
Privacy-Preserving Transactions with Verifiable
Local Differential Privacy
Danielle Movsowitz Davidow1 #

Tel-Aviv University, Israel

Yacov Manevich #

IBM Research – Zürich, Switzerland

Eran Toch #Ñ

Tel-Aviv University, Israel

Abstract
Privacy-preserving transaction systems on blockchain networks like Monero or Zcash provide
complete transaction anonymity through cryptographic commitments or encryption. While this
secures privacy, it inhibits the collection of statistical data, which current financial markets heavily
rely on for economic and sociological research conducted by central banks, statistics bureaus, and
research companies. Differential privacy techniques have been proposed to preserve individuals’
privacy while still making aggregate analysis possible. We show that differential privacy and privacy-
preserving transactions can coexist. We propose a modular scheme incorporating verifiable local
differential privacy techniques into a privacy-preserving transaction system. We devise a novel
technique that, on the one hand, ensures unbiased randomness and integrity when computing the
differential privacy noise by the user and on the other hand, does not degrade the user’s privacy
guarantees.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols; Security
and privacy → Trust frameworks

Keywords and phrases Differential Privacy, Blockchain, Privacy Preserving, Verifiable Privacy

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.1

Related Version Full Version: https://eprint.iacr.org/2023/126

Supplementary Material Software (Source Code): https://github.com/yacovm/ZKAT-VDP
archived at swh:1:dir:48554d7cfe172767c418e2e8f506fde1200c3cdd

Funding This work was supported by a grant from the Tel Aviv University Center for AI and Data
Science (TAD).

Acknowledgements We would also like to thank Dany Moshkovich and the reviewers of this paper
for their helpful comments and thorough review.

1 Introduction

1.1 Motivation
The issue of privacy holds significant importance and poses ongoing challenges in blockchain
systems. This concern has become a substantial barrier for traditional financial institutions
seeking to adopt blockchain technologies [26]. Initially, blockchain protocols offered only
limited pseudo-anonymity. However, user concerns have given rise to privacy-preserving
blockchain systems such as Monero [42], ZCash [4], and Twilight [20]. These systems
aim to increase users’ anonymity and conceal transaction details. For instance, ZCash [4]

1 The work was done during an internship at IBM Research – Haifa.

© Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dm4@mail.tau.ac.il
https://orcid.org/0000-0003-4475-662X
mailto:yacov.manevich@ibm.com
https://orcid.org/0000-0002-0479-6478
mailto:erant@tauex.tau.ac.il
https://toch.tau.ac.il/
https://orcid.org/0000-0001-6939-5870
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://eprint.iacr.org/2023/126
https://github.com/yacovm/ZKAT-VDP
https://archive.softwareheritage.org/swh:1:dir:48554d7cfe172767c418e2e8f506fde1200c3cdd;origin=https://github.com/yacovm/ZKAT-VDP;visit=swh:1:snp:979a5772312db4ab61b637ed766bbc6a3f369470;anchor=swh:1:rev:721f52b1b74f8e0aa60799bd1436865f8020258e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

enables users to encrypt transaction data, thereby safeguarding the privacy of the sender,
the recipient, and the transaction amount. Additionally, ZCash ensures the validity of
transactions without revealing any supplementary information beyond the transaction’s
legitimacy. These advancements within blockchain systems show a proactive approach to
addressing privacy concerns, facilitating the broader adoption of blockchain technology.

However, many pivotal applications such as statistics gathering [29], federated model
learning [32, 31], and anomaly analysis [30] necessitate the acquisition of aggregated models
from the shared data of numerous users while still maintaining user confidentiality. While
such aggregate and statistical models can yield benefits to the market as a whole [43], it is
equally crucial to ensure that data collection is conducted to minimize privacy threats to the
users. In particular, we aim to inhibit the ability of the data analyst to link multiple data
points of the user [19] or retrace their real identity via third-party datasets [16]. If these
risks aren’t adequately addressed, users may opt to evade participation in data collection
initiatives or provide misleading information that could lead to biased models.

Central Bank Digital Currencies (CBDCs) present a significant use case for the aggregation
of statistical models. Central banks across the globe have exhibited a growing interest in
developing and issuing CBDCs, which represent a digitized form of a nation’s fiat currency
and are intended to be widely available to the general public. Blockchain-based CBDCs are
designed to align with the requirements of regulated financial institutions. Consequently,
these institutions favor permissioned blockchain platforms that mandate identity management,
audibility, and non-deniability to comply with government-established monetary regulations.

However, the transactions resulting from existing privacy-preserving systems tailored for
financial institutions [3] appear random, preventing the extraction of meaningful insights
through observation. They prioritize the properties of unlinkability and untraceability to
protect user privacy. Unlinkability ensures that user actions cannot be easily linked together,
while untraceability maintains the anonymity of each transaction’s sender and recipient.
These systems safeguard sensitive user information and transaction history by upholding
these properties. Therefore, central banks cannot derive valuable insights and may struggle
to meet regulatory requirements.

Local differential privacy [33] potentially solves this by adding random “noise” to the
data. This noise ensures that no specific user can be identified from the processed data,
a privacy guarantee laid out by Dwork et al. (2006) [23]. Thus, financial institutions can
gather and analyze aggregated data without risking the exposure of sensitive information
tied to individual transactions. However, a challenge arises here: while local differential
privacy empowers users to introduce noise to their data, some may distort this feature by
injecting biased noise into it, which may adversely affect the integrity of the information
collected [11, 14]. Therefore, in blockchain environments, it is crucial to have a mechanism
verifying the correctness of introduced noise when implementing local differential privacy.

1.2 Verifiable Differentially Private Transactions
In this paper, we introduce the Verifiable Differentially Private (VDP) transaction scheme,
designed to ensure user privacy and data integrity during the data collection process for
aggregated models. Our innovative scheme bolsters the capabilities of any privacy-preserving
transaction system that maintains unlinkability and untraceability, such as Zcash [4]. With
this enhanced setup, a third-party entity, like a data analyst, can gather aggregated data
while simultaneously preserving user privacy and supplying plausible deniability.

Our approach stands out from other privacy-preserving transaction methodologies by
incorporating verifiable Local Differential Privacy (LDP) utilizing zero-knowledge proofs.
This integration forms an integral part of the privacy-preserving transaction system. By

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:3

adopting LDP methods [33], data analysts, such as the statistical bureau of a central bank
collecting financial information, can provide users with plausible deniability for their data
that can be represented as binary variables. These variables can encompass a wide range of
characteristics, such as non-profit organization affiliation or location in the U.S. Furthermore,
including zero-knowledge proofs allows data analysts to verify the accuracy and integrity of
the disclosed data.

Local Differential Privacy (LDP) approaches typically require users to generate random
numbers that are then used to create noise in the data [33]. Keeping these random numbers
confidential is crucial for maintaining user privacy. At the same time, it’s also important
that the process of creating random numbers and generating noise from them is unbiased.
This means that even if someone involved in the process – either the user or the data analyst
– has malicious intent, the LDP approach should still meet the following requirements: (i)
The generation of noise cannot be influenced by either the user or the data analyst; (ii) The
user can provide proof, without compromising privacy, that the noise is not biased; (iii) Once
the random numbers for a particular input are calculated, the user cannot change these
numbers or add a different level of noise. To meet these requirements, we introduce the
VerRR algorithm, which is a straightforward verifiable LDP mechanism based on the concept
of ’randomized response’ [24].

1.3 Related Work
In the following sections, we outline the different approaches for verifiable differential privacy
employed by various works and highlight the differences from our technique.

1.3.1 Central Differential Privacy
When applying Differential Privacy (DP) techniques for preserving privacy, traditional
methods often rely on the assumption that the process of noise generation and application is
intrinsically reliable. However, recent scholarly work [12, 13] has underscored the naivety of
this assumption. These studies expose DP’s vulnerability to a range of manipulation attacks,
thereby threatening the integrity of the data under examination.

Several studies have proposed strategies to counter various manipulation attacks. The
key aim across all these works is to generate and apply the noise in a way that can be verified.
Within the centralized DP model, studies such as [6, 38, 41] have zeroed in on a series of use
cases. In these instances, the data owners forward their data – either in plain text, encrypted
or in a secret-shared format – to a single party or a consortium of parties who together
form an entity termed a “curator”. This curator subsequently applies noise and generates an
anonymized, privacy-preserving data set suitable for further analysis.

