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Abstract
In this work, we study the class of problems solvable by (deterministic) Adaptive Massively Parallel
Computations in constant rounds from a computational complexity theory perspective. A language
L is in the class AMPC0 if, for every ε > 0, there is a deterministic AMPC algorithm running in
constant rounds with a polynomial number of processors, where the local memory of each machine
s = O(Nε). We prove that the space-bounded complexity class ReachUL is a proper subclass of
AMPC0. The complexity class ReachUL lies between the well-known space-bounded complexity
classes Deterministic Logspace (DLOG) and Nondeterministic Logspace (NLOG). In contrast, we
establish that it is unlikely that PSPACE admits AMPC algorithms, even with polynomially many
rounds. We also establish that showing PSPACE is a subclass of nonuniform-AMPC with polynomially
many rounds leads to a significant separation result in complexity theory, namely PSPACE is a
proper subclass of EXPΣP
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1 Introduction

The Massively Parallel Computation (MPC) model is widely accepted as the standard
theoretical model for distributed computation frameworks such as MapReduce, Spark,
Hadoop, FlumeJava, Beame, Pregel, and Gigraph [7, 9]. It was defined in [5], and it captures
computation on large data: data is adversarially distributed to processors, and each processor
has local memory s = O(Nε) (0 < ε < 1 where N is the input size. Computation occurs
in rounds, and in each round, every machine performs computation based on its local
data and then communicates with other machines with the constraint that the amount of
communication by a process is equal to that of its local memory s. A salient feature of the
MPC model is that no computational restriction is placed on the processor, except that each
processor has local memory s, and a key objective is to minimize the number of rounds.
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Ideally, one would like to design an algorithm with constant rounds with a small number
of processors. The MPC model has been extensively studied in the context of designing
algorithms as well as its relationship with complexity classes [2, 3, 4, 7, 5, 6, 16].

Recent work of [7] introduced an adaptive extension of the MPC model called Adaptive
Massively Parallel Computation model (AMPC). In the AMPC model, the processors
communicate via a shared memory called Distributed Data Stores (DDS) by reading from
and writing to the DDS. In a single round, a machine can adaptively query the DDS to
obtain s words and write at most s words, and as in the case of MPC, s is O(Nε). In [7],
authors designed a constant round randomized AMPC algorithm for 1v2-Cycle as well as
a few other graph problems.

In this work, we report progress on the power and limitation of the AMPC model from a
computational complexity theory viewpoint. Towards this, we define a robust complexity
class which we denote by AMPC0. A language L is in AMPC0 if for every ε there is a constant
round (depending on ε) AMPC algorithm with P = p(N) many processors (where p(·) is a
polynomial) each with s = O(Nε) memory. We define a similar complexity class AMPCpoly

where the number of rounds is polynomial. We study the relationship of these AMPC
complexity classes with respect to the standard space-bounded complexity classes DLOG,
NLOG, and PSPACE. The starting point of our work is that the ideas from the randomized
AMPC algorithm for 1v2-Cycle from [7] can be used to show that the complexity class
DLOG is a subset of (uniform) AMPC0. Motivated by this, we explore whether NLOG is a
subset of AMPC0. We make progress toward this question by studying a complexity class
ReachUL [8, 1, 11]. This is a natural complexity class that lies between DLOG and NLOG and
has been studied earlier in the context of designing space-efficient algorithms for reachability
that beat the Savitch’s bound [1]. We prove that ReachUL is a subset of (uniform) AMPC0,
More interestingly, we show that ReachUL is a proper subset of (uniform) AMPC0. On the
contrary, we observe that it is unlikely that the whole of PSPACE (or even NP) can be solved
even in AMPCpoly. This is because every language that admits (uniform) AMPCpoly algorithm
can be solved in subexponential time. Since we do not believe that PSPACE can be solved
in subexponential time, we obtain that it is unlikely that PSPACE ⊆ AMPCpoly. We also
consider the limitation of nonuniform AMPCpoly. We unconditionally show that there exist
languages in EΣP

2 that are not in AMPCpoly. We note that the work reported in [15] also
considered the relations of complexity classes such as DLOG and NLOG to MPC model.

▶ Remark. In an algorithmic setting, it is typically desired that the total memory of an
AMPC algorithm P · s to be N · poly log(N). However, to define a robust complexity class
(closed under reductions), we allow P to be polynomial and require that for every 0 < ε < 1,
there is an algorithm with s local memory per processor.

