
Security Analysis of Filecoin’s Expected Consensus
in the Byzantine vs Honest Model
Xuechao Wang1 #

Thrust of Financial Technology, HKUST(GZ), Guangzhou, China

Sarah Azouvi #

Protocol Labs, San Francisco, CA, USA

Marko Vukolić #

Protocol Labs, San Francisco, CA, USA

Abstract
Filecoin is the largest storage-based open-source blockchain, both by storage capacity (>11EiB) and
market capitalization. This paper provides the first formal security analysis of Filecoin’s consensus
(ordering) protocol, Expected Consensus (EC). Specifically, we show that EC is secure against an
arbitrary adversary that controls a fraction β of the total storage for βm < 1 − e−(1−β)m, where m

is a parameter that corresponds to the expected number of blocks per round, currently m = 5 in
Filecoin. We then present an attack, the n-split attack, where an adversary splits the honest miners
between multiple chains, and show that it is successful for βm ≥ 1 − e−(1−β)m, thus proving that
βm = 1 − e−(1−β)m is the tight security threshold of EC. This corresponds roughly to an adversary
with 20% of the total storage pledged to the chain. Finally, we propose two improvements to EC
security that would increase this threshold. One of these two fixes is being implemented as a Filecoin
Improvement Proposal (FIP).

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Decentralized storage, Consensus, Security analysis

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.5

Related Version Full Version: https://arxiv.org/pdf/2308.06955.pdf [29]

Acknowledgements The authors would like to thank Guy Goren for his suggestion of Consistent
Broadcast as a mitigation to the n-split attack.

1 Introduction

Filecoin is the largest storage-based blockchain in terms of both market cap [3] and total
raw-byte storage capacity (>11EiB) [6]. In Filecoin, miners, called Storage Providers (SPs),
gain the right to participate in the consensus protocol and to create blocks by pledging
storage capacity to the chain.2 They are in return compensated with a financial reward in
the form of newly minted FIL, the cryptocurrency underlying Filecoin, whenever their blocks
are included on-chain, where probability of a miner minting new block corresponds to their
storage power. The Filecoin consensus mechanism Storage Power Consensus (SPC) consists
mainly of two components: first, a Sybil-resistance mechanism that keeps an accurate map
of the storage pledged by each storage provider; and second, a consensus protocol that can
be run by any set of weighted participants and outputs an ordered list of transactions.

1 Corresponding author, part of work was done at Protocol Labs.
2 Filecoin further incentivizes the storage of “useful” data, where SPs have the additional opportunity to

boost their raw-byte storage power, offering deals to verified clients, yielding quality adjusted power [2].

© Xuechao Wang, Sarah Azouvi, and Marko Vukolić;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xuechaowang@hkust-gz.edu.cn
https://orcid.org/0000-0001-6918-2699
mailto:s.azouvi@gmail.com
https://orcid.org/0000-0002-7133-1937
mailto:marko.vukolic@protocol.ai
https://orcid.org/0000-0002-9898-5383
https://doi.org/10.4230/LIPIcs.AFT.2023.5
https://arxiv.org/pdf/2308.06955.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 EC Security Analysis

In this paper, we ignore the mechanisms that keep the mapping between miners and their
respective storage accurate (i.e., the Sybil-resistance mechanism and the quality adjusted
power policy) and focus on the sub-protocol run by the weighted miners to produce an
ordered list of transactions. This sub-protocol is called Expected Consensus (EC) and weighs
each participant according to their storage power. We assume that the weighted list of miners
is accurately maintained and given as an input to EC. EC is a longest-chain style protocol [1]
(or, more accurately, a heaviest-chain protocol). At a high level, it operates by running a
leader election at every time slot in which, on expectation, m participants may be eligible to
submit a block, where m is a parameter currently equal to 5. Each participant is elected with
probability proportional to their weight. Multiple valid blocks submitted in a given round
may form a tipset, which is a set of blocks sharing the same height (i.e., round number) and
parent tipset. In EC, the blockchain is a chain of tipsets (i.e., a directed acyclic graph [DAG]
of blocks) rather than a chain of blocks. For example, in Figure 1a blocks {A,B,C}, {D,E}
and {F,G,H} each form a different tipset; and in Figure 1b blocks {A,B,C}, {D,E} and {F}
each form a different tipset. Every block in a tipset adds weight to its chain of tipsets, while
the fork choice rule is to choose the heaviest tipset. EC works in a very similar fashion as
longest-chain protocols like Bitcoin do, but it uses tipsets instead of blocks. EC’s security
has, until now, only been argued informally, as with Bitcoin in its early days. Intuitively,
tipsets make it harder for an adversary with less storage to form a competing chain of tipsets
with more blocks than the main chain, as miners can create a number of blocks proportional
to their storage power. This is analogous to Nakamoto’s private attack on the longest-chain
protocol [22]. Specifically, assuming that two competing chains of tipsets are growing, with
different amount of storage power producing the two, since in EC more than one block can
be appended to a chain at each round, the difference between the number of blocks created
on each chain will grow roughly m times faster than in the case without tipset (i.e., where
each chain can grow by at most one block at each round). However, this intuitive security
justification only applies when examining the private attack, a specific instance, not a general
adversary. The lessons learned from the balance attack [23] on GHOST [28] highlight that a
comprehensive analysis encompassing all potential attacks is crucial for assuring the security
of a blockchain protocol. This comprehensive evaluation is the main focus of this paper.

In this work, we conduct a formal security analysis of EC and prove that EC is secure
against any adversary that owns a fraction β of the total storage power for βm < 1−e−(1−β)m

(Section 5). To achieve this, we carefully extend the proof technique developed in [14] to EC:
the key step is to identify the sufficient condition for a block to stay in the chain forever,
regardless of the complex DAG structure in EC. Indeed, the incorporation of tipsets introduces
substantial complexities to the problem. For instance, in the longest-chain protocol, the
chain growth is an independent and identically distributed random variable in each round.
Conversely, within EC, the chain growth becomes dependent on the entire history of the
blockchain, given that it depends on the structure of the DAG. This increased dependency
adds layers of intricacy to the security analysis. Following similar literature [14, 16, 19], we
consider a rather strong adversary, which we specify in Section 2, that has “full control” over
both the network and the tie breaking rule. We then propose an attack, the n-split attack,
in Section 6 in which an adversary with power β such that βm ≥ 1− e−(1−β)m can break the
security of EC, effectively proving that the security threshold βm = 1− e−(1−β)m is tight
for EC. With current parameters, this means that EC is secure against an adversary that
holds roughly 20% of the total storage power. In our attack, an elected leader, controlled
by the adversary, equivocates by sending different blocks to different miners at each round
with the aim to split the honest miners into different chains and thus reducing the weight

X. Wang, S. Azouvi, and M. Vukolić 5:3

(a) Example of a tipset chain: {A,B,C}
is the first tipset after Genesis, and the
parent tipset of {D,E}, which is itself the
parent tipset of tipset {F,G,H}.

(b) Example of two tipsets with equal
weight. Tipset {D,E} and tipset {F} both
have a weight of 5. (roughly, the weight is
calculated as the sum of the blocks in all
the tipsets, see Section 3.3 for details).

