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Abstract
We present durable implementations for two well known universal primitives – CAS (compare-and-
swap), and its ABA-free counter-part LLSC (load-linked, store-conditional). Our implementations
satisfy method-based recoverable linearizability (MRL) and method-based detectability (M-detectability)
– novel correctness conditions that require only a simple usage pattern to guarantee resilience to
individual process crashes (and system-wide crashes), including in implementations with nesting.
Additionally, our implementations are: writable, meaning they support a Write() operation; have
constant time complexity per operation; allow for dynamic joining, meaning newly created processes
(a.k.a. threads) of arbitrary names can join a protocol and access our implementations; and have
adaptive space complexity, meaning the space use scales in the number of processes n that actually use
the objects, as opposed to previous protocols whose space complexity depends on N , the maximum
number of processes that the protocol is designed for. Our durable Writable-CAS implementation,
DuraCAS, requires O(m + n) space to support m objects that get accessed by n processes, improving
on the state-of-the-art O(m + N2). By definition, LLSC objects must store “contexts” in addition
to object values. Our Writable-LLSC implementation, DuraLL, requires O(m + n + C) space, where
C is the number of “contexts” stored across all the objects. While LLSC has an advantage over
CAS due to being ABA-free, the object definition seems to require additional space usage. To
address this trade-off, we define an External Context (EC) variant of LLSC. Our EC Writable-LLSC
implementation is ABA-free and has a space complexity of just O(m + n).

To our knowledge, our algorithms are the first durable CAS algorithms that allow for dynamic
joining, and are the first to exhibit adaptive space complexity. To our knowledge, we are the first to
implement any type of durable LLSC objects.
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1 Introduction

The advent of Non-Volatile Memory (NVM) [27] spurred the development of durable algo-
rithms for the crash-restart model. In this model, when a process π crashes, the contents
of memory persist (i.e., remain unchanged), but π’s CPU registers, including its program
counter, lose their contents. To understand the difficulty that arises from losing register
contents, suppose that π crashes at the point of executing a hardware CAS instruction,
r ← Cas(X, old, new), on a memory word X and receiving the response into its CPU register
r. When π subsequently restarts, π cannot tell whether the crash occurred before or after
the CAS executed, and if the crash occurred after the CAS, π cannot tell whether the CAS
was successful or not. Researchers identified this issue and proposed software-implemented
durable objects [28, 5], which allow a restarted process to recover from its crash and detect
the result of its last operation. The rapid commercial viability of byte-addressable, dense,
fast, and cheap NVM chips has made efficient durable object design important.

Writable and non-Writable CAS. The Compare-and-Swap (CAS) instruction is ubiquitous
in multiprocessor computation, both in concurrent and parallel algorithms. Recently, there
has been a lot of research on implementing durable CAS objects because they are widely
employed in practice and are universal: any durable object can be implemented from durable
CAS objects [7, 25, 28]. Formally, the state of a CAS object X is simply its value, and the
operation semantics are as follows:

X.Cas(old, new): if X = old, sets X to new and returns true; otherwise, returns false.
X.Read(): returns the value of X.
X.Write(new): sets X to new and returns true.

If the object supports all three operations, it is a Writable-CAS (W-CAS); and if it does
not support Write(), it is a non-Writable-CAS (nW-CAS) object.

CAS’s ABA problem and LLSC. Although CAS objects are powerful tools in concurrent
computing, they also have a significant drawback called the ABA-problem [16]. Namely, if
a process π reads a value A in X and executes X.Cas(A, C) at a later time, this CAS will
succeed even if the value of X changed between π’s operations, from A to B and then back
to A. So while any object can be implemented from CAS, the actual process of designing an
algorithm to do so becomes difficult. In the non-durable setting, the ABA-problem is often
overcome by using the hardware’s double-width CAS primitive – in fact, “CAS2 [double-width
CAS] operation is the most commonly cited approach for ABA prevention in the literature”
[16]. However, all known durable CAS objects, including ours, are only one-word wide – even
as they use hardware double-width CAS [5, 7, 6]. Against this backdrop, the durable LLSC
objects presented in this paper serve as an invaluable alternate tool for ABA prevention.

LLSC objects are alternatives to CAS objects that have been invaluable in practice,
since they are universal and ABA-free [38]. The state of an LLSC object Y is a pair
(Y.val, Y.context), where Y.val is the value and Y.context is a set of processes (initially
empty). Process π’s operations on the object have the following semantics:

Y.LL(): adds π to Y.context and returns Y.val.
Y.VL(): returns whether π ∈ Y.context.
Y.SC(new): if π ∈ Y.context, sets Y ’s value to new, resets Y.context to the empty set
and returns true; otherwise, returns false.
Y.Write(new) changes Y ’s value to new and resets Y.context to the empty set.



P. Jayanti, S. Jayanti, and S. Jayanti 25:3

The object is Writable (W-LLSC) or non-Writable (nW-LLSC) depending on whether
the Write() operation is supported.

To our knowledge, there are no earlier durable implementations of ABA-free CAS-like
objects, including LLSC.

Wider impact of durable primitives. Durable primitives such as W-CAS and W-LLSC are
particular important since they facilitate a plethora of other durable data structures. In
particular, let A be an algorithm for implementing a data structure DS using either the
read, write, CAS, or the read, write, LL/SC/VL instructions. Then, using durable W-CAS
and durable W-LLSC, we can design an algorithm A′ that implements a durable version of
DS from hardware read, write, and CAS, without affecting the asymptotic time or space
complexity [5, 7].

