
Buying Time: Latency Racing vs. Bidding for
Transaction Ordering
Akaki Mamageishvili #

Offchain Labs, Zürich, Switzerland

Mahimna Kelkar1 #

Cornell University, New York, NY, USA

Jan Christoph Schlegel #

City, University of London, UK

Edward W. Felten #

Offchain Labs, Washington, D.C., USA

Abstract
We design TimeBoost: a practical transaction ordering policy for rollup sequencers that takes into
account both transaction timestamps and bids; it works by creating a score from timestamps and
bids, and orders transactions based on this score.

TimeBoost is transaction-data-independent (i.e., can work with encrypted transactions) and
supports low transaction finalization times similar to a first-come first-serve (FCFS or pure-latency)
ordering policy. At the same time, it avoids the inefficient latency competition created by an
FCFS policy. It further satisfies useful economic properties of first-price auctions that come with a
pure-bidding policy. We show through rigorous economic analyses how TimeBoost allows players to
compete on arbitrage opportunities in a way that results in better guarantees compared to both
pure-latency and pure-bidding approaches.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Transaction ordering, First-come-first-serve, First-price auctions

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.23

Related Version Full Version: https://arxiv.org/abs/2306.02179

Acknowledgements We are grateful to Lee Bousfield, Chris Buckland, Potuz Heluani, Raul Jordan,
Mallesh Pai, Ron Siegel, Terence Tsao as well as participants at the Swiss National Bank Technology
and Finance Seminar for interesting discussions and valuable feedback.

1 Introduction

Transaction ordering is critically important for financial systems – the order in which user
transactions are executed can directly impact the profits made by users. This motivates the
study of designing transaction ordering policies with useful properties.

In this work, we focus on ordering policies for centralized sequencers – meaning that a
single sequencer receives transactions from users and publishes an ordered sequence to be
used for execution. A transaction ordering policy here specifies how the resulting output
sequence depends on the contents and arrival times of transactions at the sequencer. Our
work provides rigorous economic analyses to justify the utility of our proposed policy.

1 This work was completed in the author’s role at Offchain Labs.

© Akaki Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, and Edward W. Felten;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amamageishvili@offchainlabs.com
mailto:mahimna@cs.cornell.edu
mailto:jchschlegel@gmail.com
mailto:ed@offchainlabs.com
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://arxiv.org/abs/2306.02179
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Why consider a centralized sequencer? In addition to the centralized sequencer setting
being a potentially simpler model to study as a first step, there are two other main reasons
why we choose to do so in this work:

1. Existing use-cases are already centralized. Decentralized blockchains such as Ethereum
are still ephemerally centralized with respect to ordering – for a given block, similar
to a centralized sequencer, only a single miner/validator is in complete control of the
inclusion and ordering of transactions within the block. Similarly, current layer-2 “rollup”
protocols (such as Arbitrum and Optimism) also employ a centralized sequencer to order
transactions in a batch posted to the underlying Ethereum base-chain.

2. Ordering policies are mostly orthogonal to the problem of sequencer decentralization.
While decentralizing the sequencer is an important active research direction, we note
that a suitable transaction ordering policy can be chosen orthogonally to the method of
sequencer decentralization. In particular, the decentralized protocol can first be used to
agree on single pre-ordering or scoring of transactions, following which a specific ordering
policy can be applied. In other words, the output of the decentralized protocol can be
thought of simulating the input of a virtual centralized sequencer on which the ordering
policy gets applied.
An example of this is seen in the recent line of works on fair-ordering [3,8,9,11,20] – they
can be thought of as a decentralized implementation of a first-come-first-serve ordering
policy which combines local transaction orderings from many nodes.

Furthermore, while current centralized sequencer implementations are semi-trusted in
that they receive transactions in plaintext and are expected not to deviate from the specified
ordering policy or insert transactions of their own, we note that transaction data can be
hidden from the sequencer by using threshold decryption by a committee (i.e., the sequencer
only sees encrypted transactions and orders them, only after which a committee decrypts the
plaintext) or trusted hardware (such as Intel SGX). Through these techniques, the adversarial
behavior of the sequencer can be substantially restricted.

The study of ordering policies is important even when the sequencer is trusted (or is
suitably constrained as mentioned above) due to the presence of other profit-seeking entities
in the system. For instance, after the sequencer publishes state after execution of previous
transaction(s), arbitrage opportunities can be created; players in the system will compete
with each other to take advantage of these opportunities. Similar situations can also arise
due to state updates from external systems.

1.1 Existing Ordering Policies
Ordering policies used on blockchains today fall roughly into three categories described below.

First-come first-serve (FCFS). One natural ordering policy is the first-come, first-serve
(FCFS) rule. Here, transactions are sequenced in the same order that they were received
from users. There are several advantages to FCFS: to begin, it is simple to implement and
seems intuitively fair – after all, it is a commonly used policy even for real-world interactions.
FCFS also minimizes transaction latency: transactions can be continuously sequenced as
they arrive, and do not need to conform to the discrete granularity of blocks. The sequencer
in the layer-2 rollup Arbitrum employs an FCFS policy.

One major disadvantage of FCFS however, is that creates latency competition in the sense
that entities are incentivized to position themselves as close to the sequencer as possible in
order to be the first to react to any new market information. This is a well known and studied

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:3

problem within traditional financial systems. Indeed, high frequency trading (HFT) firms
invest millions of dollars into low-latency infrastructure that can operate sub-microsecond
or even finer scales; their trading accounts for roughly half of all trading volume [13]. This
inclination to latency investment is highly inefficient since the investment happens externally
to the system (as opposed to bidding; see below) and therefore cannot be used beneficially
within the system. Recent works [1, 17] have also shown the potential for similar strategic
manipulation within a pure FCFS protocol in the decentralized setting.

One crucial point to emphasize here is that this latency competition in FCFS does not
disappear even if transaction data is hidden (e.g., transactions are encrypted). This is because
any state changes (from the sequencer or even from external systems) can trigger a profit
opportunity wherein it is beneficial to have the quickest access to the sequencer. As a specific
example, an update on the trading price of a token can create an arbitrage opportunity
whose profit will go only to the player who can submit its transaction to the sequencer first2.
This kind of latency-based arbitrage has already been seen in Arbitrum, which implements a
centralized FCFS sequencer.

Per-block transaction bidding. A second natural policy is to group transactions into blocks,
then order transactions within a block based on their bid. Specifically, each transaction is
submitted along with a fee or bid; the sequencer now collects all transactions submitted
within some time interval and sequences them by the descending order of their bids. This
essentially simulates a first-price all-pay auction [10] (i.e., players bid independently; the
highest bid wins but all players need to pay their bid amount) to take advantage of a
particular arbitrage opportunity. Since players submit their bids independently, the bidding
policy can work as expected even when transactions are encrypted (since state or market
updates create arbitrage opportunities).

One advantage of a bidding policy (compared to FCFS) is that the payment is internal to
the system and therefore can be utilized within it to e.g., subsidize protocol operation costs.

