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Abstract
Detecting the source of a gossip is a critical issue, related to identifying patient zero in an epidemic,
or the origin of a rumor in a social network. Although it is widely acknowledged that random and
local gossip communications make source identification difficult, there exists no general quantification
of the level of anonymity provided to the source. This paper presents a principled method based on
ε-differential privacy to analyze the inherent source anonymity of gossiping for a large class of graphs.
First, we quantify the fundamental limit of source anonymity any gossip protocol can guarantee
in an arbitrary communication graph. In particular, our result indicates that when the graph has
poor connectivity, no gossip protocol can guarantee any meaningful level of differential privacy. This
prompted us to further analyze graphs with controlled connectivity. We prove on these graphs that
a large class of gossip protocols, namely cobra walks, offers tangible differential privacy guarantees
to the source. In doing so, we introduce an original proof technique based on the reduction of a
gossip protocol to what we call a random walk with probabilistic die out. This proof technique is of
independent interest to the gossip community and readily extends to other protocols inherited from
the security community, such as the Dandelion protocol. Interestingly, our tight analysis precisely
captures the trade-off between dissemination time of a gossip protocol and its source anonymity.
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1 Introduction

A gossip protocol (a.k.a., an epidemic protocol) is a distributed algorithm that disseminates
information in a peer-to-peer system [47, 1, 34, 38, 19, 24]. Gossip protocols have been long
used to model the propagation of infectious diseases [30, 37, 3], as well as rumors in social
networks where users randomly exchange messages [17, 26]. It is commonly accepted that
random and local communications between the users make source identification hard, and thus
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24:2 On the Inherent Anonymity of Gossiping

provide inherent anonymity to the source of the gossip, i.e., anonymity that comes solely from
the spreading dynamic without relying on any additional cryptographic primitives (as in [42]).
Source anonymity in gossip protocols constitutes an active area of research. On the one hand,
many works aim to establish privacy guarantees for the source of the gossip by concealing it
against an adversary, e.g., hiding the whistleblower on social media [27, 25, 23, 26, 7, 22].
On the other hand, a large effort is put towards identifying privacy limits for the source of a
gossip by designing adversarial strategies that accurately recover the source, e.g., “patient
zero” identification in epidemics [33, 54, 46, 49, 9, 41].

Although a significant amount of research is dedicated to the investigation of source
anonymity, existing approaches (as summarized in [33]) mainly focus on specific settings,
such as locating the source of a gossip for a particular protocol, hiding it against a chosen
adversarial strategy or examining the problem on a narrow family of graphs (trees, complete
graphs, etc.). This prevents the results from being generalized, and it remains unclear how
hard it is to recover the source of a gossip in general, naturally raising the following question.

What are the fundamental limits and guarantees on the inherent
source anonymity of gossiping in a general setting?

We take an important step towards addressing this question by adapting the celebrated
mathematical framework of ε-differential privacy (ε-DP) to our context [20, 21]. Although
the concept is a gold standard to measure privacy leakage from queries on tabular databases,
it can be also adapted to different privacy semantics and threat models [15]. In our context,
we use ε-DP to measure the inherent source anonymity of gossiping in general graphs. We
adopt a widely used threat model where the adversary aims to guess the source by monitoring
the communications of a set of curious nodes in the graph [33, 46, 48, 54, 16, 23]. Using
differential privacy enables us to overcome the limitations of previous work, as DP guarantees
hold regardless of the exact strategy of the attacking adversary. Additionally, DP guarantees
can be combined with any prior knowledge the adversary has on the location of the source,
making our results generalizable. Our contributions can be summarized as follows.

1.1 Main results
We propose a mathematical framework that adapts the concept of differential privacy to
quantify source anonymity in any graph (Section 3). In doing so, we highlight the importance
of considering two types of adversaries: the worst-case and the average-case. For the worst-
case adversary, we focus on privacy guarantees that hold regardless of the location of the
curious nodes in the graph. In other words, these guarantees hold even if the adversary
knows the communication graph in advance and chooses curious nodes strategically. For
the average-case adversary, we focus on privacy guarantees that hold with high probability
when curious nodes are chosen uniformly at random. Here, the adversary does not know
the structure of the underlying communication graph in advance. Within our mathematical
framework, we establish the following results for both adversarial cases.

Privacy limits. We first quantify a fundamental limit on the level of ε-DP any gossip protocol
can provide on any graph topology (Section 4). This result indicates that no gossip protocol
can ensure any level of differential privacy on poorly connected graphs. This motivates us to
consider graphs with controlled connectivity, namely expander graphs. Expanders are an
important family of strongly connected graphs that are commonly considered in the gossip
protocols literature [8, 29, 11]. On this class, we get the following results.
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Privacy guarantees. We prove that a large class of gossip protocols provides tangible
differential privacy guarantees to the source (Section 5). We first consider the parameterized
family of gossip protocols known as (1 + ρ)-cobra walks [18, 11, 45, 6], which constitutes
a natural generalization of a simple random walk. A cobra walk can be seen as an SIS
(Susceptible-Infected-Susceptible) epidemic, a well-established model for analyzing the spread
of epidemics and viruses in computer networks [30, 37]. In particular, a (1 + ρ)-cobra walk
is an instance of an SIS epidemic scheme where active nodes constitute the infectious set,
the duration of the infectious phase is equal to one and every infected node can only infect
one or two of its neighbors at a time. In order to establish differential privacy guarantees on
this class of gossip protocols, we rely on the critical observation that the cobra walk has a
quantifiable probability of mixing before hitting a curious node (see Section 1.2 for more
details on this observation). This characteristic is not unique to cobra walks, as it is shared
by several other types of gossip protocols. Accordingly, we also show how to generalize
our privacy guarantees to the ρ-Dandelion protocol [7], first introduced as an anonymous
communication scheme for Blockchains.

