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Abstract
A Single Secret Leader Election (SSLE) enables a group of parties to randomly choose exactly one
leader from the group with the restriction that the identity of the leader will be known to the chosen
leader and nobody else. At a later time, the elected leader should be able to publicly reveal her
identity and prove that she is the elected leader. The election process itself should work properly
even if many registered users are passive and do not send any messages. SSLE is used to strengthen
the security of proof-of-stake consensus protocols by ensuring that the identity of the block proposer
remains unknown until the proposer publishes a block. Boneh, Eskandarian, Hanzlik, and Greco
(AFT’20) defined the concept of an SSLE and gave several constructions. Their most efficient
construction is based on the difficulty of the Decision Diffie-Hellman problem in a cyclic group.

In this work we construct the first efficient SSLE protocols based on the standard Learning With
Errors (LWE) problem on integer lattices, as well as the Ring-LWE problem. Both are believed to
be post-quantum secure. Our constructions generalize the paradigm of Boneh et al. by introducing
the concept of a re-randomizable commitment (RRC). We then construct several post-quantum RRC
schemes from lattice assumptions and prove the security of the derived SSLE protocols. Constructing
a lattice-based RRC scheme is non-trivial, and may be of independent interest.
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1 Introduction

Leader election is a core component of many consensus protocols used in practice. In proof-
of-work systems such as [34], the identity of the leader remains hidden until the moment
that the leader publishes a proposed block. In contrast, in many proof-of-stake systems, the
identity of the leader is known in advance, long before the leader publishes a proposed block.
This opens up the leader to certain attacks, including denial of service, that may prevent the
chosen leader from publishing the newly created block. This in turn, can lead to a liveness
failure for the chain.

In response, several works have studied secret leader election, where the identity of a
randomly chosen leader remains secret until she publishes the new block and reveals herself
as the leader [25, 31, 27, 8]. The added secrecy protects the leader from attacks that may
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prevent her from publishing the new block. However, existing proposals for secret leader
election work by electing a few potential leaders in expectation, and describing a run-off
procedure so that exactly one of the potential leaders is recognized as the final leader once
all potential leaders have revealed themselves. The possibility of several potential leaders,
however, can lead to wasted effort and may even cause a safety violation in case of an attack
on the run-off procedure.

This issue motivates the need for a different type of leader election protocol, called a
Single Secret Leader Election, or SSLE [16] (see also [21]). An SSLE protocol is comprised of
two phases.

In the first phase, parties may register to participate in leader elections. This step involves
publishing some public information on a public bulletin board, while keeping some secret
information associated with it private.
In the second phase, elections are held using a protocol that is executed by the participating
parties. The election protocol uses a randomness beacon and the public information on
the bulletin to choose a leader among the parties. At a later time, the leader can declare
themselves as such by providing a proof that they were selected as the leader.

Informally, an SSLE protocol needs to satisfy three security properties. Uniqueness asserts
that at most a single party can prove they were elected as leader. Fairness requires that all
participating parties have the same probability of being elected as leader, even if some parties
are malicious. Unpredictability means that until the leader reveals itself, its identity should
remain essentially hidden from the other parties, even if a subset of them colludes. It was
recently shown that relying on SSLE leads to more efficient consensus protocols than relying
on a secret leader election protocol that elects few leaders in expectation [7].

The concept of SSLE was formalized by Boneh, Eskandarian, Hanzlik, and Greco [16]
who also presented a number of constructions. Their most efficient construction is based
on the Decision Diffie-Hellman problem (DDH) in cyclic groups. We refer to this SSLE
protocol as the BEHG protocol. The Ethereum Foundation optimized BEHG to obtain
Whisk [30], which is the current proposal for SSLE to be used in Ethereum consensus. Since
then, additional works have suggested alternative SSLE constructions with various security
and efficiency tradeoffs (see, for example, [23, 40, 18, 9, 19, 24]).

Due to the potential long-term risk of a large scale quantum computer [41] there is a
desire to also develop a post-quantum secure SSLE. One approach, already in [16], is an SSLE
protocol based on fully homomorphic encryption (FHE). A further optimized FHE-based
construction was recently proposed by Freitas et al. [24]. However, the complexity of these
proposals is far greater than the simple DDH-based scheme. Another elegant approach
to post-quantum SSLE was proposed by Sanso [40], who showed how to adapt Whisk to
use an isogeny-based assumption, which is believed to be post-quantum secure. Finally,
Drake [23] proposed an SSLE protocol that can be made post-quantum secure, but the
proposal inherently relies on the availability of an anonymous broadcast channel (e.g., ToR).

Our results. In this paper we construct the first practical post-quantum SSLE protocols
based on the Learning With Errors (LWE) problem [38] and Ring-LWE problem [33]. We
do so by generalizing the BEHG protocol using a new concept we call a re-randomizable
commitment (RRC). We show that an RRC together with a shuffle protocol gives an SSLE.
We then construct a number of RRC schemes from lattices. The next section gives a detailed
overview of the construction and explains the technical challenges in building an RRC
from lattices.
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1.1 Technical Overview
We briefly sketch the main ideas behind our construction. We begin with an abstract view of
the BEHG protocol. Then, we present the notion of re-randomizable commitments (RRC)
used by this protocol. Finally, we present our new lattice-based post-quantum RRCs for
instantiating the abstract BEHG protocol.

The BEHG approach. The BEHG protocol employs a commit-and-shuffle approach. The
following is a generalized and abstract view of the protocol.

When party i registers for elections, it chooses some secret key ki, computes a commitment
ci to ki, and publishes ci. We will define what is needed of this commitment in a minute.
To avoid duplicity of secrets, each party also publishes a deterministic hash of ki.
At election time, participating parties run a protocol to shuffle and rerandomize the
commitments. For simplicity of presentation in this overview, let us assume that the
shuffle protocol works as follows: in each round, one of the parties locally permutes the
entire list of commitments and then rerandomizes each of the commitments. It then
publishes the new list of commitments, and proves in zero-knowledge that this new list is
well-formed (i.e., it is obtained from the previous list by permuting and rerandomizing the
commitments). Once the shuffle protocol is done, the parties obtain a list of commitments
c̃1, . . . , c̃n, where each c̃i is a rerandomization of cπ(i) for some unknown permutation π on
{1, . . . , n}. They then let the randomness beacon choose an index i∗ ←$ {1, . . . , n}, and
party j∗ = π(i∗) is the chosen leader. In due time, party j∗ can prove that it was elected
by publishing kj∗ and the other parties can check this value against the commitment c̃i∗ .

Re-randomizable commitments. We identify several properties that the commitment
scheme being used must satisfy for the resulting SSLE protocol to be correct and secure.
First, the commitments have to be re-randomizable in a very specific sense. Given a
commitment c to some value k, one should be able to re-randomize c without knowledge of
k or the randomness used to generate c. Moreover, given a value k and a (potentially re-
randomized) commitment c̃, one should be able to efficiently test whether c̃ is a commitment
to k. In particular, this test should not require the randomness used for re-randomization.
In the BEHG protocol, this means that the original committer to c̃i∗ can: (i) recognize itself
as the winner of the elections (by checking if c̃i∗ is a commitment to kj∗); and (ii) prove that
it won by publishing kj∗ .

The commitment scheme should also satisfy the standard notion of binding. This means
that it should be infeasible to produce a commitment c alongside two distinct values k and
k′, such that c passes both as a commitment to k and as a commitment to k′. In the context
of the BEHG protocol, this means that there is only a single party that can prove ownership
of the chosen commitment c̃i∗ by publishing kj∗ .

