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Abstract
Traditionally, distributed and parallel transactional systems have been studied in isolation, as
they targeted different applications and experienced different bottlenecks. However, modern high-
bandwidth networks have made the study of systems that are both distributed (i.e., employ multiple
nodes) and parallel (i.e., employ multiple cores per node) necessary to truly make use of the available
hardware.

In this paper, we study the performance of these combined systems and show that there are
inherent tradeoffs between a system’s ability to have fast and robust distributed communication and
its ability to scale to multiple cores. More precisely, we formalize the notions of a fast deciding path of
communication to commit transactions quickly in good executions, and seamless fault tolerance that
allows systems to remain robust to server failures. We then show that there is an inherent tension
between these two natural distributed properties and well-known multicore scalability properties
in transactional systems. Finally, we show positive results; it is possible to construct a parallel
distributed transactional system if any one of the properties we study is removed.

2012 ACM Subject Classification Computing methodologies → Concurrent computing methodolo-
gies; Computing methodologies → Distributed algorithms

Keywords and phrases transactions, distributed systems, parallel systems, impossibility results

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.9

Related Version Full Version: https://arxiv.org/abs/2308.03919 [9]

1 Introduction

Transactional systems offer a clean abstraction for programmers to write concurrent code
without worrying about synchronization issues. This has made them extremely popular and
well studied in the last couple of decades [5, 21, 23, 41, 47, 53, 54, 48].

Many transactional systems in practice are distributed across multiple machines [14, 55, 30],
allowing them to have many benefits that elude single-machine designs. For example,
distributed solutions can scale to much larger data sets, handle much larger workloads,
service clients that are physically far apart, and tolerate server failures. It is therefore
unsurprising that distributed transactional systems have garnered a lot of attention in
the literature, with many designs aimed at optimizing their performance in various ways:
minimizing network round trips to commit transactions [29, 47, 54, 38, 15, 36], increasing
robustness and availability when server failures occur [29, 54, 47], and scaling to heavier
workloads [55, 19].
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Due to increased bandwidth on modern networks, new considerations must be taken
into account to keep improving the performance of distributed transactional systems. In
particular, while traditional network communication costs formed the main bottleneck for
many applications, sequential processing within each node is now no longer enough to
handle the throughput that modern networks can deliver (through e.g., high-bandwidth links,
multicore NICs, RDMA, kernel bypassing). Thus, to keep up with the capabilities of modern
hardware, distributed transactional systems must make use of the parallelism available on
each server that they use. That is, they must be designed while optimizing both network
communication and multicore scalability.

Two main approaches have been employed by transactional storage systems to take
advantage of the multicore architecture of their servers [46]: shared-nothing or shared-
memory. The shared-nothing approach, where each core can access a distinct partition of the
database and only communicates with other cores through message passing, has a significant
drawback: cores responsible for hot data items become a throughput bottleneck while other
cores are underutilized. To be able to adapt to workloads that stress a few hot data items,
the shared memory approach, where each core can access any part of the memory, can be
used. However, shared memory must be designed with care, as synchronization overheads
can hinder scalability. Fortunately, decades of work has studied how to scale transactional
systems in a multicore shared-memory setup [7, 6, 5, 10, 12, 40, 41, 8]. Thus, there is a lot of
knowledge to draw from when designing distributed transactional systems that also employ
parallelism within each server via the shared-memory approach.

In this paper, we study such systems, which we call parallel distributed transactional
systems (PDTSs). Our main contribution is to show that there is an inherent tension between
properties known to improve performance in distributed settings and those known to improve
performance in parallel settings. To show this result, we first formalize a model that combines
both shared memory and message passing systems. While such a model has been formulated
in the past [1], it has not been formulated in the context of transactional systems.

We then describe and formalize three properties of distributed transactional systems that
improve their performance. These properties have all appeared in various forms intuitively
in the literature [54, 29, 47], but have never been formalized until now. We believe that each
of them may be of independent interest, as they capture notions that apply to many existing
systems. In particular, we first present distributed disjoint-access parallelism, a property
inspired by its counterpart for multicore systems, but which captures scalability across
different distributed shards of data. Then, we describe a property that intuitively requires a
fast path for transactions: transactions must terminate quickly in executions in which they
do not encounter asynchrony, failures, or conflicts. While many fast-path properties have
been formulated in the literature for consensus algorithms, transactions are more complex
since different transactions may require a different number of network round trips, or message
delays, in order to even know what data they should access. We capture this variability in a
property we name fast decision, intuitively requiring that once the data set of a transaction
is known, it must reach a decision within one network round trip. Finally, we present a
property called seamless fault tolerance, which requires an algorithm to be able to tolerate
some failures without affecting the latency of ongoing transactions. This has been the goal
of many recent works which focus on robustness and high availability [47, 37, 38, 29, 54].

Equipped with these properties, we then show the inherent tension that exists between
them and the well-known multicore properties of disjoint-access parallelism and invisible
reads, both of which intuitively improve cache coherence and have been shown to increase
scalability in transactional systems [42, 22]. More precisely, we present the FIDS theorem for
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sharded PDTSs: a PDTS that guarantees a minimal progress condition and shards data across
multiple nodes cannot simultaneously provide Fast decision, Invisible reads, distributed
Disjoint-access parallelism, and Serializability. An important implication of this result is
that serializable shared-memory sharded PDTSs that want to provide multicore scalability
cannot simply use a two-phase atomic commitment protocol (such as the popular two-phase
commit). Furthermore, we turn our attention to replicated PDTSs. We discover that a
similar tension exists for PDTSs that utilize client-driven replication. With client-driven
replication replicas do not need to communicate with each other to process transactions. It
is commonly used in conjunction with a leaderless replication algorithm to save two message
delays [29, 54, 47, 38], as well as in RDMA-based PDTSs which try to bypass the replicas’
CPUs [16, 44]. We present a robust version of the FIDS theorem, which we call the R-FIDS
theorem: a PDTS (that may or may not shard its data) and utilizes client-driven replication
cannot simultaneously provide Robustness to failures in the form of seamless fault tolerance,
Fast decision, Invisible reads, Disjoint-access parallelism, and Serializability.

Interestingly, similar impossibility proofs appear in the literature, often showing properties
of parallel transactional systems that cannot be simultaneously achieved [41, 7, 12]. Indeed,
some works have specifically considered disjoint-access parallelism and invisible reads, and
shown that they cannot be achieved simultaneously with strong progress conditions [7, 41].
However, several systems achieve both disjoint-access parallelism and invisible reads with
weak progress conditions such as the one we require [53, 48, 16]. To the best of our knowledge,
the two versions of the FIDS theorem are the first to relate multicore scalability properties
to multinode scalability ones.

Finally, we show that the FIDS theorems are minimal in the sense that giving up any
one of these properties does allow for implementations that satisfy the rest.

In summary, our contributions are as follows.
We present a transactional model that combines the distributed and parallel settings.
We formalize three distributed performance properties that have appeared in intuitive
forms in the literature.
We present the FIDS and R-FIDS theorems for parallel distributed transactional systems,
showing that there are inherent tensions between multicore and multinode scalability
properties.
We show that giving up any one of the properties in the theorems does allow designing
implementations that satisfy the rest.

The rest of the paper is organized as follows. Section 2 presents the model and some
preliminary notions. In Section 3, we define the properties of distributed transactional
systems that we focus on. We present our impossibility results in Section 4, and then in
Section 5, we show that it is possible to build a PDTS that sacrifices any one of the properties.
Finally, we discuss related works in Section 6 and future research directions in Section 7.

