
Certified Round Complexity of Self-Stabilizing
Algorithms
Karine Altisen #

Université Grenoble Alpes, CNRS, Grenoble INP,1 VERIMAG, 38000 Grenoble, France

Pierre Corbineau #

Université Grenoble Alpes, CNRS, Grenoble INP,1 VERIMAG, 38000 Grenoble, France

Stéphane Devismes #

Université de Picardie Jules Verne, MIS, 80039 Amiens, France

Abstract
A proof assistant is an appropriate tool to write sound proofs. The need of such tools in distributed
computing grows over the years due to the scientific progress that leads algorithmic designers to
consider always more difficult problems. In that spirit, the PADEC Coq library has been developed
to certify self-stabilizing algorithms. Efficiency of self-stabilizing algorithms is mainly evaluated
by comparing their stabilization times in rounds, the time unit that is primarily used in the self-
stabilizing area. In this paper, we introduce the notion of rounds in the PADEC library together with
several formal tools to help the certification of the complexity analysis of self-stabilizing algorithms.
We validate our approach by certifying the stabilization time in rounds of the classical Dolev et al’s
self-stabilizing Breadth-first Search spanning tree construction.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Logic and verification

Keywords and phrases Certification, proof assistant, Coq, self-stabilization, round complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.2

Funding This work has been partially funded by the ANR project SkyData (ANR-22-CE25-0008-01).

1 Introduction

Proving the correctness and analyzing the time complexity of distributed algorithms, especially
fault-tolerant ones, is usually complex and subtle due to the many uncertainties we have to
face, e.g., locality of information, asynchrony of communications, faults, topological changes,
just to quote a few. In this context, certification is an appropriate method to increase
confidence of algorithmic designers in the functional and non-functional properties of their
solutions. Indeed, the certification consists in formally writing proofs using a proof assistant,
a software solution such as Coq [40, 7] or Isabel/HOL [34] that allows to develop formal
proofs interactively and mechanically check them.

It is important to note that to guarantee the soundness of proofs, a proof assistant
requires a level of detail that is drastically higher than in paper-and-pencil proofs and
often necessitates a full reengineering of the initial proof. As a consequence, importing
a paper-and-pencil proof into a proof assistant is usually an intricate task. However, to
circumvent this difficulty, many libraries have been developed to facilitate the work of proof
designers, e.g., [8, 5, 1]. Such libraries mainly tackle two orthogonal goals: (1) they help to
write formal proofs to prevent bugs while (2) keeping them readable and understandable for
a non-expert in certification.

1 Institute of Engineering Univ. Grenoble Alpes

© Karine Altisen, Pierre Corbineau, and Stéphane Devismes;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Karine.Altisen@univ-grenoble-alpes.fr
https://orcid.org/0000-0001-8344-1853
mailto:Pierre.Corbineau@univ-grenoble-alpes.fr
https://orcid.org/0000-0001-9267-7593
mailto:Stephane.Devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
https://doi.org/10.4230/LIPIcs.DISC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Certified Round Complexity of Self-Stabilizing Algorithms

PADEC [1] is a library for the certification of distributed self-stabilizing algorithms
written in the atomic-state model [21], the most commonly used model in the self-stabilizing
area. This library is based on the proof assistant Coq. It contains formal definitions and
tools whose suitability has been demonstrated through several relevant use cases from the
literature.

Self-stabilization is a versatile and lightweight fault-tolerant paradigm of distributed
computing [21, 4]. A self-stabilizing algorithm enables a distributed system to resume a
correct behavior within finite time, regardless its initial configuration; and therefore also
after a finite number of transient faults place it in an arbitrary configuration. It is worth
noting that self-stabilization makes no hypotheses on the nature (e.g., memory corruption or
topological changes) or extent of transient faults that could hit the system, and self-stabilizing
systems recover from the effects of those faults in a unified manner. Such versatility comes at
a price, e.g., after transient faults cease, there is a finite period of time, called the stabilization
phase, during which the safety properties of the system are violated. Hence, self-stabilizing
algorithms are mainly compared according to their stabilization time, the worst-case duration
of the stabilization phase.

To evaluate (stabilization) time, three main units are used in the atomic-state model:
moves, (atomic) steps, and rounds. A move corresponds to a local state update at some
process. Actually, it is rather a unit of work since it captures the amount of computations
an algorithm needs. Steps essentially captures the same information as moves: a step is a
global transition in an execution. Rounds [22, 13] evaluate the execution time according to
the speed of the slowest processes. It is a non-atomic unit contrary to the two previous ones.
Essentially, it is the adaptation to the atomic-state model of the notion of time units used in
the message-passing model [39]. Roughly speaking, from a given configuration, a round is
over as soon as all processes get a chance to move at least once.

The concept of steps have been already imported in PADEC [2]. Yet, as for moves,
complexities in steps somehow neglect the parallel aspects of the distributed algorithm they
evaluates. As a matter of fact, worst-case executions in steps are most of the time sequential;
see, e.g., [3, 2]. Perhaps, this is why the rounds are the most commonly used time units in
the self-stabilizing area.

Contribution. In this paper, we enrich the PADEC library with the concept of rounds.
Certifying complexities, especially stabilization times, in rounds is a major concern since it
allows to increase confidence in the soundness of claimed bounds. As a matter of fact, paper-
and-pencil proven complexity bounds are sometimes inaccurate due to implicit assumptions
and a lack of details. For example, the stabilization time of Huang and Chen’s Breadth-first
Search (BFS) spanning tree construction [27] was conjectured to stabilize in O(D) rounds,
where D is the network diameter. Now, this algorithm is actually made of two non-mutually
exclusive rules and the absence of priority on those rules leads to a possible execution that
stabilizes in Ω(n) rounds, where n > D is the number of processes [19].

We add the formal definition of rounds in PADEC together with several companion
formal tools whose aim is to ease the certification by making it as close as possible to the
paper-and-pencil round complexity analyses one can find in the self-stabilizing area. To
achieve this, we provide several certified meta-theorems consisting in general proof patterns
allowing the users to mimic the usual way round complexities are proven. Thus, they can
focus on the true difficulty of the result instead of drowning the proof in tedious details



K. Altisen, P. Corbineau, and S. Devismes 2:3

requested by the proof assistant.
We validate our approach and illustrate the usefulness of our general formal tools by

certifying the stabilization time in rounds of the straightforward translation into the atomic-
state model of Dolev et al’s algorithm [22], which was initially written in the Read/Write
atomicity model. This latter constructs a BFS spanning tree in a rooted bidirectional
connected network. This task is fundamental in the self-stabilizing area since it is widely used
as a basic building block of more complex self-stabilizing solutions; see, e.g., [24, 17]. Notice
that we also certify the self-stabilization of our use case assuming a weakly fair daemon.

Beyond the certification in Coq, our work leads to a better understanding of the intrinsic
nature of non-atomic time units such as rounds.

Related Work. Many formal approaches have been used in the context of distributed
computing. There exist exhaustive tool suites to validate a given distributed algorithm, such
as the TLA+ toolbox [32]. Synthesis [9, 23] aims at automatically constructing algorithms
based on a given specification, a fixed topology, and sometimes a restricted scheduling (e.g.,
synchronous execution); this technique is now often based on SMT-solvers. Verification
using model-checking [41, 31] is also fully automated and requires to fix settings similarly
to synthesis. Both synthesis and model-checking only succeed with small topologies, due
to computation limits. Notice also that model checking has been also successfully used to
prove impossibility results applying on small-scale distributed systems [20]. In contrast, a
proof assistant allows to validate a given algorithm for arbitrary-sized topologies, but is only
semi-automated and may require heavy development for each algorithm, justifying then the
development of helpful libraries.

The correctness of several non fault-tolerant distributed algorithms have been certified;
e.g., Castéran and Filou [10] consider distributed algorithms written in the local model,
and a certified proof of Lamport’s Bakery algorithm is given in [26]. Certification of fault-
tolerant, yet non self-stabilizing, distributed systems has been addressed using various proof
assistants, e.g, in Isabel/HOL [28, 12, 11, 29], TLA+ [16, 18], Coq [38], and Nuprl [36, 37].
This so-called robust fault tolerance approach aims at masking the effect of faults, whereas
self-stabilization is non-masking by essence. Hence, the techniques used for these two
approaches are widely different. In the robust context, many certification results are related
to agreement problems, such as consensus or state-machine replication, in fully connected
networks. Overall, most of these aforementioned works only certify the safety property of the
considered problem [16, 18, 36, 37, 28, 38]. However, both liveness and safety properties are
certified in [12, 11, 29]. To the best of our knowledge, the certification of time complexity of
robust fault-tolerant algorithms has never been addressed. Finally, robust fault tolerance has
been also considered in the context of mobile robot computing: using the PACTOLE Coq
framework, impossibility results for swarm robotics that are subjected to Byzantine faults
have been certified [6, 15]. Once again, to the best of our knowledge, certification of time
complexity has never been addressed in the robot context.