Finally, commitments should also be unlinkable. This means that given two commitments
c0 and c1 to two random values, and a re-randomization c̃ for one of them, it should be
infeasible to determine if c̃ is a re-randomization of c0 or of c1. This is essential for the BEHG
protocol to achieve unpredictability: an adversary should not be able to link the chosen
commitment c̃i∗ to the original commitment cj∗ and therefore identify party j∗ as the leader.
Looking ahead, the use of re-randomizable commitments in the generalized BEHG SSLE
protocol actually requires a stronger notion of unlinkability. We postpone the discussion on
this matter and will revisit it shortly.

The DDH-based construction of re-randomizable commitments (RRCs) suggested by
BEHG is as follows. Let G be a cyclic group of order p generated by g ∈ G. A commitment
c to a random value k ←$ Zp is a pair (gr, grk) where r ←$ Zp. To check if a commitment
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c = (c1, c2) is a consistent with a value k, once can simply check if c2 = ck
1 . To re-randomize,

one chooses a random r′ ←$ Zp and outputs c̃ = (cr′

1 , cr′

2 ). The scheme is perfectly binding,
and unlinkability easily follows from the DDH assumption.

It should be noted that previous works also considered other variants of re-randomizable
commitments (see, for example, [5, 20]). However, in these works, opening a re-randomized
commitment requires knowledge of the randomness used for re-randomization (or a function
thereof). Such commitments are much simpler to construct, and indeed, many long-standing
algebraic and lattice-based constructions can be easily re-randomized according to this
weaker definition. Unfortunately, as discussed above, such commitments are insufficient for
instantiating the BEHG protocol.

RRCs from LWE: A first attempt. Consider the following (flawed) RRC scheme. The
secret key space is Zn

q , where q is a prime and n ≈ λ is the LWE hardness parameter. To
commit to a random k ∈ Zn

q the Commit algorithm samples a uniformly random A←$ Zm×n
q

and outputs (A, u) = (A, A · k + e), where e is an LWE noise vector and m > n. To test
whether a key k is tied to a commitment c = (A, u), we can check whether A · k is close
(say, in Euclidean distance) to u. We accept k if this is the case and reject otherwise. If A is
chosen randomly and m ≈ n log n (A is a “tall” matrix), a standard argument shows that
with high probability over the choice of A, there are no k, k′ and u such that A · k ≈ u and
A · k′ ≈ u.

To re-randomize, the rerandomization algorithm samples a low-norm m-by-m matrix R

and computes c′ = (A′, u′) = (R ·A, R ·u). Since R is of low norm Re may only be slightly
longer than e. Hence, Re is also short and we have

A′ · k = R ·A · k ≈ R ·A · k + R · e ≈ R · u = u′.

The noise does grow a bit with each re-randomization, which is why the scheme only supports
a bounded number of re-randomizations (the LWE parameters can be chosen according to the
number of re-randomizations required by the SSLE shuffle protocol). In terms of unlinkability,
note that assuming LWE is hard, a fresh commitment c = (A, u) is just a pseudorandom
matrix-vector pair. Moreover, if m is sufficiently greater than n and each row of R has high
min-entropy, the leftover hash lemma [26, 29] shows that c′ is also pseudorandom, which
implies that the scheme is unlinkable.

The problem. Unfortunately, the above analysis is flawed. It is true that the scheme is
binding when the matrix A is chosen uniformly at random from Zm×n

q . But since A is part
of the commitment c, the adversary may choose it from some other skewed distribution,
thus breaking the binding argument. This is not just an issue of reworking the proof. The
scheme is in fact insecure: fix any k and k′ and it is easy to come up with a matrix A for
which A · k ≈ A · k′. To fix this issue, one might be tempted to choose the matrix A as
part of the public parameters, or to force committers to choose A as the output of a hash
function modeled as a random oracle. Indeed, this would make the scheme binding, but then
it becomes unclear how to re-randomize the commitments.

The key observation. Let us revisit the naive “proof” of binding for the above construction.
If A is indeed chosen uniformly at random, then with overwhelming probability there are
no k and k′ such that A · k ≈ A · k′. In particular, this would suggest that for random A,
k and k′ it holds that A · k and A · k′ are almost surely far apart. Put differently, for a
uniform k and k′, there are very few matrices A for which Ak ≈ Ak′. So what if instead
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of choosing a single k, we make the Commit algorithm sample the commitment key k as a
pair (k1, k2) of independent and uniformly-random vectors? One could expect that for two
such random pairs (k1, k2) and (k′1, k′2), the set of matrices A for which A · k1 ≈ A · k′1 and
A · k2 ≈ A · k′2 is even smaller. Indeed, we show that for ℓ ≈ n, if one samples two ℓ-tuples
(k1, . . . , kℓ) and (k′1, . . . , k′ℓ) of vectors uniformly at random, then with very high probability
a matrix A for which A · ki ≈ A · k′i for every i simply does not exist.

Alas, the proposed commitment scheme is binding for keys that are random tuples of
vectors, but the binding security game allows the adversary to choose the “colliding” keys
(k1, . . . , kℓ) and (k′1, . . . , k′ℓ) as it pleases – they need not be uniformly random. On the face
of it, it might seem that we are back to square one. Fortunately, this is not the case. The
final observation is that for this construction, we can make the commitment algorithm choose
the vectors k1, . . . , kℓ as the output of a cryptographic hash function H, without hampering
re-randomization. That is, to commit, one samples a matrix A and a key k ←$ {0, 1}λ,
computes k1, . . . , kℓ ← H(k) and outputs the commitment c ← (A, {A · ki + ei}i) where
all the eis are independent LWE noise vectors. To test a key k against a commitment
c = (A, {ui}i), the Test algorithm simply recomputes k1, . . . , kℓ from k and checks that
A · ki ≈ ui for every i = 1, . . . , ℓ.

Adversarial re-randomizations. The construction that we just saw indeed satisfies the
notion of unlinkability sketched above. Unfortunately, as we already mentioned, this notion
is insufficient for the resulting SSLE protocol to achieve unpredictability. This reason is this:
unlinkability only guarantees that if honestly-generated commitments c1, . . . , cn are honestly
re-randomized and shuffled, an adversary cannot trace the re-randomized commitments to
the original ones. In the SSLE protocol above, an honest re-randomization might follow an
adversarial one. So we need to require unlinkability of commitments even after adversarial
re-randomizations. We call this strong unlinkability.

In the DDH-based construction of BEHG strong unlinkability comes “for free”. Unfor-
tunately, this is not the case with our LWE-based RRC scheme. For example, consider
an adversary that given a commitment c = (A, {A · ki + ei}i), finds a matrix R such
that R · A has short columns. The adversary then uses this R to re-randomize c into
c̃ ← (R ·A, {R ·A · ki + ei}i). Now, even if we honestly re-randomize c̃, we will almost
surely end up with a commitment ĉ whose first coordinate is still a short-columns matrix.
Hence, the adversary can easily trace ĉ back to c.

We present several methods to thwart such attacks. In this overview, we focus on
what we view as the simplest and most practical one. Ahead of time, all parties commit
to the matrices R1, R2, . . . they are going to use for re-randomization using a standard
additively homomorphic commitment scheme. When a party now has to carry out its ith
re-randomization, it does so using the matrix Ri + R′i, where R′i is a low norm matrix
outputted by a public randomness beacon. Such a beacon can be external or implemented
in various standard ways. Using the homomorphic properties of the commitment scheme,
everyone can now compute a commitment to Ri + R′i. The re-randomizer can hence prove
that this is the matrix it used. Informally, since Ri was committed to ahead of time, it
is independent of R′i. Hence, the re-randomizer is forced to use a high-entropy matrix
for re-randomization, which guarantees the resulting commitment is from the appropriate
distribution. Since Ri is always hidden, Ri + R′i has high min-entropy even given R′i, and we
can still rely on the leftover hash lemma to argue that subsequent honest re-randomizations
provide unlinkability.