When the block-time is large (e.g., 12s as in Ethereum), it is expected that for almost all
arbitrage opportunities, all interested players can post their bid within the time interval in
an attempt to take advantage of the opportunity. However, when the block-time is small
(this is typically the case in layer-2 protocols to increase scalability), perhaps surprisingly,
having a connection with lower latency can provide a substantial advantage. This is because
when the market update happens close to end of the block time, only players with a faster
connection will be able get their transaction included in the block; consequently, they may
be able to take advantage of the arbitrage opportunity with a smaller (or even a zero) bid.

Looking ahead, our TimeBoost policy (which combines both arrival times and bidding)
will enable arbitrageurs to prefer bidding even when block times are small, thereby allowing
the protocol to capture this value rather than it being lost to external latency infrastructure.

Block or MEV auctions. A third widely-used policy auctions off the complete rights to
choose and order transactions within a block. Here, the sequencer does not order transactions
itself but rather accepts block proposals from external players (often called block builders)
and chooses the proposal from the builder who pays the most. These auctions initially arose
from the realization that significant profit (often referred to as maximal (previously miner)
extractable value or MEV [2, 6]) can be extracted by manipulating the ordering of user

2 Another approach if the sequencer broadcasts state information in a random order to clients is to create
many dummy client copies, thereby increasing the chances that some copy gets the feed faster.

AFT 2023

23:4 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

transactions. In the past two years, through companies such as Flashbots and Bloxroute,
an MEV marketplace has been created on Ethereum outside of the protocol to connect
block proposers (entities in charge of proposing or sequencing a block) to block builders
(players who find MEV opportunities and order user transactions to take advantage of them)
– the result has been the extraction of hundreds of millions of dollars in profit from user
transactions [15,18].

While some MEV (such as arbitrage, which provides incentives for price discovery) is
benign and can be done without the knowledge of user transactions, other forms of MEV
extraction crucially rely on the transaction data. Recent works [18, 19] have shown such
MEV to be significantly detrimental to users. The emergence of such MEV extraction has
largely been attributed to the rationality of block proposers as well as the lack of regulation.
For example, in traditional financial systems, it is often illegal or at the very least heavily
constrained to profit from the knowledge of user transactions (for instance, payment-for-
order-flow (PFOF): the selling of user transaction data is illegal in the UK, and, while legal
in the US, still requires users to be provided with guarantees of “best execution”).

A design goal for our work is therefore to design ordering policies that are data-independent,
i.e., they do not use transaction data for ordering. This will allow them to be used even
when transactions are encrypted at the time of sequencing.

1.2 Our contributions
TimeBoost: An ordering policy that combines FCFS and bidding. We propose TimeBoost,
an ordering policy that combines both FCFS-style timestamps and first-price auction style
bids. Below, we describe several natural goals that went into our design.

1. Data independence. The policy should not utilize the transaction data for ordering.
This is a natural goal in order to support encrypted transactions and prevent data-
dependent MEV attacks on transaction ordering.

2. Low finalization time. The policy should be able to sequence transactions within
a short time g (the specific parameter can be set according to the application). This
is important to improve the user experience with the system since transactions will be
sequenced within time g after they are received.

3. Independence of irrelevant transactions. The ordering between two given transac-
tions should not depend on the presence of other transactions. This is useful to prevent
an adversary from inserting irrelevant transactions that results in flipping the ordering
between two target transactions. Importantly, this property also ensures that a transac-
tion submitter’s strategy need only consider transactions that are relevant to the party’s
goals – for example if Alice is trying to capture a particular arbitrage opportunity, she
need only worry about other transactions affecting that opportunity.

4. Inclination to spending via bids instead of latency infrastructure. As mentioned
before, investments into latency infrastructure are highly inefficient from the system
standpoint since the value spent cannot be utilized effectively by the system. Therefore,
a natural goal is to disincentivize latency investment and instead incentivize players to
bid for their transactions. Looking ahead, perhaps surprisingly, we find that the pure
bidding policy results in a larger latency competition than our TimeBoost policy which
combines bidding with FCFS style timestamps.

TimeBoost details. Intuitively, TimeBoost works by assigning scores to transactions based
on both their arrival times and their bid. The final ordering is taken to be descending in
the transaction scores. More specifically, for a transaction with arrival time t and bid b,

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:5

TimeBoost assigns it the score S(tx) = π(b) − t where intuitively π represents a function for
“buying time” – by increasing the transaction bid, users can reduce their effective timestamp
(or equivalently, increase their score). Section 3 describes how to choose the function π.

Importantly, there is a limit to how much time can be “bought” through the bid – in
particular, no transaction can outbid a transaction received some g time earlier. Such
a property is required to ensure the quick finalization of user transactions. At the same
time, transactions received less than g time before can always be outbid; this means that
arbitrageurs always have g time to compete for any arbitrage opportunity as opposed to a
pure bidding policy and will therefore prefer bidding over latency infrastructure investments.

We also show that TimeBoost satisfies all the useful economic properties of first-price
all-pay auctions. Further, we show that players spend exactly the same amount in total with
TimeBoost, as they would spend if only latency investment was allowed, except that most of
the investment is done through bidding and therefore can be captured within the protocol
for e.g., lowering user fees or for protocol development.

2 Ordering Policies

2.1 Preliminaries
A transaction tx that arrives at the sequencer can be characterized by a tuple (data, t, b)
where data represents the transaction data, t denotes the arrival time, and b denotes the
transaction bid (note that when transactions are of different sizes, b can be instead be
considered to be a bid per unit size). Let T denote the set of all possible transactions; in
principle this can be infinite or even uncountable (e.g., if arrival times are in R+) and our
results do hold for these cases. For practical use-cases, typically, arrival times can be assumed
to be in Q+ and bids can be assumed to be in N≥0.

An ordering policy now defines how a sequencer orders a finite set T ′ of transactions that
it has received. A formal definition is given below:

▶ Definition 1 ((Data-Independent) Ordering Policy). An ordering policy (or algorithm) P
takes as input a finite subset T ′ ⊆ T of transactions and outputs a linear ordering P(T ′).
For tx ∈ T ′, let P(T ′, tx) denote the position of transaction tx in the ordering P(T ′). In
other words, given T ′ and txa, txb ∈ T ′, P outputs txa before txb if P(T ′, txa) < P(T ′, txb).

A policy is further called data-independent if it does not make use of the transaction data
(i.e., it only uses the arrival time and the bid).

Since we want our ordering policies to not be based on the transaction content, we only
consider data-independent policies for the rest of the paper. For simplicity, we can therefore
represent a transaction tx simply by the tuple (tx.t, tx.b). Furthermore, since ties can be
broken by some chosen technique, without loss of generality, we can also assume (tx.t, tx.b)
tuples are unique. While the tie-breaking can be dependent on e.g., transaction ciphertext
or metadata, this does not affect our analysis and therefore can be safely ignored for the
purpose of our paper.