2 Model and Preliminaries

Communication. We consider a message-passing model among n nodes (server hosts)
and any number of client processes, as illustrated in Figure 1. Each node has P node
processes. Messages are sent either between two nodes or between clients and nodes. We
consider partial synchrony [18]; messages can be arbitrarily delayed until an a priori unknown
global stabilization time (GST), after which all messages reach their target within a known
delay ∆. An execution is said to be synchronous if GST is at the beginning of the execution.
Furthermore, node processes within a single node communicate with each other via shared
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Figure 1 Communication mediums between the different types of processes considered in our model.

memory. That is, they access shared base objects through primitive operations, which are
atomic operations, such as read, write, read-modify-write (compare-and-swap, test-and-set,
fetch-and-increment, etc.), defined in the usual way. A primitive operation is said to be
non-trivial if it may modify the object. Two primitive operations contend if they access the
same object and at least one of them is non-trivial. The order of accesses of processes to
memory is governed by a fair scheduler which ensures that all processes take steps.

Transactions. We consider a database composed of a set of data items, Σ, which can be
accessed by read and write operations. Each node Ni holds some subset Σi ⊆ Σ, which may
overlap with the subsets held on other nodes. A transaction T is a program that executes
read and write operations on a subset of the data items, called its data set, DT ⊆ Σ. A
transaction T ’s write set, WT ⊆ DT , and read set, RT ⊆ DT , are the sets of data items
that it writes and reads, respectively. Two transactions are said to conflict if their data sets
intersect at an item that is in the write set of at least one of them.

Transaction Interface. An application may execute a transaction T by calling an in-
vokeTxn(T) procedure. The invokeTxn(T ) procedure returns with a commit or abort value
indicating whether it committed or aborted, as well as the full read and write sets of T ,
with the order of execution of the operations (relative to each other), and with the read and
written values. We say that a transaction is decided when invokeTxn(T ) returns.

Failure Model. Nodes can fail by crashing; if a node crashes then all processes on the node
crash as well. We do not consider failures where individual processes crash and we assume
clients do not fail. We denote by failure-free execution an execution without node crashes.

Handlers and Implementations. An implementation of a PDTS provides data representation
for transactions and data items, and algorithms for two types of handlers: the coordinator
handler and the message handler. Each handler is associated with a transaction and is
executed by a single process. Each process executes at most one handler at any given
time, and is otherwise idle. The coordinator handler of a transaction T is the first handler
associated with T and is triggered by an invokeTxn(T ) call on some client process.

The execution of a handler involves a sequence of handler steps, which are of one of
three types: (1) an invocation or response step, which is the first or last step of the handler
respectively, (2) a primitive operation on a base object in shared memory, including its return
value, and (3) sending or receiving a message, denoted send(T , m) or receive(T , m). Each
handler step is associated with the corresponding transaction and the process that runs it.
The return value in a response step of a transaction’s coordinator handler is the return value
of invokeTxn described above, and a message handler has no return value.

Executions. An execution of a PDTS implementation is a sequence of handler steps and
node crash steps. Each node crash step is associated with a node. After a node crash step
associated with node Ni in execution E, no process on node Ni takes any steps in E. An
execution can interleave handler steps associated with different transactions and processes.
An extension E′ of E is an execution that has E as its prefix.
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We say that a transaction T ’s interval in an execution E begins at the invocation step of
T ’s coordinator handler, and ends when there are no sends associated with T that have not
been received whose target node has not crashed, and all handlers associated with T have
reached their response step. Note that the end of a transaction’s interval must therefore be
a response step of some handler associated with T , but might not be the response step of
T ’s coordinator handler (which may terminate earlier than some other handlers of T ). We
say that two transactions are concurrent in E if their intervals overlap. We say that two
transactions, T1 and T2, contend on node Ni in E if they are concurrent, and there is at
least one primitive operation step on node Ni in E associated with T1 that contends with a
primitive operation step in E associated with T2. We say that T1 and T2 contend in E if
there is some node Ni such that they contend on node Ni in E.

The projection of an execution E on a process p, denoted E|p, is the subexecution of
E that includes exactly all of the steps associated with p in E. Two executions E and E′

are indistinguishable to a process p if the projections of E and E′ on p are identical (i.e., if
E|p = E′|p).

It is also useful to discuss knowledge of properties during an execution. The notion of
knowledge has been extensively used in other works [24, 20]. Formally, a process p knows a
property P in an execution E of a PDTS implementation I, if there is no execution E′ of I

that is indistinguishable to p from E in which P is not true.
We adopt two concepts introduced by Lamport [35, 31] to aid reasoning about distributed

systems: depth of a step, and the happened-before relation. The depth of a step s associated
with transaction T in execution E is 0 if s is the invocation of T ’s coordinator handler.
Otherwise, it equals the maximum of (i) the depths of all steps that are before s in E within
the same handler as s, and (ii) if s is a receive(T , m) step of a message sent in a send(T , m)
step, s′, then 1 plus the depth of s′. Happened-before is the smallest relation on the set of
steps of an execution E satisfying the following three conditions: 1) if a and b are steps of
the same handler and a comes before b in E, then a happened-before b; 2) if a is a send(T ,
m) step and b is a receive(T , m) step, then a happened-before b; 3) if a happened-before b

and b happened-before c, then a happened-before c.

Serializability. Intuitively, a transactional system is serializable if transactions appear to
have executed in some serial order [40]. The formal definition appears in the full version of
this paper [9].

Weak Progress. A transactional system must guarantee at least weak progress: every
transaction is eventually decided, and every transaction that did not execute concurrently
with any other transaction eventually commits.

2.1 Multicore Scalability Properties

To scale to many processes on each server node, transactional systems should reduce memory
contention between different transactions. This topic has been extensively studied in the
literature on parallel transactional systems [7, 6, 5, 11, 13, 23, 26, 41]. Here, we focus on
two well-known properties, disjoint-access parallelism and invisible reads, that are known
to reduce contention and improve scalability in parallel systems. We later show how they
interact with distributed scalability properties.

DISC 2023
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2.1.1 Disjoint-Access Parallelism
Originally introduced to describe the degree of parallelism of implementations of shared
memory primitives [26], and later adapted to transactional memory, disjoint-access parallelism
intuitively means that transactions that are disjoint at a high level, e.g., whose data sets do
not intersect, do not contend on shared memory accesses [7, 41]. While this property may
sound intuitive, it can in fact be difficult to achieve, as it forbids the use of global locks or
other global synchronization mechanisms. Multiple versions of disjoint-access parallelism
exist in the literature, differing in which transactions are considered to be disjoint at a high
level. In this paper, we use the following definition.

▶ Definition 2.1 (Disjoint-access parallelism (DAP)). An implementation of a PDTS satisfies
disjoint-access parallelism (DAP) if two transactions whose data sets do not intersect cannot
contend.

2.1.2 Invisible Reads
The second property we consider, invisible reads, intuitively requires that transactions’ read
operations not execute any shared memory writes. This property greatly benefits workloads
with read hotspots, by dramatically reducing cache coherence traffic. Two variants of this
property are common in the literature. The first, which we call weak invisible reads, only
requires invisible reads at the granularity of transactions. That is, if a transaction is read-only
(i.e., its write set is empty), then it may not make any changes to the shared memory. This
simple property has been often used in the literature [7, 41].

▶ Definition 2.2 (Weak invisible reads). An implementation of a PDTS satisfies weak invisible
reads if, in all its executions, every transaction with an empty write set does not execute any
non-trivial primitives.

