
Proofs of Proof-Of-Stake with Sublinear
Complexity
Shresth Agrawal #

Technische Universität München, Germany

Joachim Neu #

Stanford University, CA, USA

Ertem Nusret Tas #

Stanford University, CA, USA

Dionysis Zindros #

Stanford University, CA, USA

Abstract
Popular Ethereum wallets (like MetaMask) entrust centralized infrastructure providers (e.g., Infura)
to run the consensus client logic on their behalf. As a result, these wallets are light-weight and
high-performant, but come with security risks. A malicious provider can mislead the wallet by faking
payments and balances, or censoring transactions. On the other hand, light clients, which are not in
popular use today, allow decentralization, but are concretely inefficient, often with asymptotically
linear bootstrapping complexity. This poses a dilemma between decentralization and performance.

We design, implement, and evaluate a new proof-of-stake (PoS) superlight client with concretely
efficient and asymptotically logarithmic bootstrapping complexity. Our proofs of proof-of-stake
(PoPoS) take the form of a Merkle tree of PoS epochs. The verifier enrolls the provers in a bisection
game, in which honest provers are destined to win once an adversarial Merkle tree is challenged
at sufficient depth. We provide an implementation for mainnet Ethereum: compared to the state-
of-the-art light client construction of Ethereum, our client improves time-to-completion by 9×,
communication by 180×, and energy usage by 30× (when bootstrapping after 10 years of consensus
execution). As an important additional application, our construction can be used to realize trustless
cross-chain bridges, in which the superlight client runs within a smart contract and takes the role of
an on-chain verifier. We prove our construction is secure and show how to employ it for other PoS
systems such as Cardano (with fully adaptive adversary), Algorand, and Snow White.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Proof-of-stake, blockchain, light client, superlight, bridge, Ethereum

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.14

Related Version Full Version: https://eprint.iacr.org/2022/1642

Supplementary Material Software: https://github.com/lightclients/poc-superlight-client/
tree/master, archived at swh:1:dir:0108d316b0418717635ba996b1f6bbcff8fe5b94

Funding Joachim Neu: Supported by the Protocol Labs PhD Fellowship.
Ertem Nusret Tas: Supported by the Stanford Center for Blockchain Research.
Dionysis Zindros: Supported in part by funding from Harmony.

Acknowledgements The authors thank Kostis Karantias for the helpful discussions on bisection
games, and Daniel Marin for reading early versions of this paper and providing suggestions. The
work of JN was conducted in part while at Paradigm. The work of SA was conducted in part while
at Common Prefix.

© Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.agrawal@tum.de
https://orcid.org/0000-0002-7914-5979
mailto:jneu@stanford.edu
https://orcid.org/0000-0002-9777-6168
mailto:nusret@stanford.edu
https://orcid.org/0000-0001-6061-9700
mailto:dionyziz@stanford.edu
https://orcid.org/0000-0002-1978-594X
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://eprint.iacr.org/2022/1642
https://github.com/lightclients/poc-superlight-client/tree/master
https://github.com/lightclients/poc-superlight-client/tree/master
https://archive.softwareheritage.org/swh:1:dir:0108d316b0418717635ba996b1f6bbcff8fe5b94;origin=https://github.com/lightclients/poc-superlight-client;visit=swh:1:snp:70f576bb0c823bd62ef3974f333df092e44de9b8;anchor=swh:1:rev:c8d3adb65d47be0138daab2166ba90c34feca326
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Proofs of Proof-Of-Stake with Sublinear Complexity

1 Introduction

If I want to check how much money I have on Ethereum, the most secure way is to run my
own full node. Sadly, this requires downloading more than 500 GB of data and can take
up to 5 days to sync. Because of this, most Ethereum users today outsource the task of
maintaining the latest state to a third-party provider such as Infura or Alchemy. This allows
the user to run a lightweight wallet, such as MetaMask1, on their browser or smartphone.

What can go wrong if Infura is compromised or turns malicious? As per the current wallet
design, the wallet will blindly trust the provider and therefore show incorrect data. This is
enough to perform a double spend. For example, imagine Bob wants to sell his car to Eve.
Regrettably, Eve has compromised Infura. Eve claims that she has paid Bob. Bob checks his
MetaMask wallet and sees an incoming and confirmed transaction from Eve. Unfortunately,
even though the wallet is non-custodial, this transaction never happened, but is fraudulently
reported by Infura to Bob. Since Bob trusts his wallet, and his wallet trusts Infura, he hands
over the car keys to Eve. By the time Bob realizes he cannot use this money, Eve has long
disappeared with his car in Venice. From the point of view of Infura, this is a huge liability.
If Infura is compromised, then all of its users are immediately compromised.

This creates a dilemma between good performance and security for the users. This
problem is not unique to Ethereum and appears in all proof-of-stake (PoS) systems. In this
paper, we resolve this dilemma by constructing a PoS blockchain client which is both efficient
and secure. We solve this problem by constructing a protocol that allows efficiently verifying
the proof-of-stake blockchain without downloading the whole PoS. We call such constructions
succinct proofs of proof-of-stake. These allow us to build superlight clients, clients whose
communication complexity grows sublinearly with the lifetime of the system.

Contributions.
1. We give the first formal definition for succinct proof of proof-of-stake (PoPoS) protocols.
2. We put forth a solution to the long-standing problem of efficient PoS bootstrapping. Our

solution is exponentially better than previous work.
3. We report on our implementation of a fully functional and highly performant superlight

client for mainnet Ethereum. It is the first such construction for Ethereum. We measure
and contrast the performance of our client against the currently proposed design for
Ethereum.

4. We theoretically show our construction is secure for Ethereum and other PoS blockchains.

1.1 Construction Overview
Let us discuss the intuition about how our construction works. We start with the existing
full node design and iteratively make it more lightweight.

Full nodes. A full node client boots holding only the genesis block and connects to other full
nodes (known as provers) in order to synchronize to the latest tip. The full node downloads
the entire chain block-by-block verifying each transaction in the process. This incurs high
communication and computational complexity. Once the client verifies the latest tip, it has

1 MetaMask has 21,000,000 monthly active users as of July 2022 [48] and is the most popular non-custodial
wallet [16].

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:3

calculated the latest state and can answer user queries such as “what is my balance?”. In
order for the full node to get to the correct tip, at least one connection to an honest peer is
required (this is known as the existential honesty assumption [26, 25, 27, 44]).

Sync committees. Let’s try to improve on the efficiency of the full node to make it a light
client. PoS protocols typically proceed in epochs during which the validator set is fixed. In
each epoch, a subset of validators is elected by the protocol as the epoch committee. This is
a set of public keys. The security of the protocol assumes that the majority [17, 39, 19, 3] or
super-majority [9, 13, 5, 51] of the committee members are honest during the epoch. The
current committee signs the latest state. Therefore, the client does not need to download all
the blocks, but instead only needs to download the latest state and verify the committee
signatures on it. However, the stake changes hands in every epoch. Hence, to perform the
verification at some later epoch, the client needs to keep track of the current committee. To
help the client in this endeavor, the committee members of each epoch, while active, sign a
handover message inaugurating the members of the new committee [28]. This enables the
light client to discover the latest committee by processing a sequence of such handovers.

Optimistic light client construction. Light clients like these already exist. Regrettably,
they still need to download all committees of the past to verify the current state. In this
paper we propose better solutions. The first idea, which we call the optimistic light client
construction, is for the prover to work as follows: For each committee, take its members,
concatenate them all together, and hash them into one hash. The prover then sends this
sequence of hashes (one for each committee) to the client. Since the client is connected to
at least one honest prover, at least one of these provers will answer truthfully. If multiple
provers give conflicting claims to the client, all it needs to do is to find which one is truthful.
To do this, it compares the claims of all provers pairwise. If two provers disagree, the client
focuses on the first point of disagreement in their hash sequences, and asks each prover to
provide the respective handover signatures to substantiate their claim. Each prover reveals
the committee attested by the hash at that point, the previous committee and the associated
handover messages. Upon validating these messages, which can be done locally and efficiently,
the client identifies the truthful party, and accepts its state. A lying prover will not be able
to provide such a handover for an invalid committee. Once the client rejects the invalid
committee claims, it will have calculated the latest committee, and can proceed from there
as usual.

Superlight clients. Even though the complexity is concretely improved, the sequence of
committee hashes still grows linearly with the lifetime of the protocol. To achieve sublinear
complexity, we improve the procedure to find the first point of disagreement. To this end,
our final PoPoS protocol requires each prover to organize its claimed sequence of committees
– one per epoch – into a Merkle tree [43]. The roots of those trees are then sent over to the
client, who compares them. Upon detecting disagreement at the roots, the client asks the
provers to reveal the children of their respective roots. By repeating this process recursively
on the mismatching children, it arrives at the first point of disagreement between the claimed
committee sequences, in logarithmic number of steps. After the first point of disagreement
is found, the client works similarly to the optimistic light client construction. This process
achieves logarithmic communication.

