
Improved and Partially-Tight Lower Bounds for
Message-Passing Implementations of Multiplicity
Queues
Anh Tran
Bucknell University, Lewisburg, PA, USA

Edward Talmage #

Bucknell University, Lewisburg, PA, USA

Abstract
A multiplicity queue is a concurrently-defined data type which relaxes the conditions of a linearizable
FIFO queue to allow concurrent Dequeue instances to return the same value. It would seem that this
should allow faster message-passing implementations, as processes should not need to wait as long to
learn about concurrent operations at remote processes and previous work has shown that multiplicity
queues are computationally less complex than the unrelaxed version. Intriguingly, other work has
shown that there is, in fact, not much speedup possible versus an unrelaxed queue implementation.
Seeking to understand this difference between intuition and real behavior, we improve the existing
lower bound for uniform algorithms. We also give an upper bound for a special case to show that
our bound is tight at that point. To achieve our lower bounds, we use extended shifting arguments,
which are rarely used. We use these techniques in series of inductive indistinguishability proofs,
extending our proofs beyond the usual limitations of traditional shifting arguments. This proof
structure is an interesting contribution independently of the main result, as new lower bound proof
techniques may have many uses in future work.

2012 ACM Subject Classification Software and its engineering → Abstract data types; Theory of
computation → Distributed algorithms; Computing methodologies → Distributed algorithms

Keywords and phrases Distributed Data Structures, ADTs, Lower Bounds, Shifting Arguments,
Multiplicity Queues

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.34

Related Version Short Version: https://doi.org/10.1145/3583668.3594602 [17]
Preliminary Version: https://arxiv.org/abs/2305.11286 [18]

Funding Anh Tran: Bucknell University Emerging Scholars Program.
Edward Talmage: Bucknell University.

1 Introduction

In the search for efficient structured access to shared data, relaxed data types [5] have risen
as an efficient way to trade off some of the precise guarantees of an ordered data type for
more performance [14]. Multiplicity queues are a recently-developed relaxation of queues [4]
which allow concurrent Dequeue instances to return the same value. Since they cannot have
a sequential specification (being defined in terms of concurrency), previous results on relaxed
queues do not apply to multiplicity queues.

Multiplicity queues are particularly interesting due to the implications for the compu-
tational power of the type. In [4], Castañeda et al. implement multiplicity queues from
Read/Write registers, which is impossible for FIFO queues. This means that it is possible
to have queue-like semantics without the cost of strong primitive operations like Read-

© Anh Tran and Edward Talmage;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elt006@bucknell.edu
https://doi.org/10.4230/LIPIcs.DISC.2023.34
https://doi.org/10.1145/3583668.3594602
https://arxiv.org/abs/2305.11286
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Multiplicity Queue Lower Bounds

Modify-Write. Further work showed that this allows interesting applications in areas such
as work-stealing [3] and more efficient implementations in shared memory systems with
strong primitives than the best known algorithms for FIFO queues [7].

We are interested in message-passing implementations of data types, which provide the
simplicity and well-defined semantics of a shared memory system in the message passing
models inherent to geographically distributed systems [2]. Specifically, we want to implement
shared structures efficiently in terms of the time between when a user invokes an operation
and when the algorithm generates the operation’s response. In queue implementations, the
need for concurrent Dequeue instances to wait long enough to learn about each other, so
that they can be sure to return different values, is one of the primary reasons that Dequeue

is expensive to implement [19]. Between the higher performance multiplicity queues achieve
in shared memory models and the intuitive notion that concurrent Dequeue instances need
not learn about each other, it seems intuitive that multiplicity queues should have efficient
implementations in message-passing systems.

However, recent work [13] showed the possible performance gains are limited. In a partially-
synchronous system with maximum message delay d and delay uncertainty u, that work
showed that the worst-case invocation-return delay for Dequeue is at least min

{ 2d
3 , d+u

2
}

,
which is within roughly a factor of 2 of a known unrelaxed queue implementation, where
|Dequeue| = d + ϵ [19]. We here extend the work in [13], increasing the lower bound for the
return time of Dequeue in uniform algorithms (those whose behavior does not depend on
the number of participating processes) to min

{ 3d+2u
5 , d

2 + u
}

. Intuitively, while a particular
Dequeue instance may not need to know about other, concurrent instances, determining
which instances are concurrent is expensive in its own right.

This suggests new insights into fundamental properties of message passing implementations
of shared data structures, showing that differentiating previous from concurrent instances is
responsible for much of the time operation instances require. This could help develop more
efficient algorithms or new relaxations with minimal weakening while providing maximum
performance improvements. The piecewise nature of our bound also provides potential
insight into what the optimal lower bound may be. We show that the d

2 + u portion of the
bound, which has lower slope, is actually tight in the case when all messages have equal delay
(u = 0). However, for larger uncertainties in message delay (u > d/6), the 3d+2u

5 portion
of the bound is higher. In fact, if we could strengthen the base case of our induction, it
appears our argument would give larger bounds than 3d+2u

5 for large values of u. That base
case is already the most complex portion of our proof, so such strengthening and finding an
optimal lower bound remain as future work. The two parts of the bound we show here relate
to different constraints, with d

2 + u relating to admissibility of runs in our proof and 3d+2u
5

relating to how fast information can travel through the system and when processes can make
conclusions about the ordering of Dequeue instances at other processes.

Except for the edge case of u = 0, where they match and which we show is tight, our
new bound is larger than the previous state of the art, and further demonstrates better
tools for larger lower bound proofs in general. The proofs in [13] relied on shifting and other
indistinguishability arguments among three or fewer processes, and the bounds were limited
by the number of processes. In this paper, we develop more complex indistinguishability
arguments, using inductive definitions of different runs of the algorithm on many processes.
This requires using advanced shifting and indistinguishability tools, similar to those developed
in [19]. These stronger tools allow us to prove larger bounds, and are interesting in their
own right as a hint to how to prove larger lower bounds on other problems, as well.

A. Tran and E. Talmage 34:3

1.1 Related Work
The idea of relaxing data types grew out of the study of consistency conditions weaker than
linearizability. Afek et al. proposed Quasi-Linearizability in [1], which requires linearizations
to be within a certain distance of a legal sequence, instead of themselves legal. From another
perspective, this is just an expansion of the set of legal sequences on the data type. In [5],
Henzinger et al. formalized these relaxations of abstract data type specifications by increasing
the set of legal sequences and defined several parameterized ways to do so.

These relaxations and other work which followed [14, 12, 15] concentrated on relaxing
sequential data type specifications and showed that they have more efficient implementations
in a message passing system than an unrelaxed queue does. This approach cannot consider
concurrency, which is simply not defined in the sequential space, so Castañeda et al. [4] defined
multiplicity queues, which allow different behavior in the presence of concurrent operations
than during sequential operation. They also replaced linearizability with set-linearizability
as the consistency condition to accommodate non-sequential data types definitions.

In shared memory models, multiplicity queues have a number of advantages over unrelaxed
queues, and even other, sequential relaxations. Castañeda et al. showed that multiplicity
queues can be implemented purely from Read/Write registers, which is impossible for FIFO
queues [6] and most previously-considered relaxed queues [12, 16], as they have consensus
number 2. This suggests that they may be a practical way to get queue-like behavior cheaply
in shared memory systems. Castañeda and Piña [3] use multiplicity queues to provide the
first work-stealing algorithms without strong synchronization requirements. Johnen et al. [7]
considered the time complexity of shared memory implementations of queues, implementing
multiplicity queues in O(log n) steps for each of Enqueue and Dequeue, while the best
previous algorithm for unrelaxed queues took O(

√
n) steps [8].

2 Model and Definitions

2.1 System Model
To have parameters we can use to prove lower bounds, we work in a partially synchronous
model of computation. Lower bounds in this model also apply in asynchronous models, so a
high lower bound here is still meaningful. We work in the same system model as [13] and its
precedents, a partially-synchronous, message passing model without process failures used in
the literature for various shared data type implementation algorithms and lower bounds.1
There are n processes, {p0, . . . , pn−1}, participating in an algorithm implementing a shared
memory object. Each process allows a user to invoke operations on the simulated shared
memory object and generates responses to those invocations. Each user can invoke operations
at any time when their process does not have a pending operation–an invocation which does
not yet have a matching response. Processes have local clocks running at the same rate as
real time, but each potentially offset from real time, and can use these clocks to set timers.

Processes are state machines, where operation invocations, message arrivals and timer
expirations trigger steps, which may perform local computation, set timers, send messages,
and generate operation responses. A run of an algorithm is a set of sequences of state machine
steps, one sequence for each process. Each sequence in a run is a valid state machine history

1 There are several distinct models which the literature calls partially synchronous. We consider a model
that is never totally synchronous or totally asynchronous, but always has some uncertainty in message
delay, and thus cannot perfectly synchronize processes [10].

