
Brief Announcement: On Implementing Wear
Leveling in Persistent Synchronization Structures
Jakeb Chouinard #

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada

Kush Kansara #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Xialin Liu #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Nihal Potdar #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Wojciech Golab #

Department of Electrical and Computer Engineering, University of Waterloo, Canada

Abstract
The last decade has witnessed an explosion of research on persistent memory, which combines the
low access latency of dynamic random access memory (DRAM) with the durability of secondary
storage. Intel’s implementation of persistent memory, called Optane, comes close to realizing the
game-changing potential of persistent memory in terms of performance; however, it also suffers
from limited endurance and relies on a proprietary wear leveling mechanism to mitigate memory
cell wear-out. The traditional embedded approach to wear leveling, in which the storage device
itself maps logical addresses to physical addresses, can be fast and energy-efficient, but it is also
relatively inflexible and can lead to missed opportunities for optimization. An alternative school
of thought, exemplified by “open channel” solid state drives (SSDs), delegates responsibility for
wear leveling to software, where it can be tailored to specific applications. In this research, we
consider a hypothetical hardware platform where the same paradigm is applied to the persistent
memory device, and ask how the wear leveling mechanism can be co-designed with synchronization
structures that generate highly skewed memory access patterns. Building on the recent work of
Liu and Golab, we implement an improved wear leveling atomic counter by leveraging hardware
transactional memory in a novel way. Our solution is close to optimal with respect to both space
complexity and measured performance.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases persistent memory, transactional memory, wear leveling, atomic counter,
concurrency, fault tolerance, theory

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.38

Funding This research was supported by an Ontario Early Researcher Award, a Google Faculty
Research Award, as well as the Natural Sciences and Engineering Research Council (NSERC) of
Canada.

Acknowledgements We thank the anonymous reviewers for their helpful feedback on this work and
their insightful suggestions regarding future research directions.

1 Introduction

The last decade has witnessed an explosion of research on persistent memory. Research
activities in this area are primarily driven by the performance benefits of persistent memory,
which behaves like dynamic random access memory (DRAM) with respect to access latency
and yet provides the durability of secondary storage. Thus, persistent memory can be used

© Jakeb Chouinard, Kush Kansara, Xialin Liu, Nihal Potdar, and Wojciech Golab;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 38; pp. 38:1–38:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakeb.chouinard@uwaterloo.ca
mailto:kush.kansara@uwaterloo.ca
mailto:xialin.liu@uwaterloo.ca
mailto:nihal.potdar@uwaterloo.ca
mailto:wgolab@uwaterloo.ca
https://orcid.org/0000-0002-8891-256X
https://doi.org/10.4230/LIPIcs.DISC.2023.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

directly to store application state during a computation, and its use opens the door to
recovering such state efficiently from the memory device after a power failure or system crash.
Intel’s implementation of persistent memory, called Optane, comes close to realizing the
game-changing potential of persistent memory in terms of performance, but it suffers from
limited endurance, meaning that the memory cells tend to wear out in response to repeated
overwriting [3]. To prevent irrecoverable data loss during the product warranty period,
Optane persistent memory modules use a proprietary wear leveling mechanism that remaps
logical memory addresses to physical addresses somewhat similarly to a flash translation
layer (FTL) in a solid state drive (SSD).

The traditional embedded approach to wear leveling, in which the storage device itself
internally performs address remapping, can be fast and energy-efficient. However, this
one-size-fits-all solution is relatively inflexible, and it can lead to missed opportunities for
optimization when the workload (i.e., data access pattern) generated by an application
deviates from the one anticipated by the hardware designer. An alternative school of thought,
exemplified by “open channel” solid state drives (SSDs) [8], addresses this inherent limitation
by delegating responsibility for wear leveling to software, where it can be tailored more
effectively to specific applications. In this research, we consider a hypothetical hardware
platform where the same paradigm is applied to the persistent memory device, and ask how
the wear leveling mechanism can be co-designed with persistent data structures.

The case for application-managed wear leveling in the context of persistent memory
is especially interesting due to stringent design constraints that limit the solution space.
Specifically, the physical form factor of the persistent memory module limits how much
logical-to-physical (L2P) address translation data can be stored on the device, and the
translation algorithm must be extremely fast to enable memory access at DRAM-like latency.
To operate within these constraints, the wear leveling algorithm cannot accurately account
for the number of write cycles applied to every individual memory word, and so it must
operate at a coarser granularity. Details of Intel’s Optane persistent memory are not well
documented, but it is known that these memory modules are internally organized into blocks
of 256 bytes [5, 7]. Because of this, we speculate that wear leveling state is likely tracked on a
per-block basis (or even more coarsely). While such a block-based wear leveling scheme could
work effectively for workloads dominated by sequential writing, like storing append-only
logs, it can lead to severe resource under-utilization in a scenario where a single memory
word is repeatedly overwritten. This limitation is particularly relevant for a byte-addressable
“write-in-place” storage medium like Intel’s Optane memory, whereas a flash-based SSD’s
entire data block must always be erased before it can be overwritten.