Previous work and the state-of-the-art. CAS and LLSC objects share close ties, but they
also pose different implementational challenges. In the non-durable context, it is well known
that non-writable LLSC (nW-LLSC) objects can be implemented from nW-CAS objects
and visa versa in constant time and space. The simple implementation of nW-LLSC from
nW-CAS however, requires packing a value-context pair into a single nW-CAS object [3].
Solutions that implement a full-word nW-LLSC from a full-word nW-CAS require a blow-up
in time complexity, space complexity, or both [37, 18, 40, 38, 11]. Writability complicates
the relationship further. Even in the non-durable context, reductions between W-CAS and
W-LLSC have resulted in a blow-up in space complexity and fixing the number of processes
a priori [29]. Writability can sometimes be added to an object that is non-writable, but this
leads to an increase in space complexity [1].

There are no previous works on Durable LLSC. Three previous works have implemented
durable CAS objects, all from the hardware CAS instruction: Attiya, Ben-Baruch, and
Hendler [5], Ben-Baruch, Hendler, and Rusanovsky [6], and Ben-David, Blelloch, Friedman,
and Wei [7]. All three papers provide implementations for a fixed set of N processes with pids
1, . . . , N , and achieve constant time complexity per operation. Attiya et al. pioneered this line
of research with a durable nW-CAS implementation, which achieves constant time complexity
and requires O(N2) space per object. Ben-Baruch et al. present an nW-CAS implementation
with optimal bit complexity. Their algorithm however, requires packing N bits and the
object’s value into a single hardware variable. Thus, if the value takes 64 bits, then only 64
pre-declared processes can access this object. (Current commodity multiprocessors range
up to 224 cores [24], and can support orders-of-magnitude more threads.) Ben-David et al.
designed an algorithm for nW-CAS, and then leveraged Aghazadeh, Golab, and Woelfel’s
writability transformation [1] to enhance that algorithm to include a Write operation, thereby
presenting the only previous Writable-CAS implementation. Their nW-CAS algorithm uses
a pre-allocated help-array of length O(N), and their W-CAS algorithm uses an additional
hazard-pointer array of length O(N2). Both arrays can be shared across objects, thus the
implementation space complexities for m objects are O(m + N) and O(m + N2), respectively.

Our contributions. We present four wait-free, durable implementations: DuraCAS for
Writable-CAS, DuraLL for Writable-LLSC, DurEC for External Context (EC) nW-LLSC,
and DurECW for EC W-LLSC (we will specify External Context LL/SC soon). Our
implementations achieve the following properties:

DISC 2023
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1. Constant time complexity: All operations including recovery and detection run in O(1)
steps.

2. Dynamic Joining: Dynamically created processes of arbitrary names can use our objects.
3. Full-word size: Our implementations support full-word (i.e., 64-bit) values.
4. Adaptive Space Complexity: We quantify space complexity by the number of memory

words needed to support m objects for a total of n processes. The DuraCAS, DurEC,
and DurECW implementations require just constant memory per process and per object,
and thus each have a space complexity of O(m + n). Since DuraLL must remember
contexts, its space complexity is O(m + n + C), where C is the number of contexts that
must be remembered.1

We believe that our definitions and implementations of the External Context LLSC objects
– which are ABA-free, space-efficient alternatives to CAS and LLSC – are of independent
interest in the design of both durable and non-durable concurrent algorithms.

To our knowledge, our algorithms are the first durable CAS algorithms that allow for
dynamic joining, and are the first to exhibit adaptive space complexity. To our knowledge,
we are the first to consider any type of durable LLSC objects.

Our approach. We implement universal primitives that allow dynamic joining of new
processes, have an adaptive space complexity that is constant per object and per process,
and give an ABA-free option, while simultaneously achieving constant time complexity. Just
like our predecessors, all our implementations rely on just the hardware double-width CAS
instruction for synchronization.

A keystone of our approach is the observation that durable nW-LLSC – due to its ABA-
freedom – serves as a better stepping stone than even durable nW-CAS on the path from
hardware CAS to durable W-CAS. Perhaps less surprisingly, durable nW-LLSC is a great
stepping stone towards durable W-LLSC also. However, by definition LLSC objects require
more space to remember context for each process – an inherent burden that CAS objects do
not have. Thus, using nW-LLSC objects in the construction of our W-CAS would lead to
a bloated space complexity. To avoid this drawback, we define an External Context (EC)
variant of LLSC. An EC LLSC object is like an LLSC object, except that its context is
returned to the process instead of being maintained by the object. Thus, our EC nW-LLSC
implementation, DurEC, is the building block of all our other implementations.

The state of an EC LLSC object Y is a pair (Y.val, Y.seq), where the latter is a sequence
number context. Process π’s operations on the object have the following semantics:

Y.ECLL(): returns (Y.val, Y.seq).
Y.ECVL(s): returns whether Y.seq = s.
Y.ECSC(s, new): if Y.seq = s, sets Y ’s value to new, increases Y.seq, and returns true;
otherwise, returns false.
Y.Write(new): changes Y ’s value to new and increases Y.seq.

The object is Writable (EC W-LLSC) or non-Writable (EC nW-LLSC) depending on
whether the Write() operation is supported.

We design durable implementations of External Context W-LLSC and W-CAS, called
DurECW and DuraCAS, respectively; each implementation uses two DurEC base objects.
We implement our durable W-LLSC algorithm, DuraLL, by simply internalizing the external

1 C is the number of process-object pairs (π,O), where π has performed an LL() operation on O, and its
last operation on O is not an SC() or Write(). A trivial upper bound is C ≤ nm.
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contexts of a DurECW. All our implementations overcome the need for hazard-pointers
and pre-allocated arrays for helping in order to allow dynamic joining and achieve adaptive
space complexity. Key to eliminating these arrays are pointer based identity structures called
handles, which we describe in Section 4. Figure 1 illustrates the differences between our
approach and Ben-David et al.’s.

