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Abstract
In an anonymous shared memory system, all inter-process communications are via shared objects;
however, unlike in standard systems, there is no a priori agreement between processes on the names
of shared objects [14, 15]. Furthermore, the algorithms are required to be symmetric; that is, the
processes should execute precisely the same code, and the only way to distinguish processes is by
comparing identifiers for equality. For such a system, read/write registers are called anonymous
registers. It is known that symmetric deadlock-free mutual exclusion is solvable for any finite number
of processes using anonymous registers [1]. The main question left open in [14, 15] is the existence of
starvation-free mutual exclusion algorithms for two or more processes. We resolve this open question
for memoryless algorithms, in which a process that tries to enter its critical section does not use
any information about its previous attempts. Almost all known mutual exclusion algorithms are
memoryless. We show that,
1. There is a symmetric memoryless starvation-free mutual exclusion algorithm for two processes

using m ≥ 7 anonymous registers if and only if m is odd.
2. There is no symmetric memoryless starvation-free mutual exclusion algorithm for n ≥ 3 processes

using (any number of) anonymous registers.
Our impossibility result is the only example of a system with fault-free processes, where global
progress (i.e., deadlock-freedom) can be ensured, while individual progress to each process (i.e.,
starvation-freedom) cannot. It complements a known result for systems with failure-prone processes,
that there are objects with lock-free implementations but without wait-free implementations [2, 5].
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1 Introduction

1.1 Anonymous shared memory
A central issue in distributed systems is coordinating the actions of asynchronous processes.
In the context where processes communicate via reading and writing from shared memory, in
almost all published concurrent algorithms, it is assumed that the shared memory locations
have global names, which are a priori known to all the participating processes. The intriguing
question of what and how coordination can be achieved without relying on such lower-level
agreement about the names of the memory locations was introduced and studied in [14, 15].

We assume that all inter-process communications are via shared read/write registers
which are initially in a known state. However, unlike in the standard model, from the point
of view of the processes, the registers do not have global names. Such registers are called
anonymous registers. Algorithms correct for a model where the registers are anonymous are
called memory-anonymous algorithms.

There are fundamental differences between the standard shared memory model and the
strictly weaker anonymous shared memory model [15]. Besides enabling us to understand bet-
ter the intrinsic limits for coordinating the actions of asynchronous processes, the anonymous
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shared memory model with symmetric processes has been shown to be useful in modeling
biologically inspired distributed computing methods, especially those based on ideas from
molecular biology [9]. The main question left open in [14, 15] is regarding the existence of
symmetric starvation-free mutual exclusion algorithms for two or more processes when using
anonymous registers. In this article, we resolve this open question for memoryless algorithms.

1.2 Mutual exclusion, symmetric algorithms, memoryless algorithms
The mutual exclusion problem. The mutual exclusion problem is to design an algorithm
that guarantees mutually exclusive access to a critical section among several competing
processes [4]. It is assumed that each process executes a sequence of instructions in an
infinite loop. The instructions are divided into four continuous sections: the remainder,
entry, critical, and exit. The exit section is required to be wait-free – its execution must
always terminate. It is assumed that processes do not fail and that a process always leaves
its critical section. The mutual exclusion problem is writing the code for the entry and exit
sections to satisfy the following two basic requirements.

Deadlock-freedom: If a process tries to enter its critical section, then some process, not
necessarily the same one, eventually enters its critical section.
Mutual exclusion: No two processes are in their critical sections simultaneously.

The satisfaction of the above two properties is the minimum required for a mutual exclusion
algorithm. For an algorithm to be fair, the satisfaction of the following stronger progress
condition is required.

Starvation-freedom: If a process is trying to enter its critical section, then this process
eventually enters its critical section.

Symmetric algorithms. A symmetric algorithm is an algorithm in which the processes
execute exactly the same code, and the only way to distinguish processes is by comparing
identifiers for equality. A process can determine if two identifiers are the same, but nothing
else can be determined when they are different. Identifiers can be written, read, and compared,
but there is no way of looking inside any identifier. Thus, for example, knowing whether an
identifier is odd or even is impossible.

Furthermore, (1) a process can only compare its identifier with another and cannot
compare it with a constant value, and (2) the local variables of the different processes have
the same names, and (local variables with the same names) are initialized to the same values.
Otherwise, it would be possible to distinguish different processes. In symmetric algorithms,
as defined above, we say that the processes are symmetric.

As symmetric algorithms do not depend on an order relation between process identities,
they require fewer assumptions and are consequently more general than non-symmetric
algorithms. The symmetry constraint on process identities can be seen as the “last step”
before process anonymity [10, 11]. Symmetric algorithms with non-anonymous memory have
been investigated for years [12]. Following [14], we consider a model in which the memory is
anonymous, and the processes are symmetric.

Memoryless algorithms. A memoryless mutual exclusion algorithm is an algorithm in which
when all the processes are in their remainder section, the values of all the registers (local and
shared) are the same as their initial values. This means that a process that tries to enter
its critical section does not use any information about its previous attempts (like the fact
that it has entered its critical section five times so far). Put another way, in a memoryless
algorithm, processes have only a single remainder state and hence cannot retain any memory
of prior executions of the algorithm.
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All known mutual exclusion algorithms which use anonymous registers and almost all
known mutual exclusion algorithms that use non-anonymous registers are memoryless. For
example, Lamport’s Bakery algorithm is memoryless [8]. Memoryless mutual exclusion
algorithms are usually simpler to understand than those that are not memoryless. Further-
more, memoryless algorithms can better handle system-wide failures (i.e., all processes crash
simultaneously), as upon recovery, the system can be initialized to the (single) initial state,
not affecting processes that had not participated in the algorithm during the failure. When
using non-anonymous registers, 2n − 1 registers are necessary and sufficient for designing a
symmetric memoryless starvation-free mutual exclusion algorithm for n processes [12].