This paper focuses on software-managed wear leveling for synchronization structures, such
as shared counters, which generate precisely the kind of skewed memory access pattern that
can delude a general-purpose embedded wear leveling solution. Building on the foundations
established by Liu and Golab [6], we propose a novel software implementation of an atomic
counter that internally harnesses together multiple words of persistent memory to distribute
wear. Our implementation uses transactional memory in a new way and vastly outperforms
Liu and Golab’s algorithm, which is based on ordinary Compare-And-Swap.

2 The Wear Leveling Problem

For the purposes of this paper, wear leveling is the abstract problem of implementing a
concurrent object that maintains correctness across many state changes while using base
objects that may lose their correctness after relatively few state changes. Liu and Golab [6]
formalized this notion as the following endurance property, where T can denote a constant
or a function of some model-specific parameters like the number of concurrent threads:

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:3

▶ Definition 1. An object has endurance T if it maintains its safety and liveness properties
in all executions where at most T updates (i.e., operations other than reads) are invoked on
the object, but not in some execution where T + 1 updates are invoked.

In general, the endurance of an implemented object (e.g., one that is strictly linearizable
[1, 2] and lock-free) is limited by the endurance of the base objects from which the implemented
object is constructed. We focus in this work on endurance-oblivious [6] implementations that
treat the endurance of the base objects as an unknown.

3 The Transactional Counter Algorithm

Building on the work of Liu and Golab [6], we seek improved implementations of the atomic
counter, also known as a Fetch-And-Increment object, in the system-wide crash-recover failure
model with persistent main memory and a volatile cache. The abstract state of a counter
object is an integer, typically initialized to zero. The object supports a single operation
that retrieves the current value of the counter and also increases the value by one. As an
example, a strictly linearizable [1, 2] lock-free implementation of an atomic counter using
the FetchAndIncrement instruction is presented in Figure 1. Although the implementation
lacks wear leveling, it illustrates our syntax conventions and the correct use of persistence
instructions to manage the volatile cache.1 The linearization point of the Increment operation
is the first (process-initiated or environment-initiated) flush step that persists either the
value of the counter established at line 1 or a larger value.

Persistent shared variables:
B: base object supporting FetchAndIncrement operation, initially 0
Procedure Increment().

1 ret := FetchAndIncrement(&B)
2 Persist(&B)
3 return ret

Figure 1 Baseline counter implementation.

Following [6], we partition the state of the counter across a collection of k base objects
B0 . . . Bk−1 such that the value of the implemented object equals the sum of the values of
the base objects. In theory, the endurance of the implemented object can be increased by
a factor of k as long as two conditions are met. First, each implemented operation must
correctly compute the fetched value, which amounts to obtaining a snapshot of the states
of the base objects that appears to be atomic with respect to the increment. Second, each
implemented operation must not only spread out wear evenly across the base objects, but
also limit the number of updates applied to the base objects to avoid undesirable write
amplification. Ideally, each implemented operation would increment only a single base object.

Both challenges are addressed by maintaining a particular state invariant over the base
objects, as illustrated by way of example in Figure 2. The pattern is that the i’th Increment
operation on the implemented object (counting starting at zero) updates base object number
⌊i/m⌋ mod k, where m is a parameter we call the bin size. Intuitively, m increments are

1 The ampersand symbol (&) means “address of” as in C/C++. Persist represents a process-initiated
flush step on a base object that is assumed to fit inside a single cache line. It can be implemented on
the Intel platform using the function pmem_persist in the Persistent Memory Development Kit [9].

DISC 2023

38:4 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

state of base base base base
implemented object object B0 object B1 object B2 . . . object Bk−1

0 0 0 0 . . . 0
1 1 0 0 . . . 0
2 2 0 0 . . . 0
m m 0 0 . . . 0

m + 1 m 1 0 . . . 0
2m m m 0 . . . 0
km m m m . . . m

km + 1 m + 1 m m . . . m

km + m + 1 2m m + 1 m . . . m

Figure 2 State representation of wear leveling counter for bin size m and k base objects.

applied to base object B0, then m to B1, . . . , m to Bk−1, then m more to B0, etc., in
round-robin fashion. As long as the base objects have endurance T such that T is a multiple
of m, the implemented object can count up to kT , which improves on the baseline technique
from Figure 1 by a factor of k. Not only does this strategy amplify endurance, but it also
expands the counter’s domain of values by the same factor k.