Several frameworks to certify self-stabilizing algorithms using the Coq proof assistant
have been proposed, e.g., [14, 1]. In particular, the PADEC framework has already been
used to certify the exact stabilization time in steps of the first Dijkstra’s self-stabilizing
token ring algorithm [2]. Certification of the correctness (safety and liveness) of the first
Dijkstra’s token ring algorithm has been previously achieved using various proof assistants,
i.e., PVS [35, 25, 30] and Isabel/HOL [33]. Interestingly, Fokkink et al. [25] have certified a
quantitative property; precisely they show that the minimum number of states per node the
algorithm needs to converge in any sequential execution is N − 1, where N is the number of
nodes. However, overall among these works, only PADEC addresses time complexity issues.

DISC 2023



2:4 Certified Round Complexity of Self-Stabilizing Algorithms

Coq Development. The development for this contribution represents about 11,000 lines of
Coq code (loc, as measured by coqwc), precisely #loc: spec = 2,698; proof = 7,892; comments

= 484. The Coq development related to the paper is available as an online browsing docu-
mentation at http://www-verimag.imag.fr/~altisen/PADEC. We encourage the reader to
visit this webpage for a deeper understanding of our work.

Roadmap. The rest of the paper is organized as follows. In Section 2, we present our use
case and the PADEC framework. Section 3 is devoted to the formalization of rounds in
PADEC. In Section 4, we illustrate how to use the general tools given in the previous section
to certify the round complexity of our use case. We make concluding remarks in Section 5.

2 A BFS Spanning Tree Algorithm and its Certification

In this section, we present an algorithm, denoted by BFS, which will be used as the common
use case all along the paper. Algorithm BFS allows us to define self-stabilization, the atomic-
state model, and its semantics. We also use this algorithm as an illustrative example to
introduce the PADEC framework and the method to certify a self-stabilizing algorithm.

2.1 Algorithm Definition and Informal Model
BFS is a self-stabilizing distributed algorithm that computes a BFS spanning tree in an
arbitrary rooted, connected, and bidirectional network. By “bidirectional”, we mean that
each node can both transmit and acquire information from its adjacent nodes in the network
topology, i.e., its neighbors. The algorithm being distributed, these are the only possible
direct communications. “Rooted” indicates that a particular node, called the root and
denoted by r, is distinguished in the network. As in the present case, algorithms for rooted
networks are (usually) semi-anonymous: all nodes have the same code except the root.

Algorithm 1 Algorithm BFS, code for each node p.
Constant Local Input:

p.neighbors ⊆ Channels; p.root ∈ {true, false}
/* p.neighbors as well as other sets below are implemented as lists */

Local Variables:
p.d ∈ N; p.par ∈ Channels

Macros:
Distp = min{q.d + 1, q ∈ p.neighbors}
P ardist returns the first channel in the list {q ∈ p.neighbors, q.d + 1 = p.d}

Action for the root, i.e., for p such that p.root = true

Action Root: if p.d ̸= 0 then p.d := 0

Actions for any non-root node, i.e., for p such that p.root = false
Action CD: if p.d ̸= Distp then p.d := Distp

Action CP : if p.d = Distp and p.par.d + 1 ̸= p.d then p.par := P ardist

Algorithm BFS is written in the atomic-state model, where nodes communicate through
locally shared variables: a node can read its variables and those of its neighbors, but can
only write to its own variables. Every node can access its neighbors (to read its variables)
through (local) channels.

http://www-verimag.imag.fr/~altisen/PADEC


K. Altisen, P. Corbineau, and S. Devismes 2:5

The network is locally defined at each node p using constant inputs. The fact that the
network is rooted is implemented using a constant Boolean input called p.root which is
false for every node except r. The input p.neighbors is the set of channels linking p to its
neighbors. When it is clear from the context, we do not distinguish a neighbor from the
channels to that neighbor.

BFS is the straightforward translation into the atomic-state model of Dolev et al’s
algorithm [22], which was initially written in the Read/Write atomicity model. Its code is
given in Algorithm 1 as a set of three locally-mutually-exclusive actions. Each action is of
the form: if condition then statement. In the following, we say that an action is enabled
when its condition is true. By extension, a node is said to be enabled when at least one of
its actions is enabled.

The semantics of the system is defined as follows. The current system configuration
is given by the current value of all variables at each node. If no node is enabled in the
current configuration, then the configuration is said to be terminal and the execution is over.
Otherwise, a step is performed: a daemon (an oracle that models the asynchronism of the
system) activates a non-empty set of enabled nodes. Each activated node then atomically
executes the statement of its enabled action, leading the system to a new configuration, and
so on and so forth.

Assumptions can be made about the daemon. Here, we assume that the daemon is
weakly fair meaning that every continuously enabled nodes is eventually chosen by the
daemon. More precisely, this means that every enabled node is eventually either activated or
neutralized. A node p is neutralized in the step from configuration γ to configuration γ′ if
p is enabled in γ but not in γ′ while being not activated during that step. Such situation
occurs when a node is made disabled by the activation of some of its neighbors.

In Algorithm BFS, each node p maintains two variables. First, each node p evaluates in p.d

its distance to the root. Then, each non-root node p maintains the pointer p.par to designate
as parent a neighbor that is closest to the root (n.b., r.par is meaningless). Algorithm BFS
is a self-stabilizing BFS spanning tree construction in the sense that, regardless the initial
configuration, it makes the system converge to a terminal configuration where par-variables
describe a BFS spanning tree rooted at r. To that goal, nodes first compute into their
d-variable their distance to the root. The root simply forces the value of r.d to be 0; see
Action Root. Then, the d-variables of other nodes are gradually corrected: every non-root
node p maintains p.d to be the minimum value of the d-variables of its neighbors incremented
by one; see Distp and Action CD. In parallel, each non-root node p chooses as parent a
neighbor q such that q.d = p.d − 1 when p.d is locally correct (i.e., p.d = Distp) but p.par is
not correctly assigned (i.e., p.par.d is not equal to p.d − 1); see Action CP .

2.2 The PADEC Library
PADEC [1] is a general framework for the certification in Coq [7] of self-stabilizing algorithms.
It includes the definition of the atomic-state model, tools for the definition of the algorithms
and their properties, lemmas for common proof patterns, and case studies. The atomic-state
model is carefully defined in PADEC to be as close as possible to the standard usage of the
self-stabilizing community. Moreover, it is made general enough to encompass every usual
hypothesis (e.g., about topology or scheduling). First, a finite network is described using
types Node and Channel, which respectively represent the nodes and the links between nodes.
Then, the distributed algorithm is defined by providing a local algorithm at each node. This
latter is defined using a type State that represents the local state of a node (i.e., the values
of its local variables) and a function run that encodes the local algorithm itself. Function run

computes a new state depending on the current state of the node and that of its neighbors.

DISC 2023



2:6 Certified Round Complexity of Self-Stabilizing Algorithms

The model semantics defines a configuration as a function of type Env := Node → State

that provides the (local) state of each node. An atomic step of the distributed algorithm
is encoded as a binary relation over configurations that checks the conditions given in the
informal model; see Section 2.1. An execution e is a finite or infinite stream of configurations,
which models a maximal sequence of configurations where any two consecutive configurations
are linked by the step relation. “Maximal” means that e is finite if and only if its last
configuration is terminal. We use the coinductive1 type Exec to represent an execution stream
and the coinductive predicate is_exec: Exec → Prop2 to check the above condition.

Daemons are also defined as predicates over executions using Linear Time Logic (LTL)
operators provided in the PADEC library. For example, the fact that an execution is
scheduled according to a weakly fair daemon is expressed by the following property: for every
node n, it is Always (a.k.a. Globally) the case that if n is enabled, then Eventually (a.k.a.
Finally) n is activated or neutralized.

The semantics that uses the step relation is referred to as the relational semantics. As
a way to strengthen the framework, PADEC also defines a functional semantics, which
produces traces (i.e., finite prefixes) of executions; those two semantics are proven to be
equivalent.

