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Abstract
Nova is an efficient recursive proof system built from an elegant folding scheme for (relaxed) R1CS
statements. The original Nova paper (CRYPTO’22) presented Nova using a single elliptic curve
group of order p. However, for improved efficiency, the implementation of Nova alters the scheme to
use a 2-cycle of elliptic curves. This altered scheme is only described in the code and has not been
proven secure. In this work, we point out a soundness vulnerability in the original implementation of
the 2-cycle Nova system. To demonstrate this vulnerability, we construct a convincing Nova proof for
the correct evaluation of 275 rounds of the Minroot VDF in only 116 milliseconds. We then present
a modification of the 2-cycle Nova system and formally prove its security. The modified system
also happens to be more efficient than the original implementation. In particular, the modification
eliminates an R1CS instance-witness pair from the recursive proof. The implementation of Nova has
now been updated to use our optimized and secure system. In addition, we show that the folding
mechanism at the core of Nova is malleable: given a proof for some statement z, an adversary can
construct a proof for a related statement z′, at the same depth as z, without knowledge of the
witness for z′.
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1 Introduction

In a recent work, Kothapalli, Setty, and Tzialla introduced an elegant folding scheme for
relaxed R1CS statements [12]. The scheme leads to the Nova proof system: an efficient
and succinct proof system for incrementally verifiable computation, or IVC [21]. This proof
system has many applications in the blockchain space, such as verifiable delay functions [20],
a Nova-based ZK virtual machine [15], and outsourced computation.

The description and analysis of Nova in [12] restricts itself to a single chain of incremental
computation, namely a series of identical computation steps that produce an output which
is fed directly into the next step. At every step, a single application of some function F
is applied, and a statement about the validity of the prior step is folded into an ongoing
statement of validity. We refer to this as a single IVC chain.
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18:2 Revisiting the Nova Proof System on a Cycle of Curves

To improve efficiency, the implementation of Nova [14] uses a 2-cycle of elliptic curves.
This leads to a proof system that uses two parallel IVC chains that must be linked together.
Until this work, the 2-cycle Nova system was only described in the implementation code and
there was no public proof of security.

In this paper, we present two security concerns that affect the 2-cycle Nova system. First,
in Section 7 we describe a soundness issue that enables an attacker to produce proofs for false
statements. For example, we compute a convincing proof for an evaluation of 275 rounds
of the Minroot VDF [10] in only 116 milliseconds on a single laptop. The core issue that
this attack exploits is that the 2-cycle Nova system produces an IVC proof that contains an
additional R1CS instance-witness pair that is not sufficiently constrained by the verifier.

To fix this issue we first formally describe the two IVC chains approach used in the Nova
implementation. Instead of describing the original scheme, we present in Sections 4 and 5 a
modified version of the system that fixes the vulnerability and results in a shorter IVC proof.
We present the scheme as a compiler that compilers a Nova-like folding scheme into an IVC
proof using a cycle of curves. In Section 6 we prove knowledge soundness of this modified
system. We followed responsible disclosure best practice and coordinated patches with the
Nova authors. The Nova implementation has now been updated [19] to use this optimized
and secure system.

Second, in Section 8, we show that Nova’s IVC proofs are malleable, which can lead to a
security vulnerability in some applications. We also discuss strategies to mitigate this issue.

We begin by establishing in Sections 2 and 3 the terminology needed to describe the
2-cycle Nova system (i.e the 2-cycle Nova IVC Scheme).

2 Preliminaries

2.1 Incrementally Verifiable Computation (IVC)
Incrementally verifiable computation, or IVC, was introduced by Valiant [21]. For a function
F : {0, 1}a × {0, 1}b → {0, 1}a, and some public values z0, zi ∈ {0, 1}a, an IVC scheme lets
a prover generate a succinct proof that it knows auxiliary values aux0, . . . , auxi−1 ∈ {0, 1}b

such that

aux0 aux1 auxi−1
↓ ↓ ↓

z0 → F → F → · · · → F → zi

The following definition gives the syntax and security properties for an IVC scheme. The
prover P in this definition computes a proof for one step in the IVC chain. Iterating the
prover will produce a proof πi for the entire chain of length i.

▶ Definition 1 (IVC [21]). An IVC Scheme is a tuple of efficient algorithms (Setup,P,V)
with the following interface:

Setup(1λ, n) → pp: Given a security parameter 1λ, a poly-size bound n ∈ ℕ, outputs
public parameters pp.
P(pp, F, (i, z0, zi), auxi, πi)→ πi+1: Given public parameters pp, a function F : {0, 1}a ×
{0, 1}b → {0, 1}a computable by a circuit of size at most n, an index i ∈ ℕ, an initial
input z0 ∈ {0, 1}a, a claimed output zi ∈ {0, 1}a, advice auxi ∈ {0, 1}b, and an IVC proof
πi, outputs a new IVC proof πi+1.
V(pp, F, (i, z0, zi), πi) → 0/1: Given public parameters pp, a function F, an index i, an
initial input z0, a claimed output zi, and an IVC proof πi, outputs 0 (reject) or 1 (accept).
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An IVC Scheme satisfies the following properties:

Completeness. For every poly-size bound n ∈ ℕ, for every pp in the output space of
Setup(1λ, n), for every function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within
the poly-size bound n, for every collection of elements (i ∈ ℕ, z0, zi ∈ {0, 1}a), auxi ∈ {0, 1}b,
and IVC proof πi,

Pr

 V(pp, F, (i, z0, zi), πi) = 1
⇓

V(pp, F, (i + 1, z0, zi+1), πi+1) = 1
: πi+1 ← P(pp, F, (i, z0, zi), auxi, πi),

zi+1 ← F (zi, auxi)

 = 1

Knowledge Soundness. Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the
security parameter. Let F be an efficient function sampling adversary that outputs a function
F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within the poly-size bound n. Then for
every efficient IVC prover P ∗, there exists an efficient extractor E such that the probability

Pr



V(pp, F, (i, z0, zi), πi) = 1ww�
zi = F(zi−1, auxi−1) ∧

(i = 1 ⇒ zi−1 = z0) ∧
(i > 1 ⇒ V(pp, F, (i− 1, z0, zi−1), πi−1) = 1)

:
pp← Setup(1λ, n),
ρ← {0, 1}ℓ(λ),

F← F(pp; ρ),
(i, z0, zi, πi)← P ∗(pp; ρ),
(zi−1, auxi−1), πi−1 ← E(pp; ρ)


is greater than or equal to 1− negl(λ).

▶ Remark 2 (Full Extraction). Our definition of knowledge soundness implies other notions
of IVC knowledge soundness, which require the extraction of all the auxiliary values in the
execution chain [12, 11, 1, 2]. Informally, consider some ρ and pp sampled at random, and
an adversary P ∗(pp; ρ) that outputs a proof for i iterations of the IVC. Then the knowledge
extractor E can be used to construct an IVC prover for a proof of i− 1 iterations. Applying
the definition again to the prover derived from E implies that there is a knowledge extractor
E ′ that outputs a valid (zi−2, auxi−2), πi−2 with all but negligible probability. We can repeat
this argument inductively to extract a vector of auxiliary values (auxi−1, . . . , aux0) that shows
that the zi output by P ∗ is computed correctly from z0. Note that if time(E) > c · time(P ∗)
for some constant c > 1, then this argument only works for O(log λ) steps before the running
time of the extractor becomes super-polynomial in λ. We use this sequential IVC model for
consistency with the original Nova [12, 14]. In certain applications, a tree-like IVC proof
system might be preferable.

▶ Remark 3 (Zero Knowledge). In some settings one also wants the IVC scheme to be zero
knowledge, but in this writeup we focus on knowledge soundness of the scheme.