2.2 Independence of Irrelevant Transactions (IIT)
A useful property for our ordering policy to have is to prevent the ordering decision between
transactions txa and txb to change depending on what other transactions are being ordered;
in other words, the ordering decision should not depend on irrelevant transactions. Intuitively,
this is done to ensure that an adversary cannot create dummy transactions in order to flip

AFT 2023

23:6 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

the ordering decision between two transactions, and so that a party’s bidding strategy can
ignore transactions irrelevant to that party. We define this property of independence of
irrelevant transactions (IIT) below.

▶ Definition 2 (Independence of Irrelevant Transactions). We say that a policy P satisfies
independence of irrelevant transactions (IIT) if for any pair of transactions txa, txb and any
pair of finite subsets T1, T2 ⊂ T , the following holds:

P({txa, txb} ∪ T1, txa) < P({txa, txb} ∪ T1, txb)
⇔ P({txa, txb} ∪ T2, txa) < P({txa, txb} ∪ T2, txb).

2.3 IIT Implies a Score-Based Policy
We now show that the IIT property implies that a score-based policy needs to be used – that
is, also needs to be independent of the set T ′ being ordered.

Intuitively, a score-based policy works as follows: for transaction tx, it assigns a score
S(tx) based only on the arrival time tx.t and the bid tx.b. Here too, scoring ties can be
broken in a pre-specified manner. The output sequence is then taken to the descending order
of transaction scores. Score-based policies are formally defined below:

▶ Definition 3 (Score-based policy). A score is a function S : T → R that assigns to each
possible transaction tx ∈ T a score S(tx). An ordering policy P is called score-based if there
exists a score function S such that P sorts transactions according to S. In other words, there
exists S such that for any T ′ ⊆ T and txa, txb ∈ T ′, it holds that P(T ′, txa) < P(T ′, txb) if
and only if S(txa) > S(txb).

For finite T , we can directly show that IIT implies score-based policies. To show the
result for infinite sets, we need to employ the following set-theoretic axiom (defined below)
by Cantor [4]. Similar definitions have also been used in in the context of utility theory [7]

▶ Property 4 (Cantor’s Axiom [4]). We say that a pair (P, T) satisfies Cantor’s axiom if
there exists a countable set T ′ ⊆ T such that for any pair of transactions txa, txb ∈ T there
exists an instance of P in which some transaction in T ′ is ordered between txa and txb.

Formally there is a finite set T ′′ ⊂ T with txa, txb ∈ T ′′ and a txc ∈ T ′ ∩ T ′′ (possibly
txc = txa or txc = txb) such that

P(T ′′, txa) ≤ P(T ′′, txc) ≤ P(T ′′, txb),

or

P(T ′′, txb) ≤ P(T ′′, txc) ≤ P(T ′′, txa).

We can now establish the following correspondence between IIT and score-based policies.

▶ Theorem 5 (IIT ⇔ Score-Based). Let T denote the set of all transactions. The following
hold for any ordering policy P:
1. If T is countable, then P satisfies IIT if and only if it is score-based.
2. If T is uncountable and (P, T) satisfies Cantor’s axiom, then P satisfies IIT if and only

if it is score-based.

Proof. It is straightforward to see that a score-based algorithm satisfies the independence of
irrelevant transactions (since the score of a transaction depends only on itself and not other
transactions).

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:7

For the opposite direction, we first prove the second part of the theorem (the uncountable
case). We define an order ≺ over T where

txa ≺ txb :⇔ P({txa, txb}, txa) < P({txa, txb}, txb).

Since P({txa, txb}) is a well-defined for any two transactions txa, txb ∈ T , the order ≺ is
complete and anti-symmetric. By independence and since P({txa, txb, txc}) is a well-defined
order for any three transactions txa, txb, txc ∈ T we have

txa ≺ txb ≺ txc

⇒(P({txa, txb}, txa) < P({txa, txb}, txb) and P({txb, txc}, txb) < P({txb, txc}, txc))
⇒P({txa, txb, txc}, txa) < P({txa, txb, txc}, txb) < P({txa, txb, txc}, txc)
⇒P({txa, txc}, txa) < P({txa, txc}, txc)
⇒txa ≺ txc

Therefore, ≺ is transitive. We let txa ⪯ txb iff txa ≺ txb or txa = txb.
The Cantor axiom and independence imply that there is a countable T ′ ⊂ T so that the

order ≺ satisfies that for any txa, txb ∈ T there is a txc ∈ T ′ such that

txa ≺ txb ⇒ txa ⪯ txc ⪯ txb

By Theorem 1.1 in [5], this, in turn, implies that there is a numerical representation of
the order ≺ which is a score S : T → R such that for any two transactions txa, txb ∈ T we
have txa ≺ txb if and only if S(txa) > S(txb).

For the first part of the theorem, note that the previous argument also works for a
countable T and in that case we can choose T ′ = T where the Cantor axiom is now trivially
satisfied. ◀

▶ Remark 6. The above result extends to the case where the policy creates a weak ordering
(which can be made strict through a tie-breaking procedure) rather than a strict ordering
of transactions. In that case, Definitions 2 and 3 are adapted to weak orders, and we get a
score that might assign the same value to two different transactions. The relaxation to weak
orders is useful for the case that the set of transactions is uncountable and not a subset of
the real numbers (e.g. if T = R2

+). In that case, the Cantor axiom is impossible to satisfy for
strict orders but satisfiable for weak orders.

Discussion. We note that in our context, assuming T is countable or even finite is safe, as
there is a finite smallest time increment for timestamps and a finite smallest bid increment.
Moreover, the ordering policy deals with ordering transactions in a finite time interval and
bids will be upper-bounded by the maximum value in the system (e.g., the maximum number
of tokens). However, for the subsequent economic analysis, it will be more convenient to
work with the continuum where differences in time stamps and bids can be arbitrarily small.

Having proven that score-based algorithms are essentially the only ones satisfying the
independence of irrelevant transactions property, we turn to selecting the most natural one
among them. Note that FCFS is the scoring function that corresponds to scoring transactions
by their timestamp only while scoring transactions only by bids corresponds to the first-price
auction solution. In the next section, we show how our scoring policy TimeBoost corresponds
to a simple mixture of these two strategies.

AFT 2023

23:8 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

3 TimeBoost Description

We now formally define the TimeBoost ordering policy in this section. As mentioned before,
we want TimeBoost to satisfy the independence of irrelevant transactions property (i.e., it
needs to be a scoring function based on Theorem 5) and also provide low confirmation-latency
for transactions. Therefore, we will only allow TimeBoost to consider transactions within a
time g interval; this granularity g can be set suitably based on the particular usecase.

Basic model. Suppose there are n transactions in the g time interval, labeled with
tx1, tx2, · · · txn, and sorted by increasing arrival time. Each transaction txi is character-
ized by a pair of a timestamp or arrival time, denoted by ti, and a bid, denoted by bi ≥ 0.
Formally, we view a transaction as a tuple of non-negative reals, txi = (ti, bi) ∈ R+ × R≥0.

