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Abstract
We investigate graph problems in the distributed sketching model, where each node sends a single
message to a referee who computes the output. We define a class of graphs and give a framework for
proving lower bounds for certain embeddable problems, which leads to several new results: First, we
present a tight lower bound of Ω(n) bits for the message size of computing a breadth-first search
(BFS) tree. For locally-checkable labeling (LCL) problems, we show that verifying whether a given
vertex labeling forms a weak 2-coloring requires messages of Ω(n1/3 log2/3 n) bits, and the same
lower bound holds for verifying whether a subset of nodes forms a maximal independent set. We also
prove that computing a k-edge connected spanning subgraph (k-ECSS) requires messages of size
at least Ω

(
k log2(n/k)

)
, which is tight up to a logarithmic factor. To show these results, we define

a simultaneous multiparty (SMP) model of communication complexity, where the players obtain
certain subgraphs as their input, and develop a generic embedding argument that allows us to prove
lower bounds for the graph sketching model by using reductions from the SMP model. We point out
that these results also extend to single-round algorithms in the broadcast congested clique.

We also (nearly) settle the space complexity of the k-ECSS problem in the streaming model by
extending the work of Kapralov, Nelson, Pachoki, Wang, and Woodruff (FOCS 2017): We prove a
communication complexity lower bound for a direct sum variant of the UR⊂

k problem and show that
this implies Ω(k n log2(n/k)) bits of memory for computing a k-ECSS. This is known to be optimal
up to a logarithmic factor.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed graph algorithm, graph sketching, streaming

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.32

1 Introduction

Understanding the amount of communication that is required for solving fundamental graph
problems has been at the forefront of research in distributed computing. In this work, we
consider the distributed graph sketching model (SKETCH), introduced in [5]. In SKETCH
there are n nodes and each node starts out knowing its neighborhood of the input graph.
After observing its initial state and the shared randomness, each node sends a single message
to the referee, who does not get any input and is responsible for computing the output by
inspecting the received messages. As elaborated in [16, 3, 28], the distributed sketching
model is equivalent to the single-round broadcast congested clique (BCC1), where each node
sends a single message of β bits, where β denotes the link bandwidth, and these messages are
received by all nodes simultaneously at the end of the round. Consequently, the results of
our work apply to both models.

We assume that the nodes are assigned unique IDs from the set [n]. In addition, we equip
the nodes with some amount of initial knowledge of the input graph, namely, each node
knows not only its own ID but also the IDs of all of its neighbors. This is known as the
KT1 assumption, which has turned out to be a key ingredient for achieving communication-
efficiency in distributed algorithms (see [19, 14, 13, 4]). We point out that KT1 knowledge
presents a significant obstacle when proving lower bounds, due to fact that each edge is
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part of the input of both of its endpoints. Consequently, we cannot independently modify
the input of a player (i.e. node) without affecting other nodes. This is a crucial difference
between the models assumed in our work and, for instance, the edge-partition models, where
each player obtains a subset of edges as their input [25, 27].

At a first glance, it may seem that the non-interactive computation of one-round algorithms
presents a severe handicap to solving any interesting problem with a distributed algorithm
in this setting, despite the initial KT1 knowledge. However, the breakthrough results of
Ahn, and Guha, and McGregor [2] (see also the work of Kapron, King, and Mountjoy [18])
introduced a linear sketching technique that opened up the possibility of communication-
efficient solutions in SKETCH and BCC1 for several fundamental graph problems, including
computing spanning trees and deciding graph connectivity, while requiring messages (also
called “sketches”) of only polylogarithmic length.

1.1 Our Contributions and Related Work
A Lower Bound Technique for the Distributed Graph Sketching Model. We present an
embedding approach for proving lower bounds in the distributed sketching model (SKETCH)
and, equivalently, in the single-round broadcast congested clique (BCC1). This technique
generalizes an approach that was pioneered by Nelson and Yu [22], who proved an Ω(log3 n)
lower bound in this setting for computing a spanning forest. In a subsequent breakthrough,
Yu [28] extended this work by showing that this is a tight lower bound even for the easier
problem of graph connectivity.

Our approach differs from previous works by defining a simultaneous multiparty (SMP)
model as an intermediate step, where some of the players may get an entire subgraph as
their input rather than just the neighborhood of a single node. A technical challenge is
that the inputs of different players overlap with each other, which rules out using simple
product distributions for the lower bound. We specify a class of fairly generic lower bound
graphs and introduce the notion of embeddable problem, which captures a broad range of
intuitive properties, making it applicable to seemingly unrelated problems such as computing
a k-edge connected spanning subgraph and verifying a weak 2-coloring. For embeddable
problems that have unique outputs for a given input (e.g., decision problems), we obtain a
reconstruction procedure that succeeds with sufficiently high probability in recovering the
output, while omitting the transcript of some players. For general embeddable problems,
which may not have uniquely determined outputs, we use Pinsker’s inequality to argue that
omitting the transcript of some players does not significantly skew the probability distribution
of certain important cut sets. We point out that the reconstruction mechanism for unique
output problems has a significantly improved error probability compared to using Pinsker’s
inequality as in [22, 28], which may be useful for other applications.

In more detail, we choose the class of lower bound graphs such that there is a large set
of nodes V with the property that all nodes in V have neighborhoods that are “similar”,
i.e., are identically distributed. We show that, for solving an embeddable problem, the
referee needs to obtain a sufficient amount of information about the neighborhood of one
specific important node vσ ∈ V . However, since the index σ is not given to the algorithm,
the neighbors of the nodes in V do not know which one of their own neighbors is vσ and
consequently end up sending messages of large size to ensure a small probability of error.
For instance, when computing a BFS tree, the node vσ is chosen to be the only node in V

for which all of its incident edges are part of any BFS tree. Due to the lack of knowledge of
σ thus effectively requires the referee to learn about the neighborhoods of all nodes in V .1

1 The author would like to thank the anonymous DISC 2023 reviewer for suggesting this intuition.
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Computing a BFS Tree. Similarly to computing a spanning tree, computing a BFS tree
has a small output size of Θ(n log n) bits, and hence one might expect that the sketching
technique of [2], which allows recovering an incident edge for each vertex, would lead to a
solution using only sketches of length O(poly log n). We show that this intuition is misleading
by presenting a tight bound of Ω(n) on the message size for computing a BFS tree in BCC1
and SKETCH. This reveals a near-linear gap to the problem of computing a spanning tree,
which requires only messages of O

(
log3 n

)
bits. For the proof of this result, we only need to

use the generic lower bound graph construction and do not require the full machinery of the
embedding argument. With the right lower bound construction in place, the result readily
follows from a reduction to the index problem in two-party communication.

▶ Theorem 1. Any public coin constant-error randomized algorithm that computes a BFS
tree rooted at a designated node of an n-node graph, requires a worst case message length of
Ω(n) bits in the distributed sketching model (SKETCH) and the one-round broadcast congested
clique (BCC1).