DISC 2023

34:4 Multiplicity Queue Lower Bounds

with a real time for each step, and is either infinite or ends in a state with no unexpired
timers and no messages sent to that process but not received. A run is admissible if every
message send step has a uniquely corresponding message receive step with the delay between
send and receive at least d − u and at most d real time and the skew, or maximum difference
between local clocks, is at most ε := (1 − 1/n)u [10]. We assume d and u ≤ d are known
system parameters.

An implementation must provide liveness: every operation invocation must have a
matching response. We call this invocation and corresponding response pair an operation
instance. We are exploring the time cost of implementations, as measured by the worst-case
delay between an instance’s invocation and response. For operation OP , |OP | denotes
the maximum, over all admissible runs of the algorithm, of the real time between the
invocation and response of any instance of OP . We measure communication cost, so we
assume local computation is instantaneous. We also restrict ourselves to eventually quiescent
implementations, requiring that if there are a finite number of operation invocations in a run,
there is a finite time after the last invocation by which processes reach and stay in a quiescent
state with no messages in transit and no timers set. A uniform algorithm is independent of
the number of processes, with each process’ state machine is identical for all n.2

A sequential data type specification gives a set of operations the user may invoke, with
argument and return types, and the set of legal sequences of instances of those operations.
We are interested in data types whose behavior may depend on concurrency in a distributed
system, so we consider set-sequential data type specifications. A set-sequential data type
specification similarly defines the set of operations the user may invoke, but instead of a set
of legal sequences of instances, specifies a set of legal sequences of sets of instances. Thus,
not all instances in a run must be totally ordered relative to each other, but each set of
instances must be totally ordered relative to other sets.

To determine whether an algorithm implementing a set-sequential data type is correct,
we require it to be set-linearizable, as defined in [11] and [4]. Set-linearizability requires that
for every admissible run of the algorithm, there is a total order of sets of operation instances
which contains every instance in the run, is legal by the set-sequential data type specification,
and respects the real-time order of non-overlapping instances. That is, there must be a way
to place all operation instances in the run in sets and order those sets into a legal sequence
such that for every pair of instances where op1 returns before op2’s invocation, op1 is in a set
which precedes the set containing op2. The classic notion of linearizability is a special case
of set-linearizability where all sets are required to have cardinality 1.

2.2 Multiplicity Queues
A queue is a First-In, First-Out data type providing operations Enqueue(arg) which returns
nothing and Dequeue() which returns a data value, where any sequence of operations instances
is legal iff each Dequeue instance returns the argument of the earliest preceding Enqueue

instance whose argument has not already been returned by a Dequeue, or ⊥ (which cannot
be an Enqueue instance’s argument) if there is no such Enqueue instance. We consider a
related data type called a multiplicity queue, defined in [4], with the same operations but
defined set-sequentially.

2 It may seem that broadcasting requires knowledge of n, but since each process can simply iterate across
all neighbors, no logic changes for different n.

A. Tran and E. Talmage 34:5

▶ Definition 1. A multiplicity queue over value set V is a data type with two operations:
Enqueue(arg) takes one parameter arg ∈ V and returns nothing. Dequeue() takes no
parameter and returns one value in V ∪ {⊥}, where ⊥ is special “empty” value. A sequence
of sets of Enqueue and Dequeue instances is legal if (i) every Enqueue instance is in a
singleton set, (ii) all Dequeue instances in a set return the same value, and (iii) each
Dequeue instance deq returns the argument of the earliest Enqueue instance preceding deq

in the sequence, which has not been returned by another Dequeue instance preceding deq. If
there is no such Enqueue instance, deq returns ⊥.

This definition implies that concurrent Dequeue instances may, but do not necessarily,
return the same value. If they do, they would set-linearize in the same set. If two Dequeue

instances are not concurrent, then one must precede the other in the set linearization, so
they must return different values. We assume all Enqueue arguments are unique, which is
easily achieved by a higher abstraction layer timestamping the users’ arguments.

2.3 Shifting Proofs
To prove our lower bounds, we will use indistinguishability arguments, where we argue that
in a given time range in two runs, one or more processes have the same inputs (invocations,
messages, timers) at the same local clock times. Since each process is a (deterministic) state
machine, a process receiving the same inputs at the same times performs the same steps
in the two runs. We will sometimes argue indistinguishability directly, but in some cases
we will use shifting [10, 9, 19], a technique which mechanically changes the real time of
events at one or more processes, while adjusting message delays and clock offsets such that
each event happens at the same local time. Thus, if one run is a shift of another, they are
indistinguishable. More formally, given run R and vector v⃗ of length n, we define Shift(R, v⃗)
as a new run in which each event e at each pi, 0 ≤ i < n which occurs at real time t in R

occurs at real time t + v[i]. In Shift(R, v⃗) each local clock offset ci becomes c′
i = ci − v[i].

Finally, any message from pi to pj which had delay x in R has delay x + v[j] − v[i], as the
real times when it is sent and received change.

A challenge in using shifting arguments is that the shifted run must be admissible to
require the algorithm to behave correctly. Great care is required to define a run’s message
delays and clock offsets so that the skew and message delays are admissible after shifting. We
use an extended shifting technique by Wang et al. [19] which shows that if a shift is too large,
making the shifted run inadmissible, it is in some cases possible to chop off each process’
sequence of steps before a message arrives after an inadmissible delay, then extend the run
from that collection of chop points with different message delays which are admissible. This
extended run is not necessarily indistinguishable past the chop, but we can sometimes argue
that the runs are indistinguishable long enough to form conclusions about the new run’s
behavior.

3 Lower Bound Proof Outline

Our primary result is a lower bound on the worst-case time of any uniform set-linearizable
implementation of a multiplicity queue. For comparison, a linearizable implementation of
an unrelaxed FIFO queue is possible with worst-case Dequeue cost d + ε = d + (1 − 1/n)u.
Our lower bound is over half of that, indicating a limit on the performance gains of the
multiplicity relaxation. Since our lower bound shows the impossibility of a more efficient
multiplicity queue implementation in a relatively well-behaved partially synchronous model of

DISC 2023

34:6 Multiplicity Queue Lower Bounds

computation, it follows that it is similarly impossible in more realistic, and less well-behaved,
models, such as those with asynchrony or failures. It is possible that the cost to port a FIFO
queue to a less well-behaved model is higher than the cost to port a multiplicity queue, but
that remains an open question.

We prove our bound by building up two sets of runs. In both sets, each process invokes
a single Dequeue instance. In the first set we show that each of these Dequeue instances,
despite being concurrent with at least one other Dequeue instance, returns a unique value. In
the second set, we show that there are fewer distinct return values than Dequeue instances,
so there must be some Dequeue instances returning the same value. We then show that, for
sufficiently large n, these two sets of runs eventually converge, in the sense that processes
cannot distinguish which set they are in until after they choose return values for their
Dequeue instances. This means they must have the same behavior in both, a contradiction
which implies the worst-case cost of Dequeue must be higher. We need large n to ensure that
the information about all of the Dequeue instances cannot reach the last process in time
for it to distinguish which run it is in, so the lower bound on n depends on the relationship
between d and u, increasing as u approaches d.

Both sets of runs are based on and building towards one simple run, which sequentially
enqueues values 1..n, then once the system is quiescent, has each process dequeue once,
with invocation times staggered so that the Dequeue instances at different processes overlap
slightly (unless |Dequeue| < u, in which case processes invoke Dequeue simultaneously,
which the variable s below handles). Any set linearization of any of our runs will start with
n singleton sets, enqueueing the values 1..n in order. Further operation instances will set-
linearize after those Enqueue instances. In general, messages from lower-indexed processes
to higher-indexed processes take d − u time, while those from higher-indexed processes to
lower-indexed processes take d time. The primary exception is that after a certain point,
messages from pn−1 to pn will also take d time. This prevents pn from collecting complete
information on other processes’ actions, which is enough uncertainty to cause incorrect
behavior. As we develop our proof, we will modify other delays, but start from this pattern.

Let Q := min
{ 3d+2u

5 , d
2 + u

}
throughout the paper. To prove that |Dequeue| ≥ Q, in

the following we assume for the sake of contradiction that |Dequeue| < Q ≤ d.

4 Distinct Return Values

For our first set of runs, we show that each Dequeue instance may return a distinct value,
despite the fact that each is concurrent with at least one other instance. While this is the
easier part of the proof, it is interesting as it shows that, under uncertainty in message delay,
processes cannot tell whether their Dequeue instances are or are not concurrent, so the
relaxation gives no advantage, as processes must spend time to choose distinct return values.