Figure 1 A comparison of Ben-David et al.’s approach (top) and our approach (bottom): each box
represents an implementation – the type of the implementation is in bold and its space complexity
appears below the box. The names of our implementations appear in the box in SmallCaps. An
arrow from A to B means that B is implemented using A.

2 Related Work

We have already detailed the three previous works on durable CAS objects [5, 6, 7] in the
introduction. In addition to these durable (single-word) CAS objects, there are implementa-
tions of durable multi-word CAS objects2 by Wang, Levandoski, and Larson [42], and by
Guerraoui, Kogan, Marathe, and Zablotchi [22]. Furthermore, LLSC can be implemented
using multi-word CAS. However, these software implementations of multi-word CAS are
lock-free but not wait-free, and they do not support the Write operation. Thus, using these
algorithms, one can implement non-writable lock-free LL/SC, but not the writable and
wait-free LL/SC primitive that our algorithm implements. Additionally, they require complex
memory management which also leads to an increase in space complexity. We discuss other
related work below.

Byte-addressable non-volatile memory laid the foundation for durable objects [27]. Re-
search on durable objects has spanned locks [21, 41, 35, 36, 33, 31, 20, 12, 14, 17, 15, 32],
and non-blocking objects – including queues [19], counters [5], registers [5, 6], CAS objects
[5, 6, 7], and general transformations and universal constructions [28, 7, 4].

Several models of persistent memory systems have been proposed in the literature. In
the individual-crash model [2, 5, 7, 10], processes can crash independently, while in the
system-crash model, all processes crash together [28, 9, 19]. Izraelevitz et al. assume that
crashed processes do not restart and the system spawns new processes with process ids that
were never used before [28], but most other works assume processes restart with the same
ids as before. Some works, such as [28, 19], model volatile caches: when a process performs

2 A k-word CAS, Cas((X1, . . . , Xk), (old1, . . . , oldk), (new1, . . . , newk)), has the semantics: if all of X1 =
old1, . . . , Xk = oldk then set X1 ← new1, . . . , Xk ← newk and return true; otherwise, simply return
false.

DISC 2023
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a hardware operation on a shared variable, only the cached copy of the variable is updated,
and the update transfers to the NVM only when the cache is explicitly flushed. Others work
in the model that each step directly updates the variable’s state in the NVM [5, 7, 21].

Several correctness criteria have been proposed for implementations: recoverable lineariz-
ability by Berryhill, Golab, and Tripunitara [9], durable and buffered durable linearizability by
Israelevitz, Mendes, and Scott [28], nested recoverable linearizability by Attiya, Ben-Baruch,
and Hendler [5], persistent atomicity by Guerraoui and Levy [23], and strict linearizability by
Aguilera and Frølund [2]. These consistency criteria are surveyed by Ben-David, Friedman,
and Wei [8].

Friedman, Herlihy, Marathe, and Petrank [19] identify that it is not enough for imple-
mentations to satisfy a linearizability condition, but they must also support detection, i.e.,
make possible for a process to find out whether its crashed operation took effect and, if it
did, what the response was. Li and Golab [39] present a formulation of detectability.

3 Model

Our model is akin to those used in previous works on durable CAS [5, 7]. The system consists
of asynchronous processes that communicate by applying atomic operations (Read or CAS)
directly to shared variables stored in Non-Volatile Memory (NVM). We use the individual
crash model where any process may crash at any time and restart at any later time, and
the same process may crash and restart any number of times. When a process crashes, its
registers, including its program counter, lose their contents (i.e., they are set to arbitrary
values), but the contents of the NVM are unaffected. After a crash, a process eventually
restarts (with the same process id as before).

To ensure that our objects are recoverable and detectable, we introduce two new correctness
conditions for objects, called Method-based Recoverable Linearizability (MRL) and Method-
based Detectability (M-Detectability). MRL adapts and combines ideas from the well known
notions of Recoverable Linearizability [9] and Nested-safe Recoverable Linearizability [5],
and M-Detectability captures the corresponding notion of detectability [19].

MRL is “method-based” in the sense that it facilitates recoverability by requiring that an
objectO provide a methodO.Recover() in addition to providing a method for each operation
supported by O. When there are no crashes, MRL reduces to standard linearizability [26]. In
particular, if a process π invokes a method for an operation and completes the method without
crashing, the operation is required to take effect atomically at some instant between the
method’s invocation and completion. On the other hand, if crashes occur, MRL guarantees the
object remains consistent if the following usage pattern if followed. If π crashes after invoking
some operation O.op and before that operation completes, when π subsequently restarts, the
usage pattern requires that π execute O.Recover() before invoking any other operation on
object O (if π crashes while executing O.Recover(), it must execute O.Recover() again
after restarting before invoking any other operation on O); when π completes O.Recover(),
we deem O.op completed. If the usage pattern is observed, MRL guarantees that the
crashed operation O.op either never takes effect or takes effect at some point between O.op’s
invocation and completion. Notice that the usage pattern allows π to perform any number
of other operations on objects other than O upon restart and even allows for π to never
perform any subsequent operation on O; the only requirement is that π calls O.Recover()
before calling any other method on O.

MRL’s relationship to Recoverable Linearizability (RL) and Nested-safe Recoverable
Linearizability (NRL) can be understood as follows. Just like MRL, RL requires that a
crashed operation by process π on object O either does not take effect at all or takes effect
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before π’s next invocation of an operation on O. However, RL does not specify a mechanism
by which π’s operation can complete after its crash and before its subsequent operation
starts. MRL is similar, but uses the mechanism of the recover method to complete (or ensure
non-completion of) crashed operations. The NRL paper uses recover methods. However, in
the NRL model each method has its own recover method, recover methods take arguments,
and it is assumed that upon a crash, a recover method is called with the same arguments
as the corresponding method that failed and the recover method has access to a process
specific persistent register which stores the program counter value right before the crash. In
contrast to NRL, MRL has only a single recover method, and most importantly, makes no
assumptions about method arguments or program counter values being supplied to restarted
processes; it simply guarantees that objects remain consistent if the usage pattern is followed
(however an implementation may follow it).

