
5th Conference on Advances in
Financial Technologies

AFT 2023, October 23-25, 2023, Princeton, NJ, USA

Edited by

Joseph Bonneau
S. Matthew Weinberg

LIPIcs – Vo l . 282 – AFT 2023 www.dagstuh l .de/ l ip i c s



Editors

Joseph Bonneau
New York University, NY, USA
jcb@cs.nyu.edu

S. Matthew Weinberg
Princeton University, NJ, USA
smweinberg@princeton.edu

ACM Classification 2012
Security and privacy → Mathematical foundations of cryptography; Theory of computation → Crypto-
graphic primitives; Theory of computation → Cryptographic protocols; Security and privacy → Distributed
systems security; Security and privacy → Privacy-preserving protocols; Security and privacy → Pseud-
onymity, anonymity and untraceability; Theory of computation → Algorithmic mechanism design; Applied
computing → Economics; Applied computing → Digital cash

ISBN 978-3-95977-303-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-303-4.

Publication date
October, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.AFT.2023.0

ISBN 978-3-95977-303-4 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:jcb@cs.nyu.edu
https://orcid.org/0000-0001-7744-795X
mailto:smweinberg@princeton.edu
https://www.dagstuhl.de/dagpub/978-3-95977-303-4
https://www.dagstuhl.de/dagpub/978-3-95977-303-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.AFT.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-303-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

AFT 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Joseph Bonneau and S. Matthew Weinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Program Committee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi–0:xii

Steering Committee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xiii

External Reviewers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xv

Authors
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xvii–0:xix

Regular Papers

Privacy-Preserving Transactions with Verifiable Local Differential Privacy
Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch . . . . . . . . . . . . . . . . . . . 1:1–1:23

Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?
Aviv Yaish and Aviv Zohar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:25

F3B: A Low-Overhead Blockchain Architecture with Per-Transaction
Front-Running Protection

Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah,
Vero Estrada-Galiñanes, and Bryan Ford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:23

Designing Multidimensional Blockchain Fee Markets
Theo Diamandis, Alex Evans, Tarun Chitra, and Guillermo Angeris . . . . . . . . . . . . . . 4:1–4:23

Security Analysis of Filecoin’s Expected Consensus in the Byzantine vs Honest
Model

Xuechao Wang, Sarah Azouvi, and Marko Vukolić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:21

Tailstorm: A Secure and Fair Blockchain for Cash Transactions
Patrik Keller, Ben Glickenhaus, George Bissias, and Gregory Griffith . . . . . . . . . . . . 6:1–6:26

STROBE: Streaming Threshold Random Beacons
Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias,
Kevin Lewi, Ladi de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino 7:1–7:16

User Participation in Cryptocurrency Derivative Markets
Daisuke Kawai, Bryan Routledge, Kyle Soska, Ariel Zetlin-Jones, and
Nicolas Christin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:24

DeFi Lending During The Merge
Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer . . . . . . . . . . . . . . . . . . . . . . 9:1–9:25

FairPoS: Input Fairness in Permissionless Consensus
James Hsin-yu Chiang, Bernardo David, Ittay Eyal, and Tiantian Gong . . . . . . . . . 10:1–10:23

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

Correlated-Output Differential Privacy and Applications to Dark Pools
James Hsin-yu Chiang, Bernardo David, Mariana Gama, and
Christian Janos Lebeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:23

SoK: Privacy-Enhancing Technologies in Finance
Carsten Baum, James Hsin-yu Chiang, Bernardo David, and
Tore Kasper Frederiksen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:30

Decentralization Cheapens Corruptive Majority Attacks
Stephen H. Newman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:19

Proofs of Proof-Of-Stake with Sublinear Complexity
Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros . . . . . . . . . 14:1–14:24

Condorcet Attack Against Fair Transaction Ordering
Mohammad Amin Vafadar and Majid Khabbazian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:21

Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers
Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knottenbelt, and
Christian Cachin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:25

Non-Atomic Payment Splitting in Channel Networks
Stefan Dziembowski and Paweł Kędzior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:23

Revisiting the Nova Proof System on a Cycle of Curves
Wilson D. Nguyen, Dan Boneh, and Srinath Setty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:22

Censorship Resistance in On-Chain Auctions
Elijah Fox, Mallesh M. Pai, and Max Resnick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:20

The Centralizing Effects of Private Order Flow on Proposer-Builder Separation
Tivas Gupta, Mallesh M. Pai, and Max Resnick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:15

When Bidders Are DAOs
Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden . . . . . . . . . . . . . . . . . . . . . . 21:1–21:21

Fast and Furious Withdrawals from Optimistic Rollups
Mahsa Moosavi, Mehdi Salehi, Daniel Goldman, and Jeremy Clark . . . . . . . . . . . . . . . 22:1–22:17

Buying Time: Latency Racing vs. Bidding for Transaction Ordering
Akaki Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, and
Edward W. Felten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:22

Batching Trades on Automated Market Makers
Andrea Canidio and Robin Fritsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:17

Strategic Liquidity Provision in Uniswap V3
Zhou Fan, Francisco Marmolejo-Cossio, Daniel Moroz, Michael Neuder,
Rithvik Rao, and David C. Parkes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:22

Post-Quantum Single Secret Leader Election (SSLE) from Publicly
Re-Randomizable Commitments

Dan Boneh, Aditi Partap, and Lior Rotem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:23

Liquidity Management Attacks on Lending Markets
Alireza Arjmand and Majid Khabbazian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:21



Contents 0:vii

Analysis of CryptoNote Transaction Graphs Using the Dulmage-Mendelsohn
Decomposition

Saravanan Vijayakumaran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:22

Vector Commitments with Efficient Updates
Ertem Nusret Tas and Dan Boneh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:23

Time Is Money: Strategic Timing Games in Proof-Of-Stake Protocols
Caspar Schwarz-Schilling, Fahad Saleh, Thomas Thiery, Jennifer Pan,
Nihar Shah, and Barnabé Monnot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:17

Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast
Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen 31:1–31:22

AFT 2023





Preface

This volume contains 31 papers selected out of 100 submissions for the 5th Conference on
Advances in Financial Technologies (AFT ‘23) held on October 23–25, 2023. Each paper
received detailed reviews by several program committee members and external reviewers.

The conference was held at Princeton University in Princeton, NJ. Each accepted paper
was presented via a 15-minute live presentation, followed by a 5-minute question/answer
period with the audience.

Two full-day workshops were co-located with AFT on October 26. Aniket Kate and
Andrew Miller co-organized the workshop on Decentralized Credit Networks (DCN), and
Christian Cachin and Giuliano Losa co-organized the workshop on Heterogeneous Trust in
Distributed Systems (HTDS).

We would like to thank all Program Committee members and subreviewers for their service
in selecting the AFT program, and all authors for submitting their work for consideration.
We are also grateful to the AFT steering committee, and especially Ittay Eyal, for their
support and guidance throughout the process.

We are also extremely thankful to our industry sponsors, whose financial support is
essential to running AFT:

a16z Crypto (gold-level)
Ava Labs (gold-level)
IC3 (silver-level)
IOHK (silver-level)
DeCenter (silver-level)
StarkWare (silver-level)

We also thank the IACR for granting AFT ‘in cooperation’ status.
Finally, we would like to thank all of the staff at Princeton University who made this

event possible, and especially Elizabeth Wang, Michele Brown, and Mitra Kelly.

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Program Committee

Aggelos Kiayas, University of Edinburgh

Alberto Sonnino, Meta

Alexander Spiegelman, Aptos

Andrew Hall, Stanford University

Andrew Lewis-Pye, London School of
Economics

Andrew Miller, University of Illinois
Urbana-Champaign

Anthony Lee Zhang, University of Chicago
Booth School of Business

Ari Juels, Cornell Tech

Arthur Gervais, University College London

Aviad Rubinstein, Stanford University

Barnabe Monnot, Ethereum Foundation

Benedikt Bünz, New York University

Bo Waggoner, University of Colorado
Boulder

Charalampos Papamanthou, Yale University

Chenghan Zhou, Princeton University

Ciamac Moallemi, Columbia University
Graduate School of Business

Clara Shikhelman, Chaincode Labs

Edgar Weippl, University of Vienna

Elli Androulaki, IBM Research

Ethan Heilman, Boston University &
BastionZero

Fahad Saleh, Wake Forest University

Fan Zhang, Duke University

Foteini Baldimtsi, George Mason University

Francisco Marmolejo-Cossio, Harvard
University

Geoffrey Ramseyer, Stanford University

Georgios Pilouras, Singapore University of
Technology and Design

Ghassan Karame, NEC Laboratories Europe

Guillermo Angeris, Bain Capital

Guy Goren, Technion

Hong-Sheng Zhou, Virginia Commonwealth
University

Ittay Eyal, Technion

Jacob Leshno, University of Chicago Booth
School of Business

Jason Milionis, Columbia University

Jeremy Clark, Concordia University

Jiasun Li, George Mason University

Jing Chen, Algorand

Julien Prat, Ecole Polytechnique

Justin Thaler, Georgetown University &
a16z crypto

Konstantinos Chalkias, Mysten Labs

Romaric Ludinard, IMT Atlantique / IRISA

Malte Moser, Chainalysis

Marco Reuter, University of Mannheim

Marie Vasek, University College London

Marko Vukolić, IBM

Maryam Bahrani, a16z crypto

Matheus Venturyne Xavier Ferreira, Harvard
University

Nicolas Christin, Carnegie-Mellon University

Nirvan Tyagi, Cornell University

Patrick McCorry, Infura

Patrick O’Grady, Avalanche

Pramod Viswanath, University of Illinois,
Urbana-Champaign

Pranav Garimidi, a16z crypto

Qiang Tang, University of Sydney

Rafael Pass, Cornell
5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xii Program Committee

Rainer Böhme, University of Innsbruck

Sara Tucci-Piergiovanni, Polytechnique

Scott Kominers, Harvard University Business
School

Shaanan Cohney, University of Melbourne

Tarun Chitra, Gauntlet

Tyler Moore, University of Tulsa

Valeria Nikolaenko, a16z crypto

Vasilis Zikas, Purdue University

Victor Luchangco, Algorand

Wanyi Dai Li, Lightspark

Will Cong, Cornell University & DEFT Lab
& NBER

Yonatan Sompolinsky, Harvard University



Steering Committee

Ittai Abraham (co-chair), VMware research

Dan Boneh, Stanford University

Christian Cachin, University of Bern

Ittay Eyal (co-chair), Technion

Maurice Herlihy, Brown University

Satoshi Nakamoto (pending confirmation)