Secure Multi-Party Computation (sMPC). In the context of secure multi-party compu-
tation (sMPC), a user secretly shares their input and distributes the shares across several
servers. As proposed in [6], if at least one of the servers collecting the data is honest, the
resulting computation is either correct or detected to be incorrect. Unfortunately, such a
single-client-multi-server model does not fit the use case of our work since we operate under
the assumption that the data analyst, who also serves as the curator, could potentially have
malicious intentions and is not divided into separate entities.

Zero-Knowledge Proofs. In the study by Narayan et al., the curator creates a database
comprising different users’ data elements and subsequently publishes a cryptographic com-
mitment to the entire database [38]. When a data analyst sends a query interested in specific

AFT 2023

1:4 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

statistical properties, the curator executes the differential privacy function. In addition,
the curator generates2 a Non-Interactive Zero-Knowledge (NIZK) proof, validating that the
result aligns with the prior commitment, and sends both the result and the proof back to the
data analyst. The data analyst then verifies the NIZK against the commitment to ensure
that the differential privacy mechanism was correctly executed.

The most notable downside of the naive zero-knowledge approach employed by previous
works is that it is assumed that the noise was sampled correctly and without bias. However,
if the party that produces the NIZK is malicious, it may use far from random noise and
thus either harm the privacy of the users or skew the results towards a value it favors. In
contrast, in our technique, we ensure that some of the randomness is sampled by the user
itself (unlike the work of [41] where the curator randomly samples the randomness) and some
by the analyst, thus producing noise that is non-biased.

1.3.2 Local Differential Privacy Mechanisms
LDP mechanisms allow for developing a randomized response that is operated locally, making
it fit for distributed blockchain environments. However, ensuring data integrity is a more
challenging task since data manipulation occurs locally. Research, such as [2, 35], concentrates
on making adjustments to existing LDP mechanisms to make them verifiable. This allows
data analysts to verify how users introduce noise to the data.

The study by Kato et al. employs cryptographic randomized response techniques to
validate existing LDP mechanisms. Their approach ensures the complete execution of privacy
protection on the client side, without sacrificing user privacy [35]. However, their method’s
primary drawback is its interactive nature. Interactive methods are typically more time-
consuming and resource-intensive than their non-interactive counterparts. They necessitate
several communication exchanges and direct engagement with the data analyst. Furthermore,
interactive methods do not support throttling. Hence, during periods of high network usage,
while non-interactive systems can manage the demand by forming a queue that will eventually
be cleared unbeknownst to the users, interactive systems may freeze, forcing users to endure
an uncertain waiting time. Our proposed scheme, on the other hand, is non-interactive,
overcoming these limitations.

Garrido et al. follow an approach based on zero-knowledge Succinct Non-interactive
ARgument of Knowledge (zk-SNARKs) to adapt the implementation of select LDP mech-
anisms to a verifiable computation technique to prove the correctness of a differentially
private query output [36]. However, their technique does not uphold the unlinkability and
untraceability properties needed in a privacy-preserving transaction system. These properties
are not upheld since the prover (i.e., the user) signs the randomness used as the base of
the LDP mechanism with their private key, and the verifier (i.e., the data analyst) needs to
know the prover’s public key to verify the integrity of the response. By knowing the prover’s
public key, the data analyst can later connect the generated randomness and the transfer it
was used in, thus revealing the identity of the user making the transfer.

Outline. The remainder of the paper is structured as follows. In Section 2, we introduce
some preliminary concepts and provide the relevant background regarding blockchain-based
privacy-preserving transaction systems and verifiable differential privacy. We present a

2 For ease of explanation, we mention the curator as the producer of the NIZK, but in the cited study,
this task is delegated to a separate party: the analyst.

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:5

high-level overview of our scheme in Section 3, and dive into the scheme’s full details in
Section 4. In Section 5, we evaluate the performance of our scheme. We discuss design
choices in Section 6 and summarize our contribution in Section 7.

2 Preliminaries

2.1 Blockchain-Based Privacy-Preserving Transactions
Blockchain transaction systems are typically modeled using two approaches: (i) The account
model, used in Ethereum [46]. This model is more user-friendly as it presents an abstraction
of accounts and balances; (ii) The Unspent Transaction Output (UTXO) model, used in
Bitcoin [37] and Zcash [4]. This model presents an abstraction of a plurality of coins, each
with a balance and a condition for spending3. While it is considered an open problem how to
“hide” a transaction’s sender in an account model [28] 4, “hiding” the sender in the UTXO
model is easy [4]. Thus, this work focuses on the UTXO model.

In a privacy-preserving transaction system using the UTXO model, when a sender
transfers funds to a recipient, to preserve the privacy of the transaction, three things need to
be hidden: (i) The sender’s identity, (ii) The recipient’s identity, and (iii) The transferred
amount. The transferred amount is usually hidden through a cryptographic commitment
and a zero-knowledge proof proving that the sum of input coins is greater or equal to the
sum of the output coins. The recipient’s anonymity is ensured by creating outputs that
either have one-time public keys [42] or by hiding the output token’s identity by having the
coin itself be a commitment [4] to its properties (e.g., owner, amount). Maintaining the
sender’s anonymity varies widely across techniques; Monero [42] uses ring signatures to hide
the source address among a randomly picked set of potential source addresses, while Zcash
uses a Merkle tree and zero-knowledge proof of membership to obscure the spent token.

Our work is based on Zcash’s approach to concealing sender, recipient, and amount but
is flexible enough to incorporate other privacy-preserving transaction systems that encode
the entire token as a commitment. This includes the model proposed by [3], which is better
suited for CBDCs and permissioned settings, replacing the Merkle tree membership proof
with proof of knowledge of a signature of an entity that certifies the coin. Zcash terminology
is used throughout the paper.

2.2 Differential Privacy
Differential Privacy (DP) [23, 22] is a formal notion of privacy designed to allow learning
helpful information about a population while learning as little as possible about an individual.
DP guarantees that the presence or absence of any specific individual in a dataset does not
affect the query output results of that database. To achieve this privacy requirement, DP
models change the data by using some randomness that masks the user identity.

There are two main models of DP: the centralized model and the local model. In the
centralized model, sensitive data is collected centrally in a single dataset, and a trusted data
curator can access the raw data. Each user sends their data to the curator without noise

3 In most cases, presenting a signature that is verifiable under a public key that its hash is encoded in the
coin.

4 In an account model, hiding the sender involves hiding it within a K sized anonymity set [10], while a
UTXO based approach hides the sender within all possible senders in the system.

AFT 2023

1:6 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

in this model. Since we assume analysts requesting access to this dataset are malicious,
the curator is responsible for correctly executing the differentially private mechanisms the
analysts specify.

▶ Definition 1 (ϵ−differentially privacy [22]). A randomized algorithm K is ϵ−differentially
private if for all data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),
P [K(D1) ∈ S] ≤ eϵP [K(D2) ∈ R].
The probability is taken over the coin tosses of K.

Local DP models can be based on a randomized response mechanism as was first proposed
by Warner in 1965 [45] and formalized in the context of learning by Kasiviswanathan et
al. [34]. In this model, the data curator and the analyst are often the same, and no trusted
third party exists that holds the data and executes the mechanism. Therefore, the user
makes data differentially private before sending it to the analyst, ensuring that even if an
adversary gains access to the personal responses of individuals in the database, it will not be
able to learn much about the individual’s data.

▶ Definition 2 (Local randomizer [24]). An ϵ−local randomized R : X →W is an
ϵ−differentially private algorithm that takes a database of size n = 1 as input.

We incorporate local DP techniques into our scheme since our work is based on a privacy-
preserving transaction system in which we assume that any parties (i.e., the users or the
data analyst) may be dishonest but not both. Therefore, an honest user cannot trust the
analyst to properly blind their data without leaking it.

2.3 Randomized Response

Dwork and Roth presented in [24] a variant of the randomized response mechanism, in which
a user answers a “Yes” or “No” question as follows:
1. Flip a coin.
2. If tails, then respond truthfully.
3. If heads, then flip a second coin and respond “Yes” if heads and “No” if tails.

In this algorithm, the user flips two coins before returning the response. Flipping two
coins creates uncertainty about the true answer. This uncertainty is the source of privacy,
as it gives plausible deniability to the data subject. In section A in the appendix of our
full version [18], we prove the randomized response algorithm described above satisfies
ln 3-differentially privacy.

We note that when using the randomized response technique, the number of “Yesses”
and “Noes” depends on the result of tossing the coin once or twice. Therefore, if an analyst
wants to estimate the true number of “Yesses”, it would need to analyze the randomness
in the randomized response algorithm and estimate how many of the “Yesses” are truthful
responses and how many are “fake”, and are a result of the random coin flips.