1.3 Contributions: individual progress vs. global progress

It is known that symmetric memoryless deadlock-free mutual exclusion is solvable for any
finite number of processes using anonymous registers [1]. The main question left open in
[14, 15] is the existence of symmetric starvation-free mutual exclusion algorithms for two or
more processes. We resolve this open question for memoryless algorithms by proving the
following possibility and impossibility results,
1. There is a symmetric memoryless starvation-free mutual exclusion algorithm for two

processes using m ≥ 7 anonymous registers if and only if m is odd.
2. There is no symmetric memoryless starvation-free mutual exclusion algorithm for n ≥ 3

processes using (any number of) anonymous registers.
Our possibility result shows that (1) there is no separation between deadlock-freedom and
starvation-freedom for two processes, and (2) there is a separation between deadlock-freedom
and starvation-freedom for three or more processes. These results enable us to understand
better the intrinsic limits for achieving fairness between asynchronous processes.

Interestingly, as a byproduct of the proof of our impossibility result, we get a general time
complexity lower bound for every symmetric deadlock-free mutual exclusion algorithm for
n ≥ 2 processes using m anonymous registers. Namely, a process must incur ⌈m/2⌉ remote
memory references (RMR) to enter and exit its critical section once. The RMR complexity
of our starvation-free algorithm is O(m).

Two main progress conditions have been studied for asynchronous shared-memory systems
with failure-prone processes. The first, wait-freedom, ensures individual progress to each
process, i.e., its operations complete as long as it takes an infinite number of steps [6].
The second, lock-freedom, requires only global progress; namely, if a process takes an
infinite number of steps, then some (possibly other) processes complete their operations [7].
Wait-freedom corresponds to starvation-freedom in fault-free systems, while lock-freedom
corresponds to deadlock-freedom.

It was shown in [5] that there is an object for which there is a lock-free implementation
for two processes using only non-anonymous atomic registers, and there is no wait-free
algorithm in the same setting. A more general result was presented in [2], showing that such
a separation exists (1) also for more than two processes and (2) when primitives stronger than
atomic registers are used. Our result, which shows a separation between deadlock-freedom
and starvation-freedom for three or more processes, complements these results. The results
together show that in shared memory systems where either failures are possible or process
symmetry and memory anonymity are assumed, it is not always possible to ensure individual
progress in situations where global progress is possible. Thus, achieving various levels of
fairness depends on the underlying system assumptions.

DISC 2023
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2 Preliminaries

Processes. Our model of computation consists of a fully asynchronous collection of n

deterministic processes that communicate via m anonymous registers. Asynchrony means
that there is no assumption on the relative speeds of the processes. Each process has a
unique identifier, which is a positive integer. Since we want to make as few assumptions
as possible, it is not assumed that the identifiers of the n processes are taken from the set
{1, ..., n}. Thus, a process does not a priori know the identifiers of the other processes. The
processes do know the values of n and m. We assume that processes do not fail. As always
assumed when solving the mutual exclusion problem, participation is not required – a process
may stay in its remainder section and never move to its entry section.

Memory. The shared memory consists of m anonymous shared registers. For m anonymous
registers, r1, ..., rm, the adversary can fix, for each process p, a permutation πp : {r1, ..., rm} →
{r1, ..., rm} of the registers such that, for process p, the j’th anonymous register is πp(rj). In
particular, when process p accesses its j’th anonymous register, it accesses πp(rj). Algorithms
designed for such a system must be correct regardless of the permutations chosen by the
adversary. The permutation fixed for process p is called the naming assignment of p.

All the anonymous registers are assumed to be initialized to the same value. Otherwise,
thanks to their different initial values, it would be possible to distinguish different registers,
and consequently, the registers would no longer be fully anonymous.

With an atomic register, it is assumed that operations on the register occur in some
definite order. That is, each operation is an indivisible action. In the sequel, by registers, we
mean anonymous atomic read/write registers. A read/write register is a shared register that
supports (atomic) read and write operations. The fact that anonymous registers do not have
global names implies that only multi-writer multi-reader anonymous registers are possible.
Such registers can both be written and read by all the processes.

Known results. In [14], it has been proven that a necessary and sufficient condition for
the design of a symmetric deadlock-free mutual exclusion algorithm for two processes using
anonymous registers is that the number of registers is odd.

▶ Theorem 1 ([14]). There is a symmetric deadlock-free mutual exclusion algorithm for two
processes using m ≥ 2 anonymous registers if and only if m is odd.

We will use this result for two processes later in the paper. The only if part of the above
theorem is a special case of the following more general result from [14] (Theorem 3.4): There
is a symmetric deadlock-free mutual exclusion algorithm for n ≥ 2 processes using m ≥ 2
anonymous registers only if for every positive integer 1 < ℓ ≤ n, m and ℓ are relatively prime.
An optimal symmetric deadlock-free mutual exclusion algorithm using anonymous registers
that matches the above general space bound for n ≥ 2 processes was presented in [1].

3 A starvation-free mutual exclusion algorithm for two processes

We show that, for two processes, it is possible to design a starvation-free mutual exclusion
algorithm. In the next section, we prove this is impossible for three or more processes.

▶ Theorem 2. There is a symmetric memoryless starvation-free mutual exclusion algorithm
for two processes using m ≥ 7 anonymous registers if and only if m is odd.
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The only if direction follows from Theorem 1 (proven in [14]), where it has been proven that
(when using anonymous registers) any symmetric deadlock-free mutual exclusion algorithm
for two processes must use an odd number of anonymous registers. To prove the if direction,
we present in Algorithm 1 a symmetric memoryless starvation-free mutual exclusion algorithm
for two processes using m anonymous registers, where m is an odd number greater than
or equal to 7. The question of whether a symmetric memoryless starvation-free mutual
exclusion algorithm exists for two processes using 3 or 5 anonymous registers is open.

As the m registers do not have global names, each process independently numbers them.
We use the notation p.i[j] to denote the jth register according to process i’s numbering, for
1 ≤ j ≤ m. Recall that a process’s identifier is a positive integer.