AFT 2023

14:4 Proofs of Proof-Of-Stake with Sublinear Complexity

Bridges. Our PoPoS construction has two main applications: Superlight proof-of-stake
clients that can bootstrap very efficiently, and trustless bridges that allow the passing of
information from one proof-of-stake chain to another. For bridging, we note that a trustless
bridge is nothing more than an on-chain superlight client. It connects a source PoS blockchain
to any other destination blockchain. To do this, a smart contract on the destination chain,
which runs an implementation of our superlight client code (e.g., in Solidity), is deployed.
Whenever some information of interest appears on the source chain, any helpful but untrusted
relayer can submit this information, together with the PoPoS proof to the smart contract. If
the information is inaccurate, another relayer challenges the first one by participating in our
interactive bisection game within a dispute period [40], submitting one transaction for every
round of interaction of the PoPoS protocol. If both chains are PoS, the bridge can be made
bidirectional by running PoPoS superlight clients on both chains. To incentivize on-chain
participation, relayers who submit accurate information are rewarded, whereas relayers who
submit inaccurate information need to put up a collateral which is slashed and is used to
reward the challenger.

1.2 Implementation Overview
In addition to our theoretical contributions, we report on our open source implementation
(spanning about 8,200 lines of TypeScript code and 2,300 downloads from the community) of
our protocol for the Ethereum mainnet. Our implementation is fully functional and supports
all RPC queries used by typical wallets, from simple payments to complex smart contract
calls. It takes the form of a modular daemon that augments any existing Ethereum wallet’s
functionality (such as MetaMask’s) to be trustless, without changing any user experience.
We perform measurements using the light client protocol currently proposed for Ethereum.
We find that this protocol, while much more efficient than a full node, is likely insufficient to
support communication-, computation-, and battery-constrained devices such as browsers and
mobile phones. Next, we measure the performance of our implementation of an optimistic
light client for Ethereum that achieves significant gains over the traditional light client.
We demonstrate this implementation is already feasible for resource-constrained devices.
Lastly, our implementation includes a series of experiments introducing a superlight client for
Ethereum that achieves exponential asymptotic gains over the optimistic light client. These
gains constitute concrete improvements over the optimistic light client when the blockchain
system is long-lived and has an execution history of a few years. We compare all three clients
in terms of communication (bandwidth and latency), computation, and energy consumption.

1.3 Related Work
Table 1 compares the current paper with related work. Proof-of-work superlight clients
have been explored in the interactive [35] and non-interactive [37] setting using various
constructions [36, 32, 6]. Such constructions are backwards compatible [53, 38] and have been
deployed in practice [18]. They have also been used in the context of bridges [33, 2, 40, 52].
Several proof-of-stake-specific clients [28, 14, 22] improve the efficiency of full nodes, but
require linear communication. Chatzigiannis et al. [15] provide a survey of light clients.

Our construction is based on refereed proofs [12, 30, 31, 46]. PoPoS constructions can also
be built via (recursive) SNARKs/STARKs [4, 24], some achieving constant communication.
However, these are clients for chains that were designed from the start to be proof-friendly.
Current attempts [50, 45] to retrofit popular PoS protocols (e.g., Ethereum and Cosmos)
with SNARK-based proofs are expensive (annual prover operating-cost of six to seven figures

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:5

Table 1 Comparison with previous works in terms of asymptotic Θ̃ communication complexity,
interactivity, and cryptographic model. Interactivity is the number of rounds, ignoring constants.
Low communication and rounds of interactivity are preferable. N : number of epochs. L: number of
blocks per epoch. Common prefix parameter k is constant.

SPV
PoW
[26]

KLS
[35]

FlyClient
[6]

Superblocks
[37, 36]

Full
PoS
[39]

Mithril
[14]

Coda
[4]

PoPoS
(this work)

Communication NL log(NL) poly log(NL) log(NL) NL N + L 1 log(N)
Interactivity 1 log(NL) 1 1 1 1 1 log(N)
Work/stake work work work work stake stake both stake
Model RO RO RO RO standard RO CRS standard
Primitives hash hash hash hash hash, sig hash,

sig, ZK
hash,

sig, ZK
hash, sig

USD).2 Additionally, since [50, 45] do not include recursive proving/verification, they require
the validator to remain online (to avoid linear overhead), which may be a suitable assumption
for bridges, but not for bootstrapping light clients (e.g., intermittently online mobile wallets).
Unlike proof-based approaches, our protocol does not require changes in the PoS protocol,
and relies on simple primitives such as hashes and signatures. Our prover is stateless and
adds only a few milliseconds of computation time to an existing full node. Our light client
allows for bootstrapping from genesis with sublinear overhead.

Some clients obtain a checkpoint [41, 8] on a recent block from a trusted source, after
which they download only a constant number of block headers to identify the tip. Our
construction allows augmenting these clients so that they can succinctly verify the veracity
of a checkpoint without relying on a trusted third party.

1.4 Outline
We present our theoretical protocol in a generic PoS framework, which typical proof-of-stake
systems fit into. We prove our protocol is secure if the underlying blockchain protocol satisfies
certain simple and straightforward axioms. Many popular PoS blockchains can be made to fit
within our axiomatic framework. We define our desired primitive, the proof of proof-of-stake
(PoPoS), together with the axioms required from the underlying PoS protocol in Sec. 3. We
iteratively build and present our construction in Secs. 4 and 5. We present the security claims
in Sec. 8. For concreteness, and because it is the most prominent PoS protocol, we give a
concrete construction of our protocol for Ethereum in Sec. 6. Ethereum is the most widely
adopted PoS protocol. Interestingly, Ethereum directly satisfies our axiomatic framework
and does not require any changes on the consensus layer at all. The applicability of our
framework to other PoS chains such as Ouroboros (Cardano), Algorand, and Snow White
are discussed in the full version of this paper [1].

The description of our implementation and the relevant experimental measurements
showcasing the advantages of our implementation are presented in Sec. 7.

2 For example, according to [50, Section 6], proving consensus (of 128 validators) on one Cosmos block
takes 18 seconds on 32 instances of Amazon AWS c5.24xlarge. (We are unable to independently
reproduce this finding because the authors of zkBridge have not disclosed their code.) At Cosmos’
block rate of 1 block per second, that would require 18 × 32 continuously operating c5.24xlarge
instances, costing annually $12,967,488 on Amazon AWS (annual pricing, us-east-1 region, June 2023),
or $1,749,600 on Hetzner’s equivalents. Scaling this proportionally for Ethereum (×4 for sync committee
size 512, /12 for block rate 1 block per 12 seconds) yields an estimate of $583,333 annually.

AFT 2023

14:6 Proofs of Proof-Of-Stake with Sublinear Complexity

2 Preliminaries

Proof-of-stake. Our protocols work in the proof-of-stake (PoS) setting. In a PoS protocol,
participants transfer value and maintain a balance sheet of stake, or who owns what, among
each other. It is assumed that the majority of stake is honestly controlled at every point
in time. The PoS protocol uses the current stake distribution to establish consensus. The
exact mechanism by which consensus is reached varies by PoS protocol. Our PoPoS protocol
works for popular PoS flavours.

Primitives. Participants in our PoS protocol transfer stake by signing transactions using a
signature scheme [34]. The public key associated with each validator is known by everyone.
The signatures are key-evolving, and honest validators delete their old keys after signing [29,
19].3 We also use a collision resistant hash function. We highlight that it does not need to
be treated in the Random Oracle model, and no trusted setup is required for our protocol
(beyond what the underlying PoS protocol may need).

Types of nodes. The stakeholders who participate in maintaining the system’s consensus
are known as validators. In addition to those, other parties, who do not participate in
maintaining consensus, can join the system, download its full history, and discover its current
state. These are known as full nodes. Clients that are interested in joining the system and
learning a small part of the system state (such as their user’s balance) without downloading
everything are known as light clients. Both full nodes and light clients can join the system
at a later time, after it has already been executing for some duration |C|. A late-joining
light client or full node must bootstrap by downloading some data from its peers. The
amount of data the light client downloads to complete the bootstrapping process is known
as its communication complexity. A light client is succinct if its communication complexity
is O(poly log(|C|)) in the lifetime |C| of the system. Succinct light clients are also called
superlight clients. The goal of this paper is to develop a PoS superlight client.

Time. The protocol execution proceeds in discrete epochs, roughly corresponding to mod-
erate time intervals such as one day. Epochs are further subdivided into rounds, which
correspond to shorter time durations during which a message sent by one honest party is
received by all others. In our analysis, we assume synchronous communication. The validator
set stays fixed during an epoch, and it is known one epoch in advance. The validator set of
an epoch is determined by the snapshot of stake distribution at the beginning of the previous
epoch. To guarantee an honest majority of validators at any epoch, we assume a delayed
honest majority for a duration of two epochs: Specifically, if a snapshot of the current stake
distribution is taken at the beginning of an epoch, this snapshot satisfies the honest majority
assumption for a duration of two full epochs. Additionally, we assume that the adversary
is slowly adaptive: She can corrupt any honest party, while respecting the honest majority
assumption, but that corruption only takes place two epochs later. This assumption will
be critical in our construction of handover messages that allow members of one epoch to
inaugurate a committee representing the next epoch (cf. Sec. 4).