2.4 Basic Cryptographic Building Blocks

The following section extensively explains zero-knowledge proofs, which are crucial in our
scheme. We denote the symbol λ to represent the system-wide security parameter.

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:7

2.4.1 Commitment Schemes
A commitment scheme is a protocol between a sender and a receiver defined by three
probabilistic polynomial time algorithms: ⟨Setup, Commit, Open⟩. The sender and receiver
each invoke the Setup operation with the desired security parameter and then get back
public parameters to be used for Commit and Open. The sender uses the Commit operation
to encode a message m and get back a commitment to m. The sender then sends the
commitment to the receiver. At a later stage, the sender may convince the receiver that the
commitment encodes the message m by interacting with the receiver via the Open operation.
In order for the commitment scheme to be useful, it needs to satisfy two security properties:

Hiding: For any probabilistic polynomial time adversary A there exists a negligible5

function ϵ such that for every two messages m0, m1 chosen by A and a commitment
cm← Commit (mb) for b ∈ {0, 1} it holds that: Pr [b← A (pp, cm)]− 1

2 ≤ ϵ (λ).
Binding: For any probabilistic polynomial adversary A there exists a negligible function
ϵ such that for every m and cmt← Commit (m) and every m′ ̸= m chosen by
A: Pr [Open (pp, cmt, m) = m′] ≤ ϵ (λ).

A commitment can either be information-theoretic binding or hiding, and it can be
computationally binding or hiding (but cannot be both information-theoretic binding and
hiding). In our scheme, the commitment does not need to be homomorphically additive or
have any special property, and as such, it is completely pluggable.

2.4.2 Digital Signatures
A digital signature scheme is a triple ⟨Gen, Sign, V erify⟩ of probabilistic polynomial time
algorithms. Gen(1λ) outputs (sk, pk) a private key and a public key respectively. For a
message m, Sign (m, sk) outputs a signature σ. For a message m, a public key pk and a
signature σ, V erify (pk, m, σ) accepts or rejects. The security property we require from a
signature scheme is:

Unforgability: For every probabilistic polynomial time adversary A with access to a
signing oracle O which replies to queries denoted by a set Q there exists a negligible
function ϵ such that Pr [V erify (pk, m, σ) = 1 ∧m /∈ Q] ≤ ϵ (λ).

As in the case of the commitment scheme, the signature scheme employed by our protocol
can vary, and its choice is insignificant.

2.4.3 Public Key Encryption
An encryption scheme is a triple ⟨Gen, Enc, Dec⟩ of probabilistic polynomial time algorithms.
Gen(1λ) outputs (sk, pk) a private key and a public key respectively. For a message m,
Enc (m, pk) outputs a ciphertext c. Given a ciphertext c and a private key sk, Dec (c, sk)
outputs a message m. For every public key pk with a corresponding sk and message m it
holds that Pr [Dec (Enc (m, pk) , sk) = m] = 1. The security property we require from an
encryption scheme is:

Indistinguishablility: For every probabilistic polynomial time adversary A and every
pk generated by Gen(1λ) and for every two messages m, m′ there exists a negligible
function ϵ such that Pr [A (Enc (m, pk)) = 1]− Pr [A (Enc (m′, pk)) = 1] ≤ ϵ (λ).

5 A function ϵ : N → R is negligible if for every positive polynomial p (n) there exists an N such that
∀n > N : ϵ (n) < 1

p(n) .

AFT 2023

1:8 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Our protocol does not require any stronger property for the encryption scheme, such as
resistance against chosen ciphertext attacks (CCA1 and CCA2).

2.5 Zero-Knowledge Proofs
For a language L ∈ NP , denote the relation RL to be the pairs (x, w) of statements and
witnesses for x being in L.

A zero-knowledge proof is a protocol between a prover P and a verifier V in which the
prover can convince the verifier that it knows a witness w for a statement x if and only if
(x, w) ∈ RL, and the verifier learns nothing from the protocol.

More formally, a pair of algorithms (P, V) is a zero-knowledge proof system for a language
L if the following three conditions hold:

Completeness: For every x ∈ L there exists w such that Pr [⟨P (w), V ⟩(x) = 1] = 1.
Soundness: For every x /∈ L and every P ∗ and every w there exists a negligible function
ϵ such that Pr [⟨P ∗(w), V ⟩(x) = 1] ≤ ϵ (λ).
Zero-knowledge: For every probabilistic polynomial time V ∗ there exists a probabilistic
polynomial time simulator S such that for every x ∈ L: V iewP

V ∗ (x) ≡ S (x).

While zero-knowledge proofs are not restricted to statements belonging to languages in
NP , they are often used for such, especially for languages where verification of (x, w) ∈ RL
is efficient and can be modeled as a boolean or arithmetic circuit, but an efficient algorithm
to find w for a random x is not known. A prominent example is: (x, w) ∈ RL ⇔ f (w) = x

where f is a cryptographic hash function.
In an anonymous set membership, given a set of items found as leaves in a Merkle tree,

one can prove knowledge of an item in the Merkle tree by proving in zero-knowledge a path
comprised of hash pre-images from one of the leaves to the root of the Merkle tree. Such
a technique is the cornerstone behind the privacy-preserving cryptocurrency Zcash [4]. In
Zcash, a sender wishing to hide the payment source simply creates a zero-knowledge proof
that they use a coin that was added to a Merkle tree. The Merkle tree’s leaves are all coins
added as part of past transactions.

Zero-knowledge proof schemes come in different forms, each with its strengths and
weaknesses. In this work, we focus on schemes ideal for privacy-preserving payments, and
thus we require the scheme to be non-interactive, efficiently verifiable, and have a small proof
size (succinct). A scheme with such properties is termed a zk-SNARK (Zero-Knowledge
Succinct Non-interactive ARgument of Knowledge).

3 Overview of the VDP Transaction Scheme

Our privacy-preserving, verifiable, and differentially-private transaction scheme expands the
functionality of any given privacy-preserving transaction system (e.g., Zcash [4]) by enabling
a third party (e.g., a data analyst) to collect information about transaction attributes while
preserving user privacy.

Before elaborating on the participants, components, and transaction flow, we reiterate the
scheme’s primary objective. The two main actors in our setting are a user with potentially
sensitive information they are unwilling to disclose without plausible deniability and a data
analyst who aims to create a statistical model by aggregating information gathered from
user transactions. The users conduct transactions of a privacy-preserving nature. These
transactions reveal nothing about the transactor’s identity, the recipient’s identity, or the
properties of the transaction (such as the amount transferred). Each transaction a user

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:9

performs is accompanied by an additional Differentially Private Attribute (DPA) which results
from applying an LDP algorithm to the transaction’s private data6. The DPA can embed
details like the sender’s non-profit status, enabling the data analyst to tally transactions
made by Blockchain users from both profit and non-profit sectors.

An LDP mechanism generates the differentially-private attribute that involves sampling
randomness and using it for noise generation. The randomness must be kept secret from
anyone but the user itself, lest a curious analyst can peel off the noise and be able to
reconstruct the original value. At the same time, the scheme should force the user to generate
randomness in a non-biased manner. Suppose the user is free to choose the randomness it
uses. In that case, it can manipulate the result of the LDP mechanism making the data too
“noisy”, thus affecting the integrity of the data collected by the analyst.

Consequently, we seek a scheme with the following properties: (i) Neither the user nor the
analyst can bias the generation of the noise used for the LDP mechanism; (ii) The user can
prove in a privacy-preserving manner that the noise is non-biased; (iii) Once the randomness
used to create the transaction’s noise is computed, the user cannot compute new randomness
or add a different amount of noise. We prove that our scheme fulfills all three aforementioned
properties in Section 4.4.1. Another essential property of our scheme is preserving user
privacy, meaning that once the transaction is complete, the analyst cannot identify the user
who initiated the transaction. We prove this property in Section 4.4.2.

3.1 Participants
Our scheme involves the following participants:

Users. Users can exchange tokens within the system using transfer transactions, which are
recorded on the blockchain. We presume that users possess specific individual attributes that
they wish to disclose confidentially to the data analyst. These characteristics can cover a
wide range of areas, for instance, signifying if the user is based in the U.S., is exempt from
tax, or any other pertinent information that can be denoted as a binary variable.

Data analyst. This entity has the authority to collect aggregated information from the
private attributes and activities of the users in the system. We assume that the analyst is
only interested in analyzing data using statistical models regarding the system as a whole
and is not interested in learning about specific individuals in the system.

Registration authority. This is a privileged entity in charge of registering all system users.
For each user, it issues a long-term credential (i.e., a certificate) that binds the user’s public
key to its attributes. The same attributes will later be used as input to the LDP algorithm.