However, this property is quite weak, as it says nothing about the number of shared
memory writes a transaction may execute once it has even a single item in its write set. When
developing systems that decrease coherence traffic, this is often not enough. Indeed, papers
that refer to invisible reads in the systems literature [47, 48] require that no read operation
in the transaction be the cause of shared memory modifications. Note that an algorithm that
locally stores the read set for validation (which is the case in the above referenced systems)
can still satisfy invisible reads, since the writes are not to shared memory. Attiya et al. [6]
formalize this stronger notion of invisible reads by requiring that we be able take an execution
E and replace any transaction T in E with a transaction that has the same write set but an
empty read set, and arrive at an execution that is indistinguishable from E. Intuitively, this
captures the requirement that reads should not update shared metadata (e.g., through “read
locks”). We adopt Attiya et al.’s definition of invisible reads here, adapted to fit our model.

▶ Definition 2.3 (Invisible reads (adapted from [6])). An implementation I of a PDTS
satisfies the invisible reads property if it satisfies weak invisible reads and, additionally, for
any execution E of I that includes a transaction T with write set W and read set R, there
exists an execution E′ of I identical to E except that it has no steps of T and it includes
steps of a transaction T ′, which has the same interval as T (i.e., T ’s first and last steps in
E are replaced by T ′’s ones in E′), and writes the same values to W in the same order as in
T , but has an empty read set.

Note that the invisible reads property complements the DAP property for enhanced
multicore scalability. A system that has both allows all transactions that do not conflict,
not just the disjoint-access ones, to proceed independently, with no contention (as we will
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show in Lemma 4.4). Interestingly, previous works discovered some inherent tradeoffs of such
systems [7, 41], in conjunction with strong progress guarantees. In this paper, we study these
properties under a very weak notion of progress, but with added requirements on distributed
scalability (see Section 3).

3 Multinode Performance Properties

To overcome the limitations of a single machine (e.g., limited resources, lack of fault tolerance),
distributed transactional systems shard or replicate the data items on multiple nodes, and,
thus, must incorporate distributed algorithms that coordinate among multiple nodes. The
performance of these distributed algorithms largely depends on the number of communication
rounds required to execute a transaction. Ideally, at least in the absence of conflicts,
transactions can be executed in few rounds of communication, even if some nodes experience
failures. In this section we propose formal definitions for a few multinode performance
properties.

3.1 Distributed Disjoint-Access Parallelism
We start by proposing an extension of DAP to distributed algorithms, which we term
distributed-DAP, or DDAP. In addition to requiring DAP, DDAP proscribes transactions
from contending on a node unless they access common elements that reside at that node:

▶ Definition 3.1 (Distributed disjoint-access parallelism (DDAP)). An implementation of a
PDTS satisfies distributed disjoint-access parallelism (DDAP) if for any two transactions
T and T ′, and any node Ni, if T and T ′’s data sets do not intersect on node Ni (i.e.,
DT ∩ DT ′ ∩ Σi = ∅), then they do not contend on node Ni.

While the main goal of sharding is to distribute the workload across nodes, DDAP links
sharding to increased parallelism – DDAP systems can offer more node parallelism than
DAP systems through sharding.

3.2 Fast Decision
Distributed transactional systems must integrate agreement protocols (such as atomic
commitment and consensus) to ensure consistency across all nodes involved in transaction
processing. Fast variants of such protocols can reach agreement in two message delays in
“good” executions [35]. Ideally, we would like distributed transactional systems to preserve
this best-case lower bound, and decide transactions in two message delays; reducing the
number of message delays required to process transactions not only can significantly reduce
the latency as perceived by the application (processing delay within a machine is usually
smaller than the delay on the network), but can also reduce the contention footprint [21]
of the transactions (intuitively, this is the duration of time in which a transaction might
interfere with other transactions in the system).

Requiring transactions to be decided in just two message delays, however, is too restrictive
in many scenarios. The latency of a distributed transactional system depends on how many
message delays are required for a transaction to “learn” its data set (data items and their
values); the data set needs to be returned to the application when the transaction commits,
and is also used to determine whether the transaction can commit. For example, for interactive
transactions or disaggregated storage, the values must be made available to the application
(which runs in a client process) before the transaction can continue to execute. Thus, since
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the data items are remote, each read operation results in two message delays, one to request
the data from the remote node and one for the remote node to reply. For non-interactive
transactions or systems where transaction execution can be offloaded to the node processes,
the latency for learning the data set can be improved; since the client does not need to
immediately know the return value of read operations, the values of data items can be learned
through a chain of messages that continue transaction processing at the nodes containing
the remote data. More precisely, the client first determines a node, n1, that contains the
first data item the transaction needs to read; the client sends a message to n1 containing the
transaction; n1 processes the transaction, preforming the read locally, until it determines
that the transaction needs to perform a remote read from another node, n2; n1 sends a
message to n2 containing the transaction and its state so far; n2 continues processing the
transaction, performing the read locally, and so on. RPC chains [45] already provides an
implementation of this mechanism, saving one message delay per remote read operation. At
the lowest extreme, non-sharded transactional systems can learn a transaction’s entire data
set in a single message delay.

We introduce the fast decision property to describe distributed transactional systems that
can decide each transaction in “good” executions within only two message delays in addition
to the message delays it requires to “learn” the transaction’s entire data set. As explained
above, the number of message delays required to learn a transaction’s data set depends on
several design choices. We note that often, deciding a transaction’s outcome within two
message delays after learning its data set is not plausible if the execution has suboptimal
conditions, for example, if there are transactional conflicts that need to be resolved, or if
not all nodes reply to messages within some timeout. This is true even for just consensus,
where the two-message-delay decisions can happen only in favorable executions, on a fast
path [3, 34]. We therefore define the fast decision property to only be required in such
favorable executions.

To formalize fast decisions, we must be able to discuss several intuitive concepts more
formally. In particular, we begin by defining the depth of a transaction, to allow us to
formally discuss the number of message delays that the transactional system requires to
decide a transaction.

▶ Definition 3.2 (Depth of a transaction). The depth of a decided transaction T in execution
E of a PDTS implementation, dE(T ), is the depth of the response step of T ’s coordinator
handler in E.

In many cases, we need to refer to the depth of a transaction T in an execution in which
T is still ongoing, and its coordinator handler has not reached its response step yet. While
we could simply refer to the depth of the deepest step of T in the execution, this would not
be appropriate: it is possible that a transaction in fact took steps along one “causal path”
that led to a large depth, but when the response step to T ’s coordinator handler happens,
its depth is actually shorter. In such a case, we really only care about the depth along the
“causal paths” that lead to the response step, since these are the ones affecting the latency to
the application. To capture this notion, we define the partial depth of a transaction T in a
prefix of an execution in which T is decided as follows.

▶ Definition 3.3 (Partial depth of a transaction). Let T be a decided transaction in execution
E of a PDTS implementation. The partial depth of T in a prefix P of E in which T is not
decided, dE(T, P ), is the maximum step depth across all steps associated with T in P , which
happened-before the response step of T ’s coordinator handler in E (or 0 if there are no such
steps).
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We next formalize another useful concept that we need for the discussion of fast decisions;
namely, what it means to learn the data set of a transaction. For that purpose, we introduce
the following two definitions:

▶ Definition 3.4 (Decided data item). A data item d is decided to be in a transaction T ’s
read or write set in execution E of a PDTS implementation if, in all extensions of E, the
read or write set respectively in the return value of invokeTxn(T ) contains d.

▶ Definition 3.5 (Decided value). A data item d’s value is decided for T in execution E

of a PDTS implementation if, in all extensions of E, the read set in the return value of
invokeTxn(T ) contains d and with the same value.