Figure 1 Tipset structure in EC.

of each tipsets’ chain. While the honest participants are split and all mine on potentially
many different forks, the adversary can construct a private tipsets’ chain on the side, i.e., a
chain that does not include any block mined by an honest miner (called for simplicity honest
block) and that will not be broadcast to any honest miner until the end of the attack. Finally,
in Section 7, we propose two countermeasures against this attack aimed at augmenting
the security threshold of Filecoin. The first one entails eliminating the concept of tipsets,
substituting EC with the longest-chain protocol [19, 13, 9], as our observations suggest that
lowering the value of m can enhance the security threshold. The second approach involves the
adoption of a consistent or reliable broadcast protocol [12, 18] to prohibit the adversary from
equivocating. Our second countermeasure is currently in the process of being implemented
as a Filecoin Improvement Proposal [7].

Related Work

This work is directly inspired by the line of work formally analyzing longest-chain protocols
either in the proof-of-work case [16, 27, 20] or proof-of-stake [10, 19, 14, 25]. We adapt the
technique in [14] to account for tipsets instead of blocks (see Lemma 5). The main difference
between using a chain of tipsets and a chain of blocks is that in the tipset case, the number
of blocks in the chain at each round can increase by any finite integer value and also depends
on the structure of the DAG. By contrast, in the chain-of-blocks case, the number of blocks
of any honest chain increases by zero or one at each round. This makes the tipset analysis
more complex.

Similar attacks to the one we describe in Section 6 were proposed by Bagaria et al. [10]
in the context of proof-of-stake and by Natoli and Gramoli [23] in the proof-of-work context.
In both these works, the attacks are described on a DAG-based blockchain, where each new
block can include any previous block as its parent. We adapt it to the tipset case, which is
slightly different: in the case of tipsets, a block may have multiple parents, but only blocks
that have themselves the same set of parents can be referenced by the child block. The idea
behind these attacks is to have an adversary publish its blocks in a timely manner on different
forks to ensure that honest miners keep on extending two or even more chains instead of one,
effectively spreading their power (be it stake, computation or storage) on different chains.

AFT 2023

5:4 EC Security Analysis

2 Model

In this section we present our model and assumptions.

2.1 Participants
Filecoin requires participants to pledge storage capacity to the chain to be added to the list
of participants. Following the work in [16, 19] we consider a flat model, meaning that each
participant accounts for one unit of storage. This could easily be extended to a non-flat model
by considering that a participant holding x units of storage controls x “flat” participants.
We consider a static model wherein the set of participants is fixed during the execution of
the protocol. We assume that each participant i possesses a key pair (ski, pki) and that every
participant is aware of the other participants and their respective public keys.

We consider a static adversary that corrupts a fraction β of the participants at the
beginning of the execution of the protocol. In order to defend against an adaptive adversary
who can corrupt honest nodes on the fly (i.e., dynamically, at the start of each round), one
can either use key evolving signature schemes [13] or checkpointing [8]. However, in order to
keep the problem simple, we do not consider an adaptive adversary in this paper.

2.2 Network assumptions
We consider the lock-step synchronous network model adopted in [16, 19]. Time is divided into
synchronized rounds, each indexed with an integer in N. Following Filecoin’s terminology [1],
we refer to each time slot as an epoch. Each epoch has a fixed duration (currently 30 seconds
in Filecoin). To abstract the underlying peer-to-peer gossip network in Filecoin, we simply
assume that all messages sent by honest nodes are broadcast to all nodes and that all honest
nodes re-broadcast any message they deliver. All network messages are delivered by the
adversary, and we allow the adversary to selectively delay messages sent by honest nodes,
with the following restrictions: (i) the messages sent in an epoch must be delivered by the
end of the current epoch; and (ii) the adversary cannot forge or alter any message sent by
an honest node. The adversary does not suffer any network delay. Note that the adversary
can selectively send its message only to a subset of honest nodes. However, due to the
re-broadcast mechanism, all honest nodes will receive the message by the end of the next
epoch.

The non-lock-step synchronous model, also known as the ∆-synchronous model, is also
frequently employed in blockchain security analysis [9, 13, 14, 24, 27]. This model ensures
messages sent by honest nodes are delivered within a sliding window of ∆ epochs. While
this model might be more suitable for proof-of-work blockchains, where miners persistently
mine and broadcast blocks, its application becomes less pertinent for PoS blockchains. In
the latter, honest nodes primarily remain dormant, awaiting the epoch boundaries to send
messages. Given the efficiency of today’s network infrastructure, a 30-second window adopted
by EC is quite conservative. Consequently, we find little justification to incorporate the
∆-synchronous model in our EC analysis.

2.3 Randomness
Random beacon. A random beacon [26] is a system that emits a random number at regular
intervals. EC relies on drand [4], a decentralized random beacon, to provide miners a different
random number at each epoch. This service is run by a set of 16 independent institutions
that run a multi-party protocol to output, at regular intervals, a fresh random number. We

X. Wang, S. Azouvi, and M. Vukolić 5:5

assume that this random number is unbiasable (i.e., truly random) and unpredictable before
the beginning of the epoch. We also assume that each miner in Filecoin has the same view of
each drand output, i.e., that drand is secure. We denote drandi the random beacon emitted
by drand and used by Filecoin miners at epoch i.

Verifiable Random Function. A Verifiable Random Function (VRF) [21] is a function that
outputs a random number in a verifiable way, i.e., everyone can verify that the output is
indeed random and was generated correctly. A VRF is composed of two polynomial-time
algorithms: VRF.Proof and VRF.Verify (we omit the key generation). VRF.Proof takes as
inputs a seed seed and a secret key sk and outputs a tuple (y = Gsk(seed), p = πsk(seed))
where y is a random number and p is a proof that can be used to verify the correctness of y.
VRF.Verify takes as input a tuple (seed, y, p) and a public key pk and uses p to verify that
y = Gsk(seed), in which case it outputs 1; otherwise, it outputs 0. A VRF is correct if:
1. if (y, p) = VRF.Proofsk(seed), then VRF.Verifypk(seed, y, p) = 1;
2. for all (sk, seed), there is a unique y s.t. VRF.Verifypk(seed, y, πsk(seed)) = 1;
3. Gsk(seed) is computationally indistinguishable from a random number for any probabilistic

polynomial-time adversary.

Throughout the rest of this paper, we assume the existence of a correct VRF.

3 Filecoin’s Expected Consensus (EC)

Filecoin’s consensus protocol, EC, consists of three main components: a leader election
sub-protocol, a mining algorithm and a fork choice rule. Briefly, at the beginning of each
epoch, participants will check their eligibility to produce a block by running the leader
election. If they are elected, they use the fork choice rule to select a tipset and include
it as their parent before broadcasting their block. We define the protocol more formally
in this section. However, we intentionally omit some details, such as those regarding how
participants must continually post proofs related to their pledged storage, as they are not
relevant to our analysis. Instead, we assume that all participants continuously maintain one
unit of storage. Furthermore, in practice in Filecoin [1] a participant with power x that is
elected twice in the same epoch will create only one block that weighs twice more. This is
not relevant to our analysis, so we ignore it and prefer a flat model wherein a participant
elected twice simply creates two blocks under two different identities. Such a model will
favor an adversary as we illustrate in Section 6 and hence renders our analysis stronger.

