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Abstract
The distributed coloring problem is at the core of the area of distributed graph algorithms and it
is a problem that has seen tremendous progress over the last few years. Much of the remarkable
recent progress on deterministic distributed coloring algorithms is based on two main tools: a)
defective colorings in which every node of a given color can have a limited number of neighbors
of the same color and b) list coloring, a natural generalization of the standard coloring problem
that naturally appears when colorings are computed in different stages and one has to extend a
previously computed partial coloring to a full coloring.

In this paper, we introduce list defective colorings, which can be seen as a generalization of these
two coloring variants. Essentially, in a list defective coloring instance, each node v is given a list of
colors xv,1, . . . , xv,p together with a list of defects dv,1, . . . , dv,p such that if v is colored with color
xv,i, it is allowed to have at most dv,i neighbors with color xv,i.

We highlight the important role of list defective colorings by showing that faster list defective
coloring algorithms would directly lead to faster deterministic (∆ + 1)-coloring algorithms in the
LOCAL model. Further, we extend a recent distributed list coloring algorithm by Maus and Tonoyan
[DISC ’20]. Slightly simplified, we show that if for each node v it holds that

∑p

i=1

(
dv,i + 1)2 >

deg2
G(v)·poly log ∆ then this list defective coloring instance can be solved in a communication-efficient

way in only O(log ∆) communication rounds. This leads to the first deterministic (∆ + 1)-coloring
algorithm in the standard CONGEST model with a time complexity of O(

√
∆ · poly log ∆ + log∗ n),

matching the best time complexity in the LOCAL model up to a poly log ∆ factor.
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1 Introduction and Related Work

Distributed graph coloring is one of the core problems in the area of distributed graph
algorithms. One typically assumes that the graph G = (V, E) to be colored represents a
communication network of n nodes with maximum degree ∆ and that the nodes (or edges)
of G must be colored in a distributed way by exchanging messages over the edges of G. The
nodes typically interact with each other in synchronous rounds. If the size of messages is not
restricted, this is known as the LOCAL model and if in every round, every node can send
an O(log n)-bit message to every neighbor, it is known as the CONGEST model [33]. The
problem was first studied by Linial in a paper that pioneered the whole area of distributed
graph algorithms [26]. Linial in particular showed that coloring a ring network with O(1)
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colors (and thus coloring a graph with f(∆) colors) requires Ω(log∗ n) rounds and that in
O(log∗ n) rounds, one can color any graph with O(∆2) colors. Subsequently, there has been
a plethora of work on distributed coloring algorithms, e.g., [19, 1, 31, 36, 32, 25, 11, 7, 12,
5, 14, 22, 13, 24, 30, 29, 18, 20, 21]. The most standard variant of the distributed coloring
problem asks for a proper coloring of the nodes V of G with ∆ + 1 colors. Note that this is
what can be achieved by a simple sequential greedy algorithm.

Over the last approximately 15 years, we have seen remarkable progress on randomized
and on deterministic distributed coloring algorithms. Much of the progress on deterministic
algorithms (which are the focus of the present paper) has been achieved by studying and
using two generalizations of the standard coloring problem, defective colorings and list
colorings. In the following, we briefly discuss the history and significance of defective
colorings and of list colorings in the context of deterministic distributed coloring algorithms.
For lack of space, we do not discuss, the very early work on deterministic distributed
coloring [26, 19, 36, 25], the deterministic algorithms that directly result from computing
network decomposition [1, 32, 34, 17, 16], or the vast literature on randomized distributed
coloring algorithms, e.g., [28, 35, 12, 22, 13, 20, 21].

Defective Coloring. Given integers d ≥ 0 and c > 0, a d-defective c-coloring of a graph
G = (V, E) is an assignment of colors {1, . . . , c} to the nodes in V such that the subgraph
induced by each color class has a maximum degree of at most d [27]. Defective colorings
were introduced to distributed algorithms independently by Barenboim and Elkin [6] and
by Kuhn [23] in 2009. Both papers give distributed algorithms to compute d-defective
colorings with O(∆2/d2) colors. The algorithm of [23] extends the classic O(∆2)-coloring
algorithm by Linial to achieving this in O(log∗ n) time. Both papers use defective colorings to
compute proper colorings in a divide-and-conquer fashion, leading to algorithms to compute
a (∆ + 1)-coloring in O(∆ + log∗ n) rounds.1 This idea was pushed further by Barenboim
and Elkin in [7] and [8]. In [7], they introduce the notion of arbdefective colorings: Instead of
decomposing a graph into color classes of bounded degree, the aim is to decompose a graph
into color classes of bounded arboricity. More specifically, the output of an arbdefective
c-coloring algorithm with arbdefect d is a coloring of nodes with colors {1, . . . , c} together
with an orientation of the edges such that every node has at most d outneighbors of the
same color. For this more relaxed version of defective coloring, they show that for a given
oriented graph with maximum outdegree β, one can efficiently compute a d-arbdefective
coloring with O(β/d)-colors (in time O(β2/d2 · log n)). Applying this recursively, for example
allows us to obtain a ∆1+o(1)-coloring in time poly log ∆ · log n. In [8], it is shown that for a
family of graphs that includes line graphs, one can efficiently compute a standard d-defective
coloring with only O(∆/d) colors in time O(∆2/d2 +log∗ n). This in particular implies that a
∆1+o(1)-edge coloring can be computed in time poly log ∆ + O(log∗ n). All the algorithms of
[6, 23, 7, 8] use defective coloring in the following basic way. If a computed defective coloring
has p colors, the space of available colors is divided into p parts that can then be assigned to
the p color classes and handled in parallel on the respective lower degree/arboricity graphs.
When doing this, one inherently has to use more than ∆ + 1 colors because in each defective
coloring step, the maximum degree (or outdegree) goes down at a factor that is somewhat
smaller than the number of colors of the defective coloring. In [6, 23], this is compensated
by reducing the number of colors at the end of each recursion level. However, this leads to
algorithms with time complexity at least linear in ∆.

1 Earlier algorithms were based on simple round-by-round color reduction schemes and required O(∆2 +
log∗ n) [26, 19] and O(∆ log ∆ + log∗ n) rounds [36, 25], respectively.
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List Coloring. The key to obtaining (∆+1)-coloring algorithms with a better time complexity
is to explicitly consider the more general (degree + 1)-list coloring problem. In this problem,
every node v receives a list Lv of at least deg(v) + 1 colors as input and an algorithm has
to properly color the graph in such a way that each node v is colored with a color from its
list Lv. Note that this problem can still be solved by a simple sequential greedy algorithm.
Note also that the problem appears naturally when solving the standard (∆ + 1)-coloring
problem in different phases. If a subset S ⊆ V is already colored, then each node v ∈ V \ S

needs to be colored with a color that is not already taken by some neighbor in S. If v has
degree ∆ and all already colored neighbors of v have chosen different colors, the list of the
remaining available colors for v is exactly of length deg(v) + 1. The first paper that explicitly
considered list coloring in the context of deterministic distributed coloring is by Barenboim [5].
In combination with the improved arbdefective coloring algorithm of [10], the algorithm
of the paper obtains a (1 + ε)∆-coloring in O(

√
∆ + log∗ n) rounds by first computing a

O(
√

∆)-arbdefective O(
√

∆)-coloring and by afterwards iterating over the O(
√

∆) color
classes of this arbdefective coloring and solving the corresponding list coloring problem
in O(1) time. With the same technique, the paper also gets an O(∆3/4 + log∗ n)-round
algorithm for (∆ + 1)-coloring. This algorithm also works in the CONGEST model, i.e., by
exchanging messages of at most O(log n) bits. For algorithms with a round complexity of
the form f(∆) + O(log∗ n), this still is the fastest known (∆ + 1)-coloring algorithm in the
CONGEST model. The algorithm was improved by Fraigniaud, Kosowski, and Heinrich [14].
In combination with the subsequent results of [10, 30], the algorithm of [14] leads to an
O(

√
∆ log ∆ + log∗ n)-round distributed algorithm for (degree + 1)-list coloring and thus also

for (∆ + 1)-coloring. As one of the main results of this paper, we give a CONGEST algorithm
that almost matches this and that has a time complexity of O(

√
∆ poly log ∆ + log∗ n). List

colorings and defective colorings have also been explicitly used in all later deterministic
distributed coloring algorithms [24, 4, 18, 3]. We next discuss an idea that was introduced in
[24] and that is particularly important in the context of the present paper.