Verifying Symmetry Breaking Problems. We apply the embedding technique to locally-
checkable labeling (LCL) problems [21], which have been studied extensively in the distributed
computing literature and, roughly speaking, are graph problems that can be verified locally
in the sense that each node only needs to check the consistency of the assigned labels in its
O(1)-neighborhood. Here, we focus on verifying a weak 2-coloring, which is a vertex coloring
of the graph with two colors, with the only restriction being that each non-isolated vertex has
at least one neighbor with a different color. Since a weak 2-coloring can be computed from
the output of other symmetry breaking problems, it comes as no surprise that more difficult
LCL problems such as verifying a maximal independent set adhere to the same lower bound
as weak 2-coloring. While the work of Assadi, Kol, and Oshman [3] shows a lower bound of
Ω
(
n1/2−ϵ

)
bits on the message size for computing an MIS in the distributed sketching model,

it is unclear whether their result has any implications for the verification problem, due to
the fundamentally different nature of computation and verification of symmetry breaking
problems. We instantiate the embedding technique to prove the following result:

▶ Theorem 2. Any 1
25 -error randomized algorithm that verifies if a labeling of a subset of

vertices forms a weak 2-coloring of an n-node input graph, requires a worst case message
length of Ω

(
n1/3 log2/3 n

)
bits in SKETCH and BCC1. The same bound holds for deciding

whether a subset of nodes forms a maximal independent set.

Computing a k-Edge Connected Spanning Subgraph. By applying the embedding tech-
nique, we obtain the first lower bounds for computing a k-edge connected spanning subgraph.
Prior to our work, the only known lower bound for this problem was the one for spanning
tree construction (i.e., Ω(log3 n) bits, see [22]), which does not scale with k. In particular, for
k = O(log n), the lower bound of [22] for computing a spanning forest immediately implies
an Ω(log3 n) lower bound, since the referee can recover a spanning tree from a k-ECSS.

▶ Theorem 3. Any public coin randomized algorithm that computes a k-edge connected
spanning subgraph of an n-node graph in SKETCH or BCC1 with probability at least 1 − o(1),
has a worst case message length of Ω

(
k log2 n

k

)
bits, for any k = o

(
n1/4

log1/2 n

)
.

We point out that Theorem 3 is tight up to a logarithmic factor, since the algorithm for
deciding k-edge connectivity of Ahn, Guha, and McGregor [2] also computes a “witness”, i.e.,
a k-edge connected subgraph. It is straightforward to implement their technique in SKETCH
using messages of O

(
k log3 n

)
bits.

DISC 2023
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In Section 6, we consider the k-ECSS problem in the dynamic data streaming setting
where the graph is represented as a stream of edge arrivals and departures. To prove a lower
bound, we introduce a new communication complexity problem called ℓ-fold UR⊂

k , which
essentially consists of ℓ instances of the UR⊂

k problem, defined by Kapralov, Nelson, Pachoki,
Wang, and Woodruff [17]. In the UR⊂

k problem, there are two players, Alice and Bob. Alice
gets a set S, whereas Bob gets a proper subset T ⊂ S. After Alice sends a single message to
Bob, he must output k elements in S \T . It was shown in [17] that the UR⊂

k problem requires
Ω
(
k log2 n

k

)
bits in the one-way two-party model. The ℓ-fold UR⊂

k problem is a direct-sum
variant of the UR⊂

k problem and, by a simple extension of the lower bound technique of [17],
we prove that ℓ-fold UR⊂

k requires Ω(k ℓ log2 n
k ) bits. This in turn gives rise to a lower bound

on the required memory:

▶ Theorem 4. Any Monte Carlo data structure for computing a k-edge connected spanning
subgraph of an n-node graph requires Ω

(
k n log2 n

k

)
space in the one-pass fully dynamic

turnstile model.

1.2 Additional Related Work
Closely related to k-ECSS is the problem of computing a spanning forest of the input graph
in the distributed sketching model. As mentioned above, Nelson and Yu [22] prove a lower
bound of Ω(log3 n) bits and this is known to be optimal due to the graph sketching approach
of [2], which relies on access to shared randomness. Holm, King, Thorup, Zamir, and
Zwick [15] show that a spanning tree can be computed with a message length of O(

√
n log n)

bits, without access to shared randomness. Currently, there are no lower bounds known for
the distributed sketching model if nodes only have access to private random bits.

While our results only apply to single-round algorithms in the BCC1 model, several
other works have studied multi-round lower bounds in this setting: Drucker, Kuhn, and
Oshman [10] show round lower bounds for subgraph detection problems, whereas Chen
and Grossman [7] prove a lower bound for the directed planted clique problem. Pai and
Pemmaraju [23] give round complexity lower bounds depending on the per-round bandwidth
for graph connectivity and finding connected components in BCC1. The work of [12] considers
so called hybrid models resulting from combining the broadcast congested clique with other
distributed computing models.

Several other works show lower bounds for one-round algorithms in the related CONGEST
model [24], which differs from the congested clique by assuming that the input graph
corresponds to the actual communication network. Fischer, Gonen, Kuhn, and Oshman [11]
show that one-round randomized algorithms for triangle detection require nodes to send
messages of at least Ω(∆) bits, where ∆ is the maximum degree of the graph. Previously,
Abboud, Censor-Hillel, Khoury, and Lenzen [1] showed that a slightly stronger bound of
Ω(∆ log n) bits for deterministic algorithms based on their novel fooling views framework.
We point out that the proof of [1] assumes that all three nodes must detect that they are
part of a triangle (if one exists), rather than just at least node as in [11]. A related question
is the minimum link bandwidth necessary for obtaining a solution in a certain number of
rounds, which is also called bandwidth complexity in [6].

2 A Lower Bound Technique for Embeddable Problems

In this section, we present a generic technique for showing lower bounds for problems that
satisfy certain “embeddability” properties. We first define a general class of graphs that
we will use for all our lower bounds in Sections 3, 4 and 5, albeit with somewhat different
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parameters. On these graphs, we define the simultaneous multiparty (SMP) model, and show
that embeddable problems have specific properties that enable us to compute a solution
while omitting the messages of some player.

2.1 The Lower Bound Graph Gℓ

For a positive integer parameter ℓ, we define a class of graphs Gℓ that contains all graphs
G defined as follows. The vertices of G consist of sets U , V , and W , whereby |V | = ℓ, and
we further partition U into vertex sets U1, . . . , Uℓ. Each vi is connected to a subset of the
vertices in Ui and W . We use Ei to denote the edges in the cut E(vi, W ). Figure 1 on
page 19 shows the general structure of the graphs in Gℓ. We will fix the precise cardinalities
of U and W as well as the edges E(U, V ) and E(V, W ) when we introduce the specific input
distributions in the subsequent sections. In the problems that we consider, the output will
depend on the neighborhood of a particular vertex vσ, where σ ∈ [ℓ] is called the embedding
index.