3.1 An informal description of the algorithm
A shared register is free when its value is 0. Initially, all the registers are free. A register is
owned by process i, when its value is i. There are two ways for a process to get permission
to enter its CS (i.e., Critical Section). The first way is when a process owns m − 2 registers.
Initially, a process tries to own m − 2 registers by writing its identifier into free registers. If
the process succeeds, it may enter its CS, and when done, it releases (i.e., sets to 0) all the
registers it owns. By design, a process will never own more than m − 2 registers.

When there is contention, each process first tries to own as many registers as possible, but
no more than m − 2 registers. Thus, each process will always succeed in owning at least one
register (and not at least two registers, as explained in the sequel). After it attempts to own
m − 2 registers, if a process notices that it owns less than ⌈m/2⌉ registers, it becomes a loser.
A loser acts as follows: if it owns more than two registers, it releases all its owned registers
except two. Otherwise, when a loser owns one or two registers, it releases no registers. Then,
the loser writes “waiting” into the (one or two) registers it owns and waits. Since the waiting
process owns at most two registers, the other process, the winner, keeps on trying to own
more registers until it eventually succeeds in owning m − 2 registers and gets permission to
enter its CS.

When a winning process exits its CS, the winner releases all the m − 2 registers it owns,
which, as explained below, will prevent it from entering its CS again before a waiting process
gets a chance to enter its CS. This guarantees that starvation-freedom is satisfied. To
guarantee that one process will not enter its CS twice while the other process is waiting,
when a process starts its entry code, it repeatedly scans the registers until none of them has
the value “waiting,” and only then may it proceed.

The second way a process can enter its CS is by waiting first. A waiting process owns one
or two registers with the value “waiting.” The waiting process waits until all the registers it
does not own are released (i.e., have the value 0). Once this happens, the waiting process
may immediately enter its CS. That is, it need not own additional registers. Upon exiting its
CS, the (previously waiting) process releases the (one or two) registers it owns.

There is one very delicate possible race condition that should be avoided. Assume there
is contention; process i writes its identifier into m − 2 registers, while process j writes its
identifier into two registers. At that point, just before process j writes “waiting” into the
two registers it owns, process i enters and exits its CS, releases the m − 2 registers it owned
and then attempts to enter its CS again. Process i reads all the registers, finds out that no
process is waiting, and is ready to try to own m − 2 free registers. Now, process j continues
to write “waiting” into the two registers it owns, finds out that all the other m − 2 registers
are free, and enters its CS. Process i is now scheduled, owns the m − 2 free registers and
enters its CS, violating the mutual exclusion requirement.

DISC 2023
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It is easy to resolve this race condition while satisfying only deadlock-freedom. Resolving
it while still satisfying starvation-freedom is more challenging. Our solution is as follows: the
first thing that process i is doing (upon entering its entry code) is to own one register and
only then check whether j is waiting. This will guarantee that either,
1. process i notices that j is waiting, in which case i releases its owned register and waits

until no register has the value “waiting,” letting the waiting process enter its CS first; or
2. process i notices that no process is waiting, in which case, after j writes “waiting” into

its owned registers; it will find out that not all the other registers are free, and will wait
for process i to enter its CS first.

This solution resolves the race condition.
There is one additional thing that needs to be explained. Why do we reserve two registers

for the waiting process, not just one? The answer is that by reserving two registers, when
“waiting” is written into two registers by some process, at least one of the two will not be
overwritten by the other process. Consider the following scenario. Let r1, r2 and r3 be free
registers. Process j writes into r1,r2 and is ready to write into r3. Process i writes into all
the m − 3 other registers and is ready to write into r3. Process j writes into r3, finds out it
is a loser (because m ≥ 7), releases r1, and writes “waiting” into r2 and r3. Now, process i is
activated and writes into r3, leaving only one register with the value “waiting.”

Finally, we explain why the algorithm does not work when m = 5 (or when m = 3).
Assume m = 5. Let r1, r2, r3, r4 and r5 be the five free registers. Consider the following
scenario. Process i writes into r1 and r2 and is ready to write into r3. Process j writes into
r5 and r4 and is ready to write into r3. Process i writes into r3, finds out that it owns m − 2
registers, and enters its CS. Then, Process j writes into r3, finds out that it owns m − 2
registers, and enters its CS, violating the mutual exclusion requirement. We point out that,
in contrast, there is a symmetric memoryless deadlock-free mutual exclusion algorithm for
two processes using m ≥ 3 anonymous registers when m is odd.

3.2 Correctness Proof

▶ Lemma 3. The algorithm satisfies mutual exclusion.

Proof. We assume to the contrary that both processes enter their CS simultaneously and
show that this leads to a contradiction. There are two ways for a process to enter its CS: (1)
by observing that it owns m − 2 registers, and (2) by writing “waiting” into the registers
it owns and then waiting until all the other registers have the value 0. So, four possible
combinations exist for having two processes in their CS simultaneously. We show that none
of them may happen. Let’s call the two processes p and q.
1. Both processes observe that they own m − 2 registers and enter their CS. Once p observes

that it owns m − 2 registers and enters its CS, at most one of these m − 2 registers may
later be overwritten by q. Thus, while p is in its CS, q may own at most 3 registers. Since
m ≥ 7, q cannot observe that it owns m − 2 registers and hence will not enter its CS,
while p is in its CS – a contradiction.

2. Both processes write “waiting” into the registers they own and later enter their CS. This
may happen only if p and q observe that each one of them owns less than half of the
registers. However, if p observes that it owns less than half of the registers, it must be
the case that q owns more than half of the registers and will not write “waiting” into the
registers it owns – a contradiction.
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Algorithm 1 A symmetric memoryless starvation-free mutual exclusion algorithm for two pro-
cesses.