Note that a data item’s value can be decided for a transaction only if that data item
is part of its read set; the definition does not apply for data items in the write set. In the
definition of the fast decision property and in the proofs, we refer in most places to knowing
the decided values and not the data items in the write set as well. This is because knowing
the read set and its values implies that a transaction’s write set is decided in case it commits;
this is the property that matters in many of the arguments we use in the paper.

Finally, we are ready to discuss the fast decision property. Intuitively, the formal definition
of the property considers favorable executions, which are synchronous, failure-free and have
each transaction run solo. For those executions, the property requires two things to hold:
first, a transaction is not allowed to spend more than two message delays without learning
some new value for its data set, and second, once its entire data set is known, it must be
decided within 2 more message delays (Corollary 3.7). This captures “speed” in both learning
the data set and deciding the transaction outcome. As discussed above, 2 message delays
is an upper bound on the minimal amount of time needed to perform a read operation
(and bring its value to the necessary process). Note that this is a tight bound for systems
processing interactive transactions, and as such, fast decision also means optimal latency for
these systems.

▶ Definition 3.6 (Fast decision). A PDTS implementation I is fast deciding if, for every
failure-free synchronous execution E of I and every decided transaction T in E that did not
execute concurrently with any other transaction, for any prefix P of E such that dE(T, P ) <

dE(T ) − 2, there exists a prefix of E of partial depth dE(T, P ) + 2 in which the number of
values known by some process to be decided is bigger than in P .

Formalizing the allowed depth of a transaction in terms of prefixes of an execution in
which the transaction is already decided (so we know its depth in that execution) helps
capture the two requirements we want: (1) for any prefix of the execution, if we advance
from it by two message delays, we must have improved our knowledge of the values of the
read set, and (2) once the read set and its values are completely known (regardless of the
depth of the prefix in which this occurs), we must be at most 2 message delays from deciding
that transaction. Corollary 3.7 helps make this intuition concrete.

▶ Corollary 3.7. For every failure-free synchronous execution E of a fast-deciding PDTS
implementation I and every decided transaction T in E that did not execute concurrently
with any other transaction, let P be the shortest prefix of E in which the value of each item
in T ’s read set is known by some process to be decided. Then

dE(T ) ≤ dE(T, P ) + 2.

(Intuitively, T must be decided within at most 2 message delays from when T ’s read set
including its values are known to be decided.)
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Proof. Assume by contradiction that dE(T ) > dE(T, P ) + 2. Then by the fast decision
property of I, there exists a prefix of E in which the number of data items whose value is
known by some process to be decided is bigger than in P . But this is impossible, since the
values of T ’s entire read set are known to be decided in P . ◀

Several fast-deciding distributed transactional systems have been recently proposed
for general interactive transactions [29, 54, 47]; our fast decision property captures what
they informally refer to as “one round-trip commitment”. These systems use an optimistic
concurrency control and start with an execution phase that constructs their data sets with
two message delays per read operation. The agreement phase consists of validation checks
that require a single round-trip latency (integrates atomic commitment and a fast consensus
path in one single round trip). The write phase happens asynchronously, after the response
of the transaction has been emitted to the application.

3.3 Seamless Fault Tolerance
High availability is critical for transactional storage systems, as many of their applications
expect their data to be always accessible. In other words, the system must mask server
failures and network slowdowns. To achieve this, many systems in practice are designed to
be fault tolerant; the system can continue to operate despite the failures of some of its nodes.

However, oftentimes, while the system can continue to function when failures occur,
it experiences periods of unavailability, or its performance degrades by multiple orders of
magnitude while recovering [3, 51]. This is the case in systems that must manually reconfigure
upon failures [50], and those that rely on a leader [3, 39, 51, 33, 32].

These slow failure-recovery mechanisms, while providing some form of guaranteed avail-
ability, may not be sufficient for systems in which high availability is truly critical; suffering
from long periods of severe slowdowns potentially from a single server failure may not be
acceptable in some applications.

To address this issue, some works in recent years have focused on designing algorithms
that experience minimal slowdowns, or no slowdowns at all, upon failures. One approach has
been to minimize the impact of leader failures by making the leader-change mechanism light-
weight and switching leaders even when failures do not occur [52]. Another approach aims to
eliminate the leader completely; such algorithms are called leaderless algorithms [4, 47, 54, 37].
All of these approaches aim to tolerate the failure of some nodes without impacting the
latency of ongoing transactions.

In this paper, we formalize this goal of tolerating failures without impacting latency
into a property that we call s-seamless fault tolerance, where s ≤ f . In essence, s-seamless
fault tolerance requires that if only up to s failures occur in an execution, no slowdown is
experienced. To capture this formally, we require that for any execution E with up to s − 1
crashes, it be possible to find an equivalent execution E′ with one more crash event, which
may happen at any time after the crashes in E, where the depth of all transactions are the
same in E and E′. We express this in an inductive definition.

▶ Definition 3.8 (s-seamless fault tolerance). Any implementation of a PDTS satisfies 0-
seamless fault tolerance. An implementation I of a PDTS satisfies s-seamless fault tolerance
if it satisfies (s − 1)-seamless fault tolerance, and for any execution E of I with s − 1 node
crashes, for any prefix EP of E that contains the s − 1 node crashes, and any node crash
event c of a node that has not crashed in EP , there exists an execution E′ of I whose prefix
is EP · c, such that (1) stripping each of E and E′ of all steps other than invocation and
response steps of coordinator handlers results in the same sequence of invocation and response
steps (intuitively, the executions are equivalent), and (2) the depth of each decided transaction
is the same in both executions (intuitively, E′ seamlessly tolerates the node crashes).
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While s-seamless fault tolerance offers the extremely desirable robustness property, it
also requires that: a) no single node can be on the critical path of all transactions, and b)
no single node can be solely responsible for processing a transactional task. This can be a
double-edged sword; on the one hand, this eliminates the possibility of a leader bottleneck,
which implies better scalability. On the other hand, it disallows certain optimizations, like
reading from a single replica.

4 Impossibility Results

Having specified some key properties which make distributed transactional systems fast and
scalable, we now turn to the main result of our paper: unfortunately, there is a tension
between these multinode performance properties and the single-node multicore performance
properties discussed in Section 2. More specifically, we present the FIDS theorems, which
formalize the impossibility of achieving all of these properties simultaneously in two different
parallel distributed settings.

4.1 The FIDS Theorems
The first FIDS theorem states that no PDTS with weak progress which shards data can guar-
antee Fast decision, Invisible reads, distributed Disjoint-access parallelism, and Serializability
simultaneously. This is in contrast to known systems that achieve just the multinode proper-
ties [47, 54, 38] or just the multicore properties [53, 48, 16]. Thus, the FIDS theorem truly
shows tensions that arise when a transactional system is both parallel and distributed. This
version of the FIDS theorem considers only systems that shard data, that is, systems in
which each node only stores part of the database items. Interestingly, the impossibility holds
in this setting even without requiring any fault tolerance, and in particular, without seamless
fault tolerance. We note that the FIDS theorem applies also to systems that replicate data
in addition to sharding it; adding replication on top of a sharded system only makes it more
complex. Formally:

▶ Theorem 4.1 (The FIDS theorem for sharded transactional systems). There is no implemen-
tation of a PDTS which shards data across multiple nodes that guarantees weak progress, and
simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,
and serializability.

