
The Synchronization Power (Consensus Number)
of Access-Control Objects:
the Case of AllowList and DenyList
Davide Frey #

Inria, IRISA, CNRS, Université de Rennes, France

Mathieu Gestin #

Inria, IRISA, CNRS, Université de Rennes, France

Michel Raynal #

IRISA, Inria, CNRS, Université de Rennes, France

Abstract
This article studies the synchronization power of AllowList and DenyList objects under the lens
provided by Herlihy’s consensus hierarchy. It specifies AllowList and DenyList as distributed objects
and shows that, while they can both be seen as specializations of a more general object type,
they inherently have different synchronization power. While the AllowList object does not require
synchronization between participating processes, a DenyList object requires processes to reach
consensus on a specific set of processes. These results are then applied to a more global analysis of
anonymity-preserving systems that use AllowList and DenyList objects. First, a blind-signature-
based e-voting is presented. Second, DenyList and AllowList objects are used to determine the
consensus number of a specific decentralized key management system. Third, an anonymous money
transfer algorithm using the association of AllowList and DenyList objects is presented. Finally, this
analysis is used to study the properties of these application, and to highlight efficiency gains that
they can achieve in message passing environment.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Security
and privacy → Access control; Security and privacy → Pseudonymity, anonymity and untraceability

Keywords and phrases Access control, AllowList/DenyList, Blockchain, Consensus number, Dis-
tributed objects, Modularity, Privacy, Synchronization power

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.21

Related Version Full Version: https://doi.org/10.48550/arXiv.2302.06344v2 [19]

Funding This work was partially funded by the PriCLeSS project and by the SOTERIA H2020
project. PriCLeSS was granted by the Labex CominLabs excellence laboratory of the French ANR
(ANR-10-LABX-07-01). SOTERIA received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No101018342. This content reflects only
the author’s view. The European Agency is not responsible for any use that may be made of the
information it contains.

Acknowledgements We wish to thank the anonymous reviewers for their insightful comments and
remarks that led to significant improvements to our paper.

1 Introduction

The advent of blockchain technologies increased the interest of the public and industry in
distributed applications, giving birth to projects that have applied blockchains in a plethora
of use cases. These include e-vote systems [16], naming services [1, 27], Identity Management
Systems [18, 31], supply-chain management [30], or Vehicular Ad hoc Network [21]. However,

© Davide Frey, Mathieu Gestin, and Michel Raynal;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.frey@inria.fr
mailto:mathieu.gestin@inria.fr
mailto:michel.raynal@irisa.fr
https://doi.org/10.4230/LIPIcs.DISC.2023.21
https://doi.org/10.48550/arXiv.2302.06344v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Synchronization Power of Access Control Objects

this use of the blockchain as a swiss-army knife that can solve numerous distributed problems
highlights a lack of understanding of the actual requirements of those problems. Because of
these poor specifications, implementations of these applications are often sub-optimal.

This paper thoroughly studies a class of problems widely used in distributed applications
and provides a guideline to implement them with reasonable but sufficient tools.

Differently from the previous approaches, it aims to understand the amount of synchro-
nization required between processes of a system to implement specific distributed objects.
To achieve this goal it studies such objects under the lens of Herlihy’s consensus number [24].
This parameter is inherently associated to shared memory distributed objects, and has no
direct correspondence in the message passing environment. However, in some specific cases,
this information is enough to provide a better understanding of the objects analyzed, and thus,
to gain efficiency in the message passing implementations. For example, recent papers [22, 5]
have shown that cryptocurrencies can be implemented without consensus and therefore
without a blockchain. In particular, Guerraoui et al. [22] show that k-asset transfer has a
consensus number k where k is the number of processes that can withdraw currency from
the same account [23]. Similarly, Alpos et al. [3] have studied the synchronization properties
of ERC20 token smart contracts and shown that their consensus number varies over time as
a result of changes in the set of processes that are approved to send tokens from the same
account. These two results consider two forms of asset transfer: the classical one and the one
implemented by the ERC20 token, which allows processes to dynamically authorize other
processes. The consensus number of those objects depends on specific and well identified
processes. From this study, it is possible to conclude that the consensus algorithms only need
to be performed between those processes. Therefore, in these specific cases, the knowledge of
the consensus number of an object can be directly used to implement more efficient message
passing applications. Furthermore, even if this study uses a shared memory model, with
crash prone processes, its results can be used to implement more efficient Byzantine resilient
algorithm, in a message passing environment. This paper proposes to extend this knowledge
to a broader class of applications.

Indeed, the transfer of assets, be them cryptocurrencies or non-fungible tokens, does not
constitute the only application in the Blockchain ecosystem. In particular, as previously
indicated, a number of applications like e-voting [16], naming [1, 27], or Identity Manage-
ment [18, 31] use Blockchain as a tool to implement some form of access control. This is
often achieved by implementing two general-purpose objects: AllowLists and DenyLists. An
AllowList provides an opt-in mechanism. A set of managers can maintain a list of authorized
parties, namely the AllowList. To access a resource, a party (user) must prove the presence
of an element associated with its identity in the AllowList. A DenyList provides instead
an opt-out mechanism. In this case, the managers maintain a list of revoked elements, the
DenyList. To access a resource, a party (user) must prove that no corresponding element has
been added to the DenyList. In other words, AllowList and DenyList support, respectively,
set-membership and set-non-membership proofs on a list of elements.

The proofs carried out by AllowList and DenyList objects often need to offer privacy
guarantees. For example, the Sovrin privacy preserving Decentralized Identity-Management
System (DIMS) [18] associates an AllowList1 with each verifiable credential that contains
the identifiers of the devices that can use this verifiable credential. When a device uses a
credential with a verifier, it needs to prove that the identifier associated with it belongs to
the AllowList. This proof must be done in zero knowledge, otherwise the verifier would learn

1 In reality this is a variant that mixes AllowList and DenyList which we discuss in Appendix A.

D. Frey, M. Gestin, and M. Raynal 21:3

the identity of the device, which in turn could serve as a pseudo-identifier for the user. For
this reason, AllowList and DenyList objects support respectively a zero-knowledge proof of
set membership or a zero-knowledge proof of set non-membership.

Albeit similar, the AllowList and DenyList objects differ significantly in the way they
handle the proving mechanism. In the case of an AllowList, no security risk appears if access
to a resource is prohibited to a process, even if a manager did grant this right. As a result, a
transient period in which a user is first allowed, then denied, and then allowed again to access
a resource poses no problem. On the contrary, with a DenyList, being allowed access to a
resource after being denied it poses serious security problems. Hence, the DenyList object is
defined with an additional anti-flickering property prohibiting such transient periods. This
property is the main difference between an AllowList and a DenyList object and is the reason
for their distinct consensus numbers.

Existing systems [16, 1, 27, 18, 31] that employ AllowList and DenyList objects implement
them on top of a heavy blockchain infrastructure, thereby requiring network-level consensus
to modify their content. As already said, this paper studies this difference under the lens of
the consensus number [23]. It shows that (i) the consensus number of an AllowList object
is 1, which means that an AllowList can be implemented without consensus; and that (ii)
the consensus number of a DenyList is instead equal to the number of processes that can
conduct prove operations on the DenyList, and that only these processes need to synchronize.
Both data structures can therefore be implemented without relying on the network-level
consensus provided by a blockchain, which opens the door to more efficient implementations
of applications based on these data structures.

To summarize, this paper presents the following three contributions. We note CN(X)
the consensus number of the object X.
1. It formally defines and studies AllowList and DenyList as distributed objects (Section 3).
2. It analyses the consensus number of these objects: it shows that the AllowList does not

require synchronization between processes, i.e. CN(AllowList) = 1 (Section 5), while
the DenyList requires the synchronization of all the k verifiers of its set-non-membership
proofs, i.e CN(DenyList) = k (Section 6).

3. It uses these theoretical results to give intuitions on their optimal implementations.
Namely the implementation of a DIMS, as well as of an e-vote system and an Anonymous
Asset-Transfer (AAT) algorithm (Appendix B and in the full version of this paper [19]).
More precisely, the consensus number of an AAT algorithm depends on the required
anonymity level, i.e. CN(AAT) = CN(DenyList) = k = CN(k-shared Asset Transfer
object). The consensus number of an e-vote system depends on the number k of vote-
casting servers, i.e CN(e-vote) = k. Finally, the consensus number of a the revocation
mechanism in a DIMS is 2 in most cases.

Allow/Deny List Object
(Section 3)

E-Voting
(Section 7.3/Appendix D)

Asset Transfer
(Section 7.2/Appendix C)

DIMS
(Section 7.1)

To the best of our knowledge, this paper is the first to study the AllowList and DenyList
from a distributed algorithms point of view. So we believe our results can provide a powerful
tool to identify the consensus number of recent distributed objects that make use of them
and to provide more efficient implementations of such objects.

