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Abstract
In 2021 Ethereum adjusted the transaction pricing mechanism by implementing EIP-1559, which
introduces the base fee – a network fee that is burned and dynamically adjusts to the network
demand. The authors of the Ethereum Improvement Proposal (EIP) noted that a miner with more
than 50% of the mining power could be incentivized to deviate from the honest mining strategy.
Instead, such a miner could propose a series of empty blocks to artificially lower demand and increase
her future rewards. In this paper, we generalize this attack and show that under rational player
behavior, deviating from the honest strategy can be profitable for a miner with less than 50% of the
mining power. We show that even when miners do not collaborate, it is at times rational for smaller
miners to join the attack. Finally, we propose a mitigation to address the identified vulnerability.
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1 Introduction

Ethereum occupies a central role in the blockchain and decentralized application landscape.
Not only does Ethereum’s market capitalization currently exceed $225 billion [4], but it is
also the leading platform for smart contracts and decentralized finance. Thus, Ethereum has
revolutionized the way people envision and interact with blockchain technology.

The proposal of Ethereum Improvement Proposal #1559 (EIP-1559) [3] in April 2019 and
its later deployment on Ethereum’s mainnet in August 2021, mark a significant milestone
for the Ethereum network. EIP-1559 reshaped Ethereum’s transaction fee mechanism and
remains in place to this day. One of the main goals of EIP-1559 is to simplify the bidding
process by reducing the need for complex fee estimation algorithms while ensuring that the
mechanism is incentive compatible – the best strategy for all players is to follow the protocol
as intended. In particular, the mechanism should be both truthful and not incentivize miner

1 The authors of this work are listed alphabetically.
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6:2 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

or user bribes, as articulated by Roughgarden [19]. EIP-1559 has been shown to be incentive
compatible [19, 20] when miners are assumed to be myopic, i.e., short-sighted in the sense
that they are maximizing only their immediate profits. Furthermore, an empirical study [16]
concludes that EIP-1559 succeeded in making fees easier to estimate and in reducing delays.

EIP-1559 represents a departure from the previous first-price auction system, wherein
users submit bids and pay the exact amount of their bid if their transaction was included.
Importantly, the entirety of the fees paid by users is awarded to miners. This is no longer
the case under EIP-1559 which introduced a base fee, a portion of the transaction fee that is
burned and not awarded to miners. The base fee varies according to the fill rate of blocks –
a proxy for network demand. Blocks exceeding a predefined target size increase the base fee
and blocks below this target size decrease the base fee. Miners are then compensated for
creating blocks through a block reward and user tips, i.e., user fees exceeding the base fee.

Considering the substantial financial value being traded on the Ethereum network, it
is highly probable that profitable and rational deviations will occur when possible. Thus,
it is essential for EIP-1559 to be incentive compatible as the protocol guarantees rely on
participants following the intended behavior. Deviations from the intended behavior are
considered attacks on the systems. As we will see, the dynamic nature of the base fee opens
the door for possible rational attacks by miners. Miners have control over the fill rate of
blocks and may thus choose to mine emptier blocks in order to decrease the base fee and
increase their future profits, i.e., tips paid on top of the base fee by users. This genre of
attack strategies has been acknowledged in Ethereum’s EIP-1559 proposal and has been
explored under various assumptions in previous research works [19, 11].

This paper presents an analysis of the potential for minority attacks on Ethereum’s
EIP-1559 transaction fee mechanism under the conservative assumption of a steady demand
curve. Our results show that the mechanism is vulnerable to such a 20% minority attack.2
Additionally, we show that smaller miners may be incentivized to join in on the attack. We
provide general insights into when deviating from the prescribed strategy is rational and note
that, due to the nature of our model and assumptions, the results are applicable in a wide
range of scenarios. We also explain how the attack can be initiated by an Ethereum user
(rather than a miner), i.e., show the incentives of users to enact bribes. Finally, to address
the identified vulnerability, we propose a mitigation and evaluate its effectiveness through
simulations.

2 Basic block reward mechanism in Ethereum

Block proposals. Whether Ethereum’s blockchain relies on proof-of-work (PoW) or proof-
of-stake (PoS) as sybil resistance, it relies on a leader election to determine the proposer of
the next block. To be precise, in a PoW blockchain, miners compete to solve a computational
puzzle, and the likelihood of a miner being chosen is based on their share of the network’s
computational power. In a PoS blockchain, on the other hand, miners stake amounts of the
blockchain’s native currency to participate and are randomly selected to create a new block
with probability proportional to the amount they stake. In both cases, the ideal process is
memoryless so each leader election is independent of the previous one. Our model covers
both PoW and PoS, hence, the results of this paper apply to both types of blockchains.

When a miner is chosen to propose a block, they select a set of pending transactions to
include in the next block and broadcast it to the network. Upon successful inclusion of their

2 An individual entity with more than 30% staking power currently exists in the Ethereum network [9].
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block in the blockchain, the miner receives two rewards: a fixed reward of newly minted
currency (Ether in Ethereum’s case), and a variable reward from the transaction fees of the
included transactions. The block reward is fixed, regardless of the block’s content or the
miner that proposes it, so our analysis focuses on the potential for miners to increase their
revenue via transaction fees. Therefore, we do not consider the block reward.

Transaction fees under EIP-1559. Ethereum transactions involve a set of instructions
that are carried out by miners when the transaction is added to the blockchain. To prevent
users from overwhelming the network with bogus transactions, users must pay transaction
fees. These fees should reflect the amount of computational resources needed to execute the
instructions, measured in units of gas and priced in Gwei. Note that 1 Gwei ≜ 10−9 Ether.

The EIP-1559 transaction fee includes a base fee, which is paid per unit of gas and varies
to balance the supply of gas with the demand for gas. To be exact, the base fee b[i] for block
i is determined from the base fee b[i − 1] and size s[i − 1] of the previous block as follows:

b[i] ≜ b[i − 1] ·
(

1 + ϕ · s[i − 1] − s∗

s∗

)
. (2.1)

Thus, the base fee is determined by comparing the size (measured in consumed gas units)
of the previous block to a target block size s∗. If the block is larger than the target size, it
indicates high demand for gas, and the base fee is increased to decrease demand. Conversely,
if the block size is smaller than the target, it indicates low demand for gas, and the base fee
is decreased to increase demand. The sensitivity of the base fee to the size of the previous
block is determined by the adjustment parameter ϕ that is currently set to 1

8 on Ethereum.
We note that b[0] was set to 1 Gwei initially and that the maximum valid block size is 2s∗.

When creating a transaction under the EIP-1559 mechanism, in addition to the gas
limit (g), the user must specify the fee cap (c) which is the maximum fee per gas unit they are
willing to pay, and a maximum tip per gas unit (ε) which is the priority fee. The transaction
will be included in a block only if the fee cap is greater than or equal to the base fee (b).
The total fee paid by the user is g̃ · min{b + ε, c}, where g̃ < g is the actual gas consumed by
the transaction.3 A portion of the fee g̃ · b is burnt and the remaining g̃ · min{ε, c − b} goes
to the miner as a tip. The EIP-1559 mechanism aims for users to bid small tips that only
cover a miner’s costs [3, 19]. Miners are intended to include all transactions that have a fee
cap greater or equal to the base fee and prioritize transactions with higher fees only if the
maximal block size (smax) is exceeded. For simplicity, we assume that all transactions are
of the same size and have a sufficient gas limit (i.e., g = g̃ = 1) to eliminate considerations
including knapsack and gas estimation and keep the focus on the core matter. E.g., a large
transaction is modeled by multiple smaller transactions.