TimeBoost scoring function. Intuitively, for the TimeBoost scoring function, we propose
to allow users to “buy time” using their transaction bid; in other words, transactions will be
sorted by increasing timestamps (as in FCFS) but now users are allowed to decrease their
effective timestamp (i.e., increase their score) through bids.

Formally, the score of a transaction txi = (ti, bi) is computed as follows:

S(ti, bi) = π(bi) − ti. (1)

where π(bi) denotes the priority or advantage gained by bidding bi. Transactions are now
chosen in descending order of their scores.

Choosing a bidding function π. To choose the bidding function π for TimeBoost, we start
by defining several natural properties that should be satisfied.
1. π(0) = 0. This normalization implies that paying 0 bid gives no additional advantage.
2. π′(b) > 0 for all b ∈ R+ where π′ denotes the first derivative of π with respect to the bid.

This implies that the priority increases with the bid, which gives incentive to bid more
for a higher priority.

3. limb→∞ π(b) = g. This implies that no transaction can outbid a transaction which arrived
g time earlier (but any time advantage of less than g can be outbid). Through this, we
can guarantee that the transaction ordering can be finalized within time g.

4. π′′(b) < 0 for all b ∈ R+ where π′′ denotes the second derivative of π with respect to
the bid. This means that priority is concave, or equivalently, the cost of producing the
(bidding) signal is convex. This is generally necessary to obtain the interior solution of
the equilibrium condition.

The simplest bidding function satisfying the above constraints is the function:

π(bi) := gbi

bi + c
(2)

where c is some constant. We will use this as the bidding function for TimeBoost. In the next
section, we provide an economic analysis for TimeBoost. For this, we will assume that c = 1.

Complexity. For any incoming transaction tx = (t, b), the sequencer can finalize tx after a
delay of g − π(bi). This is because after this point, no later transaction can outbid tx. If
transactions arrive at rate r, the space complexity of the sequencing algorithm is Θ(r) and
the computational cost per transaction is Θ(log r), assuming pending transactions are stored
in a priority queue, ranked by score.

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:9

3.1 TimeBoost Economic Analysis Overview
We now describe the model for analyzing the economics for our TimeBoost ordering policy.
The next two sections will describe this analysis in detail.

Basic model. Consider an arbitrage opportunity that occurs at some time (w.l.g., this can
be taken as time 0). Users (from now on referred to as players) need to now take a decision
on (1) how to send their transaction to the sequencer; this corresponds to the investment in
latency; and (2) how much extra to bid for their transaction to get higher priority. We will
analyze a simple economic model of this decision problem.

Assume that it costs user i the amount ci(t) to get its transaction received by the
sequencer t time after the arbitrage opportunity arises. The only requirement on ci(t), for
now, is that it is decreasing in increasing t. When the arbitrage opportunity arises, a player
i has a valuation vi to have its transaction included for execution the earliest, among those
transactions contending for the same opportunity.

Analysis organization. We begin with an analysis with two players in Section 4. Within
this, we consider different models based on when the latency investment needs to occur.
Broadly, we consider two models for latency investment: ex-ante (Section 4.1) and ex-post
(Section 4.2). Ex-ante means that the latency investment needs to happen before learning
the arbitrage opportunity while ex-post means that the latency investment can occur after
learning about the arbitrage opportunity.

In Section 5, we generalize our results to many competing players.

4 Analysis of TimeBoost with 2 Players

As a starting point, assume that there are two players with valuations v1 and v2, distributed
as per the cumulative distribution functions (CDFs) F1 and F2. That is, the probability that
the valuation of player i is less or equal to x is equal to Fi(x).

For each valuation v, the player may choose their specific latency investment. We can
model this as a function ti : V → R, such that, ti(v) is the latency / time chosen by a player
i with valuation v. For simplicity, assume that the cost functions and value distributions are
the same: ci(t) = c(t) and Fi = F . Throughout the paper, we assume that F : [0, 1] → [0, 1]
is a uniform distribution with Fi(x) = x iff x ∈ [0, 1], for i ∈ {1, 2}, when final numerical
values are derived. Obtaining numerical values for different distribution functions is very
similar to that of uniform distribution, but we choose a uniform for simplicity of exposition.
However, most of the computations are done for general distribution functions.

We now consider two different assumptions regarding the investment in latency improve-
ment. In the first model (ex-ante), we assume that the players need to invest in their latency
infrastructure in advance: they acquire or rent servers close to the sequencer prior to knowing
the value of the arbitrage opportunities they are competing for. In the second (ex-post)
model, we assume that the players are able to invest in the latency after they learn about
their valuation of the arbitrage. This corresponds to the case where the arbitrage opportunity
itself takes some time to be realized3. In this case, the transaction sender can schedule its
transaction through the third-party service, which guarantees the delivery of the transaction

3 Example of such an opportunity is a 12-second delay on the Ethereum network for a transaction to be
scheduled.

AFT 2023

23:10 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

within some time interval, once the arbitrage opportunity is realized. In both cases, bidding
is naturally assumed to be an interim decision, and in fact, one of the biggest advantages, as
the valuation is already learned.

4.1 Ex-Ante Latency Investment
In this model, players learn their valuations only after they have already invested in latency
infrastructure. If players can only compete through latency, the interaction between them
becomes a static game. We study equilibria solutions of these games. A similar setting is
considered in [16]. The results obtained in the following two subsections are concrete cases of
folk results in the microeconomic theory; however, we include their proofs for completeness.

4.1.1 Only latency investment
As a simple first step, we start by analyzing the game where only latency investment is
allowed. Let xi be the amount invested in latency by player i (so that he obtains a delay
of ti(xi)). Let Vi denote the valuation random variable of player i. Then, player i has the
following ex-ante payoff:

Payoffi =

E[Vi] − xi if player invests strictly more than the other player
1
2 E[Vi] − xi if he invests an equal amount (assuming random tie-breaking)
−xi otherwise

First, we note that there is no pure strategy Nash equilibrium solution of the game,
in which player strategy sets consist of R+. It is easy to show this by case distinction on
valuations: there are simple deviating strategies in each case. Next, we focus on the mixed
equilibrium solution and obtain the following result.

▶ Proposition 7. There is a symmetric equilibrium in mixed strategies where each player i

chooses xi uniformly at random on the interval (0, E[Vi]).

Proof. By construction, the payoff of player j of playing xj ≤ E[Vj] against the uniform
strategy on (0, E[Vi]) is

F (xj)E[Vj] − xj = xj

E[Vi]
E[Vj] − xj = 0.

Choosing a strategy xj > E[Vj] gives a negative pay-off. Therefore, each 0 ≤ xj ≤ E[Vj] is
the best response of player j, and mixing uniformly among them is also the best response. ◀

The above-described equilibrium is unique up to a change of strategy on a null set and in
any mixed equilibrium, both players obtain the same payoffs as in this equilibrium. Note
that the result is independent of the latency cost function. The only property used is that
if a player invests more than the other player in the latency technology, its transaction is
scheduled earlier.