DISC 2023

21:4 The Synchronization Power of Access Control Objects

2 Preliminaries

2.1 Computation Model
Model

Let Π be a set of N asynchronous sequential crash-prone processes p1, · · · , pN . Sequential
means that each process invokes one operation of its own algorithm at a time. We assume the
local processing time to be instantaneous, but the system is asynchronous. This means that
non-local operations can take a finite but arbitrarily long time and that the relative speeds
between the clocks of the different processes are unknown. Finally, processes are crash-prone:
any number of processes can prematurely and definitely halt their executions. A process that
crashes is called faulty. Otherwise, it is called correct. The system is eponymous: a unique
positive integer identifies each process, and this identifier is known to all other processes.

Communication

Processes communicate via shared objects of type T . Each operation on a shared object is
associated with two events: an invocation and a response. An object type T is defined by a
tuple (Q, Q0, O, R, ∆), where Q is a set of states, Q0 ⊆ Q is the set of initial states, O is the
set of operations a process can use to access this object, R is the set of responses to these
operations, and ∆ ⊆ Π × Q × O × R × Q is the transition function defining how a process
can access and modify an object.

Histories and Linearizability

A history [24] is a sequence of invocations and responses in the execution of an algorithm.
An invocation with no matching response in a history, H, is called a pending invocation. A
sequential history is one where the first event is an invocation, and each invocation – except
possibly the last one – is immediately followed by the associated response. A sub-history
is a sub-sequence of events in a history. A process sub-history H|pi of a history H is a
sub-sequence of all the events in H whose associated process is pi. Given an object x, we
can similarly define the object sub-history H|x. Two histories H and H ′ are equivalent if
H|pi = H ′|pi, ∀i ∈ {1, · · · , N}.

In this paper, we define the specification of a shared object, x, as the set of all the allowed
sub-histories, H|x. We talk about a sequential specification if all the histories in this set
are sequential. A legal history is a history H in which, for all objects xi of this history,
H|xi belongs to the specification of xi. The completion H̄ of a history H is obtained by
extending all the pending invocations in H with the associated matching responses. A history
H induces an irreflexive partial order <H on operations, i.e. op0 <H op1 if the response
to the operation op0 precedes the invocation of operation op1. A history is sequential if
<H is a total order. The algorithm executed by a correct process is wait-free if it always
terminates after a finite number of steps. A history H is linearizable if a completion H̄ of H

is equivalent to some legal sequential history S and <H⊆<S .

Consensus number

The consensus number of an object of type T (noted cons(T)) is the largest n such that it
is possible to wait-free implement a consensus object from atomic read/write registers and
objects of type T in a system of n processes. If an object of type T makes it possible to
wait-free implement a consensus object in a system of any number of processes, we say the
consensus number of this object is ∞. Herlihy [23] proved the following well-known theorem.

D. Frey, M. Gestin, and M. Raynal 21:5

▶ Theorem 1. Let X and Y be two atomic objects type such that cons(X) = m and
cons(Y) = n, and m < n. There is no wait-free implementation of an object of type Y from
objects of type X and read/write registers in a system of more than m processes.

We will determine the consensus number of the DenyList and the AllowList objects using
Atomic Snapshot objects and consensus objects in a set of k processes. A Single Writer Multi
Reader (SWMR) [2] Atomic Snapshot object is an array of fixed size, which supports two
operations: Snapshot and Update. The Snapshot() operation allows a process pi to read the
whole array in one atomic operation. The Update(v, i) operation allows a process pi to write
the value v in the i-th position of the array. Afek et al. showed that a SWMR Snapshot
object can be wait-free implemented from read/write registers [2], i.e., this object type has
consensus number 1. This paper assumes that all Atomic Snapshot objects used are SWMR.
A consensus object provides processes with a single one-shot operation propose(). When a
process pi invokes propose(v) it proposes v. This invocation returns a decided value such
that the following three properties are satisfied.

Validity: If a correct process decides value v, then v was proposed by some process;
Agreement: No two correct processes decide differently; and
Termination: Every correct process eventually decides.

A k-consensus object is a consensus object accessed by at most k processes.

2.2 Number theory preliminaries

Cryptographic Commitments

A cryptographic commitment is a cryptographic scheme that allows a Prover to commit to a
value v while hiding it. The commitment scheme is a two phases protocol. First, the prover
computes a binding value known as commitment, C, using a function Commit. Commit takes
as inputs the value v and a random number r. The prover sends this hiding and binding
value C to a verifier. In the second phase, the prover reveals the committed value v and the
randomness r to the verifier. The verifier can then verify that the commitment C previously
received refers to the transmitted values v and r. This commitment protocol is the heart of
Zero Knowledge Proof (ZKP) protocols.

Zero Knowledge Proof of set operations

A Zero Knowledge Proof (ZKP) system is a cryptographic algorithm that allows a prover to
prove some Boolean statement about a value x to a verifier without leaking any information
about x. A ZKP system is initialized for a specific language L of the complexity class N P.
The proving mechanism takes as input L and outputs a proof π. Knowing L and π, any
verifier can verify that the prover knows a value x ∈ L2. However, the verifier cannot learn
the value x used to produce the proof. In the following, it is assumed there exists efficient
non interactive ZKP systems of set-(non)-membership (e.g., constructions from [8]).

2 The notation x ∈ L denotes the fact that x is a solution to the instance of the problem expressed by the
language L

DISC 2023

21:6 The Synchronization Power of Access Control Objects

3 The AllowList and DenyList objects: Definition

Distributed AllowList and DenyList object types are the type of objects that allow a set
of managers to control access to a resource. The term ”resource” is used here to describe
the goal a user wants to achieve and which is protected by an access control policy. A user
is granted access to the resource if it succeeds in proving that it is authorized to access it.
First, we describe the AllowList object type. Then we consider the DenyList object type.

The AllowList object type is one of the two most common access control mechanisms.
To access a resource, a process p ∈ ΠV needs to prove it knows some element v previously
authorized by a process pM ∈ ΠM , where ΠM ⊆ Π is the set of managers, and ΠV ⊆ Π is
the set of processes authorized to conduct proofs. We call verifiers the processes in ΠV . The
sets ΠV and ΠM are predefined and static. They are parameters of the object. Depending
on the usage, these subset can either be small, or they can contain all the processes in Π.

A process p ∈ ΠV proves that v was previously authorized by invoking a PROVE(v)
operation. This operation is said to be valid if some manager in ΠM previously invoked
an APPEND(v) operation. Intuitively, we can see the invocation of APPEND(v) as the
action of authorizing some process to access the resource. On the other hand, the PROVE(v)
operation, invoked by a prover process, p ∈ ΠV , proves to the other processes in ΠV that
they are authorized. However, this proof is not enough in itself. The verifiers of a proof
must be able to verify that a valid PROVE has been invoked. To this end, the AllowList
object type is also equipped with a READ() operation. This operation can be invoked by any
process in Π and returns a random permutation of all the valid PROVE invoked, along with
the identity of the processes that invoked them. All processes in Π can invoke the READ
operation.3

An optional anonymity property can be added to the AllowList object to enable privacy-
preserving implementations. This property ensures that other processes cannot learn the
value v proven by a PROVE(v) operation.

The AllowList object type is formally defined as a sequential object, where each invocation
is immediately followed by a response. Hence, the sequence of operations defines a total
order, and each operation can be identified by its place in the sequence.

▶ Definition 2. The AllowList object type supports three operations: APPEND, PROVE,
and READ. These operations appear as if executed in a sequence Seq such that:

Termination. A PROVE, an APPEND, or a READ operation invoked by a correct process
always returns.
APPEND Validity. The invocation of APPEND(x) by a process p is valid if p ∈ ΠM ⊆ Π
and x ∈ S, where S is a predefined set. Otherwise, the operation is invalid.
PROVE Validity. If the invocation of op =PROVE(x) by a process p is valid, then
p ∈ ΠV ⊆ Π and a valid APPEND(x) appears before op in Seq. Otherwise, the invocation
is invalid.
Progress. If a valid APPEND(x) is invoked, then there exists a point in Seq such that
any PROVE(x) invoked after this point by any process p ∈ ΠV will be valid.
READ Validity. The invocation of op =READ() by a process p ∈ ΠV returns the list of
valid invocations of PROVE that appears before op in Seq along with the names of the
processes that invoked each operation.

3 Usually, AllowList objects are implemented in a message-passing setting. In these cases, the READ
operation is implicit. Each process knows a local state of the distributed object, and can inspect it any
time. In the shared-memory setting, we need to make this READ operation explicit.

D. Frey, M. Gestin, and M. Raynal 21:7

Optional - Anonymity. Let us assume the process p invokes a PROVE(v) operation. If
the process p′ invokes a READ() operation, then p′ cannot learn the value v unless p

leaks additional information.4

The AllowList object is defined in an append-only manner. This definition makes it
possible to use it to build all use cases explored in this paper. However, some use cases
could need an DenyList with an additional REMOVE operation. This variation is studied in
Appendix A.

The DenyList object type can be informally presented as an access policy where, contrary
to the AllowList object type, all users are authorized to access the resource in the first place.
The managers are here to revoke this authorization. A manager revokes a user by invoking
the APPEND(v) operation. A user uses the PROVE(v) operation to prove that it was not
revoked. A PROVE(v) invocation is invalid only if a manager previously revoked the value v.

