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Abstract
Two mobile agents, starting from different nodes of a network modeled as a graph, and woken up
at possibly different times, have to meet at the same node. This problem is known as rendezvous.
Agents move in synchronous rounds. In each round, an agent can either stay idle or move to an
adjacent node. We consider deterministic rendezvous in the infinite line, i.e., the infinite graph with
all nodes of degree 2. Each node has a distinct label which is a positive integer. An agent currently
located at a node can see its label and both ports 0 and 1 at the node. The time of rendezvous is
the number of rounds until meeting, counted from the starting round of the earlier agent.

We consider three scenarios. In the first scenario, each agent knows its position in the line, i.e.,
each of them knows its initial distance from the smallest-labeled node, on which side of this node
it is located, and the direction towards it. For this scenario, we design a rendezvous algorithm
working in time O(D), where D is the initial distance between the agents. This complexity is clearly
optimal. In the second scenario, each agent knows a priori only the label of its starting node and
the initial distance D between them. In this scenario, we design a rendezvous algorithm working
in time O(D log∗ ℓ), where ℓ is the larger label of the starting nodes. We also prove a matching
lower bound Ω(D log∗ ℓ). Finally, in the most general scenario, where each agent knows a priori
only the label of its starting node, we design a rendezvous algorithm working in time O(D2(log∗ ℓ)3),
which is thus at most cubic in the lower bound. All our results remain valid (with small changes)
for arbitrary finite lines and for cycles. Our algorithms are drastically better than approaches that
use graph exploration, which have running times that depend on the size or diameter of the graph.

Our main methodological tool, and the main novelty of the paper, is a two way reduction: from
fast colouring of the infinite labeled line using a constant number of colours in the LOCAL model
to fast rendezvous in this line, and vice-versa. In one direction we use fast node colouring to quickly
break symmetry between the identical agents. In the other direction, a lower bound on colouring
time implies a lower bound on the time of breaking symmetry between the agents, and hence a lower
bound on their meeting time.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases rendezvous, deterministic algorithm, mobile agent, labeled line, graph
colouring

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.29

Funding Avery Miller : Supported by NSERC Discovery Grant 2017-05936.
Andrzej Pelc: Partially supported by NSERC Discovery Grant 2018-03899 and by the Research
Chair in Distributed Computing at the Université du Québec en Outaouais.

1 Introduction

Background. Two mobile agents, starting from different nodes of a network modeled as
a graph, and woken up at possibly different times, have to meet at the same node. This
problem is known as rendezvous. The autonomous mobile entities (agents) may be natural,
such as people who want to meet in a city whose streets form a network. They may also
represent human-made objects, such as software agents in computer networks or mobile
robots navigating in a network of corridors in a mine or a building. Agents might want to
meet to share previously collected data or to coordinate future network maintenance tasks.
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29:2 Fast Deterministic Rendezvous in Labeled Lines

Model and problem description. We consider deterministic rendezvous in the infinite line,
i.e., the infinite graph with all nodes of degree 2. Each node has a distinct label which is
a positive integer. An agent currently located at a node can see its label and both ports
0 and 1 at the node. Technically, agents are anonymous, but each agent could adopt the
label of its starting node as its label. Agents have synchronized clocks ticking at the same
rate, measuring rounds. Agents are woken up by an adversary in possibly different rounds.
The clock of each agent starts in its wakeup round. In each round, an agent can either stay
idle or move to an adjacent node. After moving, an agent knows on which port number
it arrived at its current node. When agents cross, i.e., traverse an edge simultaneously in
different directions, they do not notice this fact. No limitation is imposed on the memory of
the agents. Computationally, they are modeled as Turing Machines. The time of rendezvous
is the number of rounds until meeting, counted from the starting round of the earlier agent.

In most of the literature concerning rendezvous, nodes are assumed to be anonymous.
The usual justification of this weak assumption is that in labeled graphs (i.e., graphs whose
nodes are assigned distinct positive integers) each agent can explore the entire graph and
then meet the other one at the node with the smallest label. Thus, the rendezvous problem
in labeled graphs can be reduced to exploration. While this simple strategy is correct for
finite graphs, it requires time at least equal to the size of the graph, and hence very inefficient
for large finite graphs, even if the agents start at a very small initial distance. In infinite
graphs, this strategy is incorrect: indeed, if label 1 is not used in some labeling, an agent
may never learn what is the smallest used label. For large environments that would be
impractical to exhaustively search, it is desirable and natural to relate rendezvous time to the
initial distance between the agents, rather than to the size of the graph or the value of the
largest node label. This motivates our choice to study the infinite labeled line: we must avoid
algorithms that depend on exhaustive search, and there cannot be an efficient algorithm that
is dependent on a global network property such as size, largest node label, etc. In particular,
the initial distance between the agents and the labels of encountered nodes should be the
only parameters available to measure the efficiency of algorithms. Results for the infinite
line can then be applied to understand what’s possible in large path-like environments.

We consider three scenarios, depending on the amount of knowledge available a priori to
the agents. In the first scenario, each agent knows its position in the line, i.e., each of them
knows its distance from the smallest-labeled node, on which side of this node it is located,
and the direction towards it. This scenario is equivalent to assuming that the labeling is
very particular, such that both above pieces of information can be deduced by the agent
by inspecting the label of its starting node and port numbers at it. One example of such
a labeling is ...8, 6, 4, 2, 1, 3, 5, 7, ... (recall that labels must be positive integers), with the
following port numbering. For nodes with odd labels, port 1 always points to the neighbour
with larger label and port 0 points to the neighbour with smaller label, while for nodes with
even label, port 1 always points to the neighbour with smaller label and port 0 points to
the neighbour with larger label. We will call the line with the above node labeling and
port numbering the canonical line, and use, for any node, the term “right of the node”
for the direction corresponding to port 1 and the term “left of the node” for the direction
corresponding to port 0. In the second scenario that we consider, the labeling and port
numbering are arbitrary and each agent knows a priori only the label of its starting node and
the initial distance D between the agents. Finally, in the third scenario, the labeling and port
numbering are arbitrary and each agent knows a priori only the label of its starting node.
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Our results. We start with the scenario of the canonical line. This scenario was previously
considered in [13], where the authors give a rendezvous algorithm with optimal complexity
O(D), where D is the (arbitrary) initial distance between the agents. However, they use
the strong assumption that both agents are woken up in the same round. In our first result
we get rid of this assumption: we design a rendezvous algorithm with complexity O(D),
regardless of the delay between the wakeup of the agents. This complexity is clearly optimal.

The remaining results are expressed in terms of the base-2 iterated logarithm function,
denoted by log∗. The value of log∗(n) is 0 if n ≤ 1, and otherwise its value is 1 + log∗(log2 n).
This function grows extremely slowly with respect to n, e.g., log∗(265536) = 5.

For the second scenario (arbitrary labeling with known initial distance D) we design a
rendezvous algorithm working in time O(D log∗ ℓ), where ℓ is the larger label of the two
starting nodes. We also prove a matching lower bound Ω(D log∗ ℓ), by constructing an
infinite labeled line in which this time is needed, even if D is known and if agents start
simultaneously. As a corollary, we get the following impossibility result: for any deterministic
algorithm and for any finite time T , there exists an infinite labeled line such that two agents
starting from some pair of adjacent nodes cannot meet in time T .

Finally, for the most general scenario, where each agent knows a priori only the label
of its starting node, we design a rendezvous algorithm working in time O(D2(log∗ ℓ)3), for
arbitrary unknown D. This complexity is thus at most cubic in the above lower bound that
holds even if D is known.

It should be stressed that the complexities of our algorithms in the second and third
scenarios depend on D and on the larger label of the two starting nodes. No algorithm whose
complexity depends on D and on the maximum label in even a small vicinity of the starting
nodes would be satisfactory, since neighbouring nodes can have labels differing in a dramatic
way, e.g., consider two agents that start at adjacent nodes, and these nodes are labeled with
small integers like 2 and 3, but other node labels in their neighbourhoods are extremely large.
Our approach demonstrates that this is an instance that can be solved very quickly, but an
approach whose running time depends on the labels of other nodes in the neighbourhood
can result in arbitrarily large running times (which are very far away from the lower bound).