Maureen O’Hara, Cornell University

Tim Roughgarden, Columbia University &
a16z Crypto

Eli Ben Sasson, Technion & StarkWare

Emin Gun Sirer (co-chair), Cornell
University & Avalanche

Sarah Meiklejohn (‘20 PC chair), UCL

Abhi Shelat (‘20 PC chair), Northeastern
University

Foteini Baldimtsi (‘21 PC chair), George
Mason University

Neha Narula (‘22 PC chair), Massachusetts
Institute of Technology

S. Matthew Weinberg (‘23 PC chair),
Princeton University

Joseph Bonneau (‘23 PC chair), New York
University

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


External Reviewers 0:xv

External Reviewers

Adithya Bhat, Purdue University

Alejandro Ranchal-Pedrosa, Protocol Labs

Aljosha Judmayer, SBA Research

Amirreza Sarencheh, University of
Edinburgh & IOHK

Angelo De Caro, IBM Zurich

Antonella Del Pozzo, CEA LIST

Balaji Arun, Aptos

Eliza Oak, Yale University

Ertem Nusret Tas, Stanford University

Hanwen Feng, University of Sydney

Ioannis Tzannetos, NTUA

Istvan Seres, Eotvos Lorand University

Mahimna Kelkar, Cornell University

Marc Roeschlin, IOG

Muhammad Ishaq, Purdue University

Nicholas Stifter, TU Wien

Philip Lazos, IOHK

Pouriya Zarbafian, University of Sydney

Tuanir Franca Rezende, CEA LIST

Yacov Manevich, IBM Research Zurich

Yu Shen, University of Edinburgh

Yu Wei, Purdue University

Zhuolun Xiang, Aptos

AFT 2023





List of Authors

Shresth Agrawal (14)
Technische Universität München, Germany

Orestis Alpos (31)
University of Bern, Switzerland

Guillermo Angeris (4)
Bain Capital Crypto, San Francisco, CA, USA

Alireza Arjmand (27)
University of Alberta, Edmonton, Canada

Sarah Azouvi (5)
Protocol Labs, San Francisco, CA, USA

Maryam Bahrani (21)
a16z Crypto, New York, NY, USA

Mahsa Bastankhah (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Carsten Baum (12)
Technical University of Denmark, Lyngby,
Denmark

Donald Beaver (7)
Independent Scholar, Pittsburgh, PA, USA

George Bissias (6)
University of Massachusetts Amherst, MA, USA

Dan Boneh (18, 26, 29)
Stanford University, CA, USA

Andrea Canidio (24)
CoW Protocol, Lisbon, Portugal

Konstantinos Chalkias (7)
Mysten Labs, Palo Alto, CA, USA

James Hsin-yu Chiang (10, 11, 12)
Aarhus University, Denmark

Tarun Chitra (4)
Gauntlet, New York, NY, USA

Nicolas Christin (8)
Carnegie Mellon University, Pittsburgh, PA,
USA

Marko Cirkovic (16)
University of Bern, Switzerland

Jeremy Clark (22)
Concordia University, Montreal, Canada

Bernardo David (10, 11, 12)
IT University of Copenhagen, Denmark

Ladi de Naurois (7)
Washington DC, USA

Theo Diamandis (4)
MIT CSAIL, Cambridge, MA, USA

Stefan Dziembowski (17)
University of Warsaw, Poland; IDEAS NCBR,
Warsaw, Poland

Vero Estrada-Galiñanes (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Alex Evans (4)
Bain Capital Crypto, San Francisco, CA, USA

Ittay Eyal (10)
Technion, Haifa, Israel

Zhou Fan (25)
Harvard University, Cambridge, MA, USA

Edward W. Felten (23)
Offchain Labs, Washington, D.C., USA

Bryan Ford (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Elijah Fox (19)
Duality Labs, New York, NY, USA, USA

Tore Kasper Frederiksen (12)
Zama, Paris, France

Robin Fritsch (24)
Cow Protocol, Lisbon, Portugal; ETH Zürich,
Switzerland

Mariana Gama (11)
COSIC, KU Leuven, Belgium

Pranav Garimidi (21)
a16z Crypto, New York, NY, USA

Ben Glickenhaus (6)
University of Massachusetts Amherst, MA, USA

Daniel Goldman (22)
OffchainLabs, Princeton, NJ, USA

Tiantian Gong (10)
Purdue University, West Lafayette, IN, USA

Gregory Griffith (6)
Bitcoin Unlimited

Tivas Gupta (20)
Special Mechanisms Group, USA

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7914-5979
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://doi.org/10.4230/LIPIcs.AFT.2023.31
https://doi.org/10.4230/LIPIcs.AFT.2023.4
https://orcid.org/0009-0007-2871-3888
https://doi.org/10.4230/LIPIcs.AFT.2023.27
https://orcid.org/0000-0002-7133-1937
https://doi.org/10.4230/LIPIcs.AFT.2023.5
https://doi.org/10.4230/LIPIcs.AFT.2023.21
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://doi.org/10.4230/LIPIcs.AFT.2023.6
https://orcid.org/0000-0003-0820-0421
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://doi.org/10.4230/LIPIcs.AFT.2023.26
https://doi.org/10.4230/LIPIcs.AFT.2023.29
https://orcid.org/0000-0002-8482-8782
https://doi.org/10.4230/LIPIcs.AFT.2023.24
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://orcid.org/0000-0002-5126-9494
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://doi.org/10.4230/LIPIcs.AFT.2023.11
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.4
https://orcid.org/0000-0002-2506-8031
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://doi.org/10.4230/LIPIcs.AFT.2023.16
https://orcid.org/0000-0002-3533-5965
https://doi.org/10.4230/LIPIcs.AFT.2023.22
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://doi.org/10.4230/LIPIcs.AFT.2023.11
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://doi.org/10.4230/LIPIcs.AFT.2023.4
https://orcid.org/0000-0002-6914-6425
https://doi.org/10.4230/LIPIcs.AFT.2023.17
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://doi.org/10.4230/LIPIcs.AFT.2023.4
https://orcid.org/0000-0001-7595-2258
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://doi.org/10.4230/LIPIcs.AFT.2023.19
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://doi.org/10.4230/LIPIcs.AFT.2023.24
https://orcid.org/0000-0002-2759-043X
https://doi.org/10.4230/LIPIcs.AFT.2023.11
https://doi.org/10.4230/LIPIcs.AFT.2023.21
https://doi.org/10.4230/LIPIcs.AFT.2023.6
https://doi.org/10.4230/LIPIcs.AFT.2023.22
https://orcid.org/0000-0001-9441-9037
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://doi.org/10.4230/LIPIcs.AFT.2023.6
https://doi.org/10.4230/LIPIcs.AFT.2023.20
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xviii Authors

Lioba Heimbach (9)
ETH Zürich, Switzerland

Simon Holmgaard Kamp (31)
Aarhus University, Denmark

Daisuke Kawai (8)
Carnegie Mellon University, Pittsburgh, PA,
USA

Mahimna Kelkar (7, 23)
Cornell University, New York City, NY, USA

Patrik Keller (6)
Universität Innsbruck, Austria

Majid Khabbazian (15, 27)
University of Alberta, Edmonton, Canada

William Knottenbelt (16)
Imperial College London, UK

Lefteris Kokoris-Kogias (7)
Mysten Labs, London, UK; IST Austria,
Klosterneuburg, Austria

Paweł Kędzior (17)
University of Warsaw, Poland

Duc V. Le (16)
Visa Research, Sunnyvale, CA, USA

Christian Janos Lebeda (11)
IT University of Copenhagen, Denmark; Basic
Algorithms Research Copenhagen, Denmark

Kevin Lewi (7)
Meta Platforms, Inc., Menlo Park, CA, USA

Akaki Mamageishvili (23)
Offchain Labs, Zürich, Switzerland

Yacov Manevich (1)
IBM Research - Zürich, Switzerland

Francisco Marmolejo-Cossio (25)
Harvard University, Cambridge, MA, USA; IOG,
USA

Louis-Henri Merino (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Barnabé Monnot (30)
Ethereum Foundation, Berlin, Germany

Mahsa Moosavi (22)
Concordia University, Montreal, Canada;
OffchainLabs, Princeton, NJ, USA

Daniel Moroz (25)
Harvard University, Cambridge, MA, USA

Danielle Movsowitz Davidow (1)
Tel-Aviv University, Israel

Joachim Neu (14)
Stanford University, CA, USA

Michael Neuder (25)
Harvard University, Cambridge, MA, USA

Stephen H. Newman (13)
Princeton University, NJ, USA

Wilson D. Nguyen (18)
Stanford University, CA, USA

Jesper Buus Nielsen (31)
Aarhus University, Denmark

Valeria Nikolaenko (7)
a16z crypto, Palo Alto, CA, USA

Mallesh M. Pai (19, 20)
Department of Economics, Rice University,
Houston, TX, USA; Special Mechanisms Group,
USA

Jennifer Pan (30)
Jump Crypto, Chicago, IL, USA

David C. Parkes (25)
Harvard University, Cambridge, MA, USA

Aditi Partap (26)
Stanford University, CA, USA

Ziyan Qu (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Rithvik Rao (25)
Harvard University, Cambridge, MA, USA

Max Resnick (19, 20)
Special Mechanisms Group, USA

Lior Rotem (26)
Stanford University, CA, USA

Tim Roughgarden (21)
a16z Crypto , New York, NY, USA; Columbia
University, New York, NY, USA