We denote this set of runs by Dk, 1 ≤ k ≤ n, where the first k processes invoke Dequeue

instances slightly overlapped as discussed, and higher-indexed processes invoke Dequeue

slightly later. We will inductively show that the Dequeue at pk must return a different value
from those at p0, . . . , pk−1, then shift the run to obtain Dk+1, which is indistinguishable.
When the inductive chain of shifts is complete, we will see that all n Dequeue instances in
Dn must return different values.

▶ Construction 2. Define run Dk (D for Distinct) as follows, for each 1 ≤ k < n:
p0 invokes Enqueue(1) · · · Enqueue(n) in order. Let t be any arbitrary time after
Enqueue(n) returns at which the system is quiescent.
∀0 ≤ i < k, process pi invokes Dequeue at time t + i × s, where s = max{0, Q − u}.
∀k ≤ j < n, process pj invokes Dequeue at time t + (j − 1)s + (s + u).

A. Tran and E. Talmage 34:7

Process p0 has local clock offset c0 = 0.
∀0 < i < k, process pi has local clock offset ci =

(
i
n

)
u.

∀k ≤ j < n, process pj has local clock offset cj =
(

j−n
n

)
u.

∀0 ≤ i < k ≤ j < n, messages from pi to pj have delay d, from pj to pi have delay d − u.
∀0 ≤ a < b < k, messages from pa to pb have delay d − u, from pb to pa have delay d.
∀k ≤ c < d < n, messages from pc to pd have delay d − u, from pd to pc have delay d.

Define run Dn similarly, but setting clock offsets, invocations, and message delays only for
processes pi with i < n. Since pn does not exist, it does not invoke Dequeue, send or receive
messages, or have a local clock offset.

Since all local clock offsets for processes pi with 0 < i < k are positive and increase
with i and all offsets for processes pj with k ≤ j < n are negative and increase with j, the
maximum skew between processes is |ck−1 − ck| =

∣∣ k−1
n − k−n

n u
∣∣ = n−1

n u = ε, except when
k = n, when no such pj exists and the maximum skew is

∣∣0 − n−1
n u

∣∣ = ε. With this fact and
since all message delays are in the range [d − u, d], we see that each Dk is an admissible run.

Our first step is to note that each Dk is a shifted version of Dk−1, which implies that
they are all indistinguishable. The proof is a straightforward application of classic shifting,
adjusting real times, clock offsets, and message delays, and is included in the appendix. Then
we can prove that each Dequeue instance in Dn must return a different value.

▶ Lemma 3. For all 2 ≤ k < n, Dk = Shift(Dk−1, −−→sk−1), where −−→sk−1’s only non-zero
component is −u at index k − 1: −−→sk−1 = ⟨0, . . . , 0, −u, 0, . . . , 0⟩.

▶ Lemma 4. In run Dk, 1 ≤ k ≤ n, every Dequeue instance returns a distinct value.
Specifically, for each 0 ≤ i < n, the Dequeue instance at pi returns i + 1.

Proof. Consider D1. Here, p0 invokes Dequeue at time t, which must return by time
t + |Dequeue|. p1 invokes Dequeue at time t + (1 − 1)s + (s + u) > t + |Dequeue|, which
is after p0’s Dequeue instance returns. Every process pi with i ≥ 1 invokes Dequeue no
earlier than p1, so no other Dequeue instance is concurrent with p0’s, and thus that one
must set-linearize before any other. This means that p0 returns 1 to its Dequeue instance
and all other processes return values in the set {2, . . . , n} to their Dequeue instances.

Assume that for some arbitrary 0 ≤ k < n − 1, each process pi, 0 ≤ i < k returns i + 1
to its Dequeue instance. We will then show that process pk returns k + 1 to its Dequeue

instance. First, note that in Dk, pk invokes Dequeue at time t + (k − 1)s + (s + u), while
every pi, 0 ≤ i < k has its Dequeue instance return no later than t + (i − 1)s + |Dequeue| ≤
t + ((k − 1) − 1)s + |Dequeue| < t + (k − 2)s + (s + u). Since s ≥ 0, this is before pk

invokes Dequeue, so pk’s Dequeue instance must set-linearize strictly after all of those at
any lower-indexed pi. By the inductive hypothesis, each of those k processes returns i + 1, so
pk must return a value larger than k.

Now, consider Dk+1. Since Dk+1 is a shifted version of Dk, no process can distinguish the
two runs, so all behave the same way in both. Specifically, pk will return the same value to its
Dequeue instance. But in Dk+1, by an identical argument to that in the previous paragraph,
each pj , k < j < n invokes Dequeue after the Dequeue instance at pk returns, so they must
all set-linearize strictly after pk’s Dequeue instance, and those of each pi, 0 ≤ i ≤ k. Since
there are only k + 1 Dequeue instances set-linearized with or before that at pk, these must
return values from the set {1, . . . , k + 1}. But we know that those at processes with indices
in {0, . . . , k − 1} all return values from {1, . . . , k}, and the Dequeue instance at pk returns a
value distinct from any of these, so it must return k + 1, and we have the claim. ◀

DISC 2023

34:8 Multiplicity Queue Lower Bounds

5 Repeated Return Values

For the second set of runs, we will show that n processes, each invoking one Dequeue instance
in our same partially-overlapping pattern, will not return all different values to those Dequeue

instances. To do this, we first show that if only three processes invoke Dequeue, then they
will only return two distinct values. We then inductively construct more and more complex
runs, with one more process joining the pattern and invoking Dequeue in each successive pair
of runs. When the induction reaches n, we will show that we have a run indistinguishable
from the Dn we constructed in the previous section. Since each of the Dequeue instances in
that run returns a distinct value, and those in the run we construct here do not all return
distinct values, we have a contradiction, proving that the assumed algorithm cannot exist.

First, we define the family of runs Sk, in each of which only k ≤ n processes invoke
Dequeue. We inductively show that each of these has some pair of Dequeue instances which
return the same value, eventually showing that not all Dequeue instances in Sn return
distinct values. Then, to show the chain of indistinguishabilities in our induction, we will
need another set of runs, which are intermediate steps.

▶ Construction 5. Define run Sk (S for Same) as follows:
p0 invokes Enqueue(1) · · · Enqueue(n) in order. Let t be the same arbitrary time after
Enqueue(n) returns at which the system is quiescent as in the definition of Dk.
∀0 ≤ i < k, process pi invokes Dequeue at time t + i × s, where s = max{0, Q − u}.
Process p0 has local clock offset c0 = 0, and ∀0 < i < n, process pi has ci =

(
i
n

)
u.

∀0 ≤ i < j < n, messages from pj to pi have delay d and from pi to pj have delay d − u,
except for those from pk−2 to pk−1 sent after t∗

k−2 = t+(k −2)(d−u), which have delay d.

▶ Construction 6. For 1 ≤ k < n, define run S′
k from run Sk−1 by additionally having pk−1

invoke Dequeue at time t + (k − 1)s. Adjust the delay of all messages from pk−2 to pk−1
sent at or after t∗

k−2 = t + (k − 2)(d − u) to d.

In S′
k, we have added the next Dequeue instance, but have two processes’ messages

(pk−3’s and pk−2’s) to the next, larger-indexed, process delayed. We can show that processes
p0 through pk−2 cannot distinguish Sk−1 from S′

k before generating return values for their
Dequeue instances, so they must return the same values, which gives us information about
what pk−1 must return to its Dequeue instance. We then show that S′

k and Sk are indistin-
guishable to pk−1 until after it has generated a return value for its Dequeue instance, telling
us what values it could return. The prof is by mathematical induction on k, from 3 to n.

▶ Lemma 7. For sufficiently large n, all Dequeue instances in S′
n and Sn return values

from {1, . . . , n − 1}.

Proof. We proceed by induction on k.

Base Case. We proceed by induction on k, with base case k = 3, when only the first three
of our n processes invoking Dequeue, which is run S3. We show that all Dequeue instances
return values from {1, 2}, for sufficiently large n. Due to higher-indexed processes invoking
Dequeue later than lower-indexed processes, and the way we will set message delays, the
first Dequeue instance will behave as if it were running alone, returning 1. We will then
shift run S3, using a technique like that in [19] that allows us to over-shift and break some
message delays, then re-insert those messages with new, admissible delays. We can then
show that the resulting patched run is still indistinguishable from the starting run for long
enough. In this run, we will argue that the second process does not learn about the first

A. Tran and E. Talmage 34:9

process’ Dequeue instance until after its own returns, and thus cannot distinguish this run
from one in which it is running alone, so it must also return 1. Given these two return values,
set-linearizability implies that the third process’ Dequeue instance must return 2. We will
then show that the third process cannot distinguish between the original and shifted runs
before choosing its return value, so will return 2 in S3.