An alternative way of looking at the above three scenarios is the following. In the first
scenario, the agent is given a priori the entire (ordered) labeling of the line. Of course, since
this is an infinite object, the labeling cannot be given to the agent as a whole, but the agent
can a priori get the answer to any question about it, in our case answers to two simple
questions: how far is the smallest-labeled node and in which direction. In the second and
third scenarios, the agent gets information about the label of a given node only when visiting
it. It is instructive to consider another, even weaker, scenario: the agent learns the label of
its initial node but the other labels are never revealed to it. This weak scenario is equivalent
to the scenario of labeled agents operating in an anonymous line: the labels of the agents are
guaranteed to be different integers (they are the labels of the starting nodes) but all other
nodes look the same. It follows from [16] that in this scenario the optimal time of rendezvous
is Θ(D log ℓ), where ℓ is, as usual, the larger label of the starting nodes.1 Hence, at least
for known D, we get strict separations between optimal rendezvous complexities, according
to three ways of getting knowledge about the labeling of the line: Θ(D), if all knowledge is
given at once, Θ(D log∗ ℓ) if knowledge about the labeling is given as the agents visit new
nodes, and Θ(D log ℓ), if no knowledge about the labeling is ever given to the agents, apart

1 In [16] cycles are considered instead of the infinite line, and the model and result are slightly different
but obtaining, as a corollary, this complexity in our model is straightforward.
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29:4 Fast Deterministic Rendezvous in Labeled Lines

from the label of the starting node. Of course, in the ultimately weak scenario where even the
label of the starting node is hidden from the agents, deterministic rendezvous would become
impossible: there is no deterministic algorithm guaranteeing rendezvous of anonymous agents
in an anonymous infinite line, even if they start simultaneously from adjacent nodes.

It should be mentioned that the O(D log ℓ)-time rendezvous algorithm from [16] is also
valid in our scenario of arbitrary labeled lines, with labels of nodes visible to the agents at
their visit and with unknown D: the labels of the visited nodes can be simply ignored by the
algorithm from [16]. This complexity is incomparable with our complexity O(D2(log∗ ℓ)3).
For bounded D our algorithm is much faster but for large D compared to ℓ it is less efficient.

As usual in models where agents cannot detect crossing on the same edge when moving in
opposite directions, we guarantee rendezvous by creating time intervals in which one agent is
idle at its starting node and the other searches a sufficiently large neighbourhood to include
this node. Since the adversary can choose the starting rounds of the agents, it is difficult to
organize these time intervals to satisfy the above requirement. Our main methodological tool,
and the main novelty of the paper is a two way reduction: from fast colouring of the infinite
labeled line using a constant number of colours in the LOCAL model to fast rendezvous
in this line, and vice-versa. In one direction we use fast node colouring to quickly break
symmetry between the identical agents. In the other direction, a lower bound on colouring
time implies a lower bound on the time of breaking symmetry between the agents, and hence
a lower bound on their meeting time.

As part of our approach to solve rendezvous using node colouring, we provide a result
(based on the idea of Cole and Vishkin [12]) that might be of independent interest: for the
LOCAL model, we give a deterministic distributed algorithm EarlyStopCV that properly
3-colours any infinite labeled line such that the execution of EarlyStopCV at any node x

with initial label IDx terminates in time O(log∗(IDx)), and the algorithm does not require
that the nodes have any initial knowledge about the network other than their own label.

All our results remain valid for finite lines and cycles: in the first scenario without any
change, and in the two other scenarios with small changes. As previously mentioned, it
is always possible to meet in a labeled line or cycle of size n in time O(n) by exploring
the entire graph and going to the smallest-labeled node. Thus, in the second scenario the
upper and lower bounds on complexity change to O(min(n, D log∗ ℓ)) and Ω(min(n, D log∗ ℓ)),
respectively, and in the third, most general scenario, the complexity of (a slightly modified
version of) our algorithm changes to O(min(n, D2(log∗ ℓ)3)).

Related work. Rendezvous has been studied both under randomized and deterministic
scenarios. A survey of randomized rendezvous under various models can be found in [3], cf.
also [1, 2, 4, 7]. Deterministic rendezvous in networks has been surveyed in [27, 28]. Many
authors considered geometric scenarios (rendezvous in the real line, e.g., [7, 8], or in the
plane, e.g., [5, 6, 11, 14]). Gathering more than two agents was studied, e.g., in [18, 24, 31].

In the deterministic setting, many authors studied the feasibility and time complexity
of synchronous rendezvous in networks. For example, deterministic rendezvous of agents
equipped with tokens used to mark nodes was considered, e.g., in [22]. In most of the papers
concerning rendezvous in networks, nodes of the network are assumed to be unlabeled and
agents are not allowed to mark the nodes in any way. In this case, the symmetry is usually
broken by assigning the agents distinct labels and assuming that each agent knows its own
label but not the label of the other agent. Deterministic rendezvous of labeled agents in
rings was investigated, e.g., in [16, 20] and in arbitrary graphs in [16, 20, 30]. In [16], the
authors present a rendezvous algorithm whose running time is polynomial in the size of the
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graph, in the length of the shorter label and in the delay between the starting times of the
agents. In [20, 30], rendezvous time is polynomial in the first two of these parameters and
independent of the delay. In [9, 10] rendezvous was considered, respectively, in unlabeled
infinite trees, and in arbitrary connected unlabeled infinite graphs, but the complexities
depended, among others, on the logarithm of the size of the label space. Gathering many
anonymous agents in unlabeled networks was investigated in [17]. In this weak scenario, not
all initial configurations of agents are possible to gather, and the authors of [17] characterized
all such configurations and provided universal gathering algorithms for them. On the other
hand, time of rendezvous in labeled networks was studied, e.g., in [26], in the context
of algorithms with advice. In [13], the authors studied rendezvous under a very strong
assumption that each agent has a map of the network and knows its position in it.

Memory required by the agents to achieve deterministic rendezvous was studied in [19]
for trees and in [15] for general graphs. Memory needed for randomized rendezvous in the
ring was discussed, e.g., in [21].

Roadmap. In Section 2, we state two results concerning fast colouring of labeled lines. In
Section 3, we present our optimal rendezvous algorithm for the canonical line. In Section 4,
we present our optimal rendezvous algorithm for arbitrary labeled lines with known initial
distance between the agents, we analyze the algorithm, and we sketch the proof of the
matching lower bound. In Section 5, we give our rendezvous algorithm for arbitrary labeled
lines with unknown initial distance between the agents. In Section 6, we conclude the paper
and present some open problems. In the appendix, we describe a fast colouring algorithm for
the infinite line, as announced in Section 2.

Due to lack of space, the analysis of the algorithms for the canonical line and for arbitrary
labeled lines with unknown initial distance between the agents, as well as detailed proofs of
all results concerning the lower bound from Section 4, are omitted and will appear in the
journal version of the paper.

2 Tools

We will use two results concerning distributed node-colouring of lines and cycles in the
LOCAL communication model [29]. In this model, communication proceeds in synchronous
rounds and all nodes start simultaneously. In each round, each node can exchange arbitrary
messages with all of its neighbours and perform arbitrary local computations. Recall that, in
the problem of k-colouring of a graph, we start with a graph whose nodes are labeled with
distinct labels, each node knows only its own label, and at the end each node has to adopt
one of k colours in such a way that adjacent nodes have different colours.

The first result is based on the 3-colouring algorithm of Cole and Vishkin [12], but
improves on their result in two ways. First, our algorithm does not require that the nodes
know the size of the network or the largest label in the network. Second, the running time
of our algorithm at any node x with initial label IDx is O(log∗(IDx)). The running-time
guarantee is vital for later results in this paper, and it is not provided by the original
O(log∗(n)) algorithm of Cole and Vishkin since the correctness of their algorithm depends on
the fact that all nodes execute the algorithm for the same number of rounds. Our algorithm
from Proposition 1, called EarlyStopCV, is described in the appendix.

▶ Proposition 1. There exists an integer constant κ > 1 and a deterministic distributed
algorithm EarlyStopCV such that, for any infinite line G with nodes labeled with distinct
integers greater than 1, EarlyStopCV 3-colours G and the execution at any node x with
initial label IDx terminates in time at most κ log∗(IDx).

DISC 2023



29:6 Fast Deterministic Rendezvous in Labeled Lines

The second result is a lower bound due to Linial [23, 25]. Note that Linial’s original
result was formulated for cycles labeled with integers in the range 1, . . . , n, but the simplified
proof in [23] can be adapted to hold in our formulation below.

