
Brief Announcement: Recoverable and Detectable
Self-Implementations of Swap
Tomer Lev Lehman #

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel

Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Danny Hendler #

Department of Computer Science, Ben Gurion University, Beer Sheva, Israel

Abstract
Recoverable algorithms tolerate failures and recoveries of processes by using non-volatile memory. Of
particular interest are self-implementations of key operations, in which a recoverable operation is
implemented from its non-recoverable counterpart (in addition to reads and writes).

This paper presents two self-implementations of the SWAP operation. One works in the system-
wide failures model, where all processes fail and recover together, and the other in the independent
failures model, where each process crashes and recovers independently of the other processes.

Both algorithms are wait-free in crash-free executions, but their recovery code is blocking. We
prove that this is inherent for the independent failures model. The impossibility result is proved
for implementations of distinguishable operations using interfering functions, and in particular, it
applies to a recoverable self-implementation of swap.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Persistent memory, non-volatile memory, recoverable objects, detectablitly

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.44

Related Version Full Version: https://arxiv.org/abs/2308.03485

Funding Partially supported by the Israel Science Foundation (grants 380/18 and 22/1425).
Tomer Lev Lehman: Partially supported by the Lynne and William Frankel Center for Computer
Science.

1 Introduction

Recent years have seen a rising interest in the failure-recovery model for concurrent computing.
This model captures an unstable system, where processes may crash and recover, and it
has two variants: In the system-wide failure model (also called the global-crash model),
all processes fail simultaneously and a single process is responsible for the recovery of the
whole system. In the independent failures model (also called the individual-crash model),
each process can incur a crash independently of other processes and recovers independently.
Recoverable algorithms, tolerating failures and recoveries, have been presented for various
concurrent data structures, for both the system-wide model [5, 7, 9, 14, 18, 20, 21] and the
independent-failure model [1, 3, 5, 18,20].

The correctness of a recoverable algorithm can be specified in several ways. Durable
Linearizability [16] intuitively requires linearizability of all operations that survive the crashes.
Detectability [9] ensures that upon recovery, it is possible to infer whether the failed operation
took effect or not and, in the former case, obtain its response. Nesting-safe Recoverable
Linearizability (NRL) [1], defined for the independent failures model, ensures detectability and
linearizability. It also allows the nesting of recoverable objects. By providing implementations
of NRL primitive objects, a programmer can combine several of these primitives to create
recoverable implementations of complex higher-level objects and algorithms. This level of
abstraction can be helpful in the adoption of recoverable algorithms.

© Tomer Lev Lehman, Hagit Attiya, and Danny Hendler;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 44; pp. 44:1–44:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:levletom@post.bgu.ac.il
mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:hendlerd@cs.bgu.ac.il
https://orcid.org/0000-0001-7152-7828
https://doi.org/10.4230/LIPIcs.DISC.2023.44
https://arxiv.org/abs/2308.03485
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

To facilitate high-level implementations of complex NRL objects it is helpful to introduce
implementations of low-level base NRL objects. An attractive approach to designing low-level
based NRL objects is through self-implementations [20], in which a recoverable operation
is implemented with instances of the same primitive operation, possibly with additional
reads and writes on shared variables. This approach ensures that when using the recoverable
version of an operation, the system must only support its hardware-implemented counterpart.

NRL self-implementations already exist for various primitives, including read, write,
test&set, and compare&swap [1, 3], as well as fetch&add [20]. A universal construction [3]
using NRL read, write and compare&swap objects builds upon previously-introduced self-
implementations of NRL objects to take any concurrent program with read, write and CAS,
and make it recoverable while adding only constant computational overhead.

This paper presents the first NRL self-implementations of swap, for both the system-wide
and the independent failures models. Swap is a widely-used primitive that is employed
by concurrent algorithms. Our implementations borrow ideas from the recoverable mutual
exclusion (RME) [12] algorithms of [11, 17], which use a similar approach to overcome swap
failures. Unlike these algorithms, however, our implementations are also challenged with the
task of satisfying wait-freedom and linearizability.

Both our algorithms are wait-free in crash-free executions, while the recovery code in
both is blocking.

We present an impossibility proof for implementing a class of distinguishable operations
using a set of interfering functions [13] in a recoverable lock-free fashion in the independent
failures model. In particular, this result applies to self-implementations of swap, but it
also holds for, e.g., implementing swap using fetch-and-add and swap combined. Other
distinguishable operations to which this proof applies are the deque of a queue object and
the pop of a stack object. Our impossibility result unifies and extends specific results for
self-implementations of test&set [1] and fetch&add [20]. Another related impossibility result
addresses recoverable consensus in the independent failures model [10].