2 Preliminaries

We now give the formal description of the AMPC model [7, 9]. Let p(·), s(·) and r(·) are
functions from N to N. An AMPC[p(N), s(N), r(N)] algorithm for length N , is a collection
of processors Mi,j , 1 ≤ i ≤ p(N) and 1 ≤ j ≤ r(N) where each processor has a memory
bound of s(N). In addition to the processors there is a collection of Distributed Data Stores
(DDS) denoted by D0,D1,D2, . . .Dr(N). For each DDS, the data is stored in a bit addressable
manner (as done in [9]) i.e., a collection of key-value pairs in the form of (i, ith bit of DDS).
The input string x = x1 . . . xN is stored in D0 in the form of {(i, xi)}N

i=1. The computation
occurs in rounds. The processors Mi,j , 1 ≤ i ≤ p(N) participate in the jth round. In the
jth round, each of these processors is allowed to make s(N) adaptive queries to read from
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Dj−1 and each processor is allowed to can write up to s(N) bits to Dj . The computation
stops after r(N) rounds, and we say that the algorithm accepts string x if the value of key 1
in Dr(N) is 1.

Inherently this is a nonuniform model of computation. A language L is in the class
(nonuniform) AMPC0 if for every 0 < ε < 1, there exists a polynomial p(·), and a constant
r = r(N) > 0 such that for every input length N ≥ 0, there is a AMPC[p(N), Nε, r] algorithm
that accepts L on strings at length N . We define the uniform AMPC model. This definition
is similar to the uniform MRC model as defined in [10]. For an algorithm P , we use Pi,j

to denote a processor whose behavior is the same as P on inputs i and j. A language L

is in the class (uniform) AMPC0 if for every ε > 0, there exists a polynomial p(·) and a
constant r = r(N), and a logspace bounded algorithm U that on input 1N outputs the code
of a processor P with the following properties: the processors Pi,j 1,≤ i ≤ p(N), 1 ≤ j ≤ r

constitute a AMPC[p(N), Nε, r] algorithm that accepts L at strings of length N . Analogously
we define uniform and nonuniform versions of the class AMPCpoly where the number of rounds
is allowed to be a polynomial. In the rest of the document, we write AMPC0 to denote
(uniform) AMPC0.

We use DLOG (resp. PSPACE) to denote the class of languages accepted by deterministic
logspace (resp. polynomial-space) Turing machines. The complexity class E is the class of
languages that are accepted by deterministic 2O(N)-time bounded machines, and ΣP

2 denote
the class of languages in the second level of the polynomial-hierarchy. A language L is in the
class SubEXP, if for every ε > 0, there is a O(2Nε)-time bounded machine that accepts L. A
language L is in NC1 if L can be decided by a family of circuits {CN}N∈N where CN has
poly(N) size and O(log N) depth.

▶ Definition 1 ([8, 1]). A nondeterministic machine is called reach-unambiguous if for
every configuration C, there is at most one path from the start configuration to C. The
class ReachUL is the class of languages that are accepted by O(log N)-space-bounded reach-
unambiguous machines.

▶ Definition 2 (Reach-Unambiguous). Reach-Unambiguous is the language consisting
of tuples ⟨G, a, b⟩ such that (1) G = (V, E) is a directed graph, (2) for all u ∈ V there exists
at most 1 directed path from a to u and, (3) there exists a directed path from a to b.

It is known that Reach-Unambiguous is complete for ReachUL with respect to logspace
reductions [13, 8, 1].

3 Results

3.1 ReachUL in AMPC0

We show that ReachUL is a proper subset of AMPC0. We start with the following theorem.

▶ Theorem 3. DLOG ⊊ AMPC0. That is, DLOG is a proper subset of AMPC0.

▶ Corollary 4. AMPC0 is closed under logspace reductions.

Inclusion of Theorem 3 follows from [7]. The authors showed a randomized constant round
AMPC algorithm for the DLOG-complete problem, 1v2-Cycle. Their algorithm can be
modified to obtain a deterministic algorithm by allowing for O(N) processors and using
O(N1+ε) total memory for any ε. The strictness of inclusion follows from Theorem 8 which
we prove.

DISC 2023
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Let ⟨G, a, b⟩ be an input instance of Reach-Unambiguous where G = (V, E) is a reach-
unambiguous graph such that V = {v1, . . . , vN} and a, b ∈ V . Without loss of generality, we
assume that the out-degree of each vertex is at most 2. For u ∈ V and s ∈ N, define Ts(u) to
be the tree resulting from a Breadth First Search (BFS) starting from u in G upto s nodes
such that no node is partially visited, i.e., either all the children of any vertex are in the
tree, or none of them are. We shall call every node other than u in Ts(u) a descendent of
u. The main ingredient in our proof is Algorithm 1 that constructs a compressed version
of Ts(u). This algorithm is based on the tree contraction idea [1]. We note that recently
tree contraction has been studied in the context AMPC in [12]. For any graph G, we often
overload the notation G to also refer to the vertex set of the graph.