3 Instead of key-evolving signatures, Ethereum relies on a concept called weak subjectivity [8]. This
alternative assumption can also be used in the place of key-evolving signatures to prevent posterior
corruption attacks [20].

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:7

The prover/verifier model. The bootstrapping process begins with a light client connecting
to its full node peers to begin synchronizing. During the synchronization process, the full
nodes are trying to convince the light client of the system’s state. In this context, the light
client is known as the verifier and the full nodes are known as the provers. As usual, we
assume the verifier is connected to at least one honest prover. The verifier queries the provers
about the state of the system, and can exchange multiple messages to interrogate them about
the truth of their claims during an interactive protocol.

Assumptions. We make two central assumptions: Firstly, that the light client can commu-
nicate interactively with full nodes. This is contrary to, for example, proof-based clients.
Interactivity incurs a penalty when our light client runs on-chain, because it requires receiving
data over the course of multiple transactions. This is expensive in gas and time consuming
in delays. Secondly, that the light client has at least one honest connection. Many protocols
assume this. For example, a Bitcoin full node is not secure if all connections are dishonest.
In current systems, such as Ethereum, light clients typically connect to RPC nodes instead
of full nodes. It is better to trust at least one among many RPC connections is honest (as
opposed to having a single RPC connection), but one may still become eclipsed. To resolve
this concern, we advocate for light clients to connect to full nodes directly, which would make
this assumption more reasonable. Due to these two assumptions, we caution the reader to
be aware of the current limitations of our work, understanding it is not always applicable.

Notation. We use ϵ and [] to mean the empty string and empty sequence. By x ∥ y, we mean
the string concatenation of x and y encoded in a way that x and y can be unambiguously
retrieved. We denote by |C| the length of the sequence C; by C[i] the ith (zero-based) element
of the sequence, and by C[−i] the ith element from the end. We use C[i:j] to mean the
subarray of C from the ith element (inclusive) to the jth element (exclusive). Omitting i

takes the sequence to the beginning, and omitting j takes the sequence to the end. We
write A ≼ B to mean that the sequence A is a prefix of B. We use λ to denote the security
parameter. Following Go notation, in our multi-party algorithms, we use m 99K A to indicate
that message m is sent to party A and m L99 A to indicate that message m is received from
party A.

Ledgers. The consensus protocol attempts to maintain a unified view of a ledger L. The
ledger is a sequence of transactions L = (tx1, tx2, . . .). Each validator and full node has a
different view of the ledger. We denote the ledger of party P at round r as LP

r . Nodes joining
the protocol, whether they are validators, full nodes, or (super)light clients, can also write
to the ledger by asking for a transaction to be included. In a secure consensus protocol, all
honestly adopted ledgers are prefixes of one another. We denote the longest among these
ledgers as L∪

r , and the shortest among them as L∩
r . We will build our protocol on top of PoS

protocols that are secure. A secure consensus protocol enjoys the following two virtues:

▶ Definition 1 (Consensus Security). A consensus protocol is secure if it is:
1. Safe: For any honest parties P1, P2 and rounds r1 ≤ r2: LP1

r1
≼ LP2

r2
.

2. Live: If all honest validators attempt to write a transaction during u consecutive rounds
r1, . . . , ru, it is included in LP

ru
of any honest party P .

Transactions. A transaction encodes an update to the system’s state. For example, a
transaction could indicate a value transfer of 5 units from Alice to Bob. Different systems
use different transaction formats, but the particular format is unimportant for our purposes.

AFT 2023

14:8 Proofs of Proof-Of-Stake with Sublinear Complexity

A transaction can be applied on the current state of the system to reach a new state. Given
a state st and a transaction tx, the new state is computed by applying the state transition
function δ to the state and transaction. The new state is then st′ = δ(st, tx). For example,
in Ethereum, the state of the system encodes a list of balances of all participants [7, 49].
The system begins its lifetime by starting at a genesis state st0. A ledger also corresponds
to a particular system state, the state obtained by applying its transactions iteratively
to the genesis state. Consider a ledger L = (tx1 · · · txn). Then the state of the system
is δ(· · · δ(st0, tx1), · · · , txn). We use the shorthand notation δ∗ to apply a sequence of
transactions tx = tx1 · · · txn to a state. Namely, δ∗(st0, tx) = δ(· · · δ(st0, tx1), · · · , txn).

Because the state of the system is large, the state is compressed using an authenticated
data structure (e.g., Merkle Tree [43]). We denote by ⟨st⟩ the state commitment, which is
this short representation of the state st (e.g., Merkle Tree root). Given a state commitment
⟨st⟩ and a transaction tx, it is possible to calculate the state commitment ⟨st′⟩ to the new
state st′ = δ(st, tx). However, this calculation may require a small amount of auxiliary data
π such as a Merkle tree proof of inclusion of certain elements in the state commitment ⟨st⟩.
We denote the transition that is performed at the state commitment level by the succinct
transition function ⟨δ⟩. Concretely, we will write that ⟨δ(st, tx)⟩ = ⟨δ⟩ (⟨st⟩ , tx, π). This
means that, if we take state st and apply transaction tx to it using the transition function
δ, and subsequently calculate its commitment using the ⟨·⟩ operator, the resulting state
commitment is the same as the one obtained by applying the succinct transition function ⟨δ⟩
to the state commitment ⟨st⟩ and transaction tx using the auxiliary data π. If the auxiliary
data is incorrect, the function ⟨δ⟩ returns ⊥ to indicate failure. If the state commitment uses
a secure authenticated data structure such as a Merkle tree, we can only find a unique π

that makes the ⟨δ⟩ function run successfully.

3 The PoPoS Primitive

The PoPoS abstraction. Every verifier V online at some round r holds a state commitment
⟨st⟩V

r . To learn about this recent state, the verifier connects to provers P = {P1, P2, · · · , Pq}.
All provers except one honest party can be controlled by the adversary, and the verifier does
not know which party among the provers is honest (the verifier is assumed to be honest). The
honest provers are always online. Each of them maintains a ledger Li. They are consistent
by the safety of the underlying PoS protocol. Upon receiving a query from the verifier, each
honest prover sends back a state commitment corresponding to its current ledger. However,
the adversarial provers might provide incorrect or outdated commitments that are different
from those served by their honest peers. To identify the correct commitment, the light client
mediates an interactive protocol among the provers:

▶ Definition 2 (Proof of Proof-of-Stake). A Proof of Proof-of-Stake protocol (PoPoS) for
a PoS consensus protocol is a pair of interactive probabilistic polynomial-time algorithms
(P, V). The algorithm P is the honest prover and the algorithm V is the honest verifier. The
algorithm P is ran by an online full node, while V is a light client booting up for the first
time holding only the genesis state commitment ⟨st0⟩. The protocol is executed between V

and a set of provers P. After completing the interaction, V returns a state commitment ⟨st⟩.

Security of the PoPoS protocol. The goal of the verifier is to output a state commitment
consistent with the view of the honest provers. This is reflected by the following security
definition of the PoPoS protocol.

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:9

▶ Definition 3 (State Security). Consider a PoPoS protocol (P, V) executed at round r,
where V returns ⟨st⟩. It is secure with parameter ν if there exists a ledger L such that
⟨st⟩ = δ∗(st0,L), and L satisfies:

Safety: For all rounds r′ ≥ r + ν: L ≼ L∪
r′ .

Liveness: For all rounds r′ ≤ r − ν: L∩
r′ ≼ L.

State security implies that the commitment returned by a verifier corresponds to a state
recently obtained by the honest provers.

4 The Optimistic Light Client

Before we present our succinct PoPoS protocol, we introduce sync committees and handover
messages, two necessary components we use in our construction. We also propose a highly
performant optimistic light client as a building block for the superlight clients.

Sync committees. To allow the verifier to achieve state security, we introduce a sync
committee (first proposed in the context of PoS sidechains [28]). Each committee is elected
for the duration of an epoch, and contains a subset, of fixed size m, of the public keys of the
validators associated with that epoch. The committee of the next epoch is determined in
advance at the beginning of the previous epoch. All honest validators agree on this committee.
The validators in the sync committee are sampled from the validator set of the corresponding
epoch in such a manner that the committee retains honest majority during the epoch. The
exact means of sampling are dependent on the PoS implementation. One way to construct
the sync committee is to sample uniformly at random from the underlying stake distribution
using the epoch randomness of the PoS protocol [39, 23]. The first committee S0 is recorded
by the genesis state st0. We denote the set of public keys of the sync committee assigned to
epoch j ∈ N by Sj , and each committee member public key within Sj by Sj

i , i ∈ N.