2.2 Committed Relaxed R1CS over a Ring

The Nova Proof system over a cycle of curves (2-cycle Nova system) makes use of two finite
fields 𝔽1 and 𝔽2 simultaneously. As such, it is convenient to treat the primitives used in Nova
as operating on the finite commutative ring R := 𝔽1 × 𝔽2, where addition and multiplication
are defined component wise. That is, for a = (a1, a2) and b = (b1, b2) in R, we define
a + b = (a1 + a2, b1 + b2) and a · b = (a1b1, a2b2).
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18:4 Revisiting the Nova Proof System on a Cycle of Curves

▶ Definition 4 (Commitment Scheme). Let R be a finite commutative ring. A commitment
scheme for vectors over R is a pair of efficient algorithms (Setupcom, Commit) with the
following interface:

Setupcom(1λ, R, n)→ ppcom: Given a security parameter 1λ ∈ 1ℕ, a description of a ring
R, and a poly-size bound n ∈ ℕ, outputs public parameters ppcom.
Commit(ppcom, x) → c: Given public parameters ppcom and input x ∈ Rn, outputs a
commitment c.

These algorithms need to satisfy the following properties.
Binding: Let n ∈ ℕ be a poly-size bound. For every efficient adversary A and for every
finite commutative ring R whose size is at most exponential in λ,

Pr
[

Commit(ppcom, x0) = Commit(ppcom, x1) ∧
x0 ̸= x1

: ppcom ← Setupcom(1λ, R, n)
(x0, x1)← A(ppcom)

]
≤ negl(λ)

Additively Homomorphic: Given two commitments c← Commit(ppcom, x), c′ ← Commit(
ppcom, x′) to vectors x, x′ ∈ Rn (not necessarily distinct), there is an efficient homo-
morphism ⊕ on commitments such that c⊕ c′ = Commit(ppcom, x + x′).
Succinct: For any x ∈ Rn, the commitment c ← Commit(ppcom, x) must have size
|c| ≤ poly(λ, log(n)).

▶ Definition 5 (Committed Relaxed R1CS over a Ring). Consider m, n, ℓ ∈ ℕ where m > ℓ

and a finite commutative ring R. Further, consider a commitment scheme Commit for vectors
over R, where ppW and ppE are commitment parameters for vectors of size m− ℓ− 1 and n

respectively.
A committed relaxed R1CS instance is a tuple 𝕌 := (Ē, s, W̄ , x), where Ē and W̄

are commitments, s ∈ R, and x ∈ Rℓ.
A committed relaxed R1CS instance 𝕌 = (Ē, s, W̄ , x) is satisfiable with respect to an
R1CS constraint system R1CS := (A, B, C ∈ Rn×m) if there exist a relaxed witness
𝕎 := (E ∈ Rn, W ∈ Rm−ℓ−1) such that

Ē = Commit(ppE , E), W̄ = Commit(ppW , W ), and (A ·Z)◦(B ·Z) = s ·(C ·Z)+E

where Z = (W, x, s). We refer to E as the error vector and W as the extended
witness.
An instance-witness pair (𝕌,𝕎) satisfies a constraint system R1CS if 𝕎 is a satisfying
relaxed witness for 𝕌. An instance-witness pair (𝕦,𝕨) pair strictly satisfies an R1CS
constraint system R1CS if (1) the pair satisfies R1CS and (2) 𝕦.Ē = 0̄ is the commitment
to the zero vector and s = 1.

▶ Remark 6 (Trivially Satisfiable Instance-Witness Pairs). A committed instance-witness pair
(𝕌⊥,𝕎⊥) will denote a trivially satisfying pair for an R1CS constraint system R1CS over
R. In Nova [12], this pair is constructed by setting E, W, and x to appropriately sized zero
vectors, Ē, W̄ to be commitments to the zero vectors, and s equal to 0.

2.3 A Folding Scheme for Committed Relaxed R1CS over a Ring
Folding schemes give an efficient approach to IVC. In recent years, several works [2, 12, 11,
1, 13, 17] constructed efficient folding schemes for different problems. Nova [12] introduces
an elegant folding scheme, for folding two committed relaxed R1CS instances and their
witnesses. Nova’s folding scheme is a public-coin, one-round interactive protocol that is made
non-interactive in the random oracle model using the Fiat-Shamir transform. Additionally,
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Nova heuristically instantiates the random oracle with a concrete hash function and assumes
that this heuristic produces a protocol that is knowledge sound. A similar assumption is
used in other recursive proof systems [2, 11, 1].

▶ Definition 7. A Non-Interactive Folding Scheme for Committed Relaxed R1CS
consists of an underlying commitment scheme (Setupcom, Commit) (Definition 4) for commit-
ted relaxed instances (Definition 5) and a tuple of efficient algorithms (FoldSetup, FoldK, FoldP ,

FoldV) with the following interface:
FoldSetup(1λ, n) → pp: Given a security parameter 1λ ∈ 1ℕ, a poly-size bound n ∈ ℕ,
outputs public parameters pp which contain the description of a finite commutative ring
R and commitment parameters ppcom for vectors over R within the size bound n.
FoldK(pp, R1CS)→ (pk, vk) Given public parameters pp, an R1CS constraint system R1CS
over R within the poly-size bound n, outputs proving key pk and verifier key vk.
FoldP (pk, (𝕦,𝕨), (𝕌,𝕎))→

(
T̄, (𝕌′,𝕎′)

)
: Given a proving key pk, two committed relaxed

R1CS instance-witness pairs (𝕦,𝕨), (𝕌,𝕎), outputs a folding proof T̄ in the commitment
space, and a new committed relaxed R1CS instance-witness pair (𝕌′,𝕎′).
FoldV

(
vk, 𝕦,𝕌, T̄

)
→ 𝕌′: Given a verification key vk, two committed relaxed R1CS

instances 𝕦,𝕌, and a folding proof T̄, outputs a new committed relaxed R1CS instance 𝕌′.

These algorithms need to satisfy the following properties:

Completeness. For every poly-size bound n′ ∈ ℕ, for every pp in the output space of
FoldSetup(1λ, n′), for every poly-size m, n, ℓ ∈ ℕ where m > ℓ, n′ > m − ℓ − 1, n′ > n, for
every R1CS constraint system R1CS := (A, B, C ∈ Rn×m), for every committed relaxed
instance-witness pair (𝕦,𝕨), (𝕌,𝕎) for R1CS,

Pr


𝕌′ = 𝕌′′

∧
(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS
=⇒ (𝕌′,𝕎′) satisfies R1CS

:
(pk, vk)← FoldK(pp, R1CS),(
T̄, (𝕌′,𝕎′)

)
← FoldP (pk, (𝕦,𝕨), (𝕌,𝕎)) ,

𝕌′′ ← FoldV
(
vk, 𝕦,𝕌, T̄

)
 = 1

Knowledge Soundness. Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the
security parameter. For every efficient adversary P∗, there exist an efficient extractor E such
that the probability

Pr


𝕌′ = FoldV(vk, 𝕦,𝕌, T̄) ∧
(𝕌′,𝕎′) satisfies R1CSw�

(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS

:

pp← FoldSetup(1λ, n),
ρ← {0, 1}ℓ(λ),(
R1CS, (𝕦,𝕌, T̄), (𝕌′,𝕎′)

)
← P∗(pp; ρ),

(pk, vk)← FoldK(pp, R1CS),
(𝕨,𝕎)← E(pp; ρ)


is ≥ 1− negl(λ). In words, the definition of knowledge soundness states that if an adversary
P∗ can create a folded statement 𝕌′ of two statements 𝕦 and 𝕌 and a satisfying witness 𝕎′

for 𝕌′, then an extractor E for P∗ can produce satisfying witnesses 𝕨 for 𝕦 and 𝕎 for 𝕌.

Collision resistance. The Nova construction also uses collision resistant hash functions. To
be comprehensive, we define these next.
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18:6 Revisiting the Nova Proof System on a Cycle of Curves

▶ Definition 8 (Collision Resistant Hash Functions). Let R be a finite commutative ring such
that |R| ≈ 2λ. A hash function for R is a pair of efficient algorithms (SetupH, H) with the
following interface:

SetupH(1λ, R)→ ppH: Given a security parameter 1λ ∈ 1ℕ and a description of R, outputs
public parameters ppH.
H(ppH, x)→ h: Given public parameters ppH and input x ∈ R∗, outputs a hash h ∈ R.