▶ Definition 5. Let u ∈ V , and v be a descendant of u in Ts(u). v is said to be an
intermediate vertex for Ts(u) if there exists an edge (v, w) ∈ E such that w ̸∈ Ts(u). Define
Is(u) ⊆ Ts(u) as the set of vertices that are intermediate for Ts(u). We say that Ts(u) is
complete if Is(u) = ∅, otherwise Ts(u) is incomplete.

Intermediate vertices capture the idea of vertices that can still be explored. If v is an
intermediate vertex for Ts(u), that means v can still be further explored. But due to the
BFS parameter s, it could not explore v any further. We shall assume for simplicity of the
analysis that if a tree Ts(u) is incomplete, the tree has exactly s + 1 vertices (in general, such
a tree could have either s or s + 1 vertices). Thus the condition |Ts(u)| < s + 1 denotes the
condition that Ts(u) is complete.

Algorithm 1 Construct Algorithm.

1 Function Construct(u, s):
2 Compute Ts(u) using at most O(s) queries.
3 if b ∈ Ts(u) then

// b can be reached from u within s queries
4 T ′

s(u)← ({b}, ∅)
5 else if |Ts(u)| < s + 1 then

// b cannot be reached from u

6 T ′
s(u)← ({u}, ∅)

7 else
// b cannot be reached from u within s queries, need to explore

8 Compute Is(u) using at most O(s) queries
9 T ′

s(u)← A complete binary tree whose leaves are exactly Is(u)
10 Write T ′

s(u) to the DDS

Let T ′
s(u) be the output of Construct(u, s) in Algorithm 1. T ′

s(u) is a contracted version
of Ts(u). If b ∈ Ts(u) or |Ts(u)| < s + 1, the search from u is completed, and we can contract
the tree to a single node. Otherwise, the tree is contracted to a complete binary tree whose
leaves are Is(u), which are precisely the candidates that can lead to b. Locally, it is possible
that T ′

s(u) does not contract. Claim 6 shows that globally the contraction will occur.
Define the tree T ′ generated by starting with T ′

s(a), and recursively substituting every
leaf l ∈ T ′ with T ′

s(l). Continuing the process until substituting leaves does not change the
tree. This graph has the property that ⟨T ′, a, b⟩ ∈ Reach-Unambiguous ⇐⇒ ⟨G, a, b⟩ ∈
Reach-Unambiguous since the only vertices that remain are those vertices that have the
potential to reach b. For an AMPC model, T ′ need not be explicitly constructed since each
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tree is locally computed and is then updated in the DDS. We shall now show that the graph
size reduces by a factor of s/2, which is sufficient to get the algorithm to halt in constant
rounds by setting s = O(Nε).

▷ Claim 6. |T ′| ≤ 2N/s

Given u ∈ V , for analysis’ sake construct Hs(u) by making every descendant in Ts(u)
a child of u, i.e. Hs(u) is a re-arranged version of Ts(u) such that edges go from u to the
descendants of u in Ts(u).

We now construct an s-ary tree, H, such that it is always full (vertices either have out
degree 0 or s). Start with Hs(a), then for every leaf l whose parent is p such that l ∈ Is(p)
substitute l with Hs(l) if Ts(p) = s + 1. If the BFS search was incomplete, substitute it with
b if b ∈ Hs(l), otherwise, do nothing. Repeat the process until no more substitutions can be
done. This construction leads to a full s-ary tree H, such that |H| ≤ N . H represents a BFS
traversal done in “batches” of size s, where only intermediate nodes are substituted with
another s-ary tree. Exploring non-intermediate nodes would be redundant. Let i denote the
number of internal nodes of this s-ary tree.