Handover signatures. During each epoch j, each honest committee member Sj
i of epoch

j signs the tuple (j + 1, Sj+1), where j + 1 is the next epoch index and Sj+1 is the set of
all committee member public keys of epoch j + 1. We let σj

i denote the signature of Sj
i on

the tuple (j + 1, Sj+1). This signature means that member Sj
i approves the inauguration

of the next epoch committee. We call those handover signatures4, as they signify that the
previous epoch committee hands over control to the next committee. When epoch j + 1
starts, the members of the committee Sj assigned to epoch j can no longer use their keys to
create handover signatures.5 As soon as more than m

2 members of Sj have approved the
inauguration of the next epoch committee, the inauguration is ratified. This collection of
signatures for the handover between epoch j and j + 1 is denoted by Σj+1, and is called
the handover proof. A succession S = (Σ1, Σ2, . . . , Σj) at an epoch j is the sequence of all
handover proofs across an execution until the beginning of the epoch.

In addition to the handover signature, at the beginning of each epoch, honest committee
members sign the state commitment corresponding to their ledger. When the verifier learns
the latest committee, these signatures enable him to find the current state commitment.

4 Handover signatures between PoS epochs were introduced in the context of PoS sidechains [28]. Some
practical blockchain systems already implement similar handover signatures [54, 42].

5 This assumption can be satisfied using key-evolving signatures [29, 19], social consensus [8], or a static
honest majority assumption.

AFT 2023

14:10 Proofs of Proof-Of-Stake with Sublinear Complexity

A naive linear client. Consider a PoPoS protocol, where each honest prover gives the verifier
a state commitment and signatures on the commitment from the latest sync committee SN−1,
where N is the number of epochs (and N − 1 is the last epoch). To convince the verifier that
SN−1 is the correct latest committee, each prover also shares the sync committees S0 . . . SN−2

and the associated handover proofs in its view. The verifier knows S0 from the genesis
state st0, and can verify the committee members of the future epochs iteratively through
the handover proofs. Namely, upon obtaining the sync committee Sj , the verifier accepts a
committee Sj+1 as the correct committee assigned to epoch j + 1, if there are signatures on
the tuple (j +1, Sj+1) from over half of the committee members in Sj . Repeating the process
above, the verifier can identify the correct committee for the last epoch. After identifying
the latest sync committee, the verifier checks if the state commitment provided by a prover
is signed by over half of the committee members. If so, he accepts the commitment.

It is straightforward to show that this strawman PoPoS protocol (which we abbreviate as
TLC) is secure (Def. 3) under the following assumptions:
1. The underlying PoS protocol satisfies safety and liveness.
2. The majority of the sync committee members are honest.
When all provers are adversarial, the verifier might not receive any state commitment from
them. Even though generally at least one prover is assumed to be honest, the strawman
protocol does not need this for the correctness of the commitment accepted by the verifier,
since the verifier validates each sync committee assigned to consecutive epochs, and does not
accept commitments not signed by over m

2 members of the latest committee.
Regrettably, the strawman protocol is O(|C|) and not succinct: To identify the lastest

sync committee, the verifier has to download each sync committee since the genesis block.
In the rest of this paper, we will improve this protocol to make it succinct.

The optimistic light client (OLC). We now reduce the communication complexity of the
verifier. In this version of the protocol, instead of sharing the sync committees S0 . . . SN−2 and
the associated handover proofs, each honest prover P sends a sequence of hashes h1 . . . hN−1

corresponding to the sync committees S0 . . . SN−1. Subsequently, to prove the correctness
of the state commitment, the prover P reveals the latest sync committee SN−1 assigned to
epoch N − 1 and the signatures by its members on the commitment. Upon receiving the
committee SN−1, the verifier checks if the hash of SN−1 matches hN−1, and validates the
signatures on the commitment.

Unfortunately, an adversarial prover P ∗ can claim an incorrect committee S∗,N−1, whose
hash h∗,N−1 disagrees with hN−1 returned by P . This implies a disagreement between the
two hash sequences received from P and P ∗. The verifier can exploit this discrepancy to
identify the truthful party that returned the correct committee. Towards this goal, the
verifier iterates over the two hash sequences, and finds the first point of disagreement. Let j

be the index of this point such that hj ̸= h∗,j and hi = h∗,i for all i < j. The verifier then
requests P to reveal the committees Sj and Sj−1 at the preimage of hj and hj−1, and to
supply a handover proof Σj for Sj−1 and Sj . He also requests P ∗ to reveal the committees
S∗,j and S∗,j−1 at the preimage of h∗,j and h∗,j−1, and to supply a handover proof Σ∗,j for
S∗,j−1 to S∗,j . As hj−1 = h∗,j−1 by definition, the verifier is convinced that the committees
Sj−1 and S∗,j−1 revealed by P and P ∗ are the same.

Finally, the verifier checks whether the committees S∗,j and Sj were inaugurated by
the previous committee Sj−1 using the respective handover proofs Σj and Σ∗,j . Since Sj−1

contains over m
2 honest members that signed only the correct committee Sj assigned to epoch

j, adversarial prover P ∗ cannot create a handover proof with sufficiently many signatures

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:11

π

S 0
 S 1

 S
 2

 S
 3

σj signs
 S

 j
 S

 j+1

genesis keys
 S

 N-2
 S N-1

current epoch keys

hash

 S
 j-1

jj-1 j+1

h0 h1

h000

h0000 h0001

h00000 h00001 h00010 h00011 h11110 h11111

h1111

Figure 1 The handover tree, the central construction of our protocol. The root of the Merkle
tree is the initial proof π. During the bisection game, the signatures between the challenge node j

and its neighbours j − 1 and j + 1 are validated.

inaugurating S∗,j . Hence, the handover from Sj−1 to S∗,j will not be ratified Σ∗,j , whereas
the handover from Sj−1 to Sj will be ratified by Σj . Consequently, the verifier will identify
P as the truthful party and accept its commitment.

In the protocol above, security of the commitment obtained by the prover relies crucially
on the existance of an honest prover. Indeed, when all provers are adversarial, they can
collectively return the same incorrect state commitment and the same incorrect sync com-
mittee for the latest epoch. They can then provide over m

2 signatures by this committee on
the incorrect commitment. In the absence of an honest prover to challenge the adversarial
ones, the verifier would believe in the validity of an incorrect commitment.

The optimistic light client reduces the communication load of sending over the whole sync
committee sequence by representing each committee with a constant size hash. However,
it is still O(|C|) as the verifier has to do a linear search on the hashes returned by the two
provers to identify the first point of disagreement. To support a truly succinct verifier, we
will next work towards an interactive PoPoS protocol based on bisection games.

5 The Superlight Client

Trees and mountain ranges. Before describing the succinct PoPoS protocol and the
superlight client, we introduce the data structures used by the bisection games.

Suppose the number of epochs N is a power of two. The honest provers organize the
committee sequences for the past epochs into a Merkle tree called the handover tree (Fig. 1).
The jth leaf of the handover tree contains the committee Sj of the jth epoch. A handover
tree consisting of leaves S0, . . . , SN−1 is said to be well-formed with respect to a succession
S if it satisfies the following properties:
1. The leaves are syntactically valid. Every jth leaf contains a sync committee Sj that

consists of m public keys.
2. The first leaf corresponds to the known genesis sync committee S0.
3. For each j = 1 . . . N − 1, Σj consists of over m

2 signatures by members of Sj−1 on (j, Sj).

Every honest prover holds a succession of handover signatures attesting to the inauguration
of each sync committee in its handover tree after S0. These successions might be different
for every honest prover as any set of signatures larger than m

2 by Sj can inaugurate Sj+1.
However, the trees are the same for all honest parties, and they are well-formed with respect
to the succession held by each honest prover.

AFT 2023

14:12 Proofs of Proof-Of-Stake with Sublinear Complexity

When the number N of epochs is not a power of two, provers arrange the past sync
committees into Merkle mountain ranges (MMRs) [47, 21]. An MMR is a list of Merkle trees,
whose sizes are decreasing powers of two. To build an MMR, a prover first obtains a binary
representation 2q1 + . . . + 2qn of N , where q1 > . . . > qn. It then divides the sequence of sync
committees into n subsequences, one for each qi. For i ≥ 1, the ith subsequence contains the
committees S

∑i−1
n=1

2qi
, . . . , S(

∑i

n=1
2qi)−1. Each ith subsequence is organized into a distinct

Merkle tree Ti, whose root, denoted by ⟨Ti⟩, is called a peak. These peaks are all hashed
together to obtain the root of the MMR. We hereafter refer to the index of each leaf in these
Merkle trees with the epoch of the sync committee contained at the leaf. (For instance, if
there are two trees with sizes 4 and 2, the leaf indices in the first tree are 0, 1, 2, 3 and the
leaf indices in the second tree are 4 and 5.) The MMR is said to be well formed if each
constituent tree is well-formed (but, of course, only the first leaf of the first tree needs to
contain the genesis committee). To ensure succinctness, only the peaks and a small number
of leaves, with their respective inclusion proofs, will be presented to the verifier during the
following bisection game.

Different state commitments. We begin our construction of the full PoPoS protocol
(abbreviated SLC for Super Light Client) by describing the first messages exchanged between
the provers P and the verifier. Each honest prover first shares the state commitment signed
by the latest sync committee at the beginning of the last epoch N − 1. If all commitments
received by the verifier are the same, by existential honesty, the verifier rests assured this
commitment is correct, i.e., it corresponds to the ledger of the honest provers at the beginning
of the epoch. Otherwise, the verifier requests from each prover in P : (i) the MMR peaks ⟨T ⟩i,
i ∈ [n] held by the prover, where n is the number of peaks, (ii) the latest sync committee
SN−1, (iii) a Merkle inclusion proof for SN−1 with respect to the last peak ⟨T ⟩n, and (iv)
signatures by the committee members in SN−1 on the state commitment given by the prover.