We give each vertex a unique integer as its ID. In addition to an ID, we also assume that
each vertex in W has a label. For instance, in the context of verifying a weak 2-coloring, a
label of a vertex indicates its color. For k-edge connected spanning subgraphs, on the other
hand, we simply omit the labels. The crucial difference between IDs and vertex labels will
become apparent when considering the SKETCH model: Every node knows only its own
label, but knows the IDs of all nodes in its neighborhood.

2.2 The Simultaneous Multiparty (SMP) Model
In our lower bound constructions, we use the following simultaneous multiparty model as
an intermediate step: There are ℓ + 2 players Alice1, . . . , Aliceℓ, Bob, and Charlie. When
revealing the neighborhood of a vertex u to a specific player, the player learns the ID and
the label of u, as well as the IDs of all of u’s neighbors in G. The inputs of the players
are defined as follows; see Figure 2 on page 19: For each vi ∈ V , player Alicei knows the
neighborhood of vertex vi, whereas Bob knows the neighborhoods of all vertices in W . In
other words, Bob knows the entire cut E(V, W ), including the labels of W . Charlie gets as
input the neighborhoods of all nodes in U , the index σ, and the IDs and labels of the nodes
in W .

Alice1, . . . , Aliceℓ and Bob each send a single message to Charlie who must output the
solution. Apart from these messages there is no other communication between the players.
However, we assume that they have access to an infinite string R of random bits when
considering randomized algorithms.

Random Variables and Notation

Let Πi denote the message sent by Alicei and let ΠB denote Bob’s message. We use random
variable C to denote Charlie’s output. By a slight abuse of notation, we assume that U

and W also denote the IDs of the vertex sets U and W , respectively. Furthermore, we
use LW to denote the labels of the nodes in W . We define the abbreviation Π(⩽j) :=
(Π1, . . . , Πj) and define Π⩾j analogously. Observe that Charlie computes C based on his
initial knowledge, the received messages ΠB, Π(⩽ℓ), and the shared randomness R, i.e.,
C := C(R, U, W, E(U, V ), LW , Π(⩽ℓ), ΠB , σ). To shorten the notation, we define

Z := (U, W, E(U, V ), LW ),

DISC 2023



32:6 Distributed Sketching Lower Bounds for k-ECSS, BFS Trees, and LCL Problems

and point out that Charlie’s input is Z and σ. We use the indicator random variable 1Succ
for the event that the protocol succeeds.

Throughout this section, we make use of basic notions from information theory. We
refer the reader to Appendix A for the formal definition of these quantities and pointers
to further references. For random variables X, Y , and Z, we use H[X | Y ] to denote the
conditional entropy of X conditioned on Y , which, intuitively speaking, captures the expected
remaining uncertainty of X’s value after revealing Y . We use I[X : Y | Z] for the conditional
mutual information between X and Y conditioned on Z, which is the expected amount of
information X reveals about Y (and vice versa) after revealing Z.

2.3 Embeddable Problems
We say that a problem P is embeddable if there is an input distribution D on graphs in Gℓ

that satisfies the following two properties:

(P1) Independence of the embedding index σ: Random variable σ is sampled uniformly
from [ℓ], and is independent of the edges, labels, and vertex IDs.

(P2) Independence of cut sets under conditioning: Random variables E1, . . . , Eℓ are
mutually independent conditioned on Z.

Intuitively speaking, Property (P1) guarantees that the specific value of the index σ

does not bias the distribution of the transcripts of the players Alice1, . . . , Aliceℓ, and Bob.
Property (P2) ensures that knowing some of the cut sets does not leak information about the
remaining cut sets, in particular Eσ. As we will see in Lemma 6 below, Properties (P1) and
(P2) are sufficient for obtaining a probability distribution on Eσ that is close to the one that
Charlies has access to when computing his output, even though it does not take into account
Bob’s transcript. For problems that also satisfy the following property (P3), which avoids
dependencies between Charlie’s output and parts of the graph that are unrelated to Eσ,
we give a bound on the probability of directly reconstructing Charlie’s output in Lemma 5
below. Note that (P3) is a natural property of decision problems, where Eσ and the labels of
its neighbors fully determines the output of the algorithm.

(P3) Unique Output: Conditioned on Charlie’s input Z, σ, the cut set Eσ, the shared
randomness R, and the event that Charlie’s output C correctly solves problem P, it
holds that C is a deterministic function of Eσ, i.e., H[C | Eσ, R, Z, σ, 1Succ =1] = 0.

In the next lemma, we formalize a crucial property of embeddable problems: We can
compute a solution with sufficiently large probability just by inspecting Charlie’s input and
the transcripts of Alice1, . . . , Aliceℓ.

▶ Lemma 5 (Existence of Reconstruction Protocol). Consider an embeddable problem P with
input distribution D on Gℓ that satisfies (P1), (P2), and (P3). Suppose that there is a public
coin randomized SMP protocol that solves P with error δ ⩽ min

{
1
2 , 1

|C|2

}
. Then there exists

a reconstruction protocol R(R, Z, σ, Π(⩽ℓ)) that returns Charlie’s output C with probability at

least 2−
( |ΠB |

ℓ +3
√

δ
)
.

To gain some intuition for applying Lemma 5, suppose that Charlie just outputs a single
bit, i.e., |C| ⩽ 1 and that δ ⩽ 1

25 , which means that
√

δ ⩽ 1
5 . Now assume that Bob sends a

message of at most ℓ/5 ⩽
√

δℓ bits, which means that, on average, his message can reveal
only a ( 1

5 )-fraction of a bit of information for each of the ℓ cut sets Ei between V and
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W . Then, Lemma 5 tells us that we can recover Charlie’s output with probability at least
1

21/5+3/5 ≈ 0.57 without Bob’s message ΠB . Moreover, if we consider protocols that succeed
with high probability, i.e., δ ⩽ 1

ℓ , and restrict the length of Bob’s message to at most
√

ℓ

bits, we get a recovery protocol that succeeds with probability at least 1
2(4/

√
ℓ) = 1 − o(1).

For random variables X and Y , consider the probability distributions µ(X) and µ(X |
Y =y). We define |µ(X) − µ(X | Y =y)|T V to be the total variation distance, which is the
maximum difference in the probability of any event E on X for these two distributions. We
use parts of the techniques developed in the proof of Lemma 5 to show the following result:2

▶ Lemma 6. Consider an algorithm for an embeddable problem that satisfies (P1) and (P2).
Then, it holds that

E
[∣∣µ(Eσ | Z, σ, Π⩽ℓ) − µ(Eσ | Z, σ, Π⩽ℓ, ΠB)

∣∣
T V

]
⩽ 2
√

|ΠB |/ℓ,

where the expectation is taken over Z, σ, Π⩽ℓ, and ΠB.