Dissemination time vs. privacy trade-off. As an important by-product of our analysis, we
precisely capture the trade-off between dissemination time and privacy of a large class of gossip
protocols operating on sufficiently dense graphs we call near-Ramanujan graphs (Section 7).
The privacy-latency tension has been suggested several times in the literature [7, 5, 32].
However, our work presents the first formal proof of this long-standing empirical observation.
Specifically, we show that our privacy guarantees are tight for both (1 + ρ)-cobra walks [11]
and ρ-Dandelion protocol [7]. Additionally, we give a tight analysis of the dissemination time
as a function of parameter ρ. This analysis leads us to conclude that increasing parameter ρ

results in a faster dissemination, but decreases privacy guarantees of the protocol, formally
establishing the existence of a trade-off between privacy and dissemination time. As cobra
walks are strongly related to SIS-epidemics, and Dandelion to anonymous protocols in
peer-to-peer networks, our results are relevant for both epidemic and source anonymity
communities.

1.2 Technical challenges & proof techniques

A major technical contribution of our paper is the privacy guarantee of (1 + ρ)-cobra walks
in non-complete graphs. The derivation of this result has been challenging to achieve for
two reasons. Firstly, our objective is to establish differential privacy guarantees in general
graphs, which is a more complex scenario than that of complete graphs (as seen in [5]),
where any communication between pairs of nodes is equiprobable, and symmetry arguments
can be utilized. Yet, this technique is no longer applicable to our work. The fact that no
symmetry assumptions about graph structure can be made calls for new more sophisticated
proof techniques. Second, cobra walks are challenging to analyze directly. State-of-the-art
approaches analyzing the dissemination time of cobra walks circumvent this issue by analyzing
a dual process instead, called BIPS [11, 12, 6]. There, the main idea is to leverage the duality
of BIPS and cobra walks with respect to hitting times [11]. While hitting times provide
sufficient information for analyzing the dissemination time of a cobra walk, they cannot be
used to evaluate differential privacy, as they do not provide sufficient information about the
probability distribution of the dissemination process. We overcome this difficulty through a
two-step proof technique, described below.

DISC 2023



24:4 On the Inherent Anonymity of Gossiping

Step I: Reduction to a random walk with probabilistic die out. To establish ε-differential
privacy, we essentially show that two executions of the same (1 + ρ)-cobra walk that started
from different sources are statistically indistinguishable to an adversary monitoring a set of
curious nodes. In doing so, we design a novel proof technique that involves reducing the
analysis of gossip dissemination in the presence of curious nodes, to a random walk with
probabilistic die out. Such a protocol behaves as a simple random walk on the communication
graph G, but it is killed at each step (i) if it hits a curious node, or otherwise (ii) with
probability ρ. We show that disclosing the death site of such a random walk to the adversary
results in a bigger privacy loss than all the observations reported by the curious nodes during
the gossip dissemination. Then, we can reduce the privacy analysis of cobra walks to the
study of such a random walk with probabilistic die out.

Step II: Analysis of a random walk with probabilistic die out. To study a random walk with
probabilistic die out, we characterize the spectral properties of the (scaled) adjacency matrix
Q corresponding to the subgraph of G induced by the non-curious nodes. In particular, we
show that if curious nodes occupy a small part of every neighborhood in G, then the subgraph
induced by non-curious nodes (i) is also an expander graph and (ii) has an almost-uniform
first eigenvector. While (i) is a direct consequence of the Cauchy Interlacing Theorem, (ii) is
more challenging to obtain. We need to bound Q from above and below by carefully designed
matrices with an explicit first eigenvector. Combining (i) and (ii) allows us to precisely
estimate the behavior of the random walk with probabilistic die out, which yields the desired
differential privacy guarantees.

Generality of the proof. The reduction to a random walk with probabilistic die out is
the most critical step of our proof. It is general and allows us to analyze several other
protocols without having to modify the most technical part of the proof (Step II above). We
demonstrate the generality of this technique by applying this reduction to the Dandelion
protocol and obtain similar privacy guarantees to cobra walks.

1.3 Related work
Inherent anonymity of gossiping. To the best of our knowledge, only two previous works
have attempted to quantify the inherent source anonymity of gossiping through differential
privacy [5, 32]. The former work [5] is the first to analyze source anonymity using differential
privacy. It measures the guarantees of a class of gossip protocols with a muting parameter
(which we call “muting push” protocols) and contrasts these guarantees with the dissemination
time of these protocols on a complete graph. Both the threat model and the nature of the
technical results in [5] heavily depend on the completeness of the graph. In such a context, the
analysis is considerably simplified for two reasons. Firstly, the presence of symmetry allows
for the curious node locations to be ignored, rendering the average-case and the worst-case
adversaries equivalent. Secondly, in contrast to what would happen in non-complete graphs,
since any node can communicate with any other node in each round, a single round of
communication is sufficient to hide the identity of the source. However, when considering
the spread of epidemics or the propagation of information in social networks, communication
graphs are seldom complete [43]. Our work highlights that non-completeness of the graph
potentially challenges the differential privacy guarantees that gossip protocols can achieve
and also makes it important to distinguish between average and worst-case threat models.
Therefore, our results constitute a step toward a finer-grained analysis of the anonymity of
gossiping in general graphs. Note that our work can be seen as a strict generalization of the
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results of [5], since, in addition to cobra walks and Dandelion, we also show that our proof
techniques described in Section 1.2 apply to “muting push” protocols (see Appendix E of the
full version of the paper [28]).

The second approach [32] addresses a problem that appears to be similar to ours at
first glance, as it aims to quantify source anonymity in non-complete graphs. However, the
authors consider a different threat model, where an adversary can witness any communication
with some probability instead of only those passing through the curious nodes. Furthermore,
the paper only gives negative results and does not provide any differential privacy guarantees,
which is the most technically challenging part of our paper.

Dissemination time vs. privacy trade-off. Several previous works [53, 4, 14, 51] have
suggested the existence of a tension between source anonymity (i.e., privacy) and latency
of message propagation. Under the threat model we consider in this work (with curious
nodes), [7] conjectured that the Dandelion protocol would exhibit a trade-off between (their
definition of) source anonymity and dissemination time. Later, works [5] and [32] provided
more tangible evidence for the existence of a dissemination time vs. privacy trade-off when
analyzing source anonymity through differential privacy. However, these works do not provide
a tight analysis of the tension between dissemination time and privacy, hence making their
observation incomplete. To the best of our knowledge, our work is the first to rigorously
demonstrate the existence of a trade-off between the dissemination time of a gossip protocol
and the privacy of its source thanks to the tightness of our analysis.

