path from the root. We denote
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Tt the vertex at level t of this path. We have |Tt+1| ⊂ |Tt| and (Tt)t∈N converges (same
argument as the end of Section A.1) to some y ∈ |Sn|. The increasing prefixes corresponding
to Tt define an execution w of IISn.

We will now consider two different cases, not on the fact whether or not, w ∈M, but on
the result of A on execution w.

For first case, assume that algorithm A has eventually decided on all processes on run
w at some time t0. Since it could be that w /∈ M, we cannot conclude yet. But since all
processes have decided, they do not change their label in subsequent steps. By definition,
Tt0 = geo(w|t0(Sn) contains an infinite number of panchromatic simplices, i.e. at least one.
So the simplex geo(w|t0(Sn) is panchromatic. Hence any run with prefix w|t0 cannot be in
M, since A solves set-agreement on M. Therefore w′ = w|t0Kω

Π ( where KΠ is the complete
graph), is a fair execution that does not belong to M. Its entire geo-equivalence class, which
is a singleton, is not in M.

The second case is when algorithm A does not eventually decide on all processes on run
w. Therefore w /∈M. Now we show that all elements w′ of the geo-class of w are also not in
M. Assume otherwise, then A halts on w′. By Prop. 16, at any t, the simplex corresponding
to w′

|t intersects Tt on a simplex of smaller dimension whose geometrization contains y.
Consider t0 such that the execution has decided at this round for w′. Consider now Tt0+1,
it intersects the decided simplex of Chrt0(Sn) corresponding to w′, which means that the
processes corresponding to the intersection were solo in w′(t0 + 1) and in w(t0 + 1). When a
process does not belong to a set of solo processes of the round, it receives all their values.
So by normalization property of algorithm A, this means that in Tt0+1, all processes have
decided. A contradiction with the fact that A does not decide on all processes on run w. ◀

This impossibility result means that there are many strict subsets M of IISn where it is
impossible to solve set-agreement, including cases where IISn \M is of infinite size.

5.2 Algorithms for Set-Agreement
In this section, we consider message adversariesM that are of the form IISn \ geo−1(y) for a
given y ∈ |Sn|. We note w ∈ IISn, such that geo(w) = y. We have w /∈M. In other words,
M = IISn \ C, where C = geo−1(geo(w)) is the equivalence class of w. We also denote σy(r)
the simplex geo(w|r)(Sn).

5.2.1 From Sperner Lemma to Set-Agreement Algorithm
Remark that the protocol complex at time r is exactly Chrr(Sn), there is no hole “appearing”
in finite time for suchM. From Sperner Lemma, any Sperner labelling of a subdivision of Sn

admits at least one simplex that is panchromatic. In order to solve set-agreement, the idea
of Algorithm 2 is to try to confine the panchromatic, problematic but unavoidable, simplex
of Chrt(Sn) to σy(r). Since the geo-class of w is not in M, any execution will eventually
diverge from σy(r) and end in a non panchromatic simplex. We now define a special case
of Sperner labelling of the Standard Chromatic Subdivision that admits exactly one given
simplex that is panchromatic.

We consider the generic colored simplex (S, χ) where S = (x0, . . . , xn) and coloring
function χ, that could be different from P. We consider labellings of subdivisions C of S.

▶ Definition 30. Let τ ∈ C a subdivision of S. f : V (T ) −→ Π is a Sperner τ−panlabelling
if: f is a Sperner labelling of C; for all simplex σ ∈ C, f(σ) = Π if and only if σ = τ .

▶ Proposition 31. Let τ be a face of Chr(S, χ), there exists a τ−panlabelling λ of Chr(S, χ).
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Algorithm 2 Algorithm Aw for process i.

1 x← x∗
i ; r ← 0;

2 Loop while x ∈ V (geo(w|r)(Sn)
3 r ← r + 1;
4 Send((i, x));
5 V ←Receive() // set of all received messages;
6 d← sizeof(V )− 1 // i receives d + 1 messages ;

7 x = 1− d
2d+1

d+1 x +
∑

(j,xj)∈V,j ̸=i

1+ 1
2d+1

d+1 xj ;

8 Output: Ψw(r)(x);

This technical proposition is proved in the appendix. Denote λτ (S, χ) such a Sperner
τ−panlabelling of Chr(S, χ).

Before stating the algorithm, we show how to construct a sequence of panlabellings for
Chrr(Sn). Let r ∈ N, we denote Ψw(r) the following labelling defined by recurrence.