Bryan Routledge (8)
Carnegie Mellon University, Pittsburgh, PA,
USA

Arnab Roy (7)
Mysten Labs, Palo Alto, CA, USA

Fahad Saleh (30)
Wake Forest University, Winston Salem, NC,
USA

https://orcid.org/0000-0002-8258-1712
https://doi.org/10.4230/LIPIcs.AFT.2023.9
https://doi.org/10.4230/LIPIcs.AFT.2023.31
https://orcid.org/0000-0002-1128-6943
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://doi.org/10.4230/LIPIcs.AFT.2023.6
https://orcid.org/0000-0002-6338-2945
https://doi.org/10.4230/LIPIcs.AFT.2023.15
https://doi.org/10.4230/LIPIcs.AFT.2023.27
https://doi.org/10.4230/LIPIcs.AFT.2023.16
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://orcid.org/0000-0003-2270-8694
https://doi.org/10.4230/LIPIcs.AFT.2023.17
https://doi.org/10.4230/LIPIcs.AFT.2023.16
https://orcid.org/0000-0001-9517-8466
https://doi.org/10.4230/LIPIcs.AFT.2023.11
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://orcid.org/0000-0002-0479-6478
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://orcid.org/0000-0002-6940-974X
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://doi.org/10.4230/LIPIcs.AFT.2023.22
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://orcid.org/0000-0003-4475-662X
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://orcid.org/0000-0002-9777-6168
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://doi.org/10.4230/LIPIcs.AFT.2023.13
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://doi.org/10.4230/LIPIcs.AFT.2023.31
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://orcid.org/0000-0001-9989-6676
https://doi.org/10.4230/LIPIcs.AFT.2023.19
https://doi.org/10.4230/LIPIcs.AFT.2023.20
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://doi.org/10.4230/LIPIcs.AFT.2023.26
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://orcid.org/0009-0000-6174-0254
https://doi.org/10.4230/LIPIcs.AFT.2023.19
https://doi.org/10.4230/LIPIcs.AFT.2023.20
https://doi.org/10.4230/LIPIcs.AFT.2023.26
https://doi.org/10.4230/LIPIcs.AFT.2023.21
https://orcid.org/0000-0001-5650-4716
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://orcid.org/0000-0003-1652-5189
https://doi.org/10.4230/LIPIcs.AFT.2023.30


Authors 0:xix

Mehdi Salehi (22)
OffchainLabs, Princeton, NJ, USA

Eric Schertenleib (9)
ETH Zürich, Switzerland

Jan Christoph Schlegel (23)
City, University of London, UK

Caspar Schwarz-Schilling (30)
Ethereum Foundation, Berlin, Germany

Srinath Setty (18)
Microsoft Research, Redmond, WA, USA

Nihar Shah (30)
Jump Crypto, Chicago, IL, USA

Alberto Sonnino (7)
Mysten Labs, London, UK; University College
London, UK

Kyle Soska (8)
Ramiel Capital, New York, NY, USA

Ertem Nusret Tas (14, 29)
Stanford University, CA, USA

Thomas Thiery (30)
Ethereum Foundation, Lyon, France

Eran Toch (1)
Tel-Aviv University, Israel

Mohammad Amin Vafadar (15)
University of Alberta, Edmonton, Canada

Saravanan Vijayakumaran (28)
Department of Electrical Engineering, Indian
Institute of Technology Bombay, Mumbai, India

Marko Vukolić (5)
Protocol Labs, San Francisco, CA, USA

Xuechao Wang (5)
Thrust of Financial Technology, HKUST(GZ),
Guangzhou, China

Zhipeng Wang (16)
Imperial College London, UK

Roger Wattenhofer (9)
ETH Zürich, Switzerland

Aviv Yaish (2)
The Hebrew University of Jerusalem, Israel

Ariel Zetlin-Jones (8)
Carnegie Mellon University, Pittsburgh, PA,
USA

Haoqian Zhang (3)
École Polytechnique Fédérale de Lausanne,
Switzerland

Dionysis Zindros (14)
Stanford University, CA, USA

Aviv Zohar (2)
The Hebrew University of Jerusalem, Israel

AFT 2023

https://doi.org/10.4230/LIPIcs.AFT.2023.22
https://orcid.org/0000-0002-0927-8178
https://doi.org/10.4230/LIPIcs.AFT.2023.9
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://orcid.org/0000-0003-0734-4722
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://orcid.org/0000-0002-9222-4962
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://orcid.org/0000-0001-6061-9700
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://doi.org/10.4230/LIPIcs.AFT.2023.29
https://orcid.org/0000-0003-4998-3100
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://orcid.org/0000-0001-6939-5870
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://orcid.org/0009-0003-0861-9131
https://doi.org/10.4230/LIPIcs.AFT.2023.15
https://orcid.org/0000-0002-0203-0276
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://orcid.org/0000-0002-9898-5383
https://doi.org/10.4230/LIPIcs.AFT.2023.5
https://orcid.org/0000-0001-6918-2699
https://doi.org/10.4230/LIPIcs.AFT.2023.5
https://doi.org/10.4230/LIPIcs.AFT.2023.16
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.4230/LIPIcs.AFT.2023.9
https://orcid.org/0000-0002-7971-2494
https://doi.org/10.4230/LIPIcs.AFT.2023.2
https://orcid.org/0000-0001-7556-0238
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://orcid.org/0000-0002-1978-594X
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://orcid.org/0000-0001-8539-9222
https://doi.org/10.4230/LIPIcs.AFT.2023.2




Privacy-Preserving Transactions with Verifiable
Local Differential Privacy
Danielle Movsowitz Davidow1 #

Tel-Aviv University, Israel

Yacov Manevich #

IBM Research – Zürich, Switzerland

Eran Toch # Ñ

Tel-Aviv University, Israel

Abstract
Privacy-preserving transaction systems on blockchain networks like Monero or Zcash provide
complete transaction anonymity through cryptographic commitments or encryption. While this
secures privacy, it inhibits the collection of statistical data, which current financial markets heavily
rely on for economic and sociological research conducted by central banks, statistics bureaus, and
research companies. Differential privacy techniques have been proposed to preserve individuals’
privacy while still making aggregate analysis possible. We show that differential privacy and privacy-
preserving transactions can coexist. We propose a modular scheme incorporating verifiable local
differential privacy techniques into a privacy-preserving transaction system. We devise a novel
technique that, on the one hand, ensures unbiased randomness and integrity when computing the
differential privacy noise by the user and on the other hand, does not degrade the user’s privacy
guarantees.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols; Security
and privacy → Trust frameworks

Keywords and phrases Differential Privacy, Blockchain, Privacy Preserving, Verifiable Privacy

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.1

Related Version Full Version: https://eprint.iacr.org/2023/126

Supplementary Material Software (Source Code): https://github.com/yacovm/ZKAT-VDP
archived at swh:1:dir:48554d7cfe172767c418e2e8f506fde1200c3cdd

Funding This work was supported by a grant from the Tel Aviv University Center for AI and Data
Science (TAD).

Acknowledgements We would also like to thank Dany Moshkovich and the reviewers of this paper
for their helpful comments and thorough review.

1 Introduction

1.1 Motivation
The issue of privacy holds significant importance and poses ongoing challenges in blockchain
systems. This concern has become a substantial barrier for traditional financial institutions
seeking to adopt blockchain technologies [26]. Initially, blockchain protocols offered only
limited pseudo-anonymity. However, user concerns have given rise to privacy-preserving
blockchain systems such as Monero [42], ZCash [4], and Twilight [20]. These systems
aim to increase users’ anonymity and conceal transaction details. For instance, ZCash [4]

1 The work was done during an internship at IBM Research – Haifa.

© Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dm4@mail.tau.ac.il
https://orcid.org/0000-0003-4475-662X
mailto:yacov.manevich@ibm.com
https://orcid.org/0000-0002-0479-6478
mailto:erant@tauex.tau.ac.il
https://toch.tau.ac.il/
https://orcid.org/0000-0001-6939-5870
https://doi.org/10.4230/LIPIcs.AFT.2023.1
https://eprint.iacr.org/2023/126
https://github.com/yacovm/ZKAT-VDP
https://archive.softwareheritage.org/swh:1:dir:48554d7cfe172767c418e2e8f506fde1200c3cdd;origin=https://github.com/yacovm/ZKAT-VDP;visit=swh:1:snp:979a5772312db4ab61b637ed766bbc6a3f369470;anchor=swh:1:rev:721f52b1b74f8e0aa60799bd1436865f8020258e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

enables users to encrypt transaction data, thereby safeguarding the privacy of the sender,
the recipient, and the transaction amount. Additionally, ZCash ensures the validity of
transactions without revealing any supplementary information beyond the transaction’s
legitimacy. These advancements within blockchain systems show a proactive approach to
addressing privacy concerns, facilitating the broader adoption of blockchain technology.

However, many pivotal applications such as statistics gathering [29], federated model
learning [32, 31], and anomaly analysis [30] necessitate the acquisition of aggregated models
from the shared data of numerous users while still maintaining user confidentiality. While
such aggregate and statistical models can yield benefits to the market as a whole [43], it is
equally crucial to ensure that data collection is conducted to minimize privacy threats to the
users. In particular, we aim to inhibit the ability of the data analyst to link multiple data
points of the user [19] or retrace their real identity via third-party datasets [16]. If these
risks aren’t adequately addressed, users may opt to evade participation in data collection
initiatives or provide misleading information that could lead to biased models.

Central Bank Digital Currencies (CBDCs) present a significant use case for the aggregation
of statistical models. Central banks across the globe have exhibited a growing interest in
developing and issuing CBDCs, which represent a digitized form of a nation’s fiat currency
and are intended to be widely available to the general public. Blockchain-based CBDCs are
designed to align with the requirements of regulated financial institutions. Consequently,
these institutions favor permissioned blockchain platforms that mandate identity management,
audibility, and non-deniability to comply with government-established monetary regulations.

However, the transactions resulting from existing privacy-preserving systems tailored for
financial institutions [3] appear random, preventing the extraction of meaningful insights
through observation. They prioritize the properties of unlinkability and untraceability to
protect user privacy. Unlinkability ensures that user actions cannot be easily linked together,
while untraceability maintains the anonymity of each transaction’s sender and recipient.
These systems safeguard sensitive user information and transaction history by upholding
these properties. Therefore, central banks cannot derive valuable insights and may struggle
to meet regulatory requirements.