Code of process i // i ̸= 0

Constant:
m: an odd integer ≥ 7 // m ≥ 7 is the # of shared registers

Shared variables:
p.i[1..m]: array of m anonymous registers, of type integer + the symbol “waiting,” init. all 0

// p.i[j] is the jth register according to process i’s numbering
Local variables:

myview[1..m]: array of m variables, initially all 0
mycounter ,j,k: integer, initially 0
mygo: boolean, initially false

//give priority to a waiting process
1 repeat mycounter ← mycounter + 1 until p.i[mycounter ] = 0 //looking for a zero entry
2 p.i[mycounter ]← i //own one register
3 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
4 if ∃j ∈ {1, ..., m} : myview[j] = waiting then //is other process waiting?
5 if p.i[mycounter ] = i then p.i[mycounter ]← 0 end if //release owned register
6 repeat //the other process is waiting
7 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
8 until ∀j ∈ {1, ..., m} : myview[j] ̸= waiting //wait for CS to be released
9 end if

10 repeat //try to own m− 2 registers
11 for k = 1 to m do //access the m registers
12 if p.i[j] = 0 then //try to own one more
13 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
14 if i appears in less than m− 2 of the entries of myview[1..m] then
15 p.i[j]← i end if end if //own one more
16 end for

//lose or win?
17 for j = 1 to m do myview[j]← p.i[j] end for //read the shared array
18 if i appears in less than ⌈m/2⌉ of the entries of myview[1..m] then //lose
19 mycounter ← 0
20 for j = 1 to m do if p.i[j] = i then //release all owned registers
21 if mycounter = 2 then p.i[j]← 0 //except two of them
22 else p.i[j]← waiting; mycounter ← mycounter + 1 end if //signal waiting
23 end for
24 repeat //wait for CS to be released
25 for j = 1 to m do myview[j]← p.i[j] od //read the shared array
26 until ∀j ∈ {1, ..., m} : myview[j] ∈ {0, waiting} //no sign from other process
27 mygo ← true //may enter CS
28 end if
29 until i appears in m− 2 of the entries of myview[1..m] or mygo = true
30 critical section

//release all owned shared registers
31 if mygo = true then for j = 1 to m do if p.i[j] = waiting then p.i[j]← 0 end if end for
32 else for j = 1 to m do if p.i[j] = i then p.i[j]← 0 end if end for
33 end if
34 set all local variables to their initial values

DISC 2023
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3. p observes that it owns m − 2 registers and enters its CS, while q writes “waiting” into
the registers it owns and later enters its CS while p is still in its CS. Once p enters its
CS, all the registers it owns are not free. So, q will not be able to proceed since not all
the registers it does not own are free as required – a contradiction.

4. p writes “waiting” into the registers it owns, waits until all the other registers have the
value 0 and enters its CS. q observe that it owns m − 2 registers and enters its CS, while
p is still in its CS. Since, after writing “waiting,” p must observe that all the registers it
does not own have the value 0 before it may enter its CS; it must be the case that q has
written into one of the registers (line 2), after p has written “waiting.” Thus, q will notice
(line 4) that p is waiting and will not proceed to its CS – a contradiction. ◀

▶ Lemma 4. The algorithm satisfies starvation-freedom.

Proof. There are three loops where a process can get stuck.
Loop 1: The repeat loop at lines 6-8, where a process waits until none of the registers is
set to waiting.
Loop 2: The inner repeat loop at lines 24-26, where a (waiting) process waits until all
the registers are set to 0 or waiting.
Loop 3: The outer repeat loop at lines 10-29 where a process waits until it either owns
m − 2 registers or its local register mygo is set to true.

We show that a process cannot get stuck (i.e., loop forever) in any of these loops, which
implies starvation-freedom. Let’s call the processes p and q.

Assume p is waiting in loop 1, and cannot proceed. This means that (1) p is not owning
any of the registers, and (2) that q has set at least one of its owned registers to “waiting”
(line 22). By the time q reaches loop 3 (line 24), all its owned registers are set “waiting,” and
all the other registers are free. Thus, q will exit the loop, set mygo to true and enter its CS.
Later, in its exit code q will release its owned registers and return to its remainder region.
From that point on (even if q will try to enter its CS again), as long as p is waiting in loop 1,
no register will be set to waiting. This means that the condition in line 8 is evaluated to
true and thus p can proceed beyond loop 1.

Assume p is waiting in loop 2, and cannot proceed. This means that (1) p has set the
(one or two) registers it owns to “waiting” and is not trying to own more registers, and (2) q

owns at least one register. There are two cases to consider:
q notices (in line 4) that p is waiting, in which case q releases its owned register and waits
until no register has the value “waiting,” letting the waiting process p proceed beyond
loop 2, setting mygo to true and proceed beyond loop 3.
q notices that no process is waiting, in which case, after p writes “waiting” into its owned
registers and waits in loop 2, there is nothing that prevents q from owning m − 2 registers
and entering its CS. Later, in its exit code q will release its owned registers and return to
its remainder region. If q does not try to enter its CS again, then p can proceed beyond
loop 2 and loop 3. If q does try to enter its CS again, then q might acquire (line 3) one
register before p notices that the register is free; however, q will later notice (in line 4)
that p is waiting, in which case q will release its owned register and waits until no register
has the value “waiting,” letting the p proceed beyond loop 2 and loop 3.

Assume p is looping in loop 3, never waits in loop 2, and cannot proceed. Since m is odd,
this means that p owns more than half of the registers, while q holds less than half of the
registers. Thus, q will eventually release the registers it owns, except at most two of them.
This will enable p to acquire m − 2 registers and proceed beyond loop 3. ◀
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RMR complexity. An operation that a process performs on a memory location is considered
a remote memory reference (RMR) if the process cannot perform the operation locally on
its cache and must transact over the multiprocessor’s interconnection network to complete
the operation. RMRs are undesirable because they take long to execute and increase the
interconnection traffic. Our algorithm achieves the ideal RMR complexity of O(m) for cache
coherent machines. (Distributed Shared Memory machines are irrelevant for anonymous
shared memory systems.) This means that a process incurs O(m) number of RMRs to satisfy
a request (i.e, to enter and exit the critical section once). It follows from Observation 12
(Section 4) that this bound is tight.

4 An impossibility result

In the previous section, we have shown that, for two processes, it is possible to design a
symmetric memoryless starvation-free mutual exclusion algorithm. Next, we show this is
impossible for three or more processes.

▶ Theorem 5. There is no symmetric memoryless starvation-free mutual exclusion algorithm
for n ≥ 3 processes using (any number of) anonymous registers.