Intuitively, it is the following labelling. In Chrr(Sn), we have σy(r) that is panchromatic,
all other simplices using at most n colors. In Chrr+1(Sn), we label vertices that do not
belongs to the subdivision of σy(r) by the labels used at step r. In vertices from Chrσy(r),
we use λθ(w(r+1)) the Sperner τ−panlabelling associated with θ(w(r + 1)) to complete the
labelling that uses at most n colors on a given simplex, except at σy(r). In order to simplify
notation, we also note λG the labelling λθ(G). Of course, we apply λw(r+1) using as input
(corner) colors, the colors from Ψw(r). This way, on the neighbours of σy(r) the labelling is
compatible.

We denote γr(x) the precursor of level r of x ∈ V (Chrr+1(Sn)), that is the vertex of
V (Chrr(Sn)) from which x is originating.

▶ Definition 32. We set Ψw(1)(x) = λw(1)(Sn,P)(x) for all x ∈ V (Chrr(Sn)), and for
r ∈ N∗

Ψw(r + 1)(p) = Ψw(r)(γr(x)) if x /∈ |geo(w|r)(Sn)|
λw(r+1)(Ψw(r)(σy(r))(x) if x ∈ |geo(w|r)(Sn)|

▶ Proposition 33. For all r, Ψw(r) is a Sperner σy(r)−panlabelling of Chrr(Sn).

Proof. The proof is done by recurrence. The case r = 1 is Prop 31. Assume that Ψw(r) is a
Sperner σy(r)−panlabelling of Chrr(Sn).

Consider now Ψw(r + 1) for Chrr+1(Sn). By construction and recurrence assumption,
panchromatic simplices can only lay in |σy(r)|. Since λw(r+1) is a Sperner panlabelling
and that the corner colors for σy are taken from Ψw(r), we have that σy(r) is the only
panchromatic simplex of Chrr+1(Sn). ◀

We now prove the correctness of Aw presented in Algorithm 2. Consider an execution
v ∈M. For Termination: since elements of the geo-class of w are not in M, there exists a
round r at which v|r ̸= w′

|r for all w′ ∈ geo−1(geo(w), i.e. the conditional at line 2 is false
for all processes and the algorithm is terminating. For Agreement: when terminating at
round r, i is not in σy(r), by loop conditional, so since Ψw(r) is only panchromatic on σy(r),
the number of decided values is less than n. Integrity comes from the fact that Ψw(r) is a
Sperner labelling.
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5.2.2 Lower Bounds
It is possible to use the impossibility result to prove the following lower bound. Algorithm 2
is therefore optimal for fair w.

▶ Theorem 34. Let A be an algorithm that solves set-agreement onM = IISn\geo−1(geo(w))
with w ∈ IISn. Then, for any execution v ∈ M, t ∈ N, such that v|t = w′

|t for some
w′ ∈ geo−1(geo(w)), A has not terminated at t.

Proof. Suppose A has decided on all process at t, with v|t = w′
|t for some w′ ∈ geo−1(geo(w)).

So A solve set-agreement on w′. A contradiction with Th. 27 since ≀M ∪ {w′}≀ = |Sn|. ◀

6 Conclusion and Implications for Topological Methods

In this note, we have presented how to construct a topology directly on the set of execu-
tions of IISn the Iterated Immediate Snapshot message adversary. Though this is not a
simple textbook topology as usual, since there are non-separable points, the properties we
presented enables to fully understand it. As a important application on using the underlying
geometrization mapping geo, we were able to characterize precisely for the first time general
subsets of IISn where set-agreement is solvable and give a topological interpretation of this
result.

We also believe this new approach could be successfully applied to other distributed
tasks and distributed models. When considering the input complex embedded in RN , the
geometrization topology could be applied on all simplices, in effect providing a new topological
framework for so called protocol complex. This could be done by applying the Chromatic
Average algorithm. This was not detailed here as we did not need it to investigate set-
agreement. Moreover, note that this construction works also for any model of computation
that corresponds to a mesh-shrinking subdivision.

This geometrization topology provides also a nice topological interpretation for the
characterization theorem. In particular the topology as defined here is the coarsest topology
such that the mapping geo is continuous. Therefore the impossibility theorem could also be
stated, using the No-Retraction Theorem of standard topology [11, Cor. 2.15]: set-agreement
is solvable on message adversaryM only if there exists a continuous function f :M−→ ∂Sn,
where M has the geometrization topology. This is interesting since ∂Sn, the boundary of Sn,
is exactly the output complex of the set-agreement task.

It should also be noted that, since we do have non-separable sets in our setting, it shows
that the standard abstract simplicial complexes approach is actually not always directly
usable, since abstract simplicial complexes are known to have separable topology. It means
that, for the first time, we have to primarily use the geometric version of simplicial complexes
to fully investigate general distributed computability. We call the topology defined here the
geometrization topology to emphasize this change of paradigm.