Distributed Color Space Reduction. The objective of [24] was to extend the coloring
algorithms of [7, 8] to list colorings. The algorithms of [7, 8] are based on computing
arbdefective or defective colorings to recursively divide the graph into low (out)degree parts
that use disjoint sets of colors. This leads to fast coloring algorithms, however, the number of
required colors grows exponentially with the number of recursion levels. While it is not clear
how to efficiently turn a standard distributed coloring algorithm that uses significantly more
than ∆ + 1 colors into a (∆ + 1)-coloring algorithm, by using the techniques introduced in
[5, 14], we can do this if we have a list coloring algorithm. Essentially, if we have a list coloring
algorithm that uses lists of size O(α(∆ + 1)), it can be turned into a (degree + 1)-list coloring
algorithm in only Õ(α2) rounds (and in some cases even in O(α) rounds). However, if the
nodes have different lists, a defective coloring does not easily split the graph into independent
coloring problems. As a generalization of defective colorings, [24] introduces a tool called
color space reduction. Assuming that all lists consist of colors of some color space C. For a
given partition of C into disjoint parts C1, . . . , Cp, a color space reduction algorithm partitions
the nodes V into p parts V1, . . . , Vp such that for every node v, with v ∈ Vi and v has degi(v)
neighbors in Vi, the algorithm tries to keep the ratio |Lv ∩ Ci|/ degi(v) as close as possible
to the initial list-degree ratio |Lv|/ deg(v). In [24], it is shown that the arbdefective and
defective coloring algorithms of [7, 8] can be generalized to compute a color space reduction.
If the size of the color space is polynomial in ∆, this lead to (degree + 1)-coloring algorithms
with time complexities of 2O(

√
log ∆) log n in general graphs and of 2O(

√
log n) + O(log∗ n) in

DISC 2023
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graphs of bounded neighborhood independence, a family of graphs that includes line graphs
of bounded rank hypergraphs. The complexity of the (degree + 1)-edge coloring problem was
later improved to (log ∆)O(log log ∆) + O(log∗ n) in [4] and to poly log ∆ + O(log∗ n) in [3]. In
both cases, this was achieved by designing better distributed color space reduction algorithms
for line graphs. The (∆ + 1)-coloring algorithm of [24] for general graphs was later subsumed
by a deterministic O(log2 ∆ · log n)-round algorithm for the (∆ + 1)-coloring problem in [18].

List Defective Colorings. Color space reductions can be seen as a special case of the
following list variant of defective colorings. Each node v has a list of possible colors that it
can choose (e.g., which color subspace Ci to use). Depending on what color v chooses, it can
tolerate different defects (e.g., depending on the size |Lv,i ∩ Ci| of the remaining color list
when choosing color subspace Ci). In the following, we formally define list defective colorings.
One of the objectives of this paper is to understand the relation of list defective colorings
to each other and to other coloring problems, and we will see in particular that better list
defective coloring algorithms can directly lead to better algorithms for standard coloring
problems.

In a list defective coloring problem, as input, each node v obtains a color list Lv ⊆ C,
where C is the space of possible colors. Each node v further has a defect function dv : Lv → N0
that assigns a non-negative integral defect value to each color in v’s list Lv. Given vertex
lists Lv, a list vertex coloring is an assignment φ : V → C that assigns each node v ∈ V a
color φ(v) ∈ Lv. In the following, we formally define three variants of list defective coloring.

▶ Definition 1 (List Defective Coloring). Let G = (V, E) be a graph, let C be a color space, and
assume that each node v ∈ V is given a color list Lv ⊆ C and a defect function dv : Lv → N0.
Further, assume that we are given a list vertex coloring φ : V → C.

The coloring φ is a list defective coloring iff every v ∈ V has at most dv(φ(v)) neighbors
of color φ(v) ∈ Lv.
If G is a directed graph, φ is called an oriented list defective coloring iff every v ∈ V has
at most dv(φ(v)) out-neighbors of color φ(v) ∈ Lv.
In combination with an edge orientation σ, φ is called a list arbdefective coloring iff
it is an oriented list defective coloring w.r.t. the directed graph induced by the edge
orientation σ.

An (oriented) list (arb)defective coloring is called an (oriented) p-list (arb)defective coloring
for some integer p > 0 if for all v ∈ V , |Lv| ≤ p.

Note that the difference between an oriented list defective coloring and a list arbdefective
coloring is that in an oriented list defective coloring, the edge orientation of G is given as
part of the input and in a list arbdefective coloring, the edge orientation is a part of the
output. By a result of Lovász [27], it is well-known that a d-defective c-coloring of a graph
G with maximum degree ∆ always exists if c(d + 1) > ∆. Note that this condition is also
necessary if G = K∆+1. By computing a balanced orientation of the edges of each color
class of such a coloring, one can also deduce that a d-arbdefective c-coloring always exists
if c(2d + 1) > ∆. Again, this condition is necessary if G = K∆+1. By generalizing the
potential function argument of [27], in the full version of this paper [15], we prove that the
natural generalization of both existential statements also holds for the respective list defective
coloring variants. Specifically, we show that for given color lists Lv and defect functions dv,
a list defective coloring always exists if

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)
> ∆ (1)
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and a list arbdefective coloring always exists if

∀v ∈ V :
∑

x∈Lv

(
2dv(x) + 1

)
> ∆. (2)

Both conditions are necessary if the graph is a (∆ + 1)-clique and if all nodes have the
same color list and the same defect function. For arbdefective colorings, it has further been
shown in [2] that Condition (1) is necessary and sufficient to compute such colorings in time
f(∆) + O(log∗ n). Whenever (1) does not hold, there is an Ω(log∆ n)-round lower bound for
deterministic distributed list arbdefective coloring algorithms.

1.1 Our Contributions
In the following, whenever we consider a graph G = (V, E), we assume that n denotes the
number of nodes of G, ∆ denotes the maximum degree of G, and deg(v) denotes the degree
of a node v. Also, if G is a directed graph, βv refers to the outdegree of node v and β

denotes the maximum outdegree. Further, if we discuss any list defective coloring problem,
unless stated otherwise, we assume that the colors come from space C, Lv ⊆ C denotes
the list of node v, and dv denotes the defect function of nodes v. We further assume that
Λ := maxv∈V |Lv| denotes the maximum list size. As it is common in the distributed setting,
we do not analyze the complexity of internal computations at nodes. We briefly discuss the
complexity of internal computations for our algorithms in the full version [15].

Oriented List Defective Coloring. As our main technical contribution, we give an efficient
deterministic distributed algorithm for computing oriented list defective colorings. This
algorithm is an adaptation of the techniques developed by Maus and Tonoyan [30] to obtain a
2-round algorithm for proper vertex colorings in directed graphs of small maximum outdegree.

▶ Theorem 2. Let G = (V, E) be a properly m-colored directed graph and assume that we are
given an oriented list defective coloring instance on G. Assume that for every node v ∈ V ,
for a sufficiently large constant α > 0, it holds that∑

x∈Lv

(
dv(x) + 1

)2 ≥ α · β2
v · κ(β, C, m), (3)

where κ(β, C, m) = (log β + log log |C| + log log m) · (log log β + log log m) · log2 log β.
Then, there is a deterministic distributed algorithm that solves this oriented list defect-

ive coloring instance in O(log β) rounds using O
(

min {|C|, Λ · log |C|} + log β + log m
)
-bit

messages.

Recursive Color Space Reduction. We have already discussed that we can use list defective
colorings to recursively divide the color space. We next elaborate on power of doing recursive
color space reduction directly for list defective coloring problems. The following theorem
shows that in this way, at the cost of solving a somewhat weaker problem, we can sometimes
significantly improve the time complexity or the required message size. In the following, we
assume that we have an oriented list defective coloring algorithm A, where the complexity
is in particular a function of the maximum list size Λ. More specifically, the following
theorem specifies the properties of A by an arbitrary parameter ν ≥ 0 and by arbitrary
non-decreasing functions κ(Λ), T (Λ), and M(Λ). Note that the functions κ(Λ), T (Λ), and
M(Λ) can in principle also depend on other global properties such as the maximum degree ∆,
the maximum outdegree β, or the number of nodes n. When applying A to obtain algorithm
A′, we then however treat those other parameters as fixed quantities.

DISC 2023
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▶ Theorem 3. Let ν ≥ 0 be a parameter and let κ(Λ), T (Λ), and M(Λ) be non-decreasing
functions of the maximum list size Λ. Assume that we are given a deterministic distributed
algorithm A that solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that the round complexity of A is T (Λ) and that A requires messages of
M(Λ) bits.

Then, for any integer p ∈ (1, |C|], there exists a deterministic distributed algorithm A′

that solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(p)⌈logp |C|⌉

in time O(T (p) · logp |C|) and with M(p)-bit messages.

When replacing βv by deg(v), the same theorem also holds for list defective colorings (in
undirected graphs). One can easily see this as a list defective coloring can be turned into an
equivalent oriented list defective problem, by replacing every edge {u, v} of an undirected
graph by the two directed edges (u, v) and (v, u).

Note that the number of colors of a standard defective coloring corresponds to the
maximum list size Λ of a list defective coloring, i.e., a standard defective coloring with c

colors is a special case of list defective coloring with lists of size c. Many of the existing
defective and arbdefective coloring algorithms have a round complexity that is of the form
poly(c) + O(log∗ n) [8, 11, 10]. For a concrete application of Theorem 3, we therefore assume
that the time complexity of algorithm A is of the form T (Λ) = poly(Λ) + O(log∗ n). For
simplicity, we further assume that the size of the color space C is at most polynomial in β.
By setting p = 2O(

√
log β·log κ(Λ)), we then get an algorithm that solves oriented list defective

coloring problems with ∀v ∈ V :
∑

x∈Lv
(dv(x) + 1)1+ν ≥ β1+ν

v · 2O(
√

log β·log κ(Λ)) in time
2O(

√
log β·log κ(Λ)) + O(log∗ n) rounds. For details, we refer to Corollary 13 in Section 4.