Several previous papers introduce general transformations to port existing algorithms
and make them persistent, e.g., [3, 4, 6, 8, 15]. Most of these transformations use strong
primitives such as compare&swap while their non-recoverable counterparts may use weaker
primitives, in terms of their consensus number [13]. We believe future research may use our
self-implementation of swap to extend general constructions such as [3] mentioned above to
programs that also use swap as a primitive.

Similarly to NRL, detectable sequence specifications (DSS), introduced by Li and Golab [18],
formalizes the notion of detectability. The DSS-based approach is more portable and less
reliant on system assumptions in comparison to NRL, but delegates the responsibility for
nesting to application code.

2 Model, In Brief

We use a simplified version of the NRL system model [1]. There are n asynchronous processes
p1, . . . , pn, which communicate by applying atomic primitive read, write and read-modify-
write operations to base objects. The state of each process consists of non-volatile shared
variables, which serve as base objects, as well as volatile local variables. A crash-failure (or
simply a crash) can occur at any point during the execution. A crash resets all local variables
to arbitrary values but preserves the values of all non-volatile variables.

A process p invokes an operation Op on an object by performing an invocation step. Op
completes by executing a response step, in which the response of OP is stored to a local
volatile variable of p. It follows that the response value is lost if p incurs a crash before
persisting it, that is, before writing it to a non-volatile variable.



T. Lev Lehman, H. Attiya, and D. Hendler 44:3

In the independent failures model a recoverable operation Op is associated with a recovery
procedure Op.RECOVER that is responsible for completing Op upon recovery from a crash.
Following a crash of process p that occurs when p has a pending recoverable operation opp,
the system eventually resurrects p by invoking the recovery procedure of the failed opp.

As proven by [2], detectable algorithms for the NRL model must keep an auxiliary
state that is provided from outside the operation, either via operation arguments or via
a non-volatile variable accessible by it. We assume that Op.RECOVER has access to a
designated per-process non-volatile variable storing the sequence number of Op which is
incremented before each operation invocation.

For the system-wide failures model in which all processes crash simultaneously, the system
recovers by executing a parameterless global recovery procedure called Op.GRECOVER. Once
Op.GRECOVER completes, the system resurrects each of the failing processes for performing
an individual recovery procedure for Op, called Op.RECOVER.

3 Detectable Swap Algorithms

A swap object supports the SWAP(val) operation, which atomically swaps the object’s
current value cur to val and returns cur. A key challenge to overcome when implementing a
detectable swap object from read, write, and primitive swap operations is that the return
values of one or more primitive swap operations may be lost upon a system-wide failure that
occurs before the operations are persisted. These non-persisted operations may have already
affected the state of the swap object and, moreover, operations by other processes may have
already returned the values written by these primitive operations. To ensure linearizability,
the implementation must identify such operations and handle them correctly.

The return value of each SWAP operation must be the input of another SWAP operation
(or the initial value of the swap object). Furthermore, the operand swapped in by one SWAP
operation can be returned by at most a single other SWAP operation.

To ensure linearizability, the real-time order between non-overlapping operations must
be preserved, as illustrated in Figure 1. This scenario involves six processes, p1, . . . p6,
performing eight SWAP operations, op0, . . . op7. A system-wide crash occurs when operations
op0, op2, op4, op6 have already been completed (hence their return values are specified), while
operations op1, op4, op5, op7 are pending. Note that operations op1, op4, op5, although not
completed, have surely affected the global state of the swap object as their inputs are the
return values of other operations, while op7 (pending as well) might or might not have
affected the object’s state.

There are several ways the system may recover in order to produce a correct linearizable
result. In all of them, op1 must return 0. The remaining operations might return different
values in the following ways: (1) op4 returns 2, op5 returns 3, and op7 returns 6. (2) op7
returns 2, op4 returns 7, and op5 returns 3. (3) op4 returns 2, op7 returns 3, and op5 returns 7.
There are several possible linearizations in this example, because op7 may be linearized in
several ways since its effect on the global state is unknown.

We represent the order of SWAP operations as a linked list of Node structures, the end
of which is pointed to by a tail variable manipulated with primitive swaps. The list starts
with a sentinel node called headNode, which holds the object’s initial value (denoted ⊥).

Each Node structure represents a single SWAP operation and stores a pointer prev to
the node of its predecessor operation and the SWAP’s operand val. The order of SWAP
operations is reflected by the order of the Node structures in the list. By doing so, each
Node points to the previous Node structure that represents the previous SWAP operation,
hence, the operation’s return value will be Node.prev.val.