2 Preliminaries

For a vector x ∈ Rm, we denote by xi its ith coordinate, i.e., x = (x1, x2, . . . , xm)⊤.
Similarly, for a matrix M ∈ Rm×m′ , we denote by Mij its entry for the ith row and jth
column. Furthermore, for any symmetric matrix M ∈ Rm×m, we denote by λ1(M) ≥
λ2(M) ≥ . . . ≥ λm(M) its eigenvalues. We use 1m ∈ Rm to denote an all-one vector,
Im ∈ Rm×m to denote the identity matrix, Jm ∈ Rm×m to denote an all-one square matrix,
and Om×m′ ∈ Rm×m′ to denote an all-zero matrix. Finally, for any x ∈ Rm, we denote by
||x||p ≜ (

∑m
i=1 |xi|p)1/p the ℓp norm of x for p ∈ [1, ∞) and by ||x||∞ ≜ maxi∈m |xi| the ℓ∞

norm of x.
Throughout the paper, we use the maximum divergence to measure similarities between

probability distributions. We consider below a common measurable space (Ω, Σ) on which
the probability measures are defined. Let µ, ν be two probability measures over Σ. The max
divergence between µ and ν is defined as2

D∞ (µ ∥ ν) ≜ sup
σ∈Σ, µ(σ)>0

ln µ(σ)
ν(σ) .

Furthermore, for two random variables X, Y with laws µ and ν respectively, we use the
notation D∞ (X ∥ Y ) to denote D∞ (µ ∥ ν).

2 Note that we allow ν(σ) = 0 in the definition. If ν(σ) = 0 but µ(σ) > 0 for some σ ∈ Σ, the max
divergence is set to ∞ by convention.

DISC 2023
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2.1 Graph theoretical terminology
Consider an undirected connected graph G = (V, E), where V is the set of nodes and E

is the set of edges. G cannot have self-loops or multiple edges. For any v ∈ V , we denote
by N(v) the set containing the neighbours of v in G and by deg(v) the number of edges
incident to v. Furthermore, G is said to be a regular graph, if there exists d(G) such that
deg(v) = d(G) for every v ∈ V ; d(G) is called the degree of the graph. Additionally, for a set
U ⊆ V and v ∈ V , we denote by degU (v) the number of neighbours of v contained in U , i.e.,
degU (v) = |N(v) ∩ U |. Below, we introduce some additional graph terminology.

▶ Definition 1 (Vertex cut & connectivity). A vertex cut of G is a subset of vertices K ⊆ V

whose removal disconnects G or leaves just one vertex. A minimum vertex cut of G is a
vertex cut of the smallest size. The size of a minimum vertex cut for G, denoted κ(G), is
called the vertex connectivity of G.

Consider an undirected connected graph G = (V, E) of size n where V is an ordered set of
nodes. We denote by A the adjacency matrix of G, i.e., Avu = 1 if {v, u} ∈ E and Avu = 0
otherwise. We also denote by Â = D−1/2AD−1/2 the normalized adjacency matrix of G,
where D is the diagonal degree matrix, i.e., Dvu = deg(v) if v = u and 0 otherwise. Since Â

is a symmetric and normalized matrix, the eigenvalues of Â are real valued and λ1(Â) = 1.
Using this terminology, the spectral expansion of G is defined as

λ(G) ≜ max{|λ2(Â)|, |λn(Â)|}. (1)

▶ Definition 2 (Expander graph). Consider an undirected regular graph G. If d(G) = d and
λ(G) ≤ λ, then G is said to be a (d, λ)-expander graph.

2.2 Gossip protocols
Consider an undirected connected communication graph G = (V, E) where two nodes u, v ∈ V

can directly communicate if and only if {u, v} ∈ E. One node s ∈ V , called the source, holds
a unique gossip g to be propagated throughout the graph. In this context, a gossip protocol
is a predefined set of rules that orchestrates the behavior of the nodes with regard to the
propagation of g. Essentially, the goal of a protocol is that with probability 1 every node in
G eventually receives g. We assume discrete time steps and synchronous communication, i.e.,
the executions proceed in rounds of one time step.3 While every node in G has access to the
global clock, we assume that the execution of the protocol starts at a time t⋆ ∈ Z, which is
only known to the source s.

Execution of a gossip protocol. At any point of the execution of the protocol, a node
u ∈ V can either be active or non-active. Only active nodes are allowed to send messages
during the round. A gossip protocol always starts with the source s being the only active
node, and at every given round t + 1 active nodes are the nodes that received the gossip
at round t. We will use Xt ⊆ V to denote the set of active nodes at the beginning of
round t ≥ t⋆ and set Xt⋆ = {s} by convention. Denoting by (u → v) a communication
between nodes u and v, we define C to be the set of all possible communications in G,
i.e., C = {(u → v) : {u, v} ∈ E} ∪ {(u → u) : u ∈ V }. Note that we allow an active node

3 Although, for clarity, we focus on a synchronous communication, our analysis of privacy guarantees in
Section 5 readily extends to an asynchronous setting.
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u to send a fictitious message to itself to stay active in the next communication round.
Then, the tth round of an execution for a given protocol P can be described by a pair
(Xt, Ct), where Xt ⊆ V is a set of active nodes, and Ct is the (multi)set of communications
of C which happened at round t. We denote by S the random variable characterizing the
execution of the protocol. Naturally, an execution is described by a sequence of rounds, i.e.,
S = {(Xt, Ct)}t≥t⋆ . We define expected dissemination time of the protocol as the expected
number of rounds for all nodes to receive the gossip during an execution. Finally, we denote
E the set of all possible executions.