4.1.2 Budget constraints
We now model the fact that players may not have access to an arbitrary amount of money
they need to invest to improve their latency, but are instead are constrained by a budget.
Let Bi denote the budget of player i, meaning that player i cannot spend more than Bi. We
consider an asymmetric case where one (weak) player has a budget B1 < E[Vi] and the other

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:11

(strong) player has a larger budget with B2 > B1. First, note that similar to the previous
section with unlimited access to money, there is no pure strategy Nash equilibrium. Therefore,
we switch to mixed strategy equilibrium. Let Fi denote the probability distribution of playing
different strategies.

▶ Proposition 8. There exists a mixed Nash equilibrium solution in the game in which the
weak player receives a payoff of 0 and the strong player receives a payoff of E[Vi] − B1.

Proof. The following strategy profile in which the first player plays according to the following
(mixed) strategy:

F1(x) =

x

E[Vi] + E[Vi]−B1
E[Vi] , x ∈ (0, B1],

E[Vi]−B1
E[Vi] , x = 0,

1, x > B1,

the second player plays according to

F2(x) =
{

x
E[Vi] , x ∈ [0, B1),
1, x ≥ B1,

is a mixed strategy equilibrium. The first, weak player obtains an expected payoff 0 for any
choice of 0 ≤ x1 < B1. The second, strong player obtains an expected payoff of E[Vi] − B1
for any choice 0 < x2 ≤ B1. Choosing x2 > B1 is wasteful for the second player and will
not occur in equilibrium. Thus, both players are indifferent between all pure strategies in
support of F1 resp. F2 and for player 2 choosing an action outside of the support of F2 is
dominated. The mixed strategies form a Nash equilibrium. ◀

Similarly to the unconstrained case, the above-described equilibrium is unique up to a
change of strategy on a null set and in any mixed equilibrium, both players obtain the same
payoffs as in this equilibrium. Also similarly to the previous section, the result is independent
of the latency cost function. The only property to derive this result is that if a player invests
more than the other player in the latency technology, its transaction is faster (has a lower
timestamp).

4.1.3 Ex-ante Latency with Interim Bidding
We now analyze the model where both latency and bidding are allowed but the latency is
ex-ante. That is, investment in latency happens before players learn their valuations but
after learning their valuation players can use bidding to improve the transaction score.

We consider a version where players learn the other players’ latency investment decisions
before bidding. This models the fact that players will typically play the game repeatedly
and can therefore observe latency levels of each other.

In the following let x = (x1, x2) be the latency investment levels chosen by the two bidders
and let ∆ := t2(x2) − t1(x1) be the corresponding difference in latency. W.l.o.g. assume
∆ ≥ 0. First, we consider the case that ∆ = 0:

▶ Proposition 9. There is a completely separating equilibrium of the bidding game when both
bidders have made the same ex-ante investment.

Proof. Given in Section 4.1.4 ◀

AFT 2023

23:12 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.2

0.3

0.4

0.5

Figure 1 Example of equilibrium signaling functions for g = 10 and ∆ = 0.1. Timestamps are
normalized so that t2 = 0. The blue function is the equilibrium signal π1(v) − t1 for bidder 1 as a
function of the valuation. The red function is the equilibrium signal π2(v) − t2 for bidder 2 as a
function of the valuation.

Next, we consider the case that ∆ ̸= 0. For the case of different ex-ante investment we
get partially separating equilibria where bidders do not bid for low valuations and bid for
high valuations. The bidding strategies are asymmetric in general. However, for sufficiently
large g the equilibrium becomes approximately symmetric and approximately efficient. See
Figure 1 for a graphical illustration.

▶ Proposition 10. There is an equilibrium of the bidding game which is separating conditional
on bidding: There is a threshold

√
∆

g−∆ , such that a bidder does not bid if his valuation is
below the threshold and bids if his valuation is above the threshold. Conditional on bidding,
the high latency bidder i produces a higher signal than the low latency bidder j for equal
valuations: πi(v) − ti > πj(v) − tj , for v >

√
∆

g−∆ .

Proof. Given in Section 4.1.4 ◀

The equilibrium analysis in Propositions 9 and 10 indicates how efficient our transaction
ordering policy is as a function of the latency investment of bidders. If bidders have the same
latency we have a standard all pay auction which yields a fully efficient outcome. If there is
a difference in latency we have no bidding for low valuation bidders and approximately equal
signals produced for equal valuations for high valuation bidders. Conditional on entry, low
latency bidders underbid and high latency bidders overbid relative to the standard all pay
strategies. Efficiency depends on the latency difference and the g parameter. If g is chosen
sufficiently large the auction is approximately efficient. A too low g can be detected by low
bidding activity. Hence our transaction policy can strike a balance between fairness, low
latency and efficiency if properly parameterized.

4.1.4 Proofs
Proof of Proposition 9. We want to determine bidding signals π1(v1, ∆) and π2(v2, ∆),
which are functions of valuations and the difference in latency. For a given ∆ denote the
inverse of π1(·, ∆) and π2(·, ∆) by ṽ1(·, ∆) and ṽ2(·, ∆). Then bidder 1 solves at the interim
stage

max
π≥0

Pr[π − t1(x1) ≥ π2(v2, x) − t2(x2)]v1 − π

g − π
= F (ṽ2(π + ∆, ∆))v1 − π

g − π
,

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:13

We obtain the first order condition:

f(ṽ2(π + ∆, ∆))v1
∂ṽ2(π + ∆, ∆)

∂π
= g

(g − π)2

For the uniform distribution, this simplifies to:

v1
∂ṽ2(π + ∆, ∆)

∂π
= g

(g − π)2 .

Similarly, for bidder 2 we obtain

v2
∂ṽ1(π − ∆, ∆)

∂π
= g

(g − π)2 .

The two equations give a system of differential equations that need to be solved for π1 and
π2 or alternatively for ṽ1 and ṽ2. Alternatively, we can write the system as:

ṽ1(π, ∆)∂ṽ2(π + ∆, ∆)
∂π

= g

(g − π)2 . (3)

ṽ2(π, ∆)∂ṽ1(π − ∆, ∆)
∂π

= g

(g − π)2 . (4)

The solution to (3) and (4) in case of equal investment (so that ∆ = 0) and a symmetric
equilibrium is given by the following formula:

ṽ1(π, 0) = ṽ2(π, 0) =

√
2
∫ π

0

g

(g − π)2 dπ =
√

2π

g − π
. (5)

We solve for the signal as a function of the valuation:

v2 = 2π

g − π
⇔ π = gv2

2 + v2 . ◀

Proof of Proposition 10. When x1 ̸= x2, we can first sum up (3) and (4) to obtain a
differential equation for the expected payoff v1v2:

d(v1(π)v2(π + ∆))
dπ

= g

(g − π)2 + g

(g − π − ∆)2 . (6)

Integrating both sides of the differential equation above gives the solution:

v1(π)v2(π + ∆) = π

(g − π) + π + ∆
g − π − ∆ + K. (7)

To determine the constant we need to determine boundary conditions. For bidder 1, at the
threshold where he is indifferent between bidding and not bidding, we have π1 = 0 and for
bidder 2, at the threshold where he is indifferent between bidding and not bidding, he needs
to overcome the handicap, we have π2 = ∆. At the threshold bidder 2 should make the same
profit as from pooling,

v1(0)v2(∆) = ∆
g − ∆ ⇒ K = 0.