All the processes in Π can verify the validity of a PROVE operation by invoking a READ()
operation. This operation is similar to the AllowList’s READ operation. It returns the list
of valid PROVE invocations along with the name of the processes that invoked it.

There is one significant difference between the DenyList and the AllowList object types.
With an AllowList, if a user cannot access a resource immediately after its authorization, no
malicious behavior can harm the system – the system’s state is equivalent to its previous
state. However, with a DenyList, a revocation not taken into account can let a malicious
user access the resource and harm the system. In other words, access to the resource in the
DenyList case must take into account the ”most up to date” available revocation list.

To this end, the DenyList object type is defined with an additional property. The anti-
flickering property ensures that if an APPEND operation is taken into account by one PROVE
operation, it will be taken into account by every subsequent PROVE operation. Along with
the progress property, the anti-flickering property ensures that the revocation mechanism is as
immediate as possible. The DenyList object is formally defined as a sequential object, where
each invocation is immediately followed by a response. Hence, the sequence of operations
define a total order, and each operation can be identified by its place in the sequence.

▶ Definition 3. The DenyList object type supports three operations: APPEND, PROVE,
and READ. These operations appear as if executed in a sequence Seq such that:

Termination. A PROVE, an APPEND, or a READ operation invoked by a correct process
always returns.
APPEND Validity. The invocation of APPEND(x) by a process p is valid if p ∈ ΠM ⊆ Π
and x ∈ S, where S is a predefined set. Otherwise, the operation is invalid.
PROVE Validity. If the invocation of a op =PROVE(x) by a correct process p is not
valid, then p /∈ ΠV ⊆ Π or a valid APPEND(x) appears before opP in Seq. Otherwise,
the operation is valid.
PROVE Anti-Flickering. If the invocation of a operation op =PROVE(x) by a correct
process p ∈ ΠV is invalid, then any PROVE(x) that appears after op in Seq is invalid.5

4 The Anonymity property only protects the value v. The system considered is eponymous. Hence, the
identity of the processes is already known. However, the anonymity of v makes it possible to hide other
information. For example, the identity of a client that issues a request to a process of the system. These
example are discussed in Section 7.

5 The only difference between the AllowList and the DenyList object types is this anti-flickering property.
As it is shown in Section 5 and in Section 6, the AllowList object has consensus number 1, and the
DenyList object has consensus number k = |ΠV |. Hence, this difference in term of consensus number is
due solely to the anti-flickering property. It is an open question whether a variation of this property
could transform any consensus number 1 object into a consensus number k object.

DISC 2023

21:8 The Synchronization Power of Access Control Objects

Table 1 Transition function ∆ for the PROOF-LIST object.

Process Operation Initial state Res- Final state Conditions
ponse

pi ∈ ΠM APPEND(y) (listed-values = {x ∈ S}, True (listed-values ∪ {y}, y ∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) proofs)

pi APPEND(y) (listed-values = {x ∈ S}, False (listed-values, proofs) pi /∈ ΠM ∨ y /∈ S
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)}))

pi ∈ ΠV PROVE(y) (listed-values = {x ∈ S}, (A, P) (listed-values, ∀y ∈ LA ∧ A ⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) proofs ∪ {(pi, A, P)}) ∧∀P ∈ PLA ∧ C(y, Ŝ) = 1

pi PROVE(y) (listed-values = {x ∈ S}, False (listed-values, proofs) ∀y /∈ LA ∨ A ̸⊆ listed-values
proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL

Ŝ
)})) ∨ ∀P /∈ PLA ∨ ∀pi /∈ ΠV

∨ C(y, Ŝ) = 0
pi ∈ Π READ() (listed-values = {x ∈ S}, proofs (listed-values, proofs)

proofs = ({(pj ∈ Π, Ŝ ⊆ S, P ∈ PL
Ŝ

)}))

READ Validity. The invocation of op =READ() by a process p ∈ ΠV returns the list of
valid invocations of PROVE that appears before op in Seq along with the names of the
processes that invoked each operation.
Optional - Anonymity. Let us assume the process p invokes a PROVE(v) operation. If
the process p′ invokes a READ() operation, then p′ cannot learn the value v unless p

leaks additional information.

4 PROOF-LIST object specification

Section 5 and Section 6 propose an analysis of the synchronization power of the AllowList
and the DenyList object types using the notion of consensus number. Both objects share
many similarities. Indeed, the only difference is the type of proof performed by the user and
the non-flickering properties. Therefore, this section defines the formal specification of the
PROOF-LIST object type, a new generic object that can be instantiated to describe the
AllowList or the DenyList object type.

The PROOF-LIST object type is a distributed object type whose state is a pair of arrays
(listed-values, proofs). The first array, listed-values, represents the list of authorized/revoked
elements. It is an array of objects in a set S, where S is the universe of potential elements.
The second array, proofs, is a list of assertions about the listed-values array. Given a set of
managers ΠM ⊆ Π and a set of verifiers ΠV ⊆ Π, the PROOF-LIST object supports three
operations. First, the APPEND(v) operation appends a value v ∈ S to the listed-values
array. Any process in the manager’s set can invoke this operation. Second, the PROVE(v)
operation appends a valid proof about the element v ∈ S relative to the listed-values array to
the proofs array. This operation can be invoked by any process p ∈ ΠV . Third, the READ()
operation returns the proofs array.

The sets ΠV and ΠM are static, predefined subsets of Π. There is no restriction on their
compositions. The choice of these sets only depends on the usage of the AllowList or the
DenyList. Depending on the usage, they can either contain a small subset of processes in Π
or they can contain the whole set of processes of the system.

To express the proofs produced by a process p, we use an abstract language LA of the
complexity class N P, which depends on a set A. This language will be specified for the
AllowList and the DenyList objects in Section 5 and Section 6. The idea is that p produces
a proof π about a value v ∈ S. A PROVE invocation by a process p is valid only if the proof
π added to the proofs array is valid. The proof π is valid if v ∈ LA – i.e., v is a solution to
the instance of the problem expressed by LA, where LA is a language of the complexity class

D. Frey, M. Gestin, and M. Raynal 21:9

N P 6 which depends on a subset A of the listed-values array (A ⊆ S). We note PLA the set
of valid proofs relative to the language LA. PLA can either represent Zero Knowledge Proofs
or explicit proofs.

If a proof π is valid, then the PROVE operation returns (A, Acc.P rove(v, A)), where
Acc.P rove(v, A) is the proof generated by the operation, and where A is a subset of values
in listed-values on which the proof was applied. Otherwise, the PROVE operation returns
“False”. Furthermore, the proofs array also stores the name of the processes that invoked
PROVE operations.

Formally, the PROOF-LIST object type is defined by the tuple (Q, Q0, O, R, ∆), where:
The set of valid state is Q = (listed-values = {x ∈ S}, proofs = {(p ∈ Π, Ŝ ⊆ S, P ∈
PL

Ŝ
)}), where listed-values is a subset of S and proofs is a set of tuples. Each tuple in

proofs consists of a proof associated with the set it applies to and to the identifier of the
process that issued the proof;
The set of valid initial states is Q0 = (∅, ∅), the state where the listed-values and the
proofs arrays are empty;
The set of possible operation is O = {APPEND(x), PROVE(y), READ()}, with x, y ∈ S;

The set of possible responses is R =
{

True, False, (Ŝ ⊆ S, P ∈ PL
Ŝ
), {(p ∈ Π, Ŝ ′ ⊆

S, P′ ∈ PL
Ŝ

)}
}

, where True is the response to a successful APPEND operation, (Ŝ, P) is

the response to a successful PROVE operation, {(p, Ŝ ′, P′)} is the response to a READ
operation, and False is the response to a failed operation; and
The transition function is ∆. The PROOF-LIST object type supports 5 possible transitions.
We define the 5 possible transitions of ∆ in Table 1.

The first transition of the ∆ function models a valid APPEND invocation, a value y ∈ S is
added to the listed-values array by a process in the managers’ set ΠM . The second transition
of the ∆ function represents a failed APPEND invocation. Either the process pi that invokes
this function is not authorized to modify the listed-values array, i.e., pi /∈ ΠM , or the value it
tries to append is invalid, i.e., y /∈ S. The third transition of the ∆ function captures a valid
PROVE operation, where a valid proof is added to the proofs array. The function C will be
used to express the anti-flickering property of the DenyList implementation. It is a boolean
function that outputs either 0 or 1. The fourth transition of the ∆ function represents an
invalid PROVE invocation. Either the proof is invalid, or the set on which the proof is issued
is not a subset of the listed-values array. Finally, the fifth transition represents a READ
operation. It returns the proofs array and does not modify the object’s state.

The language LA does not directly depend on the listed-values array. Hence, the validity
of a PROVE operation will depend on the choice of the set A.

5 The consensus number of the AllowList object

This section provides an AllowList object specification based on the PROOF-LIST object.
The specification is then used to analyze the consensus number of the object type.

We provide a specification of the AllowList object defined as a PROOF-LIST object,
where C(y, Ŝ) = 1 and ∀ y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y ∈ A).