Note that, strictly speaking, Lemma 6 does not give a concrete reconstruction protocol,
but instead only an upper bound on the statistical distance between the distribution of Eσ,
conditioned on Charlie’s input and Π⩽ℓ, and the distribution of Eσ where we also condition
on ΠB. However, this turns out to be sufficient for obtaining a concrete reconstruction
protocol, as we demonstrate in Section 5.

2.4 Proof of Lemma 5
High-Level Overview. Recalling that our goal is to obtain a protocol that recovers the
output C without seeing Bob’s message ΠB, we start by deriving an upper bound on how
much information his message may contain about C. We show that this is roughly equivalent
to the amount of information that ΠB conveys about the cut set Eσ (see Lemma 7). In
particular, since Bob does not know σ, the amount of information that ΠB contains about
Eσ is only a |ΠB |

ℓ -fraction on average (see Lemma 8). In other words, if Bob’s message is
short compared to the number of cut sets ℓ, then it cannot convey a significant amount of
information about Eσ. In Lemma 9, we combine these observations to show that we can
guess Charlie’s output with a probability of at least 2− |Π|

ℓ , where we have omitted some error
terms that depend on the success probability of the original protocol.

We now give the detailed argument. Observe that Π(⩽ℓ), ΠB , R, Z, and σ fully determine
C, and thus

I
[
C : Π(⩽ℓ), ΠB

∣∣ R, Z, σ
]

= H[C | R, Z, σ]. (1)

Therefore, by the chain rule, we have that

I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]

= I
[
C : Π(⩽ℓ), ΠB

∣∣ R, Z, σ
]

− I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]

(by (1)) = H[C | R, Z, σ] − I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
. (2)

The next lemma shows that we can upper-bound the amount of information that Bob’s
transcript reveals about Charlie’s output in terms of the information that the transcript
reveals about the cut set Eσ, assuming that the protocol succeeds.

▶ Lemma 7. I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽ I
[
Eσ : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]

+ 3
√

δ.

2 Omitted proofs are presented in the full version of the paper.

DISC 2023
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Next, we show that Bob’s message reveals the same amount of information about any cut
set (on average), which holds for Eσ in particular.

▶ Lemma 8. I
[
Eσ : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

and also I
[
Eσ : ΠB

∣∣ Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

.

Plugging the bound of Lemma 8 into Lemma 7, we obtain

I
[
C : ΠB

∣∣ R, Z, Π(⩽ℓ), σ
]
⩽

|ΠB |
ℓ

+ 3
√

δ.

Returning to (2), we get

I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]
⩾ H[C | R, Z, σ] − |ΠB |

ℓ
− 3

√
δ. (3)

Intuitively speaking, (3) says that the transcript of Alice1, . . . , Aliceℓ reveal all except a
fraction of a bit of the information contained in Charlie’s output C, in expectation. However,
we cannot directly use the assumed SMP protocol P for reconstructing Charlie’s output,
because P is only guaranteed to work given the transcripts of all players. Nevertheless, the
next lemma shows that there exists a simple reconstruction protocol, which completes the
proof of Lemma 5.

▶ Lemma 9. There exists a protocol R that takes R, Z, Π(⩽ℓ), and σ as input, and correctly

computes Charlie’s output C with probability at least 2−
( |ΠB |

ℓ +3
√

δ
)
.

Proof. Protocol R works as follows: Given the input {Π1 =π1, . . . , Πℓ =πℓ, R=r, Z =z, σ =
i}, it returns the output of Charlie that maximizes the probability, which is

arg max
c

Pr[C =c | π1, . . . , πℓ, r, z, i].

Let Y = (Π(⩽ℓ), R, Z, σ), and let pc|y = Pr[C =c | Y =y]. We observe that

Pr[R succeeds] =
∑

y

Pr[Y =y] max
c

pc|y

= E
y

[
2log maxc pc|y

]
(by Jensen’s inequality) ⩾ 2E[log maxc pc|y ]

= 2E
[

log(maxc(pc|y)·
∑

c
pc|y)

]
⩾ 2E

[
log(
∑

c
p2

c|y)
]
. (4)

For a fixed y, we define the random variable Py(c) := pc|y, which is a function of c. In this
notation, the exponent on the right-hand side becomes

E
y

[
log
(∑

c

pc|yPy(c)
)]

= E
y

[
log
(

E
c
[Py(c)]

)]
(by Jensen’s inequality) ⩾ E

y

[
E
c
[log Py(c)]

]
= − E

y
[H[C | Y =y]]

= − H[C | Y ]



P. Robinson 32:9

Returning to (4), we get

Pr[R succeeds] ⩾ 2− H[C | Y ] = 2− H[C | Π(⩽ℓ),R,Z,σ].

Since H[C | Π(⩽ℓ), R, Z, σ] = H[C | R, Z, σ] − I
[
C : Π(⩽ℓ)

∣∣ R, Z, σ
]
, it follows that

Pr[R succeeds] ⩾ 2−(H[C | R,Z,σ]−I[C : Π(⩽ℓ) | R,Z,σ])

(by (3)) ⩾ 2−
( |ΠB |

ℓ +3
√

δ
)
. ◀

3 A Lower Bound for Computing a BFS Tree

As a warm-up, we instantiate the generic class of lower bound graphs defined in Section 2.1
to show a tight bound on the message length for computing a breadth-first search (BFS)
tree, where a fixed node s starts out knowing that it is designated as the source and the goal
for the referee is to output a BFS tree rooted at s.

▶ Theorem 1 (restated). Any public coin constant-error randomized algorithm that computes
a BFS tree rooted at a designated node of an n-node graph, requires a worst case message
length of Ω(n) bits in the distributed sketching model (SKETCH) and the one-round broadcast
congested clique (BCC1).

Proof. We are able to obtain this lower bound via a direct reduction from the IndexN problem
in the two-party one-way setting, where there are two players, Diane and Edward. Diane
starts with a binary vector x of length N and Edward gets an index i ∈ [N ]. Diane can send
a single message to Edward who must output the i-th bit of x.

As discussed in Section 1, the models SKETCH and BCC1 are equivalent and we will
focus on the former out of convenience. Suppose that there is a SKETCH algorithm A
that computes a BFS tree rooted at any given source node. We describe how Diane and
Edward can simulate A to solve the Indexℓ2 problem. Based on the lower bound graph
class Gℓ that we described in Section 2.1, they sample a graph as follows: All the IDs of
the nodes are fixed and the cardinalities of the vertex sets are defined as |U | = |V | =
|W | = ℓ. Moreover, there is a fixed perfect matching between U and V known to both
players, i.e., we have edges (u1, v1), . . . , (uℓ, vℓ). Assume that Diane gets input x, which is
a binary vector of length ℓ2. Diane interprets her input x as the characteristic vector of
the ℓ2 possible edges between the sets V and W , for the fixed ordering ρ of V × W where
ρ = ((v1, w1), . . . , (v1, wℓ), (v2, w1), . . . , (v2, wℓ), . . . , (vℓ, wℓ)). That is, Diane adds the i-th
edge of ρ to the graph if and only if xi = 1. As a result, Diane knows the neighborhoods of
all nodes in V ∪ W . She simulates A on each one of them and sends the resulting messages
to Edward.