AFT 2023

23:14 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Combining (7) and (4) we obtain a separable differential equation:

dv1(π, ∆)
v1(π, ∆) = dπ

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
. (8)

Combining (7) and (3) we obtain another separable differential equation:

dv2(π + ∆, ∆)
v2(π + ∆, ∆) = dπ

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
. (9)

Integrating both parts of the equation (8) solves the (logarithm of) the value as a function
of the bid:

ln(v1(π)) − ln(v1(0)) =
∫ π

0

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ.

Similarly, integrating both parts of the equation (9) solves the (logarithm of) the value
as a function of the bid:

ln(v2(π + ∆)) − ln(v2(∆)) =
∫ π

0

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ.

To determine the marginal valuations v1(0) and v2(∆) at which the two bidders start
bidding, note that the support of πi − ti and that of πj − tj need to coincide for valuations
where we have separation of types. Therefore, v1(0) = v2(∆). Since v1(0)v2(∆) = ∆

g−∆ it

follows that v1(0) = v2(∆) =
√

∆
g−∆ . This is the threshold where bidders start bidding. It

follows that for ∆ ̸= 0

v1(π) =

√
∆

g − ∆ exp
(∫ π

0

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ

)

and

v2(π) =

√
∆

g − ∆ exp
(∫ π−∆

0

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ

)
.

To compare the equilibrium signals π1(v) − t1 and π2(v) − t2 for v >
√

∆
g−∆ , we need to

compare π1(v) + ∆ to π2(v).
From the expressions for the valuations as a function of the bid, we can observe (observe

that g
(g−π−∆)2 ≥ g

(g−∆)2) that

v1(π) > v2(π + ∆),

for π > 0. It follows that

π1(v) ≤ π2(v) − ∆,

for v ≥
√

∆
g−∆ . ◀

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:15

4.2 Ex-Post Latency with Bidding
We now analyze the ex-post model with bidding; here both the latency investment, and
the bid can be made after the valuation is observed. First, we start with only the latency
investment decision. The expected utility of player i is equal to:

Pr[t(vi) < t(vj)]vi − c(t(vi)),

where j ∈ {1, 2} \ i.
We can look at this from a dual perspective: by v(t) we define the inverse of t(v). This is

the so-called Revelation Principle. Instead of some function of the type, we report our type
directly. Then, the optimization problem becomes:

max
v

Pr[v ≥ v2]v1 − c(t(v)). (10)

By replacing the probability with F (v), we get that it is equivalent to

max
v

F (v)v1 − c(t(v)).

By the first order condition, we get:

v1f(v) − c′(t(v))t′(v)|v=v1 = 0,

where f is a density function of the valuation distribution F . By plugging in v = v1, it is
equal to:

v1f(v1) − c′(t(v1))t′(v1). (11)

For the uniform distribution and cost function c = 1
t , first order condition gives the

following differential equation:

v1 + t′(v1)
t2(v1) = 0. (12)

Solving this equation gives t(v) = 2
c1+v2 . By the boundary condition that 0 valuation

type should wait infinitely (or equivalently pay 0 in the latency), we obtain the value of the
constant in the solution: c1 = 0. Therefore, cost incurred is equal to 1

t = v2

2 . On average
each player pays:∫ 1

0

v2

2 f(v)dv|10 = 1
6 ,

for better latency, before learning their types. The cost of producing score s = gm
m+1 − t is:

c(s) := m + 1
t
. (13)

We decompose total expenditure into 2 parts, for bidding and for time, by representing
m and c(t(v)) as functions of v and taking integrals:

b(g) :=
∫ 1

0
m(v)f(v)dv and

∫ 1

0

1
t(v)f(v)dv.

▶ Proposition 11. The limit of b(g) when g tends to infinity is equal to 1
6 . b(g) is an

increasing function in g, for g large enough.

AFT 2023

23:16 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Proof. Given in Section 4.2.1 ◀

The proposition implies that by taking large enough g, the system extracts almost all
value invested in the latency through bidding. Starting from some threshold value on g,
extraction increases with increasing g.

We can verify whether the constructed equilibrium is unique by checking the conditions
given in [12].

▶ Example 12. We can calculate a few values of b(g). In particular, b(1000) ≈ 0.1294, meaning
a player pays approximately 77% of the total expenditure in bids, and b(10000) ≈ 0.1537,
meaning a player pays approximately 92% of the total expenditure in bids.

Note that in the proof of the proposition 11, the total investment in both latency and
bidding, c(v), is the same value v2

2 , as in the case of only investing in the latency. We
show that this is not a coincidence. In general, assume that there is an arbitrary signaling
technology described by an increasing, differentiable cost function C(s). The following result
shows the revenue equivalence of ex-post bidding:

▶ Proposition 13. Both players spend the same amount on average for any cost function C.

Proof. Given in Section 4.2.1 ◀

The amount spent depends only on the value belief distribution function.

4.2.1 Proofs
Proof of Proposition 11. The optimization problem of the player in the equilibrium is to
minimize cost, subject to the score equation constraint. By plugging in t = gm

m+1 − s, we
obtain the minimization problem:

min
m

(
m + m + 1

gm − s(m + 1) =: x(m)
)

.

The first order condition on x(m) gives:

dx(m)
dm

= 1 + gm − s(m + 1) − (m + 1)(g − s)
(gm − s(m + 1))2 = 1 − g

(gm − s(m + 1))2 = 0, (14)

gives that the value of m that minimizes the cost function. The solutions of the last equation
are gm − sm − s = √

g equivalent to m = s+√
g

g−s and gm − sm − s = −√
g equivalent to

m = s−√
g

g−s , or the boundary condition m = 0. For m = 0, the value x(0) = − 1
s , while for

m = s+√
g

g−s , the value

x

(
s + √

g

g − s

)
=

s + √
g

g − s
+

s+√
g

g−s + 1

g
s+√

g

g−s − s(s+√
g

g−s + 1)
=

1 + 2√
g + s

g − s
.

Accordingly, the marginal cost of producing signal s is:

c′(s) =
{ (1+√

g)2

(g−s)2 , if s > −√
g,

1
s2 , if s ≤ −√

g.

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:17

We solve a similar differential equation as (11), just with different marginal cost function
c′, and instead of time function t, we have a score function s of valuation v. The differential
equation becomes:

vf(v) − c′(s)s′(v) = 0. (15)

We need to solve for the s(v) function. For types v with 2
v2 ≥ √

g who only use latency
we have the same solution as before

s(v) = − 2
v2 .