For systems that maintain multiple copies of the data, but do not necessarily shard it, we
show a different version of the result. Note that in such systems, distribution comes from
replication; several nodes, each with a copy of the entire database, are used to ensure fault
tolerance. For this setting, we present the Robust-FIDS, or R-FIDS, theorem: a PDTS
with weak progress that utilizes client-driven replication and satisfies Robustness to at least
one failure through the seamless fault tolerance property, in addition to satisfying Fast
decision, Invisible reads, Disjoint-access parallelism, and Serializability, is also impossible to
implement. Formally:

▶ Theorem 4.2 (The R-FIDS theorem for replicated transactional systems). There is no
implementation of a PDTS that utilizes client-driven replication that guarantees weak progress,
and simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-
access parallelism, and serializability.

In the reminder of this section we present an overview of the proof technique for the
two versions of the FIDS theorem; the detailed proof for each of them and the supporting
lemmas we introduce here can be found in Appendix A.
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4.2 Proof Overview
Both proofs have a similar structure; we consider example transactions that form a dependency
cycle, and show an execution in which all of them commit, thereby violating serializability.
To argue that all transactions in our execution commit, we build the execution by merging
executions in which each transaction ran solo (and therefore had to commit by weak progress),
and showing that the resulting concurrent execution is indistinguishable to each transaction
from its solo run. Starting with solo executions also gives us another property that we can
exploit; we define the solo executions to be synchronous and failure-free, and therefore they
must be fast deciding as well.

The key challenge in the proofs is how to construct a concurrent execution Econcur that
remains indistinguishable to all processes from the solo execution that they were a part
of. To do so, we divide the concurrent execution into two phases; first, we let the solo
executions run, in any interleaving, until right before the point in each execution at which
some process learns the values of its transaction’s read set. When this point is reached in
each solo execution, we carefully interleave the remaining steps in a second phase of the
concurrent execution. A key feature is that by the fast decision property, which each solo
execution satisfies, once some process learns the read set including its values, there are at
most two message delays left in each solo execution before the transaction is decided. This
bounds the amount of communication we need to worry about in the second phase of the
concurrent execution.

To show that Econcur is indistinguishable from the solo runs, we look at each of the
two phases separately. The idea is to show that no process makes any shared memory
modifications in the first phase, and then show that we can interleave messages and message
handlers in a way that allows each transaction to be oblivious to the other transactions for
at least one more intuitive “round trip”, which is all we need to reach decision according to
the fast decision property.

To show that a transaction performs no shared memory modifications in the first phase
of the concurrent execution we construct, we rely on the way we choose the transactions,
their data sets, and when in the execution their data sets are decided; in both proofs, the
transactions we choose may have empty or non-empty write sets, depending on the results
of their reads. The following lemma shows that as long as a transaction’s write set is not
known to be non-empty, the transaction cannot cause any modifications in a system that
provides weak invisible reads.

▶ Lemma 4.3. Let I be an implementation of a PDTS that provides weak invisible reads,
and let T be a transaction in an execution E of I, such that no process in E knows the
following proposition: T ’s write set is non-empty in all extensions of this execution in which
T is decided. Then T cannot cause any base object modifications in E.

This lemma, combined with the way we choose the transactions in our proofs, immediately
implies that phase 1 of Econcur is indistinguishable to all processes from the solo executions
they are a part of.

The proofs differ somewhat in how they show that Econcur is indistinguishable from the
solo runs in the second phase. We argue about restricted shared memory modifications
through the use of the DAP and invisible reads properties in the following key lemma, which
intuitively shows that transactions that do not conflict do not (visibly) contend.

▶ Lemma 4.4. Let I be an implementation of a PDTS that provides both DAP and invisible
reads, and let T be a transaction in an execution E of I, such that its final write set is W .
Then T does not cause any base object modifications visible to any concurrent transaction in
E whose data set does not overlap with W .
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To make phase 2 of Econcur also indistinguishable from the solo executions, we schedule
the remaining messages carefully. In particular, we schedule messages sent by reading
transactions to each node before those sent by writing transactions, and again rely on DAP
and invisible reads to argue that the reading transactions’ handlers will not cause changes
visible to those who write afterwards. However, here the two proofs diverge.

4.2.1 Sharded Systems
We first discuss the proof structure for showing that serializable sharded transactional systems
that provide weak progress cannot simultaneously achieve fast decision, invisible reads and
DDAP. That is, sharding the data across multiple nodes while achieving these properties is
impossible even if we do not tolerate any failures (Theorem 4.1).

The proof uses two nodes and two transactions, each reading from a data item on one node
and, if it sees the initial value, writing on the other node. The read set of one transaction is
the same as the (potential) write set of the other transaction. We need to argue that the
reading transaction on some node cannot cause modifications on that node that are visible
to the writing transaction. However, since the write set of each transaction overlaps with the
data set of the other, we cannot apply Lemma 4.4. Instead, we rely on DDAP, and show that
with this property, the reading transaction indeed cannot be visible to the writing one on
each node. We show a lemma very similar to Lemma 4.4 but which applies to transactions
whose write set on a specific node does not overlap the data set of another transaction on
that node.

▶ Lemma 4.5. In any implementation of a PDTS that provides both DDAP and invisible
reads, a transaction whose write set is W does not cause any modifications on shared based
objects on a node N visible to any concurrent transaction whose data set does not overlap
with W on N .

The proof of this lemma is very similar to the proof of Lemma 4.4. The only required
adjustments are using DDAP instead of DAP, and referring to T ′’s data set and T ’s write
set and modification on a certain node N .

Note that while the proof of the FIDS theorem relies on sharding, it does not need
fault tolerance. In particular, it does not make use of the seamless fault tolerance property.
However, the result does apply to systems in which the data is both sharded and replicated,
as those systems are even more complex than ones in which no replication is used.

4.2.2 Replicated but Unsharded
So far, we have considered a PDTS in which node failures cannot be tolerated; if one of the
nodes crashes, we lose all data items stored on that node, and cannot execute any transactions
that access those data items. However, in reality, server failures are common, and therefore
many practical systems use replication to avoid system failures. Of course, the impossibility
result of Theorem 4.1 holds for a PDTS even for the more difficult case in which failures are
possible and each node’s data is replicated on several backups.

However, we now turn our attention to PDTSs in which the entire database is stored
on each node. This setting makes it plausible that a client could get away with accessing
only one node to see the state of the data items of its transaction. However, we show that
the impossibility of Theorem 4.1 still holds in this setting for a system in which failures
are tolerated without affecting transaction latency (i.e., systems that satisfy seamless fault
tolerance) (Theorem 4.2).
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As explained in Section 4.2, the use of seamless fault tolerance requires us to explicitly
argue about the length of the executions in which transactions decide. To do so, we need the
following lemma, which gives a lower bound for the depth at which a transaction’s read set
and values can be decided.

▶ Lemma 4.6. There is no execution E of any serializable PDTS implementation that
tolerates at least 1 failure in which there is a transaction T and prefix P such that dE(T, P ) < 2
and some process knows the decided value of some read of T in P .

Once we have this lemma, the proof of the R-FIDS theorem is then similar to the proof
of the FIDS theorem. We build a cycle of dependencies between transactions where each
neighboring pair in the cycle overlaps on a single data item that one of them reads and the
other writes. The key is that because of invisible reads, each read can happen before the
write on the same data item without leaving a trace. However, to construct this cycle in
the replicated case, we need at least 3 replicas, 3 transactions and 3 data items. This is
because we can no longer separate the read and write of a single transaction on each node.
Furthermore, we make use of Lemma 4.6, as well as the budgeted depth of a transaction in
a fast-deciding execution, to explicitly argue about the amount of communication possible
after a transaction learns its write set.