A hash function is collision resistant if for every efficient adversary A,

Pr
[

H(ppH, m0) = H(ppH, m1) ∧
m0 ̸= m1

: ppH ← SetupH(1λ, R)
(m0, m1)← A(ppH)

]
≤ negl(λ)

3 The Nova Proof System over a Cycle of Curves: Preliminary Details

In this section and the next, we describe details about the underlying primitives in the 2-cycle
Nova System [14]. Section 5 describes the explicit operation of the modified IVC verifier and
modified IVC prover.

Cycle of Elliptic Curves. To reduce the number of constraints related to group operations,
the implementation of Nova uses a cycle of elliptic curves for which the discrete log problem
is hard. Specifically, the Nova implementation is generic over any cycle of elliptic curves
that implements certain Rust traits (Nova implements those traits for the pasta cycle of two
curves [16]). We denote the elliptic curve groups as 𝔾1 and 𝔾2. We refer to the scalar field of
an elliptic curve group 𝔾 as the field 𝔽 whose order is |𝔾|, and the base field of 𝔾 as the field
𝔽 ′ over which the elliptic curve is defined (i.e. the points have the form (x, y) ∈ 𝔽 ′ × 𝔽 ′).

The group 𝔾1 has scalar field 𝔽1 and base field 𝔽2, while 𝔾2 has scalar field 𝔽2 and base
field 𝔽1. Group operations for 𝔾1 can be efficiently expressed as constraints over the base
field 𝔽2. Symmetrically, group operations for 𝔾2 can be efficiently expressed as constraints
over the base field 𝔽1. The groups 𝔾1 and 𝔾2 will be the commitment spaces for Pedersen
vector commitments for vectors over 𝔽1 and 𝔽2 respectively.

Groups and Rings. We define the ring R := 𝔽1 × 𝔽2 as the set of tuples with one element in
𝔽1 and another in 𝔽2. We can naturally define the ring operations as the component-wise
field operations. Similarly, define the group 𝔾 := 𝔾1 × 𝔾2 and it’s group operation as the
component-wise group operation.

Commitments. In Nova, the folding procedure requires additively homomorphic com-
mitments to vectors over a field 𝔽 . Their specific construction [12] uses Pedersen vector
commitments belonging to a group 𝔾 of order |𝔽 |, for which the discrete log problem is hard.
Nova’s implementation [14] is generic over the commitment scheme and one can supply a
different commitment scheme for vectors, but we restrict our attention to Pedersen vector
commitments in this paper.

We generalize the Pedersen vector commitment to the ring R := 𝔽1 × 𝔽2 by composing
a Pedersen vector commitment over 𝔽1 with commitment space 𝔾1 and a Pedersen vector
commitment over 𝔽2 with commitment space 𝔾2. We write x(1) ∈ 𝔽n

1 and x(2) ∈ 𝔽n
2 for

the left and right projections of a vector x ∈ Rn. Then, the commitment to x is a pair of
commitments: a commitment to x(1) ∈ 𝔽n

1 and a commitment to x(2) ∈ 𝔽n
2 . Concretely, this

commitment to the vector x ∈ Rn will be an element in 𝔾 := 𝔾1 × 𝔾2.
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Committed relaxed instances. Consider two R1CS constraint systems

R1CS(1) := (A1, B1, C1 ∈ 𝔽n1×m1
1 ) and R1CS(2) := (A2, B2, C2 ∈ 𝔽n2×m2

2 )

defined over 𝔽1 and 𝔽2, respectively. A committed relaxed instance for R1CS(1) is a tuple

𝕌(1) :=
(
Ē(1), s(1), W(1), x(1)) where Ē(1), W(1) ∈ 𝔾1, s(1) ∈ 𝔽1, x(1) ∈ 𝔽 ℓ1

1 .

The corresponding relaxed witness 𝕎(1) = (E(1), W (1)) has an error vector E(1) ∈ 𝔽n1
1 and

extended witness W (1) ∈ 𝔽m1−ℓ1−1
1 . Symmetrically, a committed relaxed instance for R1CS(2)

is a tuple

𝕌(2) :=
(
Ē(2), s(2), W(2), x(2)) where Ē(2), W(2) ∈ 𝔾2, s(2) ∈ 𝔽2, x(2) ∈ 𝔽 ℓ2

2 .

The corresponding relaxed witness 𝕎(2) = (E(2), W (2)) has error vector E(2) ∈ 𝔽n2
2 and

W (2) ∈ 𝔽m2−ℓ2−1
2 .

The two constraint systems R1CS(1) over 𝔽1 and R1CS(2) over 𝔽2 can be treated as a
single constraint system R1CS := (A, B, C ∈ Rn×m) over R := 𝔽1 × 𝔽2. The constraint
systems R1CS(1) and R1CS(2) are simply the left and right projections of R1CS. A strict
projection of R1CS would require the dimensions of R1CS(1) and R1CS(2) to be identical to
the dimensions of R1CS. In practice, R1CS(1) and R1CS(2) can have different dimensions.
When abstractly combining the constraint systems to obtain R1CS, we can pad the systems
with dummy rows and columns so that R1CS(1) and R1CS(2) have the same dimension. In
particular, m = max(m1, m2), n = max(n1, n2), and l = max(l1, l2). Similarly, we can
treat instance-witness pairs (𝕌(1),𝕎(1)), (𝕌(2),𝕎(2)) as the left and right projection of an
instance-witness pair (𝕌,𝕎) for R1CS.

Hash Functions. Hash functions H1 : 𝔽 ∗
1 → 𝔽1 and H2 : 𝔽 ∗

2 → 𝔽2 are collision resistant hash
functions that take as input an arbitrary number of field elements and output a single field
element which encodes the hash. In Nova, this single field element can be represented as a
scalar whose bit representation is at most 250 bits long. Thus, the output hash has a unique
representation in both fields, whose elements are 256 bits.1

Concretely, define h1 := H1(. . . ) as the output of H1 for some arbitrary input elements
(. . . ) ∈ 𝔽 ∗

1 . The hash can be expressed as h1 =
∑

i≤250 b
(1)
i · (2(1))i where 2(1) ∈ 𝔽1 and for

all i ≤ 250, b
(1)
i ∈ 𝔽1 are bits in {0, 1}. The hash output h1 :=

∑
i≤250 b

(1)
i · (2(1))i in 𝔽1 can

be represented as an element h′
1 in 𝔽2. To do so, define h′

1 :=
∑

i≤250 b
(2)
i · (2(2))i where for

all i, the bit b
(2)
i ∈ 𝔽2 is the same the bit b

(1)
i ∈ 𝔽1 (i.e. if b

(1)
i = 1(1), we define b

(2)
i = 1(2)

otherwise b
(2)
i = 0(2)). Symmetrically, a hash output h2 :=

∑
i≤250 b

(2)
i · (2(2))i in 𝔽2 can be

represented as an element h′
2 in 𝔽1 in the same way.

Similarly, the hash function H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function
whose outputs can be represented uniquely in both fields. We omit the hash parameters for
H for ease of presentation. The Nova implementation [14] uses the Poseidon hash function [8]
for H1 and H2 and SHA-3 [6] for H.

1 The size of a digest is configurable, but a digest length of 250 bits was chosen to support a variety of
popular curve cycles e.g., secp/secq, pallas/vesta (pasta curves), BN254/Grumpkin.
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3.1 Folding over a Cycle of Curves
In Nova [12], a non-interactive folding scheme in the random oracle model is constructed by
applying the Fiat-Shamir transform [7] to an interactive folding scheme. By instantiating the
random oracle with an appropriate cryptographic hash function, they heuristically obtain
a non-interactive folding scheme in the plain model. The construction described in [12]
is limited to an R1CS constraint system R1CS defined over a field 𝔽 with commitments
belonging to a group 𝔾 (with scalar field 𝔽 ).

We extend the construction to R1CS constraint systems R1CS defined over a ring R :=
𝔽1 × 𝔽2 by composing a folding scheme for R1CS constraint systems defined over 𝔽1 and
a folding scheme for R1CS constraint systems defined over 𝔽2. When we fold committed
relaxed instances for R1CS(1), we implicitly mean run the folding scheme for systems over 𝔽1.
Symmetrically, when we fold committed relaxed instances for R1CS(2), we implicitly mean
run the folding scheme for systems over 𝔽2. However, the random oracle calls used in both
folding scheme will need to take in an argument vk, which is derived from both systems. We
describe this in more detail in the description of FoldK.