Due to space limitations, a pseudocode representation of the algorithms described in this
section can be found in Appendix A.

3.1 Leader Selection Protocol
EC’s leader election is inspired by Algorand’s cryptographic sortition [17]. Briefly, the
leader selection relies on a Verifiable Random Function (VRF) [21] that takes as input
the drand output value for that epoch. In each epoch, each participant will compute
VRF.Proofsk(seed) = (y = Gsk(seed), p = πsk(seed)) where seed is the drand value. If y is
below a predefined value target that is a parameter of the protocol, then that participant
is elected leader. Any other participant can then use p in order to verify that the random
value y was computed correctly (i.e., VRF.Verifypk(seed, y, p) = 1) and that the participant is
indeed an elected leader. The value of target is chosen such that on expectation m leaders
are elected in each epoch. m is a parameter of the EC protocol currently set to m = 5.

AFT 2023

5:6 EC Security Analysis

Proving that the leader selection mechanism is secure is outside the scope of this paper,
as similar results were already proven in, e.g., Algorand [17]. Instead, we assume that in
each epoch, there is an independent random number of participants that are elected leaders
and that the number of leaders in each epoch follows a Poisson distribution of parameter m.
For a coalition that consists of a fraction α of all the participants, their number of elected
leaders in an epoch follows a Poisson distribution of parameter α×m.

3.2 Block and Tipset Structure
A block is composed of a header and a payload. The payload includes transactions as well
as other messages necessary for maintaining the set of participants up to date. We omit its
content in this analysis.

When a participant is elected to create a block, they include in the header of the block
their proof of eligibility (i.e., the VRF proof), an epoch number (the epoch at which the
block was created), a proof of storage called WinningPost to prove that they maintain the
storage they have pledged (we omit the details of such proof) and finally a pointer to a set
of parent blocks. For a block B, we denote B.parent its parents set and B.epoch its epoch
number. The parents of a block must satisfy certain conditions. First, they must all be
in the same epoch, and that epoch needs to be smaller than the block’s epoch. Second,
all parent blocks need to have the same set of parents themselves. Each set of blocks that
are in the same epoch and have the same set of parents is called a tipset and denoted T .
Formally, a tipset T is a non-empty set of blocks: T = {B1, · · · ,Br}, each of which belongs
to the same epoch, i.e., B1.epoch = · · · = Br.epoch and has the same set of parents, i.e.,
∀(Bi,Bj) ∈ T 2 : Bi.parent = Bj .parent. Since all blocks in a tipset have the same parent, we
abuse the notation and denote T .parent to denote the parent of tipset T . Similarly, T .epoch
denotes the tipset epoch. We note that T .parent is a tipset itself.

Since each block references a set of blocks, a Directed Acyclic Graph (DAG) structure
can be inferred from each block or tipset, where the blocks are the vertices and the references
to parents are the edges. Similarly, the set of tipsets referencing each other as parents form
a chain. For example, Figure 1a represents a chain of 4 tipsets (including the genesis) and a
blockDAG of 9 blocks. Formally, a chain C is then a set of ordered tipsets C = {T0, T1, · · · , Tl}
such that Ti.parent = Ti−1 for all i > 1. By convention, we have T1.parent = T0 =
{Genesis block} and Ti = ∅ if there is no block in epoch i. We note C[Ti] = {T0, T1, · · · , Ti}.
Similarly, for a tipset T , we can infer the associated chain, denoted C[T] as follows: C[T] =
{T0, · · · , (T .parent).parent, T .parent, T }.

3.3 Fork Choice Rule and Weight Function
In order to decide which tipset to include as its parents, EC provides a weight function that
assigns a weight to different tipsets. The fork choice rule will then consist of choosing the
tipset with the heaviest weight. In practice, EC’s weight function [1] is a complex function of
(1) the number of blocks in the chain and (2) the total amount of storage committed to the
chain. Moreover, the total amount of storage is taken far in the past to ensure that everyone
agrees on it. Since in our analysis we assume a static model where the set of participants is
fixed during the execution of the protocol, we only take into consideration the number of
blocks in the chain. We discuss the impact of this simplification in Section 8. Formally, for a
tipset T , we denote its weight w(T) and have:

w(T) =
∑

Ti∈C[T]

|Ti|.

X. Wang, S. Azouvi, and M. Vukolić 5:7

In the case of a tie between two chains, a deterministic tie-breaker is used. In practice,
the tipset that contains the smallest VRF value is chosen. However, in our analysis we
consider a powerful adversary that has the power to decide on ties. See Figure 1b for a visual
representation of two tipsets with equal weight.

3.4 Mining Algorithm
We describe the mining algorithm that miners in Filecoin run continuously. At each epoch
i > 0 each participant with key pair (sk, pk) performs the following:
1. Fetch the drand value for epoch i and verify eligibility by checking

Gsk(drandi)
?
≤ target,

where target is chosen such that on expectation m leaders are elected (with m = 5 in the
current implementation).

2. If elected leader, create a block as follows:
Choose the tipset with the highest weight (i.e., the most blocks) and reference it as
the block’s parent.
Include a proof of eligibility (i.e., the VRF value: VRF.Proofsk(drandi) = (y, p)), a
WinningPost to prove storage maintenance, as well as the payload.

3. Broadcast the block newly created.

In parallel, whenever they receive a new block in epoch i, participants verify its validity and,
if it is valid, add it to their blockDAG. A block is valid if and only if:
1. The election proof (y, p) is valid, i.e., VRF.Verifypk(drandi, y, p) = 1 and y ≤ target.
2. The WinningPost is valid (details omitted).
3. All the transactions in the payload are valid (details omitted).
4. All its parent blocks form a valid tipset, i.e.:

They all belong to the same epoch.
They all have the same parents.
They are all valid blocks.

We analyze the backbone of EC in a static setting and hence omit some details of the
protocol. For example, in practice, the leader election mechanism uses a lookback parameter,
meaning that only participants who pledged their storage sufficiently in the past are eligible
for block creation. Because we consider a flat and static model, these details are not relevant
to our analysis.

4 Security Definitions

Security properties. We consider the standard security properties of robust transaction
ledgers defined for blockchain systems [16, 14]. We start by defining a transaction ledger and
confirmed transactions in the ledger.

▶ Definition 1 (Transaction ledger generated by a chain C). Given a chain C, a transaction
ledger L generated by C is a deterministic, totally-ordered and append-only list of transactions.
In particular, if C1 is a prefix of C2, then L1 generated by C1 is a prefix of L2 generated by C2.

For example, one way to generate a transaction ledger from a chain C is to order the
transactions from C by order of chronological appearance (i.e., epoch number where they
appeared in the chain) and lexicographical order. Any deterministic rule is however valid
and we leave this unspecified.

AFT 2023

5:8 EC Security Analysis

▶ Definition 2 (Confirmed transaction parameterized by τ ∈ R). If a transaction tx in the
ledger appears in a block which is mined in epoch j ≤ i− τ , then tx is said to be τ -confirmed
in epoch i.