Local differential privacy [33] potentially solves this by adding random “noise” to the
data. This noise ensures that no specific user can be identified from the processed data,
a privacy guarantee laid out by Dwork et al. (2006) [23]. Thus, financial institutions can
gather and analyze aggregated data without risking the exposure of sensitive information
tied to individual transactions. However, a challenge arises here: while local differential
privacy empowers users to introduce noise to their data, some may distort this feature by
injecting biased noise into it, which may adversely affect the integrity of the information
collected [11, 14]. Therefore, in blockchain environments, it is crucial to have a mechanism
verifying the correctness of introduced noise when implementing local differential privacy.

1.2 Verifiable Differentially Private Transactions
In this paper, we introduce the Verifiable Differentially Private (VDP) transaction scheme,
designed to ensure user privacy and data integrity during the data collection process for
aggregated models. Our innovative scheme bolsters the capabilities of any privacy-preserving
transaction system that maintains unlinkability and untraceability, such as Zcash [4]. With
this enhanced setup, a third-party entity, like a data analyst, can gather aggregated data
while simultaneously preserving user privacy and supplying plausible deniability.

Our approach stands out from other privacy-preserving transaction methodologies by
incorporating verifiable Local Differential Privacy (LDP) utilizing zero-knowledge proofs.
This integration forms an integral part of the privacy-preserving transaction system. By



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:3

adopting LDP methods [33], data analysts, such as the statistical bureau of a central bank
collecting financial information, can provide users with plausible deniability for their data
that can be represented as binary variables. These variables can encompass a wide range of
characteristics, such as non-profit organization affiliation or location in the U.S. Furthermore,
including zero-knowledge proofs allows data analysts to verify the accuracy and integrity of
the disclosed data.

Local Differential Privacy (LDP) approaches typically require users to generate random
numbers that are then used to create noise in the data [33]. Keeping these random numbers
confidential is crucial for maintaining user privacy. At the same time, it’s also important
that the process of creating random numbers and generating noise from them is unbiased.
This means that even if someone involved in the process – either the user or the data analyst
– has malicious intent, the LDP approach should still meet the following requirements: (i)
The generation of noise cannot be influenced by either the user or the data analyst; (ii) The
user can provide proof, without compromising privacy, that the noise is not biased; (iii) Once
the random numbers for a particular input are calculated, the user cannot change these
numbers or add a different level of noise. To meet these requirements, we introduce the
VerRR algorithm, which is a straightforward verifiable LDP mechanism based on the concept
of ’randomized response’ [24].

1.3 Related Work
In the following sections, we outline the different approaches for verifiable differential privacy
employed by various works and highlight the differences from our technique.

1.3.1 Central Differential Privacy
When applying Differential Privacy (DP) techniques for preserving privacy, traditional
methods often rely on the assumption that the process of noise generation and application is
intrinsically reliable. However, recent scholarly work [12, 13] has underscored the naivety of
this assumption. These studies expose DP’s vulnerability to a range of manipulation attacks,
thereby threatening the integrity of the data under examination.

Several studies have proposed strategies to counter various manipulation attacks. The
key aim across all these works is to generate and apply the noise in a way that can be verified.
Within the centralized DP model, studies such as [6, 38, 41] have zeroed in on a series of use
cases. In these instances, the data owners forward their data – either in plain text, encrypted
or in a secret-shared format – to a single party or a consortium of parties who together
form an entity termed a “curator”. This curator subsequently applies noise and generates an
anonymized, privacy-preserving data set suitable for further analysis.

Secure Multi-Party Computation (sMPC). In the context of secure multi-party compu-
tation (sMPC), a user secretly shares their input and distributes the shares across several
servers. As proposed in [6], if at least one of the servers collecting the data is honest, the
resulting computation is either correct or detected to be incorrect. Unfortunately, such a
single-client-multi-server model does not fit the use case of our work since we operate under
the assumption that the data analyst, who also serves as the curator, could potentially have
malicious intentions and is not divided into separate entities.

Zero-Knowledge Proofs. In the study by Narayan et al., the curator creates a database
comprising different users’ data elements and subsequently publishes a cryptographic com-
mitment to the entire database [38]. When a data analyst sends a query interested in specific

AFT 2023



1:4 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

statistical properties, the curator executes the differential privacy function. In addition,
the curator generates2 a Non-Interactive Zero-Knowledge (NIZK) proof, validating that the
result aligns with the prior commitment, and sends both the result and the proof back to the
data analyst. The data analyst then verifies the NIZK against the commitment to ensure
that the differential privacy mechanism was correctly executed.

The most notable downside of the naive zero-knowledge approach employed by previous
works is that it is assumed that the noise was sampled correctly and without bias. However,
if the party that produces the NIZK is malicious, it may use far from random noise and
thus either harm the privacy of the users or skew the results towards a value it favors. In
contrast, in our technique, we ensure that some of the randomness is sampled by the user
itself (unlike the work of [41] where the curator randomly samples the randomness) and some
by the analyst, thus producing noise that is non-biased.

1.3.2 Local Differential Privacy Mechanisms
LDP mechanisms allow for developing a randomized response that is operated locally, making
it fit for distributed blockchain environments. However, ensuring data integrity is a more
challenging task since data manipulation occurs locally. Research, such as [2, 35], concentrates
on making adjustments to existing LDP mechanisms to make them verifiable. This allows
data analysts to verify how users introduce noise to the data.

The study by Kato et al. employs cryptographic randomized response techniques to
validate existing LDP mechanisms. Their approach ensures the complete execution of privacy
protection on the client side, without sacrificing user privacy [35]. However, their method’s
primary drawback is its interactive nature. Interactive methods are typically more time-
consuming and resource-intensive than their non-interactive counterparts. They necessitate
several communication exchanges and direct engagement with the data analyst. Furthermore,
interactive methods do not support throttling. Hence, during periods of high network usage,
while non-interactive systems can manage the demand by forming a queue that will eventually
be cleared unbeknownst to the users, interactive systems may freeze, forcing users to endure
an uncertain waiting time. Our proposed scheme, on the other hand, is non-interactive,
overcoming these limitations.

Garrido et al. follow an approach based on zero-knowledge Succinct Non-interactive
ARgument of Knowledge (zk-SNARKs) to adapt the implementation of select LDP mech-
anisms to a verifiable computation technique to prove the correctness of a differentially
private query output [36]. However, their technique does not uphold the unlinkability and
untraceability properties needed in a privacy-preserving transaction system. These properties
are not upheld since the prover (i.e., the user) signs the randomness used as the base of
the LDP mechanism with their private key, and the verifier (i.e., the data analyst) needs to
know the prover’s public key to verify the integrity of the response. By knowing the prover’s
public key, the data analyst can later connect the generated randomness and the transfer it
was used in, thus revealing the identity of the user making the transfer.

Outline. The remainder of the paper is structured as follows. In Section 2, we introduce
some preliminary concepts and provide the relevant background regarding blockchain-based
privacy-preserving transaction systems and verifiable differential privacy. We present a

2 For ease of explanation, we mention the curator as the producer of the NIZK, but in the cited study,
this task is delegated to a separate party: the analyst.



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:5

high-level overview of our scheme in Section 3, and dive into the scheme’s full details in
Section 4. In Section 5, we evaluate the performance of our scheme. We discuss design
choices in Section 6 and summarize our contribution in Section 7.

2 Preliminaries

2.1 Blockchain-Based Privacy-Preserving Transactions
Blockchain transaction systems are typically modeled using two approaches: (i) The account
model, used in Ethereum [46]. This model is more user-friendly as it presents an abstraction
of accounts and balances; (ii) The Unspent Transaction Output (UTXO) model, used in
Bitcoin [37] and Zcash [4]. This model presents an abstraction of a plurality of coins, each
with a balance and a condition for spending3. While it is considered an open problem how to
“hide” a transaction’s sender in an account model [28] 4, “hiding” the sender in the UTXO
model is easy [4]. Thus, this work focuses on the UTXO model.

In a privacy-preserving transaction system using the UTXO model, when a sender
transfers funds to a recipient, to preserve the privacy of the transaction, three things need to
be hidden: (i) The sender’s identity, (ii) The recipient’s identity, and (iii) The transferred
amount. The transferred amount is usually hidden through a cryptographic commitment
and a zero-knowledge proof proving that the sum of input coins is greater or equal to the
sum of the output coins. The recipient’s anonymity is ensured by creating outputs that
either have one-time public keys [42] or by hiding the output token’s identity by having the
coin itself be a commitment [4] to its properties (e.g., owner, amount). Maintaining the
sender’s anonymity varies widely across techniques; Monero [42] uses ring signatures to hide
the source address among a randomly picked set of potential source addresses, while Zcash
uses a Merkle tree and zero-knowledge proof of membership to obscure the spent token.

Our work is based on Zcash’s approach to concealing sender, recipient, and amount but
is flexible enough to incorporate other privacy-preserving transaction systems that encode
the entire token as a commitment. This includes the model proposed by [3], which is better
suited for CBDCs and permissioned settings, replacing the Merkle tree membership proof
with proof of knowledge of a signature of an entity that certifies the coin. Zcash terminology
is used throughout the paper.

2.2 Differential Privacy
Differential Privacy (DP) [23, 22] is a formal notion of privacy designed to allow learning
helpful information about a population while learning as little as possible about an individual.
DP guarantees that the presence or absence of any specific individual in a dataset does not
affect the query output results of that database. To achieve this privacy requirement, DP
models change the data by using some randomness that masks the user identity.

There are two main models of DP: the centralized model and the local model. In the
centralized model, sensitive data is collected centrally in a single dataset, and a trusted data
curator can access the raw data. Each user sends their data to the curator without noise

3 In most cases, presenting a signature that is verifiable under a public key that its hash is encoded in the
coin.

4 In an account model, hiding the sender involves hiding it within a K sized anonymity set [10], while a
UTXO based approach hides the sender within all possible senders in the system.

AFT 2023



1:6 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

in this model. Since we assume analysts requesting access to this dataset are malicious,
the curator is responsible for correctly executing the differentially private mechanisms the
analysts specify.

▶ Definition 1 (ϵ−differentially privacy [22]). A randomized algorithm K is ϵ−differentially
private if for all data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),
P [K(D1) ∈ S] ≤ eϵP [K(D2) ∈ R].
The probability is taken over the coin tosses of K.