The marginal type who is indifferent between using only latency and using a combination
of the two technologies is given by

u =
√

2
√

g
.

which gives the boundary condition s(u) = −√
g for the differential equation describing the

behavior of types who choose a signal s ≥ −√
g:

v =
(1 + √

g)2

(g − s)2 s′(v).

We obtain the solution

s(v) = (4c1g3/2 + 2c1g2 + 2c1g + g(v2 − 2) − 4√
g − 2)/(2c1g + 4c1

√
g + 2c1 + v2). (16)

The value of the constant c is obtained from the boundary condition that a zero-value
player does not invest and it is equal to

c1 = 1
(1 + √

g)2 .

Therefore, plugging in the constant value in the solution (16) and simplifying it gives:

s(v) =
gv2 − 4√

g − 2
v2 + 2 .

Plugging this into the formula of c(s), gives the cost value as a function of valuation v:

c(v) =
1 + 2√

g + gv2−4√
g−2

v2+2

g − gv2−4√
g−2

v2+2

= v2

2 .

Separate expenditure in the bidding is calculated by the following formula:

b(g) =
∫ 1

u

m(v)f(v)dv =
∫ 1√

2√
g

gv2−4√
g−2

v2+2 + √
g

g − gv2−4√
g−2

v2+2

dv =

∫ 1√
2√
g

v2(g + √
g) − 4√

g − 2
2g − 4√

g − 2 dv =

1
2g + 4√

g + 2

(
g + √

g

3 (1 − 2
√

g

√
2

√
g

) − (4√
g + 2)(1 −

√
2

√
g

)
)

.

The dominant term in the nominator above is g and also in the denominator, it is 6g.
Therefore, limg→∞ b(g) = 1

6 . ◀

AFT 2023

23:18 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Proof of Proposition 13. We are interested in the equilibrium signaling strategy s(v). Sup-
pose that this strategy is increasing (so no pooling of types) and differentiable. Then, we
can define a differentiable function

C̃(v) := C(s(v)).

To figure out what C̃(v) is, we have to consider an optimization problem with the first player:

max
v

Pr[v ≥ v2]v1 − C(s(v)) = Pr[v ≥ v2]v1 − C̃(v).

Taking first order conditions with respect to v gives:

v1f(v) − C̃ ′(v)|v=v1 = 0,

that is,

v1f(v1) = C̃ ′(v1).

For the uniform distribution:

v1 = C̃ ′(v1).

Using the boundary condition C̃(0) = 0 and integrating we get

C̃(v1) = v2
1/2.

More generally:

C̃(v1) =
∫ v1

−∞
vf(v)dv. ◀

5 Analysis of TimeBoost with n players

In this section, we consider n players with the same valuation distribution as in the 2 players
case. The optimization problem is now the following:

max
v

Pr[v ≥ max{v2, · · · , vn}]v1 − c(t(v)),

similarly to (10). By replacing the probability with cumulative distribution, this is equivalent
to:

max
v

Fn−1(v)v1 − c(t(v)),

where Fn−1(x) is a cumulative distribution function of the random variable X :=
max{X1, · · · , Xn−1}. By independence we have

Fn−1(x) = F (x)n−1.

The first-order condition and plugging in v = v1 gives the following differential equation,
similar to (11):

fn−1(v1)v1 − c′(t(v1))t′(v1) = 0,

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:19

where fn−1(v1) = (n − 1)vn−2
1 is a density function of maximum among n − 1 uniformly

distributed random variables. The differential equation w.r.t. t(v) becomes:

(n − 1)vn−1
1 + t′(v1)

t2(v1) = 0.

Solving the equation gives t(v) = n
c+(n−1)vn . The same boundary condition ensures that

c = 0, that is, t(v) = n
(n−1)vn . Each player pays:

n − 1
n

∫ 1

0
vndv = n − 1

n

vn+1

n + 1 |10 = n − 1
n(n + 1) .

Together, the players pay n−1
n+1 , that converges to 1 as n converges to infinity. Note that

the first place in the transaction order is given to the maximum-value player. The average
valuation of the maximum value player is n

n+1 , order statistics. This value also converges to
1 as n tends to infinity.

The analysis is the same as in the case of 2 players, until the differential equation that
solves score function s. Instead of (15), for n players we solve:

(n − 1)vvn−1 − c′(s)s′(v) = 0. (17)

For types v with n
(n−1)v2 ≥ √

g, who only use latency, we have the same solution as before

s(v) = − n

(n − 1)v2 .

Marginal type investing in bidding is:

u =
√

n

(n − 1)
√

v
.

Plugging in functional forms of c and s in (17) gives the same limit results as in Pro-
position 11. Next, we show a revenue equivalence for n players. The argument is similar
to 2 players’ case. Assume that there is an arbitrary signaling technology described by an
increasing, differentiable cost function C(s).

▶ Proposition 14. All n players spend the same amount on average for any cost function C.

Proof. We are interested in the equilibrium signaling strategy s(v). Suppose that this
strategy is increasing (so no pooling of types) and differentiable. Then, we can define a
differentiable function

C̃(v) := C(s(v)).

To figure out what C̃(v) is, we have to consider an optimization problem of the first player:

max
v

Pr[v ≥ max{v2, · · · , vn}]v1 − C̃(v) = F (v)n−1v1 − C̃(v).

Taking first order conditions with respect to v:[
(n − 1)v1f(v)F (v)n−2 − C̃ ′(v)

] ∣∣
v=v1

= 0,

For the uniform distribution, we get:

(n − 1)vn−1
1 = C̃ ′(v1).

AFT 2023

23:20 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Using the boundary condition C̃(0) = 0 and integrating we get

C̃(v1) = (n − 1)vn
1

n
.

More generally:

C̃(v1) =
∫ v1

−∞
(n − 1)vf(v)F (v)n−2dv. ◀

6 Comparison of TimeBoost with a Pure Bidding Policy

We now compare TimeBoost to what to a pure bidding policy. Recall that for the bidding
policy, all transactions sent in fixed time intervals of length g are collected, and sorted in
decreasing order of their bids. This effectively simulates a first-price all-pay auction for each
interval. We note this can be thought of as a quantized version of TimeBoost, because it
produces the same sequence that would be produced by first rounding off each transaction’s
arrival timestamp to the nearest multiple of g and then applying TimeBoost.

Generically speaking, a first-price auction where only the winning bidder pays and first-
price all-pay auctions are both payoff equivalent for Bayesian-Nash incentive compatible
mechanisms, (see e.g., [14]). In our setting, the following result holds for each individual
arbitrage opportunity.

▶ Proposition 15 (see [14]). The expected payoff of the bidding game where the only the
highest bidder pays their bid is equal to the expected payoff in the bidding game where the
highest bidder wins but all players pay their bids, independently of valuation distributions.