The main argument is that, under the appropriate assignment of names to registers, there
is a way to run two processes when they are in their remainder section, requiring them to
write to all registers before one of them can enter its critical section. This is essentially
accomplished by renaming unwritten registers on the fly so that if the two processes are
about to write to the same unwritten register for the first time, then they end up writing to
two distinct, unwritten ones. Thus, it is possible to hide all the write operations of a third
process, which will prevent it from ever entering its critical section.

4.1 Basic definitions and observations
We first prove some basic (but general) observations regarding the mutual exclusion problem.
All the lemmas and definitions in Subsection 4.1 refer to one arbitrary deadlock-free mutual
exclusion algorithm for n processes using read/write registers. Here, we do not need to
assume that the algorithm is starvation-free, symmetric, or memoryless, nor do we need to
assume that the registers are anonymous.

We will use the following notions and notations. An event corresponds to an atomic step
performed by a process. An algorithm’s (global) state is entirely described by the values of
the (local and shared) registers and the values of the program counters of all the processes. A
run is a sequence of alternating states and events (also called steps). For the purpose of the
impossibility proof, it is more convenient to define a run as a sequence of events omitting all
the states except the initial state. Since the events and the initial state uniquely determine
the states in a run, no information is lost by omitting the states.

Each event in a run is associated with a specific process that is involved in the event. We
will use x, y, and z to denote runs. When x is a prefix of y, we denote by (y − x) the suffix
of y obtained by removing x from y. Also, we denote by x; seq the sequence obtained by
extending x with the sequence of events seq. Processes are deterministic; that is, for every
two runs x; e and x; e′ if e and e′ are events by the same process, then e = e′.

We will often use statements like “in run x process p is in its remainder”, and implicitly
assume that there is a function that for any run and process, lets us know whether a process
is in its remainder, entry code, critical section, or exit code. Also, saying that an extension y

of x involves only process p, means that all events in (y − x) involve only process p. Finally,
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by a run we always mean a finite run, by a register we mean a shared register, and by
the value of register r in run x, we always mean, the value of r at the end of x. Our first
definition captures when two runs are indistinguishable to a given process.

▶ Definition. Run x looks like run y to process p, if the subsequence of all events by p in x

is the same as in y, and the values of all the registers in x are the same as in y.

The looks like relation is an equivalence relation.1 The next step by a given process always
depends on the process’s previous steps and the registers’ current values. The previous steps
uniquely determine whether the next step is a read or a write. The current values of the
registers determine what value will be read in case of a read step. If two runs look alike to
process p, then the next step by p in both runs is the same.

▶ Lemma 6. Let x be a run which looks like run y to every process in a set P . If z is an
extension of x which involves only processes in P , then y; (z − x) is a run.

Proof. By a simple induction on k – the number of events in (z − x). The basis when k = 0
holds trivially. We assume the lemma holds for k ≥ 0 and prove for k + 1. Assume that the
number of events in (z − x) is k + 1. For some event e, it is the case that z = z′; e. Since the
number of events in (z′ − x) is k, by the induction hypothesis y′ = y; (z′ − x) is a run. Let
p ∈ P be the process which is involved in e. Then, from the construction, the runs z′ and y′

look alike to p, which implies that the next step by p in both runs is the same. Thus, since
z = z′; e is a run, also y′; e = y; (z − x) is a run. ◀

We next define the notion of a hidden process.2 Intuitively, a process is hidden in a given
run, if all the steps it has taken since the last time it has been in its remainder, communicate
no information to the other processes. We say that a write event e1 is overwritten by event
e2 in a given run r if e2 is a write event that happens after e1 in r, and both e1 and e2 are
writing events to the same register.

▶ Definition. For process p and run z, let z′ be the longest prefix of z such that p is in its
remainder in z′. Process p is hidden in run z if each event which p is involved in (z − z′) is
either: a read event, or a write event that is overwritten (in z) before any other process has
read the value written.

We notice that a process is not hidden if it is involved in a write event that is not later
overwritten, even if the write does not change the current value of a register. Also, if a
process is in its remainder in z then it is hidden in z, and thus initially, all the processes
are hidden. A hidden process looks just like a process halted in its remainder, and hence no
process can wait until a hidden process takes a step.

▶ Lemma 7. If a process p is in its critical section in run z then p is not hidden in z.

Proof. Assume to the contrary that process p is hidden and is in its critical section in run z.
Let z′ be the longest prefix of z such that p is in its remainder in z′. Since p is hidden in run
z, it is possible to remove from z all the events in which p is involved in (z − z′) and get a
new run y. The run y looks like z to all processes other than p, and p is in its remainder
in y. By the deadlock-freedom property, there is an extension of y that does not involve p

in which some process q ̸= p enters its critical section. Since y looks like z to all processes

1 The term looks like, adopted from [13], is also called indistinguishable in the literature.
2 The notion of a hidden process was first defined in [3].
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other than p, by Lemma 6, a similar extension exists starting from z. That is, q can enter
its critical section in an extension of z, while p is still in its critical section. However, this
violates the mutual exclusion property. ◀

It follows from Lemma 7 that a process must write before it enters its critical section.

4.2 Anonymity
The lemma in Subsection 4.2 refers to one arbitrary deadlock-free mutual exclusion algorithm
for n processes using anonymous registers. Here, we do not need to assume that the algorithm
is starvation-free, symmetric, or memoryless. We denote by ep a (read or write) event which
involves process p. When x is a run and πp is a naming assignment of p, we denote by

x[p, ri ↔ rj ] the sequence obtained by replacing every read event of register ri by process
p in x with a read event of register rj by p which returns the same value (as the event of
reading ri), and vice versa.
πp[ri ↔ rj ] is the naming assignment where, (1) πp[ri ↔ rj ](ri) = πp(rj); (2) πp[ri ↔
rj ](rj) = πp(ri); and (3) for every k /∈ {i, j}, πp[ri ↔ rj ](rk) = πp(rk).

Recall that all the anonymous registers are initialized to the same value.