3 Model and Assumptions

In the following, we present our model and outline our assumptions. We highlight that our
model follows Roughgarden’s [19] very closely with the exception that we do not restrict
miners to be myopic. Specifically, while Roughgarden [19] considers only a miner’s immediate
profits (myopici), we will also consider her future profits.

3 The gas limit (g) specifies the amount of gas units available for the execution of the transaction. The
amount of gas needed to execute a transaction is not always predictable in advance. Moreover, if the
needed amount of gas exceeds g, then g gas units are consumed and paid for but the transaction fails.

DISC 2023
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Users. We assume that users are rational agents who want their submitted transactions
to be processed and included in the blockchain. The cost of having one’s transaction (tx)
included in the blockchain under EIP-1559 depends on the base fee (b), fee cap (ctx), and the
maximum tip (εtx), which we described in Section 2. Each transaction tx has a value vtx that
is private to the user who proposes it, which can be thought of as the maximum price that the
user is willing to pay for the transaction tx to be included in the blockchain. We, therefore,
take the utility of a user proposing tx at each block to be u(tx) = vtx − min{b + εtx, ctx} if tx
is included and 0 otherwise. The user will then adjust ctx and εtx according to her bidding
strategy, while b is determined by the size of the past blocks according to Equation 2.1.

Miners. Miners produce blocks that include transactions to be executed. In our model,
the miner to propose the next block is chosen at random. Drawings constitute independent
experiments. In each drawing, a miner X is chosen with probability px, where px is the
miner’s share of the total network power. We assume that the power distribution in the
network changes slowly, hence, to simplify the analysis we model the system as having a
fixed network power distribution, i.e., miners’ network power does not change with time.

A miner has dictatorial power over which transactions to include in the block she produces.
We assume that miners are rational agents who wish to maximize their profit and therefore
choose which transactions to include in their block according to a strategy that maximizes
their profit. Aside from their transaction picking strategy, we assume that miners behave
“honestly” – that is, as specified by the protocol. We highlight that by not considering other
forms of deviating from the protocol, we strengthen our result, showing that even “practically
honest” miners would deviate from EIP-1559.

Collaboration. We adopt a standard buyers-sellers perspective. We assume that miners
do not collaborate with each other, as they can be viewed as one miner with more power.
Similarly, we assume that users do not collaborate with one another since they are competing
for the same scarce resource. However, a user (buyer) and a miner (seller) can communicate
and adjust their strategies for mutual benefit. In particular, a (sophisticated4) user and a
miner will collaborate if it benefits both of them. That is, the user pays fewer fees for her
transaction while the miner receives more fees. The collaboration is thus rational behavior,
leading to improved outcomes for both.

Steady State. The distribution of transaction values is represented by a demand curve,
and the standard demand curve is a decreasing function; the higher the fee is, the fewer
transactions are willing to pay it. In our work, we make no assumptions about the shape of
the demand curve other than that it is a decreasing function. We consider a system in steady
state, which we define as a system in which the demand curve does not change over time,
i.e., it is the same whenever a miner creates a block. This steady state assumption is good
for several reasons: (1) it keeps us on par with Roughgarden’s work [19], (2) it simplifies
the analysis by removing noisy components that can obscure the core principles, and (3)
it is a conservative assumption that strengthen our results in comparison to others. For
example, the “steady influx” model – where there is a fixed influx of transactions to the
network – assumes that miners are able to manipulate the demand curve in their favor, i.e.,

4 It is expected that sophisticated participants will emerge, actively seeking opportunities to generate
excess profits (reduce costs). This expectation is supported by the history of traditional exchange
systems, where a multitude of players specialize in high-frequency trading.
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artificially increase demand by delaying the inclusion of transactions. Thus, when the attack
strategy we will present in Section 4 is beneficial under the steady state it will be at least as
beneficial under the “steady influx” model, but not vice versa. Hence, our steady demand
curve assumption makes our results more general and robust, as it applies to a wider range
of adversarial assumptions.

The desired dynamics of EIP-1559 in the steady state are that produced blocks are of
target size s∗ and that the base fee remains constant at what we refer to as the target base
fee b∗, i.e., s[i] = s∗ and b[i] = b∗ for all i. Further, EIP-1559’s desired bidding dynamics are
for the user’s optimal strategy to be honest in reporting the value of a transaction via ctx
and to offer a minimal tip. In other words, in the steady state, EIP-1559 should lead to a
Nash-equilibrium with the following strategies: (users) honest value-reporting, and (miners)
including all txs with ctx > b∗. Then a block produced during steady state would include s∗

transactions that are each paying b∗ +ε in fees. Thus, b∗ ·s∗ is burned (red area in Figure 1a),
and ε · s∗ is received by the miner (blue area in Figure 1a).

4 A Miner’s Deviation from the Honest Strategy

In the following, we consider a miner X who controls a proportion px of the network’s mining
power, i.e., the probability that X proposes the next block is px.

Honest strategy. The honest strategy for X is always to include the maximum possible
number of transactions whose gas fee covers at least the base fee. As we consider a system
in steady state, the demand curve does not change over time. Further, the honest user bids
ctx = b∗ + ε and εtx = ε. Thus, miner X will always propose a block that is exactly the
target size s∗. The payout received by miner X for every proposed block is, therefore, s∗ · ε,
where ε is the tip the miner receives. The costs for the users are (b∗ + ε)s∗.

Deviation from honest strategy. We continue by outlining a strategy miner X and sophis-
ticated users can employ to manipulate the base fee which results in increasing X’s profit
and reducing users’ costs. When X proposes a block, for which the preceding block was not
created by X, she proposes an empty block to reduce the base fee b for subsequent blocks.
The miner will receive no payout for this block. Any other consecutive blocks X is chosen to
propose, she will propose at target size s∗, profiting from the difference between the targeted
and the reduced base fee. To highlight the miner’s profit, we assume in the following that
users are motivated by slightly reducing their costs. Specifically, users continue to submit
transactions with ctx = b∗ + (1 − α)ε and εtx = ϕ · b∗ + (1 − α)ε, where 0 < α ≤ 1. Thus, the
miner will receive at least the difference in base fees, i.e., ϕ · b∗, and the user will pay α · ε

less for her transaction. By making this assumption, we let the miner extract most of the
excess profit. In Section 7 we describe the complementary attack where most of the excess
value is gained by the users.

Whenever X proposes a s∗ sized block with an artificially reduced base fee, X receives

s∗ (ϕ · b∗ + (1 − α)ε) , (4.1)

where ϕ · b∗ is the base fee reduction and α represents the proportional reduction of the
tip paid by the users. For simplicity, we assume the attack finishes whenever miner X’s
consecutive turns as proposer finishes. The deviation can only become more profitable if
X can continue the attack after an honest proposer, thus, our results apply without the
simplification and their generality is not reduced.