DISC 2023



44:4 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

A problem occurs if a process successfully swaps its Node into the list but fails before
pointing from its structure to the previous Node. This type of failure may create fragments
in the list representing the SWAP operations. Thus, instead of a single complete list, crashes
may result in several incomplete disconnected lists. In order to reconnect these fragments
back to a complete list, our algorithm goes over all previously-announced operations upon
recovery and recreate a correctly-ordered complete list of operations.

A similar challenge occurs in the RME algorithms of Golab and Hendler [11] and Jayanti
et al. [17]. These algorithms mend fragments of the linked-list based queue, used in the MCS
lock [19], which are created when failures occur just before or after primitive swap operations.

Our algorithm needs to address two additional challenges, however. First, the SWAP
operations of our algorithm should be wait-free, whereas RME implementations are allowed to
block. Second, unlike the RME implementations, our algorithm should provide linearizability.
Specifically, the order of list fragments, constructed during recovery, must respect the
real-time order between SWAP operations.

We address these challenges by employing a fragment ordering scheme, which we view as
the key algorithmic novelty of our algorithms. The scheme encapsulates the critical steps
of each SWAP operation by two vector timestamp computations. Based on the resulting
timestamps, the recovery code ensures the following invariant: if a fragment A contains a
Node nA that was created after an operation associated with a Node nB on fragment B was
completed, then fragment B will be ordered after fragment A in the connected list. (Note
that prev pointers define the reverse order between operations.)

Figure 2 presents a set of fragments that may be generated immediately after the system-
wide crash ending the execution depicted in Figure 1. As specified, when ordering fragments,
the algorithm uses vector timestamps for maintaining linearizability. As an example, consider
a linked list, reconnecting the fragments of Figure 2, in which op4.prev ← op0, op1.prev ← op3,
op7.prev ← op2 and op5.prev ← op7. Although this list contains the Nodes of all operations
from tail to head, it violates linearizability because op3 is ordered after op2 although it follows
it in real-time order. By using the two vector timestamps, our algorithm is able to order the
fragments so that linearizability is maintained.

The full version presents the details of the algorithm and its correctness proof, proving
the next theorem:

▶ Theorem 1. There is an algorithm that implements a recoverable NRL SWAP in the
system-wide failures model using only read, write and primitive Swap operations. The SWAP
operations are wait-free.

For the independent failures model, a recoverable algorithm must allow one or more
processes to execute its recovery code concurrently, while other processes may concurrently
execute their SWAP operations. In order to handle this concurrency correctly, we introduce
two key changes to the system-wide failures algorithm. First, the recovery procedure now

Figure 1 An example of the effect of a system-wide failure.



T. Lev Lehman, H. Attiya, and D. Hendler 44:5

Figure 2 List fragments existing after the execution described in Figure 1, immediately after a
system-wide crash. Operations 1,4,5 crashed after swapping their Nodes to tail but before persisting
their pointer to their predecessor Node.

synchronizes concurrent invocations by using a starvation-free RME lock, effectively serializing
the execution of the recovery code. We employ the RME lock of Golab and Ramaraju [12],
which uses only reads and writes. The second change allows the recovery code to wait for a
concurrent SWAP operation Op to either complete or crash. Only once this happens, can
the recovery code continue. The full version presents the details of the algorithm and its
correctness proof, proving the following theorem:

▶ Theorem 2. There is an algorithm that implements a recoverable NRL SWAP in the
independent failures model using only read, write and primitive Swap operations. The SWAP
operations are wait-free.

4 Impossibility of lock-freedom for the independent failures model

We prove a theorem establishing the impossibility of implementing lock-free algorithms for
a wide variety of recoverable objects under the independent failures model. This result
generalizes previous results [1, 20], to a wider family of operations and implementations.

The result applies to distinguishable operations: Informally, an operation Op is distin-
guishable if it can be invoked with two operands, x ≠ y, such that the return values of these
invocations allows the system to determine which operation was applied first. The proof
applies when implementations use only read, write, and a set of interfering functions [13],
which are functions that either commute or overwrite. (See the full version.)

▶ Theorem 3. There is no recoverable implementation of a distinguishable operation M

from read, write, and interfering primitive operations in the independent failures model, such
that both M and M.RECOVER are lock-free.

Consider a swap object with initial value 0; when SWAP(1) and SWAP(2) are applied
sequentially, only the first operation applied returns 0. This shows that SWAP is a dis-
tinguishable operation. Note also that a primitive swap is overwriting, since applying it
twice overwrites the first application. Thus, the theorem implies that there is no recoverable
self-implementation of SWAP, where both SWAP and SWAP.RECOVER are lock-free. This
shows that the mutual exclusion lock in our algorithm for the individual failures model
cannot be avoided.