Friedman et al. [19] first made the observation that in addition to proper recovery, it is
necessary for a process to be able to detect whether its crashed operation took effect, and if
so, what its return value was. We ensure detectability of our operations in a method-based
manner, by requiring that an object O provide an additional Detect() method, which
returns this information. We note that some operations, such as read or a failed CAS,
can safely be repeated, regardless of whether they took effect [5, 7], whereas, a write or
a successful CAS that changed the value of the object cannot be repeated safely. Our
implementations provide a Detect() method which guarantees that all unsafe-to-repeat
operations are detected along with their responses, and that any operation that is not
detected is safe to repeat. In particular, Detect() returns a pair that satisfies the following
property:

Method-based Detectability: If a process calls Detect() twice – just before executing an
operation and just after completing that (possibly crashed3) operation – and these successive
calls to Detect() return (d1, r1) and (d2, r2) respectively, then the following two conditions
are satisfied:
1. If d2 > d1, then the operation took effect and its response is r2.
2. Otherwise, d1 = d2 and the operation is safe to repeat.
A durable object is one that satisfies method-based recoverable linearizability and method-
based detectability.

4 Handles for dynamic joining and space adaptivity

When a process calls a method to execute an operation op, the call is of the form op(p, args),
where args is a list of op’s arguments and p identifies the calling process. The methods
use p to facilitate helping between processes. In many algorithms, the processes are given
pids from 1 to N , and p is the pid of the caller [5, 7]. In particular, p is used to index a
pre-allocated helping array – in Ben-David et al.’s algorithm this helping array is of length
N , one location per process being helped; in Attiya et al.’s algorithm this helping array is
of length N2, one location per helper-helpee pair. Helping plays a central role in detection,
thus each process needs to have some area in memory where it can be helped; in fact, using
the bit-complexity model, Ben-Baruch et al. proved that the space needed to support a
detectable CAS object monotonically increases in the number of processes that access the
object [6]. One of our goals in this paper however, is to design objects that can be accessed by
a dynamically increasing set of processes, which precludes the use of pre-allocated fixed-size
arrays that are indexed by process IDs.

3 Recall that a crashed operation by π completes when π finishes Recover() following the crash.
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To eliminate the use of arrays for helping, we introduce pointer based structures called
handles. We use handles to enable dynamic joining and achieve space adaptivity. A handle
is a pointer to a constant sized record. The implementation provides a CreateHandle()
method, which allocates memory for a new record and returns a pointer h to it called a
handle. This allocation can be via a persistent memory allocator [13] or any other means that
ensures that handles are created in constant time and remembered across crashes without
any memory leaks. When a process first wishes to access any of the implemented objects of a
given type, it creates for itself a new handle by calling CreateHandle(). From that point
on, whenever the process calls any method on any of the implemented objects of that type,
it passes its handle h instead of its pid, and other processes help it via the handle. This
mechanism of handles helps us realize dynamic joining because any number of new processes
can join at any time by creating handles for themselves; since the memory per handle is
constant, and only the subset of processes that wish to access the implementation need to
create handles, the mechanism facilitates space adaptivity.

At first glance, replacing pids with handles to achieve dynamic joining may seem like a
simple level of indirection; however, this step actually poses a significant algorithmic challenge.
As will become more clear in the next section, the challenge arises from the fact that known
algorithms for durable primitives (including ours) must, in principle, store three pieces of
information consistently using hardware that only supports double-width CAS. The three
pieces to store are the implemented object’s value, its sequence number, and the pid/handle
of the process that last changed the object. (Intuitively, the sequence number helps styme
ABA problems, while the handle facilitates helping.) Previous durable CAS algorithms either
require the strong assumption that processes never attempt to CAS in the same value twice
to avoid sequence numbers [5]; or assume that a pid and a sequence number can be packed
into a single pointer-sized word [7]. Since handles are pointers, and the object’s value can also
be pointer-sized, we cannot pack all three pieces of information into a single double-width
word. Our DurEC algorithm overcomes this challenge by storing the sequence number with
the handle in one variable, and the same sequence number with the value in another variable,
and cleverly coordinating between these two variables to create the illusion that all three
pieces of information are stored and manipulated atomically together.

5 The DurEC Building Block

In this section, we implement the DurEC algorithm for durable external context non-
writable LLSC using hardware CAS. This building block will be central to all of the writable
implementations in the remainder of the paper.

Intuitive description of Algorithm DurEC. Each DurEC handle h is a reference to a record
of two fields, Val and DetVal, and each DurEC object O is implemented from two hardware
atomic CAS objects X and Y , where X is a pair consisting of a handle and a sequence
number, and Y is a pair consisting of a sequence number and a value. The algorithm
maintains the DurEC object O’s state in Y , i.e., O.seq = Y.seq and O.val = Y.val at all
times. This representation makes the implementation of ECLL and ECVL operations obvious:
ECLL(h) simply returns Y and ECVL(h, s) returns whether Y.seq = s (although ECLL
and ECVL do not use the handle parameter h, for uniformity we let the handle be the first
parameter of all object operations). The complexity lies in the ECSC(h, s, v) operation,
which is implemented by the following sequence of steps:
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1. If Y.seq ̸= s, it means O.seq ̸= s, so the ECSC operation simply returns false. Otherwise,
it embarks on the following steps, in an attempt to switch O.val to v and O.seq to a
greater number.