For simplicity, to compare TimeBoost with a pure bidding policy, we consider two players.
It is straightforward to generalize to more parties. For a given arbitrage opportunity, two
cases arise as described below depending on whether transactions can be submitted within
the same g-time interval as the arbitrage opportunity or not:
1. Both players can submit their transactions within the same g interval. For the pure bid-

ding policy, if both players can get their transaction submitted inside the same g-time
interval as the arbitrage opportunity, then they will both compete for it. It is easy to see
that when the valuations of the two parties are the same, the bidding strategy for the
pure-bidding policy vs the ex-ante latency with bidding policy will be the same. In other
words, in this scenario, TimeBoost maintains the economic properties of the first-price
auction pure-bidding policy.

2. Only one player can get its transaction within the same g interval. If only one player can
get its transaction inside the same g-time interval as the arbitrage opportunity, then in
the pure-bidding policy, that player can pay a 0 bid and still take advantage of it. In
contrast, since TimeBoost does not require discrete boundaries, both players will always
have g time to submit their transactions (recall that bidding can be used to get priority
over any transaction received up to g time earlier). This means that even for a reasonably
small g (say 0.5 sec), both parties will always be able to compete for the opportunity. In
equilibrium, this results in bids equal to value of the arbitrage.

Analysis for the second case. Suppose the first party (denoted by A) can reach the
sequencer in s1 time, and the second party (denoted by B) can reach in s2 time, with s1 < s2.
Then, with the pure-bidding policy, A can wait until g − s1 seconds pass since the beginning
of a new block creation, and send its transaction to the sequencer at exactly g − s1, while B
has to send its transaction by time g − s2 in order to be included in the same block.

A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:21

Assuming that arbitrage opportunities are uniformly distributed over the g-interval, this
means that, with probability g−s1−(g−s2)

g = s2−s1
g , B has no chance to win the race against

A, even if it values the arbitrage opportunity much more than A. When g is large (e.g., on
Ethereum with 12 sec block times), this latency advantage is not a big issue, as A would only
have an advantage with probability (s2 −s1)/12. In contrast, for faster blockchains, or layer-2
rollups which have shorter block-times to achieve scalability, this latency advantage can be
significantly more important in the pure-bidding policy vs in TimeBoost. For instance, when
g = 0.5sec, A’s latency advantage is 24 times greater than what it was in Ethereum. This
means that compared to TimeBoost, a pure-bidding strategy will either result in substantial
latency competition (when g is small) or will not be able to provide low transaction finalization
time (since g will be large).

7 Discussion on Sequencer Decentralization

We now briefly discuss how TimeBoost can be supported by a decentralized sequencer – i.e.,
a committee of ℓ sequencers (of which at most some f can be dishonest). We only provide
possible implementations here; a formal rigorous analysis is outside the scope of this paper.

In the decentralized setting, transactions to be sequenced are now submitted by users to
all sequencers instead of just one. Note that as before, threshold decryption techniques can
be used for transaction privacy before ordering.

The most natural way to support TimeBoost in a decentralized setting is to have a protocol
for sequencers to agree on both the timestamp and the bid of transactions. After this is done,
the TimeBoost policy can simply be applied on the consensus output of the decentralized
committee to obtain the final ordering. Agreeing on the bid is easy since we can have the
same bid be submitted to all sequencers for a given transaction. Agreeing on the timestamp is
a more challenging problem since the same transaction can arrive at different nodes. While it
adds significant complexity, one potential technique here is to employ a fair-ordering protocol
(this can be as a simple as e.g., computing the median timestamp [11,20] or support more
complicated techniques as in [3,8, 9]). We leave the formal analysis of such a decentralized
TimeBoost implementation to future work.

8 Conclusion

We designed TimeBoost: a policy for transaction ordering that takes into account both
transaction arrival times and bids. We showed that any ordering scheme that guarantees the
independence of different latency races is a generalized scoring rule. By choosing a suitably
designed mixture of timestamps and bids, we showed the economic efficiency of the system:
transaction senders spend most of their resources on bidding instead of latency improvement,
which can later be used by the protocol for improvement and development.

References
1 Kushal Babel and Lucas Baker. Strategic peer selection using transaction value and latency.

In DeFi @ CCS, pages 9–14, 2022.
2 Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari Juels. Clockwork finance: Automated

analysis of economic security in smart contracts. In IEEE S&P, pages 2499–2516, 2023.
3 Christian Cachin, Jovana Micic, and Nathalie Steinhauer. Quick order fairness. In FC, 2022.
4 Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen,

pages 481–512, 1895.

AFT 2023

23:22 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

5 Christopher P Chambers and Federico Echenique. Revealed preference theory, volume 56.
Cambridge University Press, 2016.

6 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In IEEE S&P, pages 585–602, 2020.

7 Gerard Debreu. Representation of a preference ordering by a numerical function. Decision
processes, 3:159–165, 1954.

8 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. IACR Cryptol. ePrint Arch., page 1465, 2021.
URL: https://eprint.iacr.org/2021/1465.

9 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for Byzantine
consensus. In CRYPTO, pages 451–480, 2020.

10 Vijay Krishna. Auction Theory. Academic Press, 2002.
11 Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains.

In ACM AFT, pages 25–36, 2020.
12 Eric Maskin and John Riley. Uniqueness of equilibrium in sealed high-bid auctions. Games

and Economic Behavior, 45(2):395–409, 2003.
13 Ciamac C. Moallemi and Mehmet Saglam. OR forum - the cost of latency in high-frequency

trading. Oper. Res., 61(5):1070–1086, 2013.
14 Roger B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58–73, 1981.
15 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How

dark is the forest? In IEEE S&P, pages 198–214, 2022.
16 Ron Siegel. All-pay contests. Econometrica, 77:71–92, 2009.
17 Weizhao Tang, Lucianna Kiffer, Giulia Fanti, and Ari Juels. Strategic latency reduction in

blockchain peer-to-peer networks. Proc. ACM Meas. Anal. Comput. Syst., 7(2):32:1–32:33,
2023.

18 Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to
bribe: Measuring block construction market, 2023. arXiv:2305.16468.

19 Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. Sok: Mev
countermeasures: Theory and practice, 2022. arXiv:2212.05111.

20 Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without Byzantine oligarchy. In OSDI, pages 633–649, 2020.

https://eprint.iacr.org/2021/1465
https://arxiv.org/abs/2305.16468
https://arxiv.org/abs/2212.05111

	1 Introduction
	1.1 Existing Ordering Policies
	1.2 Our contributions

	2 Ordering Policies
	2.1 Preliminaries
	2.2 Independence of Irrelevant Transactions (IIT)
	2.3 IIT Implies a Score-Based Policy

	3 TimeBoost Description
	3.1 TimeBoost Economic Analysis Overview

	4 Analysis of TimeBoost with 2 Players
	4.1 Ex-Ante Latency Investment
	4.1.1 Only latency investment
	4.1.2 Budget constraints
	4.1.3 Ex-ante Latency with Interim Bidding
	4.1.4 Proofs

	4.2 Ex-Post Latency with Bidding
	4.2.1 Proofs

	5 Analysis of TimeBoost with n players
	6 Comparison of TimeBoost with a Pure Bidding Policy
	7 Discussion on Sequencer Decentralization
	8 Conclusion

