
Brief Announcement: The Space Complexity of
Set Agreement Using Swap
Sean Ovens
University of Toronto, Canada

Abstract
We prove that any randomized wait-free n-process k-set agreement algorithm using only swap objects
requires at least ⌈ n

k
⌉ − 1 objects. We also sketch a proof that any randomized wait-free consensus

algorithm using only readable swap objects with domain size b requires at least n−2
3b+1 objects.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases space complexity, consensus, set agreement, lower bound, shared memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.46

Related Version Full Version: https://arxiv.org/abs/2305.06507 [9]

Funding Support is gratefully acknowledged from the Natural Sciences and Engineering Research
Council of Canada under grant RGPIN-2020-04178 and the Ontario Graduate Scholarships program.

1 Introduction

Consensus is one of the most well-studied problems in distributed computing. In the consensus
problem, n processes begin with inputs and collectively agree on a single output. A consensus
algorithm satisfies the following properties: agreement (no two outputs may differ) and
validity (every output must be an input). There are known randomized wait-free [1, 5] and
obstruction-free [10] consensus algorithms using n registers.

In 1993, Ellen, Herlihy, and Shavit [7] proved that Ω(
√

n) registers are required to
solve nondeterministic solo-terminating consensus. Lower bounds for nondeterministic solo-
terminating algorithms also apply to randomized wait-free and obstruction-free algorithms.
In 2016, Zhu [10] proved that n − 1 registers are required to solve obstruction-free consensus.
Finally, in 2018, Ellen, Gelashvili, and Zhu [6] used a completely new technique to prove
that n registers are required to solve obstruction-free consensus. They also showed that
space complexity lower bounds for obstruction-free algorithms using readable objects apply
to nondeterministic solo-terminating algorithms.

The Ω(
√

n) space complexity lower bound actually applies to consensus algorithms that
use only historyless objects. A historyless object can only support two kinds of operations:
trivial operations, which cannot change the value of the object, and historyless operations,
which set the object to a fixed value. Registers are historyless objects because Read is trivial
and Write is historyless. Swap objects are historyless objects that support Swap(v), which
returns the current value of the object and then sets its value to v. Any historyless object
can be simulated by one readable swap object, which supports Read and Swap(v).

The k-set agreement problem, first defined by Chaudhuri [4], is a generalization of
consensus in which n processes begin with inputs and collectively agree on at most k distinct
outputs. Obstruction-free k-set agreement is solvable using n − k + 1 registers [2].

Ellen, Gelashvili, and Zhu [6] proved that any obstruction-free n-process k-set agreement
algorithm using only registers requires at least ⌈ n

k ⌉ registers. Before our results, there were
no known non-constant lower bounds on the space complexity of solving k-set agreement
using swap objects when k > 1.

© Sean Ovens;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 46; pp. 46:1–46:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2023.46
https://arxiv.org/abs/2305.06507
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Brief Announcement: The Space Complexity of Set Agreement Using Swap

Last year, we proved that any obstruction-free consensus algorithm using only readable
swap objects with domain size 2 requires at least n − 2 objects [8]. We also proved that any
obstruction-free consensus algorithm using only swap objects requires at least n − 1 objects.
We have since refined the techniques from that paper to prove that at least n−2

3b+1 readable
swap objects with domain size b are required to solve obstruction-free consensus, and that at
least ⌈ n

k ⌉ − 1 swap objects are required to solve obstruction-free k-set agreement. In the full
version of this paper [9], we also give an obstruction-free k-set agreement algorithm using
n − k swap objects, exactly matching our lower bound for k = 1.

In Section 2, we present some definitions needed to prove our lower bounds. In Section 3,
we prove our lower bound for set agreement using swap objects. In Section 4, we sketch the
proof of our lower bound for consensus using readable swap objects with bounded domains.

2 Definitions

Two configurations C and C ′ are indistinguishable to a process pi, denoted C
pi∼ C ′, if

and only if pi has the same state in C and C ′. Two executions α and α′ from C and C ′,
respectively, are indistinguishable to a process pi if C

pi∼ C ′ and pi takes the same sequence
of steps (and obtains the same responses) in α and α′. We use value(B, C) to denote the
value of the object B in configuration C.

In the m-valued k-set agreement problem, all process inputs are in {0, . . . , m − 1}. The
2-valued 1-set agreement problem is also called binary consensus. A nonempty set of processes
P is v-univalent in a configuration of a binary consensus algorithm C if, for every P-only
execution from C in which some process p ∈ P decides, v is the value decided by p. If P is
neither 0-univalent nor 1-univalent in C, then P is bivalent in C.