Edward gets as input some index i ∈ [ℓ2]. Since he knows the ordering ρ, he computes
the index σ ∈ [ℓ] such that vσ ∈ V is incident to the i-th (potential) edge in ρ, and adds
the edge (s, uσ). Figure 3 in the attached full paper shows the resulting graph. Then, he
simulates A on s and each vertex in U , whereby s is designated as the source node of the
tree. Upon receiving Diane’s message, he simulates the referee and obtains the BFS tree
assuming that A succeeded. If the i-th edge is included in the BFS-edges leading from vσ to
W , he outputs 1, otherwise he answers 0. Correctness follows since the BFS tree rooted at s

must contain all the edges in the cut (vσ, W ).
It was shown in [20] that the Indexℓ2 problem requires Ω(ℓ2) bits in the one-way two-party

model, for achieving constant probability of success. Therefore, Diane’s simulation produces
a message of length Ω(ℓ2) bits, and thus one of the 2ℓ vertices simulated by her must have
sent a message of size Ω(ℓ) bits. The result follows since the lower bound graph has n = 3ℓ+1
vertices in total. ◀
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4 A Lower Bound for Verifying Symmetry Breaking Problems

We now turn our attention to the problem of verifying whether a given labeling of the vertices
is a weak 2-coloring of the input graph, which means that each non-isolated vertex has at
least one differently-colored neighbor.3

High-level Overview. As we plan to employ Lemma 5, we start by defining the EIm problem
in the SMP model and show that it is an embeddable problem satisfying Properties (P1),
(P2), and (P3) with a suitable input distribution on the graphs in Gℓ. Next, we show how to
simulate a given EIm algorithm in the one-way two-party communication complexity model
for solving set disjointness. From this, we derive a lower bound on the length of Aliceσ’s
message. We obtain the sought lower bound by showing that a protocol for 2-weak coloring
can be used to solve the EIm problem in the SMP model.

4.1 The Edge Intersection Problem EIm

Here, in addition to vertex IDs, we assume that each vertex in W is labeled with a bit
indicating its color, and we define Wb ⊆ W to be the b-labeled vertices, for b ∈ {0, 1}. As
defined in Section 2, random variable LW represents the label assignment for nodes in W . We
consider the simultaneous multiparty (SMP) model with the input assignments as described
in Section 2.2, i.e., Alicei knows the neighborhood of vi, Bob knows all nodes (and labels) in
W as well as their neighbors, and Charlie knows the IDs of U , W , the labels LW , and the
embedding index σ. Charlie receives a message from Alice1, . . . , Aliceℓ and Bob, and then
computes his answer. The goal is to determine whether an edge in Eσ “intersects” with (i.e.,
has an endpoint in) the 1-labeled nodes in W . Thus, to correctly solve the EIm problem, it
must hold for Charlie’s output that

C =
{

“yes” if Eσ ∩ W1 ̸= ∅;
“no” otherwise.

(5)

4.2 The Hard Input Distribution DEIm

Let ℓ =
⌈
m3 log m

⌉
. We define the following distribution DEIm on the class Gℓ. We fix the

IDs of all vertices in advance, i.e., they are the same for all graphs sampled from DEIm .
In particular, we specify that |W | = m2 and we assign the set [m2] as the IDs of the
vertices in W . The sets Ui are singletons, i.e., Ui = {ui}, and there is a perfect matching
{u1, v1}, . . . , {uℓ, vℓ} between U and V .

We will choose the edges in the cut sets E1, . . . , Eσ and the labels of W by sampling
the input from the product distribution on certain set families for which set disjointness is
known to be hard:

▶ Lemma 10 (follows from Lemmas 1 and 2 in [9]). There exist set families X , Y ⊆
([m2]

m

)4

such that (a) |X | ⩾ 2(m log m)/4, (b) |Y| ⩽ 1
4 m log m. Moreover, for all distinct X, X ′ ∈ X ,

it holds that (c) |X ∩ X ′| ⩽ m
4 , and (d) there exists Y ∈ Y such that Y has a nonempty

intersection with either X or X ′.

3 The weak 2-coloring problem was introduced in the seminal work of [21].
4
([N ]

m

)
denotes the family of all m-element subsets of [N ].
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We make use of the set families guaranteed by Lemma 10 to sample a graph G from DEIm as
follows:
1. Sample σ uniformly from [ℓ].
2. For each vi, sample a random set X ∈ X and connect vi to each w ∈ W that has an ID

in X.
3. Randomly pick a set Y ∈ Y and label the nodes in W according to the output of the

resulting indicator function on W : That is, for j ∈ [m2], the label of wj is 1 if j ∈ Y and
0 otherwise.

Figure 4a shows a graph sampled from DEIm .

▶ Lemma 11. Problem EIm is embeddable with input distribution DEIm , and satisfies Proper-
ties (P1), (P2), and (P3) (as defined in Section 2).

4.3 A Lower Bound for the EIm Problem
To prove that the EIm problem requires a large transcript length, we use a reduction from
set disjointness.

▶ Lemma 12 (implicit in Theorem 4 in [9]). Solving set disjointness in the one-way two-party
model with a public coin randomized protocol that succeeds with probability 1

2 + ϵ, for some
constant ϵ > 0, has a communication complexity of Ω(m log m) bits, when Diane’s input is
sampled uniformly from X and Edward’s input is sampled uniformly from Y.

▶ Lemma 13. Consider a public coin randomized protocol P that solves the EIm problem
with error δ ⩽ 1

25 . If |ΠB | ⩽ 1
16 m3 log m, then |Πσ| = Ω(m log m).

Proof. We show a reduction from the set disjointness problem [26] in the one-way two-party
model, where there are two players, Diane and Edward that are given subsets X and Y

respectively. Diane sends a single message to Edward who must decide whether X ∩ Y = ∅.
Given an instance of set disjointness, Diane and Edward will simulate the assumed EIm

protocol A on a graph sampled from DEIm by embedding the set disjointness instance into
the neighborhood of node vσ. Suppose that Diane has input X ∈ X and Edward has input
Y ∈ Y, both of which were sampled uniformly. As required, they choose the cardinalities
|U | = ℓ and |W | = m2, and make each Ui a singleton set. Moreover, they fix the IDs of
all nodes in advance such that the set [m2] defines the IDs of the nodes in W . Note that
this also determines the perfect matching between U and V . In the simulation, Diane will
simulate only Aliceσ, whereas Edward simulates Alicei (i ̸= σ) and Charlie. Note that, in
addition to the edges, the players also need to assign binary vertex labels to the vertices
in W :
1. Using public randomness, they uniformly sample an index σ from [ℓ].
2. Diane uses her input X to define the IDs of the neighbors of vσ in W .
3. Similarly, for each vi ∈ V (i ̸= σ), Edward uniformly samples a random Xi ∈ X and

connects vi to W by connecting vi to each w ∈ W with an ID in Xi.
4. Edward uses his input Y to assign the labels of the nodes in W . That is, for each index

j ∈ Y , the label of wj is 1, and he labels all wk (k /∈ Y ) with 0.

