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Abstract
In this work, we study perfectly-secure multi-party computation (MPC) against general (non-threshold)
adversaries. Known protocols are secure against Q(3) and Q(4) adversary structures in a synchronous
and an asynchronous network respectively. We address the existence of a single protocol which
remains secure against Q(3) and Q(4) adversary structures in a synchronous and in an asynchronous
network respectively, where the parties are unaware of the network type. We design the first such
protocol against general adversaries. Our result generalizes the result of Appan, Chandramouli and
Choudhury (PODC 2022), which presents such a protocol against threshold adversaries.
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1 Introduction

Secure multi-party computation (MPC) [40, 27, 10] is one of the central pillars in modern
cryptography. Informally, an MPC protocol allows a set of mutually distrusting parties,
P = {P1, . . . , Pn}, to securely perform any computation over their private inputs without
revealing anything additional about their inputs. In any MPC protocol, the distrust is
modelled by a centralized adversary A, who can corrupt and control a subset of the parties
during the protocol execution. We aim for perfect security, where A is a computationally
unbounded byzantine adversary who can force the corrupt parties to behave arbitrarily during
protocol execution and where all security guarantees are achieved without any error.

1 Work done as a student at IIIT Bangalore
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Traditionally, the corruption capacity of A is modelled through a publicly-known threshold
t, where it is assumed that A can corrupt any subset of up to t parties [10, 15, 38]. A
more generic and fine-grained form of corruption capacity is the general-adversary model
(also known as the non-threshold setting) [28]. Here, A is characterized by a publicly-known
monotone adversary structure Z ⊂ 2P , which enumerates all possible subsets of potentially
corrupt parties, where A can select any one subset from Z for corruption. Notice that a
threshold adversary is a special type of non-threshold adversary, where Z consists of all subsets
of P of size up to t. It is well-known that modelling A through Z allows for more flexibility,
especially when P is small [28, 29]. The downside is that the complexity of the resultant
protocols is polynomial in the size of Z, which could be exponential in n in the worst case.

Traditionally, MPC protocols are designed assuming either a synchronous or asynchronous
communication model. In a synchronous MPC (SMPC) protocol, the communication channels
between the parties are assumed to be synchronized, and every message is assumed to be
delivered within some known time ∆. Unfortunately, maintaining such time-outs in real-world
networks like the Internet is extremely challenging. Asynchronous MPC (AMPC) protocols
operate assuming an asynchronous communication network with eventual message delivery,
where the messages can be arbitrarily, yet finitely delayed. Designing AMPC protocols is
inherently more challenging when compared to SMPC protocols. This is because, due to
the lack of an upper bound on message delays, parties won’t know how long to wait for an
expected message, since the corresponding sender party may be corrupt and may not send
the message in the first place. Consequently, to avoid an endless wait, a party can consider
messages from only a subset of parties for processing but, in the process, messages from
potentially slow but honest parties may get ignored. In fact, in any AMPC protocol, it is
impossible to ensure that the inputs of all honest parties are considered for computation,
since the wait may turn out to be endless.

Against threshold adversaries, perfectly-secure SMPC and AMPC can tolerate up to
ts < n/3 [10] and ta < n/4 [9] corrupt parties respectively. Following the notion of [29],
given an adversary structure Z and a subset of parties P ′ ⊆ P, we say that Z satisfies the
Q(k)(P ′, Z) condition if the union of any k subsets from Z does not cover P ′. That is, for
every Zi1 , Zi2 , . . . , Zik

∈ Z, the following holds:

P ′ ̸⊆ Zi1 ∪ . . . ∪ Zik
.

SMPC and AMPC against general adversaries is possible, provided the underlying adversary
structure Z satisfies the Q(3)(P, Z) [29] and Q(4)(P, Z) condition [32] respectively.

Our Motivation and Results. In an MPC protocol, it is usually assumed that the parties will
be knowing if the underlying network is synchronous or asynchronous beforehand. Suppose
that the parties are not aware of the network type. We aim to design a single MPC protocol
that is capable of adapting to the exact timing behaviour of the underlying network while
offering the best possible security guarantees in either network. We call such a protocol a
best-of-both-worlds (BoBW) or a network-agnostic MPC protocol. Recently, [2] presented a
BoBW perfectly-secure MPC protocol against threshold adversaries which could tolerate up
to ts and ta corruptions in a synchronous and asynchronous network respectively, for any
ta < ts where ta < n/4 and ts < n/3, provided 3ts + ta < n holds. We aim to generalize this
result against general adversaries, and ask the following question:

Let A be an adversary characterized by adversary structures Zs and Za in a synchronous
network and asynchronous network respectively, where Zs ̸= Za. Then, is there a BoBW

perfectly-secure MPC protocol which is secure against A, irrespective of the network type?
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No prior work has addressed the above question. We present a BoBW perfectly-secure MPC
protocol provided all the following conditions hold, which we refer to throughout as Con.2

▶ Condition 1 (Con(Zs, Za)). Zs and Za satisfy the following conditions.
Zs ≠ Za, and Zs, Za satisfy the Q(3,1)(P, Zs, Za) condition, meaning that the union of
any 3 subsets from Zs and any one subset from Za, does not cover P.
Every subset in Za is a subset of some subset in Zs.

The computation and communication complexity of our protocol is polynomial in n and |Zs|.

Significance of Our Result. We focus on the case where Zs ̸= Za as, otherwise, the question
is trivial to solve 3. Let P = {P1, . . . , P8}, Zs = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P5}, {P4,

P5, P6}, {P7}, {P8}} and Za = {{P1, P3}, {P2, P4}, {P3, P5}, {P4, P6}}. Since Zs and Za

satisfy Q(3)(P, Zs) and Q(4)(P, Za) conditions respectively, it follows that existing SMPC
and AMPC protocols can tolerate Zs and Za respectively. However, we show that even if the
parties are not aware of the exact network type, then using our protocol, one can still achieve
security against Zs if the network is synchronous or against Za if the network is asynchronous.
The above example demonstrates the flexibility offered by the non-threshold adversary model,
in terms of tolerating more faults. In the threshold model, using the protocol of [2], one
can tolerate up to ts = 2 and ta = 1 faults, in a synchronous and asynchronous network
respectively. In the non-threshold model, our protocol can tolerate subsets of size larger than
the maximum ts and ta allowed in a synchronous and asynchronous network.

We compare the communication complexity of our network-agnostic MPC protocol with
the most efficient existing synchronous and asynchronous MPC protocols in Table 1.4 Here,
(K, +, ·) denotes the finite ring (or field) over which the computations are performed.

Table 1 Amortized communication complexity per multiplication of different perfectly-secure
MPC protocols against general adversaries.