2. Make v available for all by writing it in the Val field of the ECSC operation’s handle h.

3. Pick a number ŝ that is bigger than both X.seq and h.DetVal. (The latter facilitates
detection.)

4. Publish the operation’s handle along with a greater sequence number by installing (h, ŝ)
in X. If several ECSC operations attempt to install concurrently, only one will succeed.
The successful one is the installer and the others are hitchhikers.

5. The installer and the hitchhikers work together to accomplish two missions, the first of
which is to increase the installer’s DetVal field to the number in X.seq. This increase in
the DetVal field of its handle enables the installer to detect that it installed, even if the
installer happens to crash immediately after installing.

6. The second mission is to forward the installer’s operation to Y . Since Y is where the
DurEC object’s state is held, the installer’s operation takes effect only when it is reflected
in Y ’s state. Towards this end, everyone reads the installer’s value v, made available in
the Val field of the installer’s handle back at Step (2), and attempts to switch Y.val to v,
simultaneously increasing Y.seq so that it catches up with X.seq. Since all operations
attempt this update of Y , someone (not necessarily the installer) will succeed. At this
point, X.seq = Y.seq and Y.val = v, which means that the installer’s value v has made
its way to O.val. So, the point where Y is updated becomes the linearization point for
the installer’s successful ECSC operation. The hitchhikers are linearized immediately
after the installer, which causes their ECSC operations to “fail” – return false, without
changing O’s state – thereby eliminating the burden of detecting these operations.

7. If the installer crashes after installing, upon restart, in the Recover method, it does the
forwarding so that the two missions explained above are fulfilled.

8. With the above scheme, all ECSC, ECLL, and ECVL operations, except those ECSC
operations that install, are safe to repeat and hence, don’t need detection. Furthermore,
for each installing ECSC operation, the above scheme ensures that the DetVal field of
the installer’s handle is increased, thereby making the operation detectable.

The formal algorithm is presented in Figure 1. The correspondence between the lines
of the algorithm and the steps above is as follows. Lines 6 and 7 implement Steps 1 and 2,
respectively. Steps 3 and 4, where the operation attempts to become the installer, are
implemented by Lines 8 to 10. The operation becomes the installer if and only if the CAS at
Line 10 succeeds, which is reflected in the boolean return value r. The Forward method is
called at Line 11 to accomplish the two missions described above. The first three lines of
Forward (Lines 13 to 15) implement the first mission of increasing the DetVal field of the
installer’s handle to X.seq (Step 5). Line 13, together with Lines 16 to 19, implement the
second mission of forwarding the operation to Y (Step 6). The if-condition and the CAS’
arguments at Line 18 ensure that Y is changed only if Y.seq lags behind X.seq and, if it lags
behind, it catches up and Y.val takes on the installer’s value. The Recover method simply
forwards at Line 20, as explained in Step 7. The detect method returns at Line 22 the value
in the handle’s DetVal field, as explained in Step 8, along with true (since only successful
ECSC operations are detected).

The theorem below summarizes the result:

DISC 2023
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▶ Theorem 1. Algorithm DurEC satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of External Context LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DurEC objects or accessing existing
DurEC objects.

4. The space requirement is O(m + n), where m is the actual number of DurEC objects
created in the run, and n is the actual number of processes that have joined in in a run.

▶ Remark. It is interesting to note that while DurEC is recoverably linearizable, it is not
strictly lineariable, i.e., operations may linearize after a process crashes (but before its next
successful completion of Recover()). In particular, if a process crashes after successfully
CASing into X and before changing Y , then this operation has not taken effect before the
crash, but is guaranteed to take effect in the future (i.e., after the crash).

6 DurECW and DuraLL: durable Writable LLSC implementations

Using DurEC, we design the writable external context LLSC implementation DurECW
in this section. With DurECW in hand, we obtain our standard durable writable-LLSC
implementation DuraLL easily, by simply rolling the context into the object.

6.1 Intuitive description of Algorithm DurECW
A DurECW object O supports the write operation, besides ECSC, for changing the object’s
state. Unlike a ECSC(h, s, v) operation, which returns without changing O’s state when
O.context ≠ s, a Write(h, v) must get v into O.val unconditionally. In the DurECW
algorithm, ECSC() operations help Write() operations and prevent writes from being
blocked by a continuous stream of successful ECSC() operations.

Each DurECW object O is implemented from two DurEC objects,W and Z, each of which
holds a pair, where the first component is a sequence number seq, and the second component
is a pair consisting of a value val and a bit bit. Thus, W = (W.seq, (W.val,W.bit)) and
Z = (Z.seq, (Z.val,Z.bit)).

The DurECW handle h consists of two DurEC handles, h.Critical and h.Casual. The
use of two DurEC handles allows us to implement detectability. In particular, if Detect(h)
is called on a DurECW object, only the detect value (DetVal) of h.Critical is returned. So
intuitively, when a DurECW operation α calls methods on W or Z, it uses h.Critical only if
a successful call will make its own ECSC() or Write() operation visible. In all other cases
α uses h.Casual.