More specifically, we choose three transactions, where the write set of one equals the read
set of the next. We divide them into pairs, where within each pair, the write set of one does
not overlap with the data set of the other. We can then directly use Lemma 4.4 to argue that
the second one to be scheduled of this pair will not see changes made by the first. We exploit
fault tolerance to have the third transaction’s messages never reach that node. However,
here, we must be careful, since we defined the solo executions to be failure-free to guarantee
fast decisions. We therefore rely on seamless fault tolerance; we show indistinguishability of
the concurrent execution not from the original solo executions, but from executions of the
same depth that we know exist due to seamless fault tolerance.

Interestingly, when we convert a solo execution S to an execution F of the same depth
(but with a node failure) via the seamless fault tolerance property, we may lose its fast
decision property. That is, while the new execution must have the same depth as the original
ones, that does not guarantee that it will also be fast deciding, as the fast decision property
does not solely refer to the length of the execution. In particular, it could be the case that in
F , the data set of a transaction including its values is learned earlier, but then the transaction
takes more than 2 message delays to be decided. This would be problematic for our proof, in
which the indistinguishability relies heavily on fast decision once the data set including its
values are known. To show that this cannot happen in the executions we consider, we rely
on Lemma 4.6 that bounds the depth at which any transaction in a fault tolerant system
can learn the decided values of its reads.

5 Possibility Results

Any subset of the properties outlined in Theorem 4.2 is possible to achieve simultaneously
in a single system. Due to lack of space, we show this in the full version of this paper [9],
where we present four distributed transactional system algorithms, each sacrificing one of
the desired properties. Recall from our model description that the presented protocols
work under the assumption that the client does not fail and nodes do not recover, and as
such are not intended to be used “as is” in practice. We first present a “base” algorithm
which achieves all the desired properties (i.e., fast decision, invisible reads, DDAP, and
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1-seamless fault tolerance), but is not serializable. We obtain each of the four transactional
systems algorithms, by tweaking the base algorithm to sacrifice one desired property and
gain serializability.

6 Related Work

Disjoint-access parallelism was first introduced in [26] in the context of shared memory objects.
It was later adapted to the context of transactions. Over the years, it has been extensively
studied as a desirable property for scalable multicore systems [53, 49, 47, 7, 5, 41, 23].
Several versions of DAP have been considered, differing in what is considered a conflict
between operations (or transactions). A common variant of DAP considers two transactions
to conflict if they are connected in the conflict graph of the execution (where vertices are
transactions and there is an edge between two transactions if their data sets intersect) [7, 41].
In this paper, we consider a stricter version, which only defines transactions as conflicting if
they are neighbors in the conflict graph. This version has also appeared frequently in the
literature [41, 12].

Invisible reads have also been extensively considered in the literature [43, 7, 47, 49, 53, 25].
Many papers consider invisible reads on the granularity of data item accesses; any read
operation on a data item should not cause changes to shared memory [49, 47, 25]. Others,
often those that study invisible reads from a more theoretical lens, consider only the invisibility
of read-only transactions [7, 41].

Some impossibility tradeoffs for transactional systems, similar to the one we show in this
paper, are known in the literature. Attiya et al. [7] show that it is impossible to achieve
weak invisible reads, disjoint-access parallelism, and wait-freedom in a parallel transactional
system. Peluso et al. [41] show an impossibility of a similar setting, with disjoint-access
parallelism, weak invisible reads, and wait-freedom, but consider any correctness criterion
that provides real-time ordering. Bushkov et al. [12] show that it is impossible to achieve
disjoint-access parallelism and obstruction-freedom, even when aiming for consistency that is
weaker than serializability. In this paper, none of our algorithms provide the obstruction-
freedom considered in [12]; we use locks, and our algorithms can therefore indefinitely prevent
progress if process failures can occur while holding locks.

Fast paths for fast decision have been considered extensively in the replication and
consensus literature [28, 17, 34, 2, 3]. In most of these works, the conditions for remaining
on the fast path include experiencing no failures. That is, they do not provide seamless
fault tolerance. However, some algorithms, like Fast Paxos [34], can handle some failures
without leaving the fast path. In the context of transactional systems, the fast path is often
considered for conflict-free executions rather than those without failures [47, 54, 38, 29], as
we do in this paper. Seamless fault tolerance captures the idea that (few) failures should not
cause an execution to leave the fast path. Systems often have a general fault tolerance f that
is higher than the number of failures they can tolerate in a seamless manner [47, 54, 38, 29].

Seamless fault tolerance as presented in this paper is also related to leaderlessness [37, 4],
as any leader-based algorithm would slow down upon a leader failure. However, the leaderless
requirement alone is less strict than our seamless fault tolerance; Antoniadis et al. [4] defined
a leaderless algorithm as any algorithm that can terminate despite an adaptive adversary
that can choose which process to temporarily remove from an execution at any point in time.
This does not put any requirement on the speed at which the execution must terminate.

Parallel distributed transactional systems have been recently studied in the systems
literature. Meerkat [47] provides serializability and weak progress, and three of the desirable
properties we outline in this paper. It does not, however, provide invisible reads in any form
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(not even the weaker version). Eve [27] considers replication for multicore systems. It briefly
outlines how PDTS transactions are possible using its replication system, but it is not their
main focus.

7 Discussion

This paper is inspired by recent trends in network capabilities, which motivate the study of
distributed transactional systems that also take advantage of the parallelism available on
each of their servers. We formalize three performance properties of distributed transactional
systems that have appeared intuitively in various papers in the literature, and show that these
properties have inherent tensions with multicore scalability properties. In particular, in this
paper we formalized the notions of distributed disjoint-access parallelism, a fast decision path
for transactions, and robustness in the form of seamless fault tolerance. Combined with the
well-known multicore scalability properties of disjoint-access parallelism and invisible reads,
we show the FIDS theorem, and its fault tolerant version, the R-FIDS theorem, which show
that serializable transactional systems cannot satisfy all these properties at once. Finally, we
show that removing any one of these properties allows for feasible implementations.

We note that our possibility results can be seen as “proofs of concept” rather than
practical implementations. It would be interesting to design practical algorithms that give
up just one of the properties we discuss. We believe that each property has its own merit for
certain applications and workloads, and it would be interesting to determine which property
would be the best to abandon for which types of applications.

In this work, we focused on studying parallel distributed transactional systems under a
minimal progress guarantee. It would also be interesting to explore PDTSs under stronger
progress conditions, or consistency conditions other than serializability. It would be equally
interesting to see if the tension still exists between weaker variants of the properties we
considered.
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Appendix

A Full proofs of the FIDS theorems (and the supporting lemmas)

▶ Lemma 4.3. Let I be an implementation of a PDTS that provides weak invisible reads,
and let T be a transaction in an execution E of I, such that no process in E knows the
following proposition: T ’s write set is non-empty in all extensions of this execution in which
T is decided. Then T cannot cause any base object modifications in E.

Proof. Let I be an implementation of a PDTS that satisfies weak invisible reads. Assume
by contradiction that there is a transaction T in execution E of I, such that no process in E

knows that T ’s final write set is not empty in all extensions in which T is decided, and a
process p runs a handler associated with T that performs some base object modification.

Since p does not know that T ’s final write set is not empty in all extensions of the current
execution in which T is decided, there exists an execution indistinguishable to p from E

that has an extension in which T ’s final write set is empty. Let that extension be EreadOnly.
Since T ’s final write set in EreadOnly is empty, then by weak invisible reads, T cannot cause
base object modifications in EreadOnly. Contradiction. ◀

▶ Lemma 4.4. Let I be an implementation of a PDTS that provides both DAP and invisible
reads, and let T be a transaction in an execution E of I, such that its final write set is W .
Then T does not cause any base object modifications visible to any concurrent transaction in
E whose data set does not overlap with W .