Self-stabilization in PADEC is defined according to the usual practice: the property is for-
malized as a predicate self_stabilization SPEC that depends on the predicate SPEC: Exec →
Prop, the specification of the algorithm. An algorithm is self-stabilizing w.r.t. the speci-
fication SPEC if there exists a set of legitimate configurations, encoded by some property
Leg: Env → Prop, that satisfies the following three properties in every execution e:

if e starts in a legitimate configuration (i.e., if Leg (H e) holds, where H e is the first
configuration of e), then e only contains legitimate configurations (Closure);
e eventually reaches a legitimate configuration (Convergence); and
if Leg (H e) holds, then e satisfies the intended specification, i.e., SPEC e holds (Specifica-
tion).

An algorithm is silent when each of its executions eventually reaches a terminal configuration;
in such a case, the set of legitimate configurations is chosen to be the set of terminal
configurations. Again, the closure, convergence, and silent properties use the LTL predicates
Always and Eventually.

2.3 The Formal Algorithm
The formal algorithm is encoded in PADEC as a straightforward faithful translation in Coq
of Algorithm 1. Together with its formal code, we have developed several technical results to
facilitate the formal proof and complexity analysis of Algorithm BFS.

We also had to encode the specification of BFS into PADEC. To that goal, we have
defined the network in PADEC using the PADEC types Node and Channel as well as the
predicate is_channel: Node → Channel → Node → Prop, where is_channel n c n’ means that
a channel c connects a node n to another n’. This network encodes the following graph
relation: R_Net := fun n n’: Node => ∃ c: Channel, is_channel n c n’. Namely, an edge from
Node n to Node n’ exists in the graph if and only if a channel c connects n to n’.

Then, the BFS spanning tree specification states that the algorithm should output a
subgraph T of R_Net such that T is a locally-defined3 BFS spanning tree of R_Net rooted at a
given root node r.

1 Coinduction allows to define and reason about potentially infinite objects.
2 Predicates in Coq have type Prop.
3 In our context, locally-defined means that each non-root node should be endowed with a pointer

designating its parent in T .



K. Altisen, P. Corbineau, and S. Devismes 2:7

To express the rooted BFS spanning tree, we have defined several tools about trees,
distances, and diameter. In particular, dist: Node → Node → nat is a constructive distance
function between nodes and D: nat computes the diameter of the graph. We have also
introduced a few graph properties; in particular the one expressing that a graph is a subgraph
of another one using inclusion of relations. We also needed to introduce the notion of DAG
(Directed Acyclic Graph) and rooted trees. A DAG is a directed graph that contains no
(directed) cycle or equivalently, its transitive closure is not reflexive. A graph is a (directed)
tree rooted at r if it is a DAG such that (1) every node has at most one outgoing edge (the
out-neighbor, if it exists, is the parent of the node), and (2) for every non-root node x, there
exists a path from x to r. Finally, the relation T is defined as a BFS spanning tree rooted at
r of R_Net if T is (1) a spanning tree, i.e., a subgraph of R_Net containing all nodes and a tree
rooted at r, and (2) BFS, i.e., the distance from every node to r is the same in T and R_Net.

Proving the self-stabilization and silence of Algorithm BFS for this specification then
consists in proving that all its executions eventually reach a terminal configuration where
parent pointers describe a BFS spanning tree T rooted at r, provided that R_Net is a connected
and bidirectional graph rooted at r and the daemon is weakly fair.

3 Rounds

3.1 Rounds in the Atomic-state Model

In computer science, the time complexity is the computational measure that describes the
amount of computer time an algorithm uses to solve a problem. Time complexity is estimated
by counting the number of transitions performed by the algorithm, i.e., the number of
operations that are considered to be elementary in the computational model where the time
complexity is evaluated. Of course, such operations are assumed to take a fixed amount of
time to be performed. For example, in sequential algorithmics, it is commonly assumed that
basic operations, such as divisions or multiplications, are elementary (despite their actual
implementations are often not) and so take a constant amount of time.

Here, we are interested in the complexity measure called “round” which is accurately
defined using natural language in the self-stabilizing community but requires mental gym-
nastics since by essence, rounds (i) are not atomic in the computational model they are
considered (i.e., the atomic-state model) and (ii) may be infinite in certain particular cases
which – to some extent – should not be taken into account in the complexity evaluation.

We should underline that there exist other non-atomic complexity measures in the
literature. For example, in message-passing systems, time complexity is often evaluated in
terms of time units [39]. To define this later, it is assumed that the message transmission
time is at most one time unit and the node execution time is zero. Now, the local algorithm
at each node is made of several instructions and may contain loops. In particular, in case
of bug, the node may get stuck in an infinite loop. Overall, this means that in general
the correctness and the complexity analysis should be studied independently, following the
separation of concerns principle: once the correctness has been established, some assumptions
can be made for the purpose of defining the time complexity.

Evaluation of time complexity in rounds requires first to explain how a round is built from
an execution in the atomic-state model (see Subsubsection 3.1.1), and then to define what it
means to achieve a given property within a given amount of rounds (see Subsubsection 3.1.3).

DISC 2023



2:8 Certified Round Complexity of Self-Stabilizing Algorithms

3.1.1 Natural Language Definition
In the atomic-state model, every execution e of a given algorithm is split into rounds as
follows. Let U be the set of enabled nodes in Configuration H e, the first configuration of e.
The first round of e terminates at the first configuration gr where every node in U has been
neutralized or activated. If no such a configuration exists in e, then the round is infinite and
actually consists in the whole (infinite) execution e. Otherwise, the second round of e is the
first round of the suffix of e starting from gr; and so on and so forth.

3.1.2 Infinite Rounds
It is worth noting that the existence of an infinite round is due to a starvation generated by
fairness issues. For example, imagine a situation where the activation of some node x makes
another node y enable and conversely; another node z may stay continuously enabled without
being ever activated by the daemon making the current round infinite. Such a situation
occurs when the daemon is unfair4 and the algorithm is actually unable to enforce fairness
between enabled nodes. In contrast, when the daemon is weakly fair, fairness is guaranteed
by definition. So, in every execution under the weakly fair daemon assumption, every round
is finite. Remark also that when an execution contains an infinite round, it is the last one
and the execution actually only contains a finite number of rounds. Conversely, if every
round of an execution is finite, then the execution contains infinitely many rounds. This is
in particular true for finite execution. In this latter case, infinitely many empty rounds are
defined from the terminal configuration, by definition.

3.1.3 Amount of Rounds to achieve a Property
A round is a unit of time, i.e., it is used to evaluate how many time is required to achieve
a given property. Consider an execution e where a property P: Exec → Prop is eventually
satisfied, i.e., e has a suffix that satisfies P. The goal is then to evaluate in how many rounds
P becomes satisfied. For example, evaluating the stabilization time in rounds of an execution
of some self-stabilizing algorithm consists in counting the number of initiated rounds before
a legitimate configuration is reached in the execution. If P is true at the first configuration of
e, then P is satisfied in 0 round. Otherwise, P is satisfied in i rounds, where i is the index of
the first round of e containing a configuration from which P is true.

As in the present paper, time complexity proofs often cope with upper bounds rather
than exact ones. So, we need to express the fact that an execution requires at most j rounds
to reach P. Let e be an execution containing at least j rounds. We say that e requires at most
j rounds to reach P if e contains a suffix which starts before the end of the j-th round and
satisfies P.

Remark that the assumption on e is necessary to cope with the possible existence of an
infinite round, in which case the total number of rounds in the execution is finite and maybe
smaller than j. However, contrary to more usual cases, where each unit of time is assumed
to be finite, our assumption here is weaker: we only require the existence of at least j rounds,
so e can contain an infinite round as far as it is preceded by at least j − 1 finite rounds.

We naturally extend the definition to all executions by fixing the property to true for each
execution containing less than j rounds. Therefore, to falsify this extended property, one
needs to exhibit an execution in which P is still not satisfied despite j rounds have elapsed.

4 Unfair means that no fairness is imposed to the daemon, except the activation of at least one enabled
node at each step.



K. Altisen, P. Corbineau, and S. Devismes 2:9

3.2 Rounds in PADEC
We now formally express the previous definitions so that they could be encoded in PADEC.

3.2.1 Set of Unsatisfied Nodes
To compute a round, from its beginning to its end (which may never occur), we use the set U,
called the set of unsatisfied nodes, which is computed as follows:

At the beginning of the round (say at Configuration gr), U is initialized to the set of
enabled nodes in gr; using Function UNSAT_init gr.
Then, at each step (say from g to g’), the set is updated by removing the nodes that have
been activated or neutralized during the step; using Function UNSAT_update g’ g.
The current round ends, say at Configuration g", when U becomes empty. In this case, U

is refilled at configuration g" with UNSAT_init g" since the next round begins.