3.1.1 Folding Setup
FoldSetup takes in as input:

A security parameter 1λ.
A poly-size bound n ∈ ℕ.

The algorithm performs the following steps:
1. Sample a cycle of elliptic curves (𝔾1, 𝔽1,𝔾2, 𝔽2)← SampleCycle(1λ).
2. Sample collision resistant hash parameters ppH1 ← SetupH(1λ, 𝔽1), ppH2 ← SetupH(1λ, 𝔽2).
3. Sample commit params ppcom1 ← Setupcom(1λ, 𝔽1, n) and ppcom2 ← Setupcom(1λ, 𝔽2, n). 2

4. Output pp :=
(
(𝔾1, 𝔽1,𝔾2, 𝔽2), ppH1 , ppH2 , ppH, ppcom1 , ppcom2

)
.

3.1.2 Folding Keygen
FoldK takes in as input:

Public parameters pp
An R1CS constraint system R1CS over R within the poly-size bound n.

The algorithm performs the following steps:
1. Assign the verification key vk to a hash digest of the public parameters and constraint

systems

vk← H
(
pp, R1CS := (R1CS(1), R1CS(2))

)
(1)

2. Assign the proving key pk← pp to be the public parameters.
3. Output (pk, vk).

The Verification Key. The Nova folding scheme is derived from an interactive protocol
via the Fiat-Shamir transform [7]. As such, queries to the random oracle must include a
description of the entire environment. Concretely, let H be an appropriate cryptographic hash
function that heuristically instantiates a random oracle and whose outputs can be represented
uniquely in both fields. The vk element (assigned in (1)) denotes a hash digest of the

2 The commitment parameters ppE , ppW will be prefixes of ppcom where the length is max
(
|E|, |W |

)
.
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environment. FoldV incorporates the elements vk, 𝕦,𝕌, T̄ as arguments to its random oracle.
We stress that this is needed to preserve the soundness of the Fiat-Shamir transform [4], as
these digest elements represent inputs to the folding verifier when viewed as an interactive
protocol.

4 The Augmented Constraint Systems Used in Nova

The 2-cycle Nova IVC Scheme operates on a pair of functions F1 and F2, one for each
field. Abstractly, one can treat Nova as an IVC scheme for the combined function F :
(𝔽 a1

1 × 𝔽 a2
2 )× (𝔽 b1

1 × 𝔽 b2
2 )→ (𝔽 a1

1 × 𝔽 a2
2 ) of the form(

(z(1), z(2)), (aux(1), aux(2))
) F7−→

(
F1(z(1), aux(1)), F2(z(2), aux(2))

)
where F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 are poly-size arithmetic circuits over

𝔽1 and 𝔽2 respectively.

The 2-cycle Nova IVC scheme aims to prove that (z(1)
i , z

(2)
i ) is the result of iterating the

function F = (F1, F2) a total of i times starting from the input (z(1)
0 , z

(2)
0 ) and using some

auxiliary inputs. Every iteration of the IVC uses two R1CS constraint systems, one over
𝔽1 and one over 𝔽2, to verify that the functions F1 and F2 were evaluated correctly in that
iteration. However, Nova augments these core constraint systems with additional constraints
to verify that folding is done correctly at every iteration, and that the outputs of the previous
iteration are properly forward to the current iteration. In this section we describe the two
augmented constraint systems in detail.

The augmented constraint systems. The 2-cycle Nova IVC Scheme defines two augmented
R1CS constraint systems R1CS(1) and R1CS(2) over 𝔽1 and 𝔽2. As noted in Section 3, a
group operation for 𝔾1 can be efficiently expressed as constraints in the base field 𝔽2. Since
the folding operation requires group operations in 𝔾1, the Nova implementation does the
folding of the committed instances 𝕦(1) and 𝕌(1) for R1CS(1) in the constraints of R1CS(2).
Symmetrically, the Nova implementation does the folding of the committed instances 𝕦(2)

and 𝕌(2) for R1CS(2) in the constraints of R1CS(1).

The constraint systems R1CS(1) and R1CS(2) are defined as follows:
let R1CS(1) be the R1CS constraint system for the relation R1 defined in Figure 1a.
let R1CS(2) be the R1CS constraint system for the relation R2 defined in Figure 1b.

Intuitively, each constraint system applies one step of its function zi+1 := F(zi, auxi), folds a
prior committed instance 𝕦 into a running committed instance 𝕌 for the opposite constraint
system, maintains the original inputs z0, and updates the iteration index i. The public inputs
𝕦(1).x := (x0, x1) and 𝕦(2).x := (x0, x1) denote hashes that can be uniquely represented in
both fields. We will explain these constraint systems in more detail when we describe the
operation of the prover in Section 5.3.

Representation of Non-native Field elements and Arithmetic. Folding two committed
instances 𝕦(1) and 𝕌(1) requires not only group operations over 𝔾1, but also field operations
over 𝔽1. However, the R1CS constraint system R1CS(2) over 𝔽2 has to encode the folding
operation as constraints over 𝔽2. To account for this, 𝔽1 elements are encoded appropriately
as 𝔽2 elements such that non-native arithmetic can be expressed as 𝔽2 constraints. The same
strategy is symmetrically applied for folding constraints in R1CS(1).
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R1 :=




𝕦(1)

i+1.x := (x0, x1 ∈ 𝔽1) ;
ŵ

(1)
i+1 :=

(
vk ∈ 𝔽1, i(1) ∈ 𝔽1, z

(1)
0 , z

(1)
i ∈ 𝔽 a1

1 ,

aux(1)
i ∈ 𝔽 b1

1 , 𝕌(2)
i , 𝕦(2)

i ∈ U (2), T̄(2)
i ∈ 𝔾2

)
where U (2) := 𝔾2 × 𝔽2 × 𝔾2 × 𝔽 2

2

 :

If i(1) = 0(1) :
Then set 𝕌(2)

i+1 := 𝕌(2)
⊥

Else set 𝕌(2)
i+1 := FoldV

(
vk, 𝕦(2)

i ,𝕌(2)
i , T̄(2)

i

)
Accept if :

If i(1) = 0(1) then z
(1)
i = z

(1)
0

𝕦(2)
i .Ē = 0̄(2)

𝕦(2)
i .s = 1(2)

𝕦(2)
i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i , 𝕌(2)

i

)
x0 = 𝕦(2)

i .x1

x1 = H1
(
vk, (i + 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z(1)

i , aux(1)
i ), 𝕌(2)

i+1
)


(a) The relation R1 defining the R1CS constraint system R1CS(1) on instance-witness pairs

(
𝕦(1)

i+1.x ; ŵ
(1)
i+1

)
.

R2 :=




𝕦(2)

i+1.x := (x0, x1 ∈ 𝔽2) ;
ŵ

(2)
i+1 :=

(
vk ∈ 𝔽2, i(2) ∈ 𝔽2, z

(2)
0 , z

(2)
i ∈ 𝔽 a2

2 ,

aux(2)
i ∈ 𝔽 b2

2 , 𝕌(1)
i , 𝕦(1)

i+1 ∈ U (1), T̄(1)
i ∈ 𝔾1

)
where U (1) := 𝔾1 × 𝔽1 × 𝔾1 × 𝔽 2

1

 :

If i(2) = 0(2) :
Then set 𝕌(1)

i+1 := 𝕦(1)
i+1

Else set 𝕌(1)
i+1 := FoldV

(
vk, 𝕦(1)

i+1,𝕌(1)
i , T̄(1)

i

)
Accept if :

If i(2) = 0(2) then z
(2)
i = z

(2)
0

𝕦(1)
i+1.Ē = 0̄(1)

𝕦(1)
i+1.s = 1(1)

𝕦(1)
i+1.x0 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i , 𝕌(1)

i

)
x0 = 𝕦(1)

i+1.x1

x1 = H2
(
vk, (i + 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z(2)

i , aux(2)
i ), 𝕌(1)

i+1
)


(b) The relation R2 defining the R1CS constraint system R1CS(2) on instance-witness pairs

(
𝕦(2)

i+1.x ; ŵ
(2)
i+1

)
.
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Hash parameters. The hash parameters ppH1 and ppH2 for H1 and H2 are hard-coded in
the respective constraint systems. We omit the hash parameters in our paper for ease of
notation, but implicitly call the hash function with their respective parameters generated in
the IVC Setup.