The algorithm maintains the DurECW object O’s state in Z, i.e., O.seq = Z.seq and
O.val = Z.val at all times. This representation makes the implementation of O.ECLL() and
O.ECVL() operations obvious: O.ECLL(h) simply returns (Z.seq,Z.val) and ECVL(h, s)
returns whether Z.seq = s. The complexity lies in the implementation of O.Write(h, v)
and O.ECSC(h, s, v) operations, which coordinate their actions using W.bit and Z.bit. A
write operation flips the W.bit to announce to the ECSC operations that their help is needed
to push the write into Z; once the write is helped, the Z.bit is flipped to announce that help
is no longer needed. We maintain the invariant that W.bit ̸= Z.bit if and only if a write
needs help.
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Algorithm 1 : The DurEC class for Durable, External Context nW-LLSC objects.

class DurEC:

instance variable (handle*, int) X ▷ X is a pair (X.hndl, X.seq) stored in NVM
instance variable (int, int) Y ▷ Y is a pair (Y.seq, Y.val) stored in NVM

struct handle {
int DetVal
int Val

}

static procedure CreateHandle()
1: return new handle{DetVal = 0} ▷ DetVal and Val in NVM; Val arbitrarily initialized

constructor DurEC(int initval)
2: X ← (null, 0)
3: Y ← (0, initval)

procedure ECLL(handle* h)
4: return Y

procedure ECVL(handle* h, int s)
5: return Y.seq = s

procedure ECSC(handle* h, int s, int v)
6: if Y.seq ̸= s then return false
7: h.Val ← v
8: ĥ ← X.hndl
9: ŝ ← max(h.DetVal, s) + 1

10: r ← Cas(X, (ĥ , s), (h, ŝ))
11: forward(h)
12: return r

procedure forward(handle* h)
13: x ← X
14: ŝ ← x.hndl.DetVal
15: if ŝ < x.seq then Cas(x.hndl.DetVal, ŝ , x.seq)
16: v̂ ← x.hndl.Val
17: y ← Y
18: if y.seq < x.seq then Cas(Y, y, (x.seq, v̂))
19: return

procedure Recover(handle* h)
20: forward(h)
21: return

static procedure Detect(handle* h)
22: return (h.DetVal, true)

A Write(h, v) operation α consists of the following steps.
(W1) The operation α reads W and Z to determine if some write operation is already

waiting for help. If not, then α installs its write into W by setting W.val to v and
flipping W.bit. If several write operations attempt to install concurrently, only one
will succeed. The successful one is the installer and the others are hitchhikers.

(W2) Once a write operation is installed, all processes – installer, hitchhiker, and the ECSC
operations – work in concert to forward the installer’s operation to Z. Since Z is
where the DurECW object’s state is held, the installer’s operation takes effect only
when it is reflected in Z’s state. Towards this end, everyone attempts to transfer the
installer’s value from W to Z. However, a stale ECSC operation, which was poised
to execute its ECSC operation on Z, might update Z, causing the transfer to fail
in moving the installer’s value from W to Z. So, a transfer is attempted the second
time. The earlier success by the poised ECSC operation causes any future attempts by
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Algorithm 2 The DurECW class for Durable External Context W-LLSC objects.

class DurECW:

instance variable DurEC W ▷ W holds a pair (W.seq, (W.val,W.bit))
instance variable DurEC Z ▷ Z holds a pair (Z.seq, (Z.val,Z.bit))

struct handle {
DurEC.handle Critical
DurEC.handle Casual

}

static procedure CreateHandle()
1: return new handle{Critical ← DurEC.CreateHandle(), Casual ← DurEC.CreateHandle()}

procedure DurECW(initval)
2: W ← DurEC((0, 0))
3: Z ← DurEC((initval, 0))

procedure ECLL(handle* h)
4: z ← Z.ECLL(h.Casual)
5: return (z.seq, z.val)

procedure ECVL(handle* h, int s)
6: return Z.ECVL(h.Casual, s)

procedure ECSC(handle* h, int s, int v)
7: z ← Z.ECLL(h.Casual)
8: if s ̸= z.seq return false
9: transfer-write(h)

10: r ← Z.ECSC(h.Critical, s, (v, z.bit))
11: return r

procedure Write(handle* h, int v)
12: w ←W.ECLL(h.Casual)
13: z ← Z.ECLL(h.Casual)
14: if z.bit = w.bit then W.ECSC(h.Critical, w.seq, (v, 1− w.bit))
15: transfer-write(h)
16: transfer-write(h)
17: return true

procedure transfer-write(handle* h)
18: ẑ ← Z.ECLL(h.Casual)
19: ŵ ←W.ECLL(h.Casual)
20: if ẑ .bit ̸= ŵ .bit then Z.ECSC(h.Casual, ẑ .seq, (ŵ .val, ŵ .bit))

procedure Recover(handle* h)
21: W.Recover(h.Critical)
22: Z.Recover(h.Critical)
23: W.Recover(h.Casual)
24: Z.Recover(h.Casual)
25: transfer-write(h)
26: transfer-write(h)

static procedure Detect(handle* h)
27: return DurEC.Detect(h.Critical)

similarly poised operations to fail. Consequently, the installer’s write value gets moved
to Z by the time the second transfer attempt completes. The point where the move
to Z occurs becomes the linearization point for the installer’s write operation. We
linearize the writes by the hitchhikers immediately before the installer, which makes
their write operations to be overwritten immediately by the installer’s write, without
anyone ever witnessing their writes. Hence, there is no need to detect these writes: if
a hitchhiker crashes during its write, the operation can be safely repeated.

(W3) If the installer crashes after installing, upon restart, in the Recover method, it does
the forwarding so that its install moves to Z and its write operation gets linearized.
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An ECSC(h, s, v) operation α consists of the following steps.
(S1) α performs an ECLL() to determine whether the context in O matches s. If not, it

can fail early and return false.
(S2) If a Write() is already in W and waiting for help to be transferred to Z, α is obligated

to help that write before attempting its SC (to prevent the write from being blocked by
a chain of successful ECSC() operations). So it attempts a transfer from W to Z.

(S3) Finally α executes an ECSC() on Z in an attempt to make its own operation O take
effect.