Notice that sets of nodes are represented in PADEC using Boolean functions: Node → bool.
We have defined the PADEC.BoolSet library to provide tools that handle sets of elements, in
particular set operations (such as union, intersection, set difference, . . . ). The library also
provides decidability results in case the set of elements is finite, which is the assumption we
made for Type Node.

3.2.2 Predicate At_most_rounds

Predicate at_most_rounds P n e defines the fact that an execution e requires at most n rounds
to reach a predicate P. It is based on an intermediate predicate, called at_most_rounds_aux, that
has an additional parameter U, a set of unsatisfied nodes. Thus, at_most_rounds is defined as
follows: at_most_rounds P n e := at_most_rounds_aux P (UNSAT_init (H e)) n e, where the set
of unsatisfied nodes (the second parameter) is initialized at the beginning of the computation
of the rounds by UNSAT_init (H e), i.e., the set of enabled nodes in the first configuration
of e.

We now give more details about the predicate at_most_rounds_aux. Recall the informal
definition: “if e contains at least n rounds, then e contains a suffix which starts before the
end of the n-th round and satisfies P”. Of course, we will perform a single traversal of the
execution to check both the “if” and “then” parts of the sentence. Actually, this is the role
of at_most_rounds_aux. Since rounds may be infinite, this predicate is typically coinductive.
The predicate at_most_rounds_aux is evaluated thanks to the following three rules. At each
step of the execution, one of the rules applies.

Rule 1. The first rule, rnd_here, detects that the targeted predicate P is reached, i.e., if
for some execution e, e satisfies P, then at_most_rounds_aux P U n e holds for any values of U

and n (even n = 0). Indeed, since P e holds, e requires at most n rounds to reach P, for any
n ≥ 0.

The two other rules achieve a traversal of the execution and update the set of unsatisfied
nodes meanwhile, according to the informal definition of a round.

Rule 2. The second rule, rnd_in, applies when going through the current round but the
round is not over (i.e., right after its update, the set of unsatisfied nodes is still not empty).
In this case, we decompose the execution as g • e, where g is its first configuration and e

the subsequent suffix. Then, to satisfy at_most_rounds_aux P U n (g • e) – which claims that,
given the current set of unsatisfied nodes U, the execution requires at most n rounds to reach P –

DISC 2023



2:10 Certified Round Complexity of Self-Stabilizing Algorithms

we need that at_most_rounds_aux P U’ n e holds, where n > 0 and U’ := UNSAT_update (H e) g

is not empty, meaning that, given the updated set of unsatisfied nodes U’, the execution e

requires at most n rounds to reach P. Indeed,
the non-empty set U’ is obtained by removing the nodes from U that have been activated
or neutralized during the step from g to H e;
and the rule applies during the current round, so the number of rounds n is positive and
does not change.

Rule 3. The last rule, rnd_chge, applies at the end of a round. So, the number of elapsed
rounds increases by one. In this case, to satisfy at_most_rounds_aux P U (n + 1) (g • e) –
which claims that, given the current set of unsatisfied nodes U, the execution requires at
most n + 1 rounds to reach P – we need that at_most_rounds_aux P U" n e holds, where
U" := UNSAT_init(H e). Indeed, this time, the set of unsatisfied nodes, UNSAT_update (H e) g,
becomes empty during the step from g to H e, so one round has passed. Consequently, the
new set of unsatisfied nodes U" should be filled with the enabled nodes of Configuration H e

and, given U", P should be satisfied within at most n rounds in e (In particular, if n = 0, e

should satisfy P; see Rule 1).

e
P

g0 g1 gkgk+1 gl−1
gl gl+1

Set of enabled
nodes at He = g0
U0= UNSAT_init g0

at_most_rounds P n e =

at_most_rounds_aux U0 n e

U1= UNSAT_update g1 g0

Uk Uk+1= UNSAT_update
gk+1 gk

One step inside
the round
Apply Rule rnd_in

Ul = UNSAT_init gl

End of the round:
UNSAT_update gl gl−1 is empty
Ul is refilled
Apply Rule rnd_chge Beginning of the

n′ round, n′ ≤ n

P is reached in the
n′-th round
Apply Rule rnd_here
(the computation of
at_most_rounds

ends here)

Figure 1 Round principle: evaluation of at_most_rounds using the rules of at_most_rounds_aux.

Illustration. Figure 1 shows how the rules of at_most_rounds_aux apply to evaluate
at_most_rounds. The horizontal line represents the execution e = g0 g1 ... starting from
g0 = H e. First, to evaluate Predicate at_most_rounds P n e, the set of unsatisfied nodes U0

is initialized to UNSAT_init g0; see the leftmost part of the figure. Then, along the steps
inside the round, Rule rnd_in is applied and the set of unsatisfied nodes is monotonically
nonincreasing. Moreover, sometimes its cardinal decreases; see e.g., the step from gk to gk+1

where Uk+1 := UNSAT_update gk+1 gk. At the end of the round, i.e., at Configuration gl, Rule
rnd_chge applies since the update of the set of unsatisfied nodes using UNSAT_update gl gl−1

produces an empty set. The set of unsatisfied nodes is then refilled using Ul := UNSAT_init gl.
Finally, P becomes satisfied during the n’-th round with n’≤n. When it happens, Rule
rnd_here applies: the evaluation stops and at_most_rounds P n e is satisfied.

Remark that if we remove the rightmost part of the figure, i.e., if P is never satisfied along
e, Rule rnd_here is never applied. In this case, the evaluation never stops, which is allowed
since at_most_rounds is coinductive. Note also that the other rules may never be applied.
Rule rnd_chge may never be applied in case the first (and last) round is infinite. Rule rnd_in

is never applied when the execution is synchronous, i.e., at each step all enabled nodes are
activated.



K. Altisen, P. Corbineau, and S. Devismes 2:11

Straightforward properties of at_most_rounds. We can prove that the predicate has several
basic, yet interesting and useful, properties, e.g.:

If at_most_rounds P n e holds, then for every n′ ≥ n, at_most_rounds P n′ e.
If Predicate P1 implies Predicate P2 all along the execution e, then at_most_rounds P1 n e

implies at_most_rounds P2 n e.
No need to detail the proofs of these properties: they are simple coinductive proofs that
directly use the definition of at_most_rounds_aux.

3.2.3 Functional Definition (Computation)
We also provide a functional definition, denoted by count_rounds P e, which returns in how
many rounds of e the predicate P is reached (for the first time). Obviously, this function
requires assumptions which enable its actual computation (precisely, which guarantees the
computation eventually stops): it requires the assumption that e eventually reaches P, this
assumption being expressed using a property that actually allows the computation to detect
whether P is satisfied. This means that the reachability of P is encoded by an assumption
– denoted by FP – that can be used in the function to compute its result. For FP, we
use a computable inductive predicate which is satisfied whenever the execution actually
reaches P. Then, count_rounds is defined as a fixpoint using a structural induction over the
FP assumption. In this function, we deal separately with the case where zero is returned:
when the assumption FP claims that P is (immediately) reached, count_rounds P e returns 0.
Otherwise, it returns the result computed by an auxiliary inductive function that requires
one more parameter: the accumulator parameter that encodes the set of unsatisfied nodes.
This auxiliary function computes the successive values of the set of unsatisfied nodes (as
explained in Subsubsection 3.2.1) until P is reached. We have two cases:

Either the assumption FP claims that P is reached, hence the auxiliary function returns
one round (to count the current round).
Or the set of unsatisfied nodes is refreshed by removing both activated and neutralized
nodes. Moreover, if this new set is empty, the function starts a new round: it adds one to
the current result and resets the set of unsatisfied nodes with the enabled nodes of the
current configuration.

As a matter of fact, we can prove that the functional and relational definitions are related as
expected. Namely, for every execution e, every number of rounds n, and every predicate P,
we have

at_most_rounds P n e ←→ exists n′, n′ ≤ n ∧ count_rounds P e = n′.
Note that this latter property is an equivalence and implies that if count_rounds P e = n′, then
∀ n ≥ n′, at_most_rounds P n e. Again, there is no need to detail the proof of this property
as it is directly obtained by induction on the FP assumption.

3.2.4 Induction Scheme
During the development of this round library, we paid a particular attention on facilitating,
as much as possible, the use of the round predicate in users’ own proofs. To do so, we have
developed tools to avoid coinductive proofs which are particularly tricky in Coq. Actually,
the fact that an execution requires at most n rounds to reach P is usually proven using
induction on n. In that spirit, we have developed an induction scheme that follows the
classical way inductions on rounds are written in paper-and-pencil proofs.

The particular induction scheme we propose is as follows: assume that we want to prove
that an execution requires at most B rounds to reach P. Assume also that we have a family
of predicate Pn (indexed on natural numbers n) such that PB implies P. We can prove the
following lemma.