Cobra and random walk. Coalescing-branching random walk protocol (a.k.a., cobra
walk) [18, 11, 45, 6] is a natural generalization of a simple random walk that is notably useful
to model and understand Susceptible-Infected-Susceptible (SIS) epidemic scheme [30, 37].
We consider a (1 + ρ)-cobra walk as studied in [11] with ρ ∈ [0, 1]4. This is a gossip protocol
where at every round t ≥ t⋆, each node u ∈ Xt samples a token from a Bernoulli distribution
with parameter ρ. If the token equals zero, u samples uniformly at random a node v from its
neighbors N(u) and communicates the gossip to it, i.e., (u → v) is added to Ct. If the token
equals one, the protocol branches. Specifically, u independently samples two nodes v1 and
v2 at random (with replacement) from its neighbors and communicates the gossip to both
of them, i.e., (u → v1), and (u → v2) are added to Ct. At the end of the round, each node
u ∈ Xt deactivates. Note that, when ρ = 0, this protocol degenerates into a simple random
walk on the graph; hence it has a natural connection with this random process.

Dandelion protocol. Dandelion is a gossip protocol designed to enhance source anonymity
in the Bitcoin peer-to-peer network. Since it was introduced in [7], it has received a lot of
attention from the cryptocurrency community. Dandelion consists of two phases: (i) the
anonymity phase, and (ii) the spreading phase. The protocol is parameterized by ρ ∈ [0, 1),
the probability of transitioning from the anonymity phase to the spreading phase. Specifically,
the phase of the protocol is characterized by a token anonPhase ∈ {0, 1} held by a global
oracle and initially equal to 0. At the beginning of each round of the Dandelion execution,
if anonPhase = 1 the global oracle sets anonPhase = 0 with probability ρ and keeps
anonPhase = 1 with probability 1 − ρ. Once anonPhase = 0, the global oracle stops
updating the token. Based on this global token, at each round, active nodes behave as follows.
If the anonPhase = 1, the execution is in the anonymity phase and an active node u samples
a node v uniformly at random from its neighborhood N(u) and communicates the gossip
to it, i.e., (u → v) is added to Ct. Afterwards, node u deactivates, i.e., in the anonymity
phase only one node is active in each round. If the anonPhase = 0, the execution is in the
spreading phase. Then the gossip is broadcast, i.e., each node u ∈ Xt communicates the
gossip to all of its neighbors and for ∀v ∈ N(u), (u → v) is added to Ct.

4 Some prior works also study k-cobra walks with branching parameter k ≥ 3 [18]. We do not consider
this class, since our negative result for a 2-cobra walk (Theorem 34 in the full version of the paper [28])
implies that a k-cobra walk for any k ≥ 3 does not satisfy a reasonable level of differential privacy.

DISC 2023
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3 Mathematical framework for source anonymity in general graphs

Given a source and a gossip protocol, we fix the probability space (E , Σ,P), where Σ is
the standard cylindrical σ-algebra on E (as defined in Appendix A.1 of [55]) and P is a
probability measure characterizing the executions of the protocol. In the remaining, to avoid
measurability issues, we only refer to subsets of E from Σ.

3.1 Measuring source anonymity with differential privacy
We now describe the mathematical framework we use to quantify source anonymity of
gossiping. We consider a threat model where an external adversary has access to a subset
F ⊂ V of size f < n − 1 of curious nodes. Curious nodes in F execute the protocol correctly,
but report their communications to the adversary. The adversary aims to identify the
source of the gossip using this information. We distinguish two types of adversaries, namely
worst-case and average-case, depending on the auxiliary information they have on the graph.

Threat models: worst-case and average-case adversaries. On the one hand, a worst-case
adversary is aware of the structure of the graph G and may choose the set of curious nodes
to its benefit. On the other hand, the average-case adversary is not aware of the topology of
G before the start of the dissemination, hence the set of curious nodes is chosen uniformly
at random among all subsets of V of size f . We assume that the messages shared in the
network are unsigned and are passed unencrypted. Also, the contents of transmitted messages
(containing the gossip) do not help to identify the source of the gossip. In other words,
adversaries can only use the information they have on the dissemination of the gossip through
the graph to locate the source. We also assume that the adversary does not know the exact
starting time t⋆ ∈ Z of the dissemination. To formalize the observation received by the
external adversary given a set of curious nodes F , we introduce a function Ψ(F ) that takes
as input communications C from a single round and outputs only the communications of C

visible to the adversary. Note that a communication (v → u) is visible to the adversary if
and only if either v or u belongs to F . Consider an execution S = {(Xt, Ct)}t≥t⋆

of a gossip
protocol, and denote by tadv the first round in which one of the curious nodes received the
gossip. Then we denote by Sadv = {Ψ(F )(Ct)}t≥tadv the random variable characterizing the
observation of the adversary for the whole execution. Note that the adversary does not know
t⋆, hence it cannot estimate how much time passed between t⋆ and tadv.
▶ Remark 3. For Dandelion, the adversary actually also has access to the value of anonPhase

in round t, i.e., we have Sadv = {Ψ(F )(Ct), anonPhaset}t≥tadv . We omit this detail from the
main part of the paper for simplicity of presentation, but it does not challenge our results on
privacy guarantees. See Appendix C.4 in the full version of the paper [28] for more details.

Measuring source anonymity. We formalize source anonymity below by adapting the
well-established definition of differential privacy. In the remaining of the paper, for a random
variable A, we will write A(s) to denote this random variable conditioned on the node s ∈ V \F

being the source. In our setting, we say that a gossip protocol satisfies differential privacy
if for any u, v ∈ V the random sequences S

(v)
adv and S

(u)
adv are statistically indistinguishable.

More formally, we define differential privacy as follows.

▶ Definition 4 (Differential privacy). Consider an undirected graph G = (V, E) and a set of
curious nodes F ⊂ V . Then, a gossip protocol satisfies ε-differential privacy (ε-DP) for the
set F if, for any two nodes v, u ∈ V \ F , the following holds true

D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ ε.
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When establishing differential privacy guarantees against a worst-case adversary, we aim
to find a value ε which only depends on the number of curious nodes f , and is independent
of the identity of the nodes in F . Accordingly, we say that a gossip protocol satisfies ε-DP
against a worst-case adversary if it satisfies ε-DP for any set F ⊂ V such that |F | = f .