The algorithm is formally presented in Algorithm 2. In the algorithm, Lines 12-14
implement step W1 and Lines 15, 16 implement step W2. Step S1 is implemented by Lines
7, 8, step S2 by 9 and S3 by 10 and 11. Note that the ECSC() on line 10 takes care to not
change Z.bit. This ensures that the helping mechanism for writes implemented via W.bit

and Z.bit is not disturbed. The ECSC() operation at Line 14 uses the handle h.Critical
because its success implies that the operation is an installer and hence will be a visible write
when it linearizes. Similarly the ECSC() on Z at Line 10 uses h.Critical because its success
makes the ECSC() on O visible.

If a Write() or a ECSC() method crashes while executing an operation on W or Z,
upon restart, Lines 21 to 24 of Recover() ensure that W.Recover() or Z.Recover() is
executed before any other operation is executed on W or Z (the relative order of lines 21-24
is unimportant). Consequently, the durable objects W and Z behave like atomic EC objects.

The theorem below summarizes the result:

▶ Theorem 2. Algorithm DurECW satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of External Context Writable-LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DurECW objects or accessing existing
DurECW objects.

4. The space requirement is O(m + n), where m is the actual number of DurECW objects
created in the run, and n is the actual number of processes that have joined in in a run.

6.2 The DuraLL Algorithm
Given the durable EC W-LLSC object DurECW, rolling the context into the implementation
to produce a durable standard W-LLSC object is simple. Each of our implemented DuraLL
objects simply maintains a single DurECW object X. The handle of the DuraLL object
simply maintains a single DurECW handle to operate on X, and a hashmap, cntxts, that
maps objects to contexts.

We present the DuraLL code as Algorithm 4 in the Appendix A. The LL() operation
on a DuraLL object by handle h simply performs an ECLL() on X and stores the returned
context in h.cntxts under the key self (which is the reference of the current object). Corre-
spondingly, VL() retrieves the context from h.cntxts, and uses it to perform an ECVL()
on X. The SC() operation also retrieves the context and performs an ECSC() on the
internal object, but then cleverly removes the key corresponding to the current object from
h.cntxts, since, regardless of whether the SC() succeeds, the stored context is bound to be
out-of-date. The Write() operation does not need a context, so it simply writes to X, but
also cleverly removes the current object’s key from h.cntxts to save some space. In order to
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be space-efficient, Recover() also removes the current object from h.cntxts if the context
stored for the object is out-of-date. Since DuraLL is just a wrapper around DurECW, its
Detect() operation simply returns the result of detecting DurECW.

▶ Theorem 3. Algorithm DuraLL satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of Writable LLSC).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DuraLL objects or accessing existing
DuraLL objects.

4. The space requirement is O(m+n+C), where m is the actual number of DuraLL objects
created in the run, n is the actual number of processes that have joined in in a run, and
C is the number of “contexts” stored across all objects.

7 DuraCAS: a durable implementation of Writable CAS

We present in Figure 3 Algorithm DuraCAS, which implements a durable writable CAS
object O from two DurEC objects, W and Z. The algorithm bears a lot of similarity to
Algorithm DurECW of the previous section. In fact, DuraCAS has only three extra lines.
For readability, we starred their line numbers (Lines 6*, 10*, and 13*) and kept the line
numbers the same for the common lines.

The ideas underlying this algorithm are similar to DurECW, so we explain here only
the three differences: (1) Lines 7 to 10 are executed only once in Algorithm DurECW, but
are repeated twice in the current algorithm; (2) Line 8 differs in the two algorithms; and (3)
Line 13* is introduced in the current algorithm.

The change in Line 8 accounts for the fact that the success of a Cas() operation depends
on the value in O rather than the context. If the value in O (and therefore Z) is different
from old at Line 7, the CAS returns false (and linearizes at Line 7). If O.val = old and the
CAS does not plan to change the value (i.e., old = new) it returns true without changing Z.

To understand why Lines 7 to 10 are repeated in the current algorithm, consider the
following scenario. A handle h executes O.CAS(h, old, new), where old ̸= new. When h

executes Line 7, Z’s value is old, so z.val gets set to old at Line 7. Handle h progresses
to Line 10, but before it executes Line 10, some handle h′ invokes O.Write(h′, old) and
executes it to completion, causing Z.seq to take on a value greater than z.seq. Handle h now
executes the ECSC at Line 10 and fails since Z.seq ̸= z.seq. If h acts as it did in Algorithm
DurECW, h would complete its O.CAS(h, old, new) operation, returning false. However,
false is an incorrect response by the specification of CAS because O.val = old for the full
duration of the operation O.CAS(h, old, new). To overcome this race condition, h repeats
Lines 7 to 10.

If the same race condition repeats each time h repeats Lines 7 to 10, the method O.CAS

would not be wait-free. Line 13* is introduced precisely to prevent this adverse possibility.
When a handle h′ executes Lines 12 to 14 of O.Write(h′, v) in the previous DurECW
algorithm, h′ would always try to install its value v in W (at Line 14) and later move it to
Z, thereby increasing Z.seq and causing concurrent O.ECSC() operations to fail. This was
precisely what we wanted because the specification of an SC operation requires that if any
O.Write() takes effect, regardless of what value it writes in O, it must change O.context

and thus cause concurrent O.ECSC() operations to fail. The situation however, is different
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Algorithm 3 The DuraCAS class for Durable, Writable-CAS objects.

class DuraCAS:

instance variable DurEC W ▷ W holds a pair (W.seq, (W.val,W.bit))
instance variable DurEC Z ▷ Z holds a pair (Z.seq, (Z.val,Z.bit))

struct handle {
DurEC.handle* Critical
DurEC.handle* Casual

}

static procedure CreateHandle()
1: return new handle{Critical ← DurEC.CreateHandle(), Casual ← DurEC.CreateHandle()}

procedure DuraCAS(int initval)
2: W ← DurEC((0, 0))
3: Z ← DurEC((initval, 0))

procedure Read(handle* h)
4: z ← Z.ECLL(h.Casual)
5: return z.val

6:

procedure CAS(handle* h, int old, int new)
6*: for i← 1 to 2
7: z ← Z.ECLL(h.Casual)
8: if z.val ̸= old then return false else if old = new then return true
9: transfer-write(h)