DISC 2023



2:12 Certified Round Complexity of Self-Stabilizing Algorithms

▶ Lemma 1 (Lemma schema_round_induction). Assume an execution e satisfies the following
two properties:

e satisfies P0 (Base Case).
All along the execution e, and for every value n < B, if e has a suffix c satisfying Pn, then
c requires at most one round to reach Pn+1, i.e., at_most_rounds Pn+1 1 c holds (Induction
Step).

Then, e requires at most B rounds to reach PB and so P.

The proof of this induction schema is shown by induction on the parameter n. The base
case is immediate from the first property on P0 (Base Case). The induction step of the proof
uses the second property and is a direct application of the next lemma.

▶ Lemma 2 (Lemma schema_round_step). Let e be an execution and n be a number of rounds.
Let P1 and P2 be two predicates over executions. Assume
(A) e requires at most n rounds to reach P1 and
(B) all along the execution e, if e has a suffix c satisfying P1, then c requires at most one

round to reach P2, i.e., at_most_rounds P2 1 c holds.
Then, e requires at most n + 1 rounds to reach P2.

e

e

e

c

c

c

c"

c"c’

c’

P1

P2

P2

≤ n rounds

Assumption A
U
The round may not be over

Assumption B

Uinit U’ empty or not

Proof Goal

U
U becomes empty
end of the n′-th round, with n′ ≤ n

Figure 2 Proof principle of Lemma schema_round_step.

The key point to prove Lemma schema_round_step (and the fact that makes the result
non-obvious) is that the set of unsatisfied nodes may change from one assumption to the
other. Indeed (see Figure 2), using Assumption (A), e eventually reaches P1, i.e., there is some
suffix c of e where P1 c holds. Let U be the current set of unsatisfied nodes when it happens
(for the first time). Using Assumption (B), we know that P1 c holds. Hence, c requires at
most 1 round to reach P2. Now, the computation of this assertion uses UNSAT_init (H c) as
set of unsatisfied nodes instead of U. To obtain that e requires at most one more round to
reach P2 from its beginning, we need that c requires at most 1 round to reach P2 using U and
not UNSAT_init (H c). Obviously, there is no reason for U to be equal to UNSAT_init (H c).
Nevertheless, we can compare them: since unsatisfied nodes are enabled, U is included into
UNSAT_init (H c).



K. Altisen, P. Corbineau, and S. Devismes 2:13

Before presenting an overview of the proof of Lemma schema_round_step, we have two
remarks.
▶ Remark 1. Let U and U’ be two sets of unsatisfied nodes such that U ⊆ U’. If e requires
at most one round to reach P with the current set U, then this is also true with the set U’.
Namely, if at_most_rounds_aux P U 1 e, then at_most_rounds_aux P U’ 1 e.

Remark 1 is a fairly (easy to prove) intuitive property, since we can prove that the
inclusion between the two families of sets – built from U and U’, respectively – remains; see
Figure 3.
▶ Remark 2. Using the same notations as above, if U ⊆ U’ ⊆ UNSAT_init (H e) and
at_most_rounds_aux P U’ 1 e holds, then at_most_rounds_aux P U 2 e also holds.

Remark 1
e P

U

U’

Inclusion between the two sets remains.

Remark 2
e P

U

U’

U has not yet been emptied before reaching P.

U

U’

U becomes empty

Figure 3 Principles for Remarks 1 and 2.

Proof Overview of Remark 2. (See the sketch given in Figure 3 for an illustration.) Starting
the computation of rounds at e with U’:

Either U does not become empty (and so neither do U’) before reaching P, hence using U

as set of unsatisfied nodes, P is reached within at most one round of e.
Or U becomes empty before reaching P, say at Configuration gc. So, using U as set of
unsatisfied nodes, one round of e is over and U is refilled. Let Uinit be the value of
U after being refilled at gc. Let U’c be the value of U’ at gc. As U’ was included in
UNSAT_init (H e), it still contains enabled nodes only. So, U’c is included into Uinit. We
can then apply Remark 1: since P is reached from gc using U’c in at most one round, this
is also the case from gc using Uinit. Overall, this means that using U as set of unsatisfied
nodes, P is reached within at most two rounds in e. ◀

We can now conclude with the proof of Lemma schema_round_step.

Proof Overview of Lemma schema_round_step. The proof of Lemma schema_round_step uses
coinduction. For the sake of explanation, we summarize the proof using the following two
scenarios.

DISC 2023



2:14 Certified Round Complexity of Self-Stabilizing Algorithms

First scenario. if e contains less than n + 1 rounds, then the result immediately holds.

Second scenario. Assume e contains at least n + 1 rounds (n.b., the (n + 1)-th may be
infinite). Then, e contains at least n rounds and the first n rounds of e are finite. By
Assumption (A), e actually reaches P1 within at most n rounds. So, e consumes at most n

rounds to reach P1 at the first configuration of some suffix c. Let U be the set of unsatisfied
nodes at H c.

Assumption (B) ensures that in c, P2 is actually reached in at most 1 round with set of
unsatisfied nodes UNSAT_init (H c). Then, we have two cases. If the nth round terminates
at H c, U = UNSAT_init (H c) and we are done. Otherwise, at most n′ < n rounds have
terminated at Configuration H c. Now, since U only contains nodes that are enabled in H c,
we have U ⊆ UNSAT_init (H c) and we can apply Remark 2 with U’ = UNSAT_init (H c). So,
with U as set of unsatisfied nodes, P2 is reached within at most two more rounds, and we are
done. ◀

4 Round Complexity of the Algorithm

We now illustrate how to use the previous tools by sketching the certification of the stabiliza-
tion time in rounds of Algorithm BFS. Precisely, we show that BFS requires at most D + 2
rounds to reach a terminal configuration starting from an arbitrary configuration. The full
certified proof is detailed in Appendix B. Here, we focus on generic formal tools and show
how to apply them. In particular, through out the section, we will introduce two additional
useful general tools.

Another goal of this section is to convince the reader that our formalization allows to
write certified proofs that are close to the standard usages in the self-stabilizing community.
In that spirit, the Coq proof outline given below broadly follows the approach proposed
in [4].

The proof is split into the following two main parts. First, we prove (Part A) that BFS
requires at most D+1 rounds to reach a configuration from which the d-variables are correctly
assigned forever, i.e., for every node p, p.d is (forever) equal to the distance from p to the
root. Then, we prove that once d-variables are correctly assigned forever, BFS requires at
most one more round to reach a terminal configuration (Part B).

To prove Part A (and according to [4]) we use the induction scheme given in Lemma
schema_round_induction with the predicate Pk e := Always (check_dist k) e and the value
B := D + 1, where Predicate check_dist k e holds iff every node p satisfies the condition
CD k e p. This latter condition checks that (dist p r < k ∧ p.d = dist p r) ∨ (dist p r ≥ k

∧ p.d ≥ k) holds in H e, the first configuration of the execution e.
To apply Lemma schema_round_induction, we have to establish the assumptions of this

lemma, namely the Base Case and the Induction Step. To ease this proof, we have introduced
two other generic results in the PADEC Round library. The goal of the first one is to simplify
the proof when dealing with local predicates such as check_dist and Pk. Actually, Pk checks
properties that are local at each node. Precisely, it checks that every node p satisfies the
local property CD k e p all along e. For such a local property Q: Node → Exec → Prop, we
can prove that

at_most_rounds (Always (fun e’ => ∀p, Q p e’)) k e ←→
∀p, at_most_rounds (Always (Q p)) k e

Namely, the universal quantifier over the nodes can be shifted to the outer border of the
formula, which is easier to handle, since the proof can now be done using a single node. This
result, proven by a simple coinduction, is now provided in the PADEC Round library.



K. Altisen, P. Corbineau, and S. Devismes 2:15

The second generic result is the following proof scheme:

▶ Lemma 3 (Lemma at_most_rounds_scheme_per_node). Let P: Node → Exec → Prop be a
predicate and p be a node. If

either (P p e) holds when p is disabled in (H e)

or (P p) becomes true whenever p is activated or neutralized during some step of e,
then at most one round is required to reach a configuration where (P p) holds.

Indeed, either the node p is disabled at the beginning of the round and then P p holds
(due to the first assumption); or p is enabled and so belongs to the set of unsatisfied nodes.
Now, as this set is empty at the end of the round, the node has been removed because it
has been activated or neutralized meanwhile and so P p has become true during the round
(second assumption). Overall, we obtain that P p requires at most one round to be reached.