It is straightforward to verify that the sampling procedure executed by Diane and Edward
results in an input assignment to players Alice1, . . . , Aliceℓ, and Charlie that is the same as
in distribution DEIm . Therefore, Diane can simulate the EIm protocol for Aliceσ and send the
resulting message to Edward who, in turn, is able to simulate Alicei (i ̸= σ). Once Edward
receives Diane’s message, he knows Z, Π(⩽ℓ), and σ, and hence he also knows Charlie’s
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input. Since |ΠB | ⩽ 1
16 m3 log m and ℓ = ⌈m3 log m⌉ in DEIm , it follows that |ΠB |

ℓ ⩽ 1
16 . Thus,

Edward invokes the reconstruction protocol R guaranteed by Lemma 5 to recover Charlie’s
output. He answers that X and Y are disjoint if and only if Charlie’s output is “no”. Since R
succeeds with probability at least 2−

( |ΠB |
ℓ +3

√
δ
)
⩾ 2−(1/16+3/5) > 0.63, applying Lemma 12

completes the proof of Lemma 13. ◀

4.4 Proof of Theorem 2
▶ Theorem 2 (restated). Any 1

25 -error randomized algorithm that verifies if a labeling of a
subset of vertices forms a weak 2-coloring of an n-node input graph, requires a worst case
message length of Ω

(
n1/3 log2/3 n

)
bits in SKETCH and BCC1. The same bound holds for

deciding whether a subset of nodes forms a maximal independent set.

We prove the theorem via a reduction from the EIm problem in the SMP model. Let G be
an input graph sampled from DEIm and let Q be a protocol that satisfies the premise of the
theorem. The players will simulate Q on a graph H, which extends G with some edges and
adds a vertex coloring, as we describe in more detail below. Each player Alicei simulates Q
for node vi, while assigning color 0 to vi. Bob simulates all nodes in W and adds an edge
between some arbitrary node in w ∈ W1 and every node in W0. For the simulation, the nodes
in Wb (b ∈ {0, 1}) are colored with color b. See Figure 4b for an example of the resulting
graph. Charlie, on the other hand, simulates the referee and all nodes in U , where he colors
uσ with 0 and the nodes in U \ {uσ} with 1. Moreover, he adds an edge between uσ and
some arbitrary uj (j ̸= σ). Note that Charlie knows which node is uσ since the index σ is
part of his input. The edges added by Bob and Charlie ensure that every node (with the
possible exception of vσ) has a differently-colored neighbor by construction. It follows that
the output of the EIm protocol verifies whether the given coloring of G is valid:

▶ Observation 14. The coloring is a weak 2-coloring if and only if Eσ ∩W1 is nonempty. An
analogous property holds for the question whether the vertices with color 1 form a maximal
independent set or a minimal dominating set.

Now, assume towards a contradiction that the worst case sketch length produced by protocol
Q is at most 1

16 m log m. This ensures that Bob sends a message of at most 1
16 |W |m log m =

1
16 m3 log m bits in the simulation. Since this satisfies the premise of Lemma 13, it follows
that the node vσ simulated by Aliceσ sends a sketch of length Ω(m log m) in the worst case.
The total number of nodes in H is n = |U | + |V | + |W | = 2⌈m3 log m⌉ + m2 = Θ

(
m3 log m

)
.

Hence it follows that log m = Ω(log n) and thus m = Ω
(

(n/log n)1/3
)

. We conclude that
Aliceσ’s sketch must have a length of Ω(n1/3 log2/3 n) bits. By Observation 14, the same
result holds for verifying a maximal independent set or a minimal dominating set.

5 A Lower Bound for k-ECSS in Sketching Model

In this section, we will apply Lemma 6 for showing a lower bound of Ω
(
k log2 n

k

)
on the

message size for computing a k-edge connected spanning subgraph (k-ECSS).

High-level Overview. We first define an embeddable problem, the ERk,m problem, and a
suitable input distribution on the lower bound graphs Gℓ (see Section 2.1). We consider the
ERk,m problem in the SMP model, where each vertex in V has m neighbors and the goal is
to find a subset of k edges in the cut Eσ of the input graph. Subsequently, we show that it is
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in fact an embeddable problem (see Sec. 2) that satisfies Properties (P1) and (P2), and thus
Lemma 6 applies. We then simulate the assumed ERk,m protocol in the one-way two-party
communication model and use it to solve the UR⊂

k problem defined in [17], which implies a
lower bound on the length of Aliceσ’s message. The final step is to simulate a given k-ECCS
protocol P designed for the SKETCH model to solve the ERk,m problem in the SMP model,
and this will yield the sought lower bound on the worst case sketch size of P.

5.1 The Edge Recovery Problem ERk,m

We consider the simultaneous multiparty model and the graph class Gℓ, where each vertex
in V has exactly m neighbors. A protocol solves the ERk,m problem if, after receiving the
messages from Alice1, . . . , Aliceℓ, and Bob, player Charlie outputs a subset of k edges in the
cut Eσ.

5.2 The Hard Input Distribution DERk,m

Our distribution is similar to the one used in [22], albeit with some crucial differences. Let
ℓ := ⌈m2 log2 m

k ⌉ and let Γ = ⌈m2/k⌉. To sample a graph G ∈ Gℓ from DERk,m
, we fix the

IDs of nodes in V to be the set [ℓ] and perform the following steps:
1. Uniformly sample σ from [ℓ].
2. Fix the size of the sets U1, . . . , Uℓ, and W to be Γ. Sample (ℓ + 1) disjoint random subsets

A1, . . . , Aℓ+1, each of size Γ from F0 := [ℓ2] \ [ℓ], and use Ai to assign the IDs to the
nodes in Ui, whereas, for the nodes in W , we use Aℓ+1.

3. For each vi ∈ V , we choose a random m-element set S ⊆ [Γ] and a uniformly random
T ⊂ S such that |S \ T | ⩾ k and |T | ⩾ k. We connect vi to |S \ T | random vertices from
W and |T | random vertices in Ui.

Figure 5a shows an instance of a graph sampled from DERk,m
.

▶ Lemma 15. The total number of nodes in graph G is n = O
(
m4 log2(m/k)

)
.