Proof of Claim 6. Since H is a full s-ary tree, i = |H|/s ≤ N/s. And H is essentially a
rearrangement of T ′ such that internal vertices in H correspond to intermediate vertices in
T ′. However, due to line 9 of Algorithm 1, we may be adding more vertices, but however, it
is no more than twice. i.e. we have |T ′| ≤ 2i. Therefore we have |T ′| ≤ 2N/s ◁

▶ Theorem 7. Reach-Unambiguous ∈ AMPC0

Proof. Let ⟨G, a, b⟩ be a problem instance of Reach-Unambiguous with G = (V, E) such
that V = {v1, . . . , vN}. Fix ε ∈ (0, 1). Define the AMPC algorithm with s = O(Nε) local
memory. Assign G1 ← G and R ← O(1/ε), for i = 1, . . . , R rounds do the following, for
each v ∈ Gi, a machine executes Construct(v, s) for Gi to get a new graph T ′ as described
earlier. Assign Gi+1 ← T ′. After the rounds are complete, |GR| = N

(s/2)R = O(1). Then a
single machine can perform normal reachability on GR, accepting the input if and only if
there is a path from a to b. ◀

▶ Theorem 8. For every c ∈ N. There exists a problem in AMPC0 that is not in
DSPACE(logc N)

Proof. Let A ∈ DSPACE(N2) but A ̸∈ DSPACE(N). We know such a problem exists due to
the space hierarchy theorem. Consider a padded language B defined as B = {⟨x, y⟩ | x ∈
A, |x| = M, |y| = 2M1/c −M}.

We claim that B ̸∈ DSPACE(logc N). Assume by contradiction, B ∈ DSPACE(logc N).
We show that in that case, A ∈ DSPACE(N). Let x be an input instance of A of length
M ; we shall solve it by reducing it to an instance of B, by generating z = ⟨x, y⟩, where
y = 02M1/c

−M , we have |z| = N = 2M1/c . The instance z need not be explicitly stored;
every bit can be computed on the fly. Thus the space used is O(M). Then use algorithm
for B to solve z using space O(logc N) = O(logc 2M1/c) = O(M). Thus A ∈ DSPACE(N) a
contradiction. Therefore, B ̸∈ DSPACE(logc N).

Now we show that B is in AMPC0. Let z = ⟨x, y⟩ be a problem instance of B of length
N . The crucial point to note is that the membership of z in B depends only on x, which has
length O(logc N). If x does not have this length, we can safely reject it. Fix an arbitrary
ε ∈ (0, 1). Consider the AMPC algorithm with just one machine and one round. Let z = ⟨x, y⟩
be an input of length N . The machineM reads x which has length M = O(logc N) ⊆ O(Nε),
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then checks if x ∈ A using space O(M2) = O(log2c N) ⊆ O(Nε), via our assumption that
A ∈ DSPACE(N2). If x ∈ A then M accepts otherwise rejects. Thus we have exhibited a
language B such that B ∈ AMPC0 but B ̸∈ DSPACE(logc N). ◀

▶ Theorem 9. ReachUL ⊊ AMPC0. That is, ReachUL is a proper subset of AMPC0.

Proof. The containment follows since Reach-Unambiguous is complete for ReachUL under
logspace reductions and by Corollary 4, AMPC0 is closed under logspace reductions. The
strict containment follows from the fact that ReachUL ⊆ NLOG ⊆ DSPACE(log2 N). Hence
by Theorem 8, there is a language in AMPC0 that is not in ReachUL. ◀

3.2 Limitations
This section discusses the limitations of the AMPC model in relation to well-known complexity
classes.

Uniform Model. Since each processor in each round has a memory bound of O(Nε), the
number of configurations of each processor is poly(2Nε) and hence runs in O(2Nε′

) for some
0 < ε′ < 1 (since the processors are halting). Thus it is clear that uniform AMPCpoly is
in SubEXP. Thus by time-hierarchy theorem, there is a language in EXP that is not in
AMPCpoly. This also establishes that it is unlikely that PSPACE is in AMPCpoly as this will
imply PSPACE is a subset of SubEXP. Moreover, no NP-complete problem (under logspace
reduction) is in AMPCpoly unless NP ⊆ SubEXP.

Non-uniform Model. In the case of non-uniform AMPC computations, we can argue that
any language accepted by a polynomial round AMPC algorithm can be simulated by a
Boolean circuit of size poly(2Nε). This is because every bit computed by a processor is a
decision tree of size O(2Nε) and hence has a Boolean circuit of size O(2Nε). Since the number
of bits written by all machines overall (polynomial) rounds is bounded by a polynomial, the
size of the Boolean circuit simulating the whole computation is poly(2Nε). It is known that
there is a language L in EΣP

2 that has maximum circuit complexity [14], it follows that L

is not in non-uniform AMPCpoly. This lower bound establishes that showing PSPACE is in
non-uniform AMPCpoly is difficult as this will imply an unknown complexity theory separation
that PSPACE is a proper subset of EXPΣP

2 .
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