As a second application of Theorem 3, consider the oriented list defective coloring
algorithm given by Theorem 2. The round complexity of this algorithm is O(log β) and
we cannot hope to get a time improvement by recursively subdividing the color space. We
can however improve the necessary message size. The message size of the algorithm is
essentially linear in the maximum list size Λ. If we choose p ≪ Λ, the message size becomes
essentially linear in p. Assume for example that Λ and the color space are both polynomial
in β. We then only need a constant number of recursion levels to reduce the message size to
O(βε + log m) for any constant ε > 0 (see Corollary 14). We will apply this idea to obtain
our new CONGEST algorithm for the (∆ + 1)-coloring problem.

Degree + 1 and List Arbdefective Colorings. The remaining contributions deal with
applying (oriented) list defective coloring algorithms to solve the standard (degree+1)-coloring
problem and more general other coloring problems. The following theorem shows that in
combination with (oriented) list defective coloring algorithms, the general technique of [5, 14]
cannot only be used to solve standard (degree + 1)-coloring instances, but more generally also
to solve list arbdefective coloring instances for which for all nodes v,

∑
x∈Lv

(dv(x) + 1) ≥
deg(v) + 1. Further, if we assume (oriented) list defective coloring algorithms of a certain
quality (which is better than what we currently know), we directly obtain algorithms
that potentially significantly improve the state of the art for the standard (degree + 1)-
coloring problem. For the following theorem, we assume that for two parameters ν > 0 and
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κ > 0, we have an oriented list defective coloring algorithm AO
ν,κ or a list defective coloring

algorithm AD
ν,κ to solve instances for which for all v,

∑
x∈Lv

(dv(x) + 1)1+ν ≥ β1+ν
v · κ or∑

x∈Lv
(dv(x) + 1)1+ν ≥ deg(v)1+ν · κ. We use T O

ν,κ and T D
ν,κ to denote the time complexities

of the two algorithms. Note that the parameter κ can depend (monotonically) on global
properties such as the maximum list size Λ, the maximum degree ∆, or the maximum
outdegree β. We then however treat those global parameters as fixed quantities when
applying the algorithms AO

ν,κ and AD
ν,κ recursively.

▶ Theorem 4. Let ν ≥ 0 and κ > 0 be two parameters, let G = (V, E) be an undirected
graph with maximum degree ∆, and assume that we are given a list arbdefective coloring
instance of G for which ∀v ∈ V :

∑
x∈Lv

(dv(x) + 1) > deg(v). Using the oriented list
defective coloring algorithm AO

ν,κ, the given list arbdefective coloring problem can be solved in
O

(
Λ

ν
1+ν · κ

1
1+ν · log(∆) · T O

ν,κ + log∗ n
)

rounds. Using the list defective coloring algorithm AD
ν,κ,

the given list arbdefective coloring problem can be solved in O
(
Λν · κ2 · log(∆) · T D

ν,κ + log∗ n
)

rounds. If ν ≥ ν0 for some constant ν0 > 0, in both time bounds, the log(∆) term can be
substituted by log(∆/Λ). If AD

ν,κ (or AO
ν,κ) uses messages of at most B bits, then the resulting

list arbdefective coloring algorithm uses messages of O(B + log n) bits.

Note that the algorithm of Theorem 2 satisfies the requirements of algorithm AO
ν,κ for

ν = 1. If we assume that we first compute an O(∆2)-coloring of G in time O(log∗ n) by using
a standard algorithm of [26] and if we assume the size of the color space is at most exponential
in ∆, then κ = O(log ∆ · log3 log ∆) and T O

ν,κ = O(log ∆). When using the algorithm of
Theorem 2 as algorithm AO

ν,κ in Theorem 4, Theorem 4 therefore implies that the given
arbdefective coloring instance can be solved in O

(√
Λ · log3/2 ∆ · log3/2 log ∆ + log∗ n

)
rounds.

Hence, the theorem in particular entails that a d-arbdefective ⌊ ∆
d+1 + 1⌋-coloring can be

computed in O(
√

∆/(d + 1) · log3/2 ∆ · log3/2 log ∆+log∗ n) rounds. Even when using O(∆/d)
colors, the best previous algorithm for this problem required O(∆/d + log∗ n) rounds [10].
Theorem 4 further shows that if we could get a fast oriented list defective coloring algorithm for
a condition of the form

∑
x∈Lv

(dv(x)+1)2−ε ≥ β2−ε
v poly log ∆, we would already significantly

improve the existing O(
√

∆ log ∆ + log∗ n)-round algorithm of [14, 10, 30] to compute a
(∆ + 1)-coloring. The same would be true in case we could get a fast list defective coloring
algorithm for a condition of the form

∑
x∈Lv

(dv(x) + 1)3/2−ε ≥ deg(v)3/2−ε · poly log ∆. This
indicates that the current obstacle for significantly improving the O(

√
∆ log ∆+log∗ n)-round

algorithm (in case this is possible) is to improve our understanding of the complexity of
computing defective colorings and possible list defective colorings.

Faster Coloring in the CONGEST Model. Finally, we show that by combining Theorems 2–
4, we obtain a faster (degree + 1)-list coloring for the CONGEST model.

▶ Theorem 5. Let G = (V, E) be an n-node graph and assume that we are given a (degree+1)-
list coloring instance on G. If the color space C of the problem is of size |C| ≤ poly(∆),
there exists a deterministic CONGEST algorithm for solving the (degree + 1)-list coloring
instance in time

√
∆ · poly log ∆ + O(log∗ n). If the color space is of size |C| = O(∆) (such

as, e.g., for the standard (∆ + 1)-coloring problem), the time complexity of the algorithm is
O(

√
∆ · log2 ∆ · log6 log ∆ + log∗ n).

Note that there is a O(log2 ∆ · log n)-round CONGEST algorithm for solving (degree + 1)-
list coloring instances [18]. Further, by [14, 10, 30] there is an O(

√
∆ log ∆+log∗ n) algorithm

for the problem that uses messages of size Õ(∆). Thus, (∆ + 1)-coloring algorithms running
in

√
∆ · poly log ∆ + O(log∗ n) rounds in the CONGEST model are already known as long

DISC 2023



22:8 List Defective Colorings: Distributed Algorithms and Applications

as ∆ = O(log n) or ∆ = Ω(log2 n). Our results fill this gap and give such an algorithm for
∆ ∈ [ω(log n), o(log2 n)]. A rough explanation of why the previous deterministic CONGEST
algorithms fail to compute (∆ + 1)-colorings efficiently when ∆ ∈ [ω(log n), o(log2 n)] is the
following. In the algorithm of [14, 10, 30], every node has to learn the color lists of its
neighbors, which requires that Ω(∆ · log ∆) bits have to be sent over every edge (which only
works in CONGEST if ∆ = O(log n)). For other algorithms (such as for the algorithm of
[18]), the round complexity of the algorithms is at least Ω(log n), which only leads to efficient
time complexities in Õ(

√
∆) if ∆ = Ω(log2 n).

1.2 Organization of the paper
The remainder of the paper is organized as follows. In Section 2, we formally define
the communication model and we introduce the necessary mathematical notations and
definitions. Section 3 is the main technical section. It discusses our oriented list defective
coloring algorithms, leading to the proof of Theorem 2. Subsequently, Section 4 discusses how
to improve existing list (defective) coloring algorithms by recursively reducing the color space.
Section 5 then shows how (oriented) list defective coloring algorithms can be applied to
efficiently solve the standard (degree + 1)-coloring problem and even list arbdefective coloring
problems. The section also shows how this, in combination with the results in Section 3 and
Section 4, leads to our new (degree + 1)-coloring algorithm for the CONGEST model. Due to
lack of space, all formal proofs are deferred to the full version of the paper [15].

2 Model and Preliminaries

Communication Model. In the LOCAL model and the CONGEST model [33], the network
is abstracted as an n-node graph G = (V, E) in which each node is equipped with a unique
O(log n)-bit identifier. Communication happens in synchronous rounds. In every round,
every node of G can send a potentially different message to each of its neighbors, receive the
messages from the neighbors and perform some arbitrary internal computation. Even if G is
a directed graph, we assume that communication can happen in both directions. All nodes
start an algorithm at time 0 and the time or round complexity of an algorithm is defined
as the total number of rounds needed until all nodes terminate (i.e., output their color in a
coloring problem). In the LOCAL model, nodes are allowed to exchange arbitrary messages,
whereas in the CONGEST model, messages must consist of at most O(log n) bits.