Setting Reference Condition Communication Complexity (in bits)
Synchronous [30] Q(3)(P, Z) O(|Z|2 · (n5 log |K| + n6) + |Z| · (n7 log |K| + n8))

Asynchronous [3] Q(4)(P, Z) O(|Z|2 · n7 log |K| + |Z| · n9 log n)
Network Agnostic This work Con(Zs, Za) O(|Zs|2 · n5 (log |K| + log |Zs| + log n))

1.1 Technical Overview
Like in any generic MPC protocol [27, 10, 38], we assume that the underlying computation
(which the parties want to perform securely) is modelled as some publicly-known function
f , abstracted by some arithmetic circuit cir, over some algebraic structure K, consisting
of linear and non-linear (multiplication) gates. The problem of secure computation then
reduces to secure circuit-evaluation, where the parties jointly and securely “evaluate” cir
in a secret-shared fashion, such that all the values during the circuit-evaluation remain
verifiably secret-shared and where the shares of the corrupt parties fail to reveal the exact

2 Conditions Con imply that Zs and Za satisfy the Q(3)(P, Zs) and Q(4)(P, Za) conditions respectively.
3 If Zs = Za, then AMPC is possible only if even Zs satisfies the Q(4)(P, Zs) condition. Any existing

perfectly-secure AMPC protocol (with appropriate time-outs) [32, 18, 3] will work even in the synchronous
network, with the guarantee that the inputs of all honest parties are considered for the computation

4 Conventionally, the communication complexity of any generic MPC protocol is measured in terms of
the number of bits communicated to evaluate a single multiplication gate in the underlying circuit.
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underlying value. The secret-sharing used is typically linear [20], thus allowing the parties
to evaluate the linear gates locally (non-interactively). On the other hand, non-linear gates
are evaluated by deploying the standard Beaver’s method [8] using random, secret-shared
multiplication-triples which are generated in a circuit-independent preprocessing phase. Then,
once all the gates are securely evaluated, the parties publicly reconstruct the secret-shared
circuit-output. Apart from verifiable secret-sharing (VSS) [16], the parties also need to run
instances of a Byzantine agreement (BA) protocol [37] to ensure that all the parties are on
the “same page” during the various stages of the circuit-evaluation. The above framework
for shared circuit-evaluation is defacto used in all generic perfectly-secure SMPC and AMPC
protocols. Unfortunately, there are several obstacles while adapting the framework if the
parties are unaware of the network type.

First Obstacle – A BoBW BA Protocol. Informally, a BA protocol [37] allows parties with
private inputs to reach an agreement on a common output, even if a subset of the parties
behave maliciously. In the non-threshold setting, one can design perfectly-secure BA protocol
against Q(3) adversary structures irrespective of the network type [25, 17]. However, the
termination (also called liveness) guarantees are different for synchronous BA (SBA) and
asynchronous BA (ABA) protocols. The (deterministic) SBA protocols ensure that all honest
parties obtain their output after some fixed time (guaranteed liveness) [37]. On the other hand,
to circumvent the FLP impossibility result [24], ABA protocols are randomized and provide
almost-surely liveness [1, 7, 17], where the parties terminate the protocol asymptotically with
a probability of 1. Known SBA protocols become insecure in an asynchronous network even
if one expected message from an honest party gets arbitrarily delayed, while existing ABA
protocols can provide only almost-surely liveness in a synchronous network.

The first obstacle is to get a BoBW BA protocol against non-threshold adversaries, which
provides the security guarantees of SBA and ABA in a synchronous and an asynchronous
network respectively. We present such a BA protocol which is secure against Q(3) adversary
structures. The protocol is obtained by generalizing the BoBW BA protocol of [2] which is
secure against threshold adversaries and tolerates t < n/3 faults.

Second Obstacle – A BoBW VSS Protocol. In a VSS protocol, a designated dealer
D ∈ P has some private input s. The goal is to let D “verifiably” distribute shares of s

such that the adversary does not learn anything additional about s, if D is honest (privacy).
In a synchronous VSS (SVSS), every (honest) party obtains its shares after some known
time-out (correctness). Verifiability guarantees that even a corrupt D shares some value
“consistently” within the known time-out (commitment property). Perfectly-secure SVSS is
possible, provided the underlying adversary structure Zs satisfies Q(3) condition [34, 30].

For an asynchronous VSS (AVSS) protocol, correctness guarantees that for an honest
D, the secret s is eventually secret-shared. However, a corrupt D may not invoke the
protocol in the first place, in which case the honest parties may not obtain any shares.
Hence, the commitment property of AVSS guarantees that if D is corrupt and if some honest
party computes a share (implying that D has invoked the protocol), then all honest parties
eventually compute their shares. Perfectly-secure AVSS is possible, provided the underlying
adversary structure Za satisfies the Q(4) condition [18, 3].

Existing SVSS protocols become insecure in an asynchronous network, even if a single
expected message from an honest party is delayed. On the other hand, existing AVSS protocols
are insecure against Q(3) adversary structures (which SVSS protocols can tolerate). Since,
in our setting, the parties will not be knowing the exact network type, to maintain privacy
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during the shared circuit-evaluation, we need to ensure that each value remains secret-shared
with respect to Zs rather than not Za, even if the network is asynchronous.5 The second
obstacle to perform shared circuit-evaluation in our setting is to get a perfectly-secure VSS
protocol which is secure with respect to Zs and Za in a synchronous and asynchronous
network respectively and where privacy always holds with respect to Zs, irrespective of the
network type. We are not aware of any VSS protocol with these guarantees. Hence, we
present a BoBW VSS protocol satisfying the required properties.

Our BoBW VSS protocol is obtained by carefully and non-trivially “stitching” together
the SVSS and AVSS protocols of [34] and [18] respectively. Both these protocols are further
based on the classic additive secret-sharing protocol of Ito et al [31] (designed against passive
adversaries). The secret is shared using a sharing specification SZ corresponding to a given
adversary structure Z, where SZ is the collection of “set-complements” of the subsets in
Z. That is, if Z = {Z1, . . . , Z|Z|}, then SZ = (S1, . . . , S|Z|) where Sm = P \ Zm, for
m = 1, . . . , |Z|. The idea behind the secret-sharing of [31] is then to share a secret s through
a random vector of shares (s1, . . . , s|Z|) which sum up to s, where all (honest) parties in the
group Sm hold the share sm. Since one of the subsets in SZ consists of only honest parties,
it would be ensured that if D is honest, then the probability distribution of the shares learnt
by the adversary is independent of s. The SVSS and AVSS protocols of [34] and [18] ensure
that the underlying secret is indeed shared as per the above semantics, even in the presence
of malicious corruptions, including a potentially corrupt D. We next briefly discuss these
protocols individually and then give a high-level overview of how we combine them.