6 In this article, LA can be one of the following languages: a value v belongs to A (AllowList), or a value
v does not belongs to A (DenyList).

DISC 2023

21:10 The Synchronization Power of Access Control Objects

In other words, y belongs to a set A. Using the third transition of the ∆ function, we
can see that A should also be a subset of the listed-values array. Hence, this specification
supports proofs of set-membership in listed-values. A PROOF-LIST object defined for such
language follows the specification of the AllowList. To support this statement, we provide an
implementation of the object.

To implement the AllowList object, Algorithm 1 uses two Atomic Snapshot objects. The
first one represents the listed-values array, and the second represents the proofs array. These
objects are arrays of N entries. Furthermore, we use a function ”Proof” that on input of a
set S and an element y outputs a proof that y ∈ listed-values. This function is used as a
black box, and can either output an explicit proof – an explicit proof can be the tuple (y, A),
where A ⊆ listed-values – or a Zero Knowledge Proof.

Algorithm 1 Implementation of an AllowList object using Atomic-Snapshot objects.

Shared variables
AS-LV ← N-dimensions Atomic-Snapshot object, initially {∅}N ;

AS-PROOF ← N-dimensions Atomic-Snapshot object, initially {∅}N ;
Operation APPEND(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.Update(local-values ∪ v, p);
4: Return true;
5: Else return false;

Operation READ() is
6: Return AS-PROOF.Snapshot();

Operation PROVE(v) is
7: If p /∈ ΠV then
8: Return false;
9: A ← AS-LV.Snapshot();

10: If v ∈ A then
11: πset−memb ← Proof(v ∈ A);
12: proofs ← AS-PROOF.Snapshot()[p];
13: AS-PROOF.Update(proofs ∪ (p,A, πset−memb), p);
14: Return (A, πset−memb);
15: Else return false.

▶ Theorem 4. Algorithm 1 wait-free implements an AllowList object.

Proof. The complete proof of this theorem is given in the full version of this paper [19]. ◀

▶ Corollary 5. The consensus number of the AllowList object type is 1.

6 The consensus number of the DenyList object

In the following, we propose two wait-free implementations establishing the consensus number
of the DenyList object type. In this section and in the following, we refer to a DenyList with
|ΠV | = k as a k-DenyList object. This analysis of this parameter k is the core of the study
conducted here. Because it is a statically defined parameter, the knowledge of this parameter
can improve efficiency of DenyList implementation by reducing the number of processes that
need to synchronize in order to conduct a proof.

6.1 Lower bound
Algorithm 2 presents an implementation of a k-consensus object using a k-DenyList object
with ΠM = ΠV = Π, and |Π| = k. It uses an Atomic Snapshot object, AS-LIST, to allow
processes to propose values. AS-LIST serves as a helping mechanism [12]. In addition, the
algorithm uses the progress and the anti-flickering properties of the PROVE operation of
the k-DenyList to enforce the k-consensus agreement property. The PROPOSE operation
operates as follows. First, a process p tries to prove that the element 0 is not revoked by
invoking PROVE(0). Then, if the previous operation succeeds, p revokes the element 0 by
invoking APPEND(0). Then, p waits for the APPEND to be effective. This verification is
done by invoking multiple PROVE operations until one is invalid. This behavior is ensured

D. Frey, M. Gestin, and M. Raynal 21:11

by the progress property of the k-DenyList object. Once the progress has occurred, p is
sure that no other process will be able to invoke a valid PROVE(0) operation. Hence, p is
sure that the set returned by the READ operation can no longer grow. Indeed, the READ
operation returns the set of valid PROVE operation that occurred prior to its invocation. If
no valid PROVE(0) operation can be invoked, the set returned by the READ operation is
fixed (with regard to the element 0). Furthermore, all the processes in Π share the same
view of this set.

Finally, p invokes READ() to obtain the set of processes that invoked a valid PROVE(0)
operation. The response to the READ operation will include all the processes that invoked a
valid PROVE operation, and this set will be the same for all the processes in Π that invoke
the PROPOSE operation. Therefore, up to line 7, the algorithm solved the set-consensus
problem. To solve consensus, we use an additional deterministic function fi : Πi → Π, which
takes as input any set of size i and outputs a single value from this set.

To simplify the representation of the algorithm, we also use the separator() function,
which, on input of a set of proofs ({(p ∈ Π, {Ŝ ⊆ S, P ∈ PLS)}), outputs processes, the set of
processes which conducted the proofs, i.e. the first component of each tuple.

Algorithm 2 k-consensus implementation using one k-DenyList object and one Atomic Snapshot.

Shared variables
k-dlist ← k-DenyList object;

AS-LIST ← Atomic Snapshot object, initially {∅}k

Operation PROPOSE(v) is
1: AS-LIST.update(v, p);
2: k-dlist.PROVE(0);

3: k-dlist.APPEND(0);
4: Do
5: ret ← k-dlist.PROVE(0);
6: Until (ret ̸= false);
7: processes ← separator(k-dlist.READ());
8: Return AS-LIST.Snapshot()[f|processes|(processes)].

▶ Theorem 6. Algorithm 2 wait-free implements a k-consensus object.

Proof. Let us fix an execution E of the algorithm presented in Algorithm 2. The progress
property of the k-DenyList object ensures that the while loop in line 4 consists of a finite
number of iterations – an APPEND(0) is invoked prior to the loop, hence, the PROVE(0)
operation will eventually be invalid. Each invocation of the PROPOSE operation is a sequence
of a finite number of local operations, Atomic Snapshot object accesses and k-DenyList
object accesses which are assumed atomic. Therefore, each process terminates the PROPOSE
operation in a finite number of its own steps. Let H be the history of E. We define H̄

the completed history of H, where an invocation of PROPOSE which did not reach line 8
is completed with a line “return false”. Line 8 is the linearization point of the algorithm.
For convenience, any PROPOSE invocation that returns false is called an failed invocation.
Otherwise, it is called a successful invocation.

We now prove that all operations in H̄ follow the k-consensus specification:
The process p that invoked a failed PROPOSE operation in H̄ is faulty – by definition,
the process prematurely stopped before line 8. Therefore, the fact that p cannot decide
does not impact the termination nor the agreement properties of the k-consensus object.
A successful PROPOSE operation returns AS-LIST.Snapshot()[f|processes|(processes)].
Furthermore, a process proposed this value in line 1. All the processes that invoke
PROPOSE conduct an APPEND(0) operation, and wait for this operation to be effective
using the while loop at line 4 to 6. Thanks to the anti-flickering property of the k-
DenyList object, when the APPEND operation is effective for one process – i.e. the
Progress happens, in other words,a PROVE(0) operation is invalid – , then it is effective
for any other process that would invoke the PROVE(0) operation. Hence, thanks to the

DISC 2023

21:12 The Synchronization Power of Access Control Objects

anti-flickering property, when a process obtains an invalid response from the PROPOSE(0)
operation at line 5, it knows that no other process can invoke a valid PROVE(0) operation.
This implies that the READ operation conducted at line 7 will return a fix set of processes,
and all the processes that reach this line will see the same set. Furthermore, because
each process invokes a PROPOSE(0) before the APPEND(0) at line 3, at least one valid
PROPOSE(0) operation was invoked. Therefore, the processes set is not empty. Because
each process ends up with the same set processes, and thanks to the determinism of the
function fi, all correct processes output the same value v (Agreement property and non-
trivial value). The value v comes from the Atomic Snapshot object, composed of values
proposed by authorized processes (Validity property). Hence a successful PROPOSE
operation follows the k-consensus object specification.

All operations in H̄ follow the k-consensus specification. To conclude, the algorithm presented
in Algorithm 2 is a wait-free implementation of the k-consensus object type. ◀

▶ Corollary 7. The consensus number of the k-DenyList object type is at least k.

6.2 Upper bound
This section provides a DenyList object specification based on the PROOF-LIST object. The
specification is then used to analyze the upper bound on the consensus number of the object
type.

We provide an instantiation of the DenyList object defined as a PROOF-LIST object,
where ∀y ∈ S, y ∈ LA ⇔ (A ⊆ S ∧ y /∈ A) and where:

C(y, Ŝ) =
{

1, if ∀A′ ∈ Ŝ, y /∈ A′

0, otherwise.

In other words, the first equation ensures that y does not belong to a set A, while the second
equation ensures that the object fulfills the anti-flickering property. Hence, this instantiation
supports proofs of set-non-membership in listed-values. A PROOF-LIST object defined
for such language follows the specification of the DenyList. To support this statement, we
provide an implementation of the object.

To build a k-DenyList object which can fulfill the anonymity property, it is required to
build an efficient helping mechanism that preserves anonymity. It is impossible to disclose
directly the value proven without disclosing the user’s identity. Therefore, we assume that a
process p that invokes the PROVE(v) operation can deterministically build a cryptographic
commitment to the value v. Let Cv be the commitment to the value v. Then, any process
p′ ≠ p that invokes PROVE(v) can infer that Cv was built using the value v. However, a
process that does not invoke PROVE(v) cannot discover to which value Cv is linked. If the
targeted application does not require the user’s anonymity, it is possible to use the plaintext
v as the helping value.