3.2 Threat Model
Our scheme is designed as a protocol that considers the interaction between two parties,
the user and the data analyst, both of whom may exhibit dishonest behavior and possess
conflicting objectives.

6 In this work, we focus on the randomized response mechanism applied to one binary attribute. However,
we argue that our ideas can be extended to randomized response vectors applied to multiple and
non-binary attributes.

AFT 2023

1:10 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

The first threat arises from the data analyst’s desire to compute aggregated information
derived from the user’s transactions while potentially disregarding the user’s privacy. Indeed,
the analyst may deviate from the protocol in an attempt to link between the transaction
and the user who submitted it [5].

The second threat arises from users who prioritize their privacy at the expense of providing
misleading or corrupted data, which can undermine the integrity of the analysis conducted
by the analyst. There are two primary ways in which users can launch such attacks: (i)
Users can intentionally introduce randomness or noise manipulatively, rendering the data
unreliable for generating unbiased and trustworthy aggregate statistical estimations [15];
(ii) Data poisoning attacks targeted at DP mechanisms. Data poisoning attacks involve
adversarial manipulation of the input in order to influence the final aggregate result.

Since the analyst is interested in collecting statistics over attributes that correspond to
the users themselves and for each transaction, such as whether the user is a non-profit or
not or whether the user is based in the U.S., it is crucial that a user cannot mutate their
attributes as they see fit. We guarantee this by requiring identities to be issued by the
registration authority. Therefore, our scheme operates in the permissioned setting, whereas
in a permissionless setting, each user is free to choose their own attributes.

Both the user and the analyst may deviate from the protocol. This introduces an element
of uncertainty, as a party adhering to the protocol cannot definitively determine if the other
party is also following protocol or diverging from it. Therefore, we aim to devise a protocol
that protects the interest of any of the two parties as long as that party is honest. We
note that such a protocol would fit the aforementioned threat model where both parties
can deviate from the protocol, as each party can be assured that if it correctly follows the
protocol, it will be protected from the misbehavior of the counter-party.

As we will see in the security analysis in Section 4.4, the focus on protecting the interests
of honest parties lets us assume knowledge about the probability distribution of certain
messages sent by honest parties, which then will set the probability distribution of messages
sent by the counter-party regardless of whether it incorrectly samples its randomness.

In our protocol, the user initiates the protocol by sending a message to the data analyst,
and the data analyst responds with its message. We consider a scenario where the data
analyst does not respond to the user’s message or sends back information that the user
considers invalid as a scenario in which the data analyst aborts the protocol. Similarly
to [3, 4], we consider network-level privacy out of scope and assume that the analyst cannot
de-anonymize the user from inspecting the source of its network connection.

3.3 Components

Our scheme comprises three modular components: (i) A protocol to obtain and bind
randomness. (ii) A verifiable LDP mechanism. (iii) An expanded privacy-preserving transfer
that includes verifiable differentially-private data.

Obtain and bind randomness protocol. This protocol is a privacy-preserving verifiable
joint random number generation protocol between the user and the analyst. The protocol
uses a serial number created by the user to bind a set of unspent input random seeds used in
a specific transfer to their corresponding jointly generated randomness. The analyst uses this
serial number to verify that only one randomness is created for each set of unspent inputs.

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:11

Verifiable LDP mechanism. This mechanism makes the user’s attributes differentially
private before they are disclosed to the analyst. For simplicity, in this work, we use the basic
randomized response mechanism described in Section 2.3 to make a single binary attribute
differentially private.

Expanded privacy-preserving transfer. Our verifiable differentially private (VDP) transfer
expands the transfer transaction defined by the underlying privacy-preserving transaction
system. As we explained in Section 2.1, our scheme works with any transfer mechanism
that: (i) Encodes tokens as commitments to properties of the token (token value, owner, and
random seed are all part of the input to a cryptographic commitment scheme). (ii) Uses
serial number exposure as a double-spending prevention (for a random seed ρ, the serial
number is PRF (ρ)).

To verify the correctness of the randomness used as the source of randomness in the LDP
mechanism and to ensure that the analyst cannot link a specific transfer to its sender, our
VDP transfer uses two serial numbers. The user creates the first serial number during the
obtain and bind randomness protocol. The second serial number, also created by the user,
is used to prove the correctness of the randomness used by the verifiable LDP mechanism.
From the analyst’s point of view, the second serial number will only be accepted if the first
serial number was previously observed (without being able to link the two together).

The analyst can verify that it has previously seen the first serial number because both
numbers have the same precursor, a set of unspent input random seeds. The generated
serial numbers satisfy the following security properties: (i) They are collision resistant –
two different sets of unspent tokens produce two different serial numbers. (ii) They are
deterministic – the same set of unspent tokens will always produce the same serial number.
(iii) They are unforgeable – only the user who owns the unspent tokens can produce a valid
serial number. Although both serial numbers are computed on the same set of unspent
inputs, the analyst cannot link them to each other thanks to their construction. The unspent
input seeds are passed through Pseudo-Random functions with different keys and hence are
computationally unlinkable.

Additionally, our transfer uses zk-SNARK proofs to verify the integrity of the data
disclosed by the user (i.e., the DPA). The proofs prove that the disclosed DPA matches the
user’s original attributes and is created using the jointly generated randomness as the base
of the randomness used in the LDP mechanism.

3.4 VDP Transaction Flow
The VDP transaction scheme is illustrated in Figure 1. At first, the user contacts the
registration authority (1.1) and uses a registration protocol to get a long-term credential (1.2).
From then on, the user can use this credential as input for every VDP transfer transaction.

The VDP transfer is comprised of the following stages: The user retrieves its tokens from
the ledger (2.1). The user contacts the data analyst (2.2) and executes the BindRandomness
protocol. Thus, the user obtains a verifiable random value (2.3). The user executes the VDP
transfer algorithm in three stages. First, the user adds noise to their attributes using the
verifiable LDP mechanism (creates the DPA) and encrypts the result using the data analyst’s
public key. Then, the user computes the zk-SNARK proofs needed to verify the jointly
generated randomness and the integrity of the DPA. Finally, the user uses the underlying
transfer scheme in a black box manner to create a new unspent token. The resulting transfer
transaction and the DPA encrypted with the analyst’s public encryption key are posted on

AFT 2023

1:12 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Figure 1 Overview of the VDP Transaction scheme.

the ledger (2.4). Finally, the analyst (3) decrypts the encrypted DPA and includes it in its
statistical computation, and the second user (3) (i.e., the recipient of the transaction) can
now use the newly created token.

4 The VDP Transaction Scheme

This section details the complete VDP transaction scheme.

4.1 The BindRandomness Protocol
The BindRandomness protocol presented in Figure 2 is a privacy-preserving verifiable protocol
executed between the user and the analyst. This protocol has two main goals: (i) Obtaining
an unbiased random value jointly generated by the user and the analyst. (ii) Computing
a verifiable and unlinkable serial number. This serial number will enable the user to later
prove in zero knowledge that they know a random value jointly generated with the analyst
to be used as a source of randomness for a randomized algorithm.

The BindRandomness protocol takes as input a security parameter λ and a vector ρ⃗ =
(ρ1, . . . , ρm) s.t. ∀i ∈ [m] : ρi ∈ {0, 1}λ.
ρ⃗ represents m distinct seeds of unspent input tokens, and outputs two random values ξu,
ξA, a commitment cmξu

, and a signature σA.
In the initial stages of the protocol, the user samples a random value ξu, commits to it

using COMM(ξu), and computes the serial number ν1 with PRF1(ρ⃗). The user then sends
the commitment cmξu and the serial number ν1 to the analyst. The analyst checks if ν1 was
observed before and if so it aborts. Otherwise, the analyst will add ν1 to some accumulator
ACC, and continue on with sampling a random value ξA and signing (cmξu , ν1, ξA) to obtain
σA. The protocol ends with the analyst sending the user ξA and the signature σA. The user
verifies the signature and discards ξA if the signature is found to be invalid.

After the protocol’s execution, the analyst has a value ν1 in its accumulator, which is
correlated to m unspent tokens that the user may use in a future transaction. By signing
the accompanied commitment of the user cmξu

alongside ξA, the randomness picked by the
user, as well as the randomness picked by the analyst are both indirectly bound to {ρi}m

i=1
the seeds used for the unspent input tokens. As we will show in the next section, this is a
crucial part of the security of our scheme: If the user used an unspent input’s seed ρi to
obtain randomness from the analyst, it must also use the corresponding unspent input in a
transfer in order to use the randomness for the LDP computation.