SVSS Against Q(3) Adversary Structures [34]: Consider an arbitrary adversary
structure Zs satisfying the Q(3)(P, Zs) condition, and let SZs

= (S1, . . . , S|Zs|) be the
corresponding sharing specification. The protocol is executed as a sequence of phases.
To share s, during the first phase, D picks a random vector of shares (s1, . . . , s|Zs|), such
that s = s1 + . . . + s|Zs|. Then all parties in every group Sm ∈ SZs are given share sm by
D. To check whether a potentially corrupt D has given the same share to all the (honest)
parties in Sm, the parties in Sm perform a pairwise consistency check of their supposedly
common share during the second phase, and publicly broadcast the results during the
third phase, using a synchronous reliable broadcast protocol. If any party in Sm publicly
complains about an inconsistency, then during the fourth phase, D makes public the share
sm corresponding to Sm by broadcasting it. This does not violate the privacy for an
honest D, since a complaint for inconsistency from Sm implies that Sm has at least one
corrupt party and so, the adversary will already know sm. If D does not “resolve” any
complaint during the fourth phase (implying D is corrupt), then D is publicly discarded,
and everyone takes a default sharing of 0 on the behalf of D. Clearly, the protocol ensures
that by the end of the fourth phase, all honest parties in Sm have the same share, and
the sum of these shares across all the Sm sets is the value shared by D.
AVSS Against Q(4) Adversary Structures [18]: Consider an arbitrary adversary
structure Za satisfying the Q(4)(P, Za) condition, and let SZa

= (S1, . . . , S|Za|) be the
corresponding sharing specification. The AVSS protocol of [18] closely follows the SVSS
protocol of [34]. However, the phases are no longer synchronized. Moreover, during the
pairwise consistency phase, the parties cannot afford to wait to know the status of the
consistency checks between all pairs of parties, since potentially corrupt parties may never
respond. Instead, corresponding to every Sm, the parties check for the existence of a set

5 Since we are assuming that every subset in Za is a subset of some subset in Zs, privacy will be
maintained irrespective of the network type if each value remains secret-shared with respect to Zs.
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of “core” parties Cm ⊆ Sm, with Sm \ Cm ∈ Za, which publicly confirmed that they are
pairwise consistent. To ensure that all the parties agree on the core sets, D is assigned
the task of identifying the core sets and broadcasting them (where the broadcast now
happens through an asynchronous reliable broadcast protocol). The protocol proceeds
only upon the receipt of core sets from D and their verification. While an honest D will
eventually find and broadcast valid core sets, a corrupt D may not do so, in which case the
parties obtain no shares. Once the core sets are identified and verified, it is guaranteed
that all the (honest) parties in each core set Cm have received the same share from D. The
goal is then to ensure that even the (honest) parties “outside” Cm (namely, the parties
in Sm \ Cm) get this common share. Since Za satisfies the Q(4)(P, Za) condition, the
“majority” of the parties in Cm are honest 6. Hence, the parties in Sm \ Cm can “extract”
the common share held by the parties in Cm, by applying the “majority rule” on the
shares received from the parties in Cm, during the pairwise consistency tests.
Our BoBW VSS Protocol: In our VSS protocol, the parties first start executing
the steps of the above SVSS protocol, assuming a synchronous network, where all the
instances of broadcast happen by executing an instance of a BoBW reliable broadcast
protocol ΠBC, designed as part of our BoBW BA protocol. Let TBC be the time taken by
the protocol ΠBC to produce the output in a synchronous network. If indeed the network
is synchronous, then within time 2∆+TBC, the results of pairwise consistency tests should
be publicly available, where ∆ is the upper bound on message delay in a synchronous
network. Moreover, if any inconsistency is reported, then within the time 2∆ + 2TBC, the
dealer D should have resolved all those inconsistencies by making the “disputed” shares
public. However, unlike the SVSS protocol, the parties cannot afford to discard D if it
fails to resolve any inconsistency within time 2∆ + 2TBC. This is because the network
could be asynchronous, and D’s responses may be arbitrarily delayed, even if D is honest.
A bigger challenge is that in an asynchronous network, some honest parties, say H1, might
be seeing the inconsistencies being reported within local time 2∆ + TBC, as well as D’s
responses within the local time 2∆ + 2TBC. And there might be another set of honest
parties, say H2, who might not be seeing these inconsistencies and D’s responses within
these timeouts. This may result in the parties in H1 considering the shares made public
by D, while the parties in H2 may think that the network is asynchronous and wait for the
core sets of parties to be made public by D (as done in the AVSS). However, this gives a
corrupt D an opportunity to violate the commitment property in an asynchronous network.
In more detail, consider a set Sm for which pairwise inconsistency is reported, and for
which D also finds a set of core parties Cm. Then, it might be possible that the parties in
Cm have received the common share sm from D, but in response to the inconsistencies
reported for Sm, D broadcasts the share s′

m, where s′
m ̸= sm. This will lead to a situation

where the parties in H1 consider s′
m as the share for the group Sm after the timeout of

2∆ + 2TBC. On the other hand, the parties in H2 may not see the inconsistencies and
s′

m within the timeout of 2∆ + 2TBC, but eventually see Cm and extract the share sm

corresponding to Sm.
To deal with the above challenge, apart from resolving the inconsistencies reported for
any set Sm, the dealer D also finds and broadcasts a core set of parties Cm, who have
confirmed receiving the same share from D corresponding to all the sets Sm, such that

6 Since the Q(4)(P, Za) condition is satisfied, the conditions Q(3)(Sm, Za) and, consequently, Q(2)(Cm, Za)
are also satisfied. Thus, the Q(1)(Cm \ Z⋆, Za) condition is satisfied, where Z⋆ is the actual set of
corrupt parties, implying that the set of honest parties form a “majority”.
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Sm \ Cm ∈ Zs. Additionally, if there is any inconsistency reported for Sm, then apart
from D, every party in Sm also makes public its version of the share corresponding to Sm

received from D. Now, at time 2∆ + 2TBC, the parties check if D has broadcasted a core
set Cm for each Sm. Moreover, if any inconsistency has been reported corresponding to
Sm, the parties check if “sufficiently many” parties from Cm have made public the same
share which D made public. This prevents a corrupt D from making public a share that
is different from the share which it distributed to the parties in Cm.
If the network is asynchronous, then different parties may have different “opinions”
regarding whether D has broadcasted “valid” core sets Cm. Hence, at time 2∆ + 2TBC,
the parties run an instance of our BoBW BA protocol to decide what the case is. If the
parties find that D has broadcasted valid core sets Cm corresponding to each Sm, then
the parties in Sm proceed to compute their share as follows: if D has made public the
share for Sm in response to any inconsistency, then it is taken as the share for Sm. If no
share has been made public for Sm, then the parties check if “sufficiently many” parties
have reported the same share during the pairwise consistency test within time 2∆, which
we show should have happened if the network is synchronous, and if the parties maintain
sufficient timeouts. If none of these conditions holds, then the parties proceed to filter
out the common share, held by the parties in Cm, through the “majority rule”.
On the other hand, if the parties find that D has not made public core sets within time
2∆ + 2TBC, then either the network is asynchronous or D is corrupt. So the parties
resort to the steps used in AVSS. Namely, D finds and broadcasts a set of core parties
Em corresponding to each Sm, where Sm \ Em ∈ Za. 7 Then, the parties filter out the
common share, held by the parties in Em, through majority rule (see Section 4 for details).