References
1 Yehuda Afek and Eli Gafni. Asynchrony from Synchrony, pages 225–239. Number 7730 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013.
2 Hagit Attiya, Armando Castañeda, and Thomas Nowak. Topological characterization of task

solvability in general models of computation. In Rotem Oshman, editor, Proceedings of the
37th International Symposium on Distributed Computing (DISC’23), volume 281 of LIPICS.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2023.



Y. Coutouly and E. Godard 15:17

3 Elizabeth Borowsky and Eli Gafni. Generalized flp impossibility result for t-resilient asyn-
chronous computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing, pages 91–100, New York, NY, USA, 1993. ACM Press.
doi:10.1145/167088.167119.

4 Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’97, pages 189–198. ACM, 1997.
doi:10.1145/259380.259439.

5 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012.

6 Bernadette Charron-Bost, Matthias Függer, and Thomas Nowak. Approximate consensus in
highly dynamic networks: The role of averaging algorithms. In ICALP (2), volume 9135 of
Lecture Notes in Computer Science, pages 528–539. Springer, 2015.

7 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. J. ACM, 68(6):46:1–46:35, 2021.

8 Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability
theorem. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on Principles
of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages 222–231. ACM,
2014.

9 Emmanuel Godard and Eloi Perdereau. Back to the coordinated attack problem. Math. Struct.
Comput. Sci., 30(10):1089–1113, 2020.

10 Darald J. Hartfiel. Behavior in Markov set-chains. In Darald J. Hartfiel, editor, Markov
Set-Chains, Lecture Notes in Mathematics, pages 91–113. Springer, Berlin, Heidelberg, 1998.
doi:10.1007/BFb0094591.

11 Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
12 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through

Combinatorial Topology. Morgan Kaufmann, 2013.
13 Maurice Herlihy, Sergio Rajsbaum, and Michel Raynal. Computability in distributed computing:

A tutorial. SIGACT News, 43(3):88–110, 2012.
14 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J.

ACM, 46(6):858–923, 1999.
15 Dmitry N. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and computation

in mathematics. Springer, 2008.
16 Dmitry N. Kozlov. Chromatic subdivision of a simplicial complex. Homology Homotopy Appl.,

14(2):197–209, 2012. URL: http://projecteuclid.org/euclid.hha/1355321488.
17 Petr Kuznetsov, Thibault Rieutord, and Yuan He. An asynchronous computability theorem

for fair adversaries. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 387–396. ACM, 2018. URL: https://dl.acm.org/citation.cfm?id=
3212765.

18 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

19 James R. Munkres. Elements Of Algebraic Topology. Addison Wesley Publishing Company,
1984.

20 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus
under general message adversaries. In PODC, pages 218–227. ACM, 2019.

21 J.E. Pin and D. Perrin. Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier,
2004.

22 Sergio Rajsbaum. Iterated shared memory models. In Alejandro López-Ortiz, editor, LATIN
2010: Theoretical Informatics, pages 407–416, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

DISC 2023

https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/259380.259439
https://doi.org/10.1007/BFb0094591
http://projecteuclid.org/euclid.hha/1355321488
https://dl.acm.org/citation.cfm?id=3212765
https://dl.acm.org/citation.cfm?id=3212765


15:18 A Topology by Geometrization for Sub-IIS Message Adversaries

23 Michel Raynal. Set Agreement, pages 1956–1959. Springer New York, New York, NY, 2016.
doi:10.1007/978-1-4939-2864-4_367.

24 Thibault Rieutord. Combinatorial characterization of asynchronous distributed computability.
(Caractérisation combinatoire de la calculabilité distribuée asynchrone). PhD thesis, University
of Paris-Saclay, France, 2018. URL: https://tel.archives-ouvertes.fr/tel-02938080.

25 M. Saks and F. Zaharoglou. "wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM J. on Computing, 29:1449–1483, 2000.

26 Emanuel Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes. Math.
Sem. Univ. Hamburg, 6:265–272, 1928.

A Geometrization Topology

A.1 Convexity and Metric Results
We present some metric results relating vertices of the iterated chromatic subdivision. In
particular we prove that the sequences geo(w|r)(S) converge to a point. This is related to
the known fact that the standard chromatic subdivision is mesh-shrinking [12].

The following lemma comes from the convexity of the µG transforms.

▶ Lemma 35. Let w a run, let r, r′ ∈ N, r < r′ then |geo(w|r′)(Sn)| ⊂ |geo(w|r)(Sn)|.