Upon receiving these messages, the verifier first checks if there are more than m
2 valid

signatures by the committee members in SN−1 on the state commitment. It then verifies the
Merkle proof for SN−1 with respect to ⟨T ⟩n. As the majority of the committee members in
SN−1 are honest, it is not possible for different state commitments to be signed by over half
of SN−1. Hence, if the checks above succeed for two provers P and P ∗ that returned different
commitments, one of them (P ∗) must be an adversarial prover, and must have claimed an
incorrect sync committee S∗,N−1 for the last epoch. Moreover, as the Merkle proofs for both
S∗,N−1 and SN−1 verify against the respective peaks ⟨T ⟩n and ⟨T ⟩∗

n, these peaks must be
different. Since the two provers disagree on the roots and there is only one well-formed MMR
at any given epoch, therefore one of the provers does not hold a well-formed MMR. This
reduces the problem of identifying the correct state commitment to detecting the prover that
has a well-formed MMR behind its peaks.

Bisection game. To identify the honest prover with the well-formed MMR, the verifier
(Alg. 1) initiates a bisection game between P and P ∗ (Alg. 2). Suppose the number of epochs
N is a power of two. Each of the two provers claims to hold a tree with size N (otherwise,
since the verifier knows N by his local clock, the prover with a different size Merkle tree
loses the game.) During the game, the verifier aims to locate the first point of disagreement
between the alleged sync committee sequences at the leaves of the provers’ Merkle trees, akin
to the improved optimistic light client (Sec. 4).

The game proceeds in a binary search fashion similar to refereed delegation of compu-
tation [12, 11, 30]. Starting at the Merkle roots ⟨T ⟩ and ⟨T ⟩∗ of the two trees, the verifier
traverses an identical path on both trees until reaching a leaf with the same index. This

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:13

Algorithm 1 Run by the verifier during the bisection game to identify the first point of disagreement
between the provers’ leaves (cf. Fig. 2). Here, P and P ∗ denote the honest and adversarial provers,
whereas ⟨T ⟩ and ⟨T ⟩∗ denote the roots of their respective Merkle trees with size ℓ.

1: function FindDisagreement(P, ⟨T ⟩, P ∗, ⟨T ⟩∗, ℓ)
2: hc, h∗

c ← ⟨T ⟩, ⟨T ⟩∗

3: while ℓ > 1 do
4: (h0, h1) L99 P ; (h∗

0, h∗
1) L99 P ∗

5: if hc ̸= H(h0 ∥h1) then return ▷ P loses
6: if h∗

c ̸= H(h∗
0 ∥h∗

1) then return ▷ P ∗ loses
7: if h0 ̸= h∗

0 then
8: h∗

c , hc ← h∗
0, h0; (open, 0) 99K P ; (open, 0) 99K P ∗

9: else
10: h∗

c , hc ← h∗
1, h1; (open, 1) 99K P ; (open, 1) 99K P ∗

11: ℓ← ℓ//2
12: S L99 P ; S∗ L99 P ∗

13: return S, S∗

Algorithm 2 Run by an honest prover during the bisection game to reply to the verifier V ’s
queries. The sequence S0, . . . , SN−1 denotes the sync committees in the prover’s view.

1: function ReplyToVerifier(S0, . . . , SN−1)
2: T ←MakeMT(S0, . . . , SN−1); T .root 99K V ; j ← 0
3: while T .size > 1 do
4: (T .left.root, T .right.root) 99K V ; (open, i) L99 V

5: if i = 0 then
6: T ← T .left
7: else
8: T ← T .right
9: j ← 2j + i

10: Sj 99K V

leaf corresponds to the first point of disagreement. At each step of the game, the verifier
asks the provers to reveal the children of the current node, denoted by hc and h∗

c on the
respective trees (Alg. 2, l. 4). Initially, hc = ⟨T ⟩ and h∗

c = ⟨T ⟩∗ (Alg. 1, l. 2). Upon receiving
the alleged left and right child nodes h∗

0 and h∗
1 from P ∗, and h0, h1 from P , he checks if

hc = H(h0 ∥ h1) and h∗
c = H(h∗

0 ∥ h∗
1), where H is the collision-resistant hash function used

to construct the Merkle trees (Alg. 1, ll. 5 and 6). The verifier then compares h0 with h∗
0,

and h1 with h∗
1 to determine if the disagreement is on the left or the right child (Alg. 1, ll. 7

and 9). Finally, he descends into the first disagreeing child, and communicates this decision
to the provers (Alg. 2, l. 4); so that they can update the current node that will be queried in
the next step of the bisection game (Alg. 2, ll. 6 and 8).

Upon reaching a leaf at some index j, the verifier asks both provers to reveal the alleged
committees Sj and S∗,j at the pre-image of the respective leaves. If j = 1, he inspects
whether Sj or S∗,j matches S0. The prover whose alleged first committee is not equal to S0

loses the game.
If j > 1, the verifier also requests from the provers (i) the committees at the (j − 1)th

leaves, (ii) their Merkle proofs with respect to ⟨T ⟩ and ⟨T ⟩∗, and (iii) the handover proofs
Σj and Σ∗,j . The honest prover responds with (i) Sj−1 assigned to epoch j − 1, (ii) its
Merkle proof with respect to ⟨T ⟩, and (iii) its own view of the handover proof Σj (which
might be different from other provers). Upon checking the Merkle proofs, the verifier is now

AFT 2023

14:14 Proofs of Proof-Of-Stake with Sublinear Complexity

Algorithm 3 Run by the verifier to identify the first different peak in the MMRs of the two provers.
Here, ⟨T ⟩1,...,n and ⟨T ⟩∗1,...,n denote the peaks of the honest and adversarial provers respectively.

1: function BisectionGame(P , P ∗)
2: ⟨T ⟩1,...,n L99 P

3: ⟨T ⟩∗1,...,n L99 P ∗

4: for i = 1 to n do
5: if ⟨T ⟩i ̸= ⟨T ⟩

∗
i then

6: ℓ← size of the ith Merkle Tree
7: return FindDisagreement(P , ⟨T ⟩i, P ∗, ⟨T ⟩∗i , ℓ)

convinced that the committees Sj−1 and S∗,j−1 revealed by P and P ∗ are the same, since
their hashes match. The verifier subsequently checks if Σj contains more than m

2 signatures
by the committee members in Sj−1 on (j, Sj), and similarly for P ∗.

The prover that fails any of checks by the verifier loses the bisection game. If one prover
loses the game, and the other one does not fail any checks, the standing prover is designated
the winner. If neither prover fails any of the checks, then the verifier concludes that there are
over m

2 committee members in Sj−1 that signed different future sync committees (i.e., signed
both (j, Sj) and (j, S∗,j), where (j, Sj) ̸= (j, S∗,j)). This implies Sj−1 is not the correct
sync committee assigned to epoch j − 1, and both provers are adversarial. In this case, both
provers lose the bisection game. In any case, at most one prover can win the bisection game.

Bisection games on Merkle mountain ranges. When the number of epochs N is not
a power of two, the verifier first obtains the binary decomposition

∑n
i=1 2qi = N , where

q1 > . . . > qn. Then, for each prover P , he checks if there are n peaks returned. For
two provers P and P ∗ that have n peaks but returned different commitments, the verifier
compares the peaks ⟨T ⟩i of P with ⟨T ⟩∗

i of P ∗, and identifies the first different peak (Alg. 3).
It then plays the bisection game as described above on the identified Merkle trees. The only
difference with the game above is that if the disagreement is on the first leaf j of a later tree,
then the Merkle proof for the previous leaf j − 1 is shown with respect to the peak of the
previous tree.

Prover complexity. Given all past sync committees, the prover constructs the MMR in
linear time. The MMR is updated in an online fashion as time evolves. Every time a new
sync committee appears, it is appended to the tree in log N time. The space required to
store the MMR is linear.

Tournament. When there are multiple provers, the verifier interacts with them sequentially
in pairs, in a tournament fashion. It begins by choosing two provers P1 and P2 with different
state commitments from the set P (Alg. 4, l. 7). The verifier then pits one against the other,
by facilitating a bisection game between P1 and P2, and decides which of the two provers loses
(Alg. 4, l. 8). (There can be at most one winner at any bisection game). He then eliminates
the loser from the tournament, and chooses a new prover with a different state commitment
than the winner’s commitment from the set P to compete against the winner. In the event
that both provers lose, the verifier eliminates both provers, and continues the tournament
with the remaining ones by sampling two new provers with different state commitments. This
process continues until all provers left have the same state commitment. This commitment
is adopted as the correct one. A tournament started with q provers terminates after O(q)

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:15

Algorithm 4 Tournament conducted by the verifier among provers P to identify the state
commitment ⟨st⟩. The verifier uses BisectionGame (cf. Fig. 2, Algs. 1 and 3) between two provers
and deduce at most one winner. Here, pop removes and returns an arbitrary element of a set.