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:13

BindRandomness
User Analyst

1 : ξu ←$ {0, 1}λ

2 : cmξu
= COMM(ξu)

3 : ν1 = PRF1(ρ⃗)

4 : (cmξu
, ν1)

5 : Check ν1 /∈ ACC
6 : ACC← ACC ∪ {ν1}

7 : ξA ←$ {0, 1}λ

8 : σA = Sign(cmξu
, ν1, ξA)

9 : (σA, ξA)

10 : return ξu, cmξu
, σA, ξA

Figure 2 The BindRandomness protocol.

4.2 The VerRR Mechanism
The VerRR algorithm is a simple, verifiable LDP mechanism based on randomized response
presented in Section 2.3. This mechanism makes one binary attribute of the user differentially
private. In this setting, the user can answer any question that requires a binary answer. For
example, to answer the question “Are you a non-profit?” the user can reply “0” for non-profit
or “1” for pro-profit. To answer the question “Are you based in the U.S.?” the user can reply
“0” for a yes or “1” for a no.

We chose this simple implementation as a proof of concept, but argue that this mechanism
can be easily replaced by a more sophisticated LDP mechanism, such as one capable of
handling histogram queries as in the Rappor mechanism used by Google [25]. As evident
from our security proofs in Section 4.4, our technique achieves simulation security; therefore,
the entire protocol inherits the security of the LDP function.

The VerRR algorithm uses the jointly generated random value ξ as the source of random-
ness needed to compute the double coin toss coin1 and coin2. Based on the results of the
coin tosses, the algorithm determines the value of output ˆdpa (the original dpa value, or a
random output of “0” or “1”).

The pseudocode for the VerRR algorithm is given in Algorithm 1.

Algorithm 1 VerRR.

Input:

Verifiable randomness ξ

A private attribute dpa

Output:

Two coin toss results coin1 and coin2

A differentially private value ˆdpa

1: Compute first coin toss
coin1 = (ξ mod 4) mod 2

2: Compute second coin toss coin2 = (ξ mod 4)/2
3: if coin1 = 0 then
4: ˆdpa← dpa
5: else
6: if coin2 = 0 then
7: ˆdpa← 1
8: else
9: ˆdpa← 0

10: end if
11: end if
12: Output coin1, coin2, ˆdpa

AFT 2023

1:14 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Algorithm 2 VDPtransfer.

Input:
Public parameters pp

Verifiable randomness ξu and its commitment
cmξu

Serial number ν1

Verifiable randomness ξA

Signature σA for (cmξu
, ν1, ξA)

Underlying transfer parameters:
x=((θold

i)m
i=1, (addrold

sk,i)m
i−1,info7)

Output:
New tokens (θnew

i)m
i=1

Encrypted VDP value δ

Transfer transaction txVDP

1: Compute randomness ξ = ADD(ξu, ξA)
2: Compute commitment cmξ = COMM(ξ)
3: for each i ∈ [m]:

a: Parse θold
i as (ρi, dpa, addrold

pk,i, *)
b: Parse addrold

sk,i to retrieve aold
sk,i

c: Parse addrold
pk,i to retrieve aold

pk,i

4: Compute ν2 = PRF2(ρ⃗) s.t. ρ⃗ := (ρ1, . . . , ρm)
5: Compute VerRR(ξ, dpa) to retrieve

(coin1, coin2, ˆdpa)
6: Set −→wξ = (ξu, ξA, cmξu

, σA, ξ, ρ⃗, ν1, (aold
sk,i)m

i=1)
7: Set −→xξ = (cmρ, ν2, (snold

i)m
i=1, cmξ, pkA)

8: Compute proof πξ = Prove(pkξ, xξ, aξ)
9: Encrypt and mask attribute

δ = EncpkA
(ru, ˆdpa)

10: Set −→wδ = (coin1, coin2, ξ, dpa, ru, (aold
pk,i)m

i=1)
11: Set −→xδ = (COMMξ, δ, pkA, pkRA)
12: Compute proof πδ = Prove(pkδ, xδ, aδ)
13: Execute underlying transfer Pour(x)
14: Set txVDP = (txPour, δ, πξ, πδ)
15: Output (θnew

i)n
i=1, txVDP

4.3 The VDP Transfer

The VDPtransfer algorithm expands the underlying transfer algorithm (e.g., the Pour al-
gorithm used by Zcash [4]) by outputting additional information about the user’s attributes.
The analyst can later use this information to generate aggregate statistics regarding system
users. To preserve privacy and allow plausible deniability, the user applies an LDP mechanism
to its attributes, making them differentially private before disclosing them.

On a very high level, the algorithm expands the underlying transfer algorithm of unspent
m tokens with randomness seeds ρ⃗ such that |ρ⃗| = m executed by user u as follows:
1. u computes the jointly generated random value ξ out of the verifiable random values ξu

and ξA obtained from executing the BindRandomness protocol.
2. u uses ξ as the source of randomness needed to generate the random values used in the

VerRR algorithm.
3. u makes their attribute dpa differentially private and encrypts its value using the analyst’s

public key pkA.
4. u computes two zero-knowledge proofs – the Binding proof πξ, and the Encrypted VDP

proof πδ – to prove the connection between the jointly generated random values ξu, ξA, ξ,
the unspent tokens with random seeds ρ⃗, and the attribute dpa that was made differentially
private. Additionally, u binds (ρ)m

i=1 to ν2 = PRF2(ρ⃗) and sends the underlying transfer
encoding, the proofs ξu and ξA, and ν2 to the analyst. Sending to the analyst ν2 ensures
that the user cannot reuse ξ a second time. The analyst is expected to add ν2 to an
accumulator ACC and ensure ν2 /∈ ACC upon receiving it from a user. Since ν1 is
computed using PRF1 and ν2 is computed using PRF2, and PRF1 ̸= PRF2 then also ν1
is unlinkable to ν2.

The pseudocode for the VDPtransfer algorithm is given in Algorithm 2.

7 info represents the rest of the parameters needed for the underlying transfer

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:15

4.3.1 The Binding Proof
The proof, made by user u, is defined as follows:

πξ =

∃ξu,∃ξA, verify(pkA, σA, ”cmξu

||ν1||ξA”) = 1 ∧ cmξu
= COMM(ξu)∧

∃cmξu
,∃σA, ξ = ADD(ξu, ξA) ∧ cmξ = COMM(ξ) ∧ ν1 = PRF1(ρ⃗)∧

∃ξ,∃ρ⃗, ν2 = PRF2(ρ⃗) ∧ cmρ = COMM(ρ⃗) ∧ ρ⃗ ∈ ASC
∃ν1,∃(aold

sk,i)m
i=1)

∧m
i=1 snold

i = PRFask
(ρ⃗[i])

 .

Where instances are of the form −→xξ = (cmξ, cmρ, ν2, (snold
i)m

i=1, pkA), and witnesses are
of the form −→wξ = (ξu, ξA, cmξu , σA, ξ, ρ⃗, ν1, (aold

sk,i)m
i=1). We define ASC as an m relation

(n1, n2, ...nm)|n1 < n2 < ... < nm (i.e., an m relation where all the elements are smaller than
the elements to their right).

An instance −→xξ specifies a commitment for a jointly generated randomness, a commitment
for the unspent tokens, a public serial number binding the unspent tokens to the jointly
generated randomness, the serial numbers of m distinct token (computed by the underlying
token management system), and the analyst’s public key. A witness −→wξ specifies user u’s
randomness and commitment to it, the analyst’s randomness and signature for it, the jointly
generated randomness, the seeds for the m distinct unspent tokens, the private serial number
binding the unspent tokens to the jointly generated randomness, and the m private addresses
of the m unspent tokens.

Given a Binding proof instance −→xξ, a witness −→wξ is valid for −→xξ if the following statements
hold:
1. The signature σA created by the analyst is valid, i.e., verify(pkA, σA, “cmξu

||ν1||ξ′′
A) = 1

2. The commitment cmξ is a valid commitment for randomness ξ, i.e., cmξ = COMM(ξ).
3. The randomness ξ was computed using the user’s randomness ξu and the analyst’s

randomness ξA, i.e., ξ = ADD(ξu, ξA).
4. The vector ρ⃗ is sorted in ascending order, i.e., (ρ1, ρ2, ..., ρm)|ρ1 < ρ2 < ... < ρm.
5. The serial numbers ν1, ν2 are computed correctly, i.e., ν1 = PRF1(ρ⃗) and ν2 = PRF2(ρ⃗).
6. The public serial number ν2 matches a private serial number ν1, s.t. ν1 appears in the

analyst’s accumulator.
7. The commitment cmu is a valid commitment for the randomness ξu generated by the

user, i.e., cmξu = COMM(ξu).
8. The commitment cmA is a valid commitment for the randomness ξA generated by the

analyst, i.e., cmξA
= COMM(ξA).

