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Abstract
Algorithms to solve fault-tolerant consensus in asynchronous systems often rely on primitives such
as crusader agreement, adopt-commit, and graded broadcast, which provide weaker agreement
properties than consensus. Although these primitives have a similar flavor, they have been defined
and implemented separately in ad hoc ways. We propose a new problem called connected consensus
that has as special cases crusader agreement, adopt-commit, and graded broadcast, and generalizes
them to handle multi-valued (non-binary) inputs. The generalization is accomplished by relating
the problem to approximate agreement on graphs.

We present three algorithms for multi-valued connected consensus in asynchronous message-
passing systems, one tolerating crash failures and two tolerating malicious (unauthenticated Byzan-
tine) failures. We extend the definition of binding, a desirable property recently identified as
supporting binary consensus algorithms that are correct against adaptive adversaries, to the multi-
valued input case and show that all our algorithms satisfy the property. Our crash-resilient algorithm
has failure-resilience and time complexity that we show are optimal. When restricted to the case
of binary inputs, the algorithm has improved time complexity over prior algorithms. Our two
algorithms for malicious failures trade off failure resilience and time complexity. The first algorithm
has time complexity that we prove is optimal but worse failure-resilience, while the second has
failure-resilience that we prove is optimal but worse time complexity. When restricted to the case of
binary inputs, the time complexity (as well as resilience) of the second algorithm matches that of
prior algorithms.
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1 Introduction

One way to address the impossibility of solving consensus in asynchronous systems is to
employ unreliable failure detectors [6]. Several algorithms in this class (e.g., [4, 14]) combine
a failure detector with a mechanism for detecting whether processes have reached unanimity,
in the form of an adopt-commit protocol [21]. In such a protocol, each process starts with
a binary input value and returns a pair (v, g) where v is one of the input values and g is
either 1 or 2. The process is said to pick v as its output value; furthermore, if g = 2, then it
commits to v, and if g = 1, then it adopts v. In addition to the standard validity property
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that the output value is the input of some correct process, an adopt-commit protocol ensures
that processes commit to at most one value, and if any process commits to a value, then no
process adopts the other value.

Another way to address the impossibility of consensus is to use randomization and provide
only probabilistic termination. Some algorithms in this class (e.g., [20]) rely on a mechanism
called crusader agreement [9]: Roughly, if all processes start with the same value v, they must
decide on this value, and otherwise, they may pick an undecided value, denoted ⊥. Other
algorithms in this class (e.g., [7]) rely on graded broadcast [12], also called graded crusader
agreement, graded consensus, or just gradecast. In a sense, graded broadcast is a combination
of adopt-commit with crusader agreement: the decisions are either (v, g), where v is a binary
value and g is either 1 or 2, or ⊥ (also denoted (⊥, 0)). As in adopt-commit, the requirement
is that processes commit to at most one value, but in addition, if any process adopts a value,
then no process adopts the other value. In a sense, the ⊥ value allows a separation between
adopting one value and adopting a different value.

The relation between crusader agreement, adopt-commit and graded broadcast becomes
apparent when they are pictorially represented, as in Figure 1, with the possible decisions
represented by vertices on a path. The different “convergence” requirements all boil down to
ensuring that processes decide on the same or adjacent vertices on the path.

With binary inputs, this description of the problems resembles approximate agreement
on the [0, 1] real interval with parameter ϵ [10]: processes start at the two extreme points
of the interval, 0 or 1, and must decide on values that are at most ϵ apart from each other.
Decisions must also be valid, i.e., contained in the interval of the inputs.

Indeed, crusader agreement reduces to approximate agreement with ϵ = 1
2 : Run approx-

imate agreement with your input (0 or 1) to get some output y, then choose the value in
{0, 1

2 , 1} that is closest to y (taking the smaller one if there are two such values, e.g., for
y = 1

4 ). Finally, return ⊥ if 1
2 is chosen. (A similar observation is noted in [11,16].) Likewise,

adopt-commit reduces to approximate agreement with ϵ = 1
3 , and graded consensus to

taking ϵ = 1
4 . This connection makes it clear why binary crusader agreement, adopt-commit

and graded broadcast can be solved in an asynchronous message-passing system, in the
presence of crash and malicious (unauthenticated Byzantine) failures, within a small number
of communication rounds.