▶ Proposition 2. Fix any positive integer n and any set I of n integers. For any deterministic
algorithm A that 3-colours any path on n nodes with distinct labels from I, there is such a
path and at least one node for which algorithm A’s execution takes time at least 1

2 log∗(n)− 1.

Finally, we highlight an important connection between the agent-based computational
model considered in this paper (where algorithm executions may start in different rounds)
and the node-based LOCAL model (where all algorithm executions start in the same round).
Consider a fixed network G in which the nodes are labeled with fixed distinct integers.
From the communication constraints imposed by the LOCAL model, for any deterministic
algorithm A, each node v’s behaviour in the first i rounds is completely determined by the
labeled (i− 1)-neighbourhood of v in G (i.e., the induced labeled subgraph of G consisting
of all nodes within distance i − 1 from v). By Proposition 1, we know that each node x

executing EarlyStopCV in G determines its final colour within κ log∗(IDx) rounds, so its
colour is completely determined by its labeled (κ log∗(IDx)− 1)-neighbourhood in G. So, in
the agent-based computational model, an agent operating in the same labeled network G

with knowledge of EarlyStopCV and the value of κ from Proposition 1 could, starting in
any round: visit all nodes within a distance κ log∗(IDx)− 1 from x, then simulate in its local
memory (in one round) the behaviour of x in the first κ log∗(IDx) rounds of EarlyStopCV
in the LOCAL model, and thus determine the colour that would be chosen by node x as if
all nodes in G had executed EarlyStopCV in the LOCAL model starting in round 1.

▶ Proposition 3. Consider a fixed infinite line G such that the nodes are labeled with distinct
integers greater than 1. Consider any two nodes labeled vα and vβ in G. Suppose that all
nodes in G execute algorithm EarlyStopCV in the LOCAL model starting in round 1, and
let cα and cβ be the colours that nodes vα and vβ, respectively, output at the end of their
executions. Next, consider two agents α and β that start their executions at nodes labeled vα

and vβ in G, respectively (and possibly in different rounds). Suppose that there is a round rα

in which agent α knows the (κ log∗(vα))-neighbourhood of node vα in G, and suppose that
there is a round rβ in which agent β knows the (κ log∗(vβ))-neighbourhood of node vβ in G

(and note that we may have rα ̸= rβ). Then, agent α can compute cα in round rα, and,
agent β can compute cβ in round rβ.

3 The canonical line

In this section, we describe an algorithm Arv-canon that solves rendezvous on the canonical
line in time O(D) when two agents start at arbitrary positions and the delay between the
rounds in which they start executing the algorithm is arbitrary. The agents do not know the
initial distance D between them, and do not know the delay between the starting rounds.

Denote by α and β the two agents. Denote by vα and vβ the starting nodes of α and
β, respectively. Denote by O the node on the canonical line with the smallest label. For
a ∈ {α, β}, we will write d(va,O) to denote the distance between va and O.

Algorithm Arv-canon proceeds in phases, numbered starting at 0. Each phase’s description
has two main components. The first component is a colouring of all nodes on the line.
At a high level, in each phase i ≥ 0, the line is partitioned into segments consisting of 2i

consecutive nodes each, and the set of segments is properly coloured, i.e., all nodes in the
same segment get the same colour, and two neighbouring nodes in different segments get
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different colours. The second component describes how an agent behaves when executing
the phase. At a high level, the phase consists of equal-sized blocks of rounds, and in each
block, an agent either stays idle at its starting node for all rounds in the block, or, it spends
the block performing a search of nearby nodes in an attempt to find the other agent (and if
not successful, returns back to its starting node). Whether an agent idles or searches in a
particular block of the phase depends on the colour of its starting node. The overall idea is:
there exists a phase in which the starting nodes of the agents will be coloured differently, and
this will result in one agent idling while the other searches, which will result in rendezvous.

The above intuition overlooks two main difficulties. The first difficulty is that the agents
do not know the initial distance between them, so they do not know how far they have to
search when trying to find the other agent. To deal with this issue, the agents will use larger
and larger “guesses” in each subsequent phase of the algorithm, and eventually the radius of
their search will be large enough. The second difficulty is that the agents do not necessarily
start the algorithm in the same round, so the agents’ executions of the algorithm (i.e., the
phases and blocks) can misalign in arbitrary ways. This makes it difficult to ensure that
there is a large enough set of contiguous rounds during which one agent remains idle while
the other agent searches. To deal with this issue, we carefully choose the sizes of blocks and
phases, as well as the type of behaviour (idle vs. search) carried out in each block.

We now give the full details of an arbitrary phase i ≥ 0 in the algorithm’s execution.

Colouring. When an agent starts executing phase i, it first determines the colour of its
starting node. From a global perspective, the idea is to assign colours to nodes on the infinite
line in the following way:
1. Partition the nodes into segments consisting of 2i nodes each, such that node O is the

leftmost node of its segment. Denote the segment containing O by S0, denote each
subsequent segment to its right using increasing indices (i.e., S1, S2, . . .) and denote each
subsequent segment to its left using decreasing indices (i.e., S−1, S−2, . . .).

2. For each segment with even index, colour all nodes in the segment with “red”. For
each segment with odd index, colour all nodes in the segment with “blue”. As a result,
neighbouring segments are always assigned different colours.

However, the agent executing phase i does not compute this colouring for the entire line, it
need only determine the colour of its starting node. To do so, it uses its knowledge about
the distance and direction from its starting node to node O. In particular,

if the agent’s starting node s is O or to the right of O, it computes the index of the
segment in which s is contained, i.e., index = ⌊d(s,O)/2i⌋. If index is even, then s has
colour red, and otherwise s has colour blue.
if the agent’s starting node s is to the left of O, it computes the index of the segment in
which s is contained, i.e., index = −⌈(d(s,O))/2i⌉. If index is even, then s has colour
red, and otherwise s has colour blue.

Behaviour. Phase i consists of 44 · 2i+1 rounds, partitioned into 11 equal-sized blocks of
4 · 2i+1 rounds each. The number 2i+1 has a special significance: it is the search radius used
by an agent during phase i whenever it is searching for the other agent. We use the notation
SR(i) to represent the value 2i+1 in the remainder of the algorithm’s description and analysis.
In each of the 11 blocks of the phase, the agent behaves in one of two ways: if a block is
designated as a waiting block, the agent stays at its starting node v for all 4 · SR(i) rounds of
the block; otherwise, a block is designated as a searching block, in which the agent moves
right SR(i) times, then left 2 · SR(i) times, then right SR(i) times. In other words, during a

DISC 2023
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searching block, the agent explores all nodes within its immediate SR(i)-neighbourhood, and
ends up back at its starting node. Whether a block is designated as “waiting” or “searching”
depends on the agent’s starting node colour in phase i. In particular, if its starting node is
red, then blocks 1,8,9 are searching blocks and all others are waiting blocks; otherwise, if
its starting node is blue, then blocks 1,10,11 are searching blocks and all others are waiting
blocks. This concludes the description of Arv-canon.

4 Arbitrary lines with known initial distance between agents

4.1 The algorithm
In this section, we describe an algorithm called Arv-D that solves rendezvous on lines with
arbitrary node labelings when two agents start at arbitrary positions and when the delay
between the rounds in which they start executing the algorithm is arbitrary. The algorithm
works in time O(D log∗ ℓ), where D is the initial distance between the agents, and ℓ is the
larger label of the two starting nodes. The agents know D, but they do not know the delay
between the starting rounds. Also, we note that the agents have no global sense of direction,
but each agent can locally choose port 0 from its starting node to represent “right” and port
1 from its starting node to represent “left”. Further, using knowledge of the port number of
the edge on which it arrived at a node, an agent is able to choose whether its next move
will continue in the same direction or if it will switch directions. Without loss of generality,
we may assume that all node labels are strictly greater than one, since the algorithm could
be re-written to add one to each label value in its own memory before carrying out any
computations involving the labels. This assumption ensures that, for any node label v, the
value of log∗(v) is strictly greater than 0.