Our goal is to generate a transaction ledger that satisfies persistence and liveness as
defined in [16, 14]. Together, persistence and liveness guarantee a robust transaction ledger;
transactions will be adopted to the ledger and be immutable.

▶ Definition 3 (Robust transaction ledger from [16, 14]). A blockchain protocol Π maintains
a robust transaction ledger if the generated ledger satisfies the following two properties:

(Persistence) Parameterized by τ ∈ R. If a transaction tx becomes τ -confirmed at epoch i

in the view of one honest node, then tx will be at least τ -confirmed in the same position
in the ledger by all honest nodes for every epoch k ≥ i.
(Liveness) Parameterized by u ∈ R, if a transaction tx is received by all honest nodes at
epoch i, then after epoch i + u all honest nodes will contain tx in the same place in the
ledger forever.

Notations. We then define random variables and stochastic processes of interest and their
properties.

Let α and β be the collective fraction of storage power controlled by honest nodes and
malicious nodes, respectively (α + β = 1). We follow the notations of [11]. Let H[r] and Z[r]
be the number of blocks mined by the honest nodes and by the malicious nodes in epoch r,
then H[r], Z[r] are independent Poisson random variables with means (1 − β)m and βm

respectively [1] (the value of the target parameter is chosen to ensure this). In addition,
the random variables {H[0], H[1], · · · } and {Z[0], Z[1], · · · } are independent of one another,
since the value provided by drand to feed the leader election is random. We now define the
auxiliary random variables X[r] and Y [r] as follows. If at epoch r an honest node mines
at least one block (i.e., H[r] ≥ 1), then X[r] = 1 and epoch r is called a successful epoch,
otherwise X[r] = 0. If at epoch r honest nodes mine exactly one block (i.e., H[r] = 1),
then Y [r] = 1 and epoch r is called a uniquely successful epoch, otherwise Y [r] = 0. Epoch
r is called an isolated successful epoch if it further satisfies that there is no honest block
in epoch r − 1 (i.e., H[r − 1] = 0 and Y [r] = 1). Further, X[r1, r2] and Y [r1, r2] are the
number of successful and uniquely successful epochs, respectively, in the interval (r1, r2], and
H[r1, r2] and Z[r1, r2] are the number of blocks mined by honest nodes and by the adversary
respectively in the interval (r1, r2].

In EC, chains may have equal weights. For simplicity and generality, we assume tie-
breaking always favors the adversary. This means that the persistence will be broken as long
as there are two sufficiently long forks with equal weights.

Given a chain of tipsets C, let C[r] be the chain truncated up to blocks in epoch r. Further,
let w(C) be the weight of C. Let Wmax[r] and Wmin[r] be the maximum and minimum weights
of chains adopted by honest nodes at the end of epoch r. Then, by our network model, we
have:

Wmin[r] ≤Wmax[r] ≤Wmin[r + 1]. (1)

Even if some honest nodes’ chains are “behind” in epoch r, by our re-broadcast mechanism,
their view for epoch r will catch up with the rest of the honest nodes in epoch r + 1.
Furthermore, honest participants always extend the heaviest chain they are aware of, hence
the inequality above.

X. Wang, S. Azouvi, and M. Vukolić 5:9

We also have the following minimum honest chain growth property, which is essential to
our proof. For t ≥ r + 1,

Wmin[t] ≥Wmin[r + 1] + X[r + 1, t] ≥Wmax[r] + X[r + 1, t]. (2)

This inequality again follows from the fact that honest participants always extend the
heaviest chain they know of. However, it could be that different honest participants have
different views and thus create blocks on different chains, hence why we consider X in the
inequality above and not H.

5 Security Proof

In this section, we prove our main theorem, Theorem 4 stated below, parameterized by the
security parameter κ. The proof will proceed in multiple steps. We extend the technique
of Nakamoto blocks developed in [14]. We first define the notion of Nakamoto epochs in
EC and prove that the honest blocks mined in Nakamoto epochs remain in the heaviest
chain forever. Then we show that Nakamoto epochs exist and appear frequently regardless
of the adversarial strategy. Straightforwardly, the protocol satisfies liveness and persistence:
transactions can enter the ledger frequently through the Nakamoto epochs, and once they
enter, they remain at a fixed location in the ledger.

▶ Theorem 4. If βm < 1− e−(1−β)m, then EC generates a robust transaction ledger that
satisfies persistence (parameterized by τ = κ) and liveness (parameterized by u = κ) in
Definition 3 with probability at least 1− e−Ω(κ1−ϵ), for any 0 < ϵ < 1.

5.1 Nakamoto epochs
Let us define the events:

Ers = {event that Z[r − 1, t] < X[r + 1, t] for all t ≥ s},

Fs =
⋂

0≤r≤s−2
Ers,

Us = {event that epoch s is an isolated successful epoch} = {H[s− 1] = 0, Y [s] = 1},

and

Gs = Fs ∩ Us.

We will call epoch s a Nakamoto epoch if the event Gs occurs. And we have the following
lemma.

▶ Lemma 5. If epoch s is a Nakamoto epoch, then the unique honest block mined in epoch s

is contained in any future chain C[t], t ≥ s.

Proof. Let bs be the unique honest block mined in epoch s. We will argue by contradiction.
Suppose Gs occurs and let t ≥ s be the smallest t such that bs is not contained in C[t], an
honest chain adopted by some honest node at the end of epoch t. Let br, mined in epoch r,
be the last honest block on C[t] (which must exist, because the genesis block is by definition
honest). If r > s, then C[r − 1] is the prefix of C[t] before block br, and does not contain
bs (because C[r − 1] is a prefix of C[t]) contradicting the minimality of t. So br must be
mined before or in epoch s. Since epoch s is an isolated successful epoch, we further know

AFT 2023

5:10 EC Security Analysis

Figure 2 Upper bound and lower bound of the weight of C[t] in the proof of Lemma 5. Blocks
with dotted lines are adversarial blocks. The parent links are omitted for readability; each block has
all blocks from the previous epoch as parents.

that r ≤ s − 2. The part of C[t] after block br must consist of all malicious blocks by the
definition of br. Note that this may also include malicious blocks in epoch r (i.e., headstart
of the adversary). Hence, we have an upper bound for the weight of C[t].

w(C[t]) ≤Wmax[r] + Z[r − 1, t] < Wmax[r] + X[r + 1, t], (3)

where the first inequality is illustrated in Figure 2, and the second inequality follows from the
fact that event Fs occurs. We also have a trivial lower bound: w(C[t]) ≥Wmin[t]. Therefore,
we have

Wmin[t] < Wmax[r] + X[r + 1, t], (4)

which contradicts the minimum honest chain growth property (Eqn. 2). ◀

Note that Lemma 5 implies that if Gs occurs, then the entire chain leading to the unique
honest block mined in epoch s from the genesis is stabilized after epoch s.

5.2 Occurrence of Nakamoto epochs

Although the existence of Nakamoto epochs ensures that the block at this epoch will be
finalized, i.e., it will appear in every honest future chain, the question now remains whether
Nakamoto epochs exist at all and, if so, at what frequency they appear. We start answering
this question by proving in the next lemma that Nakamoto epochs have a strictly positive
probability of happening, i.e., the probability of each epoch being a Nakamoto epoch is
strictly positive. Due to space limitations, the detailed proof can be found in Section 5.2 of
the full version [29].