Best-of-Both-Worlds Secure Multiplication. Apart from BoBW VSS and BA, another
key component in our MPC protocol is a BoBW multiplication protocol against general
adversaries. This is again obtained by carefully stitching together the synchronous and
asynchronous multiplication protocol of [34] and [18] respectively. The protocol takes as input
secret-shared a and b, both shared with respect to Zs, and securely outputs a secret-sharing of
a · b with respect to Zs, irrespective of the network type. Let (a1, . . . , a|Zs|) and (b1, . . . , b|Zs|)
be the vector of shares, corresponding to a and b respectively. The idea here is to securely
generate a secret-sharing of each of the summands al · bm, where l, m ∈ {1, . . . , |Zs|}. The
linearity property (see Definition 2) of the secret-sharing then guarantees that a secret-sharing
of a · b can be obtained from the secret-sharing of the summands al · bm.

To generate a secret-sharing of al · bm, the parties do the following: let Il,m be the set of
parties who have both al and bm. Since Q(3,1)(P, Zs, Za) condition is satisfied, irrespective
of the network type, Il,m will have at least one honest party. Each party in Il,m is asked
to independently secret-share al · bm through an instance of our BoBW VSS protocol. To
avoid an endless wait, the parties cannot afford for all the parties in Il,m to secret-share their
“versions” of al · bm, even if the network would have been synchronous. Hence the parties run
instances of our BoBW BA to agree on a common subset of parties Rl,m from Il,m, where
Il,m \ Rl,m ∈ Zs, who have shared some version of al · bm through VSS instances. However,
we take special care to ensure that irrespective of the network type, the set Rl,m has at
least one honest party from Il,m, who has indeed shared the summand al · bm. Note that
achieving this goal is not a challenge for the synchronous multiplication protocol of [34], since

7 Em (not to be confused with Cm) is the core set of parties corresponding to Sm which D finds in case it
is unable to find and make public valid core sets Cm “on time” for each Sm.
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Rl,m = Il,m holds.8 Similarly, the goal is easily achievable in the asynchronous multiplication
protocol of [18].9 To ensure that the Rl,m has at least one honest party, we carefully run
instances of our BoBW BA and decide the timeouts of the parties in these BA instances (see
Section 5 for the exact details). Once the set Rl,m is decided, the parties then check if all
the parties in Rl,m have shared the same version of al · bm. If all the versions are the same,
then any one of these is taken as a secret-sharing of al · bm. Else at least one party from
Rl,m has behaved maliciously and so the parties publicly reconstruct the shares al and bm

and compute a default secret-sharing of al · bm.10

Comparison of Our Results with [2]. Even though our BoBW BA protocol is an easy
generalization of the BoBW BA protocol of [2] against threshold adversaries, our VSS protocol
and the multiplication protocol are relatively simpler and based on completely different ideas.
For instance, the BoBW VSS protocol of [2] is based on the properties of symmetric bivariate
polynomials of degree ts in two variables over a finite field, where the underlying secret is
embedded in the constant term of the polynomial and the share for each party is a distinct
univariate polynomial, lying on the bivariate polynomial (this is a two-dimensional extension
of the classical Shamir’s secret-sharing [39]). The bivariate polynomials help to verify whether
a potentially corrupt D has distributed shares consistently. However, verifying the same in the
BoBW setting is quite challenging. As a result, the VSS protocol of [2] is quite involved and
is further based on a “weaker” primitive, called weak polynomial-sharing (WPS) [36, 5], which
ensures that if the dealer is corrupt, then only a subset of the honest parties receive their
designated shares.11 On the contrary, our BoBW VSS protocol is much simpler and not based
on any WPS protocol. Intuitively this is because the “sharing-semantics” of the underlying
secret-sharing is different for VSS against the threshold and non-threshold adversaries. While
the former is based on polynomial interpolation, the latter deploys additive secret-sharing.
Consequently, there is more “redundancy” available to verify whether D has consistently
shared its secret, compared to bivariate polynomials, since each candidate share is now
available with multiple parties. To the best of our knowledge, the idea of designing VSS
based on WPS has been used only against threshold adversaries and it is not known whether
the idea can be generalized against non-threshold adversaries.

Similarly, the multiplication protocol of [2] is quite involved and based on the framework
of [19], which further involves a lot of subprotocols and deploys properties of polynomial
evaluation and interpolation over finite fields. In contrast, our multiplication protocol is
relatively simpler and straightforward and does not involve multiple sub-protocols.

1.2 Other Related Work
All existing works in the domain of BoBW protocols focus only on threshold adversaries. The
works of [12, 14, 21] show that the condition 2ts + ta < n is necessary and sufficient for BoBW
cryptographically-secure BA and MPC, tolerating computationally bounded adversaries. Using

8 In a synchronous network, a and b are secret-shared with respect to a set Z satisfying Q(3)(P, Z)
condition. This ensures that Z satisfies the Q(1)(Il,m, Z) condition and hence contains at least one
honest party. Moreover, in a synchronous network, the VSS instances of all the parties in Il,m get over
within a known time bound and hence Rl,m = Il,m holds.

9 In an asynchronous network, a and b are secret-shared with respect to a set Z satisfying Q(4)(P, Z)
condition. This ensures that Z satisfies the Q(2)(Il,m, Z) condition. Consequently, Il,m \ Rl.m ∈ Z will
hold, implying that Z satisfies the Q(1)(Rl,m, Z) condition and Rl,m contains at least one honest party.

10 The vector of shares (s, 0, . . . , 0) can be considered as a default sharing of a publicly known value s.
11 It is not known how to directly design a BoBW VSS protocol, without deploying any WPS.
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the same condition, [13] presents a BoBW cryptographically-secure atomic broadcast protocol.
The work of [35] studies Byzantine fault tolerance and state machine replication protocols
for multiple thresholds, including ts and ta. The work of [26] presents a BoBW protocol for
the task of approximate agreement using the condition 2ts + ta < n. The same condition has
been used to design a BoBW distributed key-generation (DKG) protocol in [6]. A recent
work [22] has studied the problem of perfectly-secure message transmission (PSMT) [23]
over incomplete graphs, in the BoBW setting. Along with the results of [2], they note that
BoBW perfectly-secure MPC over incomplete networks is possible as long as 3ts + ta < n and
ts + 2ta < N , where N is the connectivity of the graph modelling the underlying network.

1.3 Open Problems
We do not know whether the conditions Con are indeed necessary for any BoBW perfectly-
secure MPC protocol. In fact, it is not known whether the corresponding condition 3ts+ta < n

is necessary for any BoBW perfectly-secure MPC against threshold adversaries. We conjecture
that these conditions are indeed necessary for the respective adversarial model, for any BoBW
perfectly-secure MPC. The main aim of this work (and [2]) is to show the feasibility of BoBW
perfectly-secure MPC against general adversaries over complete networks. We do not know
if an equivalent result for MPC over incomplete networks can be shown as in [22]. Improving
the efficiency of these protocols is also left for future work.