Algorithm 3 presents an implementation of a k-DenyList object using k-consensus objects
and Atomic Snapshots. The APPEND and the READ operations are analogous to those of
Algorithm 1.

On the other hand, the PROVE operation must implement the anti-flickering property.
To this end, a set of k-consensus objects and a helping mechanism based on commitments
are used.

When a process invokes the PROVE(v) operation, it publishes Cv, the cryptographic
commitment to v, using an atomic snapshot object. This commitment is published along
with a timestamp [28] defined as follow. A local timestamp (p, c) is constituted of a process

D. Frey, M. Gestin, and M. Raynal 21:13

identifier p and a local counter value c. The counter c is always incremented before being
reused. Therefore, each timestamp is unique. Furthermore, we build the strict total order
relation R such that (p, c)R(p′, c′) ⇔ (c < c′) ∨ ((c = c′) ∧ (p < p′)). The timestamp is used
in coordination with the helping value Cv to ensure termination. A process p that invokes
the PROVE(v) operation must parse all the values proposed by the other processes. If a
PROVE(v′) operation was invoked by a process p′ earlier than the one invoked by p – under
the relation R – , then p must affect a set ”val” for the PROVE operation of p′ via the
consensus object. The set ”val” is obtained by reading the AS-LV object. The AS-LV object
is append-only – no operation removes elements from the object. Furthermore, the sets ”val”
are attributed via the consensus object. Therefore, this mechanism ensures that the sets on
which the PROVE operations are applied always grow.

Furthermore, processes sequentially parse the CONS-ARR using the counterp variable.
This behavior, in collaboration with the properties of the consensus, ensures that all the
process see the same tuples (winner, val) in the same order.

Finally, if a process p observes that a PROVE operation conducted by a process p′ ̸= p is
associated to a commitment Cv equivalent to the one proposed by p, then p produces the
proof of set-non-membership relative to v and the set ”val” affected to p′ in its name. We
consider that a valid PROVE operation is linearized when this proof of set-non-membership
is added to AS-PROOF in line 19. Hence, when p produces its own proof – or if another
process produces the proof in its name – it is sure that all the PROVE operations that are
relative to v and that have a lower index in CONS-ARR compared to its own are already
published in the AS-PROOF Atomic Snapshot object. Therefore, the anti-flickering property
is ensured. Indeed, because the affected sets ”val” are always growing and because of the
total order induced by the CONS-ARR array, if p reaches line 25, it previously added a proof
to AS-PROOF in the name of each process p′ ̸= p that invoked a PROVE(v) operation and
that was attributed a set at a lower index than p in CONS-ARR. Hence, the operation of p′

was linearized prior to the operation of p.
A PROVE operation can always be identified by its published timestamp. Furthermore,

when a proof is added to the AS-PROOF object, it is always added to the index counterpw
.

Therefore, if multiple processes execute line 19 for the PROVE operation labeled counterpw ,
the AS-PROOF object will only register a unique value.

Furthermore, we use a function ”Proof” that on input of a set S and an element x outputs
a proof that x /∈ S. This function is used as a black box, and can either output an explicit
proof – an explicit proof can be the tuple (x, S) – , or a Zero Knowledge Proof.

▶ Theorem 8. Algorithm 3 wait-free implements a k-DenyList object.

Proof. The proof of this theorem is given in the full version of this paper [19]. ◀

The following corollary follows from Theorem 6 and Theorem 8.

▶ Corollary 9. The k-DenyList object type has consensus number k.

7 Discussion

This section presents several applications where the AllowList and the k-DenyList can be
used to determine the consensus numbers of more elaborate objects. More importantly, the
analysis of the consensus number of these use cases makes it possible to determine if actual
implementations achieve optimal efficiency in terms of synchronization. If not, we use the
knowledge of the consensus number of the AllowList and DenyList objects to give intuitions

DISC 2023

21:14 The Synchronization Power of Access Control Objects

Algorithm 3 k-DenyList implementation using k-consensus objects and Atomic Snapshot objects.
Shared variables

AS-LV ← N-dimensions Atomic-Snapshot object, initially {∅}N ;

AS-Queue ← N-dimensions Atomic-Snapshot object, initially {∅}N ;
CONS-ARRp ← an array of k-consensus objects of size l > 0;

AS-PROOF ← l-dimensions Atomic-Snapshot object, initially {∅}l;
Local variables

For each p ∈ ΠV :

evaluatedp ← an array of size l > 0, initially {∅}l;
counterp ← a positive integer, initially 0;

Operation APPEND(v) is
1: If (v ∈ S) ∧ (p ∈ ΠM) then
2: local-values ← AS-LV.Snapshot()[p];
3: AS-LV.UPDATE(local-values ∪ v, p);
4: Return true;
5: Else return false;

Operation PROVE(v) is
6: If p /∈ ΠV then
7: Return false;
8: Cv ← Commitment(v);

9: cnt ← counterp;
10: AS-Queue.UPDATE(((cnt, p), Cv), p);
11: queue ← AS-Queue.Snapshot() \ evaluatedp;
12: While (cnt, p) ∈ queue do
13: oldest ← the smallest clock value in queue under R;
14: prop ← (oldest, AS-LV.snapshot());
15: (winner, val) ← CONS-ARR[counterp].propose(prop);
16: ((counterpw , pw), C∗)← winner;
17: If C∗ = Cv ∧ v /∈ val then
18: πSNM ← Proof(v /∈ val);
19: AS-PROOF.Update((pw, val, πSNM , winner), counterpw);
20: evaluatedp ← evaluatedp ∪ winner;
21: queue ← queue \ winner;
22: counterp ← counterp + 1;

23: If v /∈ val then
24: Return (val, πSNM);
25: Else return false;
Operation READ() is
26: Return AS-PROOF.Snapshot();

on how to build more practical implementations. More precisely, the fact that the consensus
numbers of AllowList and DenyList objects are (in most cases) smaller than n implies that
most implementations can reduce the number of processes that need to synchronize in order
to implement such distributed objects. The liveness of many consensus algorithms is only
ensured when the network reaches a synchronous period. Therefore, reducing the number of
processes that need to synchronize can increase the system’s probability of reaching such
synchronous periods. Thus, it can increase the effectiveness of such algorithms.

7.1 Revocation of a verifiable credential
We begin by analyzing Sovrin’s Verifiable-Credential revocation method using the DenyList
object [18]. Sovrin is a privacy-preserving Distributed Identity Management System (DIMS).
In this system, users own credentials issued by entities called issuers. A user can employ one
such credential to prove to a verifier they have certain characteristics. An issuer may want
to revoke a user’s credential prematurely. To do so, the issuer maintains an append-only list
of revoked credentials. When a user wants to prove that their credential is valid, they must
provide to the verifier a valid ZKP of set-non-membership proving that their credential is
not revoked, i.e. not in the DenyList. In this application, the set of managers ΠM consists
solely of the credential’s issuer. Hence, the proof concerns solely the verifier and the user.
The way Sovrin implements this verification interaction is by creating an ad-hoc peer-to-peer
consensus instance between the user and the verifier for each interaction. Even if the resulting
DenyList has consensus number 2, Sovrin implements the APPEND operation using an
SWMR stored on a blockchain-backed ledger (which requires synchronizing the N processes
of the system). Our results suggest instead that Sovrin’s revocation mechanism could be
implemented without a blockchain by only using pairwise consensus.

7.2 The Anonymous Asset Transfer object
The anonymous asset transfer object is another application of the DenyList and the AllowList
objects. As described in Appendix B, it is possible to use these objects to implement the
asset transfer object described in [22]. Our work generalizes the result by Guerroui et al. [22].
Guerraoui et al. show that a joint account has consensus number k where k is the number of
agents that can withdraw from the account. We can easily prove this result by observing
that withdrawing from a joint account requires a denylist to record the already spent coins.

D. Frey, M. Gestin, and M. Raynal 21:15

Nevertheless, our ZKP capable construction makes it possible to show that an asset transfer
object where the user is anonymous, and its transactions are unlinkable also has consensus
number k, where k is the number of processes among which the user is anonymous. The two
main implementations of Anonymous Asset Transfer, ZeroCash and Monero [35, 7], use a
blockchain as their main double spending prevention mechanism. While the former provides
anonymity on the whole network, the second only provides anonymity among a subset of
the processes involved in the system. Hence, this second implementation could reduce its
synchronization requirements accordingly.

7.3 Distributed e-vote systems
Finally, another direct application of the DenyList object is the blind-signature-based e-vote
system with consensus number k, k being the number of voting servers, which we present in
the full version of this paper [19]. Most distributed implementations of such systems also use
blockchains, whereas only a subset of the processes involved actually require synchronization.

8 Related Works

Bitcoin and blockchain. Even though distributed consensus algorithms were already largely
studied [10, 29, 11, 4, 9], the rise of Ethereum – and the possibilities offered by its versatile
smart contracts – led to new ideas to decentralized already known applications. Among
those, e-vote and DIMS [18] are two examples.