1: function Tournament(P)
2: P ← pop(P); good← {P}; ⟨st⟩ ← P. ⟨st⟩
3: for P ∈ P do
4: if ⟨st⟩ = P. ⟨st⟩ then
5: good← good ∪ {P}
6: continue
7: for P ∗ ∈ good do
8: if BisectionGame(P, P ∗) = P then
9: good← {P}; ⟨st⟩ ← P. ⟨st⟩

10: break
11: return ⟨st⟩

honest
prover

adversary

honest
verifier

open right

open right

σ?

 ,

Figure 2 Honest and adversarial prover in the PoPoS bisection game (cf. Algs. 1, 2 and 3).
The verifier iteratively requests openings of tree nodes from both provers, until the first point of
disagreement is discovered.

bisection games, since at least one prover is eliminated at the end of each game. In the full
version of the paper [1], we prove the security of the tournament by showing that an honest
prover never loses the bisection game and an adversarial prover loses against an honest one.

Past and future. Now that the verifier obtained the state commitment signed for the most
recent epoch, and confirmed its veracity, the task that remains is to discern facts about
the system’s state and its history. To perform queries about the current state, such as
determining how much balance one owns, the verifier simply asks for Merkle inclusion proofs
into the proven state commitment.

One drawback of our protocol is that the state commitment received by the verifier is the
commitment at the beginning of the current epoch, and therefore may be somewhat stale. In
order to synchronize with the latest state within the epoch, the verifier must function as a
full node for the small duration of an epoch. This functionality does not harm succinctness,
since epochs have a fixed, constant duration. For example, in the case of a longest-chain
blockchain, the protocol works as follows. In addition to signing the state commitment, the
sync committee also signs the first stable block header of its respective epoch. The block

AFT 2023

14:16 Proofs of Proof-Of-Stake with Sublinear Complexity

header is verified by the verifier in a similar fashion that he verified the state commitment.
Subsequently, the block header can be used as a neon genesis block. The verifier treats the
block as a replacement for the genesis block and bootstraps from there6.

One aspect of wallets that we have not touched upon concerns the retrieval and verification
of historical transactions. Consider a client that wishes to verify the inclusion of a particular
historical transaction tx in the chain. Let’s assume that tx is included in a block B of epoch j.
This can be checked as follows. The verifier, as before, identifies the root of the correct
handover tree. The verifier next asks the prover to provide him with the sync committee of
epoch j + 1, with the corresponding inclusion proof, as well as the first stable block header
B′ of that epoch signed by the committee. Subsequently, he requests the short blockchain
that connects B to B′. As blockchains are hash chains, this inclusion cannot be faked by an
adversary.

6 Proof-of-Stake Ethereum Light Clients

The bisection games presented in Sec. 5 can be applied to a variety of PoS consensus
protocols to efficiently catch up with current consensus decisions. In this section we present
an instantiation for Ethereum. We also detail how to utilize the latest epoch committee to
build a full-featured Ethereum JSON-RPC. This allows for existing wallets such as MetaMask
to use our construction without making any changes. Our implementation can be a drop-in
replacement to obtain better decentralization and performance.

Our PoPoS protocol for Ethereum does not require any changes to the consensus layer,
as Ethereum already provisions for sync committees in the way we introduced in Sec. 4.

6.1 Sync Committee Essentials
Sync committees of Ethereum contain m = 512 validators, sampled uniformly at random
from the validator set, in proportion to their stake distribution. Every sync committee is
selected for the duration of a so-called sync committee period [23] (which we called epoch
in our generic construction). Each period lasts 256 Ethereum epochs (these are different
from our epochs), approximately 27 hours. Ethereum epochs are further divided into slots,
during which a new block is proposed by one validator and signed by the subset of validators
assigned to the slot. At each slot, each sync committee member of the corresponding period
signs the block at the tip of the chain (called the beacon chain [23]) according to its view.
The proposer of the next slot aggregates and includes within its proposal the aggregate sync
committee signature on the parent block. The sync committees are determined one period in
advance, and the committee for each period is contained in the block headers of the previous
period. Each block also contains a commitment to the header of the last finalized block that
lies on its prefix.

6.2 Linear-Complexity Light Client
Light clients use the sync committee signatures to detect the latest beacon chain block
finalized by the Casper FFG finality gadget [9, 10]. At any round, the view of a light
client consists of a finalized_header, the current sync committee and the next committee.
The client updates its view upon receiving a LightClientUpdate object (update for short),

6 While bootstrapping, the verifier can update the state commitment by applying the transactions within
the later blocks on top of the state commitment from the neon genesis block via the function ⟨δ⟩.

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:17

that contains (i) an attested_header signed by the sync committee, (ii) the corresponding
aggregate BLS signature, (iii) the slot at which the aggregate signature was created, (iv) the
next sync committee as stated in the attested_header, and (v) a finalized_header (called the
new finalized header for clarity) to replace the one held by the client.

To validate an update, the client first checks if the aggregate signature is from a slot larger
than the finalized_header in its view, and if this slot is within the current or the next period.
(Updates with signatures from sync committees that are more than one period in the future
are rejected.) It then verifies the inclusion of the new finalized header and the next sync
committee provided by the update with respect to the state of the attested_header through
Merkle inclusion proofs. Finally, it verifies the aggregate signature on the attested_header by
the committee of the corresponding period. Since the signatures are either from the current
period or the next one, the client knows the respective committee.

After validating the update, the client replaces its finalized_header with the new one, if
the attested_header was signed by over 2/3 of the corresponding sync committee. If this
header is from a higher period, the client also updates its view of the sync committees.
Namely, the old next sync committee becomes the new current committee, and the next sync
committee included in the attested_header is adopted as the new next sync committee.

6.3 Logarithmic Bootstrapping from Bisection Games
The construction above requires a bootstrapping light client to download at least one update
per period, imposing a linear communication complexity in the life time of the chain. To
reduce the communication load and complexity, the optimistic light client and superlight
client constructions introduced in Secs. 4 and 5 can be applied to Ethereum.

A bootstrapping superlight client first connects to a few provers, and asks for the Merkle
roots of the handover trees (cf. Sec. 5). The leaf of the handover tree at position j consist of
all the public keys of the sync committee of period j concatenated with the period index j.
If all the roots are the same, then the client accepts the sync committee at the last leaf as
the most recent committee. If the roots are different, the client facilitates bisection games
among conflicting provers. Upon identifying the first point of disagreement between two
trees (e.g., some leaf j), the client asks each prover to provide a LightClientUpdate object to
justify the handover from the committee Sj−1 to Sj . For this purpose, each prover has to
provide a valid update that includes (i) an aggregate signature by 2/3 of the set Sj−1 on an
attested_header, and (ii) the set Sj as the next sync committee within the attested_header.
Upon identifying the honest prover, and the correct latest sync committee, the client can ask
the honest prover about the lastest update signed by the latest sync committe and containing
the tip of the chain.

6.4 Superlight Client Architecture
On the completion of bootstrapping, the client has identified the latest beacon chain block-
header. The blockheader contains the commitment to the state of the Ethereum universe
that results from executing all transactions since genesis up to and including the present
block. Furthermore, this commitment gets verified as part of consensus. The client can
perform query to the fullnode about the state of Ethereum. The result of the query can be
then verified against the state commitment using Merkle inclusion proofs. This allows for
the client to access the state of the Ethereum universe in a trust-minimizing way.

Fig. 3 depicts the resulting architecture of the superlight client. In today’s Ethereum,
a user’s wallet typically speaks to Ethereum JSON-RPC endpoints provided by either a
centralized infrastructure provider such as Infura or by a (trusted) Ethereum full node (could

AFT 2023

14:18 Proofs of Proof-Of-Stake with Sublinear Complexity

Server Client

Superlight
client prover

Full node
Ethereum

JSON-RPC

Superlight
client verifier

Ethereum
JSON-RPC
shim/proxy W

al
le

t

E
th

er
eu

m

P
2P

ne
tw

or
k

JS
O

N
-R

P
C

Bisection
games

New txs.

getProof

Sync info. Consensus tip

Figure 3 Ethereum superlight client architecture: On server side, an Ethereum full node feeds
sync information to a bisection game prover sidecar. On client side, a bisection game verifier feeds
the consensus tip into an Ethereum JSON-RPC shim/proxy, which forwards transactions coming
from the wallet to the Ethereum full node, and resolves state queries with reference to the established
consensus tip using Ethereum’s getProof RPC endpoint.

be self-hosted). Instead, the centerpiece in a superlight client is a shim that provides RPC
endpoints to the wallet, but where new transactions and queries to the Ethereum state are
proxied to upstream full nodes, and query responses are verified w.r.t. a given commitment
to the Ethereum state. This commitment is produced using two sidecar processes, which
implement the prover and verifier of the bisection game. For this purpose, the server-side
sidecar obtains the latest sync information from a full node, using what is commonly called
“libp2p API”. The client-side sidecar feeds the block header at the consensus tip into the
shim.