2 Preliminaries and Definitions

The parties in P are assumed to be connected by pair-wise secure channels. The underlying
communication network can be either synchronous or asynchronous, with parties being
unaware about the exact type. In a synchronous network, every sent message is delivered
within a known time ∆. In an asynchronous network, messages can be delayed arbitrarily,
but finitely, with every message sent being delivered eventually. The distrust among P is
modelled by a malicious (byzantine) adversary A, who can corrupt a subset of the parties
in P and force them to behave in any arbitrary fashion during the execution of a protocol.
For simplicity, we assume the adversary to be static, it decides the set of corrupt parties at
the beginning of the protocol execution. However, our protocols can be proved secure even
against a more powerful adaptive adversary that can decide the set of corrupt parties at run
time.

Adversary A can corrupt any one subset of parties from Zs and Za in synchronous and
asynchronous networks respectively. The adversary structures are monotone, implying that
if Z ∈ Zs (Z ∈ Za resp.), then every subset of Z also belongs to Zs (resp. Za). We say that
Zs and Za satisfy the Q(k,k′)(P, Zs, Za) condition if the union of any k subsets from Zs and
any k′ subsets from Za, does not cover P. That is, for every Zi1 , . . . , Zik

∈ Zs and every
Zj1 , . . . , Zjk′ ∈ Za, the condition P ̸⊆ Zi1 ∪ . . . ∪ Zik

∪ Zj1 ∪ . . . ∪ Zjk′ holds.
In our VSS and MPC protocols, all computations are done over a finite algebraic

structure (K, +, ·), which could be a ring or a field. Without loss of generality, we assume
that each Pi has an input xi ∈ K, and the parties want to securely compute a function
f : Kn → K, represented by an arithmetic circuit cir over K, consisting of linear and non-
linear (multiplication) gates, where cir has cM multiplication gates and a multiplicative depth
of DM .

Termination Guarantees of Our Sub-Protocols. As done in [2], for simplicity, we will
not be specifying any termination criteria for our sub-protocols. The parties will keep
on participating in these sub-protocol instances even after computing their outputs. The
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termination criteria of our MPC protocol will ensure the termination of all underlying
sub-protocol instances. We will be using an existing randomized ABA protocol [17] which
ensures that the honest parties (eventually) obtain their respective output almost-surely
with probability 1, where the probability is over the random coins of the honest parties and
adversary in the protocol. The property of almost-surely obtaining an output carries over to
the “higher” level protocols, where ABA is used as a building block.

We next discuss the syntax and semantics of the secret-sharing used in our VSS.

▶ Definition 2 ([34]). Let S = (S1, . . . , S|S|) be a set called the sharing specification where,
for m = 1, . . . , |S|, each Sm ⊆ P. Then a value s ∈ K is said to be secret-shared with respect
to S if there exist shares s1, . . . , s|S| ∈ K such that s = s1 + . . . + s|S| and, for m = 1, . . . , |S|,
the share sm is available to every (honest) party in Sm.

A secret-sharing of s is denoted by [s], where [s]m denotes the mth share. The above secret-
sharing is linear as [c1s1+c2s2] = c1[s1]+c2[s2] holds for publicly-known c1, c2 ∈ K. Hence, the
parties can non-interactively compute any linear function over secret-shared inputs. For our
protocols, we will consider the sharing specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}.

2.1 Existing Asynchronous Primitives
Asynchronous Reliable Broadcast (Acast). An Acast protocol allows a designated sender
S ∈ P to send its input m ∈ {0, 1}ℓ identically to all the parties, even if S is potentially
corrupt. An Acast protocol ΠACast is presented in [33], provided Z satisfies the Q(3)(P, Z)
condition. The protocol also provides certain guarantees in a synchronous network, as stated
in Lemma 8 (Appendix A). The protocol, along with the proof of Lemma 8 and various
terminologies associated with ΠACast are available in the full version of this paper [4].

Public Reconstruction of a Secret-Shared Value. Let s ∈ K be a value, which is secret-
shared with respect to S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. To publicly reconstruct s,
we use the reconstruction protocol ΠRec(s,S) of [34]. In a synchronous network, the protocol
will take ∆ time, while in an asynchronous network, the parties eventually output s. The
protocol incurs a communication of O(|Zs| · n2 log |K|) bits; see [4] for the details.

3 Best-of-Both-Worlds Byzantine Agreement (BA)

We begin with the definition of BA, which is adapted from [14, 2].

▶ Definition 3 (BA). Let Π be a protocol for P where every Pi has input bi ∈ {0, 1} and a
possible output from {0, 1, ⊥}. Let A be an adversary, characterized by adversary structure
Z, where A can corrupt any set of parties from Z during the execution of Π.

Z-Guaranteed Liveness: All honest parties obtain an output.
Z-Almost-Surely Liveness: Almost-surely, all honest parties obtain some output.
Z-Validity: If all honest parties input b, every honest party with an output outputs b.
Z-Weak Validity: If all honest parties input b, every honest party with an output
outputs b or ⊥.
Z-Consistency: All honest parties with an output output the same value (may be ⊥).
Z-Weak Consistency: All honest parties with an output output a common v ∈ {0, 1, ⊥}.
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A Z-perfectly-secure synchronous BA (SBA) protocol Π has Z-guaranteed liveness, Z-validity,
and Z-consistency in a synchronous network. A Z-perfectly-secure asynchronous BA (ABA)
Π has Z-almost-surely liveness, Z-validity and Z-consistency in an asynchronous network.12

To design our BoBW BA protocol, we will need a special broadcast protocol. Hence, we next
review the definition of broadcast, adapted from [14, 2].

▶ Definition 4 (Broadcast). Let Π be a protocol where a sender S ∈ P has input m ∈ {0, 1}ℓ,
and parties obtain an output. Let A be an adversary characterized by adversary structure Z.

Z-Liveness: All honest parties obtain some output.
Z-Validity: If S is honest, then every honest party with an output outputs m.
Z-Weak Validity: If S is honest, every honest party with an output outputs m or ⊥.
Z-Consistency: If S is corrupt, every honest party with an output outputs a common
value.
Z-Weak Consistency: If S is corrupt, every honest party with an output outputs a
common m⋆ ∈ {0, 1}ℓ or ⊥.

Π is a Z-perfectly-secure broadcast protocol if it has Z-Liveness, Z-Validity, and Z-
Consistency.13

We give an overview of how to generalize the BoBW BA protocol of [2] and defer to the
full version of the paper [4] for the details. The protocol is based on three components.

Component I: SBA with Asynchronous Guaranteed Liveness. We require a Z-perfectly-
secure SBA protocol ΠSBA with Q(3)(P, Z) condition, which also provides Z-guaranteed
liveness in an asynchronous network. We design a candidate for ΠSBA by generalizing the
simple SBA protocol of [11], which was designed to tolerate t < n/3 corruptions. The
protocol requires at most 3n rounds in a synchronous network and hence, within time
TSBA

def= 3n · ∆, all honest parties will get an output in a synchronous network. The protocol
incurs a communication of O(n3ℓ) bits if the inputs of the parties are of size ℓ bits. To
achieve Z-guaranteed liveness in an asynchronous network, the parties can run ΠSBA till time
TSBA, and then output ⊥ if no “valid” output is computed as per the protocol at the time
TSBA; see the full version of this paper [4] for the details.