AFT 2023
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Extending the scheme to Ring LWE. We extend our LWE-based RRC scheme to the ring
setting, relying on the Ring Learning with Errors (Ring-LWE) assumption. As we discuss in
Section 5 in detail, moving to the ring setting offers several gains in efficiency. Specifically,
we work in a polynomial ring R modulo a cyclotomic polynomial f , which factors into a
constant number of irreducible polynomials over Zq. Concretely, we choose q = 3 mod 8 so
that f has exactly two irreducible factors f1, f2 over Zq (but other choices are possible).

The construction follows the same template as our LWE-based construction, but the
matrix A is now replaced with a vector of ring elements. To commit, one samples a←$ Rm

q ,
and a key k ←$ {0, 1}λ, computes ℓ ring elements as k1, . . . , kℓ ← H(k) and the commitment
is given by c ← (a, {a · ki + ei}i) where all eis are independent RLWE noise vectors in
Rm

q . Re-randomization is done by sampling a low-norm matrix R←$ Rm×m, and computing
c′ = (R · a, {R · ui}i). To test a commitment c = (a, u) against a key k, one computes
k1, . . . , kℓ ← H(k) and check that a · ki ≈ ui for all i. Correctness and unlinkability are
proven similarly to the integer case, with one exception: instead of relying on the leftover
hash lemma, we rely on the regularity lemma of [42].

Two main observations make our ring-based scheme more efficient than our integer-
based one:

We can choose ℓ to be smaller than in the integer case, and still make the binding argument
go through. Intuitively, the reason is that each entry of a · ki is now a polynomial in
the ring R and not an integer. Thus, we may hope that it has more than log q bits of
min-entropy (roughly the entropy of a random integer in Zq). If this is indeed the case,
then the probability that a · k ≈ a · k′, over the choice of random a, k, k′, is much smaller
than the probability that aT · k ≈ aT · k′ in the integer case for random a, k, k′ ←$ Zn

q .
This would imply that we can choose ℓ to be smaller, resulting in smaller commitments.
To argue that a · ki indeed has high min-entropy, we rely on the particular structure
of the ring R. If k ̸= k′, it means that the polynomials must be distinct modulo f1 or
modulo f2. Assume with loss of generality that they are distinct modulo f1. Since f1 is
irreducible mod q, a · (k − k′) is uniformly random in Zq[x]/f1, and hence it has at least
≈ deg(f1) · log q bits of min entropy. This analysis is inspired by the statistically-binding
commitments of Benhamouda, Krenn, Lyubashevsky, and Pietrzak [14].
The second observation is that our use of the leftover hash lemma in the LWE setting
incurred an overhead that can be avoided in the Ring LWE setting. To explain this
point, we need to revisit our LWE unlinkability argument in more detail. Recall that we
wanted to argue that if we have a commitment c = (A, U) and we re-randomize it to
c′ = (R ·A, R ·U), then the commitment c′ we end up with is pseudorandom. The first
step was to argue that c is pseudorandom, thanks to the LWE assumption. This step
remains essentially unchanged here, relying on the Ring-LWE assumption instead. The
second step was to rely on the leftover has lemma; this step required each row of R to
have more than Ω((n + ℓ) · log q) bits of min-entropy. This implied that m had to be set
to be at least (n + ℓ) · log q. In the ring setting, however, since each coordinate of R can
have Ω(n) bits of min-entropy, m can be reduced to roughly log q. This results in much
“shorter” matrices A, U making up the commitment.

Reducing communication. Catalano, Fiore, and Giuta [19] observed that when instantiating
the BEHG protocol with a DDH-based RRC of the form c = (gr, grk), the commitments
of all parties can share the same first coordinate h = gr, which is part of the public
parameters. Then, to re-randomize N commitments (hr, grk1 , . . . , grkN ), a shuffler can
sample a single r′ ←$ Zq and raise all the elements to the r′. This optimization cuts storage
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and communication by about half. It is tempting to implement this optimization using our
lattice-based commitments; have all commitments share the first coordinate A (or a in the
ring setting) and use a single re-randomization matrix R to re-randomize all commitments.
The problem is that to retain unlinkability, the dimensions of R need to grow as a function
of the number of commitments N , which may eliminate the gains of sharing A across all
commitments. We discuss this further in the full version where we consider settings where
this can still lead to some savings.

Post-quantum proof of shuffle. Recall that in the BEHG protocol, after each shuffle,
the shuffling party has to prove that it indeed performed a valid shuffle; that is, it applied
the Randomize algorithm of the RRC scheme to each commitment and then permuted the
resulting commitments. This can be done by using any general-purpose non-interactive
argument of knowledge, proving that the shuffler knows random coins for Randomize and a
permutation that together yield the resulting list of re-randomized commitments (for such
argument systems based on post-quantum secure assumptions, see for example [13, 11, 12, 4,
15, 28, 10, 6, 32, 2, 35] and the references therein).

When using our RLWE-based RRC commitments, we also show how we can change the
recent lattice-based proof-of-shuffle protocol of [22] to work with our commitments. This is a
simple protocol that may provide better concrete efficiency.

1.2 Paper Organization
The remainder of the paper is organized as follows. In Section 2 we present basic notation
and computational assumptions used in the paper. In section 3, we define RRC schemes, and
in Sections 4 and 5, we present our constructions from LWE and Ring-LWE, respectively.
In section 6 we strengthen our security notion and constructions for RRC schemes. In the
full version of this paper, we present the generalized BEHG protocol, discuss and construct
proofs of shuffle for our RRC schemes, and present additional ways to obtain our stronger
security notion. The full version also contains proofs that are omitted from this version.

2 Preliminaries

In this section, we present the basic notions and cryptographic primitives that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote
by x←$ X the process of sampling a value x from the distribution X. Similarly, for a set X ,
we denote by x←$ X the process of sampling a value x from the uniform distribution over X .
For a pair X, Y of distributions defined over the same domain Ω, we denote by SD(X, Y ) the
statistical distance between them, defined as SD(X, Y ) = 1

2
∑

ω∈Ω |Pr [X = ω]− Pr [Y = ω]|.
We denote matrices by boldface capital letters, e.g. A, and vectors in boldface lower-case

letters, e.g. v. We may use a non-bold capital letter, e.g. A or V , to describe a matrix or a
vector, when we wish to emphasize that this matrix or vector is being treated as a random
variable. As standard, we identify Zq for a prime q with the set (−q/2, . . . , q/2], and we
define the absolute value of an element x ∈ Zq as |x| = {min |y| : y ∈ Z, y = x (mod q)}.

For n, p ∈ N where p is prime, we define the rings R = Z[x]/f(x) and Rp = R/⟨p⟩, where
f(x) is monic and of degree n. That is, Rp is the ring of polynomials modulo f(x) with
integer coefficients in Zp. We define the norm of elements in these rings to be the norm
of their coefficient vector in Zn, which is also called the coefficient embedding. For any
g(x) =

∑
i∈0∪[n−1] αix

i ∈ R, we use coeff(g) to denote the vector {α0, . . . , αn−1}, i.e. the
coefficient embedding of g(x), and the norm is defined as follows:

AFT 2023
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||g||1 =
∑

αi ||g||2 = (
∑

α2
i )1/2 ||g||∞ = max|αi|

For a vector v over R, we define ||v|| = (
∑

i ||vi||2)1/2.