Proof. Consider only one step. We have that 1− d
2d+1

d+1 + d × 1+ 1
2d+1

d+1 = 1− d
2d+1 +d+ d

2d+1
d+1 = 1.

So one step of the Chromatic Average gives, on each process, a linear combination with
non-negative coefficients that sums to 1, it is therefore a barycentric combination on the
points of the simplex at the beginning of the round. It is therefore a convex mapping of this
simplex. Since composing convex mapping is also convex, and that Sn is a convex set, we get
the result by recurrence. ◀

▶ Lemma 36. There exists reals 0 < K ′ < K < 1, such that for all G of ISn, all p, q ∈ V (S),
p′, q′ ∈ V (µG(S)), such that P(p) = P(p′) and P(q) = P(q′), we have

K ′||p− q|| ≤ ||p′ − q′|| ≤ K||p− q||.

Proof. This is a consequence of µG transforms being convex when G ∈ ISn. It corresponds
to a stochastic matrix (non-negative coefficients and all lines coefficient sums to one) that is
scrambling (there is a line without null coefficients) hence contractive. See e.g. [10, Chap. 1]
for definitions and a proof for any given G of ISn.

Then K (resp. K ′) is the largest (resp. smallest) such bounds over all G ∈ ISn. ◀

While iterating the chromatic subdivision, we remark that the diameter of the corre-
sponding simplices is contracting. From Lemma 36, we have

▶ Lemma 37. Let S a simplex of RN, then diam(µGr ◦ µGr−1 ◦ · · · ◦ µG1(S)) ≤ Krdiam(S),
where K is the constant from the previous lemma.

Since the simplices are contracted by the µG functions, the sequence of isobarycenters of
(geo(w|r(S))r∈N∗ has the Cauchy property and this sequence is therefore convergent to some
point x ∈ RN . Since the diameter of the simplices converges to 0, it makes senses to say
that the limit of the simplices is the point x. Note that it would also be possible to formally
define a metric on the convex subsets of RN and consider the convergence of the simplices in
this space.

https://doi.org/10.1007/978-1-4939-2864-4_367
https://tel.archives-ouvertes.fr/tel-02938080
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A.2 Geometrization Topology vs Geometric Realization Topology
In this section, we provide an example of a simplicial complex whose topology as a geometric
realization is different from the topology it has in the ambient RN space, here with N = 1
but that can be generalized to any N . This is actually quite well known, see e.g. [15].

We consider C = {0} ∪ {[ 1
r+1 , 1

r ] | r ∈ N∗}.
We denote |C| the topological space of C defined as a geometric realization. The closed

sets of |C| are the sets F such that F ∩S is closed (in R) for all S ∈ C, see [19]. Therefore |C|
has two connected components. We have F =]0, 1] is closed in |C| since F∩[ 1

r+1 , 1
r ] = [ 1

r+1 , 1
r ],

hence is closed for all r. Moreover, F ∩ {0} = ∅ which is also closed in R. We also have that
{0} is closed in |C|, so C can be covered by two disjoint closed sets, it is not connected.

On the other end, at the set level, ≀C≀ is exactly [0, 1]. So within the standard ambient
topology of R, ≀C≀ is connected.

Since they do not have the same number of connected components, the two spaces C as
a geometric realization and with the subset topology cannot be homeomorphic.

A full discussion of these differences could be very interesting. Given that the topologies
are the same when the complex is finite, the question at stake seems to be the passage to the
limit.

B Sperner Panlabellings of the Standard Chromatic Subdivision

In this section, n is fixed. We show how to construct a Sperner panlabelling of the standard
chromatic subdivision. We consider the generic colored simplex (S, χ) where S = (x0, . . . , xn)
and coloring function χ, that could be different from P . We consider labellings of the colored
complex Chr(S, χ).

We show the following combinatorial result about Sperner labellings.

▶ Theorem 38. Let τ be a maximal simplex of Chr(S, χ), then there exists a τ−panlabelling
λ of Chr(S, χ).

We start by some definitions related to proving the above theorem. It is possible to
associate to any simplex σ of Chr(S) a pre-order ≻ on Π that corresponds to the associate
graph Θ(σ): i ≻ j when (i, j) ∈ A(Θ(σ)). We call equivalence classes for Θ(σ), the classes
of the equivalence relation defined by i ≻ j ∧ j ≻ i. It corresponds actually to the strongly
connected components of the directed graph Θ(σ).

We define the process view of a point. This is the color of points in the view V of vertex
(i, V ) of the standard chromatic subdivision.