▶ Lemma 8. Let x be a run, p a process, πx
p the naming assignment of p (used in the

run x), and ri and rj two registers that were never written (by any process) in x. Then,
y = x[p, ri ↔ rj ] is a run, where the naming assignment for p (used in y) is πx

p [ri ↔ rj ],
and for the other processes the naming assignments are the same as in x. Furthermore, if
x; ep is a run where ep is an event of writing the value v into ri then y; e′

p where e′
p is an

event of writing the value v into rj is also a run.

Proof. Since ri and rj were never written in x, a read event by p or any other process of
each of those registers in x would return the initial value. So, swapping the read events of ri

and rj by process p, may only affect process p.
As for p, before its first event in x, the adversary has fixed, for process p, a naming

assignment πx
p : {r1, ..., rm} → {r1, ..., rm} of the registers such that, for process p, the j’th

anonymous register is πx
p (rj). In particular, when process p accesses its j’th anonymous

register, it accesses πx
p (rj). Let us define the permutation πy

p : {r1, ..., rm} → {r1, ..., rm}
as follows, (1) πy

p(ri) = πx
p (rj); (2) πy

p(rj) = πx
p (ri); and (3) for every k where k /∈ {i, j},

πy
p(rk) = πx

p (rk). That is, whenever p accessed ri before it will now access rj and vice versa.
Now, consider a run in which the processes are scheduled exactly in the order as they are
scheduled in x, the naming assignment fixed (by the adversary) for p is πy

p , and the naming
assignments (in y) of the other processes are as in x. By construction, the resulting run is
run y. Furthermore, if the next event by p in x is of writing the value v into ri then, since
πy

p(ri) = πx
p (rj), the next event by p in y is of writing the value v into rj . ◀

4.3 The notions of a symmetric run and a symmetric state
A (global) state is entirely described by the values of the local and shared registers and the
values of the program counters of all the processes.

Intuitively, a state σ is symmetric w.r.t. two processes if the “subjective views” of the
processes at σ are the same. In the standard non-anonymous model, once two (symmetric)
processes write their ids (one after the other) into the same register, say r1, their views after
these two writes are completed are no longer the same, if they inspect the current state, one
process will see that the value of r1 equals its id, while the other will see that the value is
different from its id. In the anonymous model, it is possible for each process to see that the
value of the first register according to its naming assignment equals its id.
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Below we define this notion more formally. Let m be the number of registers; let valσ(r)
be the value of register r in state σ, and assume that the names of the local variables of
the processes are the same. To distinguish the local variables of the different (symmetric)
processes, we will add the process id as a subscript to the variable names.

▶ Definition. Let σ be a state and let πp and πq be the naming assignments of p and q,
respectively. State σ is symmetric w.r.t. p and q and their naming assignments πp and πq,
if for every 1 ≤ k ≤ m either,

valσ(πp(rk)) = valσ(πq(rk)) and valσ(πp(rk)) /∈ {p, q}, or
valσ(πp(rk)) = p and valσ(πq(rk)) = q, or
valσ(πp(rk)) = q and valσ(πq(rk)) = p.

Furthermore, in σ, for every local variable, say local, either (1) localp = localq and the value
of localp is not in {p, q}, or (2) localp = p and localq = q, or (3) localp = q and localq = p.

▶ Definition. Run x is symmetric w.r.t. p and q and their naming assignments πp and
πq, if the state at the end of x is symmetric w.r.t. p and q and their naming assignments πp

and πq.

The following lemma follows immediately from the definitions of a symmetric run and a
symmetric state.

▶ Lemma 9. When processes p and q are symmetric (and deterministic), if run x is
symmetric w.r.t. p and q and their naming assignments πp and πq, then
1. either the next step of both processes is a read or the next step of both is a write;
2. if p accesses πp(rk) in its next step, then q accesses πq(rk) in its next steps;
3. if x is extended by a read event of p followed by a read event of q, then the resulting run

is symmetric w.r.t. p and q and their naming assignments;
4. if x is extended by a write event of p followed by a write event of q then the resulting run

is symmetric w.r.t. p and q and their naming assignments, provided that p and q do not
write into the same physical location; and

5. p and q cannot be in their critical sections at (the end of) x.

▶ Lemma 10. In a symmetric deadlock-free mutual exclusion algorithm for n ≥ 2 processes
using anonymous registers, the initial state where all the processes are in their remainder
sections is symmetric w.r.t. every two processes and their naming assignments.

Proof. The proof follows immediately from the fact that in anonymous shared memory, all
the anonymous registers are initialized to the same value; and that when the processes are
symmetric, the local variables of the different processes have the same names and (local
variables with the same names) are initialized to the same values. ◀

To simplify the presentation, for the rest of the section, by a symmetric run (resp. symmetric
state), we always mean a symmetric run (resp. symmetric state) w.r.t. to every two processes
and their naming assignments.

4.4 Symmetry and anonymity
The following lemma in Subsection 4.4 refers to one arbitrary symmetric deadlock-free mutual
exclusion algorithm for n ≥ 2 processes using m anonymous registers. Here, there is no need
to assume that the algorithm is starvation-free or memoryless.

A quiescent state is one in which all the processes are in their remainder sections. A
memoryless algorithm is an algorithm that has exactly one quiescent state (which is the
initial state). When the possible number of quiescent states of a symmetric starvation-free
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mutual exclusion algorithm is more than one, by Lemma 10, the initial (quiescent) state
is symmetric w.r.t. every two processes and their naming assignments. However, for a
non-memoryless algorithm, except for the initial state, the other quiescent states are not
necessarily symmetric.

▶ Lemma 11 (main technical lemma). For every two processes p and q, and every symmetric
quiescent state σ, there exist naming assignments πp and πq for p and q, and a run ρ with
the following properties,
1. ρ starts from the state σ and ends in some quiescent state,
2. during ρ, only p and q take steps, and they enter and exit their critical sections once,
3. during ρ, each one of the two processes writes into ⌈m/2⌉ different registers, and
4. during ρ, each one of the m anonymous registers is written at least once.