▶ Lemma 6. If βm < 1− e−(1−β)m, then there exists p > 0 such that P (Gs) ≥ p for all s.

X. Wang, S. Azouvi, and M. Vukolić 5:11

5.3 Waiting time for Nakamoto epochs
We have established the fact that the event Gs has P (Gs) ≥ p > 0 for all s. But how long do
we need to wait for such an epoch to occur? We answer this question in the following lemma,
wherein we provide a bound on the probability that in a interval (j, j + k] of k consecutive
epochs, there are no Nakamoto epochs, i.e., a bound on:

q(j, j + k] := P (
j+k⋂

s=j+1
Gc

s),

where Gc
s is the complement of Gs.

▶ Lemma 7. If βm < 1− e−(1−β)m, then there exist constants α, A so that for all j, k ≥ 0,

q(j, j + k] ≤ A exp(−α
√

k). (5)

Proof. Following the definition in Lemma 6, let

B̂rt = event that Z[r − 1, t] ≥ X[r + 1, t].

Similar to the calculation in Lemma 6, we have

P (B̂rt) ≤ A1e−α1ε2(t−r) (6)

for some positive constants A1, α1 independent of r, t.
Also we have

Gc
s = F c

s ∪ U c
s =

⋃
(r,t):r≤s−2,t≥s

B̂rt ∪ U c
s . (7)

Divide (j, j + k] into
√

k sub-intervals of length
√

k (assuming
√

k is a integer), so that the
i-th sub-interval is:

Ji := [j + 1 + (i− 1)
√

k, j + i
√

k].

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all the i = 1 mod 3 sub-
intervals. Introduce the event that in the ℓ-th (1 mod 3) sub-interval (J3ℓ+1), a pure
adversarial chain that is rooted at a honest block (or more accurately a tipset including
at least one honest block) mined in that sub-interval (J3ℓ+1) or in the previous (0 mod 3)
sub-interval (J3ℓ) catches up with a honest block in that sub-interval (J3ℓ+1) or in the next
(2 mod 3) sub-interval (J3ℓ+2).

Formally,

Cℓ =
⋂

s∈J3ℓ+1

⋃
(r,t):r∈J3ℓ∪J3ℓ+1,r≤s−2,t≥s,t∈J3ℓ+1∪J3ℓ+2

B̂rt ∪ U c
s .

Note that for distinct ℓ, the events Cℓ’s are independent since B̂rt’s in different Cℓ’s do not
have overlap (the J intervals were cut specifically for this purpose). Also, we have

P (Cℓ) ≤ P (no Nakamoto epoch in J3ℓ+1) = 1− p < 1 (8)

by Lemma 6.

AFT 2023

5:12 EC Security Analysis

Introduce the atypical events:

B =
⋃

(r,t):r∈(j,j+k] or t∈(j,j+k],r<t,t−r≥
√

k

B̂rt , and

B̃ =
⋃

(r,t):r≤j,j+k<t

B̂rt .

The events B and B̃ are the events that an adversarial chain catches up with an honest block
far ahead (more than

√
k epochs).

By (6) and an union bound we have that

P (B)
≤

∑
(r,t):r∈[j+1,j+k] or t∈[j+1,j+k],r<t,t−r≥

√
k

A1e−α1ε2(t−r)

≤
j+k∑

r=j+1

(∞∑
t=r+

√
k

A1e−α1ε2(t−r)) +
j+k∑

t=j+1

(t−
√

k∑
r=0

A1e−α1ε2(t−r))
≤ 2k

A1e−α1ε2√
k

1− e−α1ε2 ,

and

P (B̃) ≤
∑

(r,t):r≤j,t>j+k

A1e−α1ε2(t−r)

≤
j∑

r=0

(∞∑
t=j+k+1

A1e−α1ε2(t−r))
=

j∑
r=0

A1e−α1ε2(j+k+1−r)

1− e−α1ε2

≤ A1e−α1ε2(k+1)

(1− e−α1ε2)2 .

Now, we have:

q(j, j + k]

≤ P (no Nakamoto epoch in
⋃√

k/3
ℓ=0 J3ℓ+1)

≤ P (no isolated successful epoch in
⋃√

k/3
ℓ=0 J3ℓ+1) + P (B) + P (B̃) + P (

√
k/3⋂

ℓ=0
Cℓ)

= e−Ω(k) + P (B) + P (B̃) + (P (Cℓ))
√

k/3 (9)

≤ e−Ω(k) + 2k
A1e−α1ε2√

k

1− e−α1ε2 + A1e−α1ε2(k+1)

(1− e−α1ε2)2 + (P (Cℓ))
√

k/3

≤ A exp(−α
√

k) (10)

for some positive constants A and α. The equality (9) is due to the independence of Cℓ’s
and the inequality (10) is due to (8). Hence the lemma follows. ◀

We can also tighten the exponent, but at the cost of larger constants in the bound. The
proof of the following lemma is almost verbatim identical with the proof of Lemma 7, and its
detailed explanation can be found in Appendix C of the full version [29].

X. Wang, S. Azouvi, and M. Vukolić 5:13

▶ Lemma 8. If βm < 1− e−(1−β)m, then there exist constants αϵ, Aϵ so that for all j, k ≥ 0,

q(j, j + k] ≤ Aϵ exp(−αϵk
1−ϵ), (11)

for any 0 < ϵ < 1.

5.4 Persistence and liveness
Equipped with all the previous lemmas, we can now prove the persistence and liveness
properties of EC for βm < 1− e−(1−β)m.

Proof of Theorem 4. Suppose current epoch is r. Then by Lemma 8, with probability at
least 1− e−Ω(κ1−ϵ), there is at least one Nakamoto epoch in the interval (r− κ, r]. Let epoch
s ∈ (r − κ, r] be a Nakamoto epoch. Then by Lemma 5, the chain up to epoch s − 1 is
permanent since the unique honest block in epoch s never leaves the heaviest chain. Hence
EC is persistent with probability at least 1 − e−Ω(κ1−ϵ). The liveness of EC is simply a
consequence of the frequent occurrence of Nakamoto epochs. Particularly, for each honest
transaction, either it will be included by an honest block B in a Nakamoto epoch or it has
already been included by B’s ancestors. ◀

6 n-split Attack

In order to confirm whether an adversary with power βm ≥ 1− e−(1−β)m can indeed break
the persistence and liveness properties of the system, we consider the following n-split attack.

6.1 Attack description
The attacker tries to split the honest participants among n chains such that in each epoch,
at most one honest block is added to each chain (i.e., no two honest players mine on the
same chain). To do this, the attacker creates n copies of one of its block (each copy has the
same election proof, but different payloads) and sends one different block to each of the n

honest players; see illustration in Figure 3a. To maintain the split for a long period, the
adversary must repeat the attack at every epoch where at least one honest block is mined. In
this case, the weight of the chain of each honest player will increase by two: one honest block
and one adversarial block. For example in Figure 3a, since blocks C and D are both honest
(i.e., created by honest miners), by the next epoch, epoch 3, all the participants will have
received them and use the deterministic tie breaker to all decide to mine on the same tipset,
say {D}. Hence the adversary must create equivocating blocks in epoch 2 as well in order to
ensure that in epoch 3, honest miners all choose different tipsets to append their block to. In
Figure 3b, the adversary sends equivocating blocks E1 and E2 to prevent blocks H and F

from being appended to the same chain. These figures include only two honest blocks at
epoch 2 and 3 for clarity. In practice, the adversary will create as many equivocating blocks
as there are honest miners to ensure that everyone sees a different block and that no two
honest participants mine on the same tipset.