Local DP models can be based on a randomized response mechanism as was first proposed
by Warner in 1965 [45] and formalized in the context of learning by Kasiviswanathan et
al. [34]. In this model, the data curator and the analyst are often the same, and no trusted
third party exists that holds the data and executes the mechanism. Therefore, the user
makes data differentially private before sending it to the analyst, ensuring that even if an
adversary gains access to the personal responses of individuals in the database, it will not be
able to learn much about the individual’s data.

▶ Definition 2 (Local randomizer [24]). An ϵ−local randomized R : X →W is an
ϵ−differentially private algorithm that takes a database of size n = 1 as input.

We incorporate local DP techniques into our scheme since our work is based on a privacy-
preserving transaction system in which we assume that any parties (i.e., the users or the
data analyst) may be dishonest but not both. Therefore, an honest user cannot trust the
analyst to properly blind their data without leaking it.

2.3 Randomized Response

Dwork and Roth presented in [24] a variant of the randomized response mechanism, in which
a user answers a “Yes” or “No” question as follows:
1. Flip a coin.
2. If tails, then respond truthfully.
3. If heads, then flip a second coin and respond “Yes” if heads and “No” if tails.

In this algorithm, the user flips two coins before returning the response. Flipping two
coins creates uncertainty about the true answer. This uncertainty is the source of privacy,
as it gives plausible deniability to the data subject. In section A in the appendix of our
full version [18], we prove the randomized response algorithm described above satisfies
ln 3-differentially privacy.

We note that when using the randomized response technique, the number of “Yesses”
and “Noes” depends on the result of tossing the coin once or twice. Therefore, if an analyst
wants to estimate the true number of “Yesses”, it would need to analyze the randomness
in the randomized response algorithm and estimate how many of the “Yesses” are truthful
responses and how many are “fake”, and are a result of the random coin flips.

2.4 Basic Cryptographic Building Blocks

The following section extensively explains zero-knowledge proofs, which are crucial in our
scheme. We denote the symbol λ to represent the system-wide security parameter.



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:7

2.4.1 Commitment Schemes
A commitment scheme is a protocol between a sender and a receiver defined by three
probabilistic polynomial time algorithms: ⟨Setup, Commit, Open⟩. The sender and receiver
each invoke the Setup operation with the desired security parameter and then get back
public parameters to be used for Commit and Open. The sender uses the Commit operation
to encode a message m and get back a commitment to m. The sender then sends the
commitment to the receiver. At a later stage, the sender may convince the receiver that the
commitment encodes the message m by interacting with the receiver via the Open operation.
In order for the commitment scheme to be useful, it needs to satisfy two security properties:

Hiding: For any probabilistic polynomial time adversary A there exists a negligible5

function ϵ such that for every two messages m0, m1 chosen by A and a commitment
cm← Commit (mb) for b ∈ {0, 1} it holds that: Pr [b← A (pp, cm)]− 1

2 ≤ ϵ (λ).
Binding: For any probabilistic polynomial adversary A there exists a negligible function
ϵ such that for every m and cmt← Commit (m) and every m′ ̸= m chosen by
A: Pr [Open (pp, cmt, m) = m′] ≤ ϵ (λ).

A commitment can either be information-theoretic binding or hiding, and it can be
computationally binding or hiding (but cannot be both information-theoretic binding and
hiding). In our scheme, the commitment does not need to be homomorphically additive or
have any special property, and as such, it is completely pluggable.

2.4.2 Digital Signatures
A digital signature scheme is a triple ⟨Gen, Sign, V erify⟩ of probabilistic polynomial time
algorithms. Gen(1λ) outputs (sk, pk) a private key and a public key respectively. For a
message m, Sign (m, sk) outputs a signature σ. For a message m, a public key pk and a
signature σ, V erify (pk, m, σ) accepts or rejects. The security property we require from a
signature scheme is:

Unforgability: For every probabilistic polynomial time adversary A with access to a
signing oracle O which replies to queries denoted by a set Q there exists a negligible
function ϵ such that Pr [V erify (pk, m, σ) = 1 ∧m /∈ Q] ≤ ϵ (λ).

As in the case of the commitment scheme, the signature scheme employed by our protocol
can vary, and its choice is insignificant.

2.4.3 Public Key Encryption
An encryption scheme is a triple ⟨Gen, Enc, Dec⟩ of probabilistic polynomial time algorithms.
Gen(1λ) outputs (sk, pk) a private key and a public key respectively. For a message m,
Enc (m, pk) outputs a ciphertext c. Given a ciphertext c and a private key sk, Dec (c, sk)
outputs a message m. For every public key pk with a corresponding sk and message m it
holds that Pr [Dec (Enc (m, pk) , sk) = m] = 1. The security property we require from an
encryption scheme is:

Indistinguishablility: For every probabilistic polynomial time adversary A and every
pk generated by Gen(1λ) and for every two messages m, m′ there exists a negligible
function ϵ such that Pr [A (Enc (m, pk)) = 1]− Pr [A (Enc (m′, pk)) = 1] ≤ ϵ (λ).

5 A function ϵ : N → R is negligible if for every positive polynomial p (n) there exists an N such that
∀n > N : ϵ (n) < 1

p(n) .

AFT 2023



1:8 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Our protocol does not require any stronger property for the encryption scheme, such as
resistance against chosen ciphertext attacks (CCA1 and CCA2).

2.5 Zero-Knowledge Proofs
For a language L ∈ NP , denote the relation RL to be the pairs (x, w) of statements and
witnesses for x being in L.

A zero-knowledge proof is a protocol between a prover P and a verifier V in which the
prover can convince the verifier that it knows a witness w for a statement x if and only if
(x, w) ∈ RL, and the verifier learns nothing from the protocol.

More formally, a pair of algorithms (P, V ) is a zero-knowledge proof system for a language
L if the following three conditions hold:

Completeness: For every x ∈ L there exists w such that Pr [⟨P (w), V ⟩(x) = 1] = 1.
Soundness: For every x /∈ L and every P ∗ and every w there exists a negligible function
ϵ such that Pr [⟨P ∗(w), V ⟩(x) = 1] ≤ ϵ (λ).
Zero-knowledge: For every probabilistic polynomial time V ∗ there exists a probabilistic
polynomial time simulator S such that for every x ∈ L: V iewP

V ∗ (x) ≡ S (x).

While zero-knowledge proofs are not restricted to statements belonging to languages in
NP , they are often used for such, especially for languages where verification of (x, w) ∈ RL
is efficient and can be modeled as a boolean or arithmetic circuit, but an efficient algorithm
to find w for a random x is not known. A prominent example is: (x, w) ∈ RL ⇔ f (w) = x

where f is a cryptographic hash function.
In an anonymous set membership, given a set of items found as leaves in a Merkle tree,

one can prove knowledge of an item in the Merkle tree by proving in zero-knowledge a path
comprised of hash pre-images from one of the leaves to the root of the Merkle tree. Such
a technique is the cornerstone behind the privacy-preserving cryptocurrency Zcash [4]. In
Zcash, a sender wishing to hide the payment source simply creates a zero-knowledge proof
that they use a coin that was added to a Merkle tree. The Merkle tree’s leaves are all coins
added as part of past transactions.

Zero-knowledge proof schemes come in different forms, each with its strengths and
weaknesses. In this work, we focus on schemes ideal for privacy-preserving payments, and
thus we require the scheme to be non-interactive, efficiently verifiable, and have a small proof
size (succinct). A scheme with such properties is termed a zk-SNARK (Zero-Knowledge
Succinct Non-interactive ARgument of Knowledge).

3 Overview of the VDP Transaction Scheme

Our privacy-preserving, verifiable, and differentially-private transaction scheme expands the
functionality of any given privacy-preserving transaction system (e.g., Zcash [4]) by enabling
a third party (e.g., a data analyst) to collect information about transaction attributes while
preserving user privacy.

Before elaborating on the participants, components, and transaction flow, we reiterate the
scheme’s primary objective. The two main actors in our setting are a user with potentially
sensitive information they are unwilling to disclose without plausible deniability and a data
analyst who aims to create a statistical model by aggregating information gathered from
user transactions. The users conduct transactions of a privacy-preserving nature. These
transactions reveal nothing about the transactor’s identity, the recipient’s identity, or the
properties of the transaction (such as the amount transferred). Each transaction a user



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:9

performs is accompanied by an additional Differentially Private Attribute (DPA) which results
from applying an LDP algorithm to the transaction’s private data6. The DPA can embed
details like the sender’s non-profit status, enabling the data analyst to tally transactions
made by Blockchain users from both profit and non-profit sectors.

An LDP mechanism generates the differentially-private attribute that involves sampling
randomness and using it for noise generation. The randomness must be kept secret from
anyone but the user itself, lest a curious analyst can peel off the noise and be able to
reconstruct the original value. At the same time, the scheme should force the user to generate
randomness in a non-biased manner. Suppose the user is free to choose the randomness it
uses. In that case, it can manipulate the result of the LDP mechanism making the data too
“noisy”, thus affecting the integrity of the data collected by the analyst.

Consequently, we seek a scheme with the following properties: (i) Neither the user nor the
analyst can bias the generation of the noise used for the LDP mechanism; (ii) The user can
prove in a privacy-preserving manner that the noise is non-biased; (iii) Once the randomness
used to create the transaction’s noise is computed, the user cannot compute new randomness
or add a different amount of noise. We prove that our scheme fulfills all three aforementioned
properties in Section 4.4.1. Another essential property of our scheme is preserving user
privacy, meaning that once the transaction is complete, the analyst cannot identify the user
who initiated the transaction. We prove this property in Section 4.4.2.

3.1 Participants
Our scheme involves the following participants:

Users. Users can exchange tokens within the system using transfer transactions, which are
recorded on the blockchain. We presume that users possess specific individual attributes that
they wish to disclose confidentially to the data analyst. These characteristics can cover a
wide range of areas, for instance, signifying if the user is based in the U.S., is exempt from
tax, or any other pertinent information that can be denoted as a binary variable.