In some circumstances, agreement must be reached on a non-binary value, e.g., the
identity of a leader, or the next operation to apply in state machine replication. To handle
multi-valued inputs, where processes can start with an input from some set V with |V | ≥ 2,
we define a new problem, connected consensus. Connected consensus elegantly unifies
seemingly-diverse problems, including crusader agreement, graded broadcast, and adopt-
commit, and generalizes them to accept multi-valued inputs. The definition takes inspiration
from approximate agreement on graphs [5], in which each process starts with a vertex of a
graph as its input and must decide on a vertex such that all decisions are within distance
one of each other and within the convex hull of the inputs.

Figure 1 Left: crusader agreement. Center: adopt-commit. Right: graded broadcast.
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Figure 2 Spider graphs: R = 1 (left) and R = 2 (right).

2 Connected Consensus and Related Problems

Connected consensus can be viewed as approximate agreement on a restricted class of graphs,
called spider graphs [15]. These graphs consist of a central clique (which could be a single
vertex) to which are attached |V | paths (“branches”) of length R, the refinement parameter.

More formally, let V be a finite, totally-ordered set of values; assume ⊥ /∈ V . Given a
positive integer R, let GS(V, R) be the “spider” graph consisting of a central vertex labeled
(⊥, 0) that has |V | paths extending from it, with one path (“branch”) associated with each
v ∈ V . The path for each v has R vertices on it, not counting (⊥, 0), labeled (v, 1) through
(v, R), with (v, R) being the leaf. (See Figure 2.) Given a subset V ′ of V , we denote by
T (V, R, V ′) the minimal subtree of GS(V, R) that connects the set of leaves {(v, R)|v ∈ V ′};
note that when V ′ is a singleton set {v} then T (V, R, {v}) is the single (leaf) vertex (v, R).

In the connected consensus problem for V and R, each process has an input from V . The
requirements are:

Termination: Each correct process must decide on a vertex of GS(V, R), namely, an element
of {(v, r)|v ∈ V, 1 ≤ r ≤ R} ∪ {(⊥, 0)}.

Validity: Let I = {(v, R)|v is the input of a (correct)1 process}. The output of each (correct)
process must be a vertex in T (V, R, I). In particular, if all (correct) processes start with
the same input v, then (v, R) must be decided.

Agreement: The distance between the vertices labeled by the decisions of all (correct)
processes is at most one.

Setting R = 1 gives crusader agreement [9]. Setting R = 2 gives graded broadcast [13],
also called adopt-commit-abort [8].

Recently, the definition of binary (graded) crusader agreement was extended to include a
binding property [1]: “before the first non-faulty party terminates, there is a value v ∈ {0, 1}
such that no non-faulty party can output the value v in any continuation of the execution.”
That paper demonstrates that this property facilitates the modular design of randomized
consensus algorithms that tolerate an adaptive adversary. We refer to [1] for an excellent
description of the usage, and its pitfalls, of (graded) crusader agreement, together with
common coin protocols, in randomized consensus; they show how faster (graded) crusader
agreement algorithms lead to faster randomized consensus algorithms.

1 When “correct” is in parentheses, it only applies for the case of malicious failures.
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Figure 3 Centerless spider graph with R = 2 (left) and its reduction to a (centered) graph (right).

We generalize the binding property to hold for multi-valued inputs: once the first process
decides, one value is “locked”, so that in all possible extensions, the decisions are on the
same branch of the spider graph. Formally:

Binding: In every execution prefix that ends with the first (correct) process deciding, one
value is “locked”, meaning that in every extension of the execution prefix, the decision of
every (correct) process must be on the same branch of the spider graph.