Whenever there is no honest block mined in an epoch, the attacker does nothing. In this
case, the weight of the chain of each honest player will not increase. Meanwhile, the attacker
also reuses all its blocks to build a private chain, i.e., a chain that it does not broadcast to
other participants and that does not include any honest blocks. The expected chain growth
of the adversary’s private chain is βm. The weight of the honest chain increases by two
if there is at least one honest block mined in an epoch (which happens with probability

AFT 2023

5:14 EC Security Analysis

(a) The adversary sends two dif-
ferent blocks B1, B2 in epoch
1 such that in epoch 2, hon-
est blocks C, D have different
parents and hence cannot be in-
cluded in a tipset. The honest
power is thus split between dif-
ferent tipsets’ chains.

(b) The adversary keeps the net-
work split in epoch 3 by creat-
ing two equivocating blocks: E1
and E2 in epoch 2. In epoch
3, honest blocks H and F are
mined on two different tipsets.

(c) If ties are always broken in
favor of the adversary, the ad-
versary can instead create an-
other block B3 in epoch 1. In
epoch 2, blocks E1 and E2 are
preferred to C and D, hence in
epoch 2, all the tipsets’ chains
increase by only one block. The
attack is repeated in the next
epoch, as long as the adversary
has enough blocks to create a
fork as heavy as the honest
chains.

Figure 3 n-split attack. Each block filled in grey is an equivocating block, meaning they were
created by the adversary using the same leader election proof in one epoch. Each green block is an
honest block.

1 − e−(1−β)m), and 0 otherwise (which happens with probability e−(1−β)m). Hence, the
expected chain growth of the honest chain is 2(1− e−(1−β)m). Therefore, this attack succeeds
with non-negligible probability when βm > 2(1− e−(1−β)m), i.e., when the adversarial chain
grows at a higher rate than the honest split chains. Rather than specifying the exact success
probability, we demonstrate that it remains constant, independent of the confirmation depth
τ , as defined in Definition 2. Let L be adversarial lead, i.e., the adversary has a lead of L

additional private blocks over the public heaviest chain. Suppose that with probability pL0 ,
the initial lead before the attack starts is L0. Although pL0 decreases with L0, it remains
non-zero because there’s a chance the adversary could mine L0 blocks before the honest nodes
mine any block. Note that in the n-split attack, as long as the adversarial lead L > 0, the
adversary can invariably split the honest nodes across n chains. Therefore, the adversarial
private chain will grow faster than the honest public chain when βm > 2(1 − e−(1−β)m).
According to the standard random walk (with drift) theory [15], L goes to 0 only with a
probability of e−O(L0). This implies that the n-split attack succeed with probability at least
pL0(1− e−O(L0)), for any value of the confirmation depth τ .

Some numerical results: for m = 3, we have β > 0.512; for m = 5, we have β > 0.382; and
β > 0.284 for m = 7. Approximately, β ≳ 2/m. Intuitively, with this attack, the threshold is
inversely proportional to m, as with a bigger m, the adversary is elected leader more often
and thus has more opportunities to keep the network split. If the adversary were elected
leader on a less regular basis, it would be harder to keep sending equivocating blocks and
thus keep the network split for longer. Note that this threshold applies specifically to the
attack described above, and it differs from the security threshold identified in Theorem 4.
This is because different thresholds may exist for different attacks.

Following the standard model of longest-chain analysis [16, 13, 14], we give the power of
tie-breaking to the attacker (i.e., tie-breaking always favors the attacker’s block). Recall that
the same assumption is made in our model (Section 2) and proof (Section 5). For example in
Figure 3c, if we assume that the adversarial blocks (in red) will always be favored in the

X. Wang, S. Azouvi, and M. Vukolić 5:15

case of two chains with the same number of blocks, then the adversary does not need to
create a block on the same tipset as honest blocks (as in Figure 3b). The adversary will
instead create another block B3 and mine yet on another tipset than the honest participant
in epoch 2. In epoch 3 the adversarial chains ending in tipsets {E1} and {E2} are preferred
over {C} or {D}, hence honest blocks H and F are mined on different forks and each fork’s
weight increased by only one in epoch 2, as opposed to 2 in Figure 3b. By repeating this
attack at each epoch, the weight of the chain of each honest player will only increase by one
when there is at least one honest block mined. Following the same argument as above, this
attack succeeds with non-negligible probability when βm > (1− e−(1−β)m), i.e., when the
adversarial chain grows at a higher rate than the honest split chains. We notice that this
now matches the security threshold in Theorem 4, hence proving that βm = 1− e−(1−β)m

is the tight threshold of the protocol in our security model as defined in Section 2. Indeed,
Theorem 4 proves that no adversary below this threshold can break the security of the EC,
and the n-chain split attack just described proves that an adversary above this threshold can
indeed break the persistence and liveness of the EC.

Some numerical results: for m = 3, we have β ≃ 0.293; for m = 5, we have β ≃ 0.196;
and β ≃ 0.143 for m = 7. Approximately, β ≃ 1/m. As remarked before, the threshold is
inversely proportional to the number of leaders elected as, intuitively, being elected more
often gives more opportunities to an adversary.

6.2 Discussion

Rationality of the attack. We note that this attack is detectable as everyone can see that
blocks with the same proof of eligibility but different payload were created. In practice, this
behaviour is slashable in Filecoin [1]. However, in Filecoin an adversary has the ability to
spread its storage over multiple identities, i.e., create multiple identities that each possesses
one unit of storage. For example in Filecoin the minimum unit of storage that can be pledged
to the chain is 32 GiB. As of August 2023 the total storage pledged to the chain is around
11 EiB [6], hence an adversary that possesses 20% of the total power, i.e., 2.2 EiB could
potentially “spread” its storage over 2.2×1018

32×109 ≃ 108 different identities, that each possesses
32 GiB of storage. At each epoch, except with extremely small probability, the adversary will
have a new “identity” elected to create a block (it is very unlikely for a miner with 32GiB
of storage out of 11 EiB to be elected twice in a row). Assuming that each identity gets
slashed and removed from the list of participants after equivocation, after performing the
attack over 1000 epochs, the adversary will still have 9.9999 · 107 identities left out of 108

and will only be slashed 103

108 = 10−5 of its total collateral. In this analysis we considered
orders of magnitude rather than exact numbers, so for simplicity we counted only the “real
power” and did not account for the “boosted adjusted power” that can be gained through the
FIL+ program [5]. Note that it is not possible for any honest miner to know which identities
belong to the adversary before the equivocation. Hence excluding equivocating participants
from the protocol is not sufficient to prevent the attack.