Data analyst. This entity has the authority to collect aggregated information from the
private attributes and activities of the users in the system. We assume that the analyst is
only interested in analyzing data using statistical models regarding the system as a whole
and is not interested in learning about specific individuals in the system.

Registration authority. This is a privileged entity in charge of registering all system users.
For each user, it issues a long-term credential (i.e., a certificate) that binds the user’s public
key to its attributes. The same attributes will later be used as input to the LDP algorithm.

3.2 Threat Model
Our scheme is designed as a protocol that considers the interaction between two parties,
the user and the data analyst, both of whom may exhibit dishonest behavior and possess
conflicting objectives.

6 In this work, we focus on the randomized response mechanism applied to one binary attribute. However,
we argue that our ideas can be extended to randomized response vectors applied to multiple and
non-binary attributes.

AFT 2023



1:10 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

The first threat arises from the data analyst’s desire to compute aggregated information
derived from the user’s transactions while potentially disregarding the user’s privacy. Indeed,
the analyst may deviate from the protocol in an attempt to link between the transaction
and the user who submitted it [5].

The second threat arises from users who prioritize their privacy at the expense of providing
misleading or corrupted data, which can undermine the integrity of the analysis conducted
by the analyst. There are two primary ways in which users can launch such attacks: (i)
Users can intentionally introduce randomness or noise manipulatively, rendering the data
unreliable for generating unbiased and trustworthy aggregate statistical estimations [15];
(ii) Data poisoning attacks targeted at DP mechanisms. Data poisoning attacks involve
adversarial manipulation of the input in order to influence the final aggregate result.

Since the analyst is interested in collecting statistics over attributes that correspond to
the users themselves and for each transaction, such as whether the user is a non-profit or
not or whether the user is based in the U.S., it is crucial that a user cannot mutate their
attributes as they see fit. We guarantee this by requiring identities to be issued by the
registration authority. Therefore, our scheme operates in the permissioned setting, whereas
in a permissionless setting, each user is free to choose their own attributes.

Both the user and the analyst may deviate from the protocol. This introduces an element
of uncertainty, as a party adhering to the protocol cannot definitively determine if the other
party is also following protocol or diverging from it. Therefore, we aim to devise a protocol
that protects the interest of any of the two parties as long as that party is honest. We
note that such a protocol would fit the aforementioned threat model where both parties
can deviate from the protocol, as each party can be assured that if it correctly follows the
protocol, it will be protected from the misbehavior of the counter-party.

As we will see in the security analysis in Section 4.4, the focus on protecting the interests
of honest parties lets us assume knowledge about the probability distribution of certain
messages sent by honest parties, which then will set the probability distribution of messages
sent by the counter-party regardless of whether it incorrectly samples its randomness.

In our protocol, the user initiates the protocol by sending a message to the data analyst,
and the data analyst responds with its message. We consider a scenario where the data
analyst does not respond to the user’s message or sends back information that the user
considers invalid as a scenario in which the data analyst aborts the protocol. Similarly
to [3, 4], we consider network-level privacy out of scope and assume that the analyst cannot
de-anonymize the user from inspecting the source of its network connection.

3.3 Components

Our scheme comprises three modular components: (i) A protocol to obtain and bind
randomness. (ii) A verifiable LDP mechanism. (iii) An expanded privacy-preserving transfer
that includes verifiable differentially-private data.

Obtain and bind randomness protocol. This protocol is a privacy-preserving verifiable
joint random number generation protocol between the user and the analyst. The protocol
uses a serial number created by the user to bind a set of unspent input random seeds used in
a specific transfer to their corresponding jointly generated randomness. The analyst uses this
serial number to verify that only one randomness is created for each set of unspent inputs.



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:11

Verifiable LDP mechanism. This mechanism makes the user’s attributes differentially
private before they are disclosed to the analyst. For simplicity, in this work, we use the basic
randomized response mechanism described in Section 2.3 to make a single binary attribute
differentially private.

Expanded privacy-preserving transfer. Our verifiable differentially private (VDP) transfer
expands the transfer transaction defined by the underlying privacy-preserving transaction
system. As we explained in Section 2.1, our scheme works with any transfer mechanism
that: (i) Encodes tokens as commitments to properties of the token (token value, owner, and
random seed are all part of the input to a cryptographic commitment scheme). (ii) Uses
serial number exposure as a double-spending prevention (for a random seed ρ, the serial
number is PRF (ρ) ).

To verify the correctness of the randomness used as the source of randomness in the LDP
mechanism and to ensure that the analyst cannot link a specific transfer to its sender, our
VDP transfer uses two serial numbers. The user creates the first serial number during the
obtain and bind randomness protocol. The second serial number, also created by the user,
is used to prove the correctness of the randomness used by the verifiable LDP mechanism.
From the analyst’s point of view, the second serial number will only be accepted if the first
serial number was previously observed (without being able to link the two together).

The analyst can verify that it has previously seen the first serial number because both
numbers have the same precursor, a set of unspent input random seeds. The generated
serial numbers satisfy the following security properties: (i) They are collision resistant –
two different sets of unspent tokens produce two different serial numbers. (ii) They are
deterministic – the same set of unspent tokens will always produce the same serial number.
(iii) They are unforgeable – only the user who owns the unspent tokens can produce a valid
serial number. Although both serial numbers are computed on the same set of unspent
inputs, the analyst cannot link them to each other thanks to their construction. The unspent
input seeds are passed through Pseudo-Random functions with different keys and hence are
computationally unlinkable.

Additionally, our transfer uses zk-SNARK proofs to verify the integrity of the data
disclosed by the user (i.e., the DPA). The proofs prove that the disclosed DPA matches the
user’s original attributes and is created using the jointly generated randomness as the base
of the randomness used in the LDP mechanism.

3.4 VDP Transaction Flow
The VDP transaction scheme is illustrated in Figure 1. At first, the user contacts the
registration authority (1.1) and uses a registration protocol to get a long-term credential (1.2).
From then on, the user can use this credential as input for every VDP transfer transaction.

The VDP transfer is comprised of the following stages: The user retrieves its tokens from
the ledger (2.1). The user contacts the data analyst (2.2) and executes the BindRandomness
protocol. Thus, the user obtains a verifiable random value (2.3). The user executes the VDP
transfer algorithm in three stages. First, the user adds noise to their attributes using the
verifiable LDP mechanism (creates the DPA) and encrypts the result using the data analyst’s
public key. Then, the user computes the zk-SNARK proofs needed to verify the jointly
generated randomness and the integrity of the DPA. Finally, the user uses the underlying
transfer scheme in a black box manner to create a new unspent token. The resulting transfer
transaction and the DPA encrypted with the analyst’s public encryption key are posted on

AFT 2023



1:12 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Figure 1 Overview of the VDP Transaction scheme.

the ledger (2.4). Finally, the analyst (3) decrypts the encrypted DPA and includes it in its
statistical computation, and the second user (3) (i.e., the recipient of the transaction) can
now use the newly created token.

4 The VDP Transaction Scheme

This section details the complete VDP transaction scheme.

4.1 The BindRandomness Protocol
The BindRandomness protocol presented in Figure 2 is a privacy-preserving verifiable protocol
executed between the user and the analyst. This protocol has two main goals: (i) Obtaining
an unbiased random value jointly generated by the user and the analyst. (ii) Computing
a verifiable and unlinkable serial number. This serial number will enable the user to later
prove in zero knowledge that they know a random value jointly generated with the analyst
to be used as a source of randomness for a randomized algorithm.

The BindRandomness protocol takes as input a security parameter λ and a vector ρ⃗ =
(ρ1, . . . , ρm) s.t. ∀i ∈ [m] : ρi ∈ {0, 1}λ.
ρ⃗ represents m distinct seeds of unspent input tokens, and outputs two random values ξu,
ξA, a commitment cmξu

, and a signature σA.
In the initial stages of the protocol, the user samples a random value ξu, commits to it

using COMM(ξu), and computes the serial number ν1 with PRF1(ρ⃗). The user then sends
the commitment cmξu and the serial number ν1 to the analyst. The analyst checks if ν1 was
observed before and if so it aborts. Otherwise, the analyst will add ν1 to some accumulator
ACC, and continue on with sampling a random value ξA and signing (cmξu , ν1, ξA) to obtain
σA. The protocol ends with the analyst sending the user ξA and the signature σA. The user
verifies the signature and discards ξA if the signature is found to be invalid.

After the protocol’s execution, the analyst has a value ν1 in its accumulator, which is
correlated to m unspent tokens that the user may use in a future transaction. By signing
the accompanied commitment of the user cmξu

alongside ξA, the randomness picked by the
user, as well as the randomness picked by the analyst are both indirectly bound to {ρi}m

i=1
the seeds used for the unspent input tokens. As we will show in the next section, this is a
crucial part of the security of our scheme: If the user used an unspent input’s seed ρi to
obtain randomness from the analyst, it must also use the corresponding unspent input in a
transfer in order to use the randomness for the LDP computation.



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:13

BindRandomness
User Analyst

1 : ξu ←$ {0, 1}λ

2 : cmξu
= COMM(ξu)

3 : ν1 = PRF1(ρ⃗)

4 : (cmξu
, ν1)

5 : Check ν1 /∈ ACC
6 : ACC← ACC ∪ {ν1}

7 : ξA ←$ {0, 1}λ

8 : σA = Sign(cmξu
, ν1, ξA)

9 : (σA, ξA)

10 : return ξu, cmξu
, σA, ξA

Figure 2 The BindRandomness protocol.

4.2 The VerRR Mechanism
The VerRR algorithm is a simple, verifiable LDP mechanism based on randomized response
presented in Section 2.3. This mechanism makes one binary attribute of the user differentially
private. In this setting, the user can answer any question that requires a binary answer. For
example, to answer the question “Are you a non-profit?” the user can reply “0” for non-profit
or “1” for pro-profit. To answer the question “Are you based in the U.S.?” the user can reply
“0” for a yes or “1” for a no.

We chose this simple implementation as a proof of concept, but argue that this mechanism
can be easily replaced by a more sophisticated LDP mechanism, such as one capable of
handling histogram queries as in the Rappor mechanism used by Google [25]. As evident
from our security proofs in Section 4.4, our technique achieves simulation security; therefore,
the entire protocol inherits the security of the LDP function.