DISC 2023
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(ε + b∗)s∗: fees paid by users
b∗ · s∗: fees burned
ε · s∗: fees received

quantity

pr
ic

e

b∗

ε

s∗

(a) Sample steady state demand curve, s∗

transactions are willing to pay b∗+ε, where
b∗ is the base fee that corresponds to the
target size. The red area is the amount of
fees being burned, whereas the blue area
are the fees received by the miner.

((1 − α)ε + b∗ − b)(1 + ∆)s∗: fees paid by users
{b∗, b} · s: fees burned
((1 − α)ε + b∗ − b)s∗: fees received in attack
((1 − α)ε + b∗ − b)∆s∗: extra fees received

quantity

pr
ic

e

b∗

(1 − α)ε

b

ε

s∗

s

(b) Sample steady state demand curve with lowered base
fee b. If the base fee was lowered to b < b∗, the demand is
increased to s ≥ s∗. An honest miner will fill up the block
with all transactions, paying at least the base fee. The red area
indicates the amount of fees being burned, the blue area the
fees the attacking miner X receives, and the green area is the
additional fees received by the honest miner Y for including
all transactions. The scaling factor ∆ dictates the size of the
green area.

Figure 1 Example demand curves for Ethereum transactions. The quantity (x-axis) indicates
the number of transactions willing to pay the transaction fee (price shown y-axis).

In Theorem 1 we compute the expected reward of X following the honest strategy, as
well as the aforementioned described deviation from the honest strategy. By comparing the
payout of consecutive turns of X in both strategies, we find that it is rational also for a
miner with less than 50% of the power to deviate from the honest strategy.

▶ Theorem 1. In expectation, it is rational for miner X to deviate from the honest strategy, if

px >
ε

ϕ · b∗ + (1 − α)ε .

Proof. See Appendix A. ◀

To better illustrate, when it is rational behavior for miner X to deviate from the honest
strategy, we plot the relative difference between the expected reward of the attack and
the honest strategy in Figure 2. For many realistic parameter configurations, it is rational
behavior for miner X to perform the attack and thereby manipulate the base fee. In Figure 2a,
we plot the profitability of the attack in comparison to the honest strategy dependent on X’s
mining power px. We set ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. Notice that even miners with a
mining power of less than 0.3 are expected to profit from executing the attack. To underline
the expected profitability of the attack, even for small miners, we vary the ratio between the
tips and the base fee (ε/b∗) in Figure 2b and set px = 0.3. Additionally, we vary α, the share
of the tips the users keep for themselves, in Figure 2c, and again set px = 0.3. We conclude
that there are multiple realistic parameter configurations for which the outlined attack is
profitable, even for a miner with less than 50% of the mining power. Thus, as individual
Ethereum pools control in excess of 30% of the staking power [9] such an attack is realistic.
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(c) Relative difference shown as
a function of α. We set px = 0.3,
ε/b∗ = 25.

Figure 2 Relative difference between the expected reward of attack and honest strategy as a
function of px (cf. Figure 2a), ε/b∗ (cf. Figure 2b) and α (cf. Figure 2c). We set ϕ = 1/8, as set in
Ethereum. It is rational for X to perform the attack whenever the relative difference is positive.
The equations to produce these graphs can be found in the proof of Theorem 1 in Appendix A.

5 The Attack’s Effect on Other Miners

In the following, we consider a scenario where a miner X with staking power px (0 < px < 1)
exists for which it is rational behavior to perform the base fee manipulation studied in
Section 4. We then analyze the effect of a miner Y with staking power py, where 0 < py < px,
observing that X performs the base fee manipulation attack. More precisely, we study whether
it is rational behavior for Y to join the attack partially, i.e., Y will always propose blocks at
target size and thereby help keep the base fee artificially low in Section 5.1. Additionally, we
will also study when Y would rationally join the attack entirely, i.e., Y also proposes empty
blocks when the base fee is not already artificially lowered in Section 5.2. We remark that,
throughout, we always assume that miners X and Y do not collaborate.

5.1 Joining the Attack
Consider a miner Y that observes X performing the attack outlined from Section 4. Miner Y

is selected as the proposer for a block that follows X’s turn as proposer, i.e., the base fee is
currently artificially lowered to (1 − ϕ)b∗. We analyze whether it is rational for Y to follow
the honest strategy, i.e., propose the largest block possible and thereby increase the base fee
again, or to join the attack and continue keeping the base fee artificially low.

Honest strategy. We first describe the honest strategy. When it is miner Y ’s turn to
propose a block at an artificially lower base fee, miner Y proposes a block with the most
transactions possible. Note that the number of transactions is restricted both by the demand
at the current base fee (b), as well as the maximum block size, which is twice the target size
(2s∗). We now consider the demand curve that is drawn in Figure 1b. The demand at price
b∗ + ε, where b∗ is the target base fee price and ε the tip, corresponds to a block of target
size s∗. Miner Y will propose a block with the artificially lowered base fee b = (1 − ϕ)b∗.
The demand at this new price b + ε is represented as s in Figure 1b. Recall, that we make
no assumptions about the shape of the demand curve. To make our results stronger, we

DISC 2023
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consider the best case for the honest strategy. Namely, due to the increased demand, Y can
propose a block of maximum size (and reap the resulting extra rewards). That is, s = 2s∗,
after X’s turn. Thus, the payout for miner Y proposing a block of size 2s∗ is given by

s∗ (ϕ · b∗ + (1 − α)ε) (1 + ∆), (5.1)

where s∗ (ϕ · b∗ + (1 − α)ε) is the payout the attacking miner X would receive (cf. Equa-
tion 4.1) and ∆ ∈ [0, 1] is a scaling factor that dictates how much additional rewards miner Y

received for mining a maximum size block. While ∆ = 0 would indicate that Y earns exactly
as much as X, i.e., all extra transactions are capped at exactly the base fee, ∆ = 1 would
indicate that miner Y earns twice the rewards of X, i.e., all extra transactions are capped at
the highest possible price of b∗ + ε.

After miner Y proposes the block, she will be chosen to propose the next block with
a probability of py. We continue with the approximation from before, i.e., the effect of a
full block after an empty one leads approximately to the same point on the demand curve
– (s∗, b∗ + ε). We note that this approximation is accurate up to a term in O(ϕ2b∗) where
b ∈ Θ(ϕb∗). Thus, miner Y proposes a block of size s∗ and is awarded s∗ · ε. From thereon
out, she will continue doing so until her consecutive turns as a proposer stops.

With probability px, miner X will interrupt Y ’s turn as proposer. Miner X will start the
attack again and propose an empty block to lower the base fee. Note that our approximation
of the base fee returning to steady-state levels is the best case for Y ’s honest strategy and,
thus, makes our results stronger. For all consecutive blocks proposed by X, miner X will
propose target size blocks to keep the base fee b (i.e., (1 − ϕ)b∗). If miner Y is again selected
as a proposer after X’s turn, miner Y will proceed with her previously outlined strategy.

At any point, with a probability of 1 − py − px, the consecutive turn of the two miners
finishes. Note that for Y ’s honest strategy analysis, we are only interested in these consecutive
turns of the two miners as proposers, as we analyze the expected payout of the same sequences
for the deviation from the honest strategy which we outline in the following.