2.1 Lattice Assumption

The paper makes use of two basic and standard lattice-based assumptions, the learning with
errors (LWE) assumption and the short integer solution (SIS) assumption, both of which
over integer lattices. We briefly recall these assumptions here. For a more detailed survey of
these assumptions and their hardness, see, for example, [36] and the many references therein.

The LWE assumption. We rely on the following formulation of the learning with errors
(LWE) problem, introduced by Regev [39]. The problem is parameterized by a prime modulus
q, a vector length n which typically corresponds to the security parameter λ, and a noise
distribution χ. For our needs, the important thing is that χ is highly concentrated on
low-norm vectors such that with overwhelming probability ∥x∥2 ≤ δ for x ←$ χ for some
δ = δ(λ) (one typically takes χ to be a discrete Gaussian with appropriate parameters)

▶ Definition 1. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a
distribution over Zq, all public functions of the security parameter λ ∈ N. The (q, n, χ)-
LWE assumption states that for every probabilistic polynomial time algorithm A and for all
polynomially-bounded functions m = m(λ) there exists a negligible function ν(·) such that

Advlwe
A (λ) := |Pr [A(A, A · s + e) = 1]− Pr [A(A, v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where A←$ Zm×n
q , s←$ Zn

q , e←$ χm, and v ←$ Zm
q .

2.2 Ring Lattice Assumption

We will also use the ring-based variant of the LWE assumption, introduced by [33].

The RLWE assumption. This problem is also parameterized by the prime modulus q,
degree of the modulus polynomial n, and a noise distribution χ. We focus on a special case
of the Ring-LWE problem where f(x) = xn + 1, and n is a power of two. Similar to LWE, χ

is highly concentrated on low-norm polynomials such that with overwhelming probability
||x||2 ≤ δ for x←$ χ for some δ = δ(λ). χ is usually taken to be a discrete gaussian in the
coefficient embedding of R.

▶ Definition 2. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a
distribution over R, all public functions of the security parameter λ ∈ N. The (q, n, χ)-
RLWE assumption states that for every probabilistic polynomial time algorithm A and for all
polynomially-bounded functions m = m(λ), there exists a negligible function ν(·) such that

Advrlwe
A (λ) := |Pr [A(a, b) = 1]− Pr [A(a, v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where a ←$ Rm
q , s ←$ Rq, e ←$ χm, bi = ai · s + ei ∀ i ∈ [m],

and v ←$ Rm
q .
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2.3 Randomness Extraction
We will use the following lemma from the work of Gentry, Peikert, and Vaikuntanathan [26].
The lemma follows from the leftover hash lemma [29].

▶ Lemma 3 ([26, 29]). Let q be a prime and let m, n be integers. Let R, A and B be random
variables distributed uniformly in {−1, 1}m×m, Zm×n

q , and Zm×n
q , respectively. Then, it holds

that

SD ((A, R ·A) , (A, B)) ≤ m

2 ·
√

2−m+n log q.

When working over polynomial rings, we will not be able to use the leftover hash lemma.
Instead, we will use the regularity lemma defined over rings [42].

▶ Lemma 4 (Generalization of Theorem 3.2, [42]). Let F be a finite field and f ∈ F[x] be
monic and of degree n > 0. Let R be the ring F[x]/f and m > 0. For every i, j ∈ [m] and
k ∈ [n], let Di,j,k ⊆ F, with |Di,j,k| = d. Let A, B be random variables distributed uniformly
in Rm×ℓ. Let R ∈ Rm×m be a matrix of polynomials, wherein the kth coefficient of Ri,j

is chosen uniformly randomly and independently from Di,j,k, for all i, j ∈ [m] and k ∈ [n].
Then, it holds that,

SD ((A, RA) , (A, B)) ≤ m

2

√√√√√∏
i∈[t]

(
1 +

(
|F|
dm

)deg(fi)
)ℓ

− 1

where f =
∏

i∈[t] fi is the factorization of f over F[x], and deg(fi) is the degree of the
polynomial fi.

Specifically, we will choose F = Zq and Di,j,k = {−1, 1} ∀ i, j ∈ [m], k ∈ [n].
We will also rely on the following definition for the norm of a matrix and a related lemma

from Agrawal, Boneh, and Boyen [1] (a similar lemma appears in [3]), which states that a
random Bernoulli matrix has low norm with overwhelming probability.

▶ Definition 5. Let R be an m×m matrix over Z. Let Bm := {x ∈ Rm : ∥x∥2 = 1} be the
unit ball in Rm. Define the norm of the matrix R ∈ Zm×m as

∥R∥ := max
x∈Bm

∥R · x∥2 .

The norm for a matrix in Rm×m
q is defined similarly. The following two lemmas bound the

norm of random matrices where all entries are sampled i.i.d. from a distribution concentrated
around 0.

▶ Lemma 6 ([1, 3]). Let q be a prime and let m be an integer. Let R be a random variable
uniformly sampled from {−1, 1}m×m. Then, there is a universal constant C > 0 such that

Pr
[
∥R∥ ≥ C ·

√
m
]

< e−2m.

A proof for the following lemma can be found in the full version.

▶ Lemma 7. Let q be a prime and let m, n be integers. Let R ∈ Rm×m
q be a random variable,

such that for all i, j ∈ [m], the coefficient vector of Ri,j is sampled uniformly at random from
{−1, 1}n. Then,

Pr
[
∥R∥ ≥ m

√
mn · ω(

√
logn)

]
< negl(n)
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3 Re-randomizable Commitments

Informally, a re-randomizable commitment (RRC, for short) is a scheme that allows one
to commit to random keys.1 Moreover, an RRC scheme supports re-randomizations of
commitments: given a commitment c to a key k, one should be able to re-randomize to
commitment to produce a new commitment c′ for k. Importantly, knowledge of c suffices for
such re-randomization, and no additional secrets are needed. In particular, the re-randomizing
entity is not required to know the key k nor the randomness used to create c.

We first present the syntax for RRC schemes and the associated correctness requirement.
Then, we discuss two security notions that such schemes should satisfy.

3.1 Syntax & Correctness

An RRC scheme R is a tuple of four algorithms:
Setup(1λ)→ pp: outputs public parameters pp,
Commit(pp)→ (c, k): outputs a commitment string c and a key k,
Randomize(pp, c)→ c′: randomize the commitment,
Test(pp, c, k)→ {0, 1}: outputs 1 if k is a valid key for c.

The first three are probabilistic polynomial time (PPT) and the fourth is deterministic
polynomial time.

In terms of correctness, we require that Test(pp, c, k) outputs 1 for (c, k) output by
Commit(pp). Moreover, Test(pp, c′, k) should output 1 if c′ was obtained from c via at
most B consecutive re-randomizations, where B is a parameter. We call this correctness
requirement B-randomizability. If a scheme is B-randomizable for all B, we call it fully-
randomizable.

▶ Definition 8. An RRC scheme is B-randomizable if there exists a negligible function
ν(·) such that the following holds for every λ ∈ N:
let pp←$ Setup(1λ), (c0, k)←$ Commit(pp), and ci ←$ Randomize(pp, ci−1) for i = 1, . . ., then

Pr
[
Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable. ⌟

For the notion of RRC schemes to be non-trivial, we require that the key k generated by
Commit to have high min-entropy.