Mathematical Notation. Let G = (V, E) be a graph. Throughout the paper, we use
degG(v) to denote the degree of a node v ∈ V in G and ∆(G) to denote the maximum degree
of G. If G is a directed graph, we further use βv,G to denote the outdegree of a node v ∈ V .
More specifically, for convenience, we define βv,G as the maximum of 1 and the outdegree
of v, i.e., we also set βv,G = 1 if the outdegree of v is 0. The maximum outdegree βG of G

is defined as βG := maxv∈V βv,G. We further use NG(v) to denote the set of neighbors of
a node v and if G is a directed graph, we use Nout

G (v) to denote the set of outneighbors of
v. In all cases, if G is clear from the context, we omit the subscript G. When discussing
one of the list defective coloring problems on a graph G = (V, E), we will typically assume
that C denotes the space of possible colors, and we use Lv and dv for v ∈ V to denote the
color list and defect function of node v. Throughout the paper, we will w.l.o.g. assume that
C ⊆ N is a subset of the natural numbers. When clear from the context, we do not explicitly
introduce this notation each time. Further, for convenience, for an integer k ≥ 1, we use
[k] := {1, . . . , k} to denote the set of integers from 1 to k. Further, for a finite set A and an
integer k ≥ 0, we use 2A to denote the power set of A and

(
A
k

)
to denote the set of subsets of

size k of A. Finally, we use log(x) := log2(x) and ln(x) := loge(x).
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3 Distributed Oriented List Defective Coloring Algorithms

3.1 Fundamentals
Our algorithm in based on the list coloring approach of Maus and Tonoyan [30] that we sketch
next. As input, each node of G = (V, E) obtains a color list Lv ⊆ C of size |Lv| ≥ αβ2τ for a
sufficiently large constant α > 0 and some integer parameter τ > 0. In addition, the nodes
are equipped with an initial proper m-coloring of G. The “highlevel” idea is based on the
classic one-round O(β2 log m)-coloring algorithm of Linial [26]. As an intermediate step of
the algorithm of [30], every node v chooses a subset Cv ⊆ Lv of size |Cv| = βτ of its list such
that for every outneighbor u of v, it holds that |Cu ∩ Cv| < τ . To obtain a proper coloring of
G, node v can then choose a color x ∈ Cv that does not appear in any of the sets Cu of one
of the ≤ β outneighbors u of v. If all nodes have to pick a color from

{
1, . . . , αβ2τ

}
and if

τ = O(log β + log m) is chosen sufficiently large, Linial shows that such sets Cv for all nodes
v can be computed in 0 rounds without communication. However, this is not true for the list
coloring variant of the problem considered in [30].

Before we show how the authors of [30] overcome the problems of list, we introduce
some terminology. Let P0 be the original list coloring problem that we need to solve and let
P1 be the intermediate problem of choosing a set Cv from

(
Lv

β·τ
)

s.t. |Cv ∩ Cu| < τ for all
outneighbors u of v. As discussed, after solving P1, P0 can be solved in a single round, each
node v just needs to learn the sets Cu of all its outneighbors u. To solve P1, the authors
of [30] introduce a new problem P2, that can be seen as a “higher-dimensional” variant of
Linial’s algorithm. P2 is defined in such a way that it can be solved without communication
in 0 rounds and such that after solving P2, P1 can be solved in a single round. In problem
P2, every node v computes a set of possible candidates for the set Cv. For a more detailed
description we need to define the following conflict relation.

▶ Definition 6 (Conflict relation Ψ(τ ′, τ)). Let τ ′, τ > 0 be two parameters. The relation
Ψ(τ ′, τ) ⊆ 22C × 22C is defined as follows. For any K1, K2 ∈ 22C , we have

(K1, K2) ∈ Ψ(τ ′, τ) ⇔ ∃ distinct C1, . . . , Cτ ′ ∈ K1 s.t.
∀i ∈ {1, . . . , τ ′} ∃ C ∈ K2 for which |Ci ∩ C| ≥ τ.

In a solution to problem P2, every node v outputs a set Kv ⊆ 2(Lv
βτ) such that |Kv| = βτ ′

(for some integer parameter τ ′ > 0) and such that for every outneighbor u of v, (Kv, Ku) ̸∈
Ψ(τ ′, τ). Note that this implies that for every outneighbor u, Kv contains at most τ ′ − 1
sets C for which there is a set C ′ ∈ Ku for which |C ∩ C ′| ≥ τ . Because Kv has size
βτ ′, there exists some Cv ∈ Kv such that for every C ′ ∈ Ku for every outneighbor u, we
have |Cv ∩ C ′| < τ . A solution of P2 can be transformed into a solution of P1 in a single
round (each node v has to communicate it’s set Kv to all its outneighbors u). Maus and
Tonoyan [30] showed that for appropriate choices of the parameters τ and τ ′, P2 can be
solved in 0 rounds. To see this, consider the following technical lemma, which follows almost
directly from Lemmas 3.3 and 3.4 in [30].

▶ Lemma 7 (adapted from [30]). Let γ, τ, τ ′ ≥ 1 be three integer parameters such that
τ ≥ 8 log γ + 2 log log |C| + 2 log log m + 16 and τ ′ = 2τ−⌈log(2eγ2)⌉. For every color list
L ∈

(C
ℓ

)
of size ℓ for some ℓ ≥ 2eγ2τ , we further define S(L) :=

(( L
γτ)
γτ ′

)
. Then, there

exists S̄(L) ⊆ S(L) such that |S̄(L)| ≥ |S(L)|/2 and such that for every K ∈ S̄(L) and
every L′ ∈

(C
ℓ

)
, there are at most d2 < 1

4m|C|ℓ · |S(L)| different K ′ ∈ S(L′) such that
(K, K ′) ∈ Ψ(τ ′, τ) or (K ′, K) ∈ Ψ(τ ′, τ). Further, for every K ∈ S(L) and every L′ ∈

(C
ℓ

)
,

there are at most d2 different K ′ ∈ S(L′) for which (K, K ′) ∈ Ψ(τ ′, τ).
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Let us sketch how Lemma 7 implies that for appropriate choices of the parameters, P2
can be solved without communication. In the following, we set the parameters of Lemma 7
as γ := β and τ and τ ′ as given by the lemma statement. Assume that initially, every node v

has a list Lv of size ℓ, where ℓ ≥ 2eβ2τ . We define the type Tv of a node as the tuple (c, Lv),
where c is the color of v in the initial proper m-coloring of G and Lv ∈

(C
ℓ

)
is the color list of

v. Let T1, . . . , Tt be a fixed ordering of the t = m
(|C|

ℓ

)
≤ m|C|ℓ types and let Li be the color

list of nodes of type Ti. If we assign a set Ki ∈ S(L) to each type Ti so that for any two
sets Ki and Kj , (Ki, Kj) ̸∈ Ψ(τ ′, τ) and (Kj , Ki) ̸∈ Ψ(τ ′, τ), then if each node v of type Ti

(for i ∈ {1, . . . , t}) outputs Ki, this assignment solves problem P2. We assign the sets Ki

greedily, where for every type Ti, we choose some Ki ∈ S̄(Li) such that S̄(Li) is the subset
of S(Li) that is guaranteed to exist by Lemma 7. Assume for any i ≥ 1 each type Tj for
j ∈ {1, . . . , i − 1} already picked Kj . Then type Ti will pick some list Ki ∈ S̄(L) that does
not conflict with choices of the i − 1 previous types. By the lemma, for any type Tj , j ̸= i,
there are at most d2 < 1

4m|C|ℓ · |S(Li)| ≤ 1
2t · |S̄(Li)| sets in S̄(Li) that conflict. Because

there are only t types, we can always choose an appropriate Ki that does not conflict with
already assigned sets Kj for j < i. Consequently, P2 can be solved in 0 rounds, and thus the
original list coloring problem can be solved in 2 rounds.

3.2 Basic Oriented List Defective Coloring Algorithm

In the following, we first give a basic algorithm that solves a slightly generalized version of
the OLDC problem. Concretely, the algorithm assigns a color xv ∈ Lv with defect dv(xv) to
each node v s.t. at most dv(xv) outneighbors w of v choose a color xw with |xv − xw| ≤ g,
where g ≥ 0 is some given parameter. Recall that we assume that all colors are integers and
therefore, the value |xv − xw| is defined. Note that for g = 0, this is the OLDC problem as
defined in Definition 1. We give a basic algorithm for this more general problem because we
will need it as a subroutine in the algorithm for proving our main technical result, Theorem 2.
The steps for solving the generalized OLDC problem are similar to the approach described in
Section 3.1. We however in particular have to adapt the algorithm to handle the case where
each node comes with an individual list size.

A single defect per node. At the core of our basic (generalized) OLDC algorithm is
an algorithm that solves the following weaker variant of the problem. Instead of having
color-specific defects, every node v has a fixed defect value dv ≥ 0, i.e., we have dv(x) = dv

for all x ∈ Lv. Based on an algorithm for this single-defect case, one can solve the general
OLDC problem by using a reduction explained in the proof of Lemma 12. For that reason,
assume during the following section that each node v has three given inputs, a color list Lv, a
defect value dv ≥ 0 and the number of outneighbors βv. For each node v, the algorithm then
requires lists of size |Lv| ≥ α(βv/(dv + 1))2 · τ for some constant α > 0 and some parameter
τ > 0. Note that the required list size only depends on the ratio between βv and dv + 1 and
not on their actual values. In the following section we therefore do not work with the defect
value dv or the outdegree βv of some node, but with a value γv that is essentially equal to
the ratio βv/(dv + 1) such that the list size of v is proportional to γ2

v . More formally, we
partition the nodes into so-called γ-classes such that nodes in the same class have the same
value γv and hence a similar βv/(dv + 1) ratio. The details appear in the subsequent section.
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3.2.1 γ-Classes and Parameters

Each node v comes with some parameter γv = 2i for some i ∈ [h], where h is a parameter.
We call i the γ-class of v. Since these γ-classes have a natural order, we call a node u to be
in a lower (respectively higher) γ-class than v if iu < iv (respectively iu > iv). We define
the following two parameters, which both depend on the maximum γ-class index h, the color
space C, and the initial (proper) m-coloring of G.