Algorithm Arv-D proceeds in two stages. In the first stage, the agents assign colours to
their starting nodes according to a proper colouring of the nodes that are integer multiples
of D away. They each accomplish this by determining the node labels within a sufficiently
large neighbourhood and then executing the 3-colouring algorithm EarlyStopCV from
Proposition 1 on nodes that are multiples of D away from their starting node. The second
stage consists of repeated periods, with each period consisting of equal-sized blocks of rounds.
In each block, an agent either stays idle at its starting node, or, it spends the block performing
a search of nearby nodes in an attempt to find the other agent (and if not successful, returns
back to its starting node). Whether or not an agent idles or searches in a particular block of
the period depends on the colour it picked for its starting node. The overall idea behind
the algorithm’s correctness is: the agents are guaranteed to pick different colours for their
starting node in the first stage, and so, when both agents are executing the second stage,
one agent will search while the other idles, which will result in rendezvous.

Stage 1: Colouring. Let vx be the starting node of agent x. We identify the node with
its label. Let r = D · κ log∗(vx), where κ > 1 is the constant defined in the running time of
the algorithm EarlyStopCV from Proposition 1. Denote by Br the r-neighbourhood of
vx. First, agent x determines Br (including all node labels) by moving right r times, then
left 2r times, then right r times, ending back at its starting node vx. Let V be the subset of
nodes in Br whose distance from vx is an integer multiple of D. In its local memory, agent x

creates a path graph Gx consisting of the nodes in V , with two nodes connected by an edge
if and only if their distance in Br is exactly D. This forms a path graph centered at vx with
κ log∗(vx) nodes in each direction. Next, the agent simulates an execution of the algorithm
EarlyStopCV by the nodes of Gx to assign a colour cx ∈ {0, 1, 2} to its starting node vx.
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Stage 2: Search. The agent repeatedly executes periods consisting of 8D rounds each,
partitioned into two equal-sized blocks of 4D rounds each. In each of the two blocks, the
agent behaves in one of two ways: if a block is designated as a waiting block, then the
agent stays at its starting node for all 4D rounds; otherwise, a block is designated as a
searching block, in which the agent moves right D times, then left 2D times, then right D

times. Whether a block is designated as a “waiting” or “searching” block depends on the
agent’s starting node colour that was determined in the first stage. In particular, if cx = 0,
then both blocks are waiting blocks; if cx = 1, then block 1 is a searching block and block 2
is a waiting block; and, if cx = 2, then both blocks are searching blocks.

4.2 Analysis of the algorithm
In this section, we prove that Algorithm Arv-D solves rendezvous within O(D log∗ ℓ) rounds,
where ℓ is the larger of the labels of the two starting nodes of the agents.

Consider an arbitrary instance on some line L with an arbitrary labeling of the nodes
with positive integers. Suppose that two agents α and β execute the algorithm. For each
x ∈ {α, β}, we denote by vx the label of agent x’s starting node, and we denote by cx the
colour assigned to node vx at the end of Stage 1 in x’s execution of the algorithm. To help
with the wording of the analysis only, fix a global orientation for L so that vα appears to the
“left” of vβ (and recall that the agents have no access to this information).

First, we argue that after both agents have finished Stage 1 of their executions, they have
assigned different colours to their starting nodes.

▶ Lemma 4. In any execution of Arv-D by agents α and β, in every round after both agents
finish their execution of Stage 1, we have cα ̸= cβ.

Proof. Without loss of generality, assume that vα > vβ . Let y0 be the node in L to the left of
vα at distance exactly D ·κ log∗(vα). For each i ∈ {1, . . . , 2κ log∗(vα) + 1}, let yi be the node
in L at distance i ·D to the right of y0. Note that vα = yκ log∗(vα) and vβ = yκ log∗(vα)+1.

Create a path graph P consisting of 2κ log∗(vα) + 2 nodes. Label the leftmost node in P

with y0, and label the node at distance i from y0 in P using the label yi.
By the definition of P , note that yκ log∗(vα) and yκ log∗(vα)+1 are neighbours in P , which

implies that vα and vβ are neighbours in P . This is important because it implies that, if the
nodes of P run the algorithm EarlyStopCV from Proposition 1, the nodes labeled vα and
vβ will choose different colours from the set {0, 1, 2}.

The rest of the proof shows that, for x ∈ {α, β}, the graph Gx built in Stage 1 by
agent x is an induced subgraph of P . This is sufficient since it implies that having each
agent x simulate the algorithm EarlyStopCV on their local Gx results in the same colour
assignment to the node labeled vx as an execution of EarlyStopCV on the nodes of P , so
vα and vβ will be assigned different colours at the end of Stage 1 of Algorithm Arv-D. Since
the colour assignment is not changed in any round after Stage 1, the result follows.

First, consider vα. Let w0 be the label of the leftmost node of Gα. By the definition of Gα,
the node labeled w0 is at distance exactly κ log∗(vα) to the left of vα in Gα, so the node labeled
w0 is at distance exactly D · κ log∗(vα) to the left of vα in L. This proves that w0 = y0 ∈ P .
For each j ∈ {0, . . . , 2κ log∗(vα)}, define wj to be the label of the node at distance j to
the right of the node labeled w0 in Gα. By induction on j, we prove that wj = yj ∈ P for
all j ∈ {0, . . . , 2κ log∗(vα)}. The base case w0 = y0 ∈ P was proved above. As induction
hypothesis, assume that wj−1 = yj−1 ∈ P for some j ∈ {1, . . . , 2κ log∗(vα)}. Consider wj ,
which by definition of Gα is the neighbour to the right of wj−1 in Gα, and, moreover, is located
distance exactly D to the right of wj−1 in L. By the induction hypothesis, we know that
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wj−1 = yj−1, so wj is located distance exactly D to the right of yj−1 in L, and so wj = yj by
the definition of yj . To confirm that yj ∈ P , we note that j ≤ 2κ log∗(vα) < 2κ log∗(vα) + 1,
and that the rightmost node in P is y2κ log∗(vα)+1. This concludes the inductive step, and
the proof that Gα is an induced subgraph of P .

Next, consider vβ . Let u0 be the label of the leftmost node of Gβ . By the definition of Gβ ,
the node labeled u0 in Gβ is at distance exactly κ log∗(vβ) to the left of vβ , so, in L, the node
labeled u0 is at distance exactly D · κ log∗(vβ) to the left of vβ . However, since vα is located
at distance exactly D to the left of vβ in L, and y0 is located at distance exactly D ·κ log∗(vα)
to the left of vα in L, it follows that y0 is located at distance exactly D · (1 + κ log∗(vα))
to the left of vβ in L. Since vα > vβ , we conclude that d(y0, vβ) = D · (1 + κ log∗(vα)) >

D · κ log∗(vβ) = d(u0, vβ) in L, so y0 must be to the left of u0 in L. Further, it means that
d(u0, y0) = D·(1+κ log∗(vα))−D·κ log∗(vβ) = D·[1+κ log∗(vα)−κ log∗(vβ)] in L. This proves
that u0 = y1+κ log∗(vα)−κ log∗(vβ). We confirm that y1+κ log∗(vα)−κ log∗(vβ) ∈ P by noticing
that the subscript 1 + κ log∗(vα) − κ log∗(vβ) lies in the set {1, . . . , 2κ log∗(vα) + 1} since
vα > vβ . Next, define h = 1 + κ log∗(vα)− κ log∗(vβ), and, for each j ∈ {0, . . . , 2κ log∗(vβ)},
define uj to be the label of the node at distance j to the right of the node labeled u0 in Gβ . By
induction on j, we prove that uj = yj+h ∈ P for all j ∈ {0, . . . , 2κ log∗(vβ)}. The base case
u0 = yh ∈ P was proved above. As induction hypothesis, assume that uj−1 = yj−1+h ∈ P

for some j ∈ {1, . . . , 2κ log∗(vβ)}. Consider uj , which by definition of Gβ is the neighbour
to the right of uj−1 in Gβ , and, moreover, is located distance exactly D to the right of
uj−1 in L. By the induction hypothesis, we know that uj−1 = yj−1+h, so uj is located
distance exactly D to the right of yj−1+h in L, and so uj = yj+h by the definition of yh. To
confirm that yj+h ∈ P , we note that j ≤ 2κ log∗(vβ) and h = 1 + κ log∗(vα) − κ log∗(vβ),
so j + h ≤ 1 + κ log∗(vα) + κ log∗(vβ) ≤ 2κ log∗(vα) + 1, where the last inequality is due to
vα > vβ . As the rightmost node of P is y2κ log∗(vα)+1, it follows that yj+h is at or to the left
of the rightmost node in P , so yj+h ∈ P . This concludes the inductive step, and the proof
that Gα is an induced subgraph of P . ◀

To prove that the algorithm correctly solves rendezvous within O(D log∗ ℓ) rounds for
arbitrary delay between starting rounds, there are two main cases to consider. If the delay
is large, then the late agent is idling for the early agent’s entire execution of Stage 1,
and rendezvous will occur while the early agent is exploring its (Dκ log∗ ℓ)-neighbourhood.
Otherwise, the delay is relatively small, so both agents reach Stage 2 quickly, and the block
structure of the repeated periods ensures that one agent will search while the other waits, so
rendezvous will occur. These arguments are formalized in the following result.