Component II: ABA with Synchronous Guarantees. We deploy the ABA protocol ΠABA
of [17], where Z satisfies the Q(3)(P, Z) condition and where each party has an input bit.
The protocol has the following liveness guarantees in an asynchronous network.

If the inputs of all honest parties are the same, then ΠABA achieves Z-guaranteed liveness.
Else, ΠABA achieves Z-almost-surely liveness.

Protocol ΠABA also achieves Z-validity, Z-consistency, and the following liveness guarantees
in a synchronous network.

If all honest parties have the same input, then ΠABA achieves Z-guaranteed liveness, and
all honest parties obtain output within time TABA = k · ∆, for some known constant k.
Else, ΠABA achieves Z-almost-surely liveness and requires O(poly(n) · ∆) expected time.

12 The weak validity and weak consistency properties are defined here for the sake of completeness. Looking
ahead, our BoBW BA protocol will be using BA protocol(s) with these “weaker” properties.

13 Similar to BA, the weak validity and consistency properties are defined here for the sake of completeness,
since we will be designing a broadcast protocol with these weaker properties in our BoBW BA protocol.
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Irrespective of the network type, ΠABA incurs a communication of O(|Z| · n5 log |F| + n6 log n)
bits, if all honest parties have the same input bit. Else, it incurs an expected communication
of O(|Z| · n7 log |F| + n8 log n) bits. Here F is a finite field such that |F| > n holds.

Component III: Synchronous Broadcast with Asynchronous Guarantees. We assume the
existence of a broadcast protocol ΠBC, which is a Z-perfectly-secure broadcast protocol in a
synchronous network, and which also provides Z-Liveness, Z-Weak Validity and Z-Weak
Consistency in an asynchronous network. We present a candidate for ΠBC by generalizing
the broadcast protocol of [2] with similar guarantees. The protocol incurs a communication
of O(n3ℓ) bits, where S participates with input m ∈ {0, 1}ℓ. The idea is to carefully “stitch”
together protocol ΠACast with the protocol ΠSBA. In the protocol, all honest parties have
some output at the (local) time TBC = 3∆ + TSBA. Depending upon the network type and
corruption status of S, the output is -

Synchronous Network and Honest S: m for all honest parties.
Synchronous Network and Corrupt S: a common m⋆ ∈ {0, 1}ℓ ∪ {⊥} for all honest parties.
Asynchronous Network and Honest S: either m or ⊥ for each honest party.
Asynchronous Network and Corrupt S: a common m⋆ ∈ {0, 1}ℓ or ⊥ for each honest
party.

Protocol ΠBC also gives the parties who output ⊥ at time TBC an option to switch their
output to some ℓ-bit string if the parties keep running the protocol beyond time TBC and if
certain “conditions” are satisfied for those parties. We stress that this switching provision
is only for those who output ⊥ at time TBC. While this provision is not “useful” and not
used while designing BA, it comes in handy when ΠBC is used to broadcast values in our
VSS protocol. Notice that the output-switching provision will not lead to a violation of
consistency and hence honest parties will not end up with different ℓ-bit outputs. Following
the terminology of [2], we call the process of computing output at time TBC and beyond time
TBC as the regular mode and fallback mode of ΠBC respectively. We refer to Appendix A for
the terminologies associated with the protocol ΠBC.

ΠBC+ΠABA ⇒ BoBW BA. We combine protocols ΠBC and ΠABA to get ΠBA by generalizing
the idea used in [2] against threshold adversaries. In the protocol, every party first broadcasts
its input bit (for the BA protocol) through an instance of ΠBC. If the network is synchronous,
then all honest parties should have received the inputs of all the (honest) sender parties from
the corresponding broadcast instances through regular mode by time TBC. Consequently,
at time TBC, the parties decide an output for all the n instances of ΠBC. Based on these
outputs, the parties decide their respective inputs for the ΠABA protocol. Specifically, if
“sufficiently many” outputs from the ΠBC instances are found to be same, then the parties
consider this output value as their input for the ΠABA instance. Else, they stick to their
original inputs. The overall output for ΠBA is then set to be the output from ΠABA. For the
formal description of ΠBA and the proof of Theorem 5, see [4].

▶ Theorem 5. Let Z satisfy the Q(3)(P, Z) condition. Then ΠBA achieves the following.
In a synchronous network, the protocol is a Z-perfectly-secure SBA protocol, where all
honest parties obtain an output within time TBA = TBC + TABA. The protocol incurs a
communication of O(|Z| · n5 log |F| + n6 log n) bits.
In an asynchronous network, the protocol is a Z-perfectly-secure ABA protocol, with an
expected communication of O(|Z| · n7 log |F| + n8 log n) bits.
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Protocol ΠVSS(D, s, S = (S1, . . . , S|Zs|))

Phase I – Share Distribution: D randomly selects s(1), . . . , s(|Zs|) ∈ K such that s =
s(1) + . . . + s(|Zs|). For m = 1, . . . , |Zs|, it then sends s(m) to every party in the set Sm.
Phase II – Pairwise Checks: For m = 1, . . . , |Zs|, each Pi ∈ Sm does the following.

On receiving s
(m)
i from D, wait till the local time is a multiple of ∆. Send s

(m)
i to each

Pj ∈ Sm.
On receiving s

(m)
j from any Pj ∈ Sm, wait till the local time is a multiple of ∆. Do the

following.
∗ If a share s

(m)
i corresponding to Sm has been received from D, then, broadcast OK(m, i, j)

if s
(m)
i = s

(m)
j holds. Else, broadcast NOK(m, i).

∗ If s
(m)
j and s

(m)
k have been received from any Pj and Pk respectively, belonging to Sm

such that s
(m)
j ̸= s

(m)
k , then broadcast NOK(m, i).

Local Computation – Constructing Consistency Graphs: Each Pi ∈ P constructs
undirected consistency graphs G

(1)
i , . . . , G

(|Zs|)
i , where G

(m)
i is over the parties in Sm and where

the edge (Pj , Pk) is included in G
(m)
i if Pi has received OK(m, j, k) and OK(m, k, j) from the

broadcast of Pj and Pk respectively, either through regular or fallback mode.
Phase III – Resolving Complaints and Broadcasting Core Sets Based On Zs: Each
Pi ∈ P (including D) does the following at time 2∆ + TBC.

If NOK(m, j) is received from the broadcast of any Pj ∈ Sm through regular-mode corresponding
to any m ∈ {1, . . . , |Zs|}, then do the following:
∗ If Pi = D: Broadcast Resolve(m, s(m)).
∗ If Pi ̸= D: Broadcast Resolve(m, s

(m)
i ), if Pi ∈ Sm and Pi has received s

(m)
i from D.