Proof. It follows from Theorem 1 that (when using anonymous registers) any symmetric
deadlock-free mutual exclusion algorithm for two processes must use an odd number of
anonymous registers. So, for the rest of this proof, we assume that m is odd.

We prove the lemma by running the two processes p and q, starting from the (symmetric)
state σ, keeping the run symmetric (i.e., without breaking symmetry). As long as symmetry
is not broken, by Lemma 9, none of the processes can enter its CS, because if it does, then
the other process may enter its CS as well, violating the mutual exclusion requirement. Each
time two more registers are written until only one is left. At that point, the two processes
try to write this last register. Only when this last register is written is symmetry broken, all
the m anonymous registers are written, and we are done.

Initially, the adversary fixes for process p, the identity permutation πp(rk) = rk (where
1 ≤ k ≤ m), and fix for q its reverse permutation πq(rk) = rm−k+1. For the sake of
explanation, we arrange the registers in pairs, where the kth pair is (πp(rk), πq(rk)), where
1 ≤ k ≤ m. In this pairing, each pair includes two different registers except the ⌈m/2⌉ pair
in which the register r⌈m/2⌉ appears twice. Each other register appears in two pairs, and
the other register is the same in those two pairs. For example, when m = 5, the pairs are
(r1, r5), (r2, r4), (r3, r3),(r4, r2), and(r5, r1).

Next, we run the processes in lock-steps. Each lock-step includes a step by p followed by
a step of q. We observe that, as long as the constructed run is symmetric, in one lock-step,
if p accesses ri and q accesses rj , then (1) the pair (ri, rj) appears in the pairing described
above, and (2) by Lemma 9, both processes either read ri and rj or write into them. Because
of the initial symmetry, none of the processes may enter its CS without writing first. (this
also follows from Lemma 7).

The run ρ is constructed by iteratively executing the following procedure until all the m

registers are written at least once, as required. Let πp and πq denote the current naming
assignments of p and q. Let us denote by xi−1, the run constructed so far, before the
beginning of the ith iteration. As we will see, by construction, xi will be a symmetric run for
all i ≥ 0. By assumption, the quiescent state σ is symmetric, and thus, the run x0, where all
the processes are still in their remainder sections, is symmetric.3

Iteration i ≥ 1 begins here. As explained, xi−1 is the symmetric run constructed so far.
First, p and q run (in lock-steps) until they are ready to write into ri and rj , respectively.
Recall that by Lemma 9, either both steps are read or both are write, in each lock-step.

3 We notice that in the special case where the algorithm is memoryless, there is no need to assume that σ
is symmetric, as by Lemma 10, the single initial (quiescent) state σ is symmetric.
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Thus, to break symmetry they must eventually try to write. Let’s denote by yi−1 the run
just before the two writes. Clearly, if xi−1 is symmetric, then so is yi−1. There are four
possible cases,
1. ri and rj are different registers. In this simple case, we let both processes complete their

write operations. The run xi is the run just after these two writes. If xi−1 is symmetric,
then so is xi. The ith iteration completes here, and we are ready to start the next i + 1
iteration.

2. ri and rj refer to the same register, which has been written before. The construction
ensures this situation never happens (see Case 4 below).

3. ri and rj refer to the same register which has not been written before, and all other m − 1
registers have already been written. In this case, we let both processes complete their
write operations. At this point, all the m registers have been written as requested. So we
let the processes continue running until, as guaranteed by the deadlock-freedom property,
each one of them will eventually enter its CS (but not simultaneously), return to its
remainder section, and we are done. The constructed run is ρ, and the construction of
the run ρ terminates here.

4. ri and rj refer to the same register which has not been written before, and not all other
m − 1 registers have already been written. This is the more challenging case. For some
k, let πp(rk) and πq(rk) be two registers (different from ri) that have not been written
so far (we do not care whether πp(rk) and πq(rk) have or have not been read so far).
By Lemma 8, z1

i−1 = yi−1[p, ri ↔ πp(rk)] is a legal run, assuming πp is replaced with
πp[ri ↔ πp(rk)]. Furthermore, by applying lemma 8 again, z2

i−1 = z1
i−1[q, rj ↔ πq(rk)]

is a legal run, assuming πq is replaced with πq[ri ↔ πq(rk)]. Since ri, πp(rk) and πq(rk)
have never been written yet, if xi−1 is symmetric, so is z2

i−1.
Furthermore, at (the end of) z2, p and q are ready to write into the two registers πp(rk)
and πq(rk), respectively. We now continue with run z2

i−1, and let both processes complete
their write operations into πp(rk) and πq(rk). Again symmetry is preserved. The resulting
run, after the writes is xi with which we continue to the next iteration. It is important to
notice that in this case (unlike in the other two cases) xi is not an extension of xi−1, it is
a completely new run. In addition, in the next round, which starts with xi, we use the
(updated) naming assignments πp[ri ↔ πp(rk)] and πq[rj ↔ πq(rk)] for processes p and q.
As explained xi is symmetric w.r.t. p and q and their updated naming assignments.

In case 4, we switch to a new run and new naming assignments. We emphasize that, during a
specific run, we do not change the naming assignments associated with that run. We change
them only when we switch to a completely new run. The run ρ that we end up with at the
end of the construction uses fixed naming assignments for p and q from the beginning to
the end. This whole construction can be viewed as searching for a run ρ and fixed naming
assignments πp and πq for which Case 4 will never happen, and this is exactly what we end
up with. That is, once run ρ is constructed with its associated naming assignments for p and
q, if we consider execution of run ρ starting from σ with the associated naming assignments,
then, by construction, the only time p and q will try to write into the same register, would
be after all other m − 1 registers have already been written. ◀

▶ Observation 12. The RMR complexity of every symmetric deadlock-free mutual exclusion
algorithm for n ≥ 2 processes using m anonymous registers is at least ⌈m/2⌉.