If the first decision is not (⊥, 0), then this condition follows from Agreement. More
interestingly, if the first decision is (⊥, 0), then there are many choices as to which branch is
locked but the choice must be the same in every extension. Note that when |V | = 2, our
definition is equivalent to the original one [1], but for larger V , our definition is stronger –
the original definition only excludes one value, leaving |V | − 1 possible decision values, while
ours excludes |V | − 1 values, leaving only one possible decision value.

When R = 1, there are only two vertices on any given branch of the spider graph, (v, 1)
and (⊥, 0). Thus, the Binding property implies the Agreement property. If R = 2, though,
the Binding property only restricts the branch of the spider graph on which decisions can be
made; both (⊥, 0) and (v, 2) are on the same branch, but Agreement does not permit them
to both be decided.

Recall that in adopt-commit [14, 21], processes return a pair (v, g) where v is one of
the input values and g is either 1 (adopt) or 2 (commit). Thus, there is no analog of the
“center” vertex. We model this with a centerless spider graph (see left side of Figure 3).
Here, GS(V, R) is the graph consisting of a clique on the vertices (v, 1) for all v ∈ V , each
with a path extending from it, with R − 1 vertices on it, not counting (⊥, 0), labeled (v, 2)
through (v, R), with (v, R) being the leaf. Decisions must satisfy Termination, Validity and
Agreement as specified for the variant with a center. Since the graph has no center, binding
cannot be defined; indeed, when a process returns (v, 1), other processes might return (v′, 1),
for v ̸= v′.

The centerless problem can be reduced to the centered problem with the same refinement
parameter: Call the algorithm for the centered problem with your input u. If the return
value is (v, g) with g > 0, then decide this value for the centerless problem; when the return
value is (⊥, 0), decide (u, 1) for the centerless problem. (See right side of Figure 3.)

In the vacillate-adopt-commit (VAC) problem [2], the possible output values are
(v,commit), (v,adopt), and (v,vacillate), where v is any value. If any output is (v,commit),
then every other output is either (v,commit) or (v,adopt), for the same v. Furthermore,
if there is no commit output and there is at least one (v,adopt) output, then every other
output is either (v,adopt), with the same value v, or (w,vacillate), where w can be any value.
VAC corresponds to a centerless spider graph with refinement parameter R = 3. However, a
closer look at the usage of VAC suggests that the return value of vacillate is irrelevant and
the problem could be represented as a centered spider graph with R = 2.
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3 New Algorithms for Connected Consensus

With these definitions at hand, we turn to designing algorithms for connected consensus
in asynchronous message-passing systems that tolerate crash or malicious failures. There
is an algorithm for approximate agreement on general graphs in the presence of malicious
failures [19]. However, it requires exponential local computation and does not satisfy the
Binding property. We are interested in special-case spider graphs, as described above;
furthermore, we focus on the cases when the refinement parameter R equals either 1 or 2,
which captures the applications of interest. Thus we exploit opportunities for optimizations
to obtain better algorithms.

For communication complexity, we count the maximum, over all executions, of the
number of messages sent by all the (correct) processes. We adopt the definition in [3] for
time complexity in an asynchronous message-passing system. We start by defining a timed
execution as an execution in which nondecreasing nonnegative integers (“times”) are assigned
to the events, with no two events by the same process having the same time. For each timed
execution, we consider the prefix ending when the last correct process decides, and then
scale the times so that the maximum time that elapses between the sending and receipt of
any message between correct processes is 1. We define the time complexity as the maximum,
over all such scaled timed execution prefixes, of the time assigned to the last event. (For
simplicity, we assume all processes start at time 0.) This definition of time complexity is
analogous to that in [17,18], which measures the length of the longest sequence of causally
related messages.

We present an algorithm for R = 1 and R = 2 with the Binding property that tolerates
crash failures assuming n > 2f , where n is the number of processes and f is the maximum
number of faulty processes, which is optimal. Its time complexity is R and its message
complexity is O(n2). The message complexity is optimal and the time complexity is optimal
for reasonable resiliencies. The best previous algorithms, in [1], have slightly worse time
complexity: 2 for R = 1 (crusader agreement) and 3 for R = 2 (graded crusader agreement).
Furthermore, both of these previous algorithms are for the binary case (|V | = 2) only.