(If Pi = D): For m = 1, . . . , |Zs|, check if there exists a Cm ⊆ Sm which constitutes a clique
in graph G

(m)
D , such that Sm \ Cm ∈ Zs. If C1, . . . , C|Zs| are found, then broadcast them.

Local Computation – Verifying and Accepting Core sets: Each party Pi ∈ P (including
D) does the following at time 2∆ + 2TBC.

If C1, . . . , C|Zs| are received from the broadcast of D through regular mode, accept these if:
∗ For m = 1, . . . , |Zs|, the set Cm constitutes a clique in the consistency graph G

(m)
i at time

2∆ + TBC. In addition, Sm \ Cm ∈ Zs.
∗ For m = 1, . . . , |Zs|, if NOK(m, j) was received from the broadcast of any Pj ∈ Sm through

regular mode at time 2∆ + TBC, then the following must hold at time 2∆ + 2TBC.
· Resolve(m, s(m)) is received from the broadcast of D through regular-mode.
· Resolve(m, s(m)) is received from the broadcast of a set of parties C′

m through regular-
mode, where C′

m ⊆ Cm, and Cm \ C′
m ∈ Zs.

Phase IV – Deciding Whether Core Sets Based on Zs have Been Accepted by Any
Honest Party: At time 2∆ + 2TBC, each Pi ∈ P participates in an instance of ΠBA with input
bi = 1 if it has accepted sets C1, . . . , C|Zs|, else, with input bi = 0, and waits for time TBA.

Figure 1 Best-of-both-worlds VSS protocol: Part I.

4 Best-of-Both-Worlds VSS Protocol

The goal of our BoBW VSS protocol (Fig 1 and Fig 2) is to enable a dealer D ∈ P
to “verifiably” generate a secret-sharing of its private input s ∈ K with respect to the
specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}, irrespective of the network type. An
overview of the protocol has been given in Section 1. In the protocol, broadcast is instantiated
through ΠBC with respect to Zs (see the terminologies associated with ΠBC in Appendix A).

Theorem 6 states the properties of ΠVSS and is proven in the full version of the paper [4].

▶ Theorem 6. Protocol ΠVSS achieves the following.
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Protocol ΠVSS(D, s, S = (S1, . . . , S|Zs|)) Contd . . .

Local Computation – Computing Shares Through Core Sets Based on Zs: If the
output of ΠBA is 1, then each party Pi ∈ P does the following.

If C1, . . . , C|Zs| are not received yet, then wait to receive them from the broadcast of D. Then
for m = 1, . . . , |Zs|, compute the share s

(m)
i corresponding to Sm as follows, if Pi ∈ Sm.

∗ If at time 2∆ + 2TBC, Resolve(m, s(m)) was received from D’s broadcast and from a set of
parties C′

m ⊆ Cm through regular-mode, where Cm \ C′
m ∈ Zs, then output s

(m)
i = s(m).

∗ Else, if a common value, say s(m), was received from a set of parties C′′
m ⊆ Cm at time 2∆

where Cm \ C′′
m ∈ Zs, then output s

(m)
i = s(m).

∗ Else wait till there exists a subset of parties C′′′
m ⊆ Cm where Cm \ C′′′

m ∈ Za, such that a
common value, say s(m), is received from all the parties in C′′′

m . Output s
(m)
i = s(m).

Phase V – Broadcasting Core Sets Based on Za: If the output of ΠBA is 0, then for
m = 1, . . . , |Zs|, dealer D does the following in its graph G

(m)
D .

Check if there exists a subset of parties Em ⊆ Sm, which constitutes a clique in the graph
G

(m)
D , such that Sm \ Em ∈ Za. Upon finding E1, . . . , E|Zs|, broadcast them.

Local Computation – Computing Shares Through Core Sets Based on Za: If the
output of ΠBA is 0, then each party Pi ∈ P does the following.

Participate in any instance of ΠBC invoked by D for broadcasting E1, . . . , E|Zs|, only after time
2∆ + 2TBC + TBA. Wait till E1, . . . , E|Zs| are received from the broadcast of D. Upon receiving,
accept these sets if each set Em constitutes a clique in the graph G

(m)
i and Sm \ Em ∈ Za.

Upon accepting, compute the share s
(m)
i corresponding to every Sm where Pi ∈ Sm as follows.

∗ If Pi ∈ Em, then output s
(m)
i received from D.

∗ Else, wait till there exists a subset E ′
m ⊆ Em, where Em \ E ′

m ∈ Zs, such that there exists a
common value, say s(m), received from all the parties in E ′

m. Output s
(m)
i = s(m).

Figure 2 Best-of-both-worlds VSS protocol: Part II.

If D is honest, then the following hold.
Zs-correctness: In a synchronous network, s is secret-shared with respect to S at time
TVSS = 2∆ + 2TBC + TBA.
Za-correctness: In an asynchronous network, almost-surely, s is eventually secret-shared
with respect to S.
Privacy: Adversary’s view remains independent of s in any network.

If D is corrupt, either no honest party obtains an output or there exists an s⋆ ∈ K, such that:
Za-commitment: In an asynchronous network, almost-surely, s⋆ is eventually secret-
shared with respect to S.
Zs-commitment: In a synchronous network, s⋆ is shared with respect to S, such that:

If any honest party outputs its shares at time TVSS, then all honest parties output their
shares at time TVSS.
If any honest party outputs its shares at time T > TVSS, then every honest party outputs
its shares by time T + 2∆.

Communication Complexity: The protocol incurs a communication of O(|Zs|·n4(log |K|+
log |Zs| + log n) + n5 log n) bits, and invokes one instance of ΠBA.

ΠVSS for L Secrets. We describe how D can share L secrets with just one instance of ΠBA
in Appendix B.
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5 The Preprocessing Phase Protocol

Our preprocessing phase allows the parties to generate secret-sharing of cM multiplication-
triples, which are random for the adversary and is based on two sub-protocols.14

Agreement on a Common Subset (ACS). In protocol ΠACS, there exists a set P ′ ⊆ P such
that it will be guaranteed that Zs and Za either satisfy the Q(1,1)(P ′, Zs, Za) condition or
Q(3,1)(P ′, Zs, Za) condition 15. Moreover, each party in P ′ will have L values, which it would
like to secret-share using ΠVSS. As corrupt dealers might not invoke their instances of ΠVSS,
the parties can compute outputs from only a subset of ΠVSS instances corresponding to parties
P ′ \ Z, for some Z ∈ Zs (even in a synchronous network). However, in an asynchronous
network, different parties may compute outputs from ΠVSS instances of different subsets
of P ′ \ Z parties, corresponding to a different Z ∈ Zs. Protocol ΠACS allows parties to
agree on a common subset CS of parties, where P ′ \ CS ∈ Zs, such that all honest parties
will be able to compute their outputs corresponding to the ΠVSS instances of the parties in
CS. Moreover, in a synchronous network, all honest parties from P ′ are guaranteed to be
present in CS.16 Protocol ΠACS is obtained by generalizing the ACS protocol of [2], which
was designed for threshold adversaries. The idea is to run n instances of our BA protocol
ΠBA, one for each party, and decide which of these ΠVSS instances will produce an output for
everyone. However, we need to take special care to ensure that all honest parties are going to
make it to CS in a synchronous network; see the full version of the paper [4] for the details.