▶ Theorem 5. Algorithm Arv-D solves rendezvous in O(D log∗ ℓ) rounds on lines with
arbitrary node labelings when two agents start at arbitrary positions at known distance D, and
when the delay between the rounds in which they start executing the algorithm is arbitrary.

Proof. The agent that starts executing the algorithm first is called the early agent, and
the other agent is called the late agent. If both agents start executing the algorithm in the
same round, then arbitrarily call one of them early and the other one late. Without loss of
generality, we assume that α is the early agent. The number of rounds that elapse between
the two starting rounds is denoted by delay(α, β).

First, we address the case where the delay between the starting rounds of the agents is
large. This situation is relatively easy to analyze, since agent β remains idle during agent
α’s entire execution up until they meet.

▷ Claim 6. If delay(α, β) > 4Dκ log∗ vα, then rendezvous occurs within 4Dκ log∗ vα rounds
in agent α’s execution.
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To prove the claim, we note that the total number of rounds that elapse in agent α’s
execution of Stage 1 is 4Dκ log∗ vα. By the assumption about delay(α, β), agent β is idle
at its starting node for α’s entire execution of Stage 1. Finally, note that α explores its
entire (Dκ log∗ α)-neighbourhood during its execution of Stage 1, where Dκ log∗ α ≥ D, so it
follows that agent α will be located at agent β’s starting node at some round in its execution
of Stage 1, which completes the proof of the claim.

So, in the remainder of the proof, we assume that delay(α, β) ≤ 4Dκ log∗ α. We prove
that rendezvous occurs during Stage 2 by considering the round τ in which agent β starts
Stage 2 of its execution. By Lemma 4, we have cα ≠ cβ in every round from this time onward.
We separately consider cases based on the values of cα and cβ .

Case 1: cα = 0 or cβ = 0. Let x be the agent with cx = 0, and let y be the other
agent. Since cx ̸= cy, we know that cy is either 1 or 2. From the algorithm’s description,
agent y will start a searching block within 8D rounds after round τ . Moreover, agent
x remains idle for the entirety of Stage 2 of its execution. Since y explores its entire
D-neighbourhood during a searching block, it follows that y will be located at x’s starting
node within 12D rounds after τ .
Case 2: cα = 1 or cβ = 1. Let x be the agent with cx = 1, and let y be the other agent.
Since cx ̸= cy, we know that cy is either 0 or 2. As the case cy = 0 is covered by Case 1
above, we proceed with cy = 2. From the algorithm’s description, agent x has a waiting
block that begins within 8D rounds after τ . Suppose that this waiting block starts in
some round t of x’s execution, then we know that x stays idle at its starting node for the
4D rounds after t. But round t corresponds to the i’th round of some searching block
in agent y’s execution of Stage 2 (since y only performs searching blocks). In the first
4D− i rounds, agent y completes its searching block, and then performs the first i rounds
of the next searching block. Since the searching blocks are performed using the same
movements each time, it follows that y explores its entire D-neighbourhood in the 4D

rounds after t, so will meet x at x’s starting node within those rounds. Altogether, since
t occurs within 8D rounds after τ , and y’s searching block takes another 4D rounds, it
follows that rendezvous occurs within 12D rounds after τ .

In all cases, we proved that rendezvous occurs within 12D rounds after τ . But τ is the round
in which agent β starts Stage 2, so τ ≤ 4Dκ log∗ vβ in β’s execution. By our assumption on
the delay, β’s execution starts at most 4Dκ log∗ vα rounds after the beginning of α’s execution.
Altogether, this means that rendezvous occurs within 4Dκ log∗ vα +4Dκ log∗ vβ +12D rounds
from the start of α’s execution. Setting ℓ = max{vα, vβ}, we get that rendezvous occurs
within time 8Dκ log∗ ℓ + 12D ∈ O(D log∗ ℓ), as desired. ◀

4.3 Lower bound
In this section we prove a Ω(D log∗ ℓ) lower bound for rendezvous time on the infinite
line, where ℓ is the larger label of the two starting nodes, even assuming that agents start
simultaneously, they know the initial distance D between them, and they have a global sense
of direction. We summarize the argument here, and omit the detailed proofs of the results.
We start with some terminology about rendezvous executions.

▶ Definition 7. Consider any labeled infinite line L, and any two nodes labeled v, w on L

that are at fixed distance D. Consider any rendezvous algorithm A, and suppose that two
agents start executing A in the same round: one agent αv starting at node v, and the other
agent αw starting at node w. Denote by γ(A, L, v, w) the resulting execution until αv and

DISC 2023



29:12 Fast Deterministic Rendezvous in Labeled Lines

αw meet. When A and L are clear from the context, we will simply write γ(v, w) to denote
the execution. Denote by |γ(A, L, v, w)| the number of rounds that have elapsed before αv

and αw meet in the execution.

The following definition formalizes the notion of “behaviour sequence”: an integer sequence
that encodes the movements made by an agent in each round of an algorithm’s execution.

▶ Definition 8. Consider any execution γ(A, L, v, w) by an agent αv starting at node v and
an agent αw starting at node w, both agents starting simultaneously. Define the behaviour
sequence Bv(A, L, v, w) as follows: for each t ∈ {1, . . . , |γ(A, L, v, w)|}, set the t’th element
to 0 if αv moves left in round t of the execution, to 1 if αv stays at its current node in round
t of the execution, and to 2 if αv moves right in round t of the execution. Similarly, define
the sequence Bw(A, L, v, w) using the moves by agent αw. When A and L are clear from the
context, we will simply write Bv(v, w) and Bw(v, w) to denote the two behaviour sequences of
αv and αw, respectively.

As the agents are anonymous and we only consider deterministic algorithms, note that for any
fixed A, L, v, w, we have γ(v, w) = γ(w, v) and Bv(v, w) = Bv(w, v) and Bw(v, w) = Bw(w, v).
Moreover, for a fixed starting node v on a fixed line L, the behaviour of an agent running an
algorithm A does not depend on the starting node (or behaviour) of the other agent, until
the two agents meet. This implies the following result, i.e., if we look at two executions of A
where one agent αv starts at the same node v in both executions, then αv’s behaviour in
both executions is exactly the same up until rendezvous occurs in the shorter execution.

▶ Proposition 9. Consider any labeled infinite line L, and any fixed rendezvous algorithm
A. Consider any fixed node v in L, and let w1 and w2 be two nodes other than v. Let
p = min{|γ(v, w1)|, |γ(v, w2)|}. Then Bv(v, w1) and Bv(v, w2) have equal prefixes of length p.

The following proposition states that two agents running a rendezvous algorithm starting at
two different nodes cannot have the same behaviour sequence. This follows from the fact
that the distance between two agents cannot decrease if they perform the same action in
each round (i.e., both move left, both move right, or both don’t move).

▶ Proposition 10. Consider any labeled infinite line L, and any fixed rendezvous algorithm
A. For any two nodes x and y in L, in the execution γ(x, y) we have Bx(x, y) ̸= By(x, y).

The remainder of this section is dedicated to proving the Ω(D log∗ ℓ) lower bound for
rendezvous on the infinite line when the two agents start at a known distance D apart. We
proceed in two steps: first, we prove an Ω(log∗ ℓ) lower bound in the case where D = 1, and
then we prove the general Ω(D log∗ ℓ) lower bound using a reduction from the D = 1 case.
Throughout this section, we will refer to the constant κ that was defined in Proposition 1 in
order to state the running time bound of the algorithm EarlyStopCV.

4.3.1 The D = 1 case
We prove a Ω(log∗ ℓ) lower bound for rendezvous on the infinite line, where ℓ is the larger
label of the two starting nodes, in the special case where the two agents start at adjacent
nodes. This lower bound applies even to algorithms that start simultaneously and know that
the initial distance between the two agents is 1.