Using these tools, we have obtained Part A by proving that for every execution e,
the Base Case holds, namely, the property P0 e := Always (check_dist 0) e is satisfied;
and the Induction Step also holds, i.e., for every value of k < D + 1, if e has a suffix c

satisfying Pk, then c requires at most one round to reach Pk+1.
The detailed proof (which is based on a combinatorial study of possible values for the
d-variables) is given in Appendix B. Notice however that, by successfully applying our generic
proof schemes, we were able to make the certification of the main proof simpler and really
close to the one in [4].

Part B and Final Result. Part A proves that Algorithm BFS requires at most D + 1
rounds to reach a configuration from which Always (check_dist (D + 1)) e is achieved (i.e.,
the d-variables are correctly assigned forever). After that, at most one more round is required
to reach a configuration where the par-variables are correctly set and so to achieve the silence.
The proof (Part B) uses the same mechanism as before and mainly relies on the following
two simple facts:

As check_dist (D + 1) e holds forever, the d-variables no more change.
Furthermore, when check_dist (D + 1) e holds, a node can be activated only once (using
Action CP ): the action, and so the node too, is then disabled forever.

Afterwards, we have merged Parts A and B using Lemma schema_round_step to conclude
that every execution e requires at most D + 2 rounds to reach a terminal configuration,
concluding then the proof of the round complexity for Algorithm BFS.

To complete this result, we have also proven that Algorithm BFS is silent and self-
stabilizing w.r.t. its specification. For the convergence property, we can easily show, using
the definitions of weakly_fair and at_most_rounds, that if an execution has been scheduled
using a weakly fair daemon and requires at most B rounds to converge to some property
P, then the execution eventually reaches P, i.e., the execution converges to P within finite
time. Thus, we can deduce that under the weakly fair daemon, Algorithm BFS converges
to a legitimate configuration. The rest of the proof, i.e., Algorithm BFS satisfies both the
specification and closure part of the self-stabilization property, is proven by induction; see
Appendix A for details.

Overall, we have certified the following theorem:

▶ Theorem 4. Let G be a connected bidirectional network rooted at some node r . Under a
weakly fair daemon, BFS is a silent self-stabilizing BFS spanning tree construction whose
stabilization time is at most D + 2 rounds, where D is the diameter of G.

DISC 2023



2:16 Certified Round Complexity of Self-Stabilizing Algorithms

5 Conclusion

Certification is an important tool to increase confidence of algorithmic designers in the
correctness of their solutions. This is even more important in fault-tolerant distributed
algorithmic, where models, algorithms, and intended specifications are most of the time both
complex and subtle. In this context, the PADEC library has been proposed to help the
certification (in Coq) of self-stabilizing distributed algorithms written in the atomic-state
model. This library encompasses all necessary formal tools to establish the correctness
(especially the convergence) and the time complexity of monolithic, as well as composite, self-
stabilizing algorithms. The usefulness of all these formal tools has been validated thanks to
many non-trivial use cases from the literature. The last contribution, presented here, has been
to import in PADEC the most commonly used time complexity measure in the self-stabilizing
area: the rounds. The main encountered difficulties were due to the non-atomic nature of
the rounds that made them not compositional. The definition of rounds has been provided
in PADEC together with many formal companion tools, e.g., Lemmas schema_round_induction,
schema_round_step, at_most_rounds_scheme_per_node. The suitability of these general tools has
been demonstrated with an appropriate use case from the literature: we have certified the
stabilization time of Dolev et al’s algorithm [22]. Although the intrinsic nature of rounds
implies a coinductive definition, the companion tools provided in the library avoid the user
to deal with coinductive proofs, which may be tricky in Coq. Our use case is convincing in
this sense since applying the companion tools allows to prevent the use of coinduction in its
certified proof. Actually, the only (rather simple) proofs requiring coinduction are due to the
Always (check_dist k) property which is itself coinductive.

References

1 Karine Altisen, Pierre Corbineau, and Stéphane Devismes. A framework for certified self-
stabilization. Log. Methods Comput. Sci., 13(4), 2017. doi:10.23638/LMCS-13(4:14)2017.

2 Karine Altisen, Pierre Corbineau, and Stéphane Devismes. Certification of an exact worst-case
self-stabilization time. In ICDCN ’21: International Conference on Distributed Computing
and Networking, Virtual Event, Nara, Japan, January 5-8, 2021, pages 46–55. ACM, 2021.
doi:10.1145/3427796.3427832.

3 Karine Altisen, Alain Cournier, Stéphane Devismes, Anaïs Durand, and Franck Petit. Self-
stabilizing leader election in polynomial steps. Inf. Comput., 254:330–366, 2017. doi:10.1016/
j.ic.2016.09.002.

4 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed
Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2019. doi:10.2200/S00908ED1V01Y201903DCT015.

5 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Certified
impossibility results for byzantine-tolerant mobile robots. In Teruo Higashino, Yoshiaki
Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru, and Masafumi Yamashita, editors,
Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings, volume 8255 of Lecture Notes in
Computer Science, pages 178–190. Springer, 2013. doi:10.1007/978-3-319-03089-0_13.

6 Cédric Auger, Zohir Bouzid, Pierre Courtieu, Sébastien Tixeuil, and Xavier Urbain. Certified
impossibility results for byzantine-tolerant mobile robots. In Teruo Higashino, Yoshiaki
Katayama, Toshimitsu Masuzawa, Maria Potop-Butucaru, and Masafumi Yamashita, editors,
Stabilization, Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings, volume 8255 of Lecture Notes in
Computer Science, pages 178–190. Springer, 2013.

https://doi.org/10.23638/LMCS-13(4:14)2017
https://doi.org/10.1145/3427796.3427832
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1007/978-3-319-03089-0_13


K. Altisen, P. Corbineau, and S. Devismes 2:17

7 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

8 Frédéric Blanqui and Adam Koprowski. Color: a coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Mathematical
Structures in Computer Science, 21(4):827–859, 2011. doi:10.1017/S0960129511000120.

9 Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis of self-stabilising and
byzantine-resilient distributed systems. In Computer Aided Verification - 28th International
Conference, CAV 2016, pages 157–176, 2016.

10 Pierre Castéran and Vincent Filou. Tasks, types and tactics for local computation systems.
Stud. Inform. Univ., 9(1):39–86, 2011.

11 Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. Formal verification of consensus
algorithms tolerating malicious faults. In Xavier Défago, Franck Petit, and Vincent Villain,
editors, Stabilization, Safety, and Security of Distributed Systems, pages 120–134, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

12 Bernadette Charron-Bost and Stephan Merz. Formal verification of a consensus algorithm in
the heard-of model. Int. J. Software and Informatics, 3(2-3):273–303, 2009.

13 Alain Cournier, Ajoy K. Datta, Franck Petit, and Vincent Villain. Snap-Stabilizing PIF
Algorithm in Arbitrary Networks. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pages 199–206, 2002.

14 Pierre Courtieu. Proving self-stabilization with a proof assistant. In 16th International Parallel
and Distributed Processing Symposium (IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL,
USA, CD-ROM/Abstracts Proceedings, volume 1, page 8pp. IEEE Computer Society, 2002.

15 Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Impossibility of gathering,
a certification. Inf. Process. Lett., 115(3):447–452, 2015.

16 Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and Hernán
Vanzetto. TLA + proofs. In FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, pages 147–154, 2012.

17 Ajoy Kumar Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, and Yvan
Rivierre. Competitive self-stabilizing k-clustering. Theor. Comput. Sci., 626:110–133, 2016.
doi:10.1016/j.tcs.2016.02.010.

18 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Leslie Lamport. Adaptive register
allocation with a linear number of registers. In Distributed Computing - 27th International
Symposium, DISC 2013, 2013.

19 Stéphane Devismes and Colette Johnen. Silent self-stabilizing BFS tree algorithms revisited.
J. Parallel Distributed Comput., 97:11–23, 2016. doi:10.1016/j.jpdc.2016.06.003.

20 Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien Tixeuil.
Optimal grid exploration by asynchronous oblivious robots. In Stabilization, Safety, and
Security of Distributed Systems - 14th International Symposium, SSS 2012, Toronto, Canada,
October 1-4, 2012. Proceedings, volume 7596 of Lecture Notes in Computer Science, pages
64–76. Springer, 2012.

21 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

22 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuming
only Read/Write atomicity. Distributed Computing, 7(1):3–16, 1993.

23 Fathiyeh Faghih, Borzoo Bonakdarpour, Sébastien Tixeuil, and Sandeep S. Kulkarni.
Specification-based synthesis of distributed self-stabilizing protocols. In Formal Techniques for
Distributed Objects, Components, and Systems - 36th IFIP WG 6.1 International Conference,
FORTE 2016, 2016.