First, observe that p0 cannot learn about the Dequeue instances at p1 and p2 until
after its own Dequeue instance has returned. Since all messages from a higher-indexed
process to a lower-indexed process have delay d, the earliest p0 will learn about the other
Dequeue instances is at time t + s + d, since t + s is when p1 invokes Dequeue, and any
message indicating that this has happened will take d time to reach p0. Since p2 invokes
its Dequeue instance at time t + 2s ≥ t + s, the same logic will imply that p0 will also not
learn about that instance until after its own Dequeue instance has returned. p0’s Dequeue

instance returns no later than time t + |Dequeue|, by definition, which is strictly less than
t + d. Together, we see that p0 learns about a remote Dequeue invocation no sooner than
t + s + d ≥ t + d > t + |Dequeue|, so through the return of its Dequeue instance, p0 cannot
distinguish S3 from a run in which that is the only Dequeue instance. Thus, it returns the
same value, which by set-linearization is necessarily 1. Similarly, p1 must return a value in
{1, 2}, since it cannot learn about the Dequeue instance at p2 until time t + 2s + d, which is
larger than when its own Dequeue instance returns by t + s + |Dequeue|.

Next, we want to show that p2 will also return a value from {1, 2} to its Dequeue instance.
We cannot directly argue this, since if p2 learns about both the Dequeue instances at p0
and p1 before it generates a return value for its own, it may decide to return a different
value than either. Instead, we will shift events at p1 earlier, then argue that in this run, the
information about p0’s Dequeue instance does not arrive at p1 until after it has generated its
Dequeue return value, forcing p1 to return 1 to its Dequeue instance. Now, while p1 may be
able to distinguish this new run from S3, we will argue that p2 will not be able to distinguish
them until after it generates its Dequeue return, so must return the same value in both. In
the shifted run, p0 and p1 will both return 1, which means that p2 must return either 1 or 2
to satisfy set-linearizability.

We will shift S3 by the vector ⟨0, −X, 0, . . . , 0⟩, where X is a value we will determine
shortly. Next, we will alter message delays, both to delay p1 from learning about p0’s
Dequeue instance and to make the shifted run admissible, yielding run SX

3 .
Our first step is to find what shift amounts X for p1 will make SX

3 admissible, then argue
the behavior of each process. First, note that this shift will increase the local clock offset of
p1 by X. In S3, c1 = 1

n u, the smallest clock offset is c0 = 0 and the largest is cn−1 = n−1
n u.

To keep the run admissible, we must have X ≤
(

n−1
n u − 1

n u
)

= n−2
n u, since we are not

changing the smallest clock offset, so must keep c1 within ε of that offset.
Next, as shown in Table 1, we see that for a non-negative value of X, we will have some

inadmissible message delays in Shift(S3, ⟨0, −X, 0, . . . , 0⟩) (highlighted in the Shift(S3)
column). To correct these, we trim the run before any of the inadmissible messages would
arrive, then extend the run with other, admissible message delays (highlighted in the SX

3
column), following the technique introduced in [19]. Unlike a shift, this may change the
behavior of the run, so we must argue what each process does in run SX

3 . We chose these
new delays to delay processes from learning about remote actions, setting all of the adjusted
delays to the maximum, d. Since X ≤ n−2

n u < u, then the delays not highlighted in the
SX

3 column are in the range [d − u, d], and we conclude that if 0 ≤ X ≤ n−2
n u, then SX

3 is
admissible.

DISC 2023

34:10 Multiplicity Queue Lower Bounds

Table 1 Table showing message delays to and from p1 in runs for base case in repeated Dequeue

return values proof. Delays for other processes are unchanged across the three runs.

Message Path S3 Shift(S3) Adjusted: SX
3

p0 → p1 d − u d − u − X d

p1 → p0 d d + X d

p1 → p2 (initially) d − u d − u + X d − u + X

p1 → p2 (after t∗
1) d d + X d

p1 → p≥3 d − u d − u + X d − u + X

p≥2 → p1 d d − X d − X

Now that we know what values of X make SX
3 an admissible run, we will find which of

those values of X will make all three Dequeue instances return values from {1, 2} in SX
3 .

p0 will not learn about p2’s Dequeue instance until after its own returns, by the same
argument as in S3. We want p0 to also not learn about p1’s Dequeue instance until after its
own returns. p1 invokes Dequeue at t + s − X in SX

3 , since we shifted events at p1 earlier by
X. A message sent at this time will arrive at p0 at time t + s − X + d, and we want to argue
that this will be after t + |Dequeue|, and thus after p0’s Dequeue instance returns. This
happens if and only if d + s − X > |Dequeue|, or X < d + s − |Dequeue|. Since s ≥ 0, it is
sufficient to require that X < d − |Dequeue| to ensure that p0’s Dequeue instance returns 1.

To force p1’s Dequeue instance to return 1, we want information about p0’s invocation
of Dequeue to arrive after p1 generates its Dequeue return value. Thus, we want to have
time t + d (since messages from p0 to p1 have delay d in SX

3) later than when p1 generates a
return value. p1 invokes Dequeue at time t + s − X and the Dequeue instance returns at
most |Dequeue| time after invocation, so we want to have t + d > t + s − X + |Dequeue|.
Solving for X, we find that this is true iff X > |Dequeue| + s − d. Here, we split into
cases depending on the value of s: If s = 0, we want X > |Dequeue| − d, but we assumed
that |Dequeue| < d, so any non-negative value of X is sufficient. If s = Q − u, we want
X > |Dequeue| + (Q − u) − d = |Dequeue| + Q − (d + u).

Similarly to previous arguments, since p2 invokes Dequeue at least X after p1 does (p2
invokes Dequeue s after p1 in S3, which means s + X after in SX

3), and message delays
from p2 to p1 are d − X, p1 cannot learn about p2’s Dequeue invocation until at least
X + (d − X) = d > |Dequeue| after p1 invokes Dequeue. This is after p1 generates its
Dequeue return value. Combining this with the previous conclusion that p1 is unaware
of p0’s Dequeue invocation until after it chooses a return value, we conclude that p1 will
return the same value as in a run where neither p0 nor p2 invoked Dequeue. The only legal
set-linearization of such a run requires that p1 return 1.

We can now reason about p2’s behavior. Since both p0 and p1 must return 1 to their
Dequeue instances in SX

3 , we conclude that p2 must return either 1 or 2, as there is no legal
set-linearization of any other return value. We will thus argue that p2 cannot distinguish
SX

3 from S3 until after it generates its Dequeue return value, concluding that p2 will return
either 1 or 2 to its Dequeue instance in S3 as well.

Consider when each process in S3 can first distinguish that it is not in SX
3 . These

differences correspond to the adjusted message delays highlighted in the final column of
Table 1. p0 can distinguish the runs when it does not receive a message p1 may have sent at
its Dequeue invocation as soon as it would have received it in SX

3 , since in SX
3 we reduced

the delay on messages from p1 to p0. This detection would occur at time t+s+(d−X), when
that message does not arrive. p1 can first distinguish the runs at time t + (d − u), when it can

A. Tran and E. Talmage 34:11

receive a message p0 sent at its Dequeue invocation but which arrives later in SX
3 , where we

increased the delay on messages from p0 to p1. Note t + s + (d − X) + (d − u) > t + (d − u)
and t + s + (d − X) ≤ t + (d − u) + d, so neither process can send a message after it detects
the difference which will arrive before the recipient detects the difference itself.

Finally, p2 can distinguish the runs either by receiving a message p0 or p1 sends after
distinguishing the runs or directly from adjusted message delays. We argue that each of
these must occur after the Dequeue instance at p2 returns, so p2 cannot distinguish S3 from
SX

3 until after that Dequeue instance’s return value is set, so the value must be the same in
both runs.

Consider when p2 can receive a forwarded detection of a difference in the runs:
p0 can send this information no sooner than t + s + (d − X), and the message would take
d time to arrive, meaning that the earliest p2 could distinguish the runs based on this
information is t+s+2d−X. We want to show that this is greater than t+2s+ |Dequeue|,
and thus after p2’s Dequeue instance returns. This is true iff 2d − X − u > s + |Dequeue|.
Consider cases for the value of s:

s = 0: We want to show that 2d − X − u > |Dequeue|. This is true if and only if X <

(d − |Dequeue|) + (d − u), but we know that d ≥ u so this holds if X < d − |Dequeue|.
s = Q − u: We want to show that 2d − X − u > |Dequeue| + Q − u. This is true if
and only if X < (d − Q) + (d − |Dequeue|). Since Q ≤ d and we are already assuming
X < d − |Dequeue|, this inequality holds.

p1 can send a message informing p2 that it is in S3, not SX
3 , no sooner than t + (d − u).

Since t + (d − u) = t∗
2, this message will take d time to arrive at p2. We want to show

that this is after p2’s Dequeue instance returns, which happens at t + 2s + |Dequeue|.
Thus, we want t + (d − u) + d > t + 2s + |Dequeue|, or 2d − u > 2s + |Dequeue|. Solving
for |Dequeue|, this is equivalent to |Dequeue| < 2d − 2s − u. Consider the possible values
of s:

s = 0: We want to show that |Dequeue| < 2d − u. But we know that d ≥ u, so
d − u ≥ 0 and |Dequeue| < d, so this inequality holds.
s = Q − u: We want to show that |Dequeue| < 2d − 2(Q − u) − u = 2d − 2Q + u.
But |Dequeue| < Q, so it is sufficient to show that Q ≤ 2d − 2Q + u. This holds iff
Q ≤ 2d+u

3 . But we assumed Q ≤ 3d+2u
5 ≤ 2d+u

3 , so we have the desired relationship.
Thus, p2 cannot learn from p1 that it is in SX

3 before it generates a return value for its
Dequeue instance.

Finally, we show that p2 cannot directly differentiate S3 from SX
3 based on the altered

message delays in SX
3 before its Dequeue instance returns. At the earliest, this can happen

at t∗
2 + d − X, when p2 does not receive a message in S3 that it may have in SX

3 , since in
SX

3 we decreased the delay of messages p1 sends to p2 at or after time t∗
2 − X. We again

want to show that this is after p2’s Dequeue instance returns which happens no later than
t + 2s + |Dequeue|. That is, we want t∗

2 + d − X = t + (d − u) + d − X > t + 2s + |Dequeue|.
Equivalently, we want 2d − u − X > 2s + |Dequeue|. Consider cases for s:

s = 0: In this case, we want 2d − u − X > |Dequeue|, which is true iff X ≤ (d −
|Dequeue|) + (d − u). We already have the constraint that X < d − |Dequeue| and u ≤ d.
s = Q − u: Here, we want 2d − u − X > 2(Q − u) + |Dequeue|, which is true if
X < 2d + u − 2Q − |Dequeue|. This is a new constraint on X which we must meet.

Thus, in all cases (if X meets all our constraints simultaneously), p2 cannot distinguish
S3 from SX

3 until after its Dequeue instance returns. This means it returns the same value
in both runs, and since we proved it returns a value from {1, 2} in SX

3 , it also does in S3.

DISC 2023

34:12 Multiplicity Queue Lower Bounds

Our last step is to verify that our constraints on X are compatible–that there is a value
of X which will make Sk

3 admissible and give the behavior we want. Our constraints are
X ≥ 0 and X > |Dequeue| + Q − (d + u)
X < d − |Dequeue|, X < 2d + u − 2Q − |Dequeue|, and X ≤ n−2

n u

These three upper bounds and two lower bounds lead to six cases to check to show that
there exists a value of X which satisfies all of our constraints.

d − |Dequeue| > 0: By assumption, |Dequeue| < d, so d − |Dequeue| > 0.
d − |Dequeue| > |Dequeue| + Q − (d + u): This is true iff 2d + u > 2|Dequeue| + Q. Since
|Dequeue| < Q, it is sufficient to show that 2d + u ≥ 3Q, or Q ≤ 2d+u

3 , but we assumed
that Q ≤ 3d+2u

5 ≤ 2d+u
3 , so this relationship holds.

2d + u − 2Q − |Dequeue| > 0: This is equivalent to the previous case.
2d+u−2Q−|Dequeue| > |Dequeue|+Q−(d+u): This is true iff 3d+2u > 3Q+2|Dequeue|,
but it is sufficient to show that 3d + 2u ≥ 5Q, and we assumed that Q ≤ 3d+2u

5 , so this
relationship holds.
n−2

n u ≥ 0: n > 2 and u ≥ 0, and a positive fraction of u will thus be non-negative.
n−2

n u > |Dequeue| + Q − (d + u): Solving for |Dequeue| and Q, this is true iff Q +
|Dequeue| < d+ n−2

n u+u. Since |Dequeue| < d
2 +u, there is some N0 s.t. for all n ≥ N0,

|Dequeue| < d
2 + n−2

n u. Further |Q| ≤ d
2 + u, so combining these, the inequality holds

for n ≥ N0.
Thus, since every upper bound is larger than every lower bound, for sufficiently large n

(n ≥ N0), there exists at least one X such that SX
3 is admissible and p0, p1, and p2 all return

values from {1, 2} to their Dequeue instances, and we have the claim.

Inductive Case. Assume that for some arbitrary 4 ≤ k ≤ n, all Dequeue instances in Sk−1
return values from the set {1, . . . , k − 2}. We will show that in Sk and S′

k, all Dequeue

instances return values from the set {1, . . . , k − 1}. First, we will use Sk−1 to argue the
behavior of S′

k, then use that behavior to prove the behavior of Sk.
To show that in S′

k, all processes return values from the set {1, . . . , k−1} to their Dequeue

instances, we argue that processes p0, . . . , pk−1 cannot distinguish Sk−1 from S′
k until after

they have all generated their Dequeue return values. Thus, they will return the same values
as in Sk−1, which are all in {1, . . . k − 2} by the inductive hypothesis. We can then conclude
that pk−1, which invokes a Dequeue instance in S′

k but not in Sk−1 must return a value in
the set {1, . . . , k − 1} to satisfy set-linearizability.

Recall that S′
k differs from Sk−1 in two ways: First, pk−1 invokes Dequeue at time

t + (k − 1)s. Second, messages from pk−2 to pk−1 sent at or after t∗
k−2 = t + (k − 2)(d − u)

have delay d instead of d − u. Thus, the first point at which any process can discern that it
is in S′

k instead of Sk−1 is pk−1 at whichever of these events happens first. For any other
process, the first point where it can distinguish the runs is when it can receive a message
pk−1 sends after it discerns the difference. We will argue that such a message arrives at any
of p0, . . . , pk−2 after it has chosen a return value for its Dequeue instance. Note that we
need only prove that such a message arrives at pk−2 more than |Dequeue| after it invokes
Dequeue, since each process with a lower index invokes Dequeue at the same time or sooner,
and the message delay from pk−1 to any lower-index process is the same. We proceed by
cases on which distinguishing event at pk−1 occurs first.

pk−1 first distinguishes the runs when it invokes Dequeue: The message delay from pk−1
to pk−2 is d, and any indirect path would take even longer, since any such path must
have some message from a higher-indexed to lower-indexed process, which has delay d.
Thus, the earliest pk−2 can distinguish the runs is t + (k − 1)s + d. We want to show

A. Tran and E. Talmage 34:13

that this is later than the return time of pk−2’s Dequeue instance, which must return by
t+(d−2)s+|Dequeue|. This inequality is true iff t+(k−1)s+d > t+(k−2)s+|Dequeue|,
which reduces to s + d > |Dequeue|.
Since d > Q and s ≥ 0, this inequality holds, which means that pk−2 (and similarly
p0, . . . , pk−3) cannot use the extra Dequeue invocation at pk−1 to distinguish S′

k from
Sk−1 until after their Dequeue instances have returned.
pk−1 first distinguishes the runs when it fails to receive a message whose delay was
increased: The earliest possible sending time of such a message is t∗

k−2 = t+(k −2)(d−u).
pk−1 can detect that it has not arrived d−u later (when it would have arrived in Sk−1), and
then the earliest it can get information about the differentiation to a lower-indexed process
is another d after that. We similarly want to show that this is after the Dequeue instance
at pk−2 returns, which is true iff t+ (k −2)(d−u) + (d−u) +d > t+ (k −2)s+ |Dequeue|,
which reduces to (k − 1)(d − u) + d > (k − 2)s + |Dequeue|.
Since d > |Dequeue|, d ≥ u, and s = max{0, Q − u}, we see that d − u ≥ s, so the
inequality holds. Thus, in this case no process in p0, . . . , pk−2 can distinguish S′

k from
Sk−1 until after it has generated a return value for its Dequeue instance.

Since in neither case can p0, . . . , pk−2 distinguish S′
k from Sk−1 until after its Dequeue

instance returns, all their Dequeue instances return the same values in both runs. Specifically,
by the inductive hypothesis they all return values from the set {1, . . . , k − 2}. The Dequeue

instance at pk−1 must then return a value in the set {1, . . . , k − 1}, as any larger value would
violate set-linearizability, since there would be no Dequeue instance returning k − 1.

Now, having determined the behavior of S′
k, we use it to show that Sk will behave similarly.

This is another indistinguishability argument, showing that pk−1 cannot distinguish Sk from
S′

k, until after it has generated a return value for its Dequeue instances. Recall that the
difference between Sk and S′

k is that in Rk all messages from pk−3 to pk−2 have delay d − u,
while in S′

k, those sent at or after t∗
k−3 have delay d.

Before we start the indistinguishability argument, note that if pk did not invoke Dequeue

in Sk, the remaining k − 1 Dequeue instances must return values from the set {1, . . . , k − 1},
since there would only be k−1 instances, so there would be no way to set-linearize an instance
that returned a larger value. These processes must behave the same way in Sk as in this run,
since the first point where any could detect a difference would be d after pk’s invocation,
which is after all other Dequeue instances have returned, similar to prior arguments. Thus,
we need only concern ourselves with showing that pk−1 cannot distinguish Sk from S′

k before
its Dequeue instance returns, so that it will return a value in {1, . . . , k − 1}, as we proved it
does in S′

k.
The only process which can directly detect a difference between Sk and S′

k is pk−2, when
it receives a message in Sk which arrives sooner than it could in S′

k. This occurs d − u

after time t∗
k−3, when the message delays changed. The soonest pk−1 can learn about the

difference is when a message from pk−2, sent after it detected the difference, could arrive.
But t∗

k−3 + (d − u) = t∗
k−2, so any message pk−2 sends to pk−1 after this point has delay d.

Thus, the soonest pk−1 can distinguish Sk from S′
k is t∗

k−2 + d = t + (k − 2)(d − u) + d. We
argue that this is after pk−1 generates its Dequeue return value, which occurs no later than
t+(k−1)s+|Dequeue|. We thus want to show that t+(k−2)(d−u)+d > t+(k−1)s+|Dequeue|.
Consider the cases for s:

If s = 0: The inequality holds iff (k − 2)(d − u) + d > |Dequeue|, which is true because
d ≥ u and d > |Dequeue|. If s = Q − u: The inequality holds if (k − 2)(d − u) + d >

(k − 1)(Q − u) + |Dequeue|, or (k − 1)d > (k − 1)Q − u + |Dequeue|. Since |Dequeue| < Q,
it is sufficient to show that (k − 1)d ≥ kQ − u, or Q ≤ (k−1)d+u

k .

DISC 2023

34:14 Multiplicity Queue Lower Bounds

To prove this final inequality, recall that Q ≤ 3d+2u
5 and that k ≥ 4. For all k ≥ 4,

(k−1)d+u
k ≥ 3d+u

4 , so it suffices to show that 3d+2u
5 ≤ 3d+u

4 . This follows because 3d+2u
5 =(3d+u

4
) (4

5
)

+ u
5 , and u

5 ≤
(1

5
) (3d+u

4
)
, as that inequality reduces to u ≤ d, which is true.

We conclude that pk cannot distinguish Sk from S′
k until after it generates a return value

for its Dequeue instance, so it must return the same value in both runs, which we previously
proved was in the set {1, . . . , k − 1}. Thus, by mathematical induction, when k = n, all
Dequeue instances in Sn return values from the set {1, . . . , n−1}, and we have the claim. ◀

6 Contradiction

Let us quickly recap what we have shown so far. First, we showed that there is a run
Dn with n overlapping Dequeue instances each returning a different value. Then, we
(somewhat laboriously) showed that there is a run Sn with n overlapping Dequeue instances
in which two Dequeue instances return the same value. Now, we want to show that these
runs are indistinguishable, a contradiction, as processes must return the same values in
indistinguishable runs.

▶ Theorem 8. There is no uniform, set-linearizable implementation of a multiplicity queue
with |Dequeue| < min

{
d
2 + u, 3d+2u

5
}

.

Proof. Assume, in contradiction, that there is such an algorithm. Then the conditions for
Lemma 4 and Lemma 7 are satisfied, so we know that Sn and Dn exist, where all Dequeue

instances in Sn return values from {1, . . . , n − 1} and the Dequeue instance at pi in Dn

returns i + 1, for all 0 ≤ i < n. Recall that Sn requires that n ≥ N0, defined in Section 5 s.t.
for all n ≥ N0, |Dequeue| < d

2 + n−2
n u.

Note that Sn and Dn are nearly identical–they have the same initial sequence of Enqueue

instances at p0, the same clock offsets (c0 = 0, ci = i
n u, 1 ≤ i < n), and the same Dequeue

invocations (pi invokes Dequeue at time t + (i − 1)s). The two runs also have nearly identical
message delays, where if 0 ≤ i < j < n, messages from pj to pi have delay d and those from
pi to pj have delay d − u, except that in Sn, messages from pn−2 to pn−1 sent at or after
time t∗

n−2 have delay d. Thus, if we extend those message delays in Dn, we will have the
same run. We will argue that we will still have Dn’s behavior, which differs from Sn’s, in
the same run, which is a contradiction.

Suppose first that u < d. Construct D∗ from Dn by delaying all messages from pn−2 to
pn−1 sent at or after t∗

n−2 by d. We argue that no process can distinguish that it is in D∗

instead of Dn before its Dequeue instance returns. The first point where any process could
distinguish the two runs is when a message pn−2 sends at t∗

n−2 does not arrive at pn−1 at the
same time in D∗ it would in Dn, because we extended its delay. Thus, the first time a process
can distinguish the two runs is t∗

n−2 + d − u = t + (n − 2)(d − u) + (d − u) = t + (n − 1)(d − u).
We argue that, for sufficiently large n, this is after pn−1’s Dequeue instance returns. That
happens at or before t + (n − 1)s + Q. We thus want t + (n − 1)(d − u) > t + (n − 1)s + Q,
which is true iff (n − 1)(d − u) > (n − 1)s + Q. Consider the possible values of s by cases:

s = 0: We want to show that (n − 1)(d − u) > Q. This is true when n > Q
d−u + 1. Since

d > u, this is true for sufficiently large n. Let N1 be such that for all n ≥ N1, n > Q
d−u +1.

s = D − u: We want to show that (n − 1)(d − u) > (n − 1)(Q − u) + Q. This is true
when (n − 1)d − (n − 1)u > nQ − (n − 1)u, or (n − 1)d > nQ. If we solve for n, we have
n(d − Q) − d > 0, or n > d

d−Q , since d − Q > 0. Again, this is true for sufficiently large
n, so let N2 be such that for all n ≥ N2, n > d

d−Q .

A. Tran and E. Talmage 34:15

Thus, in runs with sufficiently large n (at least max{N0, N1, N2}), pn−1 cannot distinguish
that it is in D∗, not Dn, until after its Dequeue instance has returned. Similarly, no other
process can distinguish the runs before its Dequeue instance returns, as those returns occur
by t + (i)s + Q ≤ t + (n − 1)s + Q for 0 ≤ i < n, so there is not time for pn−1 to inform
any other process of the discrepancy since by the time pn−1 discovers it, all other processes’
Dequeue instances have already returned.

Next, we have the case where u = d. In this case, observe that t∗
n−2 = t+(n−2)(d−u) = t,

so all messages from pn−2 to pn−1 starting at t have delay d. Thus, pn−1 can distinguish the
runs at t + (d − u) = t, which is before its Dequeue instance returns.

Instead, we can use a reduction argument to disprove the existence of an algorithm
performing better than our bound. Choose a new message uncertainty u′ = d+|Dequeue|

2 ,
noting that this gives 0 < u′ < d. Now, since our assumed algorithm correctly implements
a multiplicity queue in a system with message delays in the range [0, d] with |Dequeue| <

min
{ 3d+2u

5 , d
2 + u

}
= d, it must also correctly implement that multiplicity queue in a system

with message delays [d − u′, d], since any run possible in that system is possible in the
system where d = u since the range of possible message delays is completely contained in
[d − u, d]. It thus implements multiplicity queues in a system with message uncertainty
u′ with |Dequeue| < d = 2u′ − |Dequeue|. Then |Dequeue| < u′ < min

{
3d+2u′

5 , d
2 + u′

}
because d > u′. But this contradicts the impossibility of such an algorithm as proved in the
u < d case above, so our assumed algorithm cannot exist. ◀

Note that the n ≥ max{N0, N1, N2} constraint is the only place we need the assumption
of uniform algorithms. This shows that our proof applies not only to uniform algorithms,
but to any algorithm on at least that many processes. However, we state the result as for
uniform algorithms to get a result applicable to any system, as we have not excluded higher
performance of non-uniform algorithms in small systems.

Finally, we note that our result is an improvement over the previously best known bound
of |Dequeue| ≥ min

{ 2d
3 , d+u

2
}

[13], with the added restriction to uniform algorithms. This
claim follows from elementary algebra, as d+u

2 = d
2 + u

2 < d
2 +u and d+u

2 ≤ 2.5d+2.5u
5 ≤ 3d+2u

5 ,
since u ≤ d.

▶ Corollary 9. Any uniform, set-linearizable implementation of a multiplicity queue must
have |Dequeue| ≥ d+u

2 ≥ min
{ 2d

3 , d+u
2

}
.

7 Partial Tightness

While it may seem that the d
2 + u term in the lower bound is an artifact of our limited proof

techniques for lower bounds, and future work may increase the bound to 3d+2u
5 or better for

all values of u, we here outline an algorithm for the special case where u = 0 which matches
the d

2 + u = d
2 lower bound, beating 3d

5 . This suggests d
2 + u may be somehow fundamental,

despite not holding everywhere.
The idea of the algorithm is to have all processes maintain a local copy of the queue, which

they update based on messages about operation invocations. For every operation invocation,
the invoking process broadcasts operation and arguments immediately, then returns after
d/2 time. Thus, if two instances are concurrent, neither can learn about the other, since
messages take d time to arrive. If they are non-concurrent, then there is more than d time
from the invocation of the first instance to the return of the second instance, so at the end of
a Dequeue instance the invoking process must know about any strictly-preceding instances.
Each process will execute every Enqueue instance on its local copy, d/2 after invocation

DISC 2023

34:16 Multiplicity Queue Lower Bounds

at the invoking process and d after invocation at every other process, when it receives the
message. Non-invoking processes will only locally execute Dequeue instances if they have
not already seen another Dequeue instance concurrent with it. If they have, detected by
timestamps, then they have already removed the return value from their local copy, so there
is no further work to do. Full pseudocode for the algorithm appears in the appendix, along
with the proof of the following theorem.

▶ Theorem 10. If u = 0, there is a uniform, set-linearizable implementation of a multiplicity
queue with |Dequeue| = d/2.

8 Conclusion

We developed a new combination of shifting and other indistinguishability arguments to
prove a larger lower bound of |Dequeue| ≥ min

{ 3d+2u
5 , d

2 + u
}

in uniform multiplicity queue
implementations. This both improves the state of the art and suggests ways to improve the
bound further. For example, strengthening the base case for Lemma 7 in Section 5 should
improve the 3d+2u

5 portion of the lower bound. We hypothesize that this may increase to
approach a limit of |Dequeue| ≥ d for all non-zero values of u, which seems an intuitive
value. If that is true, our tightness result that |Dequeue| = d/2 is possible when u = 0 is
more interesting, as it suggests the bounds may be discontinuous. We continue exploring
these bounds to understand multiplicity queues, and then use that understanding to design
and understand other data type relaxations.

References
1 Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed consistency

for improved concurrency. In Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah,
editors, Principles of Distributed Systems - 14th International Conference, OPODIS 2010,
Tozeur, Tunisia, December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes in Computer
Science, pages 395–410. Springer, 2010. doi:10.1007/978-3-642-17653-1_29.

2 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

3 Armando Castañeda and Miguel Piña. Fully read/write fence-free work-stealing with
multiplicity. In Seth Gilbert, editor, 35th International Symposium on Distributed Com-
puting, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.DISC.2021.16.

4 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Relaxed queues and stacks from
read/write operations. In Quentin Bramas, Rotem Oshman, and Paolo Romano, editors, 24th
International Conference on Principles of Distributed Systems, OPODIS 2020, December 14-16,
2020, Strasbourg, France (Virtual Conference), volume 184 of LIPIcs, pages 13:1–13:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.2020.13.

5 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.
Quantitative relaxation of concurrent data structures. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 317–328.
ACM, 2013. doi:10.1145/2429069.2429109.

6 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991. doi:10.1145/114005.102808.

7 Colette Johnen, Adnane Khattabi, and Alessia Milani. Efficient wait-free queue algorithms with
multiple enqueuers and multiple dequeuers. In Eshcar Hillel, Roberto Palmieri, and Etienne
Rivière, editors, 26th International Conference on Principles of Distributed Systems, OPODIS
2022, December 13-15, 2022, Brussels, Belgium, volume 253 of LIPIcs, pages 4:1–4:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.OPODIS.2022.4.

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/200836.200869
https://doi.org/10.4230/LIPIcs.DISC.2021.16
https://doi.org/10.4230/LIPIcs.OPODIS.2020.13
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1145/114005.102808
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4

A. Tran and E. Talmage 34:17

8 Pankaj Khanchandani and Roger Wattenhofer. On the importance of synchronization primitives
with low consensus numbers. In Paolo Bellavista and Vijay K. Garg, editors, Proceedings of
the 19th International Conference on Distributed Computing and Networking, ICDCN 2018,
Varanasi, India, January 4-7, 2018, pages 18:1–18:10. ACM, 2018. doi:10.1145/3154273.
3154306.

9 Martha J. Kosa. Time bounds for strong and hybrid consistency for arbitrary abstract data
types. Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/
articles/1999/9/contents.html.

10 Jennifer Lundelius and Nancy A. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2/3):190–204, 1984. doi:10.1016/S0019-9958(84)80033-9.

11 Gil Neiger. Set-linearizability. In James H. Anderson, David Peleg, and Elizabeth Borowsky,
editors, Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, Los Angeles, California, USA, August 14-17, 1994, page 396. ACM, 1994. doi:
10.1145/197917.198176.

12 Nir Shavit and Gadi Taubenfeld. The computability of relaxed data structures: queues
and stacks as examples. Distributed Comput., 29(5):395–407, 2016. doi:10.1007/
s00446-016-0272-0.

13 Edward Talmage. Lower bounds on message passing implementations of multiplicity-relaxed
queues and stacks. In Merav Parter, editor, Structural Information and Communication
Complexity - 29th International Colloquium, SIROCCO 2022, Paderborn, Germany, June
27-29, 2022, Proceedings, volume 13298 of Lecture Notes in Computer Science, pages 253–264.
Springer, 2022. doi:10.1007/978-3-031-09993-9_14.

14 Edward Talmage and Jennifer L. Welch. Improving average performance by relaxing distributed
data structures. In Fabian Kuhn, editor, Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes
in Computer Science, pages 421–438. Springer, 2014. doi:10.1007/978-3-662-45174-8_29.

15 Edward Talmage and Jennifer L. Welch. Relaxed data types as consistency conditions.
Algorithms, 11(5):61, 2018. doi:10.3390/a11050061.

16 Edward Talmage and Jennifer L. Welch. Anomalies and similarities among consensus
numbers of variously-relaxed queues. Computing, 101(9):1349–1368, 2019. doi:10.1007/
s00607-018-0661-2.

17 Anh Tran and Edward Talmage. Brief announcement: Improved, partially-tight multiplicity
queue lower bounds. In Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and
Alkida Balliu, editors, Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023, pages 370–373. ACM, 2023.
doi:10.1145/3583668.3594602.

18 Anh Tran and Edward Talmage. Improved and partially-tight lower bounds for message-passing
implementations of multiplicity queues, 2023. doi:10.48550/arXiv.2305.11286.

19 Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch. Improved time
bounds for linearizable implementations of abstract data types. Inf. Comput., 263:1–30, 2018.
doi:10.1016/j.ic.2018.08.004.

A Appendix

A.1 Proofs Omitted from Paper Body
▶ Lemma 11. For all 2 ≤ k < n, Dk = Shift(Dk−1, −−→sk−1), where −−→sk−1’s only non-zero
component is −u at index k − 1: −−→sk−1 = ⟨0, . . . , 0, −u, 0, . . . , 0⟩.

Proof. Let k be an arbitrary value with 2 ≤ k < n. Consider what happens when we shift
Dk−1 by −−→sk−1. All events at pk−1 occur u earlier in real time, so pk−1 invokes Dequeue at
time t + ((k − 1) − 1)s + (s + u) − u = t + (k − 2)s + s = t + (k − 1)s, which matches the

DISC 2023

https://doi.org/10.1145/3154273.3154306
https://doi.org/10.1145/3154273.3154306
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/197917.198176
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/978-3-031-09993-9_14
https://doi.org/10.1007/978-3-662-45174-8_29
https://doi.org/10.3390/a11050061
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1007/s00607-018-0661-2
https://doi.org/10.1145/3583668.3594602
https://doi.org/10.48550/arXiv.2305.11286
https://doi.org/10.1016/j.ic.2018.08.004

34:18 Multiplicity Queue Lower Bounds

definition of Dk. Let 0 ≤ i < k − 1 < j < n. Message delays in Dk−1 from pk−1 to pi were
d − u, and from pi to pk−1 were d. In the other direction, messages delays from pk−1 to pj

were d − u and from pj to pk−1 were d. When we shift the send and receive events at pk−1
earlier, messages from pk−1 have a longer delay by u and messages to pk−1 have a shorter
delay u. We see that this leaves all delays from pk−1 to another process at d and all delays
to pk−1 at d − u, which are admissible. Since we only shifted one process, messages between
other processes are unchanged.

Finally, we consider clock offsets. ck−1 is
(

(k−1)−n
n

)
u in Dk−1, and must increase by

u to hide the difference in real time when we shift. Thus, in Shift(Dk−1, −−→sk−1), ci−1 =(
1 + (k−1)−n

n

)
u =

(
(k−1)

n

)
u, matching the specification for Dk. ◀

A.2 Partial Tightness: Special Case Upper Bound
The algorithm is event-driven, where each process can react to operation invocations, message
receptions, and expiration of local timers it sets. Because u = 0, every message takes exactly
d time to arrive. Thus, since the algorithm broadcasts every message, when any process
receives a message, it knows all other processes receive the same message at the same time.
Further, since there is no uncertainty, the maximum clock skew is (1 − 1/n)0 = 0, so every
process’ local clock (read by the function localClock()) is equal to real time. We thus let every
operation instance take d/2 time. By the message delay and operation instance duration, a
process learns about an instance at another process before it returns to an instance at itself
if and only if that remote instance returned before the local one’s invocation, so applying
remote operations to the local copy of the structure immediately upon receipt and choosing
Dequeue return values d/2 after invocation together keep the local copies synchronized and
choose correct values.

Let R be an arbitrary run of Algorithm 1. Observe that every invocation in R either has
a matching response, d/2 after invocation. We define a set-linearization of R and prove that
π respects real time order and is legal.

▶ Construction 12. Place each Enqueue instance in a singleton set and define the set’s
timestamp as the pair of the invoking process’ local clock read on line 3 plus d/2 and the
invoking process’ id. For each Dequeue return value x, place all Dequeue instances which
return x in a set, and define the set’s timestamp as the smallest timestamp of any instance
in the set, where a Dequeue instance’s timestamp is the pair of the local clock read in line 5
and the invoking process’ id, with the id breaking ties between clock values. Let π be the
sequence of these sets ordered by increasing timestamps (break ties by process id).

▶ Lemma 13. π respects the order of non-overlapping operation instances.

Proof. Let op1 and op2 be any two non-overlapping operation instances, with op1 invoked at
pi and returning before op2’s invocation at pj . Since local clocks are exactly real time, and
all instances have duration d/2, then op1’s timestamp will be more than d/2 smaller than
op2’s. Thus, the only way that op1 would not strictly precede op2 in π is if they were in the
same set, which could happen if they are both Dequeue instances which returned the same
value x. But in that case, since op1 returned before op2’s invocation and each of op1 and op2
took d/2 time between invocation and response, then pj would receive the message pi sent
on line 5 at op1’s invocation before op2 returns. This should have removed x from pj ’s local
copy of the queue, unless there were another element preceding x in pj ’s local queue when
op2 returned. By the FIFO ordering of the multiplicity queue, this can only happen if there
is a Dequeue instance which pi applied before op1 returned but pj did not apply before op2

A. Tran and E. Talmage 34:19

Algorithm 1 Set-linearizable implementation of a multiplicity queue with u = 0. Code for each pi.

Initially: localQueue is an empty FIFO queue, mostRecentDequeue = 0
1: HandleInvocation Enqueue(arg)
2: send ⟨enq, arg⟩ to all other processes
3: setT imer(d/2, ⟨enq, arg, ⟨localClock(), i⟩, return⟩)
4: HandleInvocation Dequeue
5: send ⟨deq, ts = ⟨localClock(), i⟩⟩ to all other processes
6: setT imer(d/2, ⟨deq, ts⟩)
7: HandleTimer Expire(⟨enq, arg, ts, return⟩)
8: Generate Enqueue response to user
9: setT imer(d/2, ⟨enq, arg, apply⟩)

10: HandleTimer Expire(⟨enq, arg, apply⟩)
11: localQueue.enqueue(arg)
12: HandleTimer Expire(⟨deq, ⟨clockV al, i⟩⟩)
13: Generate Dequeue response to user with return value localQueue.dequeue()
14: mostRecentDequeue = clockV al

15: HandleReceive ⟨enq, arg⟩
16: localQueue.enqueue(arg)
17: HandleReceive ⟨deq, ⟨clockV al, j⟩⟩
18: if clockV al > mostRecentDequeue + d/2 then
19: localQueue.dequeue()
20: mostRecentDequeue = clockV al

returned. Any Dequeue instance which pi has applied before op1 returns was either delivered
to pj at the same time as to pi, and thus applied to pj ’s local copy or invoked at pi before
op1, but then by the time op1 returns, by the fact that every Dequeue returns d/2 time after
invocation, pj would also receive and apply that Dequeue instance before op2’s invocation.
Thus, there cannot be an element in pj ’s local queue preceding x when it applies op1, and
op2 cannot return x. ◀

▶ Lemma 14. π is legal by the specification of a multiplicity queue.

Proof. We proceed by induction on σ, a prefix of π. If σ is empty, then it is legal, as the
empty sequence is always legal.

Suppose that σ = ρ · S, where S is a set of operation instances. Assume that ρ is legal.
We will show that σ is also legal by cases on S.

If S = Enqueue(x), then σ is necessarily legal, as Enqueue does not return a value, so
cannot be illegal.

If S is a set of Dequeue instances returning x, then we need to argue that the algorithm
chose x correctly. Each invoking process chose the oldest value in its local copy of the queue
as a return value, in line 13, so we merely need to argue that the local copy of the queue
contains the elements enqueued and not dequeued in ρ, in order. Consider the Dequeue

instance in S with the smallest timestamp, and call it d and its invoking process pi. When
pi executes line 13 to generate d’s return, it will have received every Enqueue invocation in
ρ, as those were invoked at least d/2 before than this Dequeue, and added them to its local
queue. The order of Enqueue instances in ρ matches their timestamp order, which is the
order in which they are locally applied, since every process adds each Enqueue argument d

DISC 2023

34:20 Multiplicity Queue Lower Bounds

time after its invocation. When any other process pj which has a Dequeue instance return
the same value as d executes line 13 for that instance, it will have locally applied all Enqueue

instances pi has, and possible more. But any additional Enqueue instances will have larger
timestamps, and thus follow Enqueue(x) in π, so would not be the correct return value for
this Dequeue instance.

Thus, each process chooses x as the oldest-enqueued value in ρ which it has not already
removed for another Dequeue instance. Such an instance must be in ρ, as another Dequeue

instance at the same process would have a smaller timestamp and one at another process
would not remove a value from the local queue until d after its invocation, which means it
would have a smaller timestamp than this Dequeue instance which returns x.

Further, each process only removes values from its local queue when there is a Dequeue

instance returning it. Suppose this were not so. Then some process pk must have received
a Dequeue instance which returned y and executed line 19 when it had already removed
y from its local queue. But pk could only remove y when it either returned y to its own
Dequeue instance or received a message about another Dequeue instance. But either of
those cases would update mostRecentDequeue, so the check on line 18 means that the two
Dequeue instances which returned y had timestamps more than d/2 apart, which implies
they were not concurrent, so they could not have returned the same value as that would
imply they are in the same set in π, which is not possible by Lemma 13.

Finally, there cannot be a Dequeue instance returning x in ρ, as all instances returning
x are in the set S. Thus, x is the argument of the first Enqueue instance in ρ which is not
returned by a Dequeue instance in ρ. ◀

▶ Theorem 15. If u = 0, Algorithm 1 is a uniform, set-linearizable implementation of a
multiplicity queue with |Dequeue| = d/2.

Proof. By Lemma 13, the sequence π we defined in Construction 12 respects the real-time
order of non-overlapping instances. Lemma 14 proves that π is legal, so it is a legal set-
linearization, proving by construction that Algorithm 1 is a set-linearizable implementation
of a multiplicity queue. By lines 6 and 13, every Dequeue instance returns d/2 time after
invocation, so |Dequeue| = d/2. Finally, the code for Algorithm 1 does not depend on n, so
it is a uniform algorithm. ◀

Since this matches our lower bound of |Dequeue| ≥ min
{ 3d+2u

5 , d
2 + u

}
= d

2 when u = 0,
this algorithm is optimal and proves the bound is tight in this case.

	1 Introduction
	1.1 Related Work

	2 Model and Definitions
	2.1 System Model
	2.2 Multiplicity Queues
	2.3 Shifting Proofs

	3 Lower Bound Proof Outline
	4 Distinct Return Values
	5 Repeated Return Values
	6 Contradiction
	7 Partial Tightness
	8 Conclusion
	A Appendix
	A.1 Proofs Omitted from Paper Body
	A.2 Partial Tightness: Special Case Upper Bound