▶ Definition 9. An RRC scheme is B-randomizable is non-trivial if there exists a
negligible function ν(·) such that the following holds for every λ ∈ N: let pp←$ Setup(1λ),
(c0, k0)←$ Commit(pp) and (c1, k1)←$ Commit(pp), then Pr [k0 = k1] ≤ ν(λ). ⌟

3.2 Notions of Security

An RRC scheme should satisfy two security properties: Binding and Unlinkability.

1 Committing to random keys is sufficient for the main application we consider, which is SSLE protocols.
Observe, however, that such a scheme can be easily converted into a scheme that allows one to commit
to arbitrary messages via a one-time pad.
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Game GA,R(λ, B)
1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)
3 : (c0, k0)←$ R.Commit(pp), (c1, k1)←$ R.Commit(pp)
4 : (state, i0, i1)←$ A(pp, c0, c1)
5 : if (i0 > B) OR (i1 > B) : abort
6 : if (i0 = 0) OR (i1 = 0) : abort
7 : c← cb

8 : for t in {1, . . . , ib} : c←$ R.Randomize(pp, c)
9 : b′ ←$ A(c, state)

10 : return b = b′

Figure 1 The security game for an adversary A attacking the unlinkability of an RRC scheme R.

Binding. Similarly to standard commitment schemes, we require that a commitment can
be tied to at most one key.

▶ Definition 10. An RRC scheme is perfectly binding if for every λ ∈ N and for all
c, k, k′ we have

Prpp←$ Setup(1λ)[k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1] = 0. (1)

⌟

Condition (1) ensures that a commitment c will never be accepted by two distinct keys.
As we will later discuss, this is satisfied by the previous DDH-based construction of Boneh et
al. [16]. For our lattice-based construction, we need to weaken this condition a bit and only
require that (1) holds computationally. This leads to the following definition.

▶ Definition 11. We say that an RRC scheme is computationally binding if for all
PPTadversaries A the following function is negligible.

Pr
[
k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
(2)

⌟

Unlinkability. An RRC scheme R is unlinkable if a PPT adversary is unable to distinguish
the i-th re-randomization of a commitment c0 from the j-th re-randomization of another
commitment c1. This is captured in the security game in Figure 1. As usual, we define the
adversary’s advantage as

Advrrc
A,R,B(λ) :=

∣∣2 Pr[GA,R(λ, B) = 1]− 1
∣∣.

▶ Definition 12. A B-randomizable RRC scheme is unlinkable if for all PPTadversaries
A the function Advrrc

A,R,B(λ) is negligible.

We make two remarks on the unlinkability definition:
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Looking ahead, for some applications, we might want the scheme to remain unlinkable
even if adversarial re-randomizations were applied to it at some point. We present such
a definition in Section 6. We also discuss ways to augment our basic LWE-based and
Ring-LWE-based constructions to accommodate this stronger security definition. Since
the stronger unlinkability definition is much more complicated than the one in Fig. 1, we
first focus on this weaker notion.
An unlinkable RRC scheme is, in particular, hiding. Meaning, that a commitment c leaks
no information (in a computational sense) regarding the committed key k. Intuitively, an
adversary that can distinguish between a commitment to a key k and a commitment to a
different key k′ can trivially link a commitment c to either a commitment c0 to k0 or to
a commitment c1 to k1 by outputting the bit b such that c is a commitment to kb.

3.3 An RRC scheme based on DDH
Equipped with the above definitions, we can briefly recall the DDH-based RRC scheme used
in [16]. The scheme, called Rddh, is defined by:

Setup(1λ): choose a finite cyclic group G with generator g ∈ G and output pp := (G, g).
Commit(pp): choose random u←$ G and k ←$ Zq, set c← (u, uk), and output (c, k).
Randomize(pp, c): parse c = (u, v), choose a random ρ←$ Zq, and output c′ := (uρ, vρ).
Test(pp, c, k): parse c = (u, v) and output 1 iff uk = v, otherwise output 0.

▶ Theorem 13 ([16]). If the DDH assumption holds in G then Rddh is a perfectly-binding,
unlinkable, and fully randomizable RRC.

The fact that the scheme is full-randomizable and perfectly binding is easy to observe.
The proof of unlinkability is a direct application of DDH. In the next section, we construct
an RRC scheme that is post-quantum secure based on the LWE assumption.

4 A Construction from Learning with Errors

In this section, we present a construction of an RRC scheme from the LWE assumption [39]
(see Section 2). An informal overview of the construction is presented in Section 1.1.

4.1 The Construction
Our construction of an RRC scheme from LWE, denoted Rlwe is presented in Fig. 2. The
construction is parameterized by an integer B, which serves as a bound on the number of
re-randomizations that can be applied to a commitment. In the construction, we use ∆ to
denote (C ·

√
m)B · δ, where m is a parameter of the scheme determined by the analysis

(think of m = O(λ)), C is the universal constant from Lemma 6 and δ is a bound on the ℓ2
norm of the LWE noise vectors used in the construction.

Correctness. First, note that prior to any randomization being preformed, for an honestly-
generated commitment c = (A, U) it holds that A ·H(k)−U is equal to the noise matrix E

sampled according to χm×ℓ during the generation of the commitment. Hence, the matrix
computed by the Test algorithm is simply E, and each of its columns has norm at most δ.
Now, after t ≤ B applications of Randomize to c using matrices R1, . . . , Rt, the commitment
we get is of the form

(Rt · · ·R1 ·A, Rt · · ·R1 ·U) = (Rt · · ·R1 ·A, Rt · · ·R1 ·A · H(k) + Rt · · ·R1 ·E).
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Setup(1λ):
1 : Let n := λ, choose a prime q, and choose m = m(n, q) and ℓ = ℓ(n, q).

// we will explain how to choose m and ℓ in the analysis

2 : Let χ be the LWE noise distribution over Zq.
// if e←$ χm, and we lift e to Zm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

3 : return pp← (λ, q, n, m, ℓ, χ)
Commit(pp):
1 : A←$ Zm×n

q // choose a random matrix A

2 : k ←$ {0, 1}1λ

// choose a random λ-bit string

3 : V ← H(k) ∈ Zn×ℓ
q // hash k to an n-by-ℓ matrix

4 : sample E ∈ Zm×ℓ
q from the LWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p when e is lifted to Zm

5 : U ← A · V + E ∈ Zm×ℓ
q

6 : c← (A, U)
7 : return (c, k)

Randomize(pp, c): parse c = (A, U) and do
1 : sample a random matrix R←$ {−1, 1}m×m // R is a low-norm matrix

2 : c′ ← (R ·A, R ·U) ∈ Zm×n
q × Zm×ℓ

q

3 : return c′

Test(pp, c, k): parse c = (A, U) and do
1 : V ← A · H(k)−U ∈ Zm×ℓ

q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆ when v is lifted to Zm

Otherwise, return 0

Figure 2 Rlwe – A B-randomizable RRC scheme based on the learning with errors (LWE) problem.

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 ·E. Since R1, . . . , Rt

are sampled independently from {−1, 1}m×m, Lemma 6 guarantees that with overwhelming
probability, each column of E′ has norm at most (C ·

√
m)t · δ ≤ (C ·

√
m)B · δ = ∆.

4.2 Binding
▶ Theorem 14. The above scheme is computationally binding when H is modeled as a random
oracle. Concretely, for every adversary A making at most Q queries to H it holds that

Pr
[

k ̸= k′ AND
Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
≤ Q2 · qn ·

(
4∆ + 1

q

)ℓ

The proof of Theorem 14 can be found in the full version.