When establishing differential privacy against an average-case adversary, we aim to find
a value of ε for which the protocol satisfies ε-DP with high probability5 when choosing the f

curious nodes uniformly at random from V . Formally, let Uf (V ) be the uniform distribution
over all subsets of V of size f , a gossip protocol satisfies ε-DP against an average-case
adversary if

PF ∼Uf (V )

[
max

v,u∈V \F
D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ ε

]
≥ 1 − 1

n
. (2)

3.2 Semantic of source anonymity
Differential privacy is considered the gold standard definition of privacy, since ε-DP guarantees
hold regardless of the strategy of the adversary and any prior knowledge it may have on the
location of the source. Yet, the values of ε are notoriously hard to interpret [39, 31]. To
better understand the semantic of our definition of differential privacy, we consider below two
simple examples of adversarial strategies: maximum a posteriori and maximum likelihood
estimations. For these strategies, we derive bounds on the probability of an adversary
successfully guessing the source in an effort to give a reader an intuition on the meaning of
the parameter ε. The proofs are given in Appendix F of the full version of the paper [28].

Maximum a posteriori strategy. Maximum a posteriori (MAP) strategy can be described
as follows. Suppose an adversary has an a priori distribution p that assigns to every node in
V \F a probability of being the source of the gossip. Intuitively, p corresponds to the set
of beliefs the adversary has on the origin of the gossip before observing the dissemination.
This prior might reflect information acquired from any auxiliary authority or some expert
knowledge on the nature of the protocol. Suppose the adversary observes an event σ. Then,
a MAP-based adversary “guesses” which node is the most likely to be the source, assuming
event σ occurred and assuming the source has been sampled from the prior distribution p.
Such guess is given by

ŝMAP = argmax
v∈V \F

Ps∼p

[
v = s | S

(s)
adv ∈ σ

]
= argmax

v∈V \F

P
[
S

(v)
adv ∈ σ

]
p(v). (3)

Using ε-DP, we can upper bound the success probability of such a guess. Suppose the protocol
satisfies ε-DP, then the probability of correctly identifying a source s ∼ p conditioned on σ

happening is upper bounded as follows

Ps∼p

[
ŝMAP = s | S

(s)
adv ∈ σ

]
≤ exp(ε)p (ŝMAP ) . (4)

Such an upper bound has a simple interpretation. Note that p(ŝMAP ) characterizes the
maximum probability of a successfully guessing ŝMAP based solely on adversary’s prior
knowledge. Then, the upper bound above states that the probability of a successful guess
after observing the dissemination is amplified by a factor of at most exp(ε) compared to
success probability of a guess based on a priori knowledge only.

5 An event is said to hold with high probability on graph G of size n, if it holds with probability ≥ 1−1/n.
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Maximum likelihood strategy. Maximum likelihood estimation (MLE) occupies a prominent
place [23, 49, 50, 46] in the literature, both for designing source location attacks, and for
defending against adversaries that follow an MLE strategy. This method is a special instance
of MAP estimator in (3) with a uniform prior distribution p = U (V \ F ) on the source. We
can show that, if the protocol satisfies ε-DP, such guess has a bounded success probability.

Ps∼U(V \F )

[
ŝMLE = s | S

(s)
adv ∈ σ

]
≤ exp(ε)

n − f
. (5)

4 Fundamental limits of source anonymity: lower bound on ε

We start by studying the fundamental limits of differential privacy in general graphs. Specifi-
cally, we aim to show that vertex connectivity constitutes a hard threshold on the level of
source anonymity gossiping can provide. First, we present a warm-up example indicating
that in a poorly connected graph, no gossip protocol can achieve any meaningful level
of differential privacy against a worst-case adversary. We then validate this intuition by
devising a universal lower bound on ε that applies for any gossip protocol and any undirected
connected graph. Complete proofs related to this section can be found in Appendix B of the
full version of the paper [28].

4.1 Warm-up
Consider a non-complete graph G = (V, E) and K ⊂ V , a vertex cut of G. Then, by
definition, deleting K from G partitions the graph into two disconnected subgraphs. When
f ≥ |K|, a worst-case adversary can take F such that K ⊆ F . Then, the curious nodes
can witness all the communications that pass from one subgraph to the other. Intuitively,
this means that any two nodes that are not in the same subgraph are easily distinguishable
by the adversary. Hence, differential privacy cannot be satisfied. This indicates that the
level of differential privacy any gossip protocol can provide in a general graph fundamentally
depends on the connectivity of this graph. To validate this first observation and determine
the fundamental limits of gossiping in terms of source anonymity, we now determine a lower
bound on ε.

4.2 Universal lower bound on ε

We present, in Theorem 5, a universal lower bound on ε which holds for any gossip protocol,
on any connected graph and for both the worst-case and the average-case adversaries.

▶ Theorem 5. Consider an undirected connected graph G = (V, E) of size n, a number of
curious nodes f > 1, and an arbitrary gossip protocol P. If P satisfies ε-DP against an
average-case or a worst-case adversary, then

ε ≥ ln(f − 1).

Moreover, if κ(G) ≤ f , then P cannot satisfy ε-DP with ε < ∞ against a worst-case
adversary.

Proof sketch. To establish the above lower bound, we assume that the adversary simply
predicts that the first non-curious node to contact the curious set is the source of the gossip.
As the definition of differential privacy does not assume a priori knowledge of the adversarial
strategy, computing the probability of success for this attack provides a lower bound on ε.
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We first demonstrate the result for the average-case adversary. Assume that F is sampled
uniformly at random from V . We can show that there exists v ∈ V such that the attack
implemented by the adversary succeeds with large enough probability when v is the source
of the gossip. This fact essentially means that this v is easily distinguishable from any other
node in the graph, which yields the lower bound ε ≥ ln(f − 1) in the average case. We now
consider the worst-case adversary. Assume that F can be chosen by the adversary. As the
lower bound ε ≥ ln(f − 1) holds with positive probability when F is chosen at random, there
exists at least one set F for which it holds. Choosing this set of curious nodes establishes
the claim for the worst-case adversary. Furthermore, when κ(G) ≤ f , we follow the intuition
from Section 4.1 to build a set F that disconnects the graph. Using this set, we prove that ε

cannot be finite. ◀

Theorem 5 shows that the connectivity of the graph is an essential bottleneck for
differential privacy in a non-complete graph. This stipulates us to study graphs with
controlled connectivity, namely (d, λ)-expander graphs. Note that in a (d, λ)-expander, the
vertex connectivity does not exceed d. Hence, Theorem 5 implies that no gossip protocol
can satisfy any meaningful level of differential privacy against a worst-case adversary on
a (d, λ)-expander if f ≥ d. Considering this constraint, while studying a gossip against a
worst-case adversary, we only focus on cases where the communication graph G has a large
enough degree d.