The central technical challenge in maintaining our state invariant under concurrent
access is to apply the correct state transition to the correct base object each time the
implemented counter is accessed. This is a non-trivial task since the correct base object and
state transition depend on the position of an Increment operation in the linearization order,
which is not known to processes ahead of time. Liu and Golab [6] solved the problem for bin
size m = 1 using an algorithm based on the CompareAndSwap instruction, which is lock-free
but inefficient under high contention. We improve upon this preliminary design by replacing
the CompareAndSwap instruction with FetchAndIncrement. The immediate problem this
strategy presents is that incrementing a base object unconditionally can increase its value
beyond the threshold permitted by the invariant presented earlier in Figure 2, which we rely
on crucially to correctly compute the response of an Increment operation. For example, if
more than m processes attempt to increment base object B0 starting from the initial state,
then the final value of B0 will exceed the value of B1 by more than m, which violates the
invariant. We address this problem by encapsulating the FetchAndIncrement instruction
in a hardware transaction, and aborting the transaction whenever the invariant is violated.
Secondly, we optimize the selection of the base object by introducing static variables that
allow processes to remember which object was last accessed.2 Assuming that processes access
the counter frequently and that the bin size m is large relative to the number of processes,
this second optimization mostly avoids the costly linear search in Liu and Golab’s algorithm.

We present pseudo-code for the algorithm in Figure 3, which borrows syntax from the
GCC transactional memory intrinsics [4]. At the beginning, process p computes the boundary
between the current bin and the next bin at line 4 based on its recollection of the current
bin obtained from static variable binp. The transaction then starts at line 6 inside the outer
while loop, and its current status is determined at line 7 using the _xbegin intrinsic. For the
reader unfamiliar with the GCC transactional intrinsics, the algorithm should be interpreted

2 A static variable retains its value across calls to Increment. Our algorithms do not persist such variables,
and function correctly (albeit more slowly) even if the variables hold stale values after a crash.

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:5

Persistent shared variables:
B[0..(k − 1)]: array of base objects, each element initially 0

Private static variables:
indexp: integer in the interval [0, k), initially 0
binp: integer ≥ 0, initially 0

Private variables:
limitp, prevp, statusp, bumpedp, tempp: integers

Procedure Increment().

4 limitp := (binp + 1) × m

5 while true do
6 statusp := _xbegin()
7 if statusp = _XBEGIN_STARTED then
8 prevp := FetchAndIncrement(&B[indexp])
9 if prevp ≥ limitp then

10 _xabort(_ABORT_BIN_EXCEEDED)
11 else
12 _xend()
13 Persist(&B[indexp])
14 return prevp + m × (binp × (k − 1) + indexp)

15 else if _XABORT_CODE(statusp) = _ABORT_BIN_EXCEEDED then
16 bumpedp := false
17 while true do
18 tempp := B[indexp]
19 if tempp < limitp then
20 break
21 else
22 indexp := (indexp + 1) mod k

23 if indexp = 0 then
24 binp := ⌊tempp/m⌋
25 limitp := (binp + 1) × m

26 bumpedp := true

27 if bumpedp then
28 Persist(&B[(indexp + k − 1) mod k])

Figure 3 Endurance-oblivious counter implementation using hardware transactions and
FetchAndIncrement. Pseudo-code shown for process p, k base objects, and bin size m.

as returning a successful status (_XBEGIN_STARTED) when line 7 is first executed in an
iteration of the outer while loop. It then proceeds with the FetchAndIncrement instruction
at line 8 and continues onward to the commit point at line 12 and beyond (lines 13–14),
unless the transaction aborts. The latter can occur due to an explicit abort at line 10 via the
_xabort intrinsic or due to a spontaneous abort, and in either case, the algorithm is rolled
back to line 6 where _xbegin is re-executed and returns a special status code different from
_XBEGIN_STARTED. The _XABORT_CODE intrinsic (a GCC macro) at line 15 determines
the user-defined code (if any) passed to _xabort at line 10. If the transaction aborted

DISC 2023

38:6 BA: On Implementing Wear Leveling in Persistent Synchronization Structures

spontaneously then it is restarted at the next iteration of the while loop, otherwise the
fallback execution path at lines 16–28 is executed to adjust the values of the static variables
indexp and binp, and another transaction is attempted.