The Multiplication Protocol. Protocol ΠMult takes as input secret-shared pairs of values
{([a(ℓ)], [b(ℓ)])}ℓ=1,...,L, and securely generates {[c(ℓ)]}ℓ=1,...,L, where c(ℓ) = a(ℓ) · b(ℓ). For
simplicity, we discuss the idea when L = 1 (a brief overview of the protocol has already
been presented in Section 1). Let [a] and [b] be the inputs to the protocol and the goal
is to compute [a · b]. The parties securely compute secret-shared summands [a]l · [b]m and
then [a · b] can be computed locally from secret-shared summands [a]l · [b]m, owing to the
linearity property. A secret-sharing of the summand [a]l · [b]m is computed as follows: let
Il,m = Sl ∩ Sm. Then, irrespective of the network type, Il,m is bound to have at least one
honest party, since Zs and Za satisfy the Q(1,1)(Il,m, Zs, Za) condition. Each party in Il,m

is asked to independently secret-share the summand [a]l · [b]m through an instance of ΠVSS.
To avoid an indefinite wait, the parties agree on a common subset of parties Rl,m from Il,m,
where Il,m \ Rl,m ∈ Zs, who have shared some summand, such that Rl,m has at least one
honest party, irrespective of the network type. For this, the parties execute an instance of
the ΠACS protocol. To check if any cheating has occurred, the parties check whether all the
parties in Rl,m have shared the same “version” of the summand [a]l · [b]m. Protocol ΠMult
and its properties are available in the full version of this paper [4].

The Preprocessing Phase Protocol. Protocol ΠPreProcessing has two stages. In the first
stage, the parties securely generate secret-sharing of cM pairs of random values, by running
an instance of ΠACS, where the input for each party will be cM pairs of random values. In
the second stage, a secret-sharing of the product of each pair is computed by executing ΠMult.
Protocol ΠPreProcessing and its properties are available in the full version of this paper [4].

14 ([a], [b], [c]) constitutes a multiplication triple, where a, b ∈ K and c = a · b holds.
15 In our preprocessing phase protocol, P ′ will be Sl ∩ Sm corresponding to some Sl, Sm ∈ S and hence,

the P ′(1,1)(Q, Zs, Za) condition will be satisfied. In our MPC protocol, P ′ will be P and hence the
Q(3,1)(P ′, Zs, Za) condition will be satisfied.

16 This property will be crucial in a synchronous network.
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6 Best-of-Both-Worlds Circuit-Evaluation Protocol

Protocol ΠCirEval for the circuit-evaluation consists of four phases. In the first phase, the
parties generate secret-sharing of cM random multiplication-triples through ΠPreProcessing.
Additionally, they invoke ΠACS to generate secret-sharing of their respective inputs for the
publicly known function f and agree on a common subset of parties CS, where P \ CS ∈ Zs,
such that the inputs of the parties in CS are secret-shared. The inputs of the remaining
parties are set to 0. Note that in a synchronous network, all honest parties will be in CS. In
the second phase, the parties securely evaluate each gate in the circuit in a secret-shared
fashion, after which the parties publicly reconstruct the secret-shared output in the third
phase. The last phase is the termination phase, where the parties wait till “sufficiently
many” parties have obtained the same output, after which they “safely” take that output
and terminate the protocol (and all the underlying sub-protocols).

ΠCirEval and the proof of Theorem 7 are available in the full version of this paper [4].

▶ Theorem 7. Let A be an adversary, characterized by adversary structures Zs and Za

in a synchronous and asynchronous network respectively, satisfying the conditions Con
(see Condition 1 in Section 1). Moreover, let f : Kn → K be a function represented by
an arithmetic circuit cir over K, consisting of cM number of multiplication gates, with a
multiplicative depth of DM , with each party having an input xi ∈ K. Then, ΠCirEval incurs
a communication cost of O(cM · |Zs|3 · n5(log |K| + log |Zs| + log n) + |Zs|2 · n6 log n) bits,
invokes O(|Zs|2 · n) instances of ΠBA, and achieves the following for some CS ⊆ P.

In a synchronous network, all honest parties output y = f(x1, . . . , xn) at time (30n +
DM + 6k + 38) · ∆, where xj = 0 for every Pj ̸∈ CS, such that P \ CS ∈ Zs, and every
honest party is present in CS; here k is a constant determined by the protocol ΠABA.
In an asynchronous network, almost-surely, the honest parties eventually output y =
f(x1, . . . , xn) where xj = 0 for every Pj ̸∈ CS and where P \ CS ∈ Zs.
The view of A remains independent of the inputs of the honest parties in CS.
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A Broadcast Protocols

A.1 Acast

The properties satsfied by protocol ΠACast [33] in a synchronous and an asynchronous network
are given in Lemma 8.

▶ Lemma 8. Let A be an adversary characterized by an adversary structure Z satisfying the
Q(3)(P, Z) condition. Then, for a sender S with input m, ΠACast achieves the following in
an asynchronous network.

Z-Liveness: If S is honest, then all honest parties eventually have an output.
Z-Validity: If S is honest, then each honest Pi with an output, outputs m.
Z-Consistency: If S is corrupt and some honest Pi outputs m⋆, then all honest parties
eventually output m⋆.

ΠACast achieves the following in a synchronous network.
Z-Liveness: If S is honest, then all honest parties obtain an output within time 3∆.
Z-Validity: If S is honest, then every honest party with an output, outputs m.
Z-Consistency: If S is corrupt and some honest party outputs m⋆ at time T , then every
honest Pi outputs m⋆ by the end of time T + 2∆.

Communication Complexity: O(n2ℓ) bits are communicated by the parties in total.
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A.2 Terminologies Associated with ΠBC

▶ Terminology 9 (Terminologies for ΠBC). We say that Pi broadcasts m to mean that
Pi invokes an instance of ΠBC as S with input m, and the parties participate in this in-
stance. Similarly, we say that Pj receives m from the broadcast of Pi through regular-mode
(resp. fallback-mode), to mean that Pj has the output m at time TBC (resp. after time TBC)
during the instance of ΠBC.

B VSS for sharing L secrets

To share L secrets, D can invoke L instances of ΠVSS. However, instead of computing and
broadcasting L · |Zs| core sets, it can compute and broadcast only |Zs| core sets, on the
behalf of all the L instances of ΠVSS. The parties will need to execute a single instance of
ΠBA to decide whether D has broadcasted valid core sets. The resultant protocol will incur a
communication of O(L · |Zs| · n4(log |K| + log |Zs| + log n) + n5 log n) bits and invokes one
instance of ΠBA. To avoid repetition, we do not provide the formal details.
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