Blockchains increased the interest in distributed versions of already existing algorithms.
However, these systems are usually developed with little concern for the underlying theoretical
basis they rely on. A great example lies in trustless money transfer algorithms or crypto
money. The underlying distributed asset-transfer object was never studied until recently.
A theoretical study proved that a secure asset-transfer algorithm does not need synchrony
between network nodes [22]. Prior to this work, all proposed schemes used a consensus
algorithm, which cannot be deterministically implemented in an asynchronous network [17].
The result is that many existing algorithms could be replaced by more efficient, Reliable
Broadcast [9] based algorithms. This work leads to more efficient implementation proposal for
money transfer algorithm [5]. Alpos et al. then extended this study to the Ethereum ERC20
smart contracts [3]. This last paper focuses on the asset-transfer capability of smart contracts.
Furthermore, the object described has a dynamic consensus number, which depends on the
processes authorized to transfer money from a given account. Furthermore, this work and
the one from Guerraoui et al. [22] both analyze a specific object that is not meant to be
used to find the consensus number of other applications. In contrast, our work aims to be
used as a generic tool to find the consensus number of numerous systems.

E-vote. An excellent example of the usage of DenyList is to implement blind signatures-
based e-vote systems [13]. A blind signature is a digital signature where the issuer can sign a
message without knowing its content. Some issuer signs a cryptographic commitment – a
cryptographic scheme where Alice hides a value while being bound to it [33] – to a message
produced by a user. Hence, the issuer does not know the actual message signed. The user
can then un-commit the message and present the signature on the plain-text message to
a verifier. The verifier then adds this message to a DenyList. A signature present in the
DenyList is no longer valid. Such signatures are used in some e-vote systems [20, 32]. In
this case, the blind signature enables anonymity during the voting operation. This is the

DISC 2023

21:16 The Synchronization Power of Access Control Objects

e-vote mechanism that we study in this article. They can be implemented using a DenyList
to restrain a user from voting multiple times. This method is explored in the full version of
this paper [19].

There exists two other way to provide anonymity to the user of an e-vote system. The
first one is to use a MixNet [26, 25, 14]. MixNet is used here to break the correlation between
a voter and his vote. Finally, anonymity can be granted by using homomorphic encryption
techniques [6, 15].

Each technique has its own advantages and disadvantages, depending on the properties
of the specific the e-vote system. We choose to analyze the blind signature-based e-vote
system because it is a direct application of the distributed DenyList object we formalize in
this paper.

Anonymous Money Transfer. Blockchains were first implemented to enable trustless money
transfer algorithms. One of the significant drawbacks of this type of algorithm is that it
only provides pseudonymity to the user. As a result, transfer and account balances can be
inspected by anyone, thus revealing sensitive information about the user. Later developments
proposed hiding the user’s identity while preventing fraud. The principal guarantees are
double-spending prevention – i.e., a coin cannot be transferred twice by the same user – and
ex nihilo creation prevention – i.e., a user cannot create money. Zcash [7] and Monero [35]
are the best representative of anonymous money transfer algorithms. The first one uses an
AllowList to avoid asset creation and a DenyList to forbid double spending, while the second
one uses ring signatures. We show in Appendix B that the DenyList and AllowList objects
can implement an Anonymous Money Transfer object, and thus, define the synchronization
requirements of the processes of the system.

9 Conclusion

This paper presented the first formal definition of distributed AllowList and DenyList object
types. These definitions made it possible to analyze their consensus number. This analysis
concludes that no consensus is required to implement an AllowList object. On the other
hand, with a DenyList object, all the processes that can propose a set-non-membership proof
must synchronize, which makes the implementation of a DenyList more resource intensive.

The definition of AllowList and DenyList as distributed objects made it possible to
thoroughly study other distributed objects that can use AllowList and DenyList as building
blocks. For example, we discussed authorization lists and revocation lists in the context of the
Sovrin DIMS. We also provided several additional examples in the Appendix. In particular,
we show in Appendix B that an association of DenyList and AllowList objects can implement
an anonymous asset transfer algorithm and that this implementation is optimal in terms of
synchronization power. This result can also be generalized to any asset transfer algorithm,
where the processes act as proxies for the wallet owners. In this case, synchronization is
only required between the processes that can potentially transfer money on behalf of a given
wallet owner.

D. Frey, M. Gestin, and M. Raynal 21:17

References
1 Ethereum name service documentation. online - https://docs.ens.domains/ - accessed

23/11/2022.
2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. JACM, 40(4):873–890, September 1993. doi:10.1145/153724.
153741.

3 Orestis Alpos, Christian Cachin, Giorgia Azzurra Marson, and Luca Zanolini. On the
synchronization power of token smart contracts. In 41st IEEE ICDCS, pages 640–651, 2021.
doi:10.1109/ICDCS51616.2021.00067.

4 Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. Rbft: Redundant byzantine
fault tolerance. In IEEE 33rd International Conference on Distributed Computing Systems,
pages 297–306, 2013. doi:10.1109/ICDCS.2013.53.

5 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Money Transfer Made
Simple: a Specification, a Generic Algorithm, and its Proof. Bulletin European Association
for Theoretical Computer Science, 132, October 2020.

6 Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guillaume
Poupard. Practical multi-candidate election system. In PODC, pages 274–283, 2001. doi:
10.1145/383962.384044.

7 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474, May 2014. doi:10.1109/SP.2014.36.

8 Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-
knowledge proofs for set membership: Efficient, succinct, modular. In Financial Cryptography
and Data Security. Springer Berlin Heidelberg, 2021.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

10 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI ’99, pages
173–186, 1999.

11 Miguel Castro and Barbara Liskov. Proactive recovery in a Byzantine-Fault-Tolerant sys-
tem. In OSDI 2000, October 2000. URL: https://www.usenix.org/conference/osdi-2000/
proactive-recovery-byzantine-fault-tolerant-system.

12 Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In PODC ’15, pages 241–250,
2015. doi:10.1145/2767386.2767415.

13 David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology, pages
199–203, 1983.

14 Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure voting
system. IEEE SSP, pages 354–368, 2008.

15 Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT ’97, pages 103–118, 1997.

16 Gaby G. Dagher, Praneeth Babu Marella, Matea Milojkovic, and Jordan Mohler. Broncovote:
Secure voting system using ethereum’s blockchain. In ICISSP, 2018.

17 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

18 Sovrin Foundation. Sovrin: A protocol and token for self-sovereign identity and decentralized
trust. Technical report, Sovrin Foundation, 2018.

19 Davide Frey, Mathieu Gestin, and Michel Raynal. The synchronization power (consensus
number) of access-control objects: The case of allowlist and denylist, 2023. doi:10.48550/
arXiv.2302.06344.

20 Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for
large scale elections. In AUSCRYPT ’92, pages 244–251, 1993.

DISC 2023

https://docs.ens.domains/
https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/153724.153741
https://doi.org/10.1109/ICDCS51616.2021.00067
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/383962.384044
https://doi.org/10.1145/383962.384044
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1016/0890-5401(87)90054-X
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://www.usenix.org/conference/osdi-2000/proactive-recovery-byzantine-fault-tolerant-system
https://doi.org/10.1145/2767386.2767415
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.48550/arXiv.2302.06344
https://doi.org/10.48550/arXiv.2302.06344

21:18 The Synchronization Power of Access Control Objects

21 Jyoti Grover. Security of vehicular ad hoc networks using blockchain: A comprehensive review.
Vehicular Communications, 34:100458, 2022. doi:10.1016/j.vehcom.2022.100458.

22 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-Adrian Seredin-
schi. The consensus number of a cryptocurrency. In PODC ’19, pages 307–316, 2019.
doi:10.1145/3293611.3331589.

23 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
January 1991. doi:10.1145/114005.102808.

24 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–
492, 1990.

25 Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for elec-
tronic voting by randomized partial checking. In 11th USENIX Security Symposium, Au-
gust 2002. URL: https://www.usenix.org/conference/11th-usenix-security-symposium/
making-mix-nets-robust-electronic-voting-randomized.

26 Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In
WPES, pages 61–70, 2005. doi:10.1145/1102199.1102213.

27 Harry A. Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan.
An empirical study of namecoin and lessons for decentralized namespace design. In Workshop
on the Economics of Information Security, 2015.

28 Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communi-
cations of the ACM 21, (7), 558-565, July 1978. URL: https://www.microsoft.com/en-us/
research/publication/time-clocks-ordering-events-distributed-system/.

29 Leslie Lamport. The part-time parliament. In ACM TOCS, pages 133–169, 1998. doi:
10.1145/279227.279229.

30 Ming K. Lim, Yan Li, Chao Wang, and Ming-Lang Tseng. A literature review of blockchain
technology applications in supply chains: A comprehensive analysis of themes, methodologies
and industries. Computers and Industrial Engineering, 154:107133, 2021. doi:10.1016/j.cie.
2021.107133.

31 Nitin Naik and Paul Jenkins. uport open-source identity management system: An assessment of
self-sovereign identity and user-centric data platform built on blockchain. In IEEE International
Symposium on Systems Engineering (ISSE), pages 1–7, 2020. doi:10.1109/ISSE49799.2020.
9272223.