Deviation from honest strategy. We now describe a strategy Y can employ to join the
attack she observes. When it is Y ’s turn to propose a block and the base fee is artificially
lowered by X, miner Y will propose a block at the target size. Equivalently to the payout
received by miner X for such a block (cf. Section 4), miner Y ’s reward for proposing the
block is given by

s∗ (ϕ · b∗ + (1 − α)ε) . (5.2)

Following the block proposed by Y , miner Y is again selected to propose a block with
probability py and miner X with probability px. As long as the two miners have an
uninterrupted sequence of block proposals, they both keep the base fee artificially low by
always proposing target size blocks. Once their consecutive turn as proposers ends, we
consider the attack finished. In Theorem 2, we show that it can be profitable for such a
miner Y with a mining power py to join the attack, i.e., keep the base fee artificially low if
she sees a miner X with a mining power px > py perform the attack. Importantly, this is
without assuming collaboration between the two miners.

▶ Theorem 2. In expectation, it is rational for a miner Y to deviate from the honest strategy
and join X in keeping the base fee low, if

py >
∆((1 − α)ε + ϕ · b∗)

(1 − α)∆ · ε + (1 + ∆)ϕ · b∗ − α · ε
.
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Figure 3 Relative difference between the expected reward of attack and honest strategy as a
function of py (cf. Figure 3a), px (cf. Figure 3b) and ∆ (cf. Figure 3c). We set ϕ = 1/8, as
implemented in Ethereum, ε/b∗ = 1/25, α = 0.5 in all plots. It is rational for Y to join the attack
whenever the relative difference is positive. The equations to produce these graphs can be found in
the proof of Theorem 2 in Appendix A.

Proof. See Appendix A. ◀

To better gauge when it is profitable for miner Y to join the attack, we plot the relative
difference between the expected return from the outlined attack and the expected return
from the honest strategy in Figure 3. We vary the mining powers of miner Y (cf. Figure 3a)
and miner X (cf. Figure 3b), as well as ∆ (cf. Figure 3c). In all three plots we set
ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. In Figure 3a, we set ∆ = 0.2 and notice that even a
miner Y with a mining power slightly larger than 0.2 would be inclined to join the attacking
miner X with a mining power of 0.3 in manipulating the base fee. We observe in Figure 3b
that a miner Y that is only six-tenths of the size of miner X would also join the attack
even if miner X only controls less than 40% of the mining power. Finally, in Figure 3c, we
show the dependency of the attack’s profitability for miner Y as a function of ∆, i.e., the
additional payout received by miner Y following the honest strategy when proposing a full
block after the attack by X. Notice that while it is rational for a miner Y to join the attack
for small ∆’s, this is not the case for larger ∆’s. We remark that this is due to the rewards
from the full block mined if Y follows the honest strategy being very significant for a large
∆. Nevertheless, our results show that for realistic parameter configurations, it is rational
for a miner Y to join the attack she sees a larger miner X perform – even without assuming
collaboration between the two.

5.2 Join and Initiate the Attack
In addition to only joining the attack, it is also possible for miner Y , observing X continuously
performing the base fee manipulation, to also propose an empty block whenever she proposes
a block with the target base fee (b∗), knowing that X will aid her in keeping the base fee low
subsequently. We analyze, in the following, when it is more profitable for miner Y to join
X’s attack in her entirety, as opposed to remaining honest.

Honest strategy. The honest strategy for miner Y is identical to that described in Section 5.1.
However, now it is also important to mention that anytime miner Y proposes a block with
base fee b∗, i.e., whenever Y proposes a block that does not follow X’s attack, Y will propose
a target size (s∗) block. For proposing such a block, miner Y will receive s∗ · ε.
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Deviation from honest strategy. In the deviation from the honest strategy, Y will propose
an empty block whenever she mines a block where the base fee corresponds to the target
base fee b∗. Then with probability py, miner Y will also propose the next block and will
profit from the difference between the base fee and the target base fee by mining a target
size block. On the other hand, with probability px, miner X will propose the next block and
will also mine a target size block – keeping the base fee low. With Theorem 3, we show that
it can even be profitable for a miner Y to commence the attack if she knows that a larger
miner X will help her in keeping the base fee artificially low.

▶ Theorem 3. In expectation, it is rational for a miner Y to deviate from the honest strategy
and lower the base fee, if

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) .

Proof. See Appendix A. ◀
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(a) Relative difference shown as a
function of py. We set px = 0.3,
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0.2 0.3 0.4 0.5
px

0.4

0.2

0.0

(
[R

[A
]]

[R
[H

]])
/

[R
[H

]]

(b) Relative difference shown as
a function of px. We set py =
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(c) Relative difference shown as a
function of ∆. We set px = 0.3, ,
py = 0.18.

Figure 4 Relative difference between the expected reward of attack and honest strategy as a
function of py (cf. Figure 4a), px (cf. Figure 4b) and ∆ (cf. Figure 4c). We set ϕ = 1/8, as
implemented in Ethereum, ε/b∗ = 1/25, α = 0.5 in all plots. It is rational for Y to initiate new
attacks in addition to X whenever the relative difference is positive. The equations to produce these
graphs can be found in the proof of Theorem 3 in Appendix A.

To better understand the parameter configuration under which it would be rational for
Y to also initiate the attack, we plot the relative difference of the reward of the attack
in comparison to the reward of the honest strategy in Figure 4. Note that we again set
ϕ = 1/8, ε/b∗ = 1/25, and α = 0.5. Figure 4a, where we also set px = 0.3 and ∆ = 0.2, shows
that it can be profitable for a miner Y to initiate the attack, i.e., mine an empty block to
lower the base fee, knowing that miner X will support her in keeping the base fee artificially
low. Notice though that the threshold where it is rational for Y to also start the attack is
reached later in comparison to the threshold where it is rational for miner Y to only join the
attack (cf. Figure 3a). A similar picture paints itself when we look at the profitability of
initiating the attack for Y as a function of X’s mining power in Figure 4a. Again we see
that for a miner Y , it can be profitable to start the attack only with the knowledge that X

will aid her in keeping the base fee low. Finally, in Figure 4c, we show the relative difference
between the expected profit of the outlined attack for Y and the honest strategy. For the
chosen parameter configuration, px = 0.3 and py = 0.18, the attack would actually never
be profitable regardless of ∆. We, thus, summarize that while it is only rational for Y to
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initiate the attack for a reduced set of parameters, it is remarkable that this is even the case.
By starting the attack, Y is taking a loss for a larger miner X just based on the knowledge
that she will be supported by X in keeping the base fee low. Astonishingly, the collaboration
of the two miners is not required.

6 Possible Mitigations

To mitigate the attacks described in Sections 4 and 5, we focus on addressing the deviation
of player X, as if X does not deviate from the honest strategy, and neither does Y . We
start by examining the trivial mitigation of reducing ϕ. Theorem 1 shows that decreasing ϕ

by a factor of β will require that px is approximately β times larger for a deviation to be
profitable. For example, if Ethereum were to decrease its current ϕ of 1/8 to 1/16, it would
require px to be approximately twice as large for a deviation to be profitable. This approach
can be effective during stable periods, but it might not be able to adjust quickly enough to
changes in demand. Further, Leonardos et al. [14] show how the value of ϕ determines the
trade-off between a base fee that adjusts too quickly (which can lead to chaotic behavior)
and one that adjusts too slowly to fulfill its purpose.