Furthermore, we note that for the adversary to be slashed, a special transaction, a fraud
proof transaction must be submitted on-chain by any participant. An adversary that is
able to continually exclude honest blocks as is the case with the n-split attack may thus in
practice never be slashed as no honest participant will get the opportunity to include the
slashing transaction on-chain. This is why even when considering incentives and the slashing
mechanism in place, this attack is still rational.

AFT 2023

5:16 EC Security Analysis

Network control. In this attack, we assumed a powerful adversary that not only has the
power to break ties in its favor, but has also full control of the network, as specified in
Section 2.2. However we remark that for this attack to work, an adversary only needs limited
power over the network. Specifically, the adversary needs to be directly connected to every
participants but does not need to control the propagation time between honest participants,
as we illustrate now.

In Filecoin honest miners will stop accepting blocks for an epoch after a cutoff time.
For the split to happen the adversary could send each block B1, . . . , Bn to each different
participants 1, . . . , n right before the cutoff, i.e., participant i receives block Bi from the
adversary just before the cutoff time, ensuring block Bi is accepted by participant i. The
adversary would need to know the propagation time between itself and each participant to
do so, however this is easy to estimate. Since participant i, receives Bi just before the cutoff
time, whatever the propagation delay between i and another honest participant j is, the
adversary is guaranteed that j will received Bi from i after the cutoff time and hence that
any honest miner j ̸= i will not accept Bi.

Furthermore we note that when participant j receives block Bi, after the cutoff, j will
detect the equivocation as j already received block Bj from the adversary. However at that
point, j has already created its block that includes Bj as a parent, hence it is too late for j to
discard Bj due to equivocation. The mitigation that we propose in Section 7.2 changes this.

7 Mitigations

We propose two possible mitigations to the n-split attack described in Section 6 which could
also help increase the security threshold of EC.

7.1 Replace EC by the Longest-chain Protocol in SPC
One solution to the n-split attack is to remove the notion of tipsets and instead change EC to
the longest-chain protocol (i.e., Ouroboros family of protocols [19, 13, 9] in the proof-of-stake
setting), where one block has exactly one parent. In the longest-chain protocol, the effort
of an adversary to split the network would have much less impact on the overall security
of the protocol since each chain can increase by one block at each epoch at most anyway.
Furthermore, moving to the longest-chain protocol allows for inheritance of all the security
properties (e.g., a security threshold of 50%) of all proof-of-stake protocols based on that
setting [13, 10, 14]. Dembo et al. [14] indeed showed that in the longest-chain case, the worst
attack is the private attack. Hence, the n-split attack described in Section 6, or its variant,
would not be the worst attack anymore. However, transitioning from EC to a longest-chain
protocol is not a straightforward task. First, it’s crucial to understand that merely setting
m = 1 does not transform EC into a longest-chain protocol, as more than one block can
still be added per epoch. Furthermore, our analysis indicates that an EC with m = 1 has a
security threshold of approximately 43.2%, as opposed to 50% in the longest-chain protocol.
Consequently, to enhance the security, the concept of a tipset will need to be eliminated.
Implementing such a change, however, would necessitate a hard fork.

7.2 Consistent Broadcast
Another solution is to use a form of consistent or reliable broadcast [12, 18]. This type
of broadcast prevents an adversary from equivocating (i.e., creating two blocks with the
same leader election proof but different contents). The consistent broadcast consists in

X. Wang, S. Azouvi, and M. Vukolić 5:17

(a) Current case.

(b) Case with a (simplified) consistent broadcast.

Figure 4 The dashed arrow represents the arrow of time. The different cutoff and arrival time
are marked with vertical arrows. The adversary ensures that j receives Bj right before the cutoff so
j accepts Bj . In the first case, by the time j sees an equivocation, it is too late as Bj was already
included as a parent. In the second case, assuming j receives Bi before the second cutoff, then j

will discard Bj and not include it as a parent.

adding a second cutoff to the cutoff discussed in Section 6.2. Specifically, it ensures that
after participant j received Bj from the adversary (before the first cutoff), j will wait for
a “second” cutoff before forming its block and including Bj as a parent. When j receives
equivocating block Bi from the adversary, j will detect the equivocation and decide not to
include Bj (neither Bi), hence the attack is mitigated. This is illustrated in Figure 4. The
epoch in Filecoin is thus split as follows: during the first period, participants will store every
valid block received in their “pending blocks” set. In the second period, after the first cutoff
and before the second cutoff, every new valid block received will be stored in the set of
“rejected blocks” for that epoch. In the third period, after the second cutoff, participants will
compare the set of pending blocks and rejected blocks, if they detect equivocating blocks,
they are removed from the pending set. Every block that is left in the pending set will then
be included in the tipset. This implementation as it is simple and backward compatible
(i.e., only requires a soft-fork) although it assumes synchronicity. With consistent broadcast,
however, the adversary is still able to split the network in two ways. First it could do so
by ensuring that only a fraction of the honest nodes accept its block (i.e., the network will
be split between the nodes that accept the adversarial block vs those that do not). The
second way in which the network could be split is if the adversary is elected more than

AFT 2023

5:18 EC Security Analysis

once, say ℓ times in one epoch (here we assume that the adversary controls many different
participants). Then the adversary could similarly ensure that for each block it is able to
create (with different election proofs), only some of the nodes accept it. The network is
then split in 2ℓ ways (all the combination of accept vs reject for each of the ℓ blocks). We
hypothesize that, under a non-equivocating adversary, the security threshold of EC with
m = 5 is approximately 40%. Intuitively, with this level of power, the adversary creates fewer
than two blocks per epoch on average; furthermore, without the ability for equivocation, it is
impossible for the adversary to maintain two chains of equal weights over numerous epochs.
We leave a formal proof as future work.

8 Limitations and Future Work

For practical reasons, this work made a few simplifying assumptions. We discuss them here.

Incentive consideration. This work considers the classic model of honest vs malicious
participants and does not address the rationality of participants. A formal study of incentive
compatibility is also important for understanding the security of EC. However, we leave this
for future work. Assuming a fully malicious adversary that is willing to lose money to attack
the system, a scenario we consider in this paper, makes for a stronger proof than assuming a
rational adversary. In Section 6.2, we discussed why it is realistic to consider an irrational
adversary for the n-split attack we proposed, as slashing may not always be possible if the
adversary has the ability to censor transactions. It still remains to show that the honest
strategy is compatible with a rational strategy even in the presence of an adversary. We
leave this for future work.

Weight function. In our analysis, we only took into consideration the number of blocks in
the chain for the weight function. We leave as future work an analysis that also considers
the total storage, as specified in Expected Consensus [1]. Specifically we believe that a
complex weight function allows for more vectors of attack and that an adversary could use
this to try to blow the weight of its own chain. For example, the adversary could remove its
storage from the main chain and thus decrease the weight of the main chain, while privately
creating an alternative chain that would be heavier because it has more storage pledged.
The mechanisms for maintaining and removing storage are, however, complex and ignored in
this work. For simplicity, we thus consider the weight of a tipset to simply be equal to the
number of blocks referenced in its blockDAG.