▶ Lemma 16. The ERk,m problem is embeddable with distribution DERk,m
, i.e., satisfies

properties (P1) and (P2).

5.3 A Lower Bound for the ERk,m Problem
We use Lemma 6 to show the following:

▶ Lemma 17. Consider a deterministic protocol P that solves the ERk,m problem with
probability at least 1 − o(1) on inputs sampled from DERk,m

, and suppose that |ΠB | = o(ℓ).
Then, there exists a deterministic protocol R that succeeds with probability at least 1 − o(1) on
inputs from DERk,m

, just by inspecting Charlie’s input and the transcripts of Alice1, . . . , Aliceℓ,
i.e., while omitting Bob’s transcript ΠB.

The UR⊂
k Problem. There are two players, Diane and Edward. For some integer N > 0,

Diane is given a set S ⊆ [N ] and Edward starts with a subset T ⊂ S. To solve the UR⊂
k

problem, Diane sends a single message to Edward, who in turn must output k elements in
S \ T . Theorem 3 in [17] shows a worst case communication complexity lower bound of
Ω(k log2(N/k)) bits for algorithms that succeed with constant probability. For the purpose
of our reduction, we need a slightly more specific result:

In the full version of the paper, we show how to adapt Theorem 3 in [17] to obtain the
following result:
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▶ Lemma 18. Consider a universe of size N . Let m = ⌊
√

Nk⌋ and suppose that k ⩽ N/210.
Suppose that Diane’s set S is chosen from

([N ]
m

)
and Edward’s input set is any proper subset

T ⊂ S under the restriction that |S \ T | ⩾ k and |T | ⩾ k. Then, any UR⊂
k protocol P that

errs with small constant probability in the one-way 2-party model with public coins, has a
worst case transcript length of Ω(k log2(N

k

)
) bits.

In the proof of the next lemma, we use the hardness of UR⊂
k to show a lower bound for

the ERk,m problem by simulating the SMP model in the 2-party setting. We point out that
the approach is similar to Section 3 of [22] and postpone the full proof to the full version.

▶ Lemma 19. Consider a protocol P that solves the ERk,m problem with error at most o(1) on
inputs sampled from DERk,m

. If |ΠB | = o(ℓ), where ℓ = ⌈m2 log2 m
k ⌉, then |Πσ| = Ω

(
k log2 m

k

)
.

5.4 Proof of Theorem 3
▶ Theorem 3 (restated). Any public coin randomized algorithm that computes a k-edge
connected spanning subgraph of an n-node graph in SKETCH or BCC1 with probability at
least 1 − o(1), has a worst case message length of Ω

(
k log2 n

k

)
bits, for any k = o

(
n1/4

log1/2 n

)
.

We first describe the hard input distribution Dk-ECSS for computing a k-connected
spanning subgraph in the SKETCH model, which is a simple extension of DERk,m

:
1. Sample a graph G from DERk,m

.
2. Graph H contains all edges of G; in addition, we make the subgraph induced by each Ui

(i ∈ [ℓ]) a clique, and we also add a clique on W .
Let A be a deterministic algorithm that computes a k-connected spanning subgraph in the
SKETCH model on inputs sampled from Dk-ECSS with probability at least 1 − o(1). Note
that the result immediately extends to randomized algorithms by a simple application of
Yao’s lemma. Given a graph G sampled from the hard input distribution DERk,m

, we add the
necessary edges to G according to Dk-ECSS and then simulate A on the resulting graph H to
solve the ERk,m problem in the SMP model. Figure 5b shows an example of this graph.

Observe that every Ui and W consist of ⌈m2/k⌉ > k vertices and hence there are k

edge-disjoint paths between any two vertices that lie within such a set. Moreover, we sample
the neighborhoods of vi such that |E(vi, W )| ⩾ k and |E(vi, Ui)| ⩾ k (see Step 3 of DERk,m

).
This ensures that there are at least k edge-disjoint paths between all pairs of vertices of H:

▶ Observation 20. Graph H is k-edge connected.

For each i ∈ [ℓ], player Alicei simulates A for node vi and sends the corresponding sketch
to Charlie. Bob, on the other hand, sends Charlie the concatenated sketches of the nodes
in W , which he computes by simulating A given their respective neighborhood in H as an
input. Finally, Charlie, simulates A for all nodes in U , and he also simulates the referee. It
follows immediately from the input assignment of the ERk,m problem that the players have
the necessary information to perform the simulation. Observe that every k-edge connected
subgraph of H must include k edges in the cut E(vσ, W ), and hence the simulation solves
the ERk,m problem with the same probability of success.

Let L be the worst case sketch length of protocol A. In our simulation, Bob’s message
is of length |ΠB | ⩽ L |W | ⩽ O

(
L m2

k2

)
. Assume that L = o

(
k log2 m

k

)
, as otherwise we

are done. By Lemma 15, we know that log m
k = Ω

(
log n

k

)
, which implies that |ΠB | =

o
(
m2 log2 n

k

)
= o(ℓ). By applying Lemma 19, we conclude that Aliceσ must send a message

of Ω
(
k log2 m

k

)
= Ω

(
k log2 n

k

)
bits in the worst case.
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6 A Streaming Lower Bound for k-ECSS

In this section, we consider the data streaming setting, where the algorithm learns about
the input graph as a stream of edges. That is, in the fully dynamic turnstile model, the
algorithm observes the stream entries sequentially. Each entry of the stream refers to two
vertices u and v and indicates whether the edge {u, v} is added or removed from the current
graph, and the algorithm needs to react to this update. The main objective is to minimize
the amount of memory used by the algorithm while taking (preferably) only a single pass
over the data stream.

We show a memory lower bound for computing a k-ECSS in the fully dynamic turnstile
model by extending the work of [17].

▶ Theorem 4 (restated). Any Monte Carlo data structure for computing a k-edge connected
spanning subgraph of an n-node graph requires Ω

(
k n log2 n

k

)
space in the one-pass fully

dynamic turnstile model.

In our proof of Theorem 4, we use a reduction from the 2-party communication complexity,
where we need to solve multiple instances of UR⊂

k in parallel. We first recall the definition of
the UR⊂

k problem from Section 5: We are given the universe [N ] and there are two players
called Alice and Bob. Alice obtains a set S ⊆ [N ] and Bob has a subset T ⊂ S. Alice sends
a message to Bob who must then output k elements in S \ T .5 We define the ℓ-fold UR⊂

k

problem, where Alice and Bob obtain ℓ independently sampled instances of UR⊂
k (on the

same universe) and they need to solve all of them, again, assuming that Alice can send only
a single message to Bob.

▶ Lemma 21. Consider any k = Ω(log N) and a universe of size N > k. Any one-way
communication protocol that solves the ℓ-fold UR⊂

k problem with error at most δ requires
Ω
(
(1 − δ)k ℓ log2(N

k

))
bits.