Symmetry. If we omit the base case constraints, R1CS(1) and R1CS(2) are essentially
symmetric constraint systems. The difference in indexing, 𝕦(2)

i versus 𝕦(1)
i+1, is a notional

choice that does not affect the symmetry. Additionally, we want to highlight that the only
constraint on 𝕦(1)

i+1.x0 and 𝕦(2)
i+1.x0 are that they equal 𝕦(2)

i .x1 and 𝕦(1)
i+1.x1 respectively. As

described in Section 3, hash values can be represented in both fields uniquely; thus, this
equality is well-defined. Essentially, these copy constraints pass along the hashes meant
for the public IO of the opposite instance. We will describe this strategy in more detail in
Section 5.3.

5 The Modified Nova IVC Scheme

This section describes a modification to the prior (vulnerable) 2-cycle Nova proof system.
In Section 6, we prove our modified system is knowledge sound (Definition 1).

5.1 Setup
The Nova Setup algorithm Setup takes in as input:

A security parameter 1λ.
A poly-size bound n ∈ ℕ.

The algorithm outputs pp← FoldSetup(1λ, n).

5.2 The Modified Nova Verifier
In this section, we describe a modified version of the 2-cycle Nova IVC verifier that patches
a vulnerability found in the prior implementation. The algorithm is similar to the prior
(vulnerable) 2-cycle Nova IVC verifier (Section 7.1), but the input IVC proof πi omits a
pair (𝕦(1)

i ,𝕨(1)
i ),which caused the original vulnerability. We provide a proof of knowledge

soundness of our modified scheme in Section 6.

The Nova Verifier V takes in as input:
IVC public parameters pp,
a description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 ,

an index i ∈ ℕ,
starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 ,
claimed evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 , and
an IVC Proof for iteration i, namely πi :=

(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The verifier first runs the following initial procedure, which can be treated as a preprocessing
phase:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b
2. Compute the folding verification key

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)
Then, the verifier accepts if the following six conditions are met:
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prover steps (1)+(2)

H1( …, )𝕌(2)
𝑖+1

 𝕦(1)
𝑖+1

 𝕦(2)
𝑖

 𝕌(2)
𝑖  𝕌(2)

𝑖+1
Fold(  , ) 𝕦(2)

𝑖 𝕌(2)
𝑖

prover steps (3)+(4)

H2( …, )𝕌(1)
𝑖+1

 𝕦(2)
𝑖+1 𝕦(1)

𝑖+1

 𝕌(1)
𝑖

 𝕌(1)
𝑖+1Fold( , ) 𝕦(1)

𝑖+1 𝕌(1)
𝑖

prover steps (1)+(2)

H1( …, )𝕌(2)
𝑖+2

 𝕦(1)
𝑖+2

 𝕌(2)
𝑖+2

Fold( , ) 𝕦(2)
𝑖+1 𝕌(2)

𝑖+1 

prover steps (3)+(4)

H2( …, )𝕌(1)
𝑖+2

 𝕦(2)
𝑖+2

 𝕌(1)
𝑖+2Fold( , ) 𝕦(1)

𝑖+2 𝕌(1)
𝑖+1

 𝕦(1)
𝑖+2

 𝕦(2)
𝑖+1  𝕦(2)

𝑖+2

  𝕦(2)
𝑖

Figure 2 An illustration of the key parts of the prover’s operation in the non-base case.

1. The index i must be greater than 0.
2. 𝕦(2)

i .x0 = H1
(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)

i .x1 = H2
(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. The pair (𝕌(1)

i ,𝕎(1)
i ) satisfies R1CS(1).

5. The pair (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).
6. The pair (𝕦(2)

i ,𝕨(2)
i ) strictly satisfies R1CS(2).

5.3 The Modified Nova Prover
In this section, we describe a modified 2-cycle Nova IVC prover. The algorithm is similar to
the prior 2-cycle Nova IVC prover, but the generated IVC proof πi+1 omits a pair (𝕦(1)

i+1,𝕨(1)
i+1),

which caused the original vulnerability (Section 7.1). We first describe an initial procedure,
then the base case step of the Nova prover, and then the recursive step as illustrated
in Figure 2.

5.3.1 Initial Procedure
The prover performs an initial procedure identical to the initial procedure of the verifier:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2.
2. Compute the folding prover and verifier key

(pk, vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)

5.3.2 The Base Case
The Nova Prover P takes in as input:
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IVC public parameters pp.
A description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 .

Starting values z
(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .
Auxiliary inputs aux(1)

0 ∈ 𝔽 b1
1 and aux(2)

0 ∈ 𝔽 b2
2 .

The prover proceeds as follows:

Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
1 ,𝕨(1)

1 ) for
R1CS(1) as follows:

Define an initial dummy instance as 𝕦(2)
0 :=

(
0̄(2), 1(2), 0̄(2), x := (x0, x1)

)
where

x0 := H1
(
vk, 0(1), z

(1)
0 , z

(1)
0 , 𝕌(2)

⊥
)

and x1 := H2
(
vk, 0(2), z

(2)
0 , z

(2)
0 , 𝕌(1)

⊥
)

This instance will not be folded into any running instance.
Define ŵ

(1)
1 := (vk, 0(1), z

(1)
0 , z

(1)
0 , aux(1)

0 ,𝕌(2)
⊥ , 𝕦(2)

0 , 0̄(2)) as the relation witness for R1.
Then, compute the extended witness w

(1)
1 by performing the computation on ŵ

(1)
1

required to satisfy the constraints expressed in R1CS(1).
Commit to the extended witness w̄(1)

1 ← Commit
(
pp(1)

W , w
(1)
1

)
.

Define 𝕌(2)
1 := 𝕌(2)

⊥ and 𝕎(2)
1 := 𝕎(2)

⊥ .
Define x0 := 𝕦(2)

0 .x1 and x1 := H1
(
vk, 1(1), z

(1)
0 , z

(1)
1 := F1(z(1)

0 , aux(1)
0 ),𝕌(2)

1
)
.

Assign 𝕦(1)
1 :=

(
0̄(1), 1(1), w̄(1)

1 , (x0, x1)
)

and 𝕨(1)
1 :=

(⃗
0(1), w

(1)
1

)
.

Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
1 ,𝕨(2)

1 ) for
R1CS(2) as follows:

Define ŵ
(2)
1 := (vk, 0(2), z

(2)
0 , z

(2)
0 , aux(2)

0 ,𝕌(1)
⊥ , 𝕦(1)

1 , 0̄(1)) as the relation witness for R2.
Then, compute the extended witness w

(2)
1 by performing the computation on ŵ

(2)
1

required to satisfy the constraints expressed in R1CS(2).
Commit to the extended witness w̄(2)

1 ← Commit(pp(2)
W , w

(2)
1 ).

Define 𝕌(1)
1 := 𝕦(1)

1 and 𝕎(1)
1 := 𝕨(1)

1 .
Define x0 := 𝕦(1)

1 .x1 and compute x1 := H2
(
vk, 1(2), z

(2)
0 , z

(2)
1 := F2(z(2)

0 , aux(2)
0 ),𝕌(1)

1
)
.

Assign 𝕦(2)
1 :=

(
0̄(2), 1(2), w̄(2)

1 , (x0, x1)
)

and 𝕨(2)
1 :=

(⃗
0(2), w

(2)
1

)
.

Output Prover State: Output IVC Proof for step 1

π1 :=
(
(𝕦(2)

1 ,𝕨(2)
1 ), (𝕌(1)

1 ,𝕎(1)
1 ), (𝕌(2)

1 ,𝕎(2)
1 )

)
along with new evaluations z

(1)
1 := F1(z(1)

0 , aux(1)
0 ) and z

(2)
1 := F2(z(2)

0 , aux(2)
0 ). These

outputs are sufficient to execute another step of the Nova prover for iteration 1.