The VerRR algorithm uses the jointly generated random value ξ as the source of random-
ness needed to compute the double coin toss coin1 and coin2. Based on the results of the
coin tosses, the algorithm determines the value of output ˆdpa (the original dpa value, or a
random output of “0” or “1”).

The pseudocode for the VerRR algorithm is given in Algorithm 1.

Algorithm 1 VerRR.

Input:

Verifiable randomness ξ

A private attribute dpa

Output:

Two coin toss results coin1 and coin2

A differentially private value ˆdpa

1: Compute first coin toss
coin1 = (ξ mod 4) mod 2

2: Compute second coin toss coin2 = (ξ mod 4)/2
3: if coin1 = 0 then
4: ˆdpa← dpa
5: else
6: if coin2 = 0 then
7: ˆdpa← 1
8: else
9: ˆdpa← 0

10: end if
11: end if
12: Output coin1, coin2, ˆdpa

AFT 2023



1:14 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Algorithm 2 VDPtransfer.

Input:
Public parameters pp

Verifiable randomness ξu and its commitment
cmξu

Serial number ν1

Verifiable randomness ξA

Signature σA for (cmξu
, ν1, ξA)

Underlying transfer parameters:
x=((θold

i )m
i=1, (addrold

sk,i)m
i−1,info7)

Output:
New tokens (θnew

i )m
i=1

Encrypted VDP value δ

Transfer transaction txVDP

1: Compute randomness ξ = ADD(ξu, ξA)
2: Compute commitment cmξ = COMM(ξ)
3: for each i ∈ [m]:

a: Parse θold
i as (ρi, dpa, addrold

pk,i, *)
b: Parse addrold

sk,i to retrieve aold
sk,i

c: Parse addrold
pk,i to retrieve aold

pk,i

4: Compute ν2 = PRF2(ρ⃗) s.t. ρ⃗ := (ρ1, . . . , ρm)
5: Compute VerRR(ξ, dpa) to retrieve

(coin1, coin2, ˆdpa)
6: Set −→wξ = (ξu, ξA, cmξu

, σA, ξ, ρ⃗, ν1, (aold
sk,i)m

i=1)
7: Set −→xξ = (cmρ, ν2, (snold

i )m
i=1, cmξ, pkA)

8: Compute proof πξ = Prove(pkξ, xξ, aξ)
9: Encrypt and mask attribute

δ = EncpkA
(ru, ˆdpa)

10: Set −→wδ = (coin1, coin2, ξ, dpa, ru, (aold
pk,i)m

i=1)
11: Set −→xδ = (COMMξ, δ, pkA, pkRA)
12: Compute proof πδ = Prove(pkδ, xδ, aδ)
13: Execute underlying transfer Pour(x)
14: Set txVDP = (txPour, δ, πξ, πδ)
15: Output (θnew

i )n
i=1, txVDP

4.3 The VDP Transfer

The VDPtransfer algorithm expands the underlying transfer algorithm (e.g., the Pour al-
gorithm used by Zcash [4]) by outputting additional information about the user’s attributes.
The analyst can later use this information to generate aggregate statistics regarding system
users. To preserve privacy and allow plausible deniability, the user applies an LDP mechanism
to its attributes, making them differentially private before disclosing them.

On a very high level, the algorithm expands the underlying transfer algorithm of unspent
m tokens with randomness seeds ρ⃗ such that |ρ⃗| = m executed by user u as follows:
1. u computes the jointly generated random value ξ out of the verifiable random values ξu

and ξA obtained from executing the BindRandomness protocol.
2. u uses ξ as the source of randomness needed to generate the random values used in the

VerRR algorithm.
3. u makes their attribute dpa differentially private and encrypts its value using the analyst’s

public key pkA.
4. u computes two zero-knowledge proofs – the Binding proof πξ, and the Encrypted VDP

proof πδ – to prove the connection between the jointly generated random values ξu, ξA, ξ,
the unspent tokens with random seeds ρ⃗, and the attribute dpa that was made differentially
private. Additionally, u binds (ρ)m

i=1 to ν2 = PRF2(ρ⃗) and sends the underlying transfer
encoding, the proofs ξu and ξA, and ν2 to the analyst. Sending to the analyst ν2 ensures
that the user cannot reuse ξ a second time. The analyst is expected to add ν2 to an
accumulator ACC and ensure ν2 /∈ ACC upon receiving it from a user. Since ν1 is
computed using PRF1 and ν2 is computed using PRF2, and PRF1 ̸= PRF2 then also ν1
is unlinkable to ν2.

The pseudocode for the VDPtransfer algorithm is given in Algorithm 2.

7 info represents the rest of the parameters needed for the underlying transfer



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:15

4.3.1 The Binding Proof
The proof, made by user u, is defined as follows:

πξ =


∃ξu, ∃ξA, verify(pkA, σA, ”cmξu

||ν1||ξA”) = 1 ∧ cmξu
= COMM(ξu)∧

∃cmξu
, ∃σA, ξ = ADD(ξu, ξA) ∧ cmξ = COMM(ξ) ∧ ν1 = PRF1(ρ⃗)∧

∃ξ, ∃ρ⃗, ν2 = PRF2(ρ⃗) ∧ cmρ = COMM(ρ⃗) ∧ ρ⃗ ∈ ASC
∃ν1, ∃(aold

sk,i)m
i=1)

∧m
i=1 snold

i = PRFask
(ρ⃗[i])

 .

Where instances are of the form −→xξ = (cmξ, cmρ, ν2, (snold
i )m

i=1, pkA), and witnesses are
of the form −→wξ = (ξu, ξA, cmξu , σA, ξ, ρ⃗, ν1, (aold

sk,i)m
i=1). We define ASC as an m relation

(n1, n2, ...nm)|n1 < n2 < ... < nm (i.e., an m relation where all the elements are smaller than
the elements to their right).

An instance −→xξ specifies a commitment for a jointly generated randomness, a commitment
for the unspent tokens, a public serial number binding the unspent tokens to the jointly
generated randomness, the serial numbers of m distinct token (computed by the underlying
token management system), and the analyst’s public key. A witness −→wξ specifies user u’s
randomness and commitment to it, the analyst’s randomness and signature for it, the jointly
generated randomness, the seeds for the m distinct unspent tokens, the private serial number
binding the unspent tokens to the jointly generated randomness, and the m private addresses
of the m unspent tokens.

Given a Binding proof instance −→xξ, a witness −→wξ is valid for −→xξ if the following statements
hold:
1. The signature σA created by the analyst is valid, i.e., verify(pkA, σA, “cmξu

||ν1||ξ′′
A) = 1

2. The commitment cmξ is a valid commitment for randomness ξ, i.e., cmξ = COMM(ξ).
3. The randomness ξ was computed using the user’s randomness ξu and the analyst’s

randomness ξA, i.e., ξ = ADD(ξu, ξA).
4. The vector ρ⃗ is sorted in ascending order, i.e., (ρ1, ρ2, ..., ρm)|ρ1 < ρ2 < ... < ρm.
5. The serial numbers ν1, ν2 are computed correctly, i.e., ν1 = PRF1(ρ⃗) and ν2 = PRF2(ρ⃗).
6. The public serial number ν2 matches a private serial number ν1, s.t. ν1 appears in the

analyst’s accumulator.
7. The commitment cmu is a valid commitment for the randomness ξu generated by the

user, i.e., cmξu = COMM(ξu).
8. The commitment cmA is a valid commitment for the randomness ξA generated by the

analyst, i.e., cmξA
= COMM(ξA).

9. For each i ∈ [m], the serial number snold
i of token θold

i is computed correctly, i.e.,
snold

i = PRFask
(ρi) s.t. ρi = ρ⃗[i].

4.3.2 The Encrypted VDP Proof
The proof, made by user u, is defined as follows:

πδ =


∃ξ, ∃dpa, cmξ = COMM(ξ) ∧ ˆdpa = VerRR(ξ, dpa)∧
∃coin1, ∃coin2, coin1 = (ξ mod 4) mod 2 ∧ coin2 = (ξ mod 4)/2∧
∃ru, ∃(aold

pk,i)n
i=1 δ = EncpkR

(ru, ˆdpa))∧
verify(pkR, σdpa, “(apk,i)n

i=1||dpa”) = 1

 .

Where instances are of the form −→xδ = (COMMξ, δ, pkA, pkRA), and witnesses are of the
form −→wδ = (coin1, coin2, ξ, dpa, ru, (aold

pk,i)m
i=1).

AFT 2023



1:16 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

An instance −→xδ specifies a commitment for a jointly generated randomness, the encrypted
value of the user’s attribute after making it differentially private, the analyst’s public key,
and the registration authority’s public key. A witness −→wδ = (ξ, coin1, coin2, dpa, ru, (aold

pk,i)m
i=1)

consists of the jointly generated randomness and the two coin toss results derived from it,
the user’s attribute, the user’s random scalar used during the ElGamal encryption process,
and the m public addresses of the m unspent tokens.

Given an Encrypted VDP proof instance −→xξ, a witness −→wξ is valid for −→xξ if the following
statements hold:
1. The commitment cmξ is a valid commitment for randomness ξ, i.e., cmξ = COMM(ξ).
2. The double coin toss results coin1 and coin2 are derived from randomness ξ, i.e.,

coin1 = (ξ mod 4) mod 2 and coin2 = (ξ mod 4)/2.
3. The encrypted value δ was computed by encrypting the user’s attribute dpa with the

analyst’s public key pkA after making it differentially private using coin1 and coin2, i.e.,
δ = EncpkR

(LDP(dpa, coin1, coin2)).
4. The signature created by the registration authority is valid, i.e.,

verify(pkR, σdpa, “(apk,i)n
i=1||dpa”) = 1.

4.4 Security Analysis
4.4.1 Preserving Integrity
In our scheme, the user sends the analyst an encrypted result of computing the VerRR
algorithm on their private attribute termed dpa. As the analyst does not see how the user
computes the noise, it is crucial that the scheme preserves the integrity of the process in
case the user is being dishonest. We prove a stronger result; If either (but not both) of the
parties is malicious, the final result of our protocol distributes as an ideal functionality F for
a randomized response differential privacy algorithm. In order to prove integrity, we first
define three lemmas:

▶ Lemma 3. Let U be the uniform distribution. Unless both8 the user and the analyst are
malicious, and if the analyst accepts the proofs accompanying the transaction, BindRandomness
(see Figure 2) outputs ξA and ξu such that ξA + ξu ∼ U

(
0, 2λ

)
.