τ(h, C, m) := ⌈8h + 2 log log |C| + 2 log log m + 16⌉, (4)

τ ′(h, C, m) := 2τ(h,C,m)−⌈2h+log(2e)⌉. (5)

Note that these choices are consistent with the parameter setting in Lemma 7. If clear
from the context, we omit the parameters h, C and m for simplicity and denote τ(h, C, m)
by τ and τ ′(h, C, m) by τ ′. A node v of γ-class iv is equipped with a color list Lv of
size |Lv| = ℓiv

:= α · 4iv τ(2g + 1) = αγ2
vτ(2g + 1) for some sufficiently large α > 0 and

g > 0. Because we solve a generalized version of the OLDC problem, we have to use a more
general form for our conflict relation Ψ. Let x ∈ C be a color and C ⊆ C a set of colors,
we denote the number of conflicts of x with colors in C regarding some given g ≥ 0 by
µg(x, C) := |{c ∈ C | |x − c| ≤ g }|.

▶ Definition 8 (τ&g-conflict). Two lists C, C ′ ⊆ C do τ&g-conflict if
∑

x∈C µg(x, C ′) ≥ τ .

Note that
∑

x∈C µg(x, C ′) =
∑

x∈C′ µg(x, C) is always true. The Ψ conflict relation from
Definition 6 is adapted accordingly.

▶ Definition 9 (Conflict relation Ψg(τ ′, τ)). Let τ ′, τ > 0 be two parameters. The relation
Ψg(τ ′, τ) ⊆ 22C × 22C is defined as follows. For any K1, K2 ∈ 22C , we have

(K1, K2) ∈ Ψg(τ ′, τ) ⇔ ∃ distinct C1, . . . , Cτ ′ ∈ K1 s.t.
∀i ∈ {1, . . . , τ ′} ∃ C ∈ K2 for which Ci and C do τ&g-conflict.

We adapt the definitions of problem P1 and P2 to what we need for the generalized OLDC
problem. We define ki := 2i · τ and k′ := 2h · τ ′. Subsequently, we denote the γ-class of a
node v by iv.

▶ Definition 10 (Problems P1 and P2).
P1: Every node v has to output Cv ⊆ Lv of size |Cv| = kiv

s.t. there are at most dv/2
outneighbors u of v s.t. u is in γ-class iu ≤ iv, Cu and Cv do τ&g-conflict.

P2: Every node v has to output a list Kv ∈ 2( Lv
kiv

) of size |Kv| = k′ s.t. for each outneighbor
u in γ-class iu ≤ iv, (Kv, Ku) ̸∈ Ψg(τ ′, τ).

The next lemma states that P2 can be solved in zero rounds. The high-level idea is to
first adapt Lemma 7 such that we can apply it even if the size of the initial color lists differs.
We start by using a simple trick to make sure that the color list Lv of each node v does not
contain colors that are close to each other i.e., there are no distinct colors x1, x2 ∈ Lv s.t.
|x1 −x2| ≤ g. After doing this, the conflict relation Ψg behaves almost the same as Ψ behaves
in the fundamental problem. For details, we refer to the full version of the paper [15].

▶ Lemma 11. P2 can be solved without communication given an initial m-coloring.
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3.2.2 Algorithm
Assume each node is equipped with a color list of size |Lv| ≥ α (βv/(dv + 1))2

τ(2g + 1) and
some defect value dv > 0. The γ-class of a node v is defined as the smallest iv s.t. 2iv ≥ 2βv

dv+1 .
Based on the individual γ-class, each node solves P2 (Lemma 11) and forwards the solution
to the neighbors. The knowledge gained by that is used to solve P1 without additional
communication. In more detail, node v comes with list Kv s.t. (Kv, Ku) ̸∈ Ψg(τ ′, τ) for any
outneighbor u with iu ≤ iv. This implies that at most τ ′ − 1 lists C ∈ Kv do τ&g-conflict
with some list in Ku. Hence, there are at most βv(τ ′ − 1) many C ∈ Kv that τ&g-conflict.
By the pigeonhole principle there is some Cv ∈ Kv with at most2 βv(τ ′ − 1)/k′ < (dv + 1)/2
many such conflicts within all the Cu of outneighbors u of smaller γ-classes. Hence, Cv is a
valid solution for P1 that is then forwarded to the neighbors.

To solve the list coloring problem itself we iterate through the γ-classes in descending
order. Each node v has to decide on a color x ∈ Cv s.t. in the end at most dv outneighbors
are colored with the same color x. Let us fix a node v. By design, in the iteration v decides
on a color, all outneighbors of higher γ-classes already decided on a color and v knows the
P1 solution lists Cu of the outneighbors u with iu ≤ iv. Let fv(x) be the frequency of color
x within the outneighbors u of v i.e., the sum over all occurrences of x in Cu’s of neighbors
with the same or smaller γ-class plus the number of outneighbors of higher γ-classes that are
already colored with x. The color x with the lowest frequency in Cv will be the final color of
v for the following reason: There are at most dv/2 outneighbors that have an unbounded
number of τ&g-conflicts, while Cv shares at most τ − 1 colors with the remaining Cu’s (note
that with outneighbors of higher γ-class at most one color in Cv is in conflict, hence, for
worst-case observation we can ignore that case). By the pigeonhole principle there exist a
color x ∈ Cv with

fv(x) ≤
∑

c∈Cv
fv(c)

|Cv|
≤ dv/2 · |Cv| + βv(τ − 1)

|Cv|
< dv + 1.

The round complexity of the whole algorithm is O(h), since we iterate through all the
γ-classes to assign colors. This completes the algorithm to handle single defects. We will
now extend this result to solve the OLDC problem.

3.2.3 Multiple Defects
In the general case, each node can have lists that are composed of colors of different defects.
In order to reduce the general case to the case, where each node only has a single defect, every
node v first rounds all its defects to the next smaller power of 2. Every node v then can have
h = O(log β) different defect values. The node v only keeps the colors in its list for one of
those defect values. This value is chosen such that the sum

∑
x∈L′

v
(dv(x) + 1)2 is maximized,

where L′
v is the reduced list of v. Note that when doing this, the sum

∑
x∈Lv

(dv(x) + 1)2 for
the original list Lv is at most by an O(h) = O(log β) factor larger.

▶ Lemma 12. Given a graph with an initial m-coloring. There is an O(h)-round LOCAL
algorithm that assigns each node v a color xv ∈ Lv such that every node v ∈ V has at most
dv(xv) outneighbors w with a color xw for which |xw − xv| ≤ g if for each node v ∈ V∑

x∈Lv

(dv(x) + 1)2 ≥ αβ2
v · τ(h, C, m) · h · (2g + 1)

for some sufficiently large constant α, some integer h ≥ maxv⌈log( βv

minx∈Lv dv(x)+1 )⌉ and
color space C. Messages are of size at most O(min{Λ · log |C|, |C|} + log log β + log m)-bits.

2 By definition of the γ-class, we have (dv + 1)/2 ≥ βv/2h
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To apply this lemma one can use that h = O(log β) and for some color space of size poly ∆
and initial O(∆2)-coloring (e.g., by [26]) we have τ(h, C, m) = O(log ∆). Hence, Lemma 12
solves the OLDC problem (where g = 0) in O(log ∆) communication rounds if the initial
color list Lv for each node v fulfills the condition

∑
x∈Lv

(dv(x) + 1)2 ≥ αβ2
v · log2 ∆ for some

sufficient large constant α. Note that the OLDC algorithm mentioned in Theorem 2 requires
a stronger condition on the color lists Lv than Lemma 12. However, to reach this better
result, we apply Lemma 12 as subroutine. The details of this more involved analysis are
stated in Appendix A.

4 Recursive Color Space Reduction

Distributed list defective coloring algorithms first implicitly appeared in [24] as a tool to
recursively reduce the color space of a distributed coloring problem. In this section, we show
that the idea of using list defective colorings to recursively reduce the color space can also
directly be applied to the (oriented) list defective coloring problem. In this way, at the cost of
requiring slightly larger lists, we can turn a given distributed (oriented) list defective coloring
algorithm into another distributed (oriented) list defective coloring algorithm that is faster
and/or needs smaller messages. The high-level idea is the following. Assume that we are
given an (oriented) list defective coloring problem with colors from a color space C. We can
arbitrarily partition C = C1 ∪ · · · ∪ Cp into p approximately equal parts. Instead of directly
choosing a color, each node v now first just selects the color subspace Ci from which v chooses
its color. If v starts with color list Lv, then after choosing the color subspace Ci, v’s color
list reduces to Lv,i = Lv ∩ Ci (with the original defects on those colors). However, v now
only has to compete with neighbors that also pick the same color subspace Ci. The choices
of color subspaces by the nodes can itself be phrased as an (oriented) list defective coloring
instance for a color space of size p and thus also with lists of size at most p. Theorem 3 in
Section 1.1 formalizes this idea.