4 Experiments

We implemented a collection of wear leveling counters in C++ and evaluated their performance
on a 20-core Intel Xeon Gold 6230 platform with Optane persistent memory. The Intel
Persistent Memory Development Kit (PMDK) [9] was used to access the Optane memory using
memory-mapped files. The Persist operation featured in our pseudo-code was implemented
using the pmem_persist function in the PMDK, which internally performs a cache line write-
back (clwb) and store fence. Intel’s Restricted Transactional Memory (RTM) was accessed
using GCC intrinsics [4], which we explained earlier in Section 3. Persistent memory and
hardware transactions are typically not used together as the transactions do not guarantee
failure-atomicity, and persistence instructions inside a transaction can cause an abort on
some platforms. However, the transaction used in our algorithm circumvents these drawbacks
by accessing only a single memory word and persisting after committing.

 100000

 1x106

 1x107

 1x108

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

in
cr

em
en

t o
pe

ra
ti

on
s

/ s
)

Number of Threads

Baseline (Fetch-And-Increment)
Transactional with Fetch-And-Increment

Transactional with Load and Store
CAS

(a) Comparison of counter implementations with
cache line write-backs and store fences.

 100000

 1x106

 1x107

 1x108

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t (

in
cr

em
en

t o
pe

ra
ti

on
s

/ s
)

Number of Threads

bin size 1024
bin size 256
bin size 64
bin size 16
bin size 4
bin size 1

(b) Sensitivity of transactional FetchAndIncrement
implementation to the bin size parameter.

Figure 4 Scalability experiments.

Figure 4a presents an experimental comparison of the baseline algorithm from Figure 1,
our transactional counter algorithm from Figure 3, an alternative implementation of our
algorithm that uses load and store instead of FetchAndIncrement, and the Liu-Golab
algorithm (denoted CAS). The bin size parameter (m in Section 3) was 1 for the baseline and
Liu-Golab algorithms, and 1024 for the two transactional algorithms. We observe that the
transactional FetchAndIncrement-based algorithm is roughly 1.5× slower than the baseline,
which lacks wear leveling, and outperforms the alternative transactional algorithm by roughly
2×. It also outperforms Liu-Golab by roughly 15×. Next, we consider the effect of the bin
size on performance in Figure 4b, and find that a bin size of 256 ≤ m ≤ 1024 works well.

References
1 Marcos K. Aguilera and S. Frølund. Strict linearizability and the power of aborting. Technical

Report HPL-2003-241, Hewlett-Packard Labs, 2003.
2 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-

volatile main memory. In Proc. of the 19th International Conference on Principles of Distributed
Systems (OPODIS), pages 20:1–20:17, 2016.

J. Chouinard, K. Kansara, X. Liu, N. Potdar, and W. Golab 38:7

3 Frank Hady. Intel Optane technology delivers new levels of endurance, 2019.
URL: https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-technology/delivering-new-levels-of-endurance-article-brief.html.

4 Free Software Foundation Inc. Transactional memory intrinsics. [last accessed 5/01/2023]. URL:
https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html.

5 Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven
Swanson. Basic performance measurements of the Intel Optane DC persistent memory module.
CoRR, abs/1903.05714, 2019. arXiv:1903.05714.

6 Xialin Liu and Wojciech Golab. Brief announcement: Towards a theory of wear leveling in
persistent data structures. In Proc. of the 41st ACM Symposium on Principles of Distributed
Computing (PODC), pages 220–223, 2022.

7 Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green. System evaluation of the Intel Optane byte-
addressable NVM. In Proc. of the International Symposium on Memory Systems (MEMSYS),
pages 304–315, 2019.

8 Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar Tözün. Open-channel SSD (what
is it good for). In In Proc. of the 10th Conference on Innovative Data Systems Research
(CIDR), 2020.

9 Andy Rudoff and the Intel PMDK Team. Persistent memory development kit. [last accessed
5/01/2023]. URL: https://pmem.io/pmdk/.

DISC 2023

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/delivering-new-levels-of-endurance-article-brief.html
https://gcc.gnu.org/onlinedocs/gcc/x86-transactional-memory-intrinsics.html
https://arxiv.org/abs/1903.05714
https://pmem.io/pmdk/

	1 Introduction
	2 The Wear Leveling Problem
	3 The Transactional Counter Algorithm
	4 Experiments