32 Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki Okamoto. An
improvement on a practical secret voting scheme. In Information Security, pages 225–234,
1999.

33 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology — CRYPTO ’91, pages 129–140, 1992.

34 Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management–a consolidated proposal for terminology. Version
v0, 31, January 2007.

35 Nicolas van Saberhagen. Cryptonote v 2.0, October 2013.

A Variations on the listed-values array

In the previous sections, we assumed the listed-values array was append-only. Some use cases
might need to use a different configuration for this array. In this section, we explore use
cases where the listed-values array is no longer append-only.

Let us start by considering the simplest case in which processes can only remove the
values they wrote themselves. This results in no conflicts between APPEND and REMOVE
operations. The listed-values array can be seen as an array of |ΠV | values. A process pi can
write the i-th index of the listed-values array. As only pi can modify this value, there are no

https://doi.org/10.1016/j.vehcom.2022.100458
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1145/114005.102808
https://www.usenix.org/conference/11th-usenix-security-symposium/making-mix-nets-robust-electronic-voting-randomized
https://www.usenix.org/conference/11th-usenix-security-symposium/making-mix-nets-robust-electronic-voting-randomized
https://doi.org/10.1145/1102199.1102213
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://www.microsoft.com/en-us/research/publication/time-clocks-ordering-events-distributed-system/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1016/j.cie.2021.107133
https://doi.org/10.1016/j.cie.2021.107133
https://doi.org/10.1109/ISSE49799.2020.9272223
https://doi.org/10.1109/ISSE49799.2020.9272223

D. Frey, M. Gestin, and M. Raynal 21:19

conflicts upon writing (append/remove). This allows us to easily add a REMOVE operation
to an AllowList or DenyList object. In the case of the AllowList, this is particularly interesting
because it effectively allows the AllowList to act as a DenyList. Let us assume the managers
add all the elements of the universe of the possible identifiers to the AllowList in the first place.
Then, this AllowList can implement a DenyList object, where the REMOVE operation of the
AllowList is equivalent to the APPEND operation of the DenyList. The resulting AllowList
with REMOVE needs an anti-flickering property to prevent concurrent PROVE operations
from yielding conflicting results. This makes the AllowList with REMOVE equivalent to a
DenyList object: its consensus number is k, where k is the number of processes in ΠV .

A more complex case arises when multiple processes can remove a written value. We
associate each process pi with a predefined authorization set Ai ⊆ ΠM , defining which
processes can APPEND or REMOVE on pi’s register. We always have pi ∈ Ai. If pj ∈ Ai,
then pj is allowed to ”overwrite” (remove) anything pi wrote. In this case, APPEND
and REMOVE operation can conflict with each other and authorized processes need to
synchronize when modifying the listed-values array. Specifically, let kARi = |A⟩| be the
number of processes that can modify the ith array position and let kAR = maxi(kARi

) be
the largest value of kARi

over all the array positions. Then the consensus number of the
APPEND and REMOVE operation is kARi .

B Anonymous Asset-Transfer object type

Existing work by Guerraoui et al [22] and Auvolat [5] provides good insight into the problem
of asset transfer, but it only studies pseudonymous systems, where all transactions can be
linked to a single pseudonym. We now show how our formalization of AllowList and DenyList
allows us to reason about anonymous and unlinkable asset transfer solutions [7, 35].

B.1 Problem formalization
The Asset-Transfer object type allows a set of processes to exchange assets via a distributed
network. We reformulate the definition proposed by Guerraoui et al. [22]:

▶ Definition 10. The (pseudonymous) Asset-Transfer object type proposes two operations,
TRANSFER and BALANCE. The object type is defined for a set Π of processes and a
set W of accounts. An account is defined by the amount of assets it contains at time t.
Each account is initially attributed an amount of assets equal to v0 ∈ Z+∗. We define a
map µ : W → {0, 1}|Π| which associates each account to the processes that can invoke
TRANSFER operations for these wallets. The Asset Transfer object type supports two
operations, TRANSFER and BALANCE. When considering a TRANSFER(i, j, v) operation,
i ∈ W is called the initiator, j ∈ W is called the recipient, and v ∈ N is called the amount
transferred. Let T (i, j)t be the sum of all valid TRANSFER operations initiated by process
i and received by process j before time t. These operations respect three properties:

(Termination) TRANSFER and BALANCE operations always return if they are invoked
by a correct process.
(TRANSFER Validity) The validity of an operation TRANSFER(x, y, v) invoked at time
t by a process p is defined in a recursive way. If no TRANSFER(x, i, v), ∀i ∈ W was
invoked before time t, then the operation is valid if v ≤ v0 and if p ∈ µ(x). Otherwise,
the operation is valid if v ≤ v0 +

∑
i∈W T (i, x)t −

∑
j∈W T (x, j)t and if p ∈ µ(x).

(BALANCE Validity) A BALANCE operation invoked at time t is valid if it returns
v0 +

∑
i∈W T (i, x)t −

∑
j∈W T (x, j)t for each account x.

DISC 2023

21:20 The Synchronization Power of Access Control Objects

The Asset transfer object is believed to necessitate a double-spending-prevention property.
This property is captured by the TRANSFER Validity property of Definition 10. Indeed,
the double-spending-prevention property is defined to avoid ex-nihilo money creation. In a
wait-free implementation, a valid transfer operation is atomic. Therefore, double spending is
already prevented. A TRANSFER operation takes into account all previous transfers from
the same account.

The paper by Guerraoui et al. [22] informs us that the consensus number of such an object
depends on the map µ. If

∑
i∈{0,··· ,|Π|} µ(w)[i] ≤ 1, ∀ w ∈ W, then the consensus number of

the object type is 1. Otherwise, the consensus number is maxw∈W(
∑

i∈{0,··· ,|Π|} µ(w)[i]). In
other words, the consensus number of such object type is the maximum number of different
processes that can invoke a TRANSFER operation on behalf of a given wallet.

From continuous balances to token-based Asset-Transfer

The definition proposed by Guerraoui et al. uses a continuous representation of the balance
of each account. Implementing anonymous money transfer with such a representation would
require a mechanism to hide the transaction amounts [7]. As such a mechanism would
not affect the synchronization properties of the AAT object, we simplify the problem by
considering a token-based representation. A transfer in the tokenized version for a value
of kV consists of k TRANSFER operations, each transferring a token of value V . The full
version of the paper [19] provised a bijection that makes it possible to move to and from the
continous and token-based representations.

Anonymity set

Let S be a set of actors. We define “anonymity” as the fact that, from the point of view of
an observer, o /∈ S, the action, v, of an actor, a ∈ S, cannot be distinguished from the action
of any other actor, a′ ∈ S. We call S the anonymity set of a for the action v [34].

Implementing Anonymous Asset Transfer requires hiding the association between a token
and the account or process that owns it. If a “token owner” transfers tokens from the same
account twice, these two transactions can be linked together and are no longer anonymous.
Therefore, we assume that the ”token owner” possesses offline proofs of ownership of tokens.
These proofs are associated with shared online elements, allowing other processes to verify
the validity of transactions. We call wallet the set of offline proofs owned by a specific user.
We call the individual who owns this wallet the wallet owner. A wallet owner can own
multiple wallets, while a wallet is owned by only one owner. Furthermore, we assume each
process can invoke TRANSFER operations on behalf of multiple wallet owners. Otherwise,
a single process, which is in most cases identified by its ip-address or its public key, would
be associated with a single wallet and the system could not be anonymous. With the
same reasoning, we can assume that a wallet owner can request many processes to invoke a
TRANSFER operation on his or her behalf. Otherwise, the setup would not provide “network
anonymity”, but only “federated anonymity”, where the wallet is anonymous among all other
wallets connected to this same process. In our model, processes act as proxies.

The Anonymous Asset-Transfer object type

The first difference between a Pseudonymous Asset Transfer object type and an anonymous
one is the absence of a BALANCE operation. The wallet owner can compute the balance
of its own wallet using a LOCALBALANCE function that is not part of the distributed
object. The TRANSFER operation is also slightly modified. Let us consider a sender that

D. Frey, M. Gestin, and M. Raynal 21:21

wants to transfer a token TO to a recipient. The recipient creates a new token TR with the
associated cryptographic offline proofs (in practice, TR can be created by the sender using
the public key of the recipient). Specifically, it associates it with a private key. This private
key is known only to the recipient: its knowledge represents, in fact, the possession of the
token. Prior to the transfer operation, the recipient sends token TR to the sender. The
sender destroys token TO and activates token TR. The destruction prevents double spending,
and the creation makes it possible to transfer the token to a new owner while hiding the
recipient’s identity. Furthermore, this process of destruction and creation makes it possible
to unlink the usages of what is ultimately a unique token.