4.3 Unlinkability
▶ Theorem 15. The above construction is unlinkable. In particular, for every PPT adversary
A making at most Q = Q(λ) queries to H, there exists a PPT adversary B such that for all
λ ∈ N it holds that:
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Advrrc
A,RLWE,B(λ) ≤ 2Q

2λ −Q
+ 2ℓ · Advlwe

B (λ) + B ·m
2 ·

√
2−m+(n+ℓ)·log q.

The proof of the theorem is in the full version.

5 A Construction from Ring LWE

In this section we present our RRC construction from the Ring LWE assumption [33] (see
Section 2). Our construction, denoted Rrlwe is presented in Fig. 3. The construction works
in a polynomial ring R modulo a cyclotomic polynomial f that has exactly two irreducible
factors f1, f2 over Zq.

Improvements over RLWE. Compared to the integer-based scheme, the ring-based scheme
accommodates more efficient parameter choices. For concreteness, the ensuing discussion
focuses on the regime in which q = Ω(∆2). In this regime, for the ring-based scheme to
be binding, we only need ℓ to be Ω(log(q) + λ/n), where λ is the security parameter. This
is a factor of Ω(n) smaller than the LWE case. Secondly, m only needs to be of order
Ω(log(q) + (ℓ + κ)/n) where κ is a statistical security parameter (we want the re-randomized
commitments to be distributed 1/2κ close to a uniform distribution). This also turns out to
be a factor of Ω(n) smaller than the integer case. Combining these together, each ring-based
RRC commitment and each re-randomization matrix is Ω(n)-times smaller than the integer-
based commitment and matrix, respectively (this already takes into account the fact that
representing each ring element takes n-times the representation length of a Zq element).

Additionally, if we are re-randomizing a list of t commitments, then we consider the
possibility of using a single, larger matrix to re-randomize all the commitments. In the
ring case, we would only need to scale m by a factor of t/n, but in the integer case, m

grows by a factor of t. In particular, for t = Ω(n), the ring-based RRC commitments and
the re-randomization matrix only grow by a constant factor, while in the integer case, the
commitments and the re-randomization matrix still grow linearly in t (making it essentially
infeasible to use a single re-randomization matrix in this setting)2.

We now prove the correctness, binding, and unlinkability for our ring-based RRC scheme.

Correctness. We first note that, prior to any rerandomization, for an honestly generated
commitment c = (a, U), it holds that U − a · H(k)T is equal to the noise matrix E sampled
at the generation of the commitments. Hence, the matrix V computed by the Test algorithm
is just E, and each of its columns has norm at most δ, since E was sampled according to
χm×ℓ. Now, after t ≤ B applications of Randomize to the commitment c using matrices
R1, . . . , Rt, the commitment we get is of the form

(Rt · · ·R1 · a, Rt · · ·R1 ·U) = (Rt · · ·R1 · a, Rt · · ·R1 · a · H(k)T + Rt · · ·R1 ·E).

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 ·E. Lemma 7 guarantees
that with a high probability, each column of E′ has norm at most

(m
√

mn · ω(
√

log n))t · δ ≤ (m
√

mn · ω(
√

log n))B · δ = ∆

where ∆ is an upper bound on the expression δ · (m
√

mn · ω(
√

log n))B .

2 While the re-randomization matrix would typically not be transmitted in the clear, its size does affect
the complexity of the proof of shuffle (recall our discussion in the introduction).
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Setup(1λ):
1 : Let n := 2r where r = r(λ), and let f(x) = xn + 1 and R = Z[x]/f(x).

Choose a prime q and let Rq = Zq[x]/f(x).
// r, q are chosen such that f factors into two irreducible polynomials over Zq

2 : Let m = m(n, q) and ℓ = ℓ(n, q).
// we will explain how to choose m and ℓ in the analysis

3 : Let χ be the RLWE noise distribution over Rq.
// if we sample a vector e←$ χm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

4 : return pp← (λ, q, n, m, ℓ, χ)
Commit(pp):
1 : a←$ Rm

q // choose a random vector a

2 : k ←$ {0, 1}λ // choose a random 1λ-bit string

3 : v ← H(k) ∈ Rℓ
q // hash k to a vector of length ℓ

4 : Sample E ∈ Rm×ℓ
q from the RLWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p

5 : U ← a · vT + E ∈ Rm×ℓ
q

6 : c← (a, U)
7 : return (c, k)

Randomize(pp, c): parse c = (a, U) and do
1 : Sample R ∈ Rm×m:
∀i, j ∈ [m], sample the coefficients of Ri,j uniformly and independently from {−1, 1}

// R is a low-norm matrix

2 : c′ ← (R · a, R ·U) ∈ Rm
q ×Rm×ℓ

q

3 : return c′

Test(pp, c, k): parse c = (a, U) and do
1 : V ← U − a · H(k)T ∈ Rm×ℓ

q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆, and return 0 otherwise

Figure 3 Rrlwe – A B-randomizable RRC scheme based on the learning with errors over rings
(RLWE) problem.

5.1 Binding
▶ Theorem 16. The above scheme is computationally binding when H is modeled as a random
oracle. Concretely, for every adversary A making at most Q queries to H it holds that

Pr
[

k ̸= k′ AND
Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
≤ Q2 ·qn ·

(
4∆ + 1
√

q

)nℓ

The proof of Theorem 16 is in the full version.

5.2 Unlinkability
▶ Theorem 17. The above construction is unlinkable. In particular, for every PPT adversary
A making at most Q = Q(λ) queries to H, there exists a PPT adversary B such that for all
λ ∈ N it holds that:
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Advrrc
A,RRLWE,B(λ) ≤ 2Q

2λ −Q
+ (2ℓ) · Advrlwe

B (λ) + B · m

2

√(
1 +

( q

2m

)n/2
)2(ℓ+1)

− 1.

The proof of Theorem 17 can be found in the full version.

6 Handling Adversarially-Randomized Commitments

In this section, we present a stronger notion of unlinkability, called strong unlinkability for
RRC schemes, and then present different approaches to augment our basic schemes from
Sections 4 and 5 to satisfy this definition.

Loosely speaking, strong unlinkability requires that re-randomization should result in
unlinkable commitments, even if they were previously re-randomized by the adversary. This
trivially holds for the DDH-based construction of Boneh et al. [16] thanks to two properties
of the scheme:

Suppose the adversary receives a commitment c for which k is a valid key, and outputs a
randomized commitment c′. As long as Test(pp, c′, k) = 1, there exists some randomness
r such that c′ = Randomize(pp, c; r).
Re-randomization using Randomize is a commutative operation. Hence, in conjunction
with the observation above, any knowledge the adversary could gain by re-randomizing a
commitment before an honest re-randomization, it could also gain by re-randomizing it
afterwards (which the adversary can already do in the security game from Fig. 1).

Alas, this is not the case for our lattice-based constructions. The main issue is that matrix
multiplication is not commutative. Hence a “bad” re-randomization (even one that does
not invalidate the honest commitment key) can have a long lasting effect on a commitment
even after many subsequent honest re-randomizations have taken place. Concretely, on
input c = (A, U), the adversary may output c′ = (A′, U ′), such that A′ is “bad” in the
sense that the distribution R · A′ for a random R ←$ {−1, 1, }m×m is very far from the
uniform distribution over Zm×n

q . As a hypothetical example, suppose that the adversary
can find a matrix R ∈ {−1, 1, }m×m such that A′ = R ·A is a low-norm matrix. Then, the
distribution R ·A′ will be concentrated on low-norm matrices as well, enabling the adversary
to distinguish between this distribution and the uniform distribution over Zm×n

q , which is
concentrated on high-norm matrices.