An algorithm is nondeterministic solo-terminating if, for every configuration C of the
algorithm and every process p, there is a solo-terminating execution by p from C. An
algorithm is obstruction-free if it is deterministic and nondeterministic solo-terminating. An
algorithm is randomized wait-free if, for every scheduler, the expected number of steps in any
execution produced by that scheduler is finite.

3 Lower Bound for Set Agreement Using Swap Objects

Our lower bound relies on the following technical lemma.

▶ Lemma 1. Consider an initial configuration C in which a set of processes Q have the
same input v. Let α be an execution from C that does not involve Q such that k distinct
values different from v are decided in Cα. Then the algorithm uses at least |Q| swap objects.

Proof. Let Q = {q1, . . . , q|Q|}. Define Qi = {q1, . . . , qi}, for 1 ≤ i ≤ |Q|, and define Q0 = ∅.
Let D be an initial configuration in which all processes have input v. For 0 ≤ i ≤ |Q|, we
show that there is a set of i swap objects Ai and a pair of Qi-only executions γi and δi

from Cα and D, respectively, such that value(B, Cαγi) = value(B, Dδi), for all B ∈ Ai. For
i = |Q|, this claim proves the lemma. We use induction on i. When i = 0, γi and δi are
empty executions, Ai = ∅, and the claim is trivially satisfied.

Now let 0 ≤ i < |Q| and suppose there exists γi, δi, and Ai such that value(B, Cαγi) =
value(B, Dδi), for all B ∈ Ai. Notice that Cαγi

qi+1∼ Dδi, since qi+1 has input v in both
configurations and takes no steps in α, γi, or δi. Consider a qi+1-only solo-terminating
execution σ from Dδi. By validity, qi+1 decides v in σ. Let τ be the longest prefix of σ such
that qi+1 only accesses objects in Ai during τ . Since value(B, Cαγi) = value(B, Dδi), for all

S. Ovens 46:3

B ∈ Ai, there is a qi+1-only execution τ ′ from Cαγi such that τ ′ qi+1∼ τ . If τ = σ, then qi+1
decides v in τ and τ ′. This is impossible, since k + 1 different values are decided in Cαγiτ

′.
Thus, τ is a proper prefix of σ. Then in Cαγiτ

′ and Dδiτ , qi+1 is poised to apply a Swap
operation s to an object B⋆ ̸∈ Ai.

Since qi+1 applies the same sequence of operations in τ ′ and τ and value(B, Cαγi) =
value(B, Dδi) for all B ∈ Ai, it follows that value(B, Cαγiτ

′) = value(B, Dδiτ) for all
B ∈ Ai. By definition of Swap, value(B⋆, Cαγiτ

′s) = value(B⋆, Dδiτs). Taking γi+1 = γiτ
′s,

δi+1 = δiτs, and Ai+1 = Ai ∪ {B⋆} completes the inductive step. ◀

We can now apply Lemma 1 to obtain the desired lower bound.

▶ Theorem 2. For all n > k ≥ 1, every nondeterministic solo-terminating, n-process
(k + 1)-valued k-set agreement algorithm from swap objects uses at least ⌈ n

k ⌉ − 1 objects.

Proof. Consider such an algorithm for the set of processes P = {p0, . . . , pn−1}. We will use
induction on k. When k = 1, the algorithm solves binary consensus. Consider an initial
configuration C of the algorithm in which process p0 has input 0 and all other processes have
input 1. Note that p0 decides 0 in its solo-terminating execution α from C. Therefore, by
Lemma 1, the algorithm uses at least n − 1 swap objects.

Now let 1 < k < n and suppose the theorem holds for k − 1. Let R be some set of⌈ n(k−1)
k

⌉
processes in P . Let I be the set of all initial configurations in which R’s inputs are

in {0, . . . , k − 1}. If, for every initial configuration C ∈ I and every R-only execution α from
C, at most k − 1 different values are decided in α, then the algorithm solves nondeterministic
solo-terminating k-valued (k − 1)-set agreement among the processes in R. Hence, by the
inductive hypothesis, the algorithm uses at least

⌈ |R|
k−1

⌉
− 1 = ⌈ n

k ⌉ − 1 swap objects.
Otherwise, there is a C ∈ I and an R-only execution α from C in which 0, . . . , k − 1 are

decided. Notice |P − R| = n −
⌈

n(k−1)
k

⌉
=

⌊
n
k

⌋
≥

⌈
n
k

⌉
− 1. By Lemma 1 (with Q = P − R

and v = k), the algorithm uses at least |P − R| ≥ ⌈ n
k ⌉ − 1 swap objects. ◀

4 Lower Bound for Consensus Using Readable Swap Objects

Let Q = {q0, q1} be a pair of processes and let P = {p0, . . . , pn−3} be the rest of the processes.
For all 0 ≤ i ≤ n − 3, define Pi = {pi, . . . , pn−3}. In particular, P0 = P. Define Pn−2 = ∅.
Let A be the set of all readable swap objects with domain size b used by the algorithm.