The following question appears in EIP1559 FAQ [2]: “Won’t miners have the incentive to
collude to push down the base fee by making all their blocks less than half full?” In response
to the question Buterin proposes this mitigation: “Divert half of the collected base fees, that
would otherwise be burned, into a special pool. Whenever a miner mines a new block add to
her block reward a 1/8192 portion of the amount in that pool. This will incentivize miners to
maintain a higher base fee.” One might falsely presume that this solution, to the above-posed
question, might also be used to solve the deviation we outline in Section 4. However, the
two attacks are inherently different as the one we outline does not require miners to collude.
Thus, this proposal does not solve our deviation. The added cost of the attack, i.e., the lost
revenue from half of the base fee reduction, is distributed among many while the attacker’s
expected revenue remains unchanged. In the long run, this proposal only minimally reduces
the attacker’s expected revenue by b∗ · 2−13, which is typically significantly less than the
expected rewards and, therefore, ineffective.

Another straw man to consider is to use the average of the previous W block sizes instead
of just the size of the last block to measure demand in the base fee update rule. This method
may appear to be promising because it reduces the effect of an empty block on the following
block by a factor of W , and its effect on the rate of adjustment (embodied in ϕ) is easily
accounted for, adding an adjustment delay within O(W ). However, this mitigation fails to
mitigate the attack, as it increases the opportunity for X to profit from later blocks that are
within a W distance from the empty block, thereby increasing the expected profitability of
the deviation. For example, if we use a two-block window (i.e., W = 2) and ϕ = 1/8, the
base fee is reduced by a smaller factor of only ϕ/W = −1/16 to b1 = 15b∗/16 as desired.
Nevertheless, even if the ensuing block is completely full (i.e., s1 = 2s∗), the base fee for
the block following it does not increase and remains b2 = b1 = 15b∗/16 which means an
additional profit opportunity for the deviation that compensates X for the reduced factor.
As a result, the deviation is not mitigated and is actually exacerbated.

We propose the following mitigation, to use a geometric sequence as weights to average
the history of block sizes. Formally, for q ∈ (0, 1) denote

savg[i] ≜ 1 − q

q

∞∑
k=1

qk · s[i − k + 1] = (1 − q) · s[i] + q · savg[i − 1], (6.1)
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and replace s[i] in Equation 2.1 by savg[i] to get the following base-fee update rule

b[i + 1] = b[i] ·
(

1 + ϕ · savg[i] − s∗

s∗

)
. (6.2)

We note that b[0] would be initialized to 1 Gwei initially and that savg would be initialized to
be the size of the first block after the transition. By applying the update rule in Equation 6.2,
we reduce the effect of the empty block on the ensuing block by a factor of (1 − q) and
discount its effects on later blocks exponentially fast (with base q). For example, using the
same parameters as before with ϕ = 1/8, if we set q = 1/2, after X’s empty block (at slot τ),
the base fee will be reduced by a factor of (1 − ϕ(1 − q)) = (1 − 1/16) to b[τ + 1] = 15b∗/16.
Now, however, making the same assumption as before (i.e., s[τ + 1] = 2s∗), the base fee for
the next block, b[τ +2], will be 495b∗/512. This decreases the potential profit margin of block
τ + 2 from b∗/16 to b∗/32 + b∗/512, which is almost a factor of 2 reduction. Therefore, the
added profit opportunity in future blocks is not enough to compensate for the lost potential
in the immediately ensuing block. As a consequence, the attack is considerably mitigated.

The above mitigation method has two additional properties: (i) its computation and
space complexity are both in O(1), and (ii) it gradually phases out the impact of a single
empty block without causing significant fluctuations. To reason about the effect our proposal
has on response times we use the following methodology. Suppose that the demand suddenly
changes and the new (desired) steady state should be reached at a new point with a base fee
that is β times higher than the current base fee (b∗). Denote by T the number of consecutive
full blocks required to reach the new base fee. We use T as a function of β to characterize
the response time of a fee-setting mechanism to sudden changes in demand.

EIP-1559 as it is currently implemented will take T (β) = ⌈log(1+ϕ) β⌉ blocks to reach the
new base fee βb∗. With our mitigation, it takes slightly longer. To be precise, in Appendix B
we show the exact delay T (β) of our mitigation proposal is the smallest integer T that
satisfies

∏T
k=1(1 + ϕ(1 − qk)) ≥ β. We further plot the T (β) for EIP-1559 and our mitigation

in Appendix B (cf. Figure 10).

Simulations
In order to gauge the effectiveness of the proposed mitigation, we conducted simulations
that compare the excess profit of an attacker (profit gained through deviation minus profit
gained through honest mining) under EIP-1559 with and without the mitigation. To account
for the probabilistic nature of the attack (profits in expectation only), we calculated the
average of the results for each data point over 10,000 runs, each using a different random
seed. Each simulation begins with X mining an empty block, the next blocks are mined by
X with probability px per block and by an honest miner with probability 1 − px. We assume
that X will then always mine target-size blocks, while the honest miners will mine blocks
at twice the target size. We keep track of the payout received by X and declare the attack
finished if the base fee has recovered to 99% of its target size. We perform 10,000 runs for
both the base fee evolution according to EIP-1559, as well as our mitigation. Simultaneously,
we keep track of the payout X would have received for the same random seed if she had
followed the honest strategy. The results of the simulation are depicted in Figures 5 and 6.

Figures 5a and 5b show X’s profit from attacking as a function of px and the ratio ε/b∗

for EIP-1559 with and without the mitigation for q ∈ {1/4, 1/2, 3/4}. The results decisively
demonstrate the benefit of our mitigation; it becomes much harder for X to profit from
attacking. Finally, Figure 6 illustrates the effect of the mitigation (with q ∈ {1/4, 1/2, 3/4})
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Figure 5 Profitability of the attack under EIP-1559 and our proposed mitigation. We plot the
mean attack profitability (cf. Figures 5a and 5b) along with the 95% confidence interval. We set
ϕ = 1/8, α = 0.5, s∗ = 1.

on the configurations at which X will attack. Most notably, the green area represents a set
of configurations in which X had attacked without the mitigation and will be attacking no
longer. The value of the proposed approach is evident from the results.
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Figure 6 Attack profitability under EIP-1559 and the proposed mitigation for q ∈ {1/4, 1/2, 3/4}
as a function of px and ε/b∗. Importantly, the green area shows where the mitigation can prevent
the attack but EIP-1559 cannot. We set ϕ = 1/8, α = 0.5, s∗ = 1.

7 User perspective

Until now, we have approached the topic from the miners’ point of view. Considering the
users as first-class citizens, and observing the attack through their eyes, contributes a new
perspective on the results.

Instead of the miners taking it upon themselves to initiate the attack, we can imagine
users who wish to pay lower costs coordinating the attack. Let u be a user (or group of
users) that has transactions with a g amount of gas. Assume the other users naively follow
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the strategy of the desired equilibrium. That is, they bid an honest valuation with an ε tip.
The attacker’s strategy is as follows: u bribes the miner of the current block (no matter
the miner’s power) to propose an empty one instead. Any bribe larger than s∗ε will suffice.
Consequently, the base fee reduces in the next block. If the other users naively continue to
bid with an ε tip (or they are simply slow to react), u can guarantee the inclusion of her
transactions with any tip larger than ε – making the attack profitable whenever gϕb∗ > s∗ε.