▶ Definition 39 (Process View). The process view of point x = (χ(x), V ) ∈ V (Chr(S, χ)) is
defined by : Vx = {χ(y)|y ∈ V }.

For τ ∈ Chr(S, χ), we also define the process view relative to τ of a process p, denoted
V τ

p . It is the process view of the point of τ whose color is p. It is linked to pre-order ≻: we
have V τ

p = {q | q ≻ p}.
Let τ be a fixed maximal simplex of Chr(S). We show how to construct a τ−panlabelling.

We choose a permutation φ on Π such that it defines circular permutations on the equivalent
classes of Θ(τ). Let p ∈ Π, given W ⊂ V τ

p such that p ∈ W , we denote by min∗(p, W ) =
min{i ∈ N∗ | φi(p) ∈W}. Note that since φ is a permutation, there exists j > 0 such that
φj(p) = p, and since p ∈ W , the minimum is taken over a non-empty set. Finally we set
φ∗(p, W ) = φmin∗(p,W )(p). This is the first point of W that is in the orbit of p in φ.
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▶ Definition 40. We define λτ : V (Chr(S))→ V (S), for x ∈ V (Chr(S)), we set

λτ (x) =
{

q if ∃q ∈ Vx and q /∈ V τ
χ(x)

φ∗(χ(x), Vx ∩ V τ
χ(x)) otherwise.

Intuitively, for a given vertex of Chr(S) with view V , if the process sees an other process
q than in τ , then it is labelled by this q, otherwise it will choose the first process in the
circular orbit of φ that is in its view.

▶ Proposition 41. The labelling λτ is a τ−panlabelling.

Proof. First we show that it is indeed a Sperner labelling. In both cases of the definition,
λτ (x) belongs to Vx. For x ∈ V (Chr(S)), for σ ⊂ S, x ∈ |σ|, with σ minimum for this
property, means that the presentation of x is Φ(x) = (i, σ) for some xi such that xi ∈ V (σ)
and χ(xi) = i.

Now we show that the only panchromatic simplex is τ . By construction, with x ∈ V (τ),
φ∗(χ(x), Vx) = φ(χ(x)) since in this case Vx = V τ

χ(x). So τ is panchromatic through λτ .

Now we consider σ ̸= τ . We have two possible cases:
1. ∃x ∈ V (σ), q ∈ Vx, q /∈ V τ

χ(x),
2. ∀x ∈ V (σ), Vx ⊆ V τ

χ(x).

We start with the first case, we denote by C the highest, for ≻ in σ, class such there
is x in C satisfying the clause (1). We show that #λτ (C) ∩ C < #C, where # denotes
the cardinal of a set. By definition of C, λ−1

τ (C) ⊆ C. Since λτ (x) /∈ C, this means that
#λτ (C)∩C ̸= #C. By assumption all classes C ′ that are higher than C choose colors in C ′,
so σ is not panchromatic under λτ .

Now, we assume we do not have case (1), this means that ∀x ∈ V (σ), λτ (x) = φ∗(χ(x), Vx).
Since σ ̸= τ , there exists x ∈ V (σ), Vx ⊊ V τ

χ(x). We choose the lowest such x for ≻ in τ . We
consider Cx the class of x in σ. We show that #λτ (Cx) < #Cx.

We denote Cτ
x the class of color χ(x) in τ . First we show that Cx ⊆ Cτ

x . Indeed, assume
there is y ∈ Cx such that y /∈ Cτ

x . Since the view of elements of the same class are the same,
this means that χ(x) ∈ Vy and y would satisfy property 1. A contradiction to the case we
are considering. And this is true for all y ∈ Cx.

Now we show Cx ⊊ Cτ
x . We have Vx ⊊ V τ

χ(x). Let y ∈ V τ
χ(x) \ Vx. If y /∈ Cτ

x , by the same
previous argument, we get a contradiction. Hence y ∈ Cτ

x and therefore Cx ⊊ Cτ
x .

We denote p = φ∗(χ(x), Cτ
x \ Cx). We note p′ = φ−1(p). We have by definition of

φ∗(., Cτ
x \Cx), that p′ ∈ Cx, therefore Cχ−1

|σ
(p′) = Cx. Now we set p′′ = φ∗(p′, Cx). The color

p′′ has at least two predecessors in the labelling: p′ by construction (since x was chosen the
lowest for ≻ then Vχ−1

|σ
(p′) = V τ

p′) and p′′′ = φ−1(p′′) which is not p′ since φ(p′) = p /∈ Cx.
So #λτ (χ−1

|σ (V τ
x )) < #V τ

x , and λτ (σ) ̸= Π. ◀
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