5.3.3 The Non-Base Case
The Nova Prover P takes in as input:

IVC public parameters pp.
Constraint Systems R1CS(1) and R1CS(2).
An index i ∈ ℕ, where i ≥ 1.
Starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .
Evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .
Auxiliary inputs aux(1)

i ∈ 𝔽 b1
1 and aux(2)

i ∈ 𝔽 b2
2 .

An IVC Proof for Iteration i πi :=
(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The prover proceeds as follows (see also Figure 2):
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1. Fold Prior Pairs for R1CS(2): Fold the committed pairs (𝕦(2)
i ,𝕨(2)

i ) and (𝕌(2)
i ,𝕎(2)

i )
for R1CS(2).

FoldP
(
pk, (𝕦(2)

i ,𝕨(2)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
→

(
T̄(2)

i , (𝕌(2)
i+1,𝕎(2)

i+1)
)

Obtain a folding proof T̄(2)
i and new committed relaxed instance-witness pair (𝕌(2)

i+1,𝕎(2)
i+1).

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
i+1,𝕨(1)

i+1) for
R1CS(1) as follows:

Define ŵ
(1)
i+1 := (vk, i(1), z

(1)
0 , z

(1)
i , aux(1)

i ,𝕌(2)
i , 𝕦(2)

i , T̄(2)
i ) as the relation witness for R1.

Then, compute the extended witness w
(1)
i+1 by performing the computation on ŵ

(1)
i+1

required to satisfy the constraints expressed in R1CS(1).
Commit to the extended witness w̄(1)

i+1 ← Commit(pp(1)
W , w

(1)
i+1).

Define x0 := 𝕦(2)
i .x1 and x1 := H1

(
vk, (i + 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z(1)

i , aux(1)
i ),𝕌(2)

i+1
)
.

Assign 𝕦(1)
i+1 :=

(
0̄(1), 1(1), w̄(1)

i+1, (x0, x1)
)

and 𝕨(1)
i+1 :=

(⃗
0(1), w

(1)
i+1

)
.

3. Fold Pairs for R1CS(1): Fold the newly computed pair (𝕦(1)
i+1,𝕨(1)

i+1) with the committed
pair (𝕌(1)

i ,𝕎(1)
i ) for R1CS(1).

FoldP
(
pk, (𝕦(1)

i+1,𝕨(1)
i+1), (𝕌(1)

i ,𝕎(1)
i )

)
→

(
T̄(1)

i , (𝕌(1)
i+1,𝕎(1)

i+1)
)

Obtain a folding proof T̄(1)
i and new committed relaxed instance-witness pair (𝕌(1)

i+1,𝕎(1)
i+1).

4. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
i+1,𝕨(2)

i+1) for
R1CS(2) as follows:

Define ŵ
(2)
i+1 := (vk, i(2), z

(2)
0 , z

(2)
i , aux(2)

i ,𝕌(1)
i , 𝕦(1)

i+1, T̄(1)
i ) as the relation witness for R2.

Then, compute the extended witness w
(2)
i+1 by performing the computation on ŵ

(2)
i+1

required to satisfy the constraints expressed in R1CS(2).
Commit to the extended witness w̄(2)

i+1 ← Commit(pp(2)
W , w

(2)
i+1).

Define x0 := 𝕦(1)
i+1.x1 and x1 := H2

(
vk, (i + 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z(2)

i , aux(2)
i ),𝕌(1)

i+1
)
.

Assign 𝕦(2)
i+1 :=

(
0̄(2), 1(2), w̄(2)

i+1, (x0, x1)
)

and 𝕨(2)
i+1 :=

(⃗
0(2), w

(2)
i+1

)
.

5. Output Prover State: Output IVC Proof for step i + 1

πi+1 :=
(
(𝕦(2)

i+1,𝕨(2)
i+1), (𝕌(1)

i+1,𝕎(1)
i+1), (𝕌(2)

i+1,𝕎(2)
i+1)

)
along with new evaluations z

(1)
i+1 := F1(z(1)

i , aux(1)
i ) and z

(2)
i+1 := F2(z(2)

i , aux(2)
i ). These

outputs are sufficient to execute another step of the Nova prover for iteration i + 1.

This completes our description of the prover.

6 Proof of security

▶ Theorem 9. If the non-interactive folding scheme is knowledge sound (Definition 7) and
the hash function is collision resistant (Definition 8), then our modified Nova IVC scheme is
knowledge sound (Definition 1).

The proof of Theorem 9 can be found in the full version of our paper (eprint.iacr.org/2023/969).

https://eprint.iacr.org/2023/969
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7 The Original Nova Vulnerability

In this section, we describe the prior implementation of the Nova Verifier and the vulnerability
in detail. At the end, we provide a proof of concept attack against the Minroot VDF [10]
Nova verifier.

7.1 The Prior (Vulnerable) Nova Verifier
Before our patch added on 05/18/2023, the prior (vulnerable) 2-cycle Nova IVC Verifier V
took in as input:

Constraint Systems R1CS(1) and R1CS(2).
An index i ∈ ℕ.
Starting values z

(1)
0 ∈ 𝔽1, z

(2)
0 ∈ 𝔽2.

Claimed evaluations z
(1)
i ∈ 𝔽1, z

(2)
i ∈ 𝔽2

An IVC Proof for iteration i πi :=
(
(𝕦(1)

i ,𝕨(1)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕦(2)

i ,𝕨(2)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

▶ Remark 10. The prior IVC proof πi contained an additional instance-witness pair (𝕦(1)
i ,𝕨(1)

i ).
This pair is no longer included in our modified verifier Section 5.2. As we explain in Section 7.2,
the inclusion of these elements (along with misplaced checks) lead to the vulnerability.

The verifier performs an initial procedure:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b
2. Compute the folding verification key

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)
The verifier accepts if the following conditions are met:
1. The index i must be greater than 0.
2. 𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)

i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. Pair (𝕌(1)

i ,𝕎(1)
i ) satisfies R1CS(1).

5. Pairs (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).
6. Pair (𝕦(1)

i ,𝕨(1)
i ) strictly satisfies R1CS(1).

7. Pair (𝕦(2)
i ,𝕨(2)

i ) strictly satisfies R1CS(2).

7.2 The Vulnerability
In this section we first break down the implications of the verifier checks. Then, we explore
a vulnerability with the approach. Finally, we describe a process to forge convincing IVC
proofs in two stages.

Informally, for i > 2, the security argument for Nova IVC proceeds as follows:
The verifier checks that 𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. This ensures that 𝕦(1)

i .x1

is derived from the inputs z
(1)
i and 𝕌(2)

i that are provided to the verifier.
The verifier checks that the pair (𝕦(1)

i ,𝕨(1)
i ) satisfies R1CS(1) which implements the

relation R1. This implies two things:
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First, 𝕌(2)
i is the result of folding the instances 𝕦(2)

i−1 and 𝕌(2)
i−1 specified in 𝕨(1)

i ,
Second, 𝕦(2)

i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, 𝕌(2)

i−1

)
where z

(1)
i = F1(z(1)

i−1, aux(1)
i−1)

for some element aux(1)
i−1.

The verifier checks that (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2), which implements the relation R2.
Then by knowledge soundness of the folding scheme, one can extract valid witnesses 𝕨(2)

i−1

for 𝕦(2)
i−1 and 𝕎(2)

i−1 for 𝕌(2)
i−1 with respect to R1CS(2).

Now, since 𝕨(2)
i−1 is a valid witness for 𝕦(2)

i−1, there are instances 𝕦(1)
i−1 and 𝕌(1)

i−2 specified
in 𝕨(2)

i−1. By definition of R2, the instance 𝕦(1)
i−1 must satisfy 𝕦(1)

i−1.x1 = 𝕦(2)
i−1.x0 =

H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

i−1

)
.