8 Discussion

Myopic vs. non-myopic. Roughgarden’s analysis [19] of the EIP-1559 protocol suggests
that, in the steady state, the honest strategies of the users and miners are incentive compatible.
Our opposing conclusion stems from a single different assumption, namely, [19] considers
miners that only care for immediate profits (referred to as myopic), while we consider
non-myopic miners that do not disregard future profits. There are valid reasons to model
miners as myopic. For example, the proposing turns of a very small miner are sporadic, and
accounting for rare future profits is negligible in comparison to the prize at hand. However,
there are strong reasons for modeling miners as non-myopic. Measurement studies have
shown that the distribution of mining power follows a power law rather than a uniform
distribution [8, 9], i.e., the biggest miners control significant portions of the mining power.
Moreover, the “shorter vision” of smaller miners is accounted for under our model. Our
quantitative results show that as a miner’s size decreases, the lesser the profitability of
the deviations. Finally, from a conceptual perspective, miners are typically players of high
stakes (the minimum stake in Ethereum is 32 ETH which is currently over $50,000), and
participation also requires some expertise, planning, and locking of assets. Therefore, it does
not seem appropriate to consider these players as ones that neglect future considerations.

Additional observations. The deviations described in this paper have an interesting property;
they appear to have a win-win-win outcome. The attacker profits, the non-attacking miners
profit, and the users profit by paying a cheaper total gas fee. But not all is rosy; there is a
hidden cost involved. In order for users to benefit, they must diligently follow the miners’
actions and compute the appropriate response. This increase in complexity for the users is
in opposition to one of the main goals of EIP-1559 – simplifying the bidding mechanism and
eliminating the need for complex fee estimation algorithms. As a result, sophisticated users
take precedence and push naïve users to the back of the line.

Although it is desirable that the leader election process be unpredictable, in practice, this
is not the case. Currently, in Ethereum, implementation considerations led to miners knowing
their own proposing slots 32–62 blocks in advance [6]. This predictability clearly favors
the attacker, who no longer needs to lose tips for the probability of winning more. Instead,
the miner only attacks when it is guaranteed to mine at least two blocks in a row. The
predictability issue has risen with the move to PoS and was not present in PoW Ethereum.5

5 Since the randomness in PoW does not depend on a peer-to-peer communication source, it does not
have a predictability concern. The predictability issue is a result of implementation constraints for the
cryptographic protocols of Verifiable Random Functions (VRFs).
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9 Related work

Blockchain transaction fee mechanism. Huberman et al. [12] provide an early analysis of
Bitcoin’s first-price auction. An in-depth exploration of miner manipulation in transaction
fee mechanisms was first explored by Lavi et al. [13]. While these works study the first-price
auction used in Bitcoin and originally in Ethereum as well, our work studies the incentives
for miners to deviate from the EIP-1559 protocol currently used in Ethereum.

Stability of the base fee. As Leonardos et al. [14] show in their theoretical analysis, a key
parameter in the base fee mechanism is the adjustment parameter ϕ. In particular, they show
that stability is not guaranteed depending on system conditions (e.g., a congested network),
especially if ϕ is set to too high a value. However, there are also conditions under which
the base fee may have bounded oscillations or even converge, providing stability. In another
work, Leonardos et al. [15] show that despite the short-term chaotic behavior on the base
fee, the long-term average block size is close to the target size.

Reijsbergen et al. [18] empirically show that a stable base fee may not tell the whole
story, however, as even in cases where the base fee remains relatively stable (e.g., between 25
and 35 Gwei) and the block size is on average the target block size, block sizes can fluctuate
wildly (as explained by Leonardos et al. [14]), impacting miner revenue. One reason for this
is that the currently used value for the adjustment parameter (ϕ = 1

8 ) is too low during
periods where the demand rises sharply (i.e., the base fee does not increase quickly enough)
but also too high when demand is stable (inducing fluctuations in block size). Therefore,
[18] suggests making ϕ variable based on the demand. Their work does not consider bribes
and is complementary to ours. Their suggested mitigation to the stability issue is to have ϕ

adaptive according to an Additive Increase Multiplicative Decrease (AIMD). Since we do not
vary ϕ (but instead update the base fee update rule), an interesting experiment would be to
combine our mitigation technique (averaging s[i] geometrically) with their AIMD ϕ setting
and examine the results on data from the real world.

Ferreira et al. [7] show that although the first-price auction utilized under EIP-1559 is
incentive-aligned for miners, it provides a bad user experience. In particular, they observe
bounded oscillation of the base fee in experiments when bidders all associate the same value
with their transaction. While their work studies the stability of the base fee with myopic
miners, we study the manipulability of the base fee in the presence of non-myopic miners.

Manipulability of the base fee. Manipulation of the base fee has been a concern since
EIP-1559 was proposed [1] as it is straightforward to notice that the base fee could be
manipulated downwards by a miner that intentionally mines empty blocks.

The EIP as listed on Ethereum’s Github repository acknowledges the possibility of miners
mining empty blocks but determines that such a deviation from an honest mining strategy
would not lead to a stable equilibrium as other miners would benefit from this (i.e., benefiting
from the reduced base fee without the opportunity cost of mining an empty block) [3]. Their
belief was therefore that executing such a strategy would require a miner to control more
than half the hashing power (the document precedes Ethereum’s switch to PoS).

In his exposition of EIP-1559 [19], Roughgarden considered this in the case of a 100%
miner (or any miner with greater than 50% of the mining power) that would drive the base
fee down to 0 by mining empty blocks then, in order to maximize their revenue, switching to
either mining target size blocks in perpetuity, maintaining the base fee at 0 and essentially
reverting back to a first price auction, or mining sequences of under full and overfull blocks
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(relative to the target size) according to the demand. Roughgarden restricts himself to this
case and does not otherwise consider non-myopic miners, assuming that with a high enough
level of decentralization, the probability of any miner being elected to propose a block two
times in a row was too low for any miner to consider strategies over multiple blocks.

Similar to us, a concurrent work by Hougaard and Pourpouneh [11] also relaxes the
myopic assumption and proves that non-myopic miners would be incentivized to deviate
even if they are a minority. However, their analysis relies on several assumptions, that while
legitimate, provide the attacker with advantageous conditions in comparison to the more
conservative assumptions made in this paper. In particular, [11] relies on miners knowing the
exact parameters of the demand distribution of the users (which itself is restricted to each
user drawing from a uniform distribution), as well as on miners being able to manipulate
the demand curve in favor of the future blocks; inducing artificial future congestion by not
including transactions in the current block and letting them accumulate. We do not assume
any specific demand curve, only a steady demand curve, and do not rely on miners inducing
congestion, which makes our attack more profitable. Although we do assume that users act
rationally and will adapt their strategy if benefits them, while [11] assumes users are passive
and do not adapt their strategies in a rational manner.

MEV. Miner/Maximal Extractable Value (MEV) has gained significant attention in the
blockchain research community in recent years [5, 21, 17]. Similarly to this work, MEV
strategies enable a miner to accrue excess profits in comparison to naïve mining. However,
in MEV the value comes from analyzing the actual data in the transactions, whereas, in this
work, the miner’s excess profit comes from manipulating the EIP-1559 mechanism. Therefore,
many of the suggested mitigations against MEV [10] (such as obscuring transaction data
until inclusion) will not work against our attack.