10: if Z.ECSC(h.Critical, z.seq, (new, z.bit)) then
10*: return true
11: return false

procedure Write(handle* h, int v)
12: w ←W.ECLL(h.Casual)
13: z ← Z.ECLL(h.Casual)
13*: if z.val = v then return ack
14: if z.bit = w.bit then W.ECSC(h.Critical, w.seq, (v, 1− w.bit))
15: transfer-write(h)
16: transfer-write(h)
17: return ack

procedure transfer-write(handle* h)
18: ẑ ← Z.ECLL(h.Casual)
19: ŵ ←W.ECLL(h.Casual)
20: if ẑ .bit ̸= ŵ .bit then Z.ECSC(h.Casual, ẑ .seq, (ŵ .val, ŵ .bit))

procedure Recover(handle* h)
21: W.Recover(h.Critical)
22: Z.Recover(h.Critical)
23: W.Recover(h.Casual)
24: Z.Recover(h.Casual)
25: transfer-write(h)
26: transfer-write(h)

static procedure Detect(handle* h)
27: return DurEC.Detect(h.Critical)

when implementing O.CAS, where a O.Write() that does not change the value in O should
not cause a concurrent O.CAS to fail. Hence, if a O.Write(h′, v) operation is writing the
same value as O’s current value, then it should simply return (since O.val already has v)
and, importantly, not change Z.seq (because changing Z.seq would cause any concurrent
CAS operation to fail). Line 13* implements precisely this insight by ensuring that two
Write(−, v) operations both change Z only if there is some Cas(−, v, v′) or Write(−, v′)
operation that changes Z in between (for some v′ ̸= v).
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The theorem below summarizes the result:

▶ Theorem 4. Algorithm DuraCAS satisfies the following properties:
1. The objects implemented by the algorithm are durable, i.e., they satisfy method-based

recoverable linearizability and method-based detectability (with respect to the sequential
specification of Writable CAS).

2. All object operations including Recover are wait-free and run in constant time.
3. The algorithm supports dynamic joining: a new process can join in at any point in a

run (by calling CreateHandle) and start creating DuraCAS objects or accessing existing
DuraCAS objects.

4. The space requirement is O(m + n), where m is the actual number of DuraCAS objects
created in the run, and n is the actual number of processes that have joined in in a run.

8 Discussion and Remarks

In this paper, we have designed constant time implementations for durable CAS and LLSC
objects. To our knowledge, DuraCAS is the first CAS implementation to allow for dynamic
joining. DuraCAS also has state-of-the-art space complexity – allowing adaptivity and
requiring only constant space per object and per process that actually accesses the protocol
– and is writable. To our knowledge, ours are the first implementations of durable LLSC
objects. LLSC objects are universal and ABA-free, thus we believe that the dynamically
joinable LLSC implementations in this paper will be useful in the construction of several
more complex durable objects. The external context variant of LLSC is particularly space
efficient, making it a powerful building block for concurrent algorithms; we witnessed this
property even in the constructions of this paper, where the EC nW-LLSC object DurEC
served as the primary building block for all our other implementations, including our EC
W-LLSC implementation DurECW and its direct descendent DuraLL (for W-LLSC). All
the implementations in this paper were enabled by handles – a pointer-based mechanism
we introduced to enable threads created on-the-fly to access our implementations. We
believe that along with the specific implementations of this paper, the use of handles as an
algorithmic tool can play an important role in the design of future durable algorithms.

We end with two open problems. Handles enable dynamic joining, but once a handle h

is used, any other process can have a stale pointer to h that may be dereferenced at any
point in the future. A mechanism for enabling space adaptivity for both dynamic joining
and dynamic leaving, which would enable a process to reclaim its entire memory footprint
once it is done using a durable implementation is our first open problem. Our second open
problem is to prove (or disprove) an Ω(m + n) space lower bound for supporting m objects
for n processes for any durable CAS or durable LLSC type.
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Algorithm 4 The DuraLL class for Durable Writable-LLSC objects.

class DuraLL:

instance variable DurECW X ▷ X holds the central EC W-LLSC object.

struct handle {
DurECW.handle ECWH
HashMap (DuraLL→ int) cntxts

}

static procedure CreateHandle()
1: return new handle{ECWH ← DurECW.CreateHandle(), cntxts← HashMap(DuraLL→ int)}

procedure DuraLL(initval)
2: X ← DurECW(initval, 0)

procedure LL(handle* h)
3: x ← X.ECLL(h.ECWH )
4: h.cntxts(self)← x.seq
5: return x.val

procedure VL(handle* h)
6: if self ̸∈ h.cntxts.keys then return false
7: return X.ECVL(h.ECWH , h.cntxts(self))

procedure SC(handle* h, int val)
8: if self ̸∈ h.cntxts.keys then return false
9: r ← X.ECSC(h.ECWH , h.cntxts(self), val)

10: h.cntxts.Remove(self)
11: return r

procedure Write(handle* h, int val)
12: X.Write(h.ECWH , val)
13: h.cntxts.Remove(self)
14: return true

procedure Recover(handle* h)
15: X.Recover(h.ECWH )
16: if self ∈ h.cntxts.keys then

if ¬X.ECVL(h.ECWH , h.cntxts(self)) then h.context.Remove(self)

static procedure Detect(handle* h)
17: return DurECW.Detect(h.ECWH )
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