6.1 A Stronger Unlinkability Definition
We first need to define what it means for an RRC scheme to be unlinkable in the face of
adversarial re-randomizations. To do this, we augment the security game of RRC schemes
by letting the adversary re-randomize the commitments at points in time of its choosing.
To avoid trivial attacks, we require that the adversary justifies its outputs by providing the
randomness it used for re-randomization.

To this end, and to facilitate our constructions, we introduce several new notions for
RRC schemes:

We augment an RRC scheme with a corresponding beacon distribution D. This distribution
is used to model a randomness beacon, and will be used by one of our constructions of a
strongly-unlinkable RRC scheme. In practice, the beacon may be assumed as an outside
resource or implemented in various ways using known techniques [37].
We introduce two new algorithms R.Precommit and R.Extract to an RRC scheme R.
R.Precommit is a randomized algorithm that takes in the public parameters pp an outputs
some “precommitment” pcom, whose role will become apparent in a minute. R.Extract
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is a (potentially randomized) algorithm that takes in pp, the randomness r ∈ {0, 1}∗
used by R.Precommit to generate pcom, and a sample rand from D, and outputs some
randomness r′ to be used by R.Randomize. Throughout this section, we will denote the
number of random coins used by R.Precommit by ρ = ρ(λ).
An RRC scheme R is now also parameterized by a class G of admissible random strings ,
and only members of G can be used as randomness for R.Randomize. This is checked by
the security game for randomness used by the adversary. A natural selection for G is the
entire support of the randomness used by the honest Randomize algorithm; for example,
in our (integer) LWE-based construction, this corresponds to G = {−1, 1}m×m, but one
might also consider strict supersets or subsets of this set.
We allow G to depend on a precommitment pcom, the randomness r ∈ {0, 1}∗ used
by R.Precommit to generate pcom, and a sample rand from D. We denote this by
A(pcom, r, rand). The set G may also depend on the public parameters pp, but we do not
note this explicitly, since the public parameters typically remain fixed.

To recap, an RRC scheme R now consists of six algorithms (R.Setup, R.Commit,
R.Randomize, R.Test, and now also R.Precommit and R.Extract), a distribution D, and
a set G = G(pcom, r, rand).

Correctness and unlinkability. For correctness, we now require that the scheme is B-
rerandomizable (Definition 8), where the randomness for rerandomization is generated by
Precommit, D, and Extract. We additionally require that honestly generated randomness for
Randomize is indeed admissible.

▶ Definition 18. Let R be an RRC scheme such that R.Precommit takes ρ = ρ(λ) random
coins. We say Ris B-randomizable if there exists a negligible function ν(·) such that the
following conditions hold for every λ ∈ N:
1. Let pp ←$ R.Setup(1λ), (c0, k) ←$ R.Commit(pp), ri ←$ {0, 1}ρ, randi ←$ D, r′i ←$

R.Extract(pp, ri, randi), ci ←$ R.Randomize(pp, ci−1; r′i) for i ∈ [B], then

Pr
[
R.Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

2. Let pp ←$ R.Setup(1λ), r ←$ {0, 1}ρ, pcom ← R.Precommit(pp; r), rand ←$ D, and r′ ←$

R.Extract(pp, r, rand), then

Pr [r′ ∈ G(pcom, r, rand)] ≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable. ⌟

The new strong-unlinkability game is defined in Figure 4. It uses the following abbreviated
writing: we write (rand, c′) ←$ R.Randomize(pp, r, c) as a shorthand for the process of
(1) sampling rand ←$ D, (3) sampling r′ ←$ R.Extract(pp, r, rand), (4) computing c′ ←
R.Randomize(pp, c; r′), and (5) outputting (rand, c′). The new game is obtained from the old
unlinkability security game (Figure 1) by the following modifications:
1. At the onset of the game, the challenger samples precommitments {pcom} to be used for

the honest re-randomizations it performs. The adversary then also outputs a precommit-
ment {pcom} for its own future re-randomizations. For each re-randomization, the set
G will depend on the corresponding precommitment. Looking ahead, in a couple of our
constructions, the precommitments will serve as commitments for randomness to be used
in the future re-randomizations.
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2. The challenger samples {rand} values from the beacon distribution D. These serve as the
beacon values for each re-randomization (adversarial or honest). The adversary receives
the corresponding rand value before each adversarial re-randomization, and together with
each honest re-randomization.

3. Each time the adversary A outputs re-randomized commitments, it also outputs the asso-
ciated randomness used to generate the associated precommitment and the randomness
used for re-randomization. The challenger then checks that this randomness is indeed
admissible.

As before, we define the adversary’s advantage as

Advstrong-rrc
A,R (λ) :=

∣∣2 Pr[Gstrong
A,R (λ) = 1]− 1

∣∣.

Game Gstrong
A,R (λ)

1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)

3 : (T, i
(1)
0 , i

(1)
1 . . . , i

(T )
0 , i

(T )
1 , state)←$ A(pp)

4 : −−−→pcom← () // initialize an empty vector
5 : for t in {1, . . . , T} :

6 : for j in {1, . . . , i
(t)
0 } : rt,0,j ←$ {0, 1}ρ

, pcomt,0,j ← R.Precommit(pp; rt,0,j), −−−→pcom← −−−→pcom∥pcomt,0,j

7 : for j in {1, . . . , i
(t)
1 } : rt,1,j ←$ {0, 1}ρ

, pcomt,1,j ← R.Precommit(pp; rt,1,j), −−−→pcom← −−−→pcom∥pcomt,1,j

8 : // ρ denotes the number of random coins used by R.Precommit

9 : (pcom′
1,0, pcom′

1,1, . . . , pcom′
T,0, pcom′

T,1, state)←$ A(state,−−−→pcom)

10 : rand1,0, rand1,1 . . . , randT,0, randT,1 ←$ D

11 : (c
(0)
0 , k0)←$ R.Commit(pp), (c

(0)
1 , k1)←$ R.Commit(pp)

12 : aux0 ← c
(0)
0 ∥c

(0)
1

13 : for t in {1, . . . , T} :

14 : (state, c
(t)
0 , c

(t)
1 , r0, r1, r

′
0, r

′
1)←$ A(state, auxt−1, randt,1, randt,0)

15 : // r0 and r1 are the random coins A claims to have used to generate pcomt,0 and pcomt,1

16 : // r
′
0 and r

′
1 are the random coins A claims to have used for re-randomization

17 : if (c
(t)
0 ̸= R.Randomize(pp, c

(t−1)
0 ; r

′
0)) OR (c

(t)
1 ̸= R.Randomize(pp, c

(t−1)
1 ; r

′
1)) : abort

18 : // check that r
′
0 and r

′
1 were used by A for re-randomization

19 : for d in {0, 1} : Gd ← G(pcom′
t,d, rd, randt,d)

20 : auxt ← () // initialize an empty vector

21 : for j in {1, . . . , i
(t)
0 } : (randt

0,j , c
(t)
0 )←$ R.Randomize(pp, rt,0,j , c

(t)
0 ), auxt ← auxt∥(randt

0,j , c
(t)
0 )

22 : for j in {1, . . . , i
(t)
1 } : (randt

1,j , c
(t)
1 )←$ R.Randomize(pp, rt,1,j , c

(t)
1 ), auxt ← auxt∥(randt

1,j , c
(t)
1 )

23 : // the notation (rand, c
′)←$ R.Randomize(pp, r, c) is defined above

24 : if r
′
0 ̸∈ G0 OR r

′
1 ̸∈ G1 : c

(t)
0 ← c

(t−1)
0 , c

(t)
1 ← c

(t−1)
1

25 : (rand0, c0)←$ R.Randomize(pp, c
(T )
0 ), (rand1, c1)←$ R.Randomize(pp, c

(T )
1 )

26 : b
′ ←$ A(cb, c1−b, rand0, rand1, state)

27 : return b = b
′

Figure 4 The strong unlinkability security game for an adversary A and an RRC scheme R.