10 Conclusion and Future Work

In this paper, we demonstrated that even under very conservative assumptions (steady state,
miners cannot induce congestion, unknown demand functions), there are strong incentives for
minority miners to deviate from the EIP-1559 protocol. Furthermore, we showed that once
an attack begins, previously honest miners’ rational response may be to join the deviation
and even sometimes initiate new attacks – worsening the problem rather than improving it.

To mitigate the problem, we suggested using a weighted average with the weights being a
geometric series. This direction seems promising as it has several desirable properties and
trade-offs (e.g., balancing attack mitigation with low additional response delays). However,
further research rigorously analyzing it in a broader context is warranted.
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A Omitted Proofs

▶ Theorem 1. In expectation, it is rational for miner X to deviate from the honest strategy, if

px >
ε

ϕ · b∗ + (1 − α)ε .

Proof. We commence with the honest strategy and calculate the expected payout for
consecutive turns of X as proposer by modeling the process as a Markov chain (cf. Figure 7a).

When it is miner X’s first time as proposer in a consecutive turn, i.e., the previous
block was not mined by X, we are in state Xh. In this state, miner X proposes a block
at target size s∗ and receives tips at price ε. Thus, the payout for miner X in state Xh is
P [Xh] = s∗ · ε. With probability px, X stays in state Xh for the next block and also proposes
the next block. Else, with probability 1 − px, we enter an absorbing state. We calculate the
expected number of times X proposes consecutive blocks and, thereby, the expected payout
for X.

By linearity of expectation, it follows that the expected payout for a sequence of consecutive
turns by X as a proposer following the honest strategy is given by

E[R[Xh]] = px · E[R[Xh]] + P [Xh] ⇐⇒ E[R[Xh]] = s∗ · ε

1 − px
, (A.1)

as miner X is awarded P [Xh] every time she proposes a block. Note that the expected
reward of the honest strategy i.e., E[R[H]] corresponds to the expected payout of the Markov
process starting in state Xh, i.e., E[R[H]] = E[R[Xh]].

Xh px

(a) honest strategy of miner X.

Sa Xa

px

px

(b) attacking strategy of miner X.

Figure 7 The honest strategy (cf. Figure 7a) and deviation from the honest strategy (cf. Figure 7b)
modeled with discrete Markov chains. All states with a nonzero payout for miner X are highlighted
in gray. We transition between states with every block. Note that for all remaining probabilities,
the Markov process enters an absorbing state, and X’s consecutive turns as a proposer finish.

We now examine the reward for miner X if she chooses to carry out the attack, modeling
the deviation from the honest strategy as a Markov chain (as shown in Figure 7b). The
starting point for the attack, denoted as state Sa, is when miner X submits an empty block.
Therefore, the payout in state Sa is 0. But with a probability of px, miner X is chosen as
the proposer for the next block and enters state Xa, where she submits a block at the target
size. The payout in state Xa can be calculated by P [Xa] = s∗ (ϕ · b∗ + (1 − α)ε).

If X is not selected to propose another block in a row, we enter an absorbing state and the
attack stops. We make the approximation that whenever X’s consecutive turns as proposer
finish, honest miners will bring the base fee back to b∗ before X gets to mine another block.
It is possible that the honest miners do not bring the base fee back up to the target before
X is selected to propose again, and X could continue the attack at a lower cost. However,
assuming that the base fee had fully recovered simplifies the analysis and only makes our
results stronger, as it reduces X’s attack rewards. From state Xa we remain in state Xa for
the next block with probability px, i.e., X is selected to propose another block or enter the
absorbing state with probability 1 − px.
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The expected payout for miner X in state Sa is given by E[R[Sa]] = px ·E[R[Xa]]+P [Sa],
where E[R[Xa]] is the expected payout starting from state Xa and we have E[R[Xa]] =
px · E[R[Xa]] + P [Xa]. It follows that the expected payout of the attack is

E[R[A]] = E[Sa] = px · s∗ (ϕ · b∗ + (1 − α)ε)
(1 − px) . (A.2)

Note that the payout of the attack is given by the expected payout starting from state Sa,
as the attack commences in said state.

We conclude that it is rational for miner X to deviate from the honest strategy if
E[R[A]] > E[R[H]]. It follows that X attacks when

px > ε
ϕ·b∗+(1−α)ε . ◀

▶ Theorem 2. In expectation, it is rational for a miner Y to deviate from the honest strategy
and join X in keeping the base fee low, if

py >
∆((1 − α)ε + ϕ · b∗)

(1 − α)∆ · ε + (1 + ∆)ϕ · b∗ − α · ε
.

Proof. We commence with the honest strategy of miner Y which we model as a Markov
chain in Figure 8a. Miner Y starts in state Y h

X and is tasked with proposing a block after
miner X at an artificially lowered base fee b, where b = (1 − ϕ)b∗ < b∗. The payout for
proposing a block at twice the target size s∗ is given by

P [Y h
X ] = s∗ (ϕ · b∗ + (1 − α)ε) (1 + ∆). (A.3)

From state Y h
X , we move to state Y h

Y , where Y proposes a target size block, with probability
py. The payout for miner Y in state Y h

Y is given as

P [Y h
Y ] = s∗ · ε, (A.4)

and we remain in this state for a subsequent block with probability py.
In both state Y h

X and state Y h
Y , the probability of moving to state Xh is px. When we

re-enter state Xh for the first time, X will propose an empty block to lower the base fee again.
Then, with a probability px, we remain in state X for the next block, where miner X will
propose target size blocks until her consecutive turn as a proposer is interrupted. Regardless,
the payout for miner Y whenever we are in state Xh is zero. We move to state Y h

Y with
probability py from state Xh and enter an absorbing state with probability 1 − py − px from
all states.

Next, we calculate the expected payout of the honest strategy and start with the expected
reward for miner Y starting from state Y h

X E[R[Y h
X ]] = px ·E[R[Xh]] + py ·E[R[Y h

Y ]] + P [Y h
X ]

where E[R[Xh]] = px ·E[R[Xh]]+py ·E[R[Y h
X ]], and E[R[Y h

Y ]] = px ·E[R[Xh]]+py ·E[R[Y h
Y ]]+

P [Y h
Y ]. By solving the system of linear equations, we find that the expected reward from the

honest strategy is given by

E[R[H]] = E[R[Y h
X ]] = (1−px)(((1−py)(1+∆)ϕ·b∗)+ε(1+∆−α(1+∆)(1−py)−∆py))s∗

(1−px−py) . (A.5)

We now consider the deviation from the honest strategy, whereby miner Y also keeps the
base fee artificially low, and model the strategy with a Markov chain in Figure 8b. State Y a

is the starting state of the deviating strategy in which Y proposes a block with target size s∗

at an artificially lowered base fee (1 − ϕ)b∗. Thus, the state’s payout is

P [Y a] = s∗ (ϕ · b∗ + (1 − α)ε) . (A.6)

DISC 2023



6:20 Base Fee Manipulation in Ethereum’s EIP-1559 Transaction Fee Mechanism

XhY h
X

Y h
Y

px

py

px

py px

py

(a) honest strategy of miner Y .

Y a Xa

px

py

py

px

(b) attacking strategy of miner Y .