▶ Lemma 4. Denote πξ and πδ to be Non-Interactive Zero-Knowledge proofs accepted by the
analyst with a corresponding commitment COMMξ to ξ and δ being the claimed result9 of
applying VerRR on dpa ∈ {0, 1}∗ with some randomness ξ′. Then it holds that: ξ = ξ′.

▶ Lemma 5. Denote dpa to be the user’s attribute and δ the result (claimed by the user) of
VerRR on some dpa′ accepted by the analyst. Then, it holds that indeed dpa′ = dpa.

The proofs can be found in section B in the appendix of our full version [18]. Now that
we have proved the lemmas above, we can prove the integrity theorem (proof found in section
B in the appendix of our full version [18]):

▶ Theorem 6 (preserving integrity). Let F an ideal functionality for the VerRR computation
where the user (U) sends its data dpa and the analyst (A) receives F(dpa), and denote
⟨U(dpa), A⟩ as a random variable that represents the final LDP value to be sent to the analyst.
Then, unless both the user and analyst are malicious, it holds that: ⟨U(dpa), A⟩ ∼ F(dpa).

8 If both are malicious, we cannot guarantee anything about the distribution of the final randomness
ξ = ξA + ξu as ξA, ξu may both not be sampled uniformly.

9 In the protocol, δ is an encryption of the result, but for simplicity, we omit this.



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:17

Although Theorem 6 and its auxiliary lemmas are enough to prove the user cannot falsify
F(dpa), a malicious user may attempt to execute several instances of the BindRandomness
protocol and pick one result over the other in order to skew the randomness in its favor. We,
therefore, prove that our scheme has a finality property with respect to the execution of
BindRandomness:

▶ Theorem 7 (Finality). Let {sni}m
i=1 be a set of serial numbers exposed by the underlying

payment scheme, which correspond to tokens being spent in a future transaction by a user,
and let ρ⃗ be its corresponding vector of random seeds. Denote {(ξ(i)

u , ρ⃗)
∣∣ ξu ∈ {0, 1}λ}∞

i=1
to be an infinite series of inputs to BindRandomness with the aforementioned ρ⃗ but with
a different randomness ξ

(i)
u each time. Then, only the first element in the series, (ξ(1)

u , ρ⃗)
grants the user with an output from the Analyst.

The proof for Theorem 7 can be found in section B in the appendix of our full version [18].
Note that the binding proof πξ uses as input the serial numbers {sni}m

i=1 and ensures that the
input seeds for the serial numbers ρ⃗ are the same as the input seeds for ν1 and ν2, therefore
a user cannot pick ν′

1 for which ν′
1 ̸= PRF1(ρ⃗) in BindRandomness and then spend tokens

corresponding to {sni}m
i=1.

4.4.2 Preserving User Privacy
We show that our scheme does not degrade the privacy of the underlying transfer scheme
which is used in a black box manner.

▶ Theorem 8 (preserving privacy). Let U be an honest user that completed a VDPtransfer
preceded by interacting with the analyst via BindRandomness. Once the transfer completes,
the analyst’s guess about which user sent the VDPtransfer or interacted via BindRandomness
is the same as it was before.

In section B in the appendix of our full version [18], our proof for the theorem shows
that the zero-knowledge proofs used in our scheme are simulatable, and hence anything
computable by the analyst after observing them could have been computed before observing
them.

5 Evaluation and Implementation

We implement our scheme in ∼ 500 lines of Go using the Gnark ZK-SNARK library [8]. Our
implementation is available publicly in [17]. We use the Groth16 [27] scheme instantiated
with the BN-254 curve as it is the most efficient according to the evaluation of [21].

Our choices of public key encryption, digital signatures, commitment schemes, and
Pseudo-Random Functions were influenced by efficiency considerations, particularly the cost
of operations in arithmetic circuits over a finite field that is the order of the BN-254 curve.

We use the MiMC [1] hash function for the Pseudo-Random Function and the commitment
scheme. Although it gives only computational hiding and not information-theoretic hiding
such as the Pedersen [39] commitment, it is cheaper because of the smaller10 number of
constraints.

For Public Key Encryption and digital signatures, we use Elgamal and edDSA, respectively,
over a curve tailored to be efficient for ZK-SNARKs as it is defined over a field whose order [9]
is the order of the BN-254 curve.

10 Scalar multiplication in Elliptic Curves has logarithmic complexity.

AFT 2023



1:18 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

Table 1 Performance of πξ proof. Times are in
milliseconds.

Inputs Constraints Setup Proof Ver
1 9769 725 99 0.944
2 12678 889 113 0.959
4 18496 1417 164 0.971
8 30132 2064 216 1
16 53404 3741 364 1.04

Table 2 Performance of πδ proof. Times are in
milliseconds.

Inputs Constraints Setup Proof Ver
1 12882 869 103 0.93
2 13155 879 104 0.935
4 13701 907 107 0.941
8 14793 966 114 0.951
16 16977 1288 157 0.961

(a) πξ Proof. (b) πδ Proof.

Figure 3 Performance Evaluation of both proofs as a function of the number of unspent inputs
used in each transaction.

We investigate the overhead of using our scheme in conjunction with a privacy-preserving
asset transfer by evaluating the time our proofs require.

We benchmark on a c5a.2xlarge AWS machine equipped with 8 vCPUs and 16GB RAM.
We evaluate the performance of both our proofs (πξ, πδ) by running 100 independent trials
and computing the number of constraints, averages for setup time, proof time, and verification
time for different numbers of input tokens. The results are depicted in Table 1 and Table 2
for πξ and πδ respectively.

As seen from the performance evaluation results shown in Figure 3, our scheme has a
practical execution time. Moreover, the number of inputs adds a negligible increase to the
verification time, and has a small magnitude on the proof generation time. Additionally,
as the verification time is very short (totaling less than 2ms for all input counts up to 16
inputs), we conclude that the additional computations and data that we added with our
VDPtransfer transaction do not add much overhead to the original underlying transfer.

6 Discussion

6.1 The LDP Mechanism

Embedding any local differential privacy mechanism, especially a verifiable one, into a privacy-
preserving transaction system, is a significant challenge. This is due to the need to maintain
user privacy and prevent the unintentional leakage of information during data disclosure.
For instance, applying the well-known Laplace mechanism [23] to render transaction values
differentially private is ineffective when dealing with outliers, such as exceptionally high
transaction values [40]. Merely adding noise following a Laplace distribution would not
sufficiently conceal these extreme values, thereby compromising the privacy of the user



D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:19

involved in such a transaction. This approach, thus, does not align with our context. Given
these observations, our focus has shifted to data requests that necessitate binary responses,
which are inherently less susceptible to outlier effects.

For our local differential privacy mechanism, we utilized the randomized response tech-
nique [24]. We chose this mechanism for several reasons. Firstly, the randomized response
method is based on simple probabilities, making it relatively straightforward to understand
and analyze [44]. This characteristic is crucial when deploying the mechanism in a distrib-
uted, trustless environment. Secondly, the randomized response is well-suited for handling
discrete values, aligning with our scheme’s binary attribute. Lastly, the randomized response
technique is suitable for local differential privacy and demonstrates strong accuracy and
low error bounds, particularly when applied to many users [7]. These attributes make it
applicable and well-suited to address the threat models specific to our research.

The challenge in a privacy-preserving transaction system was achieving verifiable ran-
domness without revealing the user’s identity. To the best of our knowledge, our approach
is pioneering in addressing this issue. We devised a non-interactive method that employs
two serial numbers for verification. While the user generates these serial numbers, the data
analyst cannot link specific randomness to a particular transaction due to the unique creation
and utilization of these numbers. Specifically, the first serial number is exclusively generated
and applied during the randomness acquisition, and the second is solely utilized during the
transfer as a component of the zk-SNARK proof, as detailed in Section 4.

6.2 The Zero-Knowledge Proof Scheme
Our approach uses the ZK-SNARK scheme of Groth16 [27], necessitating a trusted setup.
A Zero-Knowledge proof system with a trusted setup stipulates that the randomness used
during the setup process must be discarded to prevent misuse. If this randomness were to
leak, any party possessing it could generate a deceptive proof. Contrarily, in a transparent
setup, the randomness is publicly accessible and known to all parties, including the verifier,
eliminating the need for an external trusted setup phase. Although it may seem that the
transparent setup might be superior, in our specific context, a trusted setup aligns perfectly
with our adversarial model, negating the need for a proof scheme incorporating a transparent
setup.

The trusted setup is viable for us since our model consists of a single analyst and multiple
(potentially infinite) users, where the analyst solely serves as a verifier, and the users operate
as provers. Therefore, the analyst can generate the trusted setup since there is no other party
that has to verify the proof generated by the analyst. Furthermore, since the data a user
sends comprises cryptographic commitments, the analyst cannot derive any information from
what a user sends, even if the randomness used during the trusted setup was not discarded.

6.3 Incentivising Conformation by Design
Our scheme has two phases: (a) obtaining randomness; (b) using it in a transaction. When
obtaining the randomness to be later used in a transaction, the randomness is only bound to
the unspent outputs that the user wishes to spend in the future. Consequently, if the user
decides to use an unspent output for a transaction to some recipient, they may change their
mind about the recipient but not about the (unspent) input tokens.

At first glance, it may seem like a dishonest user may want to deliberately skew the
analyst’s statistics by consistently selecting noise that hides their data. Such a dishonest
user may obtain randomness for an unspent output, compute the corresponding noise, and if

AFT 2023



1:20 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

the noise is “bad”, they have three strategies: (i) Throw away the randomness and never use
it; (ii) Use the randomness by sending its corresponding unspent outputs back to themselves
and then repeating the process by obtaining new randomness; (iii) Trying to manipulate the
randomness by requesting new randomness corresponding to different subsets of unspent
outputs.

Discarding the randomness, as suggested in strategy (i), also means discarding the