It has been well-known since Linial’s seminal work in [26] that in directed graphs of
outdegree at most β, one can compute a proper O(β2)-coloring in O(log∗ n) rounds (or in
O(log∗ m) rounds if an initial proper m-coloring is provided). In [23], it was shown that
in the same way, one can also compute an oriented d-defective coloring with O((β/d)2)
colors. In [30], the coloring result of [26] was extended to the list coloring problem and in
Section 3 of this paper (and to a limited extent also in [30]), the defective coloring result
of [23] is extended to the oriented list defective coloring problem. While there has been
progress on solving the natural list and defective coloring variants of O(β2) coloring, it is still
unknown if a coloring with O(β2−ε) colors (for some constant ε > 0) can be computed in
time f(β) + O(log∗ n).3 Even if a moderately fast distributed algorithm for better oriented
list defective colorings exists, we directly also get much faster algorithms for computing
proper colorings with o(β2) colors. In the following, we assume that there exists an oriented
defective coloring algorithm with a round complexity that is polynomial in the number of
colors per node plus O(log∗ n). Such algorithm for example exist for (list) defective colorings
in graphs of neighborhood independence at most ∆ε [9, 24].

3 Note that oriented graphs with maximum outdegree β have colorings with O(β) colors. However, the
best distributed algorithm to compute an O(β)-coloring requires time O(log3 β · log n) [18]. It is not
known if colorings with O(β2−ε) colors can be computed with an n-dependency o(log n).
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▶ Corollary 13. Let ν ≥ 0 be a parameter and let κ(Λ) be a non-decreasing functions of the
maximum list size Λ. Assume that we are given a deterministic distributed algorithm A that
solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that if an initial proper m-coloring is given, A has a round complexity of
poly(Λ)+O(log∗ m). Then, there exists a

(
2O(

√
log β log κ(Λ))+O(log∗ m)

)
-round deterministic

distributed list coloring algorithm A′ to solve list coloring instances with colors from a color
space of size poly(β) for which

∀v ∈ V :
∑

x∈Lv

(dv(x) + 1)1+ν ≥ β1+ν
v · 2O(

√
log β·log κ(Λ)).

Note that the 2O(
√

log ∆) + O(log∗ n)-round algorithm for computing a (∆ + 1)-coloring
in graphs of bounded neighborhood independence and thus in particular in line graphs of
bounded rank hypergraphs is based on the same idea as Corollary 13. The corollary shows
how in some cases, recursive color space reduction can be used to significantly speed up a
given (oriented) list defective coloring problem. The following corollary shows that recursive
color space reduction can sometimes also be used to significantly reduce the required message
size of an (oriented) list defective coloring algorithm. In the oriented list defective coloring
algorithm of Section 3, all nodes need to learn the lists and defect vectors of their neighbors
and this dominates the required communication. A list Lv of length |Lv| ≤ Λ consisting
of colors from a color space of size |C| can be represented by min {|C|, Λ log |C|} bits and a
corresponding defect vector can be represented by Λ log β bits, or even by Λ log log β bits if
we assume that all defects are integer powers of 2 (which can usually be assumed at the cost
of a factor 2 in the required list size). In the following, we assume that we have an algorithm
that requires O(|C| · B + log n) bits for some parameter B ≥ 1 (the log n is included to cover
things like exchanging initial colors, unique IDs, etc.).

▶ Corollary 14. Let ν ≥ 0 be a parameter and let κ(Λ) be a non-decreasing functions of the
maximum list size Λ. Assume that we are given a deterministic distributed algorithm A that
solves oriented list defective coloring instances for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ(Λ).

Assume further that A has a round complexity of T (Λ) and requires messages of O(|C| · B +
log n) bits, where C the color space and B ≥ 1 is some parameter. Then, for every integer
r ≥ 1, there exists an O(T (Λ) · r)-round deterministic distributed list coloring algorithm A′

to solve list coloring instances with colors from the same color space and for which

∀v ∈ V :
∑

x∈Lv

(dv(x) + 1)1+ν = β1+ν
v · κ(Λ)r.

The algorithm A′ requires messages of size O(|C|1/r · B + log n).

As for Theorem 3, when replacing βv by deg(v), Corollary 13 and Corollary 14 both also
hold for the list defective coloring problem in undirected graphs.
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5 Applying List Defective Colorings

In [5] and [14], Barenboim, and Fraigniaud, Heinrich, and Kosowski developed a technique to
transform fast, but relaxed (oriented) list coloring into efficient algorithms for the (degree +1)-
list coloring problem. The same technique has later also been used by the algorithms in
[24, 4, 3]. The high-level idea of this transformation is as follows. Assume that for some
α > 1, we have a T -round algorithm A that solves list coloring instances with lists of size
> α∆ in graphs of maximum degree ∆. We can then first use a defective k-coloring to
decompose the graph into k subgraphs of maximum degree ≤ ∆/(2α). One then iterates
over those color classes and extends a given partial (degree + 1)-list coloring. When working
on the nodes of some color class, all nodes that still have at least ∆/2 uncolored neighbors
also still have a list of size > ∆/2. This is more than α times the maximum degree ∆/(2α)
in the current color class, and we can therefore color such nodes by using algorithm A. In
k · T rounds, we can therefore reduce the maximum degree of our (degree + 1)-list coloring
problem from ∆ to ∆/2 and by repeating O(log ∆) times, we can solve the (degree + 1)-list
coloring problem. If the algorithm A works on directed graphs of maximum outdegree β and
requires lists of size > αβ, the same idea also works if we decompose the graph by using an
arbdefective coloring instead of a defective coloring.

The contribution of this section is two-fold. Firstly, we show that if we assume the
existence of (oriented) list coloring algorithms that are significantly better than the current
state of the art, we would directly obtain significantly faster algorithms for the standard
(∆ + 1)-coloring problem. Moreover, we show that by replacing the algorithm A in the
description above by an (oriented) list defective coloring algorithm, the technique cannot only
be used for the (degree +1)-list coloring problem, but it also works for computing arbdefective
colorings and more generally list arbdefective colorings. In fact, it works for list arbdefective
colorings with lists Lv and defects dv such that for all v ∈ V ,

∑
v∈V (dv(x) + 1) > deg(v). In

the following, we refer to such instances as (degree+1)-list arbdefective coloring instances. We
subsequently assume that AD

ν,κ is a deterministic distributed list defective coloring algorithm
that operates on undirected graphs and AO

ν,κ is a deterministic distributed oriented list
defective coloring algorithm that operates on directed graphs. For real values ν ≥ 0 and
κ > 0 we assume that AD

ν,κ and AO
ν,κ solve all (oriented) list defective coloring problems for

which for all v ∈ V ,∑
x∈Lv

(
dv(x) + 1

)1+ν ≥ deg(v)1+ν · κ and (6)

∑
x∈Lv

(
dv(x) + 1

)1+ν ≥ β1+ν
v · κ, (7)

respectively. We assume that the round complexity of algorithm AD
ν,κ is T D

ν,κ and that the
round complexity of algorithm AO

ν,κ is T O
ν,κ. Theorem 4 in Section 1.1 shows that by using

AO
ν,κ, one can solve (degree + 1)-list arbdefective coloring instances in time O

(
Λ

ν
1+ν · κ

1
1+ν ·

log(∆) · T O
ν,κ + log∗ n

)
and by using AD

ν,κ one can solve such list arbdefective colorings in
time O

(
Λν · κ2 · log(∆) · T O

ν,κ + log∗ n
)
.

Implications of Theorem 4

We first discuss two immediate implications of Theorem 4, and we afterwards show how the
theorem can be used to improve the best current deterministic complexity of the (∆ + 1)-
coloring problem in the CONGEST model.
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Complexity of Computing (List) Arbdefective Colorings. For a first immediate implication
of Theorem 4, we can use the algorithm of Theorem 2 as the oriented list defective coloring
algorithm AO

ν,κ. If we assume that the color space that we have is of size |C| = poly(β),
in this case, ν = 1 and κ = O(log β · log3 log β). This results in an arbdefective coloring
algorithm that solves instances with lists Lv for which ∀v ∈ V :

∑
x∈Lv

(dv(x) + 1) >

deg(v) in time O
(√

Λ · log5/2 ∆ · log3/2 log ∆ + log∗ n
)
. In particular, this implies that

for any d ≥ 0 and any q > ∆
d+1 , a d-arbdefective q-coloring can be computed in time

O
(√

∆
d+1 · log5/2 ∆ · log3/2 log ∆ + log∗ n

)
, which significantly improves the previously best

algorithms that achieves the same arbdefective coloring in time O(∆ + log∗ n) [2] or a more
relaxed d-arbdefective O

( ∆
d+1

)
-coloring in time O

( ∆
d+1 +log∗ n

)
. Note also that the condition

∀v ∈ V :
∑

x∈Lv
(dv(x) + 1) > deg(v) is necessary in order to compute a (list) arbdefective

coloring in time f(∆)+O(log∗ n). If the condition does not hold, any deterministic algorithm
for the problem requires at least Ω(log∆ n) rounds [2].

Better List Defective Coloring Implies Better (∆+1)-Coloring. The theorem in particular
also implies that certain progress on (oriented) list defective coloring algorithms would
directly lead to faster algorithms for the standard (∆ + 1)-coloring problem. Assume that
for an initial m-coloring of the graph, we have an oriented list defective coloring algorithm
with a round complexity that is poly(Λ) + O(log∗ m) and that satisfies equation (6) for
any constant ν < 1. In combination with Corollary 13, Theorem 4 then implies that we
then obtain a (degree + 1)-list coloring (and thus (∆ + 1)-coloring) algorithm with a time
complexity of O

(
∆

ν
1+ν +o(1) + log∗ n

)
, which would be polynomial improvement over the

O(
√

∆ log ∆ + log∗ n)-round algorithm of [14, 10, 30]. The same would be true if we had a
list defective coloring algorithm with a round complexity of poly(Λ) + O(log∗ m) and that
satisfies equation (7) for any constant ν < 1/2. We believe that if it is possible to significantly
improve the current best O(

√
∆ log ∆ + log∗ n)-round of (∆ + 1)-coloring, the key will be to

better understand the distributed complexity of (oriented) defective colorings and probably
also of the more general (oriented) list defective colorings.