Figure 8 The honest strategy (cf. Figure 8a) and the deviation from the honest strategy, i.e.,
keep the base fee artificially low, (cf. Figure 8b) modeled with discrete Markov chains for miner Y .
We transition between states with every block. All states with a nonzero payout for miner Y are
highlighted in gray. Note that for all remaining probabilities, the Markov process enters an absorbing
state.

For the next block, we stay in state Y a with probability py, move to state Xa with
probability px, or else move to an absorbing state, i.e., the consecutive turns of X and Y as
proposers end and the attack finishes. In state Xa, proposer X will also propose a target
size block, but the payout for miner Y is zero as we assume no collaboration between the
two. The transition probabilities from state Xa are identical to those from state Y a: we
move to state Y a with probability py, stay in state Xa with probability px and enter an
absorbing state with probability 1 − py − px for the next block. Thus, the expected reward
for miner Y starting in state Y a is given by E[R[Y a]] = px ·E[R[Xa]] + py ·E[R[Y a]] + P [Y a],
where E[R[Xa]] is the expected payout for miner Y starting from state Xa and we have
E[R[Xa]] = px ·E[R[Xa]] + py ·E[R[Y a]]. We follow that the expected payout of the deviating
strategy for miner Y is given by

E[R[A]] = E[R[Y a]] = (1 − px)s∗(ϕ · b∗ + (1 − α)ε)
(1 − px − py) . (A.7)

We conclude it is rational for miner Y to deviate from the honest strategy when E[R[A]] −
E[R[H]] > 0. It follows that Y attacks when

py > ∆((1−α)ε+ϕ·b∗)
(1−α)∆·ε+(1+∆)ϕ·b∗−α·ε . ◀

▶ Theorem 3. In expectation, it is rational for a miner Y to deviate from the honest strategy
and lower the base fee, if

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) .

Proof. We, again, model the honest strategy for miner Y as a Markov chain (cf. Figure 9a).
The honest strategy starts in state Y h, where miner Y proposes a block at target size s∗ and
receives a payout of

P [Y h] = s∗ · ε. (A.8)

The transition probability to state Xh is px and to state Y h, i.e., Y proposes consecutive
blocks, is py. Otherwise, the consecutive turn of X and Y as miners stops and we enter
an absorbing state. We note that the states Xh, Y h

X and Y h
Y correspond exactly to the

eponymous states in Theorem 2 (cf. Figure 8a). Thus, the actions of the miners, the payout
for miner Y , and the transition probabilities are as previously described in the proof of
Theorem 2.
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The strategy’s payout is the expected reward starting from state Y h, which is

E[R[Y h]] = px · E[R[Xh]] + py · E[R[Y h] + P [Y h]. (A.9)

As previously in Theorem 2, we have

E[R[Y h
X ]] = px · E[R[Xh]] + py · E[R[Y h

Y ]] + P [Y h
X ], (A.10)

E[R[Xh]] = px · E[R[Xh]] + py · E[R[Y h
X ]], (A.11)

E[R[Y h
Y ]] = px · E[R[Xh]] + py · E[R[Y h

Y ]] + P [Y h
Y ]. (A.12)

Solving the system of linear equation, we conclude that the expected payout of the honest
strategy is

E[R[H]] = E[R[Y h]] = (((1 + ∆)b∗ϕpxpy) + ε(1 − px + ((1 − α)∆ − α)pxpy))s∗

1 − px − py
. (A.13)

Y h

Xh Y h
X

Y h
Y

px

py

px

py

px py

px py

(a) honest strategy of miner Y .

Sa Xa

Y a

px

py

px

py

py

px

(b) attacking strategy of miner Y .

Figure 9 The honest strategy (cf. Figure 9a) and the deviation from the honest strategy (cf.
Figure 9b) modeled with discrete Markov chains. We transition between states with every block.
All states with a nonzero payout for miner Y are highlighted in gray. Note that for all remaining
probabilities, the Markov process enters an absorbing state and the consecutive turn of X and Y as
proposers finishes.

We proceed with the attack strategy, which we model in Figure 9b. Miner Y starts in
state Sa and mines an empty block and, therefore, receives no rewards. With probability
py we move to state Y a for the next block, i.e., Y proposes a target size (s∗) block, with
probability px we move to state Xa, i.e., X proposes a target size (s∗) block, and with
probability 1 − px − py we move to an absorbing state, i.e., the attack ends. Notice that
the states Xa and Y a are identical to those described in the proof of Theorem 3. Thus, the
expected returns starting in the respective states are as follows

E[R[Sa]] = px · E[R[Xa]] + py · E[R[Y a]], (A.14)
E[R[Y a]] = px · E[R[Xa]] + py · E[R[Y a]] + P [Y a], (A.15)
E[R[Xa]] = px · E[R[Xa]] + py · E[R[Y a]], (A.16)

and find that the expected reward of the attack strategy is

E[R[A]] = E[R[Sa]] = (ϕ · b∗ + (1 − α)ε)pys∗

1 − px − py
. (A.17)

To conclude, it is rational behavior for Y to deviate from the honest strategy, when E[R[A]]−
E[R[H]] > 0, which holds when

py >
ε(1 − px)

(1 − α)ε + ϕ · b∗(1 − px) + (1 + ∆)εαpx − ∆px(ε + ϕ · b∗) . ◀
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B Delay Incurred by the Mitigation of Section 6

Suppose we are in a steady state with a base fee b∗, when after block height τ a fixed change
in demand occurs for which the new steady state will be achieved with the new base fee
β · b∗. We denote by T the number of consecutively full blocks it takes to reach the new base
fee β · b∗.

After k consecutively full blocks, according to Eq. 6.1

savg[τ + k] = (1 − q)2s∗ + q · savg[τ + k − 1]
=

(
2(1 − q)(q0 + q1 + . . . + qk−1) + qk

)
s∗

=
(

2(1 − q)
(

1 − qk

1 − q

)
+ qk

)
s∗

= (2 − qk)s∗.

Plugging the above into Eq. 6.2 yields

b[τ + k] = bavg[τ + k − 1] ·
(

1 + ϕ · (2 − qk)s∗ − s∗

s∗

)
= bavg[τ + k − 1] ·

(
1 + ϕ(1 − qk)

)
= b[τ ] ·

(
1 + ϕ(1 − q1)

) (
1 + ϕ(1 − q2)

)
· · ·

(
1 + ϕ(1 − qk)

)
= b∗ ·

k∏
i=1

(1 + ϕ(1 − qi)).

Therefore, T is the smallest integer that satisfies

b[τ + T ] = b∗ ·
T∏

i=k

(1 + ϕ(1 − qk)) ≥ β · b∗ ⇐⇒
T∏

k=1
(1 + ϕ(1 − qk)) ≥ β.
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Figure 10 The number of consecutive full blocks T required to increase the base fee by factor β

for EIP-1559 and the proposed mitigation for q ∈ {1/4, 1/2, 3/4}.

Figure 10 plots T (β) for both EIP-1559 and our mitigation. We set ϕ = 1/8 (current
Ethereum) and use q ∈ {1/4, 1/2, 3/4}. All plots follow a logarithmic trend and the response
times to dramatic changes in demand are only mildly affected by the proposed mitigation
(even for β factors as large as 100).
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