A set S of processes covers a set B of objects in a configuration C if, for every object
B ∈ B, there is a unique process in S that is poised to apply a Swap to B in C. A block
swap by S is an execution that consists of a single step by each process in S.

▶ Lemma 3 ([8]). Let C be a configuration in which Q is bivalent and a set S ⊆ P of
processes cover a set B of readable swap objects. Then there is a Q-only execution γ from C

such that Q is bivalent in Cγβ, where β is a block swap by S.

The following result uses Lemma 3 and appears in the full version of the paper [9].

▶ Lemma 4. Let pi ∈ P, let C be a configuration in which Q is bivalent, let C ′ be a
configuration such that C

pi∼ C ′, and let δ be pi’s solo-terminating execution from C ′.
Suppose δ consists of r steps and, for all s ∈ {0, . . . , r}, let δs be the prefix of δ that consists
of the first s steps by pi. Then there is a j ∈ {0, . . . , r − 1} such that,
(a) for all j′ ∈ {0, . . . , j}, there is a (Q ∪ Pi)-only execution αj′ from C such that Q is

bivalent in Cαj′ and αj′
pi∼ δj′ .

DISC 2023

46:4 Brief Announcement: The Space Complexity of Set Agreement Using Swap

Consider any (Q∪Pi)-only execution αj from C such that Q is bivalent in Cαj and αj
pi∼ δj .

Let d be the operation that pi is poised to apply to the object B in C ′δj. Then for every
(Q ∪ Pi+1)-only execution λ′ from Cαj,

(b) if value(B, Cαjλ′) = value(B, C ′δj), then Q is univalent in Cαjλ′d, and
(c) if value(B, C ′δj) = value(B, C ′δjd) and in some configuration of λ′ the value of B is

value(B, C ′δj), then Q is univalent in Cαjλ′.

We now sketch a proof of our main technical lemma. For all 0 ≤ i ≤ n − 2, it constructs
a configuration Ci and two functions fi and gi that map objects to increasingly large sets of
values that are forbidden in certain executions from Ci.

▶ Lemma 5. For all 0 ≤ i ≤ n − 2, there is a configuration Ci reachable from C0, a
set of processes Si ⊆ P − Pi, and a pair of functions fi, gi that map objects to subsets of
{0, . . . , b − 1} such that the following holds for every (Q ∪ Pi)-only execution λ from Ci:

(a) Q is bivalent in Ci,
(b) Si covers a set of |Si| objects in Ci,
(c) for every process p ∈ Si, if p is poised to apply a Swap(B, x) operation in Ci, then

x ̸∈ fi(B) ∪ gi(B),
(d)

∑
B∈A

(
2 · |fi(B)| + |gi(B)|

)
+ |Si| ≥ i,

(e) if the value of some object B is equal to some value in fi(B) in some configuration of λ,
then Q is univalent in Ciλ, and

(f) if some process p ∈ Pi is poised to apply a Swap(B, x) operation in Ciλ for some object
B and some x ∈ gi(B), then Q is univalent in Ciλ.

Proof sketch. We use induction on i. Let S0 = ∅ and let f0(B) = g0(B) = ∅ for all B ∈ A.
All properties of the lemma are simple to verify for i = 0.

Now suppose that the lemma holds for some 0 ≤ i ≤ n − 3. Let δ be pi’s solo-terminating
execution from Ciβi, where βi is a block swap by Si. Suppose that δ consists of r steps by
pi, and let δs be the prefix of δ that consists of its first s steps. Let 0 ≤ j ≤ r − 1 be the
value that satisfies the conditions of Lemma 4 (with C = Ci and C ′ = Ciβi).

In the full version of this paper [9], we prove that, for all B ∈ A and all forbidden values
x ∈ fi(B) ∪ gi(B), process pi does not apply any Swap(B, x) operations during δj+1.