24 Lin Fei, Sun Yong, Ding Hong, and Ren Yizhi. Self stabilizing distributed transactional
memory model and algorithms. Journal of Computer Research and Development, 51(9):2046,
2014.

DISC 2023

https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1145/361179.361202


2:18 Certified Round Complexity of Self-Stabilizing Algorithms

25 Wan Fokkink, Jaap-Henk Hoepman, and Jun Pang. A note on k-state self-stabilization in a
ring with k=n. Nordic Journal of Computing, 12(1):18–26, 2005.

26 Wim H. Hesselink. Mechanical verification of lamport’s bakery algorithm. Science of Computer
Programming, 78(9):1622–1638, 2013.

27 Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters, 41(2):109–117, 1992.

28 Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive of Formal
Proofs, 2005, 2005.

29 Philipp Küfner, Uwe Nestmann, and Christina Rickmann. Formal verification of distributed
algorithms - from pseudo code to checked proofs. In Jos C. M. Baeten, Thomas Ball, and
Frank S. de Boer, editors, Theoretical Computer Science - 7th IFIP TC 1/WG 2.2 International
Conference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings,
volume 7604 of Lecture Notes in Computer Science, pages 209–224, 2012.

30 S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based mechanical
verification of fault-tolerant programs. In 19th IEEE International Conference on Distributed
Computing Systems, pages 33–40, 1999.

31 Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic verification of herman’s
self-stabilisation algorithm. Form. Asp. Comput., 24(4–6):661–670, July 2012. doi:10.1007/
s00165-012-0227-6.

32 Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

33 Stephan Merz. On the verification of a self-stabilizing algorithm. Technical report, University
of Munich, 1998.

34 Lawrence C. Paulson. Natural deduction as higher-order resolution. J. Log. Program., 3(3):237–
258, 1986. doi:10.1016/0743-1066(86)90015-4.

35 S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm. In
International Conference on Programming Concepts and Methods (PROCOMET ’98) 8–12
June 1998, Shelter Island, New York, USA, pages 424–443, Boston, MA, 1998. Springer US.

36 Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Formal specification,
verification, and implementation of fault-tolerant systems using eventml. ECEASST, 72, 2015.

37 Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Eventml: Specifica-
tion, verification, and implementation of crash-tolerant state machine replication systems. Sci.
Comput. Program., 148:26–48, 2017.

38 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. Velisarios:
Byzantine fault-tolerant protocols powered by coq. In Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, pages 619–650, 2018.

39 Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2 edition,
2000. doi:10.1017/CBO9781139168724.

40 The Coq Development Team. The Coq Proof Assistant Documentation, June 2012. URL:
http://coq.inria.fr/refman/.

41 Tatsuhiro Tsuchiya, Shin’ichi Nagano, Rohayu Bt Paidi, and Tohru Kikuno. Symbolic model
checking for self-stabilizing algorithms. IEEE TPDS, 12(1):81–95, 2001. doi:10.1109/71.
899941.

A Specification and Closure of Algorithm BFS

Using the definitions given in Section 2.2, we now sketch the proof of the specification part
of the self-stabilization of Algorithm BFS. Precisely, we have to prove that the specification
of the algorithm is satisfied in any terminal configuration, i.e., the par-variables of non-root
nodes shape a BFS tree rooted at r that spans the graph R_Net. The proof actually follows
the one given in [4] for a bounded-memory version of BFS.

https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1007/s00165-012-0227-6
https://doi.org/10.1016/0743-1066(86)90015-4
https://doi.org/10.1017/CBO9781139168724
http://coq.inria.fr/refman/
https://doi.org/10.1109/71.899941
https://doi.org/10.1109/71.899941


K. Altisen, P. Corbineau, and S. Devismes 2:19

Consider a terminal configuration g. For a node p, g p provides the local state of p in
configuration g. Furthermore, let d (g p) (resp. par (g p)) be the value of p.d (resp. p.par)
in g. The proof begins by establishing that in g, d-variables are not underestimated:

∀ p, d (g p) ≥ dist p r

The proof is a simple case analysis; see below.

Proof Overview. Let p be a node. If we have d (g p) ≥ dist p r then we are done. Oth-
erwise, dist p r > d (g p) and pick a node pmin satisfying this inequality with the smallest
d-value (we can access pmin by filtering the list of all nodes with the ad hoc criteria). Then,
we can prove that every neighbor q of pmin satisfies d (g pmin) < 1 + d (g q)).

Indeed, if dist q r ≤ d (g q), then we are done since dist pmin r ≤ 1 + dist q r (by
definition) and d (g pmin) < dist pmin r (by hypothesis).
Otherwise, dist q r > d (g q). But, in this case, d (g pmin) ≤ d (g q) since pmin is a
node with minimum d-value among the nodes satisfying the inequality, and we are done.

As pmin is not the root (indeed dist pmin r > d (g pmin) ≥ 0), Action CD is enabled at
pmin: indeed, pmin.d is not equal to q.d + 1 for some neighbor q, since for any of them, we
have proved that d (g pmin) < 1 + d (g q). Overall, this proves that pmin is enabled, which
contradicts the fact that g is terminal. ◀

We can now show that for every node p, its d-variable in g (i.e., d(g p)) is actually equal
to its distance to the root (i.e., dist g p).

Proof Overview. The proof is done by induction on the distance from nodes to the root.
Base case: Let p be a node such that dist p r = 0. Then, p is the root and as r is disabled,
we have r .d = 0.
Step case: Let d ≥ 0. Assume the property is satisfied by every node at distance d

from the root. Let q be a node at distance d + 1 from the root. Obviously, q is not
the root. Then, by definition of dist, q has a neighbor, say p, at distance d from the
root. By induction assumption, d (g p) = d. As q is disabled, we just have to prove that
Distq = d + 1, i.e., d + 1 is the minimum value in the list { x.d + 1, x in q.neighbors }.
Now, p is a neighbor of q that satisfies d + 1 = d (g p) + 1. Moreover, for every other
neighbor p’ of q, we have d + 1 ≤ d (g p’) + 1. Indeed, by definition, p’ is at distance
d, d + 1, or d + 2 from the root and we have seen that d (g p’) is not underestimated,
i.e., d (g p’) ≥ dist p’ r ≥ d. Hence, we obtain that Distq = d + 1 = d (g q), and we
are done. ◀

Using Action CP and the fact that d-variables are correctly evaluated in the terminal
configuration g, we now show that the par-variables define a BFS spanning tree rooted at
r in g. To that goal, we first define Par_Rel g n n’ as the relation describing the spanning
tree in g: Par_Rel g n n’ holds iff the node n is not the root and par (g n) is the channel
that leads to the node n’. By definition of the algorithm and since g is terminal, for every
non-root node p, Par_Rel g p q holds for some node q such that (p,q) is an edge in R_Net and
d (g p) = d (g q) + 1 (remember that these values are also the distances from the nodes to
r, hence dist p r = dist q r + 1). Therefore, we have the following properties:

Par_Rel g is a subgraph of R_Net.
r has no link to some other node using Par_Rel g.
Par_Rel g does not contain any cycle, hence it is a DAG.
Indeed, along any path of Par_Rel g, the distances from nodes to the root decreases.
By definition of Par_Rel g, every node has a single parent.

DISC 2023



2:20 Certified Round Complexity of Self-Stabilizing Algorithms

There is a path from any node p to the root in Par_Rel g and the length of this path is
exactly dist p r.
Notice that this latter property requires to explicitly build the witness path. So, we prove
that for every node at distance d from the root, there exists a path of length d from this
node to root in Par_Rel g. The proof is done by induction on d.

The base case (for root node) is trivial.
Assume that the property holds for some d ≥ 0 and consider a node p at distance
d + 1 from the root. The parent of p using Par_Rel g, say q, is at distance d to the root.
Hence, we can apply the induction hypothesis to q and then add the edge from p to q

to the path to obtain a path from p to r which exists in Par_Rel g.
Based on the previous properties, Par_Rel g is BFS spanning tree rooted at r. In particular,
the distances to the root in Par_Rel g are exactly those in R_Net. To show this latter fact, we
use the last property (there exists a path from every node to root in Par_Rel g whose length
is the distance to the root) and the fact that the path between any two nodes is unique in a
tree (Path_Rel g is a tree since it is a DAG with single parent links at each non-root nodes).

Hence the specification of the problem holds in any terminal configuration: the relation
Par_Rel g (built from the variables computed at each node) is a BFS spanning tree of R_Net

rooted at r. This concludes the specification part of the proof of self-stabilization. Indeed,
recall that the set of legitimate configurations is actually the set of terminal configurations.