Proof. Let I be an implementation of a PDTS that satisfies DAP and invisible reads. Let T

be a transaction whose final write set in an execution E of I is W . Assume by contradiction
that there exists some transaction T ′ concurrent with T in E whose data set does not overlap
with W , but which sees a modification made by T in E. That is, there is some base object
operation step s of T ′ whose return value is affected by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set and an empty read set. By DAP, TnoRead does not modify in E′ any base object accessed
by any concurrent transaction whose data set does not overlap with W . In particular, TnoRead

cannot make any modifications visible to T ′ in E′. Note that step s must exist in E′, since
by definition, E′ is identical to E except in steps associated with T and TnoRead. However,
in E, s’s return value is affected by T ’s modification, and in E′, this modification does not
exist. Therefore, E′ cannot be an execution of I. Contradiction. ◀

▶ Lemma 4.5. In any implementation of a PDTS that provides both DDAP and invisible
reads, a transaction whose write set is W does not cause any modifications on shared based
objects on a node N visible to any concurrent transaction whose data set does not overlap
with W on N .

Proof. Let I be an implementation of a PDTS that satisfies DDAP and invisible reads. Let
T be a transaction whose final write set on a node N in an execution E of I is W . Assume
by contradiction that there exists some transaction T ′ concurrent with T in E whose data set
on N does not overlap with W , but which sees a modification made by T on a base object
on N in E. That is, there is some base-object operation step s of T ′ whose return value is
affected by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set on N and an empty read set. By DDAP, TnoRead does not modify in E′ any base object
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on N accessed by any concurrent transaction whose data set does not overlap with W on N .
In particular, TnoRead cannot make any modifications visible to T ′ on N in E′. Note that step
s must exist in E′, since by definition, E′ is identical to E except in steps associated with T

and TnoRead. However, in E, s’s return value is affected by T ’s modification, and in E′, this
modification does not exist. Therefore, E′ cannot be an execution of I. Contradiction. ◀

▶ Lemma 4.6. There is no execution E of any serializable PDTS implementation that
tolerates at least 1 failure in which there is a transaction T and prefix P such that dE(T, P ) < 2
and some process knows the decided value of some read of T in P .

Proof. Assume by contradiction that there is some implementation I of a serializable PDTS
that tolerates at least 1 failure, an execution E of I, and a prefix P of E such that dE(T, P ) ≤ 1
and some process knows the decided value of some data item d of T in P . Without loss of
generality, let process p on node N be the process that knows d’s decided value, let that
value be v and let T ’s invoking client be C. Note that since C does not have access to the
data, and any step of any process not on C’s node must be of depth at least 1, p cannot be
on C’s node, and cannot have received any message from any process other than C within
depth less than 2. Therefore p can only know the value of d on node N , but not any other
nodes. Consider the following executions.

EN−fail . EN−fail and E are identical up to right before T ’s invocation. In EN−fail , node
N fails at this point. Then, a transaction T ′ is invoked by a client C ′ ̸= C. T ′ writes a
value v′ ̸= v to d and commits. After T ′ commits, T is invoked in EN−fail . Clearly, by
serializability, T ’s read of d in EN−fail returns v′ or a more updated value, but not v.

EN−slow. EN−slow is identical to EN−fail except that node N does not fail in EN−slow.
Instead, all messages to and from N are arbitrarily delayed in EN−slow starting at the same
point at which N fails in EN−fail . Clearly, EN−slow is indistinguishable from EN−fail to all
processes not on N .

E′. E′ is identical to EN−slow except that node N receives messages from client C.
Clearly, E′ and EN−slow are indistinguishable to all processes not on N . So, T ’s read of
d must return the same value as in EN−slow, namely v′ or a more updated one, but not
v. However, note that E′ is also indistinguishable to processes on N from E in any prefix
of E of partial depth < 2 for T , since no process in N received any messages other than
those it received in E, and since clients do not receive any messages not related to their own
transactions, so C must have sent the same message(s) to N in E′ as it did in E. Therefore,
there is a prefix P ′ of E′ indistinguishable to p from P , in which v is not the decided value
of d, contradicting p’s knowledge of d’s decided value in P . ◀

▶ Theorem 4.1 (The FIDS theorem for sharded transactional systems). There is no implemen-
tation of a PDTS which shards data across multiple nodes that guarantees weak progress, and
simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,
and serializability.

Proof. Assume by contradiction that there exists an implementation I of a PDTS with all
the properties in the theorem statement. Consider a database with 2 data items, X1, X2,
partitioned on 2 nodes, N1, N2 respectively. Consider two transactions, T1, T2, with the
following data sets: T1’s read set is {X1}. Its write set is {X2} if its read returns the initial
value of X1, in which case it writes a value different from X2’s initial value. Otherwise, its
write set is empty. For T2, its read set is {X2}, and its write set is {X1} if its read returns
the initial value of X2, and empty otherwise. If its write set is non-empty, it writes a value
different from X1’s initial value. Let T1 be executed by a client C1 and T2 be executed by a
different client C2. Consider the following executions.
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Solo Executions. We define two executions S1, S2, corresponding to T1, T2 respectively
running in isolation, without the other transaction present in the execution. Both executions
are synchronous and failure-free. By weak progress, Ti commits in Si, and by serializability,
Ti returns the initial value of its read item and therefore its write set is not empty.

Concurrent Execution. We define an execution, Econcur, where T1 and T2 execute concur-
rently. On each node, each transaction is executed on different processes. Recall that this
can happen since this is a parallel system, and the executing processes for a transaction are
arbitrarily chosen among the idle processes of each node. In Econcur, for each transaction
Ti, we let each process that executes it run until right before it knows the decided read set
and read set value of Ti. Let the prefix of Econcur that includes all these steps be P1. We
then let each process that handles Ti run until when the next step of its handler has depth
≥ dSi(Ti) − 2. Next, we let all messages sent on behalf of T1 to N1 and not yet received reach
N1 and be handled before any message sent on behalf of T2 to N1. For node N2, we let the
reverse happen; messages sent on behalf of T2 reach it and are handled before messages sent
on behalf of T1. Finally, we resume all processes, and pause node processes that handle Ti

when the next step of their handler has depth ≥ dSi
(Ti). As for the client of each transaction,

we let any messages sent to it arrive in the same order as they did in their corresponding
solo executions (we will show that it receives the same messages in Econcur).

We now claim that execution Econcur is indistinguishable to Ci from Si, and indistin-
guishable to each node process running Ti from the prefix of Si containing all this process’s
steps of depth < dSi(Ti). To do so, we consider the execution in two phases; the phase before
the two transactions achieve knowledge of their data sets including their values (up to the
end of P1), and the phase afterwards.

Phase 1 of Econcur. Note that for any prefix P of Econcur in which Ti’s read set’s value
is not known to be decided by some process, Ti’s known decided write set in P is empty.
Consider the longest prefix Pundecidedi

of P1 in which the decided write set of Ti is still empty.
Note that for every process p, its knowledge of Ti’s write set in Pundecidedi is the same as it is
in P . Therefore, by Lemma 4.3, in any such prefix P , Ti may not make any modifications to
shared base objects visible to any concurrent transaction. Therefore, in phase 1 there are no
modifications visible to either transaction that were not visible in the solo execution as well.
Thus, by the end of phase 1, Econcur’s prefix P1 is indistinguishable to both transactions
from their respective solo executions. Therefore, both transactions read the initial values of
their respective read sets, and both have a non-empty write set in Econcur.