5 Privacy guarantees: upper bound on ε

We now present a general upper bound on ε that both holds for (1 + ρ)-cobra walks and
ρ-Dandelion on d-regular graphs with fixed expansion, i.e., (d, λ)-expander graphs. Complete
proofs related to this section can be found in Appendix C of the full version of the paper [28].
Our privacy guarantees are quite technical, which is justified by the intricacies of the non-
completeness of the graph. Recall that, in the case of complete topologies analyzed in [5],
after one round of dissemination all information on the source is lost unless a curious node
has been contacted. However, in a general expander graph, this property does not hold
anymore. Indeed, even after multiple rounds of propagation, the active set of the protocol
can include nodes that are close to the location of the source s. Thus, differential privacy
may be compromised.

5.1 Adversarial density
The attainable level of source anonymity for a given protocol is largely influenced by the
location of curious nodes. However, accounting for all possible placements of curious nodes
is a very challenging and intricate task. To overcome this issue and state our main result,
we first introduce the notion of adversarial density that measures the maximal fraction of
curious nodes that any non-curious node may have in its neighborhood. Upper bounding
the adversarial density of a graph is a key element to quantifying the differential privacy
guarantees of a gossip protocol. Formally, this notion is defined as follows.

▶ Definition 6. Consider an undirected connected d-regular graph G = (V, E), and an
arbitrary set of curious nodes F ⊆ V . The adversarial density of F in G, denoted αF , is
the maximal fraction of curious nodes that any node v ∈ V \ F has in its neighborhood.
Specifically,

αF ≜ max
v∈V \F

degF (v)
d

.
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For any set of curious nodes F , we have αF ≤ f/d. Hence, even when F is chosen by a
worst-case adversary, the adversarial density is always upper bounded by f/d. However, for
the average-case adversary we can obtain a much tighter bound, stated in Lemma 7 below.

▶ Lemma 7. Consider an undirected connected d-regular graph G = (V, E) of size n and
a set of curious nodes F ∼ Uf (V ), with adversarial density αF . We denote β = f/n and
γ = ln(n)/(ed), where e is Euler’s constant. Then, with probability at least 1 − 1/n, αF ≤ α

with

α ≤ 4e
max{γ, β}

1 + max{ln(γ) − ln(β), 0}
.

Furthermore, if there exist δ > 0, c > 0 such that f/n > c and d > ln(n)/(c2δ2) then a
similar statement holds with α ≤ (1 + δ)β.

We deliberately state this first lemma in a very general form. This allows us to precisely
quantify how the upper bound on the adversarial density improves as f decreases. To make this
dependency clearer, we provide special cases in which the bound on αF is easily interpreted.
First, assume that d ∈ ωn(log(n)) and f/n ∈ Ωn(1). Then, αF is highly concentrated around
f/n, up to a negligible multiplicative constant, when n is large enough. On the other hand,
when the ratio f/n becomes subconstant, the concentration becomes looser. In particular,
if d ∈ ωn(log(n)) and f/n ∈ on(1), then αF ∈ on(1) with high probability. Finally, if f/n

drops even lower (e.g., when f/n ∈ n−Ωn(1)), we get αF ∈ On(1/d) or αF ∈ n−Ωn(1) with
high probability for any d.

5.2 General upper bound on ε

Thanks to Lemma 7 bounding adversarial density, we can now state our main theorem
providing a general upper bound on ε for (1 + ρ)-cobra walks and ρ-Dandelion.

▶ Theorem 8. Consider an undirected connected (d, λ)-expander graph G = (V, E) of size
n, let f be the number of curious nodes, and let P be a (1 + ρ)-cobra walk with ρ < 1.
Set α = f/d (resp. set α as in Lemma 7). If λ < 1 − α, then P satisfies ε-DP against a
worst-case adversary (resp. an average-case adversary) with

ε = ln(ρ(n − f) + f) − 2T̃ ln(1 − α) − T̃ ln(1 − ρ) − ln(1 − λ) + ln(24),

and T̃ =
⌈
log λ

1−α

(
1−α

4(n−f)

)⌉ (
log λ

1−α
(1 − α) + 2

)
+ 2.

The above statement also holds if P is a ρ-Dandelion protocol with ρ < 1.

Note that the upper bound on ε in Theorem 8 improves as the number of curious nodes f

decreases (since α decreases with f) or when the expansion improves (as λ decreases, T̃ also
decreases). Yet, there is a complex interplay between the parameters n, f, d, and λ above.
Additionally, we point out that for a worst-case adversary the privacy guarantees can be
established only if f/d < 1. For the average-case, this assumption can be dropped, and we
are able to establish positive results for f as high as Θn(n).

6 Proof sketch for Theorem 8

Although results for worst-case and average-case adversaries have their own technical speci-
ficity, they both share the same general idea. Specifically, we introduce a random process that
helps bounding from above the value of ε. This random process resembles a random walk
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that at each step reveals its position to the adversary with some probability that depends
on ρ and on the state of the process. We call this process a random walk with probabilistic
die out. Then, we show that such random walk mixes sufficiently well before its position is
revealed, which provides indistinguishability between any two possible sources.