The overall idea is to assume that there exists a very fast rendezvous algorithm (i.e., an
algorithm that always terminates within 1

16κ log∗(ℓ) rounds) and prove that this implies the
existence of a distributed 3-colouring algorithm for the LOCAL model whose running time is
faster than the lower bound proven by Linial (see Proposition 2). This contradiction proves
that any rendezvous algorithm must have running time Ω(log∗(ℓ)).
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The first step is to reduce distributed colouring in the LOCAL model to rendezvous.
The following result describes how to use the rendezvous algorithm to create the distributed
colouring algorithm. The idea is to record the agent’s behaviour sequence in the execution
of the rendezvous algorithm, and convert the sequence to an integer colour. Proposition 10
guarantees that the assigned colours are different.

▶ Lemma 11. Consider any rendezvous algorithm Arv that always terminates within
1

16κ log∗(ℓ) rounds, where ℓ is the larger label of the two starting nodes. Then there ex-
ists a distributed colouring algorithm Acol such that, for any labeled infinite line L, and for
any finite subline P of L consisting of nodes whose labels are bounded above by some integer
Y , algorithm Acol uses ⌊ 1

16κ log∗(Y )⌋+ 1 rounds of communication and assigns to each node
in P an integer colour from the range 1, . . . , 42⌊ 1

16κ log∗(Y )⌋+1.

The second step is to take the algorithm Acol from Lemma 11 and turn it into a 3-colouring
algorithm A3col using very few additional rounds, by using the algorithm EarlyStopCV
from Proposition 1 to quickly reduce the number of colours down to 3. Combined with the
previous lemma, we get the following result that shows how to obtain a very fast distributed
3-colouring algorithm under the assumption that we have a very fast rendezvous algorithm.

▶ Lemma 12. Consider any rendezvous algorithm Arv that always terminates within
1

16κ log∗(ℓ) rounds, where ℓ is the larger label of the two starting nodes. Then there ex-
ists a distributed 3-colouring algorithm A3col such that, for any labeled infinite line L, and
for any finite subline P of L consisting of nodes whose labels are bounded above by some
integer Y , algorithm A3col uses at most

( 1
4 + 1

16κ

)
log∗(Y ) + 1 + 3κ rounds of communication

to 3-colour the nodes of P .

Finally, we demonstrate how to use the above result to prove the desired Ω(log∗ ℓ) lower
bound for rendezvous. The idea is to construct an infinite line that contains an infinite
sequence of finite sublines, each of which is a worst-case instance (according to Linial’s lower
bound), and obtaining the desired contradiction by observing that the upper bound on the
running time of A3col violates the lower bound guaranteed by Linial’s result.

▶ Lemma 13. Any algorithm that solves the rendezvous task on all labeled infinite lines,
where the two agents start at adjacent nodes, uses Ω(log∗ ℓ) rounds in the worst case, where
ℓ is the larger label of the two starting nodes.

4.3.2 The D > 1 case
We prove a Ω(D log∗ ℓ) lower bound for rendezvous on the infinite line, where ℓ is the larger
label of the two starting nodes, in the case where the two agents start at nodes that are
distance D > 1 apart. This lower bound applies even to algorithms that start simultaneously
and know that the initial distance between the two agents is D. Hence it shows that
the running time of Algorithm Arv-D has optimal order of magnitude among rendezvous
algorithms knowing the initial distance between the agents.

The overall idea is to assume that there exists a very fast rendezvous algorithm called Arv
(that always terminates within 1

224κ D log∗ ℓ rounds) and prove that this implies the existence
of a rendezvous algorithm Arv-adj for the D = 1 case that always terminates within 1

16κ log∗ ℓ

rounds, which we already proved is impossible in Section 4.3.1. This contradiction proves
that any rendezvous algorithm for the D > 1 case must have running time Ω(D log∗ ℓ).
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The proof can be summarized as follows: take any instance where the agents start at
adjacent nodes, and “blow it up” by a factor of D, i.e., all node labels are multiplied by a
factor of D, and D − 1 “dummy nodes” are inserted between each pair of nodes. Each node
from the original instance, together with the D − 1 nodes to its right, are called a segment
in the blown-up instance. Then, the algorithm Arv is locally simulated on the blown-up
instance in stages consisting of D rounds each, and each simulated stage corresponds to 1
round of algorithm Arv-adj in the original instance. At the end of every simulated stage, the
simulated agent is in some segment that has leftmost node v, so the real agent situates itself
at node v for the corresponding round in the original instance. Roughly speaking, since Arv
guarantees rendezvous in the blown-up instance, the two simulated agents will end up in the
same segment (with the same leftmost node v), so the two real agents will end up at node v

in the original instance. Further, since each stage of D simulated rounds corresponds to one
round in the original instance, the number of rounds used by Arv-adj is a factor of D less
than the running time of the simulated algorithm Arv. This gives us a contradiction, as the
resulting running time for Arv-adj is smaller than the lower bound proven in Lemma 13.

However, the above summary overlooks some complications.
1. Assigning labels to the dummy nodes in the blown-up instance: the agent in the

original instance needs to assign labels to nearby dummy nodes in the blown-up instance
in a way that is consistent with the original instance. However, the agent initially only
knows the label at its own node, which is insufficient. To address this issue, before each
simulated stage of Arv, the agent uses 4 rounds to visit its neighbouring nodes in the
original instance so that it can learn about neighbouring labels, which it then uses to
accurately assign labels to nearby dummy nodes in the blown-up instance.

2. Guaranteeing rendezvous: two agents running Arv-adj are each independently sim-
ulating Arv locally in their own memory, so they cannot detect if the simulated agents
meet at a node in the blown up instance. So, although Arv guarantees rendezvous in the
blown up instance, it might be the case that there is never a stage of D simulated rounds
after which the two simulated agents end up in the same segment, since the simulated
agents might continue moving after the undetected rendezvous and end up in different
segments at the end of the simulated stage. To address this issue, we carefully choose the
segment length and stage length appropriately to guarantee that, at the end of the stage
containing the undetected rendezvous, the two simulated agents are either in the same
segment or in neighbouring segments in the blown up instance. After each simulated
stage is done, the real agents do a 3-round “dance” in the original instance in such a way
that rendezvous will occur after the undetected simulated rendezvous.

▶ Theorem 14. Any algorithm that solves the rendezvous task on all labeled infinite lines,
where the two agents start at known distance D > 1 apart, uses Ω(D log∗ ℓ) rounds in the
worst case, where ℓ is the larger label of the two starting nodes.

5 Arbitrary lines with unknown initial distance between agents

In this section, we describe an algorithm called Arv-noD that solves rendezvous on lines with
arbitrary node labelings in time O(D2(log∗ ℓ)3) (where D is the initial distance between the
agents and ℓ is the larger label of the two starting nodes) when two agents start at arbitrary
positions and when the delay between the rounds in which they start executing the algorithm
is arbitrary. The agents do not know the initial distance D between them, and they do not
know the delay between the starting rounds. Also, we note that the agents have no global
sense of direction, but each agent can locally choose port 0 from its starting node to represent
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“right” and port 1 from its starting node to represent “left”. Further, using knowledge of the
port number of the edge on which it arrived at a node, an agent is able to choose whether
its next move will continue in the same direction or if it will switch directions. Without
loss of generality, we may assume that all node labels are strictly greater than one, since
the algorithm could be re-written to add one to each label value in its own memory before
carrying out any computations involving the labels. This assumption ensures that, for any
node label v, the value of log∗(v) is strictly greater than 0.

As seen in Section 4.1, if the initial distance D between the agent is known, then we have
an algorithm Arv-D that will solve rendezvous in O(D log∗ ℓ) rounds. We wish to extend
that algorithm for the case of unknown distance by repeatedly running Arv-D with guessed
values for D. To get an optimal algorithm, i.e., with running time O(D log∗ ℓ), a natural
attempt would be to proceed by doubling the guess until it exceeds D, so that the searching
range of an agent includes the starting node of the other agent. However, this approach
will not work in our case, because our algorithm Arv-D requires the exact value of D to
guarantee rendezvous. More specifically, the colouring stage using guess g only guarantees
that nodes at distance exactly g are assigned different colours. So, instead, our algorithm
Arv-noD increments the guessed value by 1 so that the guess is guaranteed to eventually be
equal to D, which results in a running time quadratic in D instead of linear in D.