7 Experiments

To assess the different bootstrapping mechanisms for Ethereum (traditional light client
= TLC; optimistic light client = OLC; superlight client = SLC), we implemented them
in ≈ 2000 lines of TypeScript code (source code available on Github7). We demonstrate
an improvement of SLC over TLC of 9× in time-to-completion, 180× in communication
bandwidth, and 30× in energy consumption, when bootstrapping after 10 years of consensus
execution. SLC improves over OLC by 3× in communication bandwidth in this setting.

7.1 Setup
Our experimental scenario includes seven malicious provers, one honest prover, and a
verifier. All provers run in different Heroku “performance-m” instances located in the “us”
region. The verifier runs on an Amazon EC2 “m5.large” instance located in “us-west-2”.
The provers’ Internet access is not restricted beyond the hosting provider’s limits. The
verifier’s down- and upload bandwidth is artificially rate-limited to 100 Mbit/s and 10 Mbit/s,
respectively, using “tc”. We monitor to rule out spillover from RAM into swap space.

7 The superlight client prototype is at https://github.com/lightclients/poc-superlight-client. The
optimistic light client implementation is at https://github.com/lightclients/kevlar and https:
//kevlar.sh/. The RPC shim is at https://github.com/lightclients/patronum.

https://github.com/lightclients/poc-superlight-client
https://github.com/lightclients/kevlar
https://kevlar.sh/
https://kevlar.sh/
https://github.com/lightclients/patronum

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:19

0 50 100 150 200
0

50

100

150

200
5

20

200 500

100
200 500

100

200 500

Total communication [Mbytes]

TLC OLC SLC 5 y 10 y 15 y 20 y 30 y

0 1 2 3 4 5
0

20

40

60

20

50

200

500 3650

50

200

50

200
500

10950

2

5
20
100

5000

Total communication [Mbytes]

T
im

e-
to

-c
om

pl
et

io
n

[s
ec

on
ds

]

Figure 4 Time-to-completion and total communication (averaged over 5 trials) incurred by
different light clients for varying internal parameters (marker labels; TLC/OLC: batch size b,
SLC: Merkle tree degree d) and varying consensus execution horizon. For SLC, the curves for
the considered execution horizons are virtually identical; thus, only the curve for 30 years (most
challenging scenario) is shown. Pareto-optimal tradeoffs are at “tip” of resulting L-shape’: for 10
years execution, at b ≈ 200 (TLC), b ≈ 500 (OLC), and d ≈ 100 (SLC), respectively. OLC and SLC
vastly outperform TLC, e.g., for 10 years execution: 9× in time-to-completion, 180× in bandwidth.
In this setting, SLC has similar time-to-completion as OLC, and 3× lower communication.

In preprocessing, we create eight valid traces of the sync committee protocol for an
execution horizon of 30 years. For this purpose, we create 512 cryptographic identities
per simulated day, as well as the aggregate signatures for handover from one day’s sync
committee to the next day’s. In some experiments, we vary how much simulated time has
passed since genesis, and for this purpose truncate the execution traces accordingly. One
of the execution traces is used by the honest prover and understood to be the true honest
execution. Adversarial provers each pick a random point in time, and splice the honest
execution trace up to that point together with one of the other execution traces for the
remaining execution time, without regenerating handover signatures, so that the resulting
execution trace used by adversarial provers has invalid handover at the point of splicing. We
also vary the internal parameters of the (super-)light client protocols (i.e., batch size b of
TLC and OLC, Merkle tree degree d of SLC).

7.2 Time-To-Completion & Total Verifier Communication
The average time-to-completion (TTC) and total communication bandwidth (TCB) required
by the different light client constructions per bootstrapping occurrence is plotted in Fig. 4
for varying internal parameters (batch sizes b for TLC and OLC; Merkle tree degrees d for
SLC) and varying execution horizons (from 5 to 30 years). Pareto-optimal TTC and TCB
are achieved for b and d resulting “at the tip” of the “L-shaped” plot. For instance, for 10
years execution, TLC, OLC and SLC achieve Pareto-optimal TTC/TCB for b ≈ 200, b ≈ 500,
and d ≈ 100, respectively. Evidently, across a wide parameter range, OLC and SLC vastly
outperform TLC in both metrics; e.g., for 10 years execution and Pareto-optimal parameters,
9× in TTC, and 180× in TCB. In this setting, SLC has similar TTC as OLC, and 3× lower
TCB (5× lower TCB for 30 years). For a closed-form expression describing the trade-off
between latency and bandwidth, and the optimal choice of tree degree see Tas et al. [46].

AFT 2023

14:20 Proofs of Proof-Of-Stake with Sublinear Complexity

1.875 3.75 7.5 15 30
0

50

100

150

Execution horizon [years]

T
im

e-
to

-c
om

pl
et

io
n

[s
ec

on
ds

] OLC (b = 20) SLC (d = 2)

Figure 5 Time-to-completion (averaged over 5 trials) of OLC/SLC increase linearly/logarithmi-
cally with the execution horizon, respectively.

TLC OLC SLC
0

20

40

60

80 82

12.2 11.7

Time-to-completion [s]

Idle TLC OLC SLC
0

5

10

15

1.66

13.3

2.81 2.94

Power [W]

TLC OLC SLC
0

0.1

0.2

0.3 0.30

0.01 0.01

Energy [Wh]

Figure 6 Energy required to bootstrap after 10 years of consensus execution using different
light client constructions (averaged over 5 trials for TLC, 25 trials for OLC and SLC; internal
parameters b = 200, b = 500, d = 100, respectively); also disaggregated into power consumption and
time-to-completion. Energy required by OLC/SLC is 30× lower than TLC. Contributions ≈ 4× and
≈ 7× can be attributed to lower power consumption and lower time-to-completion, respectively.

The fact that both TLC and OLC have TCB linear in the execution horizon, is readily
apparent from Fig. 4. The linear TTC is visible for TLC, but not very pronounced for
OLC, due to the concretely low proportionality constant. In comparison, SLC shows barely
any dependence of TTC or TCB on the execution horizon, hinting at the (exponentially
better) logarithmic dependence. To contrast the asymptotics, we plot average TTC as a
function of exponentially increasing execution horizon in Fig. 5 for OLC and SLC with
internal parameters b = 20 and d = 2, respectively. Note that these are not Pareto-optimal
parameters, but chosen here for illustration purposes. Clearly, TTC for OLC is linear in the
execution horizon (plotted in Fig. 5 on an exponential scale), while for SLC it is logarithmic.

7.3 Power & Energy Consumption
A key motivation for superlight clients is their application on resource-constrained platforms
such as browsers or mobile phones. In this context, computational efficiency, and as a proxy
energy efficiency, is an important metric. We ran the light clients on a battery-powered
System76 Lemur Pro (“lemp10”) laptop with Pop!_OS 22.04 LTS, and recorded the decaying
battery level using “upower” (screen off, no other programs running, no keyboard/mouse
input, WiFi connectivity; provers still on Heroku instances). From the energy consumption
and wallclock time we calculated the average power consumption. As internal parameters

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:21

for TLC, OLC, and SLC, we chose b = 200, b = 500, and d = 100, respectively (cf. Pareto-
optimal parameters in Fig. 4). The energy required to bootstrap 10 years of consensus
execution, averaged over 5 trials for TLC, and 25 trials for OLC and SLC, is plotted in Fig. 6.
We disaggregate the energy consumption into power consumption and TTC for each light
client, and also record the power consumption of the machine in idle. (Note, discrepancies in
Figs. 4 and 6 are due to the light clients running on Amazon EC2 vs. a laptop.)

OLC and SLC have comparable TTC and power consumption, resulting in comparable
energy consumption per bootstrap occurrence. The energy required by OLC and SLC is 30×
lower than the energy required by TLC per bootstrap occurrence (right panel in Fig. 6). This
can be attributed to a ≈ 4× lower power consumption (middle panel in Fig. 6) together with
a ≈ 7× lower TTC (left panel in Fig. 6). The considerably lower energy/power consumption
of OLC/SLC compared to TLC is due to the lower number of signature verifications (and
thus lower computational burden). Note that a sizeable fraction of OLC’s/SLC’s power
consumption can be attributed to system idle (middle panel in Fig. 6). When comparing
light clients in terms of excess energy consumption (i.e., subtracting idle consumption) per
bootstrapping, then OLC and SLC improve over SLC by 64×.

8 Analysis

The theorems for succinctness and security of the PoPoS protocol are provided below. Proofs
are in the full version of this paper [1]. Security consists of two components: completeness
and soundness.

▶ Theorem 4 (Succinctness). Consider a verifier that invokes a bisection game at round
r between two provers that provided different handover tree roots. Then, the game ends in
O(log(r)) steps of interactivity and has a total communication complexity of O(log(r)).

▶ Theorem 5 (Completeness). Consider a verifier that invokes a bisection game at round r

between two provers that provided different handover tree roots. Suppose one of the provers is
honest. Then, the honest prover wins the bisection game.