Each agent maintains a local wallet that contains the tokens (with the associated offline
proofs) owned by the agent. The owner of a wallet w can invoke TRANSFER operations
using any of the processes in µ(w). A transfer carried out from a process p for wallet w is
associated with an anonymity set ASw

p of size equal to the number of wallets associated
with process p: |ASw

p | =
∑

i∈W µ(i)[p]. The setup with the maximal anonymity set for
each transaction is an Anonymous Asset Transfer object where each wallet can perform
a TRANSFER operation from any process: i.e., µ(i) = {1}|Π|, ∀i ∈ W. The token-based
Anonymous Asset Transfer object type is defined as follows:

▶ Definition 11. The Anonymous Asset Transfer object type supports only one operation:
the TRANSFER operation. It is defined for a set Π of processes and a set W of wallets. An
account is defined by the amount of tokens it controls at time t. Each account is initially
attributed an amount v0 of tokens. We define a map µ : W → {0, 1}|Π| which associates
each wallet to the processes that can invoke TRANSFER on behalf of these wallets. When
considering a TRANSFER(TO, TR) operation, T0 is the cryptographic material of the initiator
that proves the existence of a token T , and TR is the cryptographic material produced by the
recipient used to create a new token. The TRANSFER operation respects three properties:

(Termination) The TRANSFER operation always returns if it is invoked by a correct
process.
(TRANSFER Validity) A TRANSFER(TO, TR) operation invoked at time t is valid if:

(Existence) The token TO already existed before the transaction, i.e., either it is one of
the tokens initially created, or it has been created during a valid TRANSFER(T ′O, TO)
operation invoked at time t′ < t.
(Double spending prevention) No TRANSFER(TO, T ′R) has been invoked at time
t′′ < t.

(Anonymity) A TRANSFER(TO, TR) invoked by process p does not reveal information
about the owner w and w′ of TO and TR, except from the fact that w belongs to the
anonymity set ASw

p .

The TRANSFER validity property implies that the wallet owner can provide existence
and non-double-spending proofs to the network. It implies that any other owner in the
same anonymity set and with the same cryptographic material (randomness and associated
element) can require the transfer of the same token. We know the material required to
produce a TRANSFER proof is stored in the wallet. Furthermore, we can assume that all the
randomness used by a given wallet owner is produced by a randomness Oracle that derives a
seed to obtain random numbers. Each seed is unique to each wallet. We assume the numbers
output by an oracle seem random to an external observer, but two processes that share the
same seed will obtain the same set of random numbers in the same order.

A transaction must be advertised to other processes and wallet owners via the TRANSFER
operation. Therefore, proofs of transfer are public. We know these proofs are deterministically
computed thanks to our deterministic random oracle model. Furthermore, only one sender

DISC 2023

21:22 The Synchronization Power of Access Control Objects

and recipient are associated with each transfer operation. Therefore, the public proof
cryptographically binds (without revealing them) the sender to the transaction. Hence, the
public proof is a cryptographic commitment, which can be opened by the sender or any other
actor who knows the same information as the sender.

In order to study the consensus number of this object, we consider that wallet owners can
share their cryptographic material with the entire network, thereby giving up their anonymity.
This would not make any sense in an anonymous system, but it represents a valuable tool to
reason about the consensus number of the object. This sharing process can be implemented
by an atomic register (and therefore has no impact on the consensus number).

Processes can derive the sender’s identity from the shared information using a local
“uncommit” function. The ”uncommit” function takes as input an oracle, a random seed,
token elements, and an “on-ledger” proof of transfer of a token and outputs a wallet owner
ID if the elements are valid. Otherwise, it outputs ∅.

B.2 Consensus number of the Anonymous Asset-Transfer object type
Lower bound

Algorithm 4 presents an algorithm that implements a k-consensus object, using only k-
Anonymous Asset Transfer objects and SWMR registers. The k in k-Anonymous Asset
Transfer object refers here to the size of the biggest µ(w), ∀ w ∈ W.

Algorithm 4 Implementation of a k-consensus object using k-Anon-AT objects.
Shared variables:

AT ← k-Anonymous-AT object, initialized with k + 1 wallets,
each one of the k first wallets possesses the elements
necessary to transfer one shared token, the k + 1-th
wallet is the recipient of the transfers, it is not controlled
by any process;

RM-LEDGER ← Atomic Snapshot object, initially {∅}k;

V-LED ← Atomic Snapshot object, initially {∅}k;
O ← A random oracle;
TokenMat ← secret associated with a unique token;

Local variables:
seed ← random number;

Operation PROPOSE(v) is:
1: RM-LEDGER[p].update(seed, p);
2: V-LED[p].update(v, p);
3: res ← AT.transfer(TokenMat, O, seed, k + 1);
4: RML ← RM-LEDGER.snapshot();
5: VL ← V-LED.snapshot();
6: For i in {1, · · · , k} do:
7: If uncommit(O, RML[i], TokenMat, res) ̸= ∅ then:
8: Return VL[i];
9: Return False;

▶ Theorem 12. Algorithm 4 wait-free implements k-consensus.

Proof. The proof of Theorem 12 is given in the full version of this paper [19]. ◀

Upper Bound

We give an implementation of the Anon-AT object using only Atomic Snapshot objects,
DenyList objects, and AllowList objects. Each wallet owner can request a TRANSFER
operation to k different processes. The proposed implementation uses disposable tokens that
are either created at the initialization of the system or during the transfer of a token. When
a token is destroyed, a new token can be created, and the new owner of the token is the only
one to know the cryptographic material associated with this new token. In the following,
we use the zero-knowledge version of the DenyList and AllowList object types, where all
set-(non-)membership proofs use a zero-knowledge setup. In addition, we use an AllowList
object to ensure that a token exists (no ex-nihilo creation), and we use a DenyList object to
ensure that the token is not already spent (double-spending protection).

D. Frey, M. Gestin, and M. Raynal 21:23

The underlying cryptographic objects used are out of the scope of this paper. However,
we assume our implementation uses the ZeroCash [7] cryptographic implementation, which
is a sound anonymous asset transfer algorithm. More precisely, we will use a high-level
definition of their off-chain functions. It is important to point out that using the ZeroCash
implementation, it is possible to transfer value from a pseudonymous asset transfer object to
an anonymous one using a special transaction called “Mint”. To simplify our construction,
we assume that each wallet is created with an initial amount of tokens v0 and that our object
does not allow cross-chain transfers. We, therefore, have no “Mint” operation.

ZeroCash uses a TRANSFER operation called pour that performs a transfer operation
destroying and creating the associated cryptographic material. Here, we use a modified
version of pour which does not perform the transfer or any non-local operation. It is a black-
box local function that creates the cryptographic material required prove the destruction
of the source token (TO) and the creation of the destination one (TR). Our modified pour
function takes as input the source token, the private key of the sender (sks), and the public
key of the recipient (pkr): pour(TO, pkr, sks)→ tx, tx being the cryptographic material that
makes it possible to destroy TO and create TR.

There might be multiple processes transferring tokens concurrently. Therefore, we define
a deterministic local function ChooseLeader(A, tx), which takes as input any set A and a
transaction tx, and outputs a single participant p which invoked BL.PROVE(tx).7

Algorithm 5 Anon-AT object implementation using SWMR registers, AllowList objects, and
DenyList objects.

Shared variables:
DL ← k-DenyList object, initially (∅, ∅);

AL ← AllowList object, initially ({(token(i,j))t
i=1}

k
j=1, ∅)

Operation TRANSFER(TO, pkr, sks) is:
1: tx← Pour(TO, pkr, sks)
2: If verify(tx) and tx ∈ AL and tx /∈ DL then:
3: AL.PROVE(tx);
4: DL.PROVE(tx);

5: DL.APPEND(tx);
6: Do:
7: ret ← DL.PROVE(tx);
8: While ret ̸= false;
9: If ChooseLeader(DL.READ(), tx.TR)=p then:

10: AL.append(tx.TR);
11: Return tx.TR;
12: Return False;

▶ Theorem 13. Algorithm 5 wait-free implements an Anon-AT object.

Proof. The proof of Theorem 13 is given in the full version of this paper [19]. ◀

▶ Corollary 14. The consensus number upper bound of a k-anon-AT object is k. Using this
corollary and Theorem 12, we further deduct that k-anon-AT object has consensus number k.

7 In reality, the signature of chooseLeader would be more complicated as the function needs TO, pkr, sks

in addition to tx. These additional elements make it possible to uncommit tx, thereby matching the
values of the PROVE operation with tx.TR. Note that this does not pose an anonymity threat as this
is a local function invoked by the owner of sks. We omit these details to simplify the presentation.

DISC 2023

	1 Introduction
	2 Preliminaries
	2.1 Computation Model
	2.2 Number theory preliminaries

	3 The AllowList and DenyList objects: Definition
	4 PROOF-LIST object specification
	5 The consensus number of the AllowList object
	6 The consensus number of the DenyList object
	6.1 Lower bound
	6.2 Upper bound

	7 Discussion
	7.1 Revocation of a verifiable credential
	7.2 The Anonymous Asset Transfer object
	7.3 Distributed e-vote systems

	8 Related Works
	9 Conclusion
	A Variations on the listed-values array
	B Anonymous Asset-Transfer object type
	B.1 Problem formalization
	B.2 Consensus number of the Anonymous Asset-Transfer object type