9. For each i ∈ [m], the serial number snold
i of token θold

i is computed correctly, i.e.,
snold

i = PRFask
(ρi) s.t. ρi = ρ⃗[i].

4.3.2 The Encrypted VDP Proof
The proof, made by user u, is defined as follows:

πδ =

∃ξ,∃dpa, cmξ = COMM(ξ) ∧ ˆdpa = VerRR(ξ, dpa)∧
∃coin1,∃coin2, coin1 = (ξ mod 4) mod 2 ∧ coin2 = (ξ mod 4)/2∧
∃ru,∃(aold

pk,i)n
i=1 δ = EncpkR

(ru, ˆdpa))∧
verify(pkR, σdpa, “(apk,i)n

i=1||dpa”) = 1

 .

Where instances are of the form −→xδ = (COMMξ, δ, pkA, pkRA), and witnesses are of the
form −→wδ = (coin1, coin2, ξ, dpa, ru, (aold

pk,i)m
i=1).

AFT 2023

1:16 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

An instance −→xδ specifies a commitment for a jointly generated randomness, the encrypted
value of the user’s attribute after making it differentially private, the analyst’s public key,
and the registration authority’s public key. A witness −→wδ = (ξ, coin1, coin2, dpa, ru, (aold

pk,i)m
i=1)

consists of the jointly generated randomness and the two coin toss results derived from it,
the user’s attribute, the user’s random scalar used during the ElGamal encryption process,
and the m public addresses of the m unspent tokens.

Given an Encrypted VDP proof instance −→xξ, a witness −→wξ is valid for −→xξ if the following
statements hold:
1. The commitment cmξ is a valid commitment for randomness ξ, i.e., cmξ = COMM(ξ).
2. The double coin toss results coin1 and coin2 are derived from randomness ξ, i.e.,

coin1 = (ξ mod 4) mod 2 and coin2 = (ξ mod 4)/2.
3. The encrypted value δ was computed by encrypting the user’s attribute dpa with the

analyst’s public key pkA after making it differentially private using coin1 and coin2, i.e.,
δ = EncpkR

(LDP(dpa, coin1, coin2)).
4. The signature created by the registration authority is valid, i.e.,

verify(pkR, σdpa, “(apk,i)n
i=1||dpa”) = 1.

4.4 Security Analysis
4.4.1 Preserving Integrity
In our scheme, the user sends the analyst an encrypted result of computing the VerRR
algorithm on their private attribute termed dpa. As the analyst does not see how the user
computes the noise, it is crucial that the scheme preserves the integrity of the process in
case the user is being dishonest. We prove a stronger result; If either (but not both) of the
parties is malicious, the final result of our protocol distributes as an ideal functionality F for
a randomized response differential privacy algorithm. In order to prove integrity, we first
define three lemmas:

▶ Lemma 3. Let U be the uniform distribution. Unless both8 the user and the analyst are
malicious, and if the analyst accepts the proofs accompanying the transaction, BindRandomness
(see Figure 2) outputs ξA and ξu such that ξA + ξu ∼ U

(
0, 2λ

)
.

▶ Lemma 4. Denote πξ and πδ to be Non-Interactive Zero-Knowledge proofs accepted by the
analyst with a corresponding commitment COMMξ to ξ and δ being the claimed result9 of
applying VerRR on dpa ∈ {0, 1}∗ with some randomness ξ′. Then it holds that: ξ = ξ′.

▶ Lemma 5. Denote dpa to be the user’s attribute and δ the result (claimed by the user) of
VerRR on some dpa′ accepted by the analyst. Then, it holds that indeed dpa′ = dpa.

The proofs can be found in section B in the appendix of our full version [18]. Now that
we have proved the lemmas above, we can prove the integrity theorem (proof found in section
B in the appendix of our full version [18]):

▶ Theorem 6 (preserving integrity). Let F an ideal functionality for the VerRR computation
where the user (U) sends its data dpa and the analyst (A) receives F(dpa), and denote
⟨U(dpa), A⟩ as a random variable that represents the final LDP value to be sent to the analyst.
Then, unless both the user and analyst are malicious, it holds that: ⟨U(dpa), A⟩ ∼ F(dpa).

8 If both are malicious, we cannot guarantee anything about the distribution of the final randomness
ξ = ξA + ξu as ξA, ξu may both not be sampled uniformly.

9 In the protocol, δ is an encryption of the result, but for simplicity, we omit this.

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:17

Although Theorem 6 and its auxiliary lemmas are enough to prove the user cannot falsify
F(dpa), a malicious user may attempt to execute several instances of the BindRandomness
protocol and pick one result over the other in order to skew the randomness in its favor. We,
therefore, prove that our scheme has a finality property with respect to the execution of
BindRandomness:

▶ Theorem 7 (Finality). Let {sni}m
i=1 be a set of serial numbers exposed by the underlying

payment scheme, which correspond to tokens being spent in a future transaction by a user,
and let ρ⃗ be its corresponding vector of random seeds. Denote {(ξ(i)

u , ρ⃗)
∣∣ ξu ∈ {0, 1}λ}∞

i=1
to be an infinite series of inputs to BindRandomness with the aforementioned ρ⃗ but with
a different randomness ξ

(i)
u each time. Then, only the first element in the series, (ξ(1)

u , ρ⃗)
grants the user with an output from the Analyst.

The proof for Theorem 7 can be found in section B in the appendix of our full version [18].
Note that the binding proof πξ uses as input the serial numbers {sni}m

i=1 and ensures that the
input seeds for the serial numbers ρ⃗ are the same as the input seeds for ν1 and ν2, therefore
a user cannot pick ν′

1 for which ν′
1 ̸= PRF1(ρ⃗) in BindRandomness and then spend tokens

corresponding to {sni}m
i=1.

4.4.2 Preserving User Privacy
We show that our scheme does not degrade the privacy of the underlying transfer scheme
which is used in a black box manner.

▶ Theorem 8 (preserving privacy). Let U be an honest user that completed a VDPtransfer
preceded by interacting with the analyst via BindRandomness. Once the transfer completes,
the analyst’s guess about which user sent the VDPtransfer or interacted via BindRandomness
is the same as it was before.

In section B in the appendix of our full version [18], our proof for the theorem shows
that the zero-knowledge proofs used in our scheme are simulatable, and hence anything
computable by the analyst after observing them could have been computed before observing
them.

5 Evaluation and Implementation

We implement our scheme in ∼ 500 lines of Go using the Gnark ZK-SNARK library [8]. Our
implementation is available publicly in [17]. We use the Groth16 [27] scheme instantiated
with the BN-254 curve as it is the most efficient according to the evaluation of [21].

Our choices of public key encryption, digital signatures, commitment schemes, and
Pseudo-Random Functions were influenced by efficiency considerations, particularly the cost
of operations in arithmetic circuits over a finite field that is the order of the BN-254 curve.

We use the MiMC [1] hash function for the Pseudo-Random Function and the commitment
scheme. Although it gives only computational hiding and not information-theoretic hiding
such as the Pedersen [39] commitment, it is cheaper because of the smaller10 number of
constraints.

For Public Key Encryption and digital signatures, we use Elgamal and edDSA, respectively,
over a curve tailored to be efficient for ZK-SNARKs as it is defined over a field whose order [9]
is the order of the BN-254 curve.

10 Scalar multiplication in Elliptic Curves has logarithmic complexity.

AFT 2023

1:18 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Table 1 Performance of πξ proof. Times are in
milliseconds.

Inputs Constraints Setup Proof Ver
1 9769 725 99 0.944
2 12678 889 113 0.959
4 18496 1417 164 0.971
8 30132 2064 216 1
16 53404 3741 364 1.04

Table 2 Performance of πδ proof. Times are in
milliseconds.

Inputs Constraints Setup Proof Ver
1 12882 869 103 0.93
2 13155 879 104 0.935
4 13701 907 107 0.941
8 14793 966 114 0.951
16 16977 1288 157 0.961

(a) πξ Proof. (b) πδ Proof.

Figure 3 Performance Evaluation of both proofs as a function of the number of unspent inputs
used in each transaction.

We investigate the overhead of using our scheme in conjunction with a privacy-preserving
asset transfer by evaluating the time our proofs require.