Phase 2 of Econcur. To show that Econcur remains indistinguishable from the solo execu-
tions to their respective transactions in phase 2, we rely on the order of messages that are
received by the two nodes.

First, we note that by Lemma 4.5, Ti does not make base object modifications visible to
T(i mod 2)+1 on node Ni, since Ti’s final write set is {X(i mod 2)+1}, which does not intersect
T(i mod 2)+1’s final data set on node Ni.

Next, note that in each solo execution Si, the first process that knows the decided value of
Ti must be on node Ni, since that is where the data for the read of Ti is stored. Furthermore,
by construction of Econcur, any messages sent on behalf of Ti to Ni immediately after both
transactions gain knowledge of their write sets arrives before any such message sent on behalf
of T(i mod 2)+1, and its handler is completely executed. Thus, by the above claim, on both
nodes, all handlers of both transactions for messages sent at depth dEconcur

(Ti, P1) execute
to completion in a way that is indistinguishable to Ti from the solo execution Si.
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Finally, note that since Si is synchronous and failure and conflict free, and I satisfies the
fast decision property, by Corollary 3.7, the depth of Ti in Si is at most 2 more than the
partial depth of the first prefix in which Ti’s data set including its values became known. In
particular, since Si is indistinguishable to processes executing Ti from Econcur up to that
point, this means that dSi

(Ti) ≤ dEconcur
(Ti, P1) + 2. Thus, once messages from within

the handlers that were activated by messages sent in Econcur at depth dEconcur (Ti, P1) are
received, Ti must be decided in Econcur as well, since Econcur is indistinguishable from Si to
all processes running Ti up to this point. Therefore, both transactions commit successfully
in Econcur in a manner indistinguishable from their respective solo executions.

However, this yields a circular dependency between the two transactions; T2 must occur
before T1, since it returns the initial value of X2, before T1 writes to it. Similarly, T1
must occur before T2, since it returns the initial value of X1. This therefore contradicts
serializability. ◀

▶ Theorem 4.2 (The R-FIDS theorem for replicated transactional systems). There is no
implementation of a PDTS that utilizes client-driven replication that guarantees weak progress,
and simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-
access parallelism, and serializability.

Proof. Assume by contradiction that there exists an implementation I of a parallel replicated
transactional system with all the properties stated in the theorem.

Consider a transactional system with 3 nodes N1, N2, N3. (For less than 3 nodes, there is
no PDTS that tolerates f ≥ 1 failures in the partial-synchrony model [18].) Further consider
3 transactions T1, T2, T3, 3 client processes C1, C2, C3, and 3 data items X1, X2, X3 each of
which is replicated on all 3 nodes. The data sets of the transactions are as follows: Ti’s read
set includes X(i mod 3)+1, and if the result of Ti’s read of X(i mod 3)+1 is the initial value of
X(i mod 3)+1, its write set includes Xi. Otherwise, its write set is empty. Each transaction
Ti, if its write set is non-empty, writes a value that is different from Xi’s initial value.

Transactions read and write sets
T T1 T2 T3

RT {X2} {X3} {X1}
WT {X1} if

R(X2)=⊥, else
{}

{X2} if
R(X3)=⊥, else

{}

{X3} if
R(X1)=⊥, else

{}

Consider the following executions. For each i = 1, 2, 3, in any of the following executions,
if it includes Ti then its coordinator handler is executed by Ci.

Solo Executions. Let E1, E2, E3 be failure-free synchronous executions of I, where transac-
tion Ti runs solo in Ei. Since Ei contains a single transaction and I satisfies weak progress,
transaction Ti commits in Ei. Since Ei is synchronous, has no failures and contains only Ti,
and I satisfies fast decision, Ti is fast deciding in Ei.

▷ Claim. Ti must have a depth of at most 4 in Ei.

To see this, note that by the definition of fast decision, if transaction Ti in Ei has depth at
least 3, the empty prefix of Ei must have an extension Ci of partial depth dEi

(Ti, Ci) ≤ 2 in
which the value of the read set’s item is known by some process to be decided, and therefore
the write set is known by that process to be decided as well. By Corollary 3.7, the depth of
Ti in Ei must be at most 2 more than the depth of Ci, and therefore is at most 4.
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X1 X2 X3

N1 1 2
N2 2 1
N3 1 2

Figure 2 Visual representation of execution Econcur in the proof of Theorem 4.2. The numbers in the
table represent the order of writing on each node; on node N1, X2 is written first, followed by X3, and so
on.

Since I satisfies 1-seamless fault tolerance, there exist executions E′
1, E′

2, E′
3 of I, where

the first event in E′
i is a crash of Ni, Ti runs solo and the depth of Ti in E′

i is the same as
its depth in Ei. We assume that in each E′

i, a different set of processes runs the handlers.
Lastly, since I is serializable, each E′

i is serializable, thus Ti’s read in E′
i returns the initial

value of X(i mod 3)+1, and therefore modifies Xi as part of its write set.
Since Ti’s write set is only determined from the outcome of Ti’s read, and may be empty

until that read’s value is decided, by Lemma 4.3, no base object modifications visible to
other transactions are executed by Ti in E′

i until after Ti’s read set values are known to some
process. Let the shortest prefix at which some process gains knowledge of Ti’s read set values
in E′

i be Pi. By Lemma 4.6, dE′
i
(Ti, Pi) ≥ 2.

Concurrent Execution. We define an execution Econcur with all 3 transactions. In Econcur,
all messages between processes on node Ni and any process that executes handlers associated
with Ti are arbitrarily delayed. For each i = 1, 2, 3, let processes that execute Ti in E′

i run in
Econcur identically to E′

i, in the same order of steps, until the end of Pi.
Note that up to this point, Econcur is indistinguishable to all executing processes from

the solo executions, since none of them has made any shared memory modifications visible to
the others. Therefore, the prefix Pknowledge of Econcur up to this point is an execution of I.

We continue Econcur as follows: Let all messages sent on behalf of Ti at depth dE′
i
(Ti, Pi)

be sent in Econcur, and be received and handled in the following order: on node N1, messages
for T2 are received first, and their handlers are run to completion, followed by messages for
T3. On node N2, T3’s messages are handled first, followed by messages of T1. Finally, on
node N3, messages of T1 are handled first followed by messages of T2. coordinator handlers
receive messages in the same order they received them in their corresponding solo executions.

Recall that transaction Ti reads data item X(i mod 3)+1 and, if it reads the initial value,
writes data item Xi. Thus, the service order defined above for execution Econcur (see the
order in which the nodes process their writes in Figure 2) means that on each node, the
second serviced transaction writes to data item X after the first transaction reads X, but it is
never the case that a transaction reads a data item after it was written by another transaction
on the same node. Since the data set of the second transaction to execute handlers after
prefix Pknowledge on each node does not overlap with the write set of the first one, and since
I provides invisible reads and DAP, then by Lemma 4.4, the first transaction does not make
base object modifications visible to the second transaction. In other words, on each node,
a process executing the second transaction cannot observe any changes on shared memory.
Thus, Econcur is still indistinguishable from E′

i to any node process that executes Ti up to
the end of the handlers of messages sent at depth dEconcur

(Ti, Pi). Note, however, that since
dE′

i
(Ti) ≤ 4 and dEconcur

(Ti, Pi) ≥ 2, this means that Econcur remains indistinguishable from
E′

i to these processes until Ti is decided.
Therefore, for all three transactions Ti commit in Econcur, reading the initial value of

X(i mod 3)+1 and writing a non-initial value in Xi. However, this yields a circular dependency
between the transactions (transaction T1 must happen before T2, which must happen before
T3, which must happen before T1), which contradicts serializability. ◀
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