9 Conclusion

In this paper we presented a formal analysis of Expected Consensus, a sub-protocol of
Filecoin’s Storage Power Consensus, and we proposed two concrete ways to improve SPC’s
security. One of our mitigations, using consistent broadcast, is currently being implemented
as a Filecoin Improvement Proposal. It remains an open problem to quantify the new security
threshold of EC with this fix, although our proofs remain valid in this case, hence the security
threshold is at least such that βm < 1− e−(1−β)m as proved in Section 5. Furthermore, we
made many simplifying assumptions in this work. It would be interesting to relax these
in the future work; e.g., by extending this proof to the dynamic and asynchronous case,
considering the more complex variant of the weight function or incorporating incentives.

X. Wang, S. Azouvi, and M. Vukolić 5:19

References
1 Filecoin Spec. https://spec.filecoin.io/.
2 A Guide to Filecoin Storage Mining. https://filecoin.io/blog/posts/

a-guide-to-filecoin-storage-mining/. Accessed: 2023-08-02.
3 Coin Market Cap. https://coinmarketcap.com/.
4 Drand. http://https://drand.love/. Accessed: 2022-08-30.
5 Filecoin Plus. https://docs.filecoin.io/basics/how-storage-works/filecoin-plus/.
6 Filfox - Filecoin Explorer. https://filfox.info/en.
7 FIP-0051: Improving EC security with Consistent Broadcast. https://github.com/

filecoin-project/FIPs/blob/master/FRCs/frc-0051.md.
8 Sarah Azouvi and Marko Vukolić. Pikachu: Securing PoS blockchains from long-range attacks

by checkpointing into Bitcoin PoW using Taproot. arXiv preprint arXiv:2208.05408, 2022.
9 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.

Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018.

10 Vivek Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Proof-of-stake longest chain protocols: Security vs
predictability. arXiv preprint arXiv:1910.02218, 2019.

11 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602. ACM, 2019.

12 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM (JACM), 32(4):824–840, 1985.

13 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018.

14 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and Nakamoto always wins. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
859–878, 2020.

15 William Feller. An introduction to probability theory and its applications. Technical report,
Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New . . . , 1971.

16 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

17 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68, 2017.

18 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredinschi,
and Yann Vonlanthen. Scalable Byzantine reliable broadcast (extended version). arXiv preprint
arXiv:1908.01738, 2019.

19 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

20 Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 729–744, 2018.

21 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages 120–130. IEEE,
1999.

AFT 2023

https://spec.filecoin.io/
https://filecoin.io/blog/posts/a-guide-to-filecoin-storage-mining/
https://filecoin.io/blog/posts/a-guide-to-filecoin-storage-mining/
https://coinmarketcap.com/
http://https://drand.love/
https://docs.filecoin.io/basics/how-storage-works/filecoin-plus/
https://filfox.info/en
https://github.com/filecoin-project/FIPs/blob/master/FRCs/frc-0051.md
https://github.com/filecoin-project/FIPs/blob/master/FRCs/frc-0051.md

5:20 EC Security Analysis

22 Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system. Bitcoin.–URL:
https://bitcoin. org/bitcoin. pdf, 4(2), 2008.

23 Christopher Natoli and Vincent Gramoli. The balance attack against proof-of-work blockchains:
The r3 testbed as an example. arXiv preprint arXiv:1612.09426, 2016.

24 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchron-
ous networks. In Advances in Cryptology–EUROCRYPT 2017: 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30–May 4, 2017, Proceedings, Part II, pages 643–673. Springer, 2017.

25 Rafael Pass and Elaine Shi. The sleepy model of consensus. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 380–409. Springer,
2017.

26 Michael O Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27(2):256–267, 1983.

27 Ling Ren. Analysis of Nakamoto consensus. Cryptology ePrint Archive, 2019.
28 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.

In Financial Cryptography and Data Security: 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19, pages 507–527. Springer,
2015.

29 Xuechao Wang, Sarah Azouvi, and Marko Vukolić. Security analysis of filecoin’s expected
consensus in the byzantine vs honest model. arXiv preprint arXiv:2308.06955, 2023.

Appendix

A Pseudocode for EC

The main algorithm is presented in Algorithm 1 and the algorithm for block validation is
presented in Algorithm 2.

B Concentration Inequalities

▶ Lemma 9 (Chernoff). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and Xi = 0
with probability 1 − pi, and all Xi’s are independent. Let µ = E[X] =

∑n
i=1 pi. Then for

0 < δ < 1, P(X > (1 + δ)µ) < e−Ω(δ2µ) and P(X < (1− δ)µ) < e−Ω(δ2µ).

▶ Lemma 10 (Poisson). Let X be a Poisson random variable with rate µ. Then for 0 < δ < 1,
P(X > (1 + δ)µ) < e−Ω(δ2µ) and P(X < (1− δ)µ) < e−Ω(δ2µ).

X. Wang, S. Azouvi, and M. Vukolić 5:21

Algorithm 1 Main algorithm.
1: import
2: drand
3: ForkChoiceRule
4: Broadcast
5: VRF
6: isValid (Algorithm 2)
7: Parameters:
8: epochLength
9: m

10: target ▷ Chosen such that m leaders are elected on expectation
11: Init:
12: epochNumber ← 0
13: blockDAG←{Genesis Block}
14: upon event time.Now() % epochLength == 0 do ▷ Beginning of the epoch
15: epochNumber ← epochNumber +1
16: seed← drand(epochNumber)
17: (y, p)← VRF.Proofsk(seed)
18: if y ≤ target then
19: T ←ForkChoiceRule(blockDAG) ▷ Choose the DAG with the most blocks
20: B ← CreateBlock(T , (y, p), epochNumber,WinningPost payload)
21: Broadcast(B)
22: upon event Receiving block B do
23: if isValid(B) == 1 then
24: blockDAG.append(B)

Algorithm 2 isValid(B).
1: Input: block B
2: import
3: drand
4: isPayloadValid
5: isStorageValid
6: Parse (T , (y, p), epochNumber,WinningPost payload) ← B
7: seed← drand(epochNumber)
8: if VRF.Verifypk(seed, y, p) == 0 or y > target then ▷ Check the election proof
9: return 0

10: if isPayloadValid(payload)==0 then ▷ Check the payload
11: return 0
12: if isStorageValid(WinningPost) == 0 then ▷ Check the storage proof
13: return 0
14: for Bi ∈ T do ▷ Check validity of parent blocks
15: if isValid(Bi) == 0 then
16: return 0
17: return 1

AFT 2023

	1 Introduction
	2 Model
	2.1 Participants
	2.2 Network assumptions
	2.3 Randomness

	3 Filecoin's Expected Consensus (EC)
	3.1 Leader Selection Protocol
	3.2 Block and Tipset Structure
	3.3 Fork Choice Rule and Weight Function
	3.4 Mining Algorithm

	4 Security Definitions
	5 Security Proof
	5.1 Nakamoto epochs
	5.2 Occurrence of Nakamoto epochs
	5.3 Waiting time for Nakamoto epochs
	5.4 Persistence and liveness

	6 n-split Attack
	6.1 Attack description
	6.2 Discussion

	7 Mitigations
	7.1 Replace EC by the Longest-chain Protocol in SPC
	7.2 Consistent Broadcast

	8 Limitations and Future Work
	9 Conclusion
	A Pseudocode for EC
	B Concentration Inequalities