Let d be the final step of δj+1 by pi. Let B⋆ be the object accessed by pi in step d. Let
v⋆ = value(B⋆, Ciβiδj). By Lemma 4(a), there is a (Q ∪ Pi)-only execution αj from Ci such
that Q is bivalent in Ciαj and αj

pi∼ δj . Define Ci+1 = Ciαj , so property (a) holds for i + 1.

Case 1. Step d does not change the value of B⋆ when it is applied in Ciβiδj . Define
fi+1(B) = fi(B) for all B ∈ A − {B⋆}, gi+1(B) = gi(B) for all B ∈ A, and fi+1(B⋆) =
fi(B⋆) ∪ {v⋆}.

If there is a process p ∈ Si that is poised to apply a Swap(B⋆, v⋆) operation in Ci, then
define Si+1 = Si − {p}. Otherwise, define Si+1 = Si. Since no process in Si takes steps
during αj and Si+1 ⊆ Si, property (b) holds for i + 1. In addition, property (c) holds for i,
so it holds for i + 1 as well.

Suppose v⋆ ∈ fi(B⋆). Then process pi does not apply Swap(B⋆, v⋆) during δj+1. Hence,
value(B⋆, Ciβi) = v⋆. Property (c) for i implies that no process applies Swap(B⋆, v⋆) during
βi. Thus, value(B⋆, Ci) = v⋆. By property (e) for i (where λ is the empty execution), Q is
univalent in Ci. This contradicts property (a) for i. Hence, v⋆ ̸∈ fi(B⋆). This implies that
|fi+1(B⋆)| = |fi(B⋆)| + 1. Since |Si+1| ≥ |Si| − 1, property (d) holds for i + 1.

S. Ovens 46:5

Let λ be a (Q ∪ Pi+1)-only execution from Ci+1. Then αjλ is a (Q ∪ Pi)-only execution
from Ci. By property (e) for i, if the value of some object B is equal to a value in fi(B) in
any configuration of αjλ, then Q is univalent in Ciαjλ. Lemma 4(c) (with λ′ = λ) implies
that, if the value of B⋆ is v⋆ in some configuration of λ, then Q is univalent in Ciαjλ. This
gives us property (e) for i + 1. Since gi+1(B) = gi(B) for all B ∈ A, property (f) for i + 1
follows from property (f) for i.

Case 2. Step d changes the value of B⋆ when it is applied in Ciβiδj . Then d is a Swap(B⋆, v′)
operation, for some v′ ∈ {0, . . . , b − 1} − {v⋆}. Define fi+1(B) = fi(B) for all B ∈ A,
gi+1(B) = gi(B) for all B ∈ A − {B⋆}, and gi+1(B⋆) = gi(B⋆) ∪ {v⋆}.

If some process p ∈ Si is poised to access B⋆ in Ci, then define Si+1 = (Si − {p}) ∪ {pi}.
Otherwise, define Si+1 = Si ∪ {pi}. In either case, we obtain property (b) for i + 1.

Since pi does not apply Swap(B, x) during δj+1, for any B ∈ A and any x ∈ fi(B)∪gi(B),
it follows that v′ ̸∈ fi(B⋆) ∪ gi(B⋆). Furthermore, we know that v′ ≠ v⋆. Hence, v′ ̸∈
fi+1(B⋆) ∪ gi+1(B⋆). This along with property (c) for i gives us property (c) for i + 1.

If B⋆ is not covered by Si in Ci, then Si+1 = Si ∪ {pi}, so |Si+1| = |Si| + 1. Furthermore,
|gi+1(B⋆)| ≥ |gi(B⋆)|. Property (d) for i + 1 follows from this and property (d) for i.

Otherwise, B⋆ is covered by Si in Ci. By property (c) for i, value(B, Ciβi) ̸∈ fi(B)∪gi(B)
for all objects B covered by Si in Ci. Furthermore, pi does not apply Swap(B, x) during
δj+1, for any B ∈ A and any x ∈ fi(B) ∪ gi(B). Hence, value(B, Ciβiδj) ̸∈ fi(B) ∪ gi(B)
for all objects B covered by Si in Ci. Since B⋆ is covered by Si in Ci, it follows that
v⋆ ̸∈ fi(B⋆) ∪ gi(B⋆). Hence, |gi+1(B⋆)| = |gi(B⋆)| + 1. Furthermore, |Si+1| = |Si|.
Combined with property (d) for i, this gives us property (d) for i + 1.