At a high level, our algorithm Arv-noD consists of phases, where each phase is an attempt
to solve rendezvous using a value g which is a guess for the value D. The first phase sets
g = 1. Each phase has three stages. In the first stage, the agent waits at its starting node
for a fixed number of rounds. In the second and third stages, the agent executes a modified
version of the algorithm Arv-D from Section 4.1 using the value g instead of D. At the end of
each phase, if rendezvous has not yet occurred, the agent increments its guess g and proceeds
to the next phase. A major complication is that an adversary can choose the wake-up times
of the agents so that the phases do not align well, e.g., the agents are using the same guess
g but are at different parts of the phase, or, they are in different phases and not using the
same guess g. This means we have to very carefully design the phases and algorithm analysis
to account for arbitrary delays between the wake-up times.

The detailed description of the algorithm is as follows. Consider an agent x whose
execution starts at a node labeled vx. We now describe an arbitrary phase in the algorithm’s
execution. Let g ≥ 1, let d = 1 + ⌊log2 g⌋, and recall that κ > 1 is an integer constant defined
in the running time of the algorithm EarlyStopCV from Proposition 1. The g-th phase
executed by agent x, denoted by Px

g , consists of executing the following three stages.

Stage 0: Wait. Stay at the node vx for 36 · 2d · κ log∗(vx) rounds.

Stage 1: Colouring. Let r = g · κ log∗(vx). Denote by Br the r-neighbourhood of vx, and
let Vg be the subset of nodes in Br whose distance from vx is an integer multiple of g. First,
agent x determines Br (including all node labels) by moving right r times, then left 2r times,
then right r times, ending back at its starting node vx. Then, in its local memory, agent
x creates a path graph Gx consisting of the nodes in Vg, with two nodes connected by an
edge if and only if their distance in Br is exactly g. This forms a path graph centered at vx

with κ log∗(vx) nodes in each direction. The agent simulates an execution of the algorithm
EarlyStopCV from Proposition 1 by the nodes of Gx to obtain a colour cx ∈ {0, 1, 2}. Let
CVx be the 2-bit binary representation of cx. Transform CVx into an 8-bit binary string
CV ′

x by replacing each 0 in CVx with 0011, and replacing each 1 in CVx with 1100. Finally,
create a 9-bit string S by appending a 1 to CV ′

x.
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Stage 2: Search. This stage consists of performing κ log∗(vx) periods of |S| = 9 blocks
each. Block i of a period is designated as a waiting block if the i’th bit of S is 0, else it is
designated as a searching block. A waiting block consists of 4 · (2d) consecutive rounds during
which the agent stays at its starting node. A searching block consists of 4 · (2d) consecutive
rounds: the agent first moves right 2d times, then left 2 · 2d times, then right 2d times.

6 Conclusion

We presented rendezvous algorithms for three scenarios: the scenario of the canonical line,
the scenario of arbitrary labeling with known initial distance D, and the scenario where each
agent knows a priori only the label of its starting node. While for the first two scenarios the
complexity of our algorithms is optimal (respectively O(D) and O(D log∗ ℓ), where ℓ is the
larger label of the two starting nodes), for the most general scenario, where each agent knows
a priori only the label of its starting node, the complexity of our algorithm is O(D2(log∗ ℓ)3),
for arbitrary unknown D, while the best known lower bound, valid also in this scenario, is
Ω(D log∗ ℓ) .

The natural open problem is the optimal complexity of rendezvous in the most general
scenario (with arbitrary labeling and unknown D), both for the infinite labeled line and
for the finite labeled lines and cycles. This open problem can be generalized to the class of
arbitrary trees or even arbitrary graphs.
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A The Line Colouring Algorithm

As announced in Proposition 1 in Section 2, we design a deterministic distributed algorithm
EarlyStopCV that, in the LOCAL model, properly 3-colours any infinite labeled line
such that the execution of this algorithm at any node x with initial label IDx terminates in
time O(log∗(IDx)). Our algorithm builds upon a solution to a problem posed in Homework
Exercises 1 from the Principles of Distributed Computing course at ETH Zürich [32].

At a very high level, we want to execute the Cole and Vishkin algorithm [12], but with
some modifications. We introduce four special colours, denoted by α, β, Pdone, Cdone, that
are defined in such a way that they are not equal to any colour that could be chosen using
the Cole and Vishkin strategy (e.g., they could be defined as negative integers). These
colours will be chosen by a node in certain situations where it needs to choose a colour
that is guaranteed to be different from its neighbour’s, but using the Cole and Vishkin
strategy might not work. Another significant modification is that each node will actually
choose two colours: its “final colour” that it will output upon terminating the algorithm,
but also an intermediate “Phase 1 colour”. These roughly correspond to the two parts of the
Cole and Vishkin strategy: in Phase 1, each node picks a colour that is guaranteed to be
different from each of its neighbours’ chosen colour (but selects it from a “large” range of
colours), and then in Phase 2, each node picks a final colour from the set {0, 1, 2}. However,
since we want to allow different nodes to execute different phases of the algorithm at the
same time (since we want to allow them to terminate at different times), each node must
maintain and advertise its “Phase 1” and “final” colours separately, so that another node
that is still performing Phase 1 is basing its decisions on its neighbours’ Phase 1 colours
(and not their final colours). Finally, we note that the original Cole and Vishkin strategy is
described for a directed tree, i.e., where each node has at most one parent and perhaps some
children, whereas our algorithm must work in an undirected infinite line, so we introduce a
pre-processing step (Phase 0) to set up parent/child relationships.

The first part of the algorithm partitions the undirected infinite line into directed sub-lines
that will perform the rest of the algorithm in parallel. In round 1, each node shares its unique
ID with both neighbours. In round 2 (also referred to as Phase 0), each node compares its
own ID with those that it received from its neighbours in round 1. If a node determines that
it is a local minimum (i.e., its ID is less than the ID’s of its neighbours), then it picks the
special colour α as its Phase 1 colour and proceeds directly to Phase 2 without performing
Phase 1. If a node determines that it is a local maximum (i.e., its ID is greater than the
ID’s of its neighbours), then it picks the special colour β as its Phase 1 colour and proceeds
directly to Phase 2 without performing Phase 1. All other nodes, i.e., those that are not a
local minimum or a local maximum, pick their own ID as their Phase 1 colour and continue to
perform Phase 1. Further, each such node also chooses one parent neighbour (the neighbour
with smaller ID) and one child neighbour (the neighbour with larger ID). In particular, the
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nodes that perform Phase 1 are each part of a directed sub-line that is bordered by local
maxima/minima, so the sub-lines can all perform Phase 1 in parallel without worrying that
the chosen colours will conflict with colours chosen in other sub-lines.

The second part of the algorithm, referred to as Phase 1, essentially implements the
Cole and Vishkin strategy within each directed sub-line. The idea is that each node follows
the Cole and Vishkin algorithm using its own Phase 1 colour and the Phase 1 colour of its
parent until it has selected a Phase 1 colour in the range {0, . . . , 51} that is different from its
parent’s Phase 1 colour, and then the node will proceed to Phase 2 where it will pick a final
colour in the range {0, 1, 2}. However, this idea must be modified to avoid three potential
pitfalls:
1. Suppose that, in a round t, a node v has a parent or child that stopped performing Phase

1 in an earlier round (and possibly has finished Phase 2 and has stopped executing the
algorithm). If node v still has a large colour in round t, i.e., not in the range {0, . . . , 51},
but continues to use the Cole and Vishkin strategy, then there is no guarantee that the
new colour it chooses will still be different than those of its neighbours. This is not an
issue for the original Cole and Vishkin algorithm, since it was designed in such a way
that all nodes execute the algorithm the exact same number of times (using a priori
knowledge of the network size). To deal with this scenario, node v first looks at the Phase
1 colours that were most recently advertised by its parent and child, and sees if either
of them is in the range {0, . . . , 51}. If node v sees that its parent’s Phase 1 colour is in
the range {0, . . . , 51}, then it knows that its parent is not performing Phase 1 in this
round, so instead of following the Cole and Vishkin strategy, it immediately adopts the
special colour Pdone as its Phase 1 colour and moves on to Phase 2 of the algorithm. On
the other hand, if node v sees that its child’s colour is in the range {0, . . . , 51}, then it
knows that its child is not performing Phase 1 in this round, so instead of following the
Cole and Vishkin strategy, it immediately adopts the special colour Cdone as its Phase 1
colour and moves on to Phase 2 of the algorithm. By adopting the special colours in this
way, node v’s Phase 1 colour is guaranteed to be different than any non-negative integer
colour that was previously adopted by its neighbours.