It is also possible to show that the pop operation of a stack object, and the deque
operation of a queue object, as well as fetch&add and test&set, are distinguishable.

DISC 2023



44:6 Brief Announcement: Recoverable and Detectable Self-Implementations of Swap

5 Discussion

We present two NRL self-implementations of the swap object, one for the system-wide failures
model and the other for the independent failures model. In both, SWAP operations are
wait-free and the recovery code is blocking. In the system-wide failures model, this is a result
of delegating the recovery to a single process, while in the independent failures model, it is
due to coordination between the recovering process and the other processes. We also prove
the impossibility of a lock-free implementation of distinguishable operations using read-write
and a set of interfering functions, in the independent failures model. In particular, this shows
that with independent failures, a self-implementation of swap cannot be lock-free.

Our algorithms use O(m ∗ n) space, where m is the number of SWAP invocations in
the execution. Bounding memory consumption to O(n) is relatively easy if a recoverable
swap operation by one process can wait for operations by other processes to either make
progress or fail. An interesting open question is to figure out whether the space complexity
of detectable swap self-implementations with wait-free operations can be reduced to o(m) or
if Ω(m) is inherently required. We leave this question for future work.

References
1 Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe recoverable linearizabil-

ity: Modular constructions for non-volatile memory. In ACM Symposium on Principles of
Distributed Computing, pages 7–16, 2018.

2 Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and lower bounds on the
space complexity of detectable objects. In 39th ACM Symposium on Principles of Distributed
Computing, pages 11–20, 2020.

3 Naama Ben-David, Guy E Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free concur-
rency on faulty persistent memory. In 31st ACM Symposium on Parallelism in Algorithms
and Architectures, pages 253–264, 2019.

4 Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In 19th International Conference on Principles of Distributed Systems
(OPODIS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

5 Kyeongmin Cho, Seungmin Jeon, and Jeehoon Kang. Practical detectability for persistent
lock-free data structures. arXiv preprint arXiv:2203.07621, 2022.

6 Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and the rise of
universal constructions. In 15th European Conference on Computer Systems, pages 1–15, 2020.

7 Panagiota Fatourou, Nikolaos D Kallimanis, and Eleftherios Kosmas. The performance power
of software combining in persistence. In 27th ACM Symposium on Principles and Practice of
Parallel Programming, pages 337–352, 2022.

8 Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch, and Erez Petrank.
NVTraverse: In NVRAM data structures, the destination is more important than the journey.
In 41st ACM Conference on Programming Language Design and Implementation, pages
377–392, 2020.

9 Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A persistent lock-free
queue for non-volatile memory. ACM SIGPLAN Notices, 53(1):28–40, 2018.

10 Wojciech Golab. The recoverable consensus hierarchy. In 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, pages 281–291, 2020.

11 Wojciech Golab and Danny Hendler. Recoverable mutual exclusion in sub-logarithmic time.
In ACM Symposium on Principles of Distributed Computing, pages 211–220, 2017.

12 Wojciech Golab and Aditya Ramaraju. Recoverable mutual exclusion. In 2016 ACM Symposium
on Principles of Distributed Computing, pages 65–74, 2016.



T. Lev Lehman, H. Attiya, and D. Hendler 44:7

13 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

14 Morteza Hoseinzadeh and Steven Swanson. Corundum: Statically-enforced persistent memory
safety. In 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 429–442, 2021.

15 Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via justdo logging. ACM SIGARCH Computer Architecture News, 44(2):427–442,
2016.

16 Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In 30th International Symposium on
Distributed Computing, pages 313–327. Springer, 2016.

17 Prasad Jayanti, Siddhartha Jayanti, and Anup Joshi. A recoverable mutex algorithm with
sub-logarithmic RMR on both cc and dsm. In ACM Symposium on Principles of Distributed
Computing, pages 177–186, 2019.

18 Nan Li and Wojciech Golab. Detectable sequential specifications for recoverable shared objects.
In 35th International Symposium on Distributed Computing (DISC), 2021.

19 John M Mellor-Crummey and Michael L Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

20 Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Recoverable and detectable
fetch&add. In 25th International Conference on Principles of Distributed Systems (OPODIS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

21 Matan Rusanovsky, Hagit Attiya, Ohad Ben-Baruch, Tom Gerby, Danny Hendler, and Pedro
Ramalhete. Flat-combining-based persistent data structures for non-volatile memory. In 23rd
International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS,
pages 505–509. Springer, 2021.

DISC 2023


	1 Introduction
	2 Model, In Brief
	3 Detectable Swap Algorithms
	4 Impossibility of lock-freedom for the independent failures model
	5 Discussion