Let λ be a (Q ∪ Pi+1)-only execution from Ci+1. Then αjλ is a (Q ∪ Pi)-only execution
from Ci. Since fi+1(B) = fi(B) for all B ∈ A, property (e) for i + 1 follows from property (e)
for i. Suppose there is a p ∈ Pi+1 poised to apply a Swap(B⋆, v⋆) operation t in Ci+1λ.
Recall that αj

pi∼ δj , so pi is poised to apply d in Ciαj = Ci+1. Since pi takes no steps in λ,
it is poised to apply d in Ci+1λ. Since d is a Swap(B⋆, v′) operation, pi covers B⋆ in Ci+1λ.
If Q is bivalent in Ci+1λ, then, by Lemma 3 (with C = Ci+1λ and S = {pi}), there is a
Q-only execution γ from Ci+1λ such that Q is bivalent in Ci+1λγd and, hence, in Ci+1λγtd.
However, Lemma 4(b) (with λ′ = λγt) implies that Q is univalent in Ci+1λγtd. Hence, Q is
univalent in Ci+1λ. Property (f) for i + 1 follows from this and property (f) for i. ◀

Lemma 5(d) (with i = n−2) says that
∑

B∈A
(
2 · |fn−2(B)|+ |gn−2(B)|

)
+ |Sn−2| ≥ n−2.

By part (b), Sn−2 covers a set of |Sn−2| objects in Cn−2. Hence, |Sn−2| ≤ |A|. Moreover,∑
B∈A

(
2 · |fn−2(B)| + |gn−2(B)|

)
≤ 3 · b · |A| since fn−2(B) and gn−2(B) are subsets of

{0, . . . b − 1}. Thus, 3 · b · |A| + |A| ≥ n − 2, which implies the lower bound.

▶ Theorem 6. For all n, b ≥ 2, any n-process, obstruction-free binary consensus algorithm
from readable swap objects with domain size b uses at least n−2

3b+1 objects.

5 Conclusion

Determining the exact space complexity of solving obstruction-free k-set agreement using
swap objects when k > 1 remains an open problem. We conjecture that n − k swap objects
are required. Theorem 6 implies that any obstruction-free consensus algorithm from readable
swap objects with constant-sized domain requires Ω(n) objects. This asymptotically matches
Bowman’s [3] algorithm, which uses 2n − 1 registers with domain size 2.

DISC 2023

46:6 Brief Announcement: The Space Complexity of Set Agreement Using Swap

References
1 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal

of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.
2 Zohir Bouzid, Michel Raynal, and Pierre Sutra. Anonymous obstruction-free (n, k)-set

agreement with n-k+1 atomic read/write registers. Distributed Comput., 31(2):99–117, 2018.
doi:10.1007/s00446-017-0301-7.

3 Jack R. Bowman. Obstruction-free snapshot, obstruction-free consensus, and fetch-and-add
modulo k. Master’s thesis, Dartmouth College, Computer Science, 2011. URL: https:
//digitalcommons.dartmouth.edu/senior_theses/67.

4 S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous
systems. Information and Computation, 105(1):132–158, 1993. doi:10.1006/inco.1993.1043.

5 B. Chor, A. Israeli, and M. Li. Wait-free consensus using asynchronous hardware. SIAM J.
Comput., 23:701–712, 1994.

6 Faith Ellen, Rati Gelashvili, and Leqi Zhu. Revisionist simulations: A new approach to proving
space lower bounds. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC ’18, pages 61–70, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3212734.3212749.

7 Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized synchro-
nization. J. ACM, 45(5):843–862, September 1998. A preliminary version appeared in PODC
’93. doi:10.1145/290179.290183.

8 Sean Ovens. The space complexity of consensus from swap. In Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing, PODC’22, pages 176–186, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3519270.3538420.

9 Sean Ovens. The space complexity of consensus from swap. CoRR, abs/2305.06507, 2023.
arXiv:2305.06507.

10 Leqi Zhu. A tight space bound for consensus. SIAM J. Comput., 50(3), 2019. A preliminary
version appeared in STOC ’16. doi:10.1137/16M1096785.

https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1007/s00446-017-0301-7
https://digitalcommons.dartmouth.edu/senior_theses/67
https://digitalcommons.dartmouth.edu/senior_theses/67
https://doi.org/10.1006/inco.1993.1043
https://doi.org/10.1145/3212734.3212749
https://doi.org/10.1145/290179.290183
https://doi.org/10.1145/3519270.3538420
https://arxiv.org/abs/2305.06507
https://doi.org/10.1137/16M1096785

	1 Introduction
	2 Definitions
	3 Lower Bound for Set Agreement Using Swap Objects
	4 Lower Bound for Consensus Using Readable Swap Objects
	5 Conclusion