We would now like to conclude that both 𝕦(1)
i−1 and 𝕌(1)

i−2 are satisfiable for R1CS(1). However,
none of the verifier checks or invariants induced by the relations imply that either 𝕦(1)

i−1 or
𝕌(1)

i−2 are satisfiable with respect to R1CS(1). To see why, observe that R2 verifies that 𝕦(1)
i−1

and 𝕌(1)
i−2 fold into some 𝕌(1)

i−1. Then this 𝕌(1)
i−1 is hashed into 𝕦(2)

i−1.x1, which gets copied to
𝕦(1)

i .x0. The verifier is given an instance 𝕌(1)
i that it expects to be the result of folding 𝕦(1)

i

and 𝕌(1)
i−1, but this need not be the case. In fact, 𝕌(1)

i can be the result of folding entirely
different 𝕦(1) and 𝕌(1).

Our attack exploits this by running the honest Nova prover for two stages. The first
stage generates a satisfiable instance 𝕦(2)

i−1 with x0 containing our own adversarially chosen
values of (i− 1)(1) and z

(1)
i−1. Then, the second stage generates pairs (𝕦(1)

i ,𝕨(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

by running the honest prover again with 𝕌(2)
⊥ , 𝕦(2)

i−1 as relational witness inputs. The attack
proceeds symmetrically to generate pairs (𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ).

7.3 Attack Procedure
Our adversary A takes in as input:

Constraint Systems R1CS(1) and R1CS(2).
An attack index i > 2 ∈ ℕ.
Arbitrary starting values z

(1)
0 ∈ 𝔽1 and z

(2)
0 ∈ 𝔽2.

Arbitrary claimed evaluations z
(1)
i ∈ 𝔽1 and z

(2)
i ∈ 𝔽2.

Preimages (z(1)
i−1, aux(1)

i−1) ∈ 𝔽1 and (z(2)
i−1, aux(2)

i−1) ∈ 𝔽2 such that z
(1)
i = F1(z(1)

i−1, aux(1)
i−1)

and z
(2)
i = F2(z(2)

i−1, aux(2)
i−1).

A will produce a false but convincing IVC proof πi that the elements z
(1)
i = F (i)

1 (z(1)
0 , ·)

and z
(2)
i = F (i)

2 (z(2)
0 , ·) are produced by iteratively applying the non-deterministic functions

F1, F2 i-times on z
(1)
0 , z

(2)
0 for some collection of auxillary values {aux(1)

j , aux(2)
j }0≤j<i.

Stage One. A will imitate an honest Nova Prover to produce a satisfying pair (𝕦(2)
i−1,𝕨(2)

i−1)
for R1CS(2), but with adversarial inputs.

1. Produce Adversarial Instance: We will produce an adversarial 𝕦(1)
i−1 by performing

the following steps:
a. Compute x0 := H2

(
vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2,𝕌(1)

⊥

)
, where z

(2)
i−2 can be set to anything,

such as 0⃗(2).
b. Compute x1 := H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

⊥

)
.
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c. Commit to the extended witness w̄(1)
i−1 ← Commit(pp(1)

W , w
(1)
i−1), where the extended

witness w
(1)
i−1 can be set to anything, such as 0⃗(2).

d. Assign 𝕦(1)
i−1 :=

(
0̄(1), 1(1), w̄(1)

i−1, (x0, x1)
)

and 𝕨(1)
i−1 :=

(
0⃗(1), w

(1)
i−1

)
.

2. Fold Pair for R1CS(1): Fold the newly computed pair (𝕦(1)
i−1,𝕨(1)

i−1) with the trivially
satisfiable pair (𝕌(1)

⊥ ,𝕎(1)
⊥ ) for R1CS(1).

FoldP

(
pk, (𝕦(1)

i−1,𝕨(1)
i−1), (𝕌(1)

⊥ ,𝕎(1)
⊥ )

)
→

(
T̄(1)

i−2, (𝕌(1)
i−1,𝕎(1)

i−1)
)

Obtain a folding proof T̄(1)
i−2 and new committed relaxed instance-witness pair (𝕌(1)

i−1,𝕎(1)
i−1).

3. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
i−1,𝕨(2)

i−1) for
R1CS(2) as follows:

Define ŵ
(2)
i−1 := (vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2, aux(2)

i−2,𝕌(1)
⊥ , 𝕦(1)

i−1, T̄(1)
i−2) as the relation witness

for R2, where aux(2)
i−2 can be set to anything, such as 0⃗(2). Then, compute the extended

witness w
(2)
i−1 by performing the computation on ŵ

(2)
i−1 required to satisfy the constraints

expressed in R1CS(2).
Commit to the extended witness w̄(2)

i−1 ← Commit(pp(2)
W , w

(2)
i−1).

Define x0 = 𝕦(1)
i−1.x1 and compute x1 = H2

(
vk, (i− 1)(2), z

(2)
0 , F(2)

2 (z(2)
i−2, aux(2)

i−2),𝕌(1)
i−1

)
.

Assign 𝕦(2)
i−1 :=

(
0̄(2), 1(2), w̄(2)

i−1, (x0, x1)
)

and 𝕨(2)
i−1 :=

(
0⃗(2), w

(2)
i−1

)
.

This new committed instance-witness pair (𝕦(2)
i−1,𝕨(2)

i−1) is valid, because the computation
performed above explicitly satisfies the constraints of R1CS(2). Furthermore, 𝕦(2)

i−1.x0 =
𝕦(1)

i−1.x1, which is maliciously set to H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

⊥

)
.

Stage Two. A will imitate an honest Nova Prover for R1CS(1), but with witness input
derived in stage one.

1. Fold Pair for R1CS(2): Fold the newly computed pair (𝕦(2)
i−1,𝕨(2)

i−1) with the trivially
satisfiable pair (𝕌(2)

⊥ ,𝕎(2)
⊥ ) for R1CS(2).

FoldP

(
pk, (𝕦(2)

i−1,𝕨(2)
i−1), (𝕌(2)

⊥ ,𝕎(2)
⊥ )

)
→

(
T̄(2)

i−1, (𝕌(2)
i ,𝕎(2)

i )
)

Obtain a folding proof T̄(2)
i−1 and new committed relaxed instance-witness pair (𝕌(2)

i ,𝕎(2)
i ).

Note that since both pairs are satisfiable, this new pair (𝕌(2)
i ,𝕎(2)

i ) is also satisfiable.

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
i ,𝕨(1)

i ) for
R1CS(1) as follows:

Define ŵ
(1)
i := (vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, aux(1)

i−1,𝕌(2)
⊥ , 𝕦(2)

i−1, T̄(2)
i−1) as the relation witness

for R1. Then, compute the extended witness w
(1)
i by performing the computation on

ŵ
(1)
i required to satisfy the constraints expressed in R1CS(1).

Commit to the extended witness w̄(1)
i ← Commit(pp(1)

W , w
(1)
i ).

Define x0 = 𝕦(2)
i−1.x1 and compute x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i := F1(z(1)

i−1, aux(1)
i−1),𝕌(2)

i

)
.

Assign 𝕦(1)
i :=

(
0̄(1), 1(1), w̄(1)

i , (x0, x1)
)

and 𝕨(1)
i :=

(
0⃗(1), w

(1)
i

)
.
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This new committed instance-witness pair (𝕦(1)
i ,𝕨(1)

i ) is satisfiable, because the computation
performed above explicitly satisfies the constraints of R1CS(1). Furthermore, 𝕦(1)

i .x1 =
H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. To recap, after these two stages we obtained pairs (𝕦(1)

i ,𝕨(1)
i )

and (𝕌(2)
i ,𝕎(2)

i ) such that the following hold:
𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
(𝕦(1)

i ,𝕨(1)
i ) satisfies R1CS(1).

(𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).

Symmetry. Since the relations expressed by the augmented constraint systems R1CS(1)

and R1CS(2) are symmetric (Section 4) when i > 2. We can repeat both stages above
symmetrically to produce pairs (𝕦(2)

i ,𝕨(2)
i ) and (𝕌(1)

i ,𝕎(1)
i ) such that the following hold:

𝕦(2)
i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
(𝕦(2)

i ,𝕨(2)
i ) satisfies R1CS(2).

(𝕌(1)
i ,𝕎(1)

i ) satisfies R1CS(1).