The first half of our proof (step I) relies on the reduction of a gossip protocol to a random
walk with probabilistic die out. This part is slightly different for different protocols, but for
simplicity we only present step I for the cobra walk. In the second half (step II), we only
analyze a random walk with probabilistic die out. It is hence universal and applies to both
cobra walks and Dandelion protocols. Complete proofs for both protocols can be found in
Appendix C of the full version of the paper [28].

6.1 Step I: reduction to a random walk with probabilistic die out

F
s

(a) Dissemination of a cobra walk.

F
s

(b) Dissemination of a random walk with die out.

Figure 1 Illustration of the reduction from a cobra walk (Fig. 1a) to a random walk with
probabilistic die out (Fig. 1b). In Fig. 1a, the dissemination continues after the walk branches and
hits the curious set F in several places. In the random walk with die out, instead of letting the
dissemination branch, we stop the dissemination as soon as the cobra walk branches and report the
position of the branching node.

Consider a (1+ρ)-cobra walk started at s and denote W (s) the random variable indicating
the last position of the cobra walk before it either branches or hits a curious node. More
formally, if the round at which the cobra walk branches or contacts a curious node for the first
time is τ , then the active set at this round would be X

(s)
τ = {W (s)}, with W (s) ∈ V \ F . We

first show that disclosing W (s) to the adversary reveals more information about the source
than S

(s)
adv. Intuitively, this follows from the Markov property of the active set

{
X

(s)
t

}
t≥t⋆

of the cobra walk. In fact, by definition of τ , we have τ ≤ tadv. Hence, the sequence
of adversarial observations S

(v)
adv can be obtained from X

(s)
τ =

{
W (s)} via a randomized

mapping independent of the initial source s. Then, using the data processing inequality
Theorem 14 of [40]) we show that for any two possible sources u, v ∈ V \F , we have

D∞

(
S

(v)
adv ∥ S

(u)
adv

)
≤ D∞

(
W (v) ∥ W (u)

)
. (6)

This means that it suffices to obtain an upper bound on D∞
(
W (v) ∥ W (u)) for any u, v ∈ V \F

to obtain an appropriate value for ε. Then, we note that W (s) can be described as the death
site of a process we refer to as random walk with probabilistic die out, which was started at s.
Such a process constitutes a random walk which is killed at each step either (i) if it hits a
curious node, or otherwise (ii) with probability ρ. We illustrate this process in Figure 1 and
how it relates to the cobra walk.
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6.2 Step II: upper bounding the max divergence between death sites
The rest of the proof is dedicated to analyzing the probability distribution of the death
site of such a process. Let Q = Â[V \ F ] be the principled submatrix of Â induced by the
rows and columns of V \ F and let R be a diagonal matrix of size (n − f) × (n − f) such
that Rww = degF (w) /d for every w ∈ V \ F . Then, W (s) can be described as an absorbing
Markov chain. More precisely, let nodes from V \ F be transient states, and equip every
node w ∈ V \ F with an absorbing state sink(w) which corresponds to the event of dying at
w. The transition matrix of our absorbing Markov chain can be written in a block form as

P =
[

(1 − ρ)Q O(n−f)×(n−f)
ρIn−f + (1 − ρ)R In−f

]
. (7)

In the above, Pxy denotes the transition probability from a state y to a state x. The first n−f

columns correspond to transition probabilities from transient states w ∈ V \ F and the last
n − f ones correspond to transition probabilities from absorbing states sink(w) for w ∈ V \ F .
The probability of transitioning between two transient states v, u ∈ V \ F (top-left block of
P ) is defined similarly to a simple random walk on G, multiplied by the probability of not
branching (1 − ρ). The transition probability between w and sink(w) (bottom-left block of
P ) is naturally defined as the probability of branching plus the probability of contacting a
curious node at the current step without branching.

According to the above, being absorbed in sink(w) corresponds to the event W (s) = w.
Hence, using Q and R to compute a closed form expression for absorbing probabilities of
the above Markov chain, we can rewrite D∞

(
W (v) ∥ W (u)) as follows

D∞

(
W (v) ∥ W (u)

)
= max

w∈V \F
ln (In−f − (1 − ρ)Q)−1

vw

(In−f − (1 − ρ)Q)−1
uw

. (8)

To conclude the proof, we now need to upper bound the right-hand side (8). To do so, we
first note that, as per Theorem 3.2.1 in [35], we can use the following series decomposition,

(In−f − (1 − ρ)Q)−1 =
∞∑

t=0
(1 − ρ)tQt. (9)

This means that we can reduce the computation of D∞
(
W (v) ∥ W (u)) to analyzing the

powers of the matrix Qt. Furthermore, for large values of t, we can approximate Qt by a
one-rank matrix using the first eigenvalue and the first eigenvector of Q. This motivates
us to study the spectral properties of Q. We begin by showing that Q is dominated by its
first eigenvalue. To further estimate the coordinates of the first eigenvector of Q, we need
to introduce subsidiary matrices Q and Q. We carefully design these matrices to have an
explicit first eigenvector and so that their entries bound from above and below respectively
those of Q. Using these two properties, we obtain a measure of how far the first eigenvector
of Q is from the uniform vector 1n−f /

√
n − f . By controlling spectral properties of Q, we

establish efficient one-rank approximations of high powers of Q. Applying this to (8), we
obtain an upper bound on the max divergence between W (v) and W (u), for any u, v ∈ V \ F .
Specifically, assuming that the adversarial density αF < 1 − λ, we get

D∞

(
W (v) ∥ W (u)

)
≤ ln(ρ(n − f) + f) − 2T̃ ln(1 − αF ) − T̃ ln(1 − ρ) − ln(1 − λ) + ln(24),

where T̃ =
⌈
log λ

1−αF

(
1−αF

4(n−f)

)⌉ (
log λ

1−αF

(1 − αF ) + 2
)

+ 2. Finally, substituting (6) in the
above, and upper bounding αF as per Section 5.1 we get the expected result.
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7 Trade-off: Dissemination time vs. privacy

Note that when the gossip protocol parameter ρ decreases, the privacy guarantees in Theo-
rem 8 improve. Yet, this worsens the dissemination time, which suggests the existence of a
trade-off between the dissemination time and the source anonymity of the protocol. In this
section, we formalize this observation by showing the tightness of Theorem 8 on a family
of strong expanders called near-Ramanujan graphs. Intuitively, for dense enough graph
topologies, most terms in Theorem 8 vanish, hence considerably simplifying the analysis of
the result. Near-Ramanujan graphs can be defined as follows.