Complexity of (∆ + 1)-Coloring in the CONGEST Model. Apart from the standard
(∆ + 1)-coloring problem, in the following, we also consider the general (degree + 1)-list
coloring problem. In order to keep the results simple and because this is the most interesting
case, we will assume that we have (degree +1)-list coloring instances with a color space of size
at most poly(∆). Note that in the case of the standard (∆ + 1)-coloring problem, the color
space is of size ∆ + 1. For small ∆, the best (∆ + 1)-coloring algorithm in the LOCAL model
has a round complexity of O(

√
∆ log ∆ + log∗ n) [14, 10, 30] and Theorem 5 in Section 1.1

states that this round complexity can almost be matched in the CONGEST model.
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A Main Oriented List Defective Coloring Algorithm

If we have an OLDC instance in which some nodes have colors with constant defect require-
ments, the number of h of γ-classes can be Θ(β). Because also the value of τ(h, |C|, m) is
linear in h, this means that even if g = 0 and even if |C| and m are both polynomial in β,
the condition in Lemma 12 is of the form

∑
x∈Lv

(dv(x) + 1)2 ≥ αβ2
v log2 β. One of the log β

factors comes from the fact that at the very beginning of the algorithm, every node v reduces
its color list to a list in which all colors have approximately the same defect value. In the
following, we show that at the cost of a more complicated algorithm, we can improve this
log β factor to a factor of the form poly log log β. In the following discussion, we assume that
g = 0, but we note that along the way, we will have to use Lemma 12 with positive g as a
subroutine.

In order to obtain the improvement, we first want an algorithm where for computing
the 0-round problem P2, a node v of some γ-class only needs to compete with outneighbors
of the same γ-class. For this, we use an iterative approach to solve P2 and P1. For each
i ∈ [h], let Vi ⊆ V be the set of nodes in γ-class i. For each node v ∈ Vi that is colored
with some color x, we will make sure that v has at most dv(x)/4 outneighbors of color x

in γ-classes j for j < i, at most dv(x)/4 outneighbors of color x in the same γ-class and
that v has at most dv/2 outneighbors in γ-classes j for j > i. Thus, we assume that each
node v ∈ V only uses the part Lv,i of its Lv consisting of colors with a defect dv such that
γv = 2i ≥ 4βv/(dv + 1). We then iterate over the γ classes i ∈ [h] in increasing order. In
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iteration i, we solve problems P2 and P1 for the nodes in Vi. When dealing with nodes in
Vi, we can therefore assume that for all outneighbors in u ∈ Vj for j < i, the list Cu (i.e.,
the output of problem P1) is already computed. We then remove each color x from the
list Lv,i for which there are more than dv(x)/4 outneighbors u ∈ V1 ∪ · · · ∪ Vi−1 for which
x ∈ Cu. In this way, we guarantee that v cannot choose a color with defect more than dv/4
to outneighbors in lower γ-classes even before solving P2 for node v. We can then solve P2
and P1 by only considering outneighbors in Vi. Of course, we have to make sure that even
after removing colors from Lv,i, the list of v is still sufficiently large to solve problem P2.
The advantage of only having to consider neighbors in Vi when solving P2 and P1 is that in
the condition on

∑
x∈Lv,i

(dv(x) + 1)2, we can replace the outdegree βv of v by the number of
outneighbors βv,i that v has in Vi. This gives us more flexibility in the choice of v’s γ-class
i. If

∑
x∈Lv,i

(dv(x) + 1)2 is large, v can choose γ-class i and tolerate many outneighbors in
the same γ-class and if

∑
x∈Lv,i

(dv(x) + 1)2 is small, v can only choose γ-class i if a small
number of outneighbors choose γ-class i. We will see that the problem of choosing a good
γ-class can be phrased as an OLDC problem that can be solved by using Lemma 12 with
appropriate parameters. The following technical Lemma 15 assumes that the γ-classes are
already assigned and it formally proves under which conditions the above algorithmic idea
allows to solve a given OLDC instance.

▶ Lemma 15. Let G = (V, E) be a directed graph that is equipped with an initial proper
m-coloring. Let h ≥ 1 be an integer parameter and assume that every node v ∈ V is in some
γ-class iv ∈ [h]. For every i ∈ [h], let Vi be the nodes in γ-class i and let βv,i be the number
of outneighbors of v in Vi. Each node v has a color list Lv ⊆ C and one fixed defect value dv,
i.e., dv(x) = dv for all x ∈ Lv. We further define τ := τ(h, C, m) and some integer parameter
q ∈ [τ ]. We assume that for all v ∈ V

∀v ∈ V :
4 · max

{
βv,iv

, βv

q

}
dv + 1 ≤ 2iv and |Lv| ≥

α · 4iv + 4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j

·τ

for a sufficiently large constant α > 0. Then there is an O(h)-round algorithm that assigns
each node v a color x ∈ Lv such that every node v ∈ V has at most dv outneighbors of color
x. The algorithm requires messages consisting of O(min{Λ log |C|, |C|} + log log β + log m)
bits.

We are now ready to prove Theorem 2, our main contribution. In the following β̂v is the
outdegree of v rounded up to the next integer power of 2. Further β̂ := maxv∈V β̂v. Note that
for all v, we have β̂v ≤ 2βv. The following lemma is a rephrasing of the theorem. By adjusting
the constant α, Theorem 2 follows from Lemma 16 because for h = ⌈log β̂⌉ and h′ = ⌈log 4h⌉,
τ(h, C, m) = O(log β + log log |C| + log log m) and τ(h′, [h], m) = O(log log β + log log m).

▶ Lemma 16. Let G = (V, E) be a properly m-colored directed graph and let h := ⌈log β̂⌉
and h′ := 4⌈log4 log 8h⌉. Assume that we are given an OLDC instance on G for which

∀v ∈ V :
∑

x∈Lv

(
dv(x) + 1

)2 ≥ α2 · β̂2
v · τ · τ̄ · h′2, (8)

where τ = 4⌈log4 τ(h,C,m)⌉ and τ̄ = 4⌈log4 τ(h′,[h],m)⌉. Then, there is a deterministic distributed
algorithm that solves this OLDC instance in O(log β) rounds using O

(
min {|C|, Λ · log |C|} +

log β + log m
)
-bit messages.
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Proof. First note that w.l.o.g., we can assume that for all v and all x ∈ Lv, (dv(x) + 1)2

and α are both integer powers of 4. We can just round up α and round down dv(x) to
the next value for which this is true. We then just need to choose the constant α slightly
larger. With those assumptions, the right-hand side of (8) is then a integer power of 4. For
each node v, we define Rv := α · β̂2

v · τ̄ · h′2. For every v ∈ V and every x ∈ Lv, we then
have Rv

(dv(x)+1)2 = 4µ for some µ ∈ [h]. We can therefore partition each list Lv in to lists
Lv = Lv,1 ∪ · · · ∪ Lv,h such that for all µ ∈ [h], Lv,µ consists of the colors x ∈ Lv for which

Rv

(dv(x)+1)2 = 4µ. The algorithm to solve the given OLDC instance consists of two phases. In
the first phase, every node v ∈ V chooses its γ-class, which is an integer iv ∈ [h]. In the
second phase, we then use Lemma 15 to solve the OLDC instance.

We first discuss the objective of the first phase and we consider some node v. For every
µ ∈ [h], we define Dv,µ :=

∑
x∈Lv,µ

(dv(x) + 1)2 and Dv :=
∑h

µ=1 Dv,µ =
∑

x∈Lv
(dv(x) + 1)2.

For each µ ∈ [h], we further define λv,µ ∈ (0, 1] as follows

λv,µ :=
{

0 if Dv,µ/Dv < 1/(2h)
4⌊log4(Dv,µ/Dv)⌋ otherwise.

In the next part, we make a case distinction and first assume that λv,µ < 1/4 for all µ. The
case when there is some µ with λv,µ ≥ 1/4 is a simple case that we discuss later.

Case I: ∀µ ∈ [h] : λv,µ < 1/4. Note that the definition of λv,µ implies that for all µ

where λv,µ ̸= 0, λv,µ > 1/(8h) and λv,µ = 4−rv,µ for some integer rv,µ ∈ {0, . . . , ⌈log4 4h⌉}.
Note also that the values of Dv,µ for which λv,µ = 0 sum up to at most Dv/2 and therefore

h∑
µ=1

λv,µ ≥ 1
8 .