Finally, adversary A outputs an IVC proof πi :=
(
(𝕦(1)

i ,𝕨(1)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕦(2)

i ,𝕨(2)
i ),

(𝕌(2)
i ,𝕎(2)

i )
)
. By construction, πi is a convincing IVC proof (i.e. all the verifier checks pass).

7.3.1 Proof of Concept Attack Against the Minroot Verifier
We implement our attack against the prior 2-cycle Nova Proof System generically for any
choice of F1 and F2 and parameters specified in Section 7.3. Our implementation can be
found in our repo MercysJest/NovaBreakingTheCycleAttack, which is a direct fork of the
original microsoft/Nova repo. To demonstrate the attack, we can compute a convincing Nova
proof for the correct evaluation of 275 rounds of the Minroot VDF in only 116 milliseconds
on a Macbook. The demonstration code can be found in examples/vuln.rs.

========================================================================
Demonstrating exploit against Nova-based VDF with MinRoot delay function
========================================================================
Producing public parameters...
PublicParams::setup, took 2.9136875s
...
Each IVC Step Performs 4096 iterations of Minroot.
Generating fake proof of 9223372036854775808 IVC Steps.
In total, faking 37778931862957161709568 Minroot iterations.
Generating fake proof took 115.872416ms
Verifying a RecursiveSNARK...
RecursiveSNARK::verify: true, took 27.8225ms
Generating a CompressedSNARK using Spartan with IPA-PC...
CompressedSNARK::prove: true, took 1.5859465s
CompressedSNARK::len 9713 bytes
Verifying a CompressedSNARK...
CompressedSNARK::verify: true, took 55.04425ms

8 Malleability of Nova’s IVC proofs

In this section, we show that the 2-cycle Nova IVC proofs, described in Section 5 are malleable.
This attack readily generalizes to the original (single chain) Nova construction [12]. We later
discuss how to prevent this malleability attack by making use of either an additional ctx
element in the verification key vk or use of a simulation-extractable zkSNARK (e.g., Spartan)
for IVC proof compression.

https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/src/lib.rs#L186
https://github.com/microsoft/Nova
https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/examples/vuln.rs#L145
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Suppose an adversary is given a valid Nova IVC proof πi with respect to the following
parameters

IVC public parameters pp,
a description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 ,

an index i ∈ ℕ,
starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 , and
claimed evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .

We show in Section 8.1 that the adversary can construct a proof πprime for the same iteration i,
but for some z

(2)
prime different from z

(2)
i . In particular, running the IVC verifier with arguments(

pp, (F1, F2), i, (z(1)
0 , z

(2)
0 ), (z(1)

i , z
(2)
prime), πprime

)
causes the verifier to accept. We stress that our adversary does not need to know the
auxiliary values (aux(2)

0 , aux(2)
1 , . . . , aux(2)

i−1) used to compute z
(2)
i . By choosing an alternate

final auxiliary value aux(2)
prime ̸= aux(2)

i−1, our adversary can construct a proof πprime for an
alternate value z

(2)
prime for i iterations, without knowledge of the first i− 1 auxiliary values.

We discuss two ways to mitigate this issue in Section 8.2 below.

Why does this matter? A malleable proof system [5] can lead to a real world security
vulnerability. Suppose Alice uses her secret auxiliary values to compute z

(2)
i and this z

(2)
i

encodes her payment address. She sends the z
(2)
i and the proof to a payment contract. An

attacker could intercept her message and maul z
(2)
i to a z

(2)
prime which encodes the attackers

payment address instead, along with a valid proof πprime. The payment contract will then
send the funds to the attacker instead of Alice. Concretely, if Tornado Cash had used a proof
system that were malleable on statements, it would have been possible to steal funds.

8.1 The Malleability Attack
We present a malleability attack on the last step of the IVC chain. Recall that the Nova
IVC proof πi contains the following elements

πi :=
(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The malleability attack proceeds as follows:

1. Parse witness: In Section 6, we argued that we can parse the witness 𝕨(2)
i to obtain

relational witness

ŵ
(2)
i =

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, aux(2)

i−1, 𝕌(1)
i−1, 𝕦(1)

i , T̄(1)
i−1

)
for which we know

z
(2)
i = F2

(
z

(2)
i−1, aux(2)

i−1
)

𝕌(1)
i = FoldV

(
vk, 𝕌(1)

i−1, 𝕦(1)
i , T̄(1)

i−1
)

Thus, we parse 𝕨(2)
i to obtain ŵ

(2)
i

2. Find a different auxiliary value: Using z
(2)
i−1, choose some aux(2)

prime such that

z
(2)
prime := F2

(
z

(2)
i−1, aux(2)

prime
)
̸= F2

(
z

(2)
i−1, aux(2)

i−1
)

= z
(2)
i

We assume that finding such an aux(2)
prime is efficient for F2.
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3. Compute a new pair for R1CS(2): Compute the pair (𝕦(2)
prime,𝕨

(2)
prime) for R1CS(2) as

follows:
Define ŵ

(2)
prime := (vk, (i−1)(2), z

(2)
0 , z

(2)
i−1, aux(2)

prime,𝕌
(1)
i−1, 𝕦(1)

i , T̄(1)
i−i) as the relation witness

for R2. Then, compute the extended witness w
(2)
prime by performing the computation on

ŵ
(2)
prime required to satisfy the constraints expressed in R1CS(2).

Commit to the extended witness w̄(2)
prime ← Commit(pp(2)

W , w
(2)
prime).

Define x0 := 𝕦(1)
i .x1 and x1 := H2

(
vk, i(2), z

(2)
0 , z

(2)
prime := F2(z(2)

i−1, aux(2)
prime),𝕌

(1)
i

)
.

Assign 𝕦(2)
prime :=

(
0̄(2), 1(2), w̄(2)

prime, (x0, x1)
)

and 𝕨(2)
prime :=

(⃗
0(2), w

(2)
prime

)
.

4. Output mauled proof: Output πprime :=
(
(𝕦(2)

prime,𝕨
(2)
prime), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

By construction, the proof πprime is convincing.

▶ Remark 11 (Generalizing the Malleability Attack). In more general terms, given an IVC
proof that contains information about a valid pre-image zi−1 to zi Our malleability attack
re-executes the last step of the IVC prover with a different choice of the final auxiliary value
auxi−1. In particular, our attack readily generalizes to the original Nova construction [12].

8.2 Preventing This Malleability Attack
There are several strategies that defeat this specific malleability attack.

Incorporating Context Elements. The first approach is to expand the verification key vk
to include a context string ctx which includes the IVC verifier context

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2)), ctx := (i, z

(1)
i , z

(2)
i )

)
This inductively binds the proof to a particular choice of (i, z

(1)
i , z

(2)
i ). However, this breaks

the incremental property (namely, completeness after iteration i as described in Definition 1)
of the proof since the prover cannot use this proof to produce another valid proof for an
iteration j > i. Additionally, the IVC prover must compute the evaluations (z(1)

i , z
(2)
i ) before

generating the IVC proof.

Compression. A different defense is to use a compressed IVC proof π′
i, namely

π′
i :=

(
𝕦(2)

i , 𝕌(2)
i , 𝕌(1)

i , T̄(2)
i , πsat

)
(2)

where πsat is a SNARK proof for the relation

Rsat :=
{(

𝕌(2)
i+1, 𝕌(1)

i ; 𝕎(2)
i+1, 𝕎(1)

i

)
:

(𝕌(1)
i ,𝕎(1)

i ) satisfies R1CS(1)

∧ (𝕌(2)
i+1,𝕎(2)

i+1) satisfies R1CS(2)

}
(3)

Here the SNARK must be zero knowledge so that πsat contains no information about the
underlying witnesses. Similarly, the witness commitment w̄(2)

i in 𝕦(2)
i must be a hiding

commitment. Furthermore, the SNARK may also need to be simulation extractable [9]. The
Spartan SNARK [18] is simulation-extractable [3]. Unfortunately, applying the SNARK
compression step would remove the efficient incremental property of the IVC since we can no
longer run the native Nova IVC prover for subsequent iterations. Nova [12, 14] uses Spartan
produce compressed IVC proofs π′

i (2).
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