We benchmark on a c5a.2xlarge AWS machine equipped with 8 vCPUs and 16GB RAM.
We evaluate the performance of both our proofs (πξ, πδ) by running 100 independent trials
and computing the number of constraints, averages for setup time, proof time, and verification
time for different numbers of input tokens. The results are depicted in Table 1 and Table 2
for πξ and πδ respectively.

As seen from the performance evaluation results shown in Figure 3, our scheme has a
practical execution time. Moreover, the number of inputs adds a negligible increase to the
verification time, and has a small magnitude on the proof generation time. Additionally,
as the verification time is very short (totaling less than 2ms for all input counts up to 16
inputs), we conclude that the additional computations and data that we added with our
VDPtransfer transaction do not add much overhead to the original underlying transfer.

6 Discussion

6.1 The LDP Mechanism

Embedding any local differential privacy mechanism, especially a verifiable one, into a privacy-
preserving transaction system, is a significant challenge. This is due to the need to maintain
user privacy and prevent the unintentional leakage of information during data disclosure.
For instance, applying the well-known Laplace mechanism [23] to render transaction values
differentially private is ineffective when dealing with outliers, such as exceptionally high
transaction values [40]. Merely adding noise following a Laplace distribution would not
sufficiently conceal these extreme values, thereby compromising the privacy of the user

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:19

involved in such a transaction. This approach, thus, does not align with our context. Given
these observations, our focus has shifted to data requests that necessitate binary responses,
which are inherently less susceptible to outlier effects.

For our local differential privacy mechanism, we utilized the randomized response tech-
nique [24]. We chose this mechanism for several reasons. Firstly, the randomized response
method is based on simple probabilities, making it relatively straightforward to understand
and analyze [44]. This characteristic is crucial when deploying the mechanism in a distrib-
uted, trustless environment. Secondly, the randomized response is well-suited for handling
discrete values, aligning with our scheme’s binary attribute. Lastly, the randomized response
technique is suitable for local differential privacy and demonstrates strong accuracy and
low error bounds, particularly when applied to many users [7]. These attributes make it
applicable and well-suited to address the threat models specific to our research.

The challenge in a privacy-preserving transaction system was achieving verifiable ran-
domness without revealing the user’s identity. To the best of our knowledge, our approach
is pioneering in addressing this issue. We devised a non-interactive method that employs
two serial numbers for verification. While the user generates these serial numbers, the data
analyst cannot link specific randomness to a particular transaction due to the unique creation
and utilization of these numbers. Specifically, the first serial number is exclusively generated
and applied during the randomness acquisition, and the second is solely utilized during the
transfer as a component of the zk-SNARK proof, as detailed in Section 4.

6.2 The Zero-Knowledge Proof Scheme
Our approach uses the ZK-SNARK scheme of Groth16 [27], necessitating a trusted setup.
A Zero-Knowledge proof system with a trusted setup stipulates that the randomness used
during the setup process must be discarded to prevent misuse. If this randomness were to
leak, any party possessing it could generate a deceptive proof. Contrarily, in a transparent
setup, the randomness is publicly accessible and known to all parties, including the verifier,
eliminating the need for an external trusted setup phase. Although it may seem that the
transparent setup might be superior, in our specific context, a trusted setup aligns perfectly
with our adversarial model, negating the need for a proof scheme incorporating a transparent
setup.

The trusted setup is viable for us since our model consists of a single analyst and multiple
(potentially infinite) users, where the analyst solely serves as a verifier, and the users operate
as provers. Therefore, the analyst can generate the trusted setup since there is no other party
that has to verify the proof generated by the analyst. Furthermore, since the data a user
sends comprises cryptographic commitments, the analyst cannot derive any information from
what a user sends, even if the randomness used during the trusted setup was not discarded.

6.3 Incentivising Conformation by Design
Our scheme has two phases: (a) obtaining randomness; (b) using it in a transaction. When
obtaining the randomness to be later used in a transaction, the randomness is only bound to
the unspent outputs that the user wishes to spend in the future. Consequently, if the user
decides to use an unspent output for a transaction to some recipient, they may change their
mind about the recipient but not about the (unspent) input tokens.

At first glance, it may seem like a dishonest user may want to deliberately skew the
analyst’s statistics by consistently selecting noise that hides their data. Such a dishonest
user may obtain randomness for an unspent output, compute the corresponding noise, and if

AFT 2023

1:20 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

the noise is “bad”, they have three strategies: (i) Throw away the randomness and never use
it; (ii) Use the randomness by sending its corresponding unspent outputs back to themselves
and then repeating the process by obtaining new randomness; (iii) Trying to manipulate the
randomness by requesting new randomness corresponding to different subsets of unspent
outputs.

Discarding the randomness, as suggested in strategy (i), also means discarding the
funds associated with the unspent outputs used to generate the randomness, which incurs a
significant cost. Hence, there is an incentive for a dishonest user not to do so.

Surprisingly, using randomness by sending the unspent outputs back to the user, as
suggested in strategy (ii), does not affect the analyst, as the analyst cannot differentiate
between a transfer to the same user and a transfer to a different user in the first place. In
other words, the analyst’s aggregated statistics stay the same whether dishonest users pick
this strategy or not.

This leaves us with the dishonest user’s last strategy (i.e., strategy (iii)), binding various
combinations of unspent outputs with the same total sum for one of the combinations to yield
noise that hides the user’s data. In our implementation, the user cannot simply reorder the
set of unspent inputs and request a new randomness since, as part of the πξ proof, the user
proves that the random seeds of the unspent inputs are sorted in ascending order. Therefore,
the only reason strategy (iii) is possible is that in our implementation, BindRandomness
computes ν1 as a PRF on a vector ω = (ρ1, ρ2, ..., ρm). Indeed, if the user has unspent
outputs corresponding to {ρ1, ρ2, ..., ρl} such that l > m, it has

(
l

m

)
independent attempts

of obtaining a randomness it desires. However, such a strategy can be easily mitigated by
defining ν1 as a vector instead of a single value. Specifically, if in BindRandomness the user
sends: ν⃗1 = (PRF1(ρ1), PRF1(ρ2), ..., PRF1(ρm)) and the analyst checks ν1,i /∈ ACC for
every ν1,i ∈ ν⃗1. This strategy becomes equivalent to the aforementioned strategy (i). We
note that defining ν1 as a vector instead of a single value also eliminates the need for the set
of unspent inputs to be in ascending order.

7 Conclusions

In this work, we describe the VDP transaction scheme that fits the needs of digital payment
systems that require built-in governance and regulations such as CBDCs. The scheme
combines privacy-preserving transactions with statistical insights gathering without harming
privacy. Since the VDP transaction scheme expands the functionality of any given privacy-
preserving transaction system, it can uphold privacy guarantees towards the users. At the
same time, since the VDP transaction scheme incorporates a mechanism for verifiable LDP,
it can provide users with plausible deniability and prevent bias in users’ responses, thus
maintaining the integrity of the statistical insights. To achieve verifiability, we adapt the
implementation of the random response mechanism; We replace the randomness used in the
original random response with a jointly generated randomness and add zk-SNARK proofs.
Furthermore, we prove that our scheme can preserve user privacy and statistical insight
integrity even if one of the main participants (i.e., the user or the analyst) is malicious.

References

1 Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. Crypto-
logy ePrint Archive, Paper 2016/492, 2016. URL: https://eprint.iacr.org/2016/492.

https://eprint.iacr.org/2016/492

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:21

2 Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. Cryptographic randomized response
techniques. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography
- PKC 2004, 7th International Workshop on Theory and Practice in Public Key Cryptography,
Singapore, March 1-4, 2004, volume 2947 of Lecture Notes in Computer Science, pages 425–438.
Springer, 2004. doi:10.1007/978-3-540-24632-9_31.

3 Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar Elkhiyaoui,
and Björn Tackmann. Privacy-preserving auditable token payments in a permissioned
blockchain system. In AFT ’20: 2nd ACM Conference on Advances in Financial Tech-
nologies, New York, NY, USA, October 21-23, 2020, pages 255–267. ACM, 2020. doi:
10.1145/3419614.3423259.

4 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 459–474. IEEE Computer Society, 2014. doi:10.1109/SP.2014.36.

5 Alex Biryukov and Sergei Tikhomirov. Deanonymization and linkability of cryptocurrency
transactions based on network analysis. In 2019 IEEE European symposium on security and
privacy (EuroS&P), pages 172–184. IEEE, 2019.

6 Ari Biswas and Graham Cormode. Verifiable differential privacy for when the curious become
dishonest, 2022. arXiv:2208.09011.