▶ Definition 9 (Near-Ramanujan family of graphs). Let G be an infinite family of regular graphs.
G is called near-Ramanujan if there exists a constant c > 0 such that λ(G) ≤ cd(G)−1/2 for
any graph G ∈ G of large enough size.

This choice of graph family is motivated by the fact that near-Ramanujan graphs naturally
arise in the study of dense random regular graphs. In fact, for any large enough n and
any 3 ≤ d ≤ n/2 (with dn even) a random d-regular graph on n nodes is near-Ramanujan
with high probability as shown in [10, 52]. That means that almost every d-regular graph is
near-Ramanujan. Besides using near-Ramanujan graphs, we assume the topologies to be
dense enough, i.e., d ∈ nΩn(1). Refining the statement of Theorem 8 to this family of graphs,
we obtain the following corollary.

▶ Corollary 10. Let P be a (1 + ρ)-cobra walk and let G be a family of d-regular near-
Ramanujan graphs with n nodes and d ∈ nΩn(1). Suppose f/d ∈ 1 − Ωn(1) (resp. f/n ∈
1 − Ωn(1)). Then, for any G ∈ G of large enough size n and any ρ ∈ 1 − Ωn(1), P satisfies
ε-DP against a worst-case adversary (resp. an average-case adversary) for some

ε ∈ ln (ρ(n − f) + f) + On(1).

The above statement also holds if P is a ρ-Dandelion protocol with ρ < 1.

From Corollary 10, when ρ = 0, we obtain a level of differential privacy that matches,
up to an additive constant, the universal lower bound ε ≥ ln(f − 1). Accordingly, ρ = 0
leads to an optimal differential privacy guarantee. However, in this case, both the cobra walk
and the Dandelion protocol degenerate into simple random walks with dissemination time
in Ωn(n log(n)) [2]. Increasing ρ parameter makes the dissemination faster, but potentially
worsens the privacy guarantees.

Studying Dandelion and cobra walks, we show that the result in Corollary 10 is tight up
to an additive constant. Then, we formally validate our intuition that decreasing ρ increases
the dissemination time by providing corresponding tight guarantees on dissemination time.
Finally, to put our results in perspective, we compare them to a random walk (optimal
privacy but high dissemination time), and to a 2-cobra walk (optimal dissemination time
with bad, completely vacuous, privacy guarantees). We summarize our findings for both
worst-case and average-case adversaries in Table 1 and the detailed analysis can be found in
Appendix D of the full version of the paper [28].

8 Summary & future directions

This paper presents an important step towards quantifying the inherent level of source
anonymity that gossip protocols provide on general graphs. We formulate our results through
the lens of differential privacy. First, we present a universal lower bound on the level of
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Table 1 Summary of the tension between differential privacy of a (1+ρ)-cobra walk and Dandelion
gossip and their dissemination time on dense near-Ramanujan graphs. Graphs have diameter D

and consist of n nodes, f of which are curious. Note that the upper bounds on ε hold under
assumptions in Corollary 10. Lower bounds on ε hold assuming f/n ∈ 1 − Ωn(1), and for cobra
walk we also assume f ∈ nΩn(1). Dissemination time bounds for cobra walk and Dandelion hold for
ρ ∈ ωn

(√
log(n)/n

)
and ρ ∈ Ωn(1/n) respectively.

Protocol Privacy (ε) Dissemination time References

Random walk ln(f) + Θn (1) Θn (n log (n)) Corollary 10,
Theorem 5, [2]

ρ-Dandelion ln (ρ(n − f) + f) + Θn (1) Θn

(
1
ρ

+ D
) Corollary 10,

Theorem 45 [28],
Theorem 49 [28]

(1 + ρ)-Cobra walk ln (ρ(n − f) + f) + Θn (1) On

( log (n)
ρ3

)
, Ωn

( log (n)
ρ

) Corollary 10,
Theorem 32 [28],
Theorem 44 [28]

2-Cobra walk ln(n) + Ωn (1) Θn (log (n)) Theorem 32 [28],
Theorem 44 [28]

differential privacy an arbitrary gossip protocol can satisfy. Then, we devise an in-depth
analysis of the privacy guarantees of (1 + ρ)-cobra walk and ρ-Dandelion protocols on
expander graphs. When ρ = 0, the protocols spread the gossip via a random walk, which
achieves optimal privacy, but has poor dissemination time. On the other hand, we show that
increasing ρ improves the dissemination time while the privacy deteriorates. In short, our
tight analysis allows to formally establish the trade-off between dissemination time and the
level of source anonymity these protocols provide. An interesting open research question
would be to establish whether this “privacy vs dissemination time” trade-off is fundamental
or if there exists a class of gossip protocols that could circumvent this trade-off.

We consider differential privacy, because, unlike other weaker notions of privacy (e.g.,
MLE-based bounds), it can be applied against an arbitrary strategy of the adversary, factoring
in any prior beliefs an adversary may have about the location of the source and the nature of
the gossip protocol. This makes differential privacy strong and resilient. However, differential
privacy is often criticized for being too stringent in some settings. Consequently, a number
of possible interesting relaxations have been proposed in the literature such as Pufferfish [36]
and Renyi differential privacy [44]. Adapting our analysis to these definitions constitutes an
interesting open direction as it would enable consideration of less stringent graphs structures
and probability metrics.

Finally, we believe that our results could be applied to solve privacy related problems in
other settings. For example, it was recently observed in [13] that sharing sensitive information
via a randomized gossip can amplify the privacy guarantees of some learning algorithms, in
the context of privacy-preserving decentralized machine learning. However, this work only
considers the cases when the communication topology is a clique or a ring. We believe that
the techniques we develop in this paper can be useful to amplify privacy of decentralized
machine learning on general topologies. This constitutes an interesting open problem.
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