For every v ∈ V , we next define a function fv : [h] → [h] ∪ {⊥} such that for all µ ∈ [h],
fv(µ) = µ − rv,µ + 2 if λv,µ > 0 and fv(µ) = ⊥ otherwise. Note that 0 < λv,µ < 1/4 implies
that fv(µ) ≤ h. For every µ ∈ [h], we next also define a second function iv : [h] → [h] ∪ {⊥}
as follows. For every µ, we set iv(µ) = fv(µ) if fv(µ) = ⊥ or if fv(µ) ≥ 1 and there is
no µ′ < µ for which fv(µ′) = fv(µ). Otherwise, we set iv(µ) = ⊥. Note that for any two
µ, µ′ ∈ [h] with µ ≠ µ′, we either have iv(µ) = iv(µ′) = ⊥ or we have iv(µ) ̸= iv(µ′). We
next show that∑

µ∈[h]:iv(µ)̸=⊥

λv,µ ≥ 2
3 ·

∑
µ∈[h]:fv(µ)̸=⊥∧fv(µ)≥1

λv,µ ≥ 2
3 ·

(
1
8 − 1

48

)
≥ 1

20 . (9)

To see this, consider some µ for which λv,µ > 0. Note that for fv(µ) < 1, we need rv,µ ≥ µ+2
and therefore λv,µ ≤ 4−µ−2. Thus, the sum over those λv,µ is at most 4

3 · 4−1−2 = 1/48. It
therefore remains to show that the sum over the λv,µ for which fv(µ) ≥ 1, but iv(µ) = ⊥
is at most a third the sum over the λv,µ for which fv(µ) ≥ 1. We have iv(µ) = ⊥ and
fv(µ) ≥ 1 iff there is a µ′ < µ for which fv(µ′) = fv(µ). For fv(µ′) = fv(µ), we need to
have λv,µ = λv,µ′ · 4µ′−µ. Consider some value z ≥ 1 for which there is a value µz with
fv(µz) = z and assume that µz is the smallest such value. The sum over all λµ for µ > µz

and fv(µ) = fv(µz) is at most
∑∞

µ=µz+1 λµz
· 4µz−µ = λµz

/3. This concludes the proof of
Inequality (9).
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In order to assign a γ-class iv to every node v ∈ V , we define another (generalized) OLDC
instance. For this instance, the “color” list of node v is Lv = {iv(µ) : iv(µ) ̸= ⊥}. For every
i ∈ Lv, we define the inverse function µv(i) to be the value µ for which iv(µ) = i. For each
color i ∈ Lv, we then define a defect δv,i as

δv,i :=
⌊√

λv,µv(i) · Rv

⌋
.

We further define q := h and g := ⌊log h⌋. We then want to find an assignment of values
iv ∈ Lv to each node such that for every v ∈ V , the number of outneighbors u for which
iu ∈ [iv −g, iv] is at most δv,iv

. We next show that such an assignment of γ-classes iv satisfies
the requirement needed by Lemma 15 and we can therefore use it to efficiently solve the
original OLDC instance. We afterwards show that the generalized OLDC instance to find
the values iv satisfies the requirement of Lemma 12.

Let us therefore assume that we have an assignment of γ-class iv to the nodes that solve
the above generalized OLDC problem. For each i ∈ [h], we again use Vi to denote the set of
nodes v with iv = i and we assume βv,i is the number of outneighbors of v in Vi. The fact
that v has at most δv,iv

outneighbors u with iu ∈ [iv − g, iv] implies that δv,iv
≥ βv,j for all

j ∈ [iv − g, iv]. For all v ∈ V , we have

δv,iv =
⌊√

λv,µv(i) · Rv

⌋ (λv,µv(i)≥1/(8h))
≥

⌊√
Rv

8h

⌋
=

√
α · β̂2

v · τ̄ · h′2

8h

 ≥ β̂v

h
.

The last inequality follows because h, τ, τ̄ , h′ ≥ 1 and if we choose α ≥ 8. For the following
calculations, we define µv := µv(iv) = iv + rv,µ − 2. Note that if v chooses γ-class iv, it uses
the colors in Lv,µv

. All those colors have a defect dv such that (dv + 1)2 = Rv/4µv . Using
q = h, we therefore have

4 · max
{

βv,iv
, βv

q

}
dv + 1 ≤ 4 · δv,iv

dv + 1

≤

√
16λv,µv · Rv

(dv + 1)2

=
√

16λv,µv
· 4µv

=
√

42 · 4−rv,µv · 4iv+rv,µv −2 = 2iv .

The first part of the requirement of Lemma 15 is therefore satisfied. For the second part, recall
that v uses the colors in Lv,µv and that Dv,µv =

∑
x∈Lv,µv

(dv(x) + 1)2 = |Lv,µv | · (dv + 1)2,
where dv is defined as before. We have

|Lv,µv | ≥ λv,µv
Dv

(dv + 1)2 ≥ λv,µv
· ατ · Rv

(dv + 1)2 = 4−rv,µv · ατ · 4µv = α

16 · 4iv · τ. (10)

Before we continue, we switch to Case II.

Case II: ∃µ ∈ [h] : λv,µ ≥ 1/4. Before looking of the problem of assigning the γ-
classes, we have a look at the requirements for Lemma 15 in Case II, i.e., if there is a
µ ∈ [h] for which λv,µ ≥ 1/4. Let µv be one such value µ. In this case, we set iv = µv,

Lv = {iv}, and δv,iv := ⌊
√

Rv/4⌋. We then have δv,iv =
⌊√

αβ̂2
v τ̄h′2/16

⌋
≥ βv. The last

inequality holds if α ≥ 16 because τ̄ and h′ are positive integers. We therefore clearly have
δv,iv ≥ max {βv,iv , βv/q} and therefore

4 · max
{

βv,iv
, βv

q

}
dv + 1 ≤ 4δv,iv

dv + 1 ≤

√
16Rv

16(dv + 1)2 = 2µv = 2iv .
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Hence, the first part of the requirement of Lemma 15 also holds in Case II. Similarly to Case
I, we can lower bound the size of the color list Lv,µv

that is used by v:

|Lv,µv
| ≥ λv,µv

Dv

(dv + 1)2 ≥ ατ · Rv

4(dv + 1)2 = α

4 · 4iv · τ. (11)

The bound given by (10) therefore also holds in Case II.
We now continue considering both cases together. It remains to show (to apply Lemma 15)

that

|Lv,µv | ≥ α′ · 4iv · τ + 4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j · τ (12)

for some constant α′ that can be chosen as large as needed by choosing the constant α

sufficiently large. Note that we have g = ⌊log q⌋ and thus for j ∈ [iv − ⌊log q⌋, iv], βv,j ≤ δv,iv
.

We therefore have

4
dv + 1 ·

iv−1∑
j=iv−⌊log q⌋

βv,j · 2j · τ ≤ 4δv,iv
τ

dv + 1 ·
g∑

ℓ=1
2iv−ℓ <

4δv,iv

dv + 1 · 2iv · τ.

We have already seen that 4δv,iv
/(dv + 1) ≤ 2iv and the bound in the above inequality can

therefore be upper bounded by 4iv τ . For every constant α′ > 0, we can therefore choose a
constant α > 0 such that the bound in (12) is upper bounded by the bound in (10). This
shows that if v is in Case I, node v satisfies the requirements to apply Lemma 15.

We next also show that the assignment of γ-classes iv can be done by using the algorithm
of Lemma 12. Recall that every node v needs to pick an iv ∈ Lv such that the total number
of outneighbors u that pick iu ∈ [iv − g, iv] is at most δv,iv . To apply Lemma 12, we have to
lower bound

∑
i∈Lv

(δv,i + 1)2. We have

∑
i∈Lv

(δv,i + 1)2 ≥ min
{

1
16 ,

∑
i∈Lv

λv,µv(i)

}
· Rv

(9)
≥ 1

20 · Rv

= 1
20 · α · β̂2

v · τ̄ · h′2.

Note that we have g = ⌊log h⌋ and h′ ≥ log(8h). We therefore have 2h′ ≥ 2g +1. By choosing
a sufficiently large constant α, the above inequality therefore implies that the requirements of
Lemma 12 are satisfied as long as the value of τ̄ is sufficiently large. We have τ̄ = τ(h′, [h], m).
Note that the color space of the OLDC problem that we use to assign the values iv is [h].
Recall that for all v and µ, λv,µ = 0 or λv,µ ≥ 1/(8h). For each node v ∈ V , we therefore
have

min
i∈Lv

δv,i ≥ min
{√

Rv

4 ,
√

λv,µv(i)Rv

}
≥ min

{
1
4 ,

1√
8h

}
·
√

Rv ≥
√

Rv

8h
≥ βv

8h
.

We therefore have

max
v∈V

βv

mini∈Lv
δv,i + 1 ≤ 8h.

Because we have h′ ≥ log(8h), the choice τ̄ = τ(h′, [h], m) satisfies the requirements of
Lemma 12 and we can therefore compute the γ-classes iv for all nodes v by using the
algorithm of Lemma 12.
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We will now analyze the required message size and round complexity of the algorithm.
In the first phase the OLDC problem on color lists Lv and defects δv,iv

has to be solved.
As |Lv| ≤ h and transmitting such a single defect does not need more than log h bits, by
Lemma 12, solving this OLDC instance the maximum message size is O(h + log h + log m) =
O(h + log m) bits. The number of rounds needed for this first phase are O(h′). In the second
phase we have messages of size O(min{|C| + Λ log |C|} + log log β) (the initial color is already
known in the second phase) due to Lemma 12. The round complexity of the second phase is
O(h) due to Lemma 15. Combining both phases and using that h′ = O(h) = O(log β), the
maximum message size and the runtime are as stated. ◀
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