2. Suppose that a node v’s parent has a Phase 1 colour equal to a special colour (i.e., one of
α, β, Pdone, Cdone). The Cole and Vishkin strategy is not designed to work with such
special colours, so, a node v with such a parent will pretend that its parent has colour
0 instead. By doing this, it will choose some non-negative integer as dictated by the
Cole and Vishkin strategy, and this integer is guaranteed to be different from all special
colours, so v’s chosen Phase 1 colour will be different from its parent’s.

3. Suppose that a node v has a parent with an extremely large integer colour. The Cole
and Vishkin strategy will make sure that v chooses a new Phase 1 colour that is different
than the Phase 1 colour chosen by its parent, however, it is not guaranteed that this new
colour is significantly smaller than the colour v started with. In particular, we want to
guarantee that node v terminates Phase 1 within log∗(IDv) rounds, so we want node v’s
newly-chosen Phase 1 colour to be bounded above by a logarithmic function of its own
colour in every round (and never depend on its parent’s much larger colour). To ensure
this, we apply a suffix-free encoding to the binary representation of each node’s colour
before applying the Cole and Vishkin strategy. Doing this guarantees that the smallest
index where two binary representations of colours differ is bounded above by the length
of the binary representation of the smaller colour.

When a node is ready to proceed to Phase 2, it has chosen a Phase 1 colour from the set
{0, . . . , 51} ∪ {α, β} ∪ {Pdone, Cdone}, and its chosen Phase 1 colour is guaranteed to be
different from the Phase 1 colours of its two neighbours.
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The third part of the algorithm, referred to as Phase 2, uses a round-robin strategy over
the 56 possible Phase 1 colours, which guarantees that any two neighbouring nodes pick their
final colour in different rounds. In particular, when executing each round of Phase 2, a node
calculates the current token value, which is defined as the current round number modulo
56. We assume that all nodes start the algorithm at the same time, so the current token
value is the same at all nodes in each round. In each round, each node that is performing
Phase 2 compares the token value to its own Phase 1 colour. If a node v’s Phase 1 colour is in
{0, . . . , 51} and is equal to the current token value, then it proceeds to choose its final colour
(as described below). Otherwise, if a node v’s Phase 1 colour is one of the special colours, it
waits until the current token value is equal to a value that is dedicated to that special colour
(i.e., 52 for α, 53 for β, 54 for Pdone, 55 for Cdone), then chooses its final colour in that
round. To choose its final colour, node v chooses the smallest colour from {0, 1, 2} that was
never previously advertised as a final colour by its neighbours. Then, v immediately sends
out a message to its neighbours to advertise the final colour that it chose, then v terminates.
Since two neighbouring nodes are guaranteed to have different Phase 1 colours, they will
choose their final colour in different rounds, so the later of the two nodes always avoids the
colour chosen by the earlier node, and there is always a colour from {0, 1, 2} available since
each node only has two neighbours.

Algorithm pseudocode
For any two binary strings S1, S2, denote by S1 · S2 the concatenation of string S1 followed
by string S2. For any positive integer i, the function BinaryRep(i) returns the binary string
consisting of the base-2 representation of i. Conversely, for any binary string S, the function
IntVal(S) returns the integer value when S is interpreted as a base-2 integer. For any
binary string S of length ℓ ≥ 1, the string is a concatenation of bits, i.e., S = sℓ−1 · · · s0, and
we will write S[i] to denote the bit si. The notation |S| denotes the length of S.

For any binary string S of length ℓ ≥ 1, we define a function EncodeSF(S) that returns
the binary string obtained by replacing each 0 in S with 01, replacing each 1 in S with 10,
then prepending 00 to the result. More formally, EncodeSF(S) returns a string S′ of length
2ℓ + 2 such that S′[2ℓ + 1] = S′[2ℓ] = 0, and, for each i ∈ {0, . . . , ℓ− 1}, S′[2i + 1] = S[i] and
S′[2i] = 1−S[i]. For example, EncodeSF(101) = 00100110. The function EncodeSF is an
encoding method with two important properties: an encoded string is uniquely decodable,
and, no encoded string is a suffix of another encoded string.

We define four special colours α, β, Pdone, Cdone that are not positive integers (i.e., they
cannot be confused with any node’s ID, and they cannot be confused with any non-negative
integer colour chosen by a node during the algorithm’s execution). Practically speaking, one
possible implementation is to use α = −4, β = −3, Pdone = −2, and Cdone = −1.

Algorithm 1 provides the pseudocode for the algorithm’s execution at a node. The node’s
two neighbours are referred to as A and B. Algorithms 2 and 3 are the subroutines that a
node uses to compute its new Phase 1 colour in each round.
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Algorithm 1 EarlyStopCV.

%% clockVal is assumed to contain the current local round number, starting at 1.
%% myID is assumed to contain the node’s initial identifier.
%% Initially, Acol.P1 = Bcol.P1 = Acol.final = Bcol.final = null

1: if clockVal == 1 then ▷ Round 1: get IDs of neighbours
2: Send myID to both neighbours
3: Receive IDA from A and receive IDB from B
4: else if clockVal == 2 then ▷ Phase 0: detect if local max or local min, otherwise assign parent and child
5: if myID < IDA and myID < IDB then ▷ I’m a local minimum
6: myPhase1Col← α
7: else if myID > IDA and myID > IDB then ▷ I’m a local maximum
8: myPhase1Col← β
9: else if IDA < myID and myID < IDB then ▷ neighbourhood IDs increase towards B

10: myPhase1Col← myID
11: parent← A
12: child← B
13: else ▷ neighbourhood IDs increase towards A
14: myPhase1Col← myID
15: parent← B
16: child← A
17: end if
18: Send myPhase1Col to both neighbours
19: Receive msgA from A and receive msgB from B
20: Acol.P1← msgA
21: Bcol.P1← msgB
22: doPhase1← (myPhase1Col ̸∈ {0, . . . , 51, α, β})
23: else if doPhase1 == true then ▷ Phase 1: detect if one of my neighbours is settled, otherwise perform CV
24: if parent == A then
25: myPhase1Col← ChooseNewPhase1Colour(myPhase1Col, Acol.P1, Bcol.P1)
26: else
27: myPhase1Col← ChooseNewPhase1Colour(myPhase1Col, Bcol.P1, Acol.P1)
28: end if
29: Send (“P1”, myPhase1Col) to both neighbours
30: if received a message of the form (key, val) from A then: Acol.key ← val
31: if received a message of the form (key, val) from B then: Bcol.key ← val
32: doPhase1← (myPhase1Col ̸∈ {0, . . . , 51, Pdone, Cdone})
33: else ▷ Phase 2: colour reduction down to {0, 1, 2}
34: token← clockVal mod 56
35: if (myPhase1Col == token) or

((myPhase1Col == α) ∧ (token == 52)) or
((myPhase1Col == β) ∧ (token == 53)) or
((myPhase1Col == Pdone) ∧ (token == 54)) or
((myPhase1Col == Cdone) ∧ (token == 55)) then

36: myFinalCol← smallest element in {0, 1, 2} \ {Acol.final, Bcol.final}
37: Send (“final”, myFinalCol) to both neighbours
38: terminate()
39: end if
40: if received a message of the form (key, val) from A then: Acol.key ← val
41: if received a message of the form (key, val) from B then: Bcol.key ← val
42: end if
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Algorithm 2 ChooseNewPhase1Colour(myPhase1Col, ParentPhase1Col, ChildPhase1Col).

1: if ParentPhase1Col ∈ {0, . . . , 51} then
2: newColour← Pdone
3: else if ChildPhase1Col ∈ {0, . . . , 51} then
4: newColour← Cdone
5: else if ParentPhase1Col ∈ {Pdone, Cdone, α, β} then
6: newColour← CVChoice(myPhase1Col, 0)
7: else
8: newColour← CVChoice(myPhase1Col, ParentPhase1Col)
9: end if

10: return newColour

Algorithm 3 CVChoice(MyCol, OtherCol).

1: MyString← EncodeSF(BinaryRep(MyCol))
2: OtherString← EncodeSF(BinaryRep(OtherCol))
3: i← smallest x ≥ 0 such that MyString[x] ̸= OtherString[x]
4: newString← BinaryRep(i) · myString[i]
5: return IntVal(newString)
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