Proof. Let σ be the initial state. By Lemma 10, the initial state σ is symmetric. By
Lemma 11, there exists a run which starts from σ, in which exactly two processes participate
during which they enter and exit their critical sections once, and each one of the two processes
writes into ⌈m/2⌉ different registers. The result follows. ◀
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4.5 Proof of Theorem 5
Proof. Assume to the contrary that there is a symmetric memoryless starvation-free mutual
exclusion algorithm for n ≥ 3 processes using anonymous registers. Let’s call this algorithm
A. Let us denote by σ the single possible initial state. By Lemma 10, σ is symmetric. Let
p1, p2 and q be three processes. Using Lemma 11, we will reach a contradiction by hiding all
the write operations of q, which, by Lemma 7, will prevent q from ever entering its critical
section.

This is done as follows. Assume all the processes are in their remainder sections; thus, the
current state is σ. Now, process q tries to enter its critical section. Before doing so, q should
execute its entry section which must, by Lemma 7, involve at least one write operation.
So, we run q alone until it is about to execute its first write operation. Let’s call the first
register that q is about to write register r1. Since q has not modified any register yet, all
the processes except q cannot distinguish the current state from the state σ where all the
processes (including q) are still in their remainder sections. Thus, by Lemma 6 and Lemma
11, there is an extension of the current run which involves only p1 and p2, in which p1 and
p2 enter and then exit their critical sections once, and in that extension, each one of the
anonymous registers is written (by either p1 or p2) at least once. We slightly modify this
extension of p1 and p2 by stopping them just before writing into register r1; let q complete a
write operation into r1; then let p1 and p2 overwrite the value written by q, and continue
until p1 and p2 return to their remainder sections.

Since the write of q into r1 was immediately overwritten, q is hidden. Hence all the
processes except q cannot again distinguish the current state from the state σ where all
the processes (including q) are still in their remainder sections. Notice that here we use
the assumption that the algorithm is memoryless, and this will enable us to use Lemma 11
repeatedly. It is important to understand that since we have already used Lemma 11 once
in the proof, the naming assignments for processes p1 and p2 have been fixed, and these
assignments can not be changed after that. However, because of the memoryless assumption,
this does not prevent us from applying Lemma 11 again to σ using processes p1 and p2.

We notice that without the memoryless assumption, after p1 and p2 return to their
remainder sections, it is no longer necessarily true that all the processes except q cannot
again distinguish the current state from the state σ. This is so because there might be
another state σ′ where all the processes are in their remainder sections. Hence, in such a case
(without the memoryless assumption), it would not be possible to apply Lemma 11 again.

By Lemma 7, at this point, since q is hidden, q must write again before it may enter its
critical section. So, we run q alone until it is about to execute its second write operation.
Let’s call the register that q is about to write register r2. (Register r2 might denote a
different or the same register as r1.) As before, all the processes except q cannot distinguish
the current state from the state σ. Thus, again by Lemma 11, there is an extension of the
current run that involves only process p1 and p2, in which p1 and p2 enter and then exit their
critical sections once, and in that run each one of the anonymous registers is written at least
once. We slightly modify this extension of p1 and p2 by stopping them just before writing
register r2; let q complete a write operation into r2; then let p1 and p2 overwrite the value
written by q, and continue until they return to their remainder sections. Since the write of q

into r2 was also immediately overwritten, q is still hidden, and thus all the processes except
q cannot distinguish the current state from σ.

We can apply the above procedure as often as necessary, hiding all the write operations
of q, which by Lemma 7, prevents q from ever entering its critical section. Thus, algorithm
A does not satisfy starvation-freedom as promised. A contradiction. ◀
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4.6 A generalization

For a non-memoryless algorithm, except for the initial state, the other quiescent states are
not necessarily symmetric. Under the assumption that all the quiescent states are symmetric,
it is possible to prove the following generalization of Theorem 5.

▶ Theorem 13. There is no symmetric starvation-free mutual exclusion algorithm, with at
most s quiescent states, for n ≥ 2s + 1 processes using (any number of) anonymous registers,
assuming all the quiescent states are symmetric.

Proof. We slightly modify the proof of the impossibility result in Subsection 4.5. We assume
to the contrary that there is a symmetric starvation-free mutual exclusion algorithm for
n ≥ 2s + 1 processes using anonymous registers. With each quiescent state σi we associate
two processes pi

1 and pi
2. Let q be a process not associated with any quiescent state. Using

the above-modified version of Lemma 11, we can reach a contradiction by hiding all the write
operations of q, which, by Lemma 7, will prevent q from ever entering its critical section.

This is done as follows. Assume that all the processes are in their remainder sections,
and the current state is σi which is assumed to be symmetric (this is required for applying
the modified version of Lemma 11). Now, process q tries to enter its critical section. Before
doing so, q must execute at least one write operation. So, we run q alone until it is about to
execute a write operation. Let’s call the register that q is about to write, register r. Since q

has not modified r yet, all the processes except q cannot distinguish the current state from
the quiescent state σi. Thus, there is an extension of the current run, which involves only
pi

1 and pi
2, in which pi

1 and pi
2 enter and then exit their critical sections once, and in that

extension, each one of the anonymous registers is written at least once. We slightly modify
this extension by stopping pi

1 and pi
2 just before writing into register r; let q complete a write

operation into r; then let pi
1 and pi

2 overwrite the value written by q, and continue until pi
1

and pi
2 return to their remainder sections.

Since the write of q into r was immediately overwritten, q is still hidden, and thus all the
processes except q cannot distinguish the current state from one of the s quiescent states.
We can apply the above procedure as often as necessary, hiding all the write operations of q,
which by Lemma 7, prevents q from ever entering its critical section. Thus, the algorithm
does not satisfy starvation-freedom as promised – a contradiction. ◀

5 Discussion

We have shown that, while for two processes, it is possible to design a symmetric memoryless
starvation-free mutual exclusion algorithm using anonymous registers, this is impossible for
three or more processes. These results imply that, while there is no separation between
deadlock-freedom and starvation-freedom for two processes, such a separation between
deadlock-freedom and starvation-freedom exists for three or more processes. Thus, in
anonymous shared memory systems where process symmetry is assumed, it is impossible
always to ensure individual progress in situations where global progress is possible. This is
the first known case of fault-free systems, demonstrating a separation between individual
and global progress.
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