▶ Definition 19. An RRC scheme R is strongly-unlinkable if for all PPTadversaries A
the function Advstrong-rrc

A,R (λ) is negligible.
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Game Gpr
A,R(λ)

1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)
3 : r ←$ {0, 1}ρ, pcom← R.Precommit(pp; r)
4 : (pcom′, state)←$ A(pp, pcom)
5 : rand←$ D

6 : (c, k)←$ R.Commit(pp), (c′
0, k′)←$ R.Commit(pp)

7 : (c′′, r′, r′′, state)←$ A(state, c, rand)
8 : if c′′ ̸= R.Randomize(pp, c; r′′) : abort
9 : if r′′ ̸∈ G(pcom′, r′, rand) : abort

10 : (rand′, c0)←$ R.Randomize(pp, r, c′′)
11 : c1, c′

1 ←$ Cλ

12 : b′ ←$ A(cb, c′
b, rand′, state)

13 : return b = b′

Figure 5 The security game for an adversary A attacking the strong pseudorandomness of R.

How to put the strong unlinkability definition to use. In the strengthened security game
from Fig. 4, whenever the adversary re-randomizes, it also sends to the challenger the
randomness that went into this re-randomization process (that is, the randomness that went
into Precommit and into Randomize). This means that whenever using a strongly-unlinkable
RRC scheme within a larger protocol, one should require that re-randomizers provide a
argument of knowledge for such randomness (and potentially of additional secrets that are
related to the larger super-protocol). Then, a security reduction that tries to break the
security of the RRC scheme can use the knowledge extractor of the proof system to extract
the randomness and output it in the RRC security game. Our SSLE protocol, detailed in the
full version, provides an example of how to use RRC schemes within a larger protocol. In
the full version, we discuss specific ways to construct the necessary arguments of knowledge
for our lattice-based RRC schemes.

Strongly-pseudorandom RRC schemes. We present the notion of strong pseudorandomness
for RRC schemes. Roughly speaking, an RRC scheme enjoys strong pseudorandomness, if
honestly re-randomized commitments are pseudorandom. That is, it is indistinguishable
from a uniformly-random member of the domain C = {Cλ}λ of commitments. Moreover,
honest re-randomization should output pseudorandom commitments even on commitments
that were previously re-randomized by the adversary (using admissible randomness). This is
captured by the security game in Fig. 5.

As before, we define the adversary’s advantage as

Advpr-rrc
A,R (λ) :=

∣∣2 Pr[Gpr
A,R(λ) = 1]− 1

∣∣.
▶ Definition 20. A B-randomizable R scheme is strongly-pseudorandom if for all PPT
adversaries A the function Advpr-rrc

A,R (λ) is negligible.

A simple hybrid argument shows that an RRC scheme that is strongly-pseudorandom is
also strongly-unlinkable.

AFT 2023
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▶ Proposition 21. If an RRC scheme R is strongly-pseudorandom then it is also strongly-
unlinkable.

We now turn to present several ways to augment our basic RRC schemes so that they
achieve strong-pseudorandomness, and hence strong unlinkability.

6.2 Constructing Strongly-Pseudorandom RRCs
We now present a way to turn our lattice-based constructions of RRC schemes to ones that
provide strong pseudorandomness, and hence strong unlinkability. We start by describing
such a mechanism for our LWE-based scheme, and then discuss how the same ideas can also
be applied to our Ring-LWE-based scheme.

Immunizing our LWE-based RRC scheme RLWE against adversarial re-randomizations
per the Definition 19 amounts to defining the beacon distribution D, the algorithms
RLWE.Precommit and RLWE.Extract, and the set G of admissible random strings. We do
so as follows:

D is the uniform distribution over {−1, 1}m×m.
RLWE.Precommit(pp; r): the randomness r to the algorithm is parsed as a tuple (R, r′)
of a uniformly-random matrix R in {−1, 1}m×m and randomness r′ to a stand-
ard (not re-randomizable) statistically-binding non-interactive commitment scheme
C = (C.Setup, C.Commit) (for definitions of standard commitment schemes, see for
example [17]). The algorithm then commits to R using C: it computes pcom ←
C.Commit(ppC, R; r′) and outputs pcom (the public parameters ppC for C are sampled
by the C.Setup algorithm during the operation of RLWE.Setup and are included as part of
the public parameters of RLWE).
RLWE.Extract(pp, r, rand) parses r as (R, r′) and treats rand as a matrix R′ in {−1, 1}m×m.
It outputs R′′ ← R + R′ ∈ Zm×m

q .
The set G = G(pcom, r = (R, r′), rand = R′) is then the singleton set {R + R′} if
pcom = C.Commit(ppC, R; r′). Otherwise, if pcom ̸= C.Commit(ppC, R; r′) then G = ∅
and there is no admissible randomness. That is, G “checks” if pcom is a valid commitment
to R given the randomness used to generate it, and if so, the only admissible randomness
for RLWE.Randomize is the sum of R + R′.

We denote the RRC scheme obtained by these augmentations by R+
LWE. We first argue that

the scheme is correct per Definition 18. Condition 2 of the definition holds trivially. To see
why Condition 1 holds, observe that honest ris used for re-randomization are now m-by-m
matrices, whose coordinates are independently sampled from a distribution which attains 0
with probability 1/2, and −2 or 2 with probability 1/4 each. A straightforward adaptation
of the proof of Lemma 6 shows that it still applies (with a slightly worse constant C) and
hence the previous proof of correctness still goes through.

As for security, the following theorem, proved in the full version, proves that R+
LWE satisfies

strong pseudorandomness. In conjunction with Proposition 21, this implies that it is also
strongly-unlinkable.

▶ Theorem 22. The scheme R+
LWE is a strongly-pseudorandom RRC scheme.

Strong unlinkability from the Ring LWE assumption. We can use a similar technique in
order to augment our Ring-LWE-based RRC scheme with strong unlinkability. The only
difference is that now R and R′ are sampled as matrices of “short” polynomials. That is, the
distribution D samples a matrix R′ as follows: Each coordinate is an independent polynomial,
whose coefficients are sampled independently and uniformly from {−1, 1}. Precommit samples
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a commitment to a matrix R sampled from the same distribution, and Extract outputs
R + R′. Finally, the set G(pcom, r, rand) = {R + R′} as before if the precommitment pcom is
consistent with r and ∅ otherwise. Correctness follows similarly as in the LWE case, replacing
the use of Lemma 6 with Lemma 7. For strong pseudorandomness, we replace the use of the
leftover hash lemma [29] with Lemma 4.3

6.3 Strong Pseudorandomness without A Randomness Beacon
The above approach requires a randomness beacon, which is a very reasonable assumption
in the context of SSLE protocols. However, there might be other scenarios in which one
might want to use RRCs without assuming the availability of such a beacon. This is formally
captured by the above definitions by fixing D to be the constant distribution outputting ⊥
with probability 1. In the full version, we present three different approaches to augment our
schemes to provide strong unlinkability without assuming a randomness beacon.
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