▶ Theorem 6 (Soundness). Let Hs be a collision resistant hash function. Consider a verifier
that invokes a bisection game executed at round r of a secure underlying PoS protocol between
two provers that provided different handover tree roots. Suppose one of the provers is honest,
and the signature scheme satisfies existential unforgeability. Then, for all PPT adversarial
provers A, the prover A loses the bisection game against the honest prover with overwhelming
probability in λ.

▶ Theorem 7 (Tournament Runtime). Consider a tournament ran at round r with |P| provers
one of which is honest. The tournament ends in O(|P| log(r)) steps of interactivity, and has
total communication complexity O(|P| log(r)).

▶ Theorem 8 (Security). Let Hs be a collision resistant hash function. Consider a tournament
executed between an honest verifier and |P| provers at round r. Suppose one of the provers
is honest, the signature scheme satisfies existential unforgeability, and the PoS protocol is
secure. Then, for all PPT adversaries A, the state commitment obtained by the verifier at
the end of the tournament satisfies state security with overwhelming probability in λ.

AFT 2023

14:22 Proofs of Proof-Of-Stake with Sublinear Complexity

References
1 Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs of proof-of-

stake with sublinear complexity. Cryptology ePrint Archive, Paper 2022/1642, 2022. URL:
https://eprint.iacr.org/2022/1642.

2 Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations with
pegged sidechains, 2014. URL: https://blockstream.com/sidechains.pdf.

3 Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In CCS,
pages 913–930. ACM, 2018.

4 Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized
cryptocurrency at scale. Cryptology ePrint Archive, Paper 2020/352, 2020. URL: https:
//eprint.iacr.org/2020/352.

5 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus, 2018.
arXiv:1807.04938v3.

6 Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients
for cryptocurrencies. In IEEE Symposium on Security and Privacy, pages 928–946. IEEE,
2020.

7 Vitalik Buterin. A next-generation smart contract and decentralized application platform,
2014.

8 Vitalik Buterin. Proof of Stake: How I Learned to Love Weak Subjectivity, Novem-
ber 2014. URL: https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-
subjectivity/.

9 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget, 2017. arXiv:
1710.09437v4.

10 Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan,
Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining ghost and casper, 2020. arXiv:
2003.03052v3.

11 Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using
multiple servers. In CCS, pages 445–454. ACM, 2011.

12 Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation. Inf.
Comput., 226:16–36, 2013.

13 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, pages
173–186. USENIX Association, 1999.

14 Pyrros Chaidos and Aggelos Kiayias. Mithril: Stake-based threshold multisignatures. Cryptol-
ogy ePrint Archive, Paper 2021/916, 2021. URL: https://eprint.iacr.org/2021/916.

15 Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok: Blockchain light
clients. In Financial Cryptography, volume 13411 of LNCS, pages 615–641. Springer, 2022.

16 ConsenSys. MetaMask Surpasses 10 Million MAUs, Making It The World’s Leading
Non-Custodial Crypto Wallet, August 2021. URL: https://consensys.net/blog/press-
release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-
custodial-crypto-wallet/.

17 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. Cryptology ePrint Archive, Paper 2016/919,
2016. URL: https://eprint.iacr.org/2016/919.

18 Stelios Daveas, Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. A gas-efficient
superlight bitcoin client in solidity. In AFT, pages 132–144. ACM, 2020.

19 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of LNCS, pages 66–98. Springer, 2018.

20 Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. A survey
on long-range attacks for proof of stake protocols. IEEE Access, 7:28712–28725, 2019.

https://eprint.iacr.org/2022/1642
https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://arxiv.org/abs/1807.04938v3
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://arxiv.org/abs/1710.09437v4
https://arxiv.org/abs/1710.09437v4
https://arxiv.org/abs/2003.03052v3
https://arxiv.org/abs/2003.03052v3
https://eprint.iacr.org/2021/916
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://eprint.iacr.org/2016/919

S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:23

21 Grin Developers. Merkle Mountain Ranges (MMR). URL: https://docs.grin.mw/wiki/
chain-state/merkle-mountain-range/.

22 Ethereum Developers. Altair Light Client – Light Client, 2023. URL: https://github.com/
ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/
altair/light-client/light-client.md.

23 Ethereum Developers. Altair Light Client – Sync Protocol, 2023. URL: https://github.com/
ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/
altair/light-client/sync-protocol.md.

24 Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines, Marek
Olszewski, Michael Straka, Eran Tromer, and Psi Vesely. Plumo: Towards scalable interoperable
blockchains using ultra light validation systems, 2020. URL: https://docs.zkproof.org/
pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf.

25 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. Cryptology ePrint Archive, Paper 2014/765, 2014. URL:
https://eprint.iacr.org/2014/765.

26 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT (2), volume 9057 of LNCS, pages 281–310. Springer, 2015.

27 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In CRYPTO (1), volume 10401 of LNCS, pages 291–323. Springer,
2017.

28 Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In IEEE
Symposium on Security and Privacy, pages 139–156. IEEE, 2019.

29 Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying.
In CRYPTO, volume 2139 of LNCS, pages 332–354. Springer, 2001.

30 Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.
Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security Symposium, pages
1353–1370. USENIX Association, 2018.

31 Kostis Karantias. Sok: A taxonomy of cryptocurrency wallets. Cryptology ePrint Archive,
Paper 2020/868, 2020. URL: https://eprint.iacr.org/2020/868.

32 Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Compact storage of superblocks for
nipopow applications. In MARBLE, pages 77–91. Springer, 2019.

33 Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-burn. In Financial Cryp-
tography, volume 12059 of LNCS, pages 523–540. Springer, 2020.

34 Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

35 Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of
work with sublinear complexity. In Financial Cryptography Workshops, volume 9604 of LNCS,
pages 61–78. Springer, 2016.

36 Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in logarithmic space. In
CCS, pages 3487–3501. ACM, 2021.

37 Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work.
In Financial Cryptography, volume 12059 of LNCS, pages 505–522. Springer, 2020.

38 Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path to superlight
blockchain clients. In AFT, pages 205–218. ACM, 2021.

39 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of LNCS,
pages 357–388. Springer, 2017.

40 Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Financial Cryptography
Workshops, volume 11599 of LNCS, pages 21–34. Springer, 2019.

41 Jae Kwon and Ethan Buchman. A network of distributed ledgers – cosmos whitepaper. URL:
https://v1.cosmos.network/resources/whitepaper.

AFT 2023

https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2020/868
https://v1.cosmos.network/resources/whitepaper

14:24 Proofs of Proof-Of-Stake with Sublinear Complexity

42 Rongjian Lan, Ganesha Upadhyaya, Stephen Tse, and Mahdi Zamani. Horizon: A gas-efficient,
trustless bridge for cross-chain transactions, 2021. arXiv:2101.06000v1.

43 Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO,
volume 293 of LNCS, pages 369–378. Springer, 1987.

44 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In EUROCRYPT (2), volume 10211 of LNCS, pages 643–673, 2017.

45 Succinct Labs. Building the end game of interoperability with zkSNARKs, 2023. URL:
https://www.succinct.xyz/.

46 Ertem Nusret Tas, Dionysis Zindros, Lei Yang, and David Tse. Light clients for lazy blockchains.
Cryptology ePrint Archive, Paper 2022/384, 2022. URL: https://eprint.iacr.org/2022/384.

47 Peter Todd. Merkle mountain ranges, October 2012. URL: https://github.com/
opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

48 Jason Wise. Metamask Statistics 2023: How Many People Use Metamask?, March 2023. URL:
https://earthweb.com/metamask-statistics/.

49 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.
50 Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia, Dan

Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges made practical. In CCS, pages
3003–3017. ACM, 2022.

51 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.

52 Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro
Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt. Sok: Communication across
distributed ledgers. In Financial Cryptography (2), volume 12675 of LNCS, pages 3–36.
Springer, 2021.

53 Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar R. Weippl, and
William J. Knottenbelt. A wild velvet fork appears! inclusive blockchain protocol changes in
practice - (short paper). In Financial Cryptography Workshops, volume 10958 of LNCS, pages
31–42. Springer, 2018.

54 Maksym Zavershynskyi. ETH-NEAR Rainbow Bridge, August 2020. URL: https://near.org/
blog/eth-near-rainbow-bridge/.

https://arxiv.org/abs/2101.06000v1
https://www.succinct.xyz/
https://eprint.iacr.org/2022/384
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://earthweb.com/metamask-statistics/
https://near.org/blog/eth-near-rainbow-bridge/
https://near.org/blog/eth-near-rainbow-bridge/

	1 Introduction
	1.1 Construction Overview
	1.2 Implementation Overview
	1.3 Related Work
	1.4 Outline

	2 Preliminaries
	3 The PoPoS Primitive
	4 The Optimistic Light Client
	5 The Superlight Client
	6 Proof-of-Stake Ethereum Light Clients
	6.1 Sync Committee Essentials
	6.2 Linear-Complexity Light Client
	6.3 Logarithmic Bootstrapping from Bisection Games
	6.4 Superlight Client Architecture

	7 Experiments
	7.1 Setup
	7.2 Time-To-Completion & Total Verifier Communication
	7.3 Power & Energy Consumption

	8 Analysis