7 Graeme Blair, Kosuke Imai, and Yang-Yang Zhou. Design and analysis of the randomized
response technique. Journal of the American Statistical Association, 110(511):1304–1319, 2015.

8 Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. Con-
sensys/gnark: v0.6.4, February 2022. doi:10.5281/zenodo.6093969.

9 Reinier Broker. Constructing elliptic curves of prescribed order. Leiden University, June 2006.
Retrieved from https://hdl.handle.net/1887/4425.

10 Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy
in a smart contract world. In International Conference on Financial Cryptography and Data
Security, pages 423–443. Springer, 2020.

11 Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks to local differential
privacy protocols. CoRR, abs/1911.02046, 2019. arXiv:1911.02046.

12 Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks to local differential
privacy protocols. In 30th USENIX Security Symposium (USENIX Security 21), pages 947–964,
2021.

13 Albert Cheu, Adam Smith, and Jonathan Ullman. Manipulation attacks in local differential
privacy. In 2021 IEEE Symposium on Security and Privacy (SP), pages 883–900. IEEE, 2021.

14 Albert Cheu, Adam D. Smith, and Jonathan R. Ullman. Manipulation attacks in local
differential privacy. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 883–900. IEEE, 2021. doi:10.1109/SP40001.2021.00001.

15 Christian Covington, Xi He, James Honaker, and Gautam Kamath. Unbiased statistical estim-
ation and valid confidence intervals under differential privacy. arXiv preprint arXiv:2110.14465,
2021.

16 Ana-Maria Creţu, Federico Monti, Stefano Marrone, Xiaowen Dong, Michael Bronstein, and
Yves-Alexandre de Montjoye. Interaction data are identifiable even across long periods of time.
Nature Communications, 13(1):313, 2022.

17 Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. ZKAT-VDP: Zero-Knowledge
Asset Transfer - Verifiable Differential Privacy, 2022. URL: https://github.com/yacovm/
ZKAT-VDP.

18 Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. Privacy-preserving payment
system with verifiable local differential privacy (full version). Cryptology ePrint Archive,
Paper 2023/126, 2023. URL: https://eprint.iacr.org/2023/126.

AFT 2023

https://doi.org/10.1007/978-3-540-24632-9_31
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1109/SP.2014.36
https://arxiv.org/abs/2208.09011
https://doi.org/10.5281/zenodo.6093969
https://hdl.handle.net/1887/4425
https://arxiv.org/abs/1911.02046
https://doi.org/10.1109/SP40001.2021.00001
https://github.com/yacovm/ZKAT-VDP
https://github.com/yacovm/ZKAT-VDP
https://eprint.iacr.org/2023/126

1:22 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

19 Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh, and Alex “Sandy” Pentland.
Unique in the shopping mall: On the reidentifiability of credit card metadata. Science,
347(6221):536–539, 2015.

20 Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad. Twilight: A differentially private
payment channel network. In 31st USENIX Security Symposium (USENIX Security 22), pages
555–570, 2022.

21 Guillaume Drevon and Aleksander Kampa. Benchmarking zero-knowledge proofs with isekai,
2019. URL: https://sikoba.com/docs/SKOR_isekai_benchmarking_201912.pdf.

22 Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

23 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensit-
ivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography,
pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

24 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

25 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014.

26 Stephen H Fuller and Ariel Markelevich. Should accountants care about blockchain? Journal
of Corporate Accounting & Finance, 31(2):34–46, 2020.

27 Jens Groth. On the size of pairing-based non-interactive arguments. IACR Cryptol. ePrint
Arch., page 260, 2016. URL: http://eprint.iacr.org/2016/260.

28 Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang. Blockmaze: An ef-
ficient privacy-preserving account-model blockchain based on zk-snarks. IEEE Transactions on
Dependable and Secure Computing, 19(3):1446–1463, 2022. doi:10.1109/TDSC.2020.3025129.

29 Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Differential privacy in
blockchain technology: A futuristic approach. Journal of Parallel and Distributed Computing,
145:50–74, 2020.

30 Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Anomaly detection in
blockchain networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
2022.

31 Wael Issa, Nour Moustafa, Benjamin Turnbull, Nasrin Sohrabi, and Zahir Tari. Blockchain-
based federated learning for securing internet of things: A comprehensive survey. ACM
Computing Surveys, 55(9):1–43, 2023.

32 Bin Jia, Xiaosong Zhang, Jiewen Liu, Yang Zhang, Ke Huang, and Yongquan Liang. Blockchain-
enabled federated learning data protection aggregation scheme with differential privacy and
homomorphic encryption in iiot. IEEE Transactions on Industrial Informatics, 18(6):4049–4058,
2021.

33 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local differential
privacy. Advances in neural information processing systems, 27, 2014.

34 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

35 Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. Preventing manipulation attack in
local differential privacy using verifiable randomization mechanism. In Ken Barker and
Kambiz Ghazinour, editors, Data and Applications Security and Privacy XXXV - 35th Annual
IFIP WG 11.3 Conference, DBSec 2021, Calgary, Canada, July 19-20, 2021, Proceedings,
volume 12840 of Lecture Notes in Computer Science, pages 43–60. Springer, 2021. doi:
10.1007/978-3-030-81242-3_3.

36 Gonzalo Munilla Garrido, Johannes Sedlmeir, and Matthias Babel. Towards verifiable
differentially-private polling. In Proceedings of the 17th International Conference on Availability,
Reliability and Security, pages 1–11, 2022.

https://sikoba.com/docs/SKOR_isekai_benchmarking_201912.pdf
http://eprint.iacr.org/2016/260
https://doi.org/10.1109/TDSC.2020.3025129
https://doi.org/10.1007/978-3-030-81242-3_3
https://doi.org/10.1007/978-3-030-81242-3_3

D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:23

37 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. URL: https:
//bitcoin.org/bitcoin.pdf.

38 Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen. Verifiable
differential privacy. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2741948.2741978.

39 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

40 Rathindra Sarathy and Krishnamurty Muralidhar. Evaluating laplace noise addition to satisfy
differential privacy for numeric data. Trans. Data Priv., 4(1):1–17, 2011.

41 Georgia Tsaloli and Aikaterini Mitrokotsa. Differential privacy meets verifiable computation:
Achieving strong privacy and integrity guarantees. In Mohammad S. Obaidat and Pierangela
Samarati, editors, Proceedings of the 16th International Joint Conference on e-Business and
Telecommunications, ICETE 2019 - Volume 2: SECRYPT, Prague, Czech Republic, July
26-28, 2019, pages 425–430. SciTePress, 2019. doi:10.5220/0007919404250430.

42 Nicolas Van Saberhagen. Cryptonote v 2.0, 2013. Retrieved from https://github.com/
monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf.

43 Yu Wang, Gaopeng Gou, Chang Liu, Mingxin Cui, Zhen Li, and Gang Xiong. Survey of
security supervision on blockchain from the perspective of technology. Journal of Information
Security and Applications, 60:102859, 2021.

44 Yue Wang, Xintao Wu, and Donghui Hu. Using randomized response for differential privacy
preserving data collection. In EDBT/ICDT Workshops, volume 1558, pages 0090–6778, 2016.

45 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

46 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

AFT 2023

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.5220/0007919404250430
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf

	1 Introduction
	1.1 Motivation
	1.2 Verifiable Differentially Private Transactions
	1.3 Related Work
	1.3.1 Central Differential Privacy
	1.3.2 Local Differential Privacy Mechanisms

	2 Preliminaries
	2.1 Blockchain-Based Privacy-Preserving Transactions
	2.2 Differential Privacy
	2.3 Randomized Response
	2.4 Basic Cryptographic Building Blocks
	2.4.1 Commitment Schemes
	2.4.2 Digital Signatures
	2.4.3 Public Key Encryption

	2.5 Zero-Knowledge Proofs

	3 Overview of the VDP Transaction Scheme
	3.1 Participants
	3.2 Threat Model
	3.3 Components
	3.4 VDP Transaction Flow

	4 The VDP Transaction Scheme
	4.1 The {BindRandomness} Protocol
	4.2 The {VerRR} Mechanism
	4.3 The VDP Transfer
	4.3.1 The Binding Proof
	4.3.2 The Encrypted VDP Proof

	4.4 Security Analysis
	4.4.1 Preserving Integrity
	4.4.2 Preserving User Privacy

	5 Evaluation and Implementation
	6 Discussion
	6.1 The LDP Mechanism
	6.2 The Zero-Knowledge Proof Scheme
	6.3 Incentivising Conformation by Design

	7 Conclusions