Finally, since terminal configurations are closed by definition, the closure part of the
proof is trivially satisfied.

B Detailed Proof of the Round Complexity of Algorithm BFS

We detail here the proof that Algorithm BFS requires at most D + 2 rounds to reach a
terminal configuration, starting from an arbitrary configuration. Under the weakly fair
daemon, this property implies convergence. Hence, thanks to results of Appendix A, we can
conclude that BFS is self-stabilizing under the weakly fair daemon and its stabilization time
is at most D + 2 rounds.

The proof is split into the following two main parts:

Part A: First, we prove that BFS requires at most D + 1 rounds to reach a configuration
from which the d-variables are correctly assigned forever, i.e., for every node p, p.d is forever
equal to the distance from p to the root (Theorem BFS_rounds_CD in the certified proof).

Part B: Then, we prove that once d-variables are correctly assigned forever, BFS requires
at most one more round to reach a terminal configuration (Lemma last_round_action_CP in
the certified proof).

B.1 Part A
First, we recall the definition of Predicate check_dist k e, where k is a natural number and e

is an execution. Following [4], this predicate holds iff for every node p, one of the following
two conditions is satisfied in H e:
(a) either CD_a k e p := dist p r < k ∧ p.d = dist p r,
(b) or CD_b k e p := dist p r ≥ k ∧ p.d ≥ k.
Then, we have the following straightforward, yet useful, properties:
1. By definition, check_dist 0 e holds, for every execution e.



K. Altisen, P. Corbineau, and S. Devismes 2:21

2. check_dist (D + 1) e holds iff the d-variables in H e are correctly assigned.
Indeed, Case (b) of the definition does not apply in this case.

3. We can easily prove, by checking the rules of the algorithm, that for every execution
e and every k, check_dist k e is suffix-closed, meaning that once it is satisfied, it holds
forever in e.
More formally, check_dist k e implies that check_dist k c holds for every suffix c of e.

We now use the induction scheme given in Lemma schema_round_induction with the predicate
Pk e := Always (check_dist k) e and the value B := D + 1 to prove that any execution e re-
quires at most D+1 rounds to reach a configuration where PB := Always (check_dist(D + 1)) e

holds, i.e., a configuration from which the d-variables are forever correctly assigned. To
apply Lemma schema_round_induction, we have to establish the assumptions of this lemma,
namely the Base Case and the Induction Step. We now consider an arbitrary execution e

and detail the proof of these two goals.

B.1.1 Base Case
The base case, P0 := Always (check_dist 0), is trivial: indeed, check_dist 0 e holds, by
Property (1), and then we can conclude, by Property (3).

B.1.2 Induction Step
We have to prove that all along the execution e, and for every value of k < D + 1, if e has a
suffix c satisfying Pk, then c requires at most one round to reach Pk+1.

First, remark that Pk actually checks local properties at each node since it checks that
for every node p, p satisfies all along e the local property CD_a k e ∨ CD_b k e. We use the
generic tool to transform the predicate and place the universal quantifier over nodes at the
outer border of the formula: we obtain that for any execution e, the fact that e achieves
Pk in at most n rounds is equivalent to the fact that for every node p, e reaches in at most
n rounds a configuration from which the local property CD_a k e p ∨ CD_b k e p is satisfied
forever. We now consider any node p and split the proof depending on whether or not k is
null. In turns, each case is subdivided in two subcases that separately prove CD_a (k + 1) or
CD_b (k + 1) for p.

Case k = 0. We have to prove that at most one more round is required so that check_dist 1

becomes true. Then again, Property (3) allows to conclude.
(a) Proof for CD_a 1. Here, by definition of CD_a, p can be nothing but the root since the

only node at distance less than one from the root is the root itself. Hence, we must
prove that at most one round is required so that r .d becomes 0. To that goal, we apply
Lemma at_most_rounds_scheme_per_node and conclude that at most one round is required
so that the d-variable of the root becomes 0. Indeed, the assumptions of the lemma are
satisfied since:

if r is disabled, then r .d = 0, and
r .d becomes 0 when r is activated or neutralized (n.b., this latter disjunction is
equivalent to “r is activated” since r cannot be neutralized).

(b) Proof of CD_b 1. We must prove that at most one round is required for every non-root node
to have a positive d-variable. Indeed, this case concerns nodes at positive distance from the
root, by definition of CD_b 1. Again, we can apply Lemma at_most_rounds_scheme_per_node.
Indeed,

DISC 2023



2:22 Certified Round Complexity of Self-Stabilizing Algorithms

if p is disabled in (H e), then p.d = Distp > 0; and
when p is activated (resp. neutralized), p.d is set (resp. becomes equal) to Distp > 0.

Case 1 ≤ k < D + 1. We assume that check_dist k e holds and use the same mechanisms
as previously to prove that at most one round is required to reach a configuration where
CD_a (k + 1) or CD_b (k + 1) holds for p. The conclusion will be that at most one more round
is required to reach Always (check_dist (k + 1)).
(a) Proof of CD_a (k + 1). Here we assume that dist p r < k + 1. If dist p r < k, then by

applying the induction hypothesis (check_dist k e holds), we get that p.d = dist p r
forever. Otherwise dist p r = k and we apply Lemma at_most_rounds_scheme_per_node

again:
If p is disabled in (H e), then p.d = Distp = p.par.d + 1. Then, as dist p r = k, p has
a neighbor, q, at distance k − 1 from the root. Using the induction hypothesis, we
deduce that q.d = k − 1. Hence p.d ≤ k, by definition of Distp. Consider now the
node pointed by p.par. As it is a neighbor of p, it is at distance k − 1, k, or k + 1 from
the root. Cases k and k + 1 are impossible. Indeed, using the induction hypothesis,
we would get that p.par.d ≥ k and so p.d ≥ k + 1, a contradiction.
So, dist p.par r = k − 1. In this case, p.par.d = k − 1, by induction hypothesis, and
so p.d = k.
When p is activated (resp. neutralized), p.d is set to (resp. becomes) Distp. So, we
have to show that Distp = k, i.e., k − 1 is the smallest value in the d-variables of p’s
neighbors. Now, as the distance from p to r is k, every neighbor q of p is at distance
k − 1, k, or k + 1 from the root. By applying the induction hypothesis, we obtain
that the neighbors at distance greater than k − 1 from the root have their d-variables
greater than k−1; moreover, those at distance k−1 from the root have their d-variable
equal to k − 1. As p has at least one neighbor at distance k − 1 from the root, we
obtain that p.d = Distp = k = dist p r.

(b) Proof of CD_b (k + 1). Here we assume that dist p r ≥ k + 1. In this case, every neighbor
q of p is at distance at least k from r . Hence, by induction hypothesis, we obtain that
d.q ≥ k. Using this property and the definition of Distp, we can easily show that the
two conditions of Lemma at_most_rounds_scheme_per_node are fulfilled to establish that at
most one more round is required to reach a configuration where the property p.d ≥ k + 1
is satisfied.

B.2 Part B
After check_dist (D + 1) e is achieved (i.e., once the d-variables are correctly assigned forever),
at most one more round is required to reach a configuration where the par-variables are
correctly set and so to achieve the silence. The proof uses the same mechanism as before
and mainly relies on the following two simple facts:

As check_dist (D + 1) e holds forever, the d-variables no more change.
Furthermore, when check_dist (D + 1) e holds, a node can be activated only once (using
Action CP ): the action, and so the node too, is then disabled forever.

B.3 Final Result
Afterwards, Parts A and B are merged using Lemma schema_round_step to conclude that
every execution e requires at most D + 2 rounds to reach a terminal configuration. This
conclude the proof of the round complexity for Algorithm BFS.


	1 Introduction
	2 A BFS Spanning Tree Algorithm and its Certification
	2.1 Algorithm Definition and Informal Model
	2.2 The PADEC Library
	2.3 The Formal Algorithm

	3 Rounds
	3.1 Rounds in the Atomic-state Model
	3.1.1 Natural Language Definition
	3.1.2 Infinite Rounds
	3.1.3 Amount of Rounds to achieve a Property

	3.2 Rounds in PADEC
	3.2.1 Set of Unsatisfied Nodes
	3.2.2 Predicate At_most_rounds
	3.2.3 Functional Definition (Computation)
	3.2.4 Induction Scheme


	4 Round Complexity of the Algorithm
	5 Conclusion
	A Specification and Closure of Algorithm BFS 
	B Detailed Proof of the Round Complexity of Algorithm BFS 
	B.1 Part A
	B.1.1 Base Case
	B.1.2 Induction Step

	B.2 Part B
	B.3 Final Result