We now show how the lemma implies Theorem 4: Suppose that there exists an algorithm
A that maintains a k-edge connected spanning subgraph in the turnstile model. We simulate
A in the 2-party model. Our simulation is similar to the one used for showing a lower bound
on the memory needed for maintaining a spanning forest in Lemma 1 of [22]. Consider a
graph G with vertex sets X and Y , each of size ℓ, for some ℓ > k. The IDs of the vertices
in X are given by [ℓ], whereas the neighborhood of the i-th vertex in Y will correspond to
the i-th instance of UR⊂

k . Recall that Alice starts with the input S1, . . . , Sℓ and Bob has
input T1, . . . , Tℓ, where (Si, Ti) is the i-th instance of UR⊂

k . Alice and Bob will perform edge
insertions/removals and execute the streaming algorithm A accordingly. Alice first inserts
edges such that X forms a clique. Then, for each set Si and each x ∈ Si, Alice adds an
edge {x, yi} to G. Subsequently, Alice sends the memory state of A to Bob who, in turn,
for each Ti and each x′ ∈ Ti, continues to simulate A by removing {x′, yi} from G. Recall
that |Si \ Ti| ⩾ k, which guarantees that the degree of each node in Y is at least k after the
last update. Moreover, the nodes in X form a clique of size greater than k, and hence it
follows that G is k-edge connected. Finally, Bob returns the output of A which must include
k edges incident to each yi ∈ Y with probability at least 1 − δ to ensure k-connectivity. Each
one of these edges corresponds to an element in Si \ Ti, and hence the simulation solves
ℓ-fold UR⊂

k with precisely the same probability. Since Lemma 21 tells us that ℓ-fold UR⊂
k

has a communication complexity of Ω(k n log2(n/k)) for ℓ = n, it follows that A must use at
least Ω(k n log2(n/k)) bits of memory. This completes the proof of Theorem 4.

5 Here, we restrict ourselves to the case where the inputs satisfy that |S \ T | ⩾ k.
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7 Future Work and Open Problems

Our results reveal insights into the communication complexity of distributed graph verification
problems. However, we are not aware of any communication-efficient 1-round verification
algorithm for these type of symmetry breaking problems.

▶ Open Problem 1. Is there an algorithm that verifies an LCL problem in just a single
round of the broadcast congested clique while sending o(m) bits on graphs with m edges?

While we showed a lower bound on the memory for maintaining a k-edge connected
spanning subgraph in the turnstile model, the more fundamental question regarding the
space required to solve graph connectivity (i.e., k = 1) has yet to be answered, as pointed
out in [28]:

▶ Open Problem 2. Is there a lower bound of Ω(n log3 n) memory for solving graph
connectivity in the turnstile model?
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A Tools from Information Theory

We give the definitions of some basic notions from information theory and restate some facts
(without proofs) that we use throughout the paper. We refer the reader to [8] for additional
details. Throughout this section, we assume that X, Y , Z, etc. are discrete random variables.
We use capitals to denote random variables and corresponding lowercase characters for values,
unless stated otherwise. When computing expected values, we sometimes use the subscript
notation Ex to make it explicit that the expectation is taken over the distribution of a specific
random variable X.

▶ Definition 22. The entropy of X is defined as

H[X] =
∑

x

Pr[X =x] log2(1/ Pr[X =x]). (6)

The conditional entropy of X conditioned on Y is given by

H[X | Y ] = E
y

[H[X | Y =y]] (7)

=
∑

y

Pr[Y =y] H[X | Y =y].

▶ Definition 23. Let X and Y be discrete random variables. The mutual information
between X and Y is defined as

I[X : Y ] =
∑
x,y

Pr[x, y] · log
(

Pr[x, y]
Pr[x] Pr[y]

)
(8)

▶ Definition 24. Let X, Y , and Z be discrete random variables. The conditional mutual
information of X and Y is defined as

I[X : Y | Z] = H[X | Z] − H[X | Y, Z]. (9)

▶ Lemma 25. I[X : Y | Z] ⩽ H[X | Z] ⩽ H[X].

▶ Lemma 26 (Theorem 6.1 in [26]). Consider any random variable X. Every encoding of X

has expected length at least H[X].

▶ Lemma 27 (Theorem 6.12 in [26]). Let X1, . . . , Xk be independent random variables, and
let B be jointly distributed. Then,

k∑
i=1

I[X1 : B] ⩽ I[X1, . . . , Xk : B].
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▶ Lemma 28 (Data Processing Inequality, see Theorem 2.8.1 in [8]). If random variables X, Y ,
and Z form the Markov chain X → Y → Z, i.e., the conditional distribution of Z depends
only on Y and is conditionally independent of X, then

I[X : Y ] ⩾ I[X : Z].

Figure 1 The general structure of the lower bound graphs in Gℓ. Each vi is connected to a subset
of the vertices in Ui and to a subset of the vertices in W . Note that the cardinalities of the sets
U1, . . . , Uℓ, and W , as well as the edges E(U, V ) and E(V, W ) depend on the hard input distribution,
which is problem-specific. In this example, the labels of the nodes in W are chosen from {a, b, c}.

(a) Alicei’s input: the entire
neighborhood of vi.

(b) Bob’s input: E(V, W ) and
LW .

(c) Charlie’s input: E(U, V ), σ,
and LW .

Figure 2 The input assignment in the SMP model.
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Figure 3 The lower bound graph G for proving the hardness of computing a BFS tree in the
distributed sketching model and the one-round broadcast congested clique. The BFS tree rooted at
s must include all edges in the cut E(vσ, W ). Note that we sample the edges in the cut E(V, W )
according to the hard input distribution of the Indexℓ2 problem.

(a) A graph G sampled from distribution DEIm .
To solve the EIm problem in the simultaneous
multiparty model, Charlie must output some
edge in Eσ ∩ W1 if it exists.

(b) The graph used in the simulation argument.
The players add the thick orange edges to the
graph sampled from DEIm (see Figure 4a). Red
corresponds to color 0 and green to color 1. The
given vertex coloring forms a weak 2-coloring if
and only if vσ has a green-colored neighbor in
W .

Figure 4 The lower bound graph construction used in the proof of Theorem 2.
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...

...

v1

vσ

vℓ

U1

Uσ

Uℓ

W

(a) A graph sampled from the lower bound dis-
tribution DERk,m

. The distribution ensures that,
for all i ∈ [ℓ], the cuts E(Ui, vi) and E(vi, W )
have at least k = 2 edges.

...

...

v1

vσ

vℓ

U1

Uσ

Uℓ

W

(b) A k-edge connected graph G that we use to
prove a lower bound for the k-ECSS problem,
for k = 2. To simulate a SKETCH algorithm,
the players sample G from the lower bound dis-
tribution DERk,m

and then add the thick orange
edges to form cliques of size greater than k.

Figure 5 The lower bound graph construction of Theorem 3.
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