For malicious failures, we first present a simple algorithm with Binding for R = 1 and
R = 2, that assumes n > 5f . Like the crash-tolerant algorithm, its time complexity is R and
its message complexity is O(n2). The message complexity is optimal and the time complexity
is optimal for reasonable resiliencies. Both this algorithm and our crash-tolerant one derive
the Binding property from the inputs of the processes. That is, the assignment of input
values to the processes uniquely determines which non-⊥ value, if any, can be decided in any
execution with that input assignment. The fact that Binding is determined solely by the
inputs is conducive to the development of simple and efficient algorithms. However, we show
that in the presence of malicious failures Binding cannot be determined solely by the inputs
when n < 5f , even if faulty processes do not equivocate.

Our main algorithmic contribution is a connected consensus algorithm for R = 1 and
R = 2 with Binding that tolerates f malicious failures, where n > 3f . A simple proof shows
that this is the optimal resilience. Its time complexity is 5 for R = 1 and 7 for R = 2,
and its message complexity is O(|V | · n2), where V is the set of input values. The message
complexity can be reduced to O(n2), at the cost of increasing the time complexity by 2,
using techniques of [18].

The upper bounds of 5 and 7 on the time complexity are tight for our algorithm, as shown
by giving a concrete execution. The execution uses V = {0, 1} and it is also an execution
of the crusader agreement algorithm in [1], implying that the tight time complexity of the
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36:6 Brief Announcement: Multi-Valued Connected Consensus

Table 1 Summary of connected consensus algorithms for R = 1 (crusader agreement) and R = 2
(graded broadcast) with input set V ; all algorithms satisfy Binding.

failure type crash malicious
algorithm this paper [1] this paper this paper this paper [1]

(|V | = 2) + [18] (|V | = 2)
resilience n > 2f n > 2f n > 5f n > 3f n > 3f n > 3f

messages O(n2) O(n2) O(n2) O(|V | · n2) O(n2) O(n2)
time R = 1 1 2 1 5 7 5
time R = 2 2 3 2 7 9 7

latter algorithm is also 5, and that of the graded broadcast algorithm in [1] is 7. This is
in contrast to the round complexities of 4 and 6 calculated in [1] for their algorithms. The
round complexity counts the number of broadcasts performed by an algorithm. However,
in their algorithms (as well as in ours), waiting conditions are imposed before performing
the next broadcast. If the condition is simply to receive enough messages from the previous
broadcast, then at most one time unit elapses per broadcast. But when there is an additional
condition, then the condition may take more than one time unit to become true.

4 Discussion

This paper presents the connected consensus problem. A numeric refinement parameter, R,
allows connected consensus to generalize a number of primitives used to solve consensus,
including crusader agreement, graded broadcast, and adopt-commit. The problem can be
reduced to real-valued approximate agreement when the input set is binary and and to
approximate agreement on a specific class of spider graphs for multi-valued input sets (with
two or more inputs). We define the Binding property for the multi-valued case, which
previously was only defined for the binary case.

We design efficient message-passing algorithms for connected consensus when R is 1
(corresponding to crusader agreement) or 2 (corresponding to graded broadcast), in the
presence of crash and malicious failures, for arbitrarily large input sets. The algorithms are
modular in that the R = 2 case is obtained by appending more communication exchanges to
the R = 1 case. (Table 1 summarizes our algorithms and relates them to prior work.)

Our algorithm for crash failures has optimal resilience and message complexity. Its time
complexity is optimal for reasonable resiliencies and improves on the best previously known
algorithms, which only handled binary inputs. We provide two algorithms for malicious
failures: One algorithm has time complexity 1 or 2 (for R = 1 or R = 2) and sends O(n2)
messages, but requires n > 5f . The other algorithm only requires n > 3f , but has time
complexity 5 or 7 (for R = 1 or R = 2) and sends O(|V | · n2) messages. This is the same
performance as the algorithms in [1] which are only for the case when |V | = 2.

An intriguing open question is whether there is some measure, perhaps time, in which
solving connected consensus without Binding is more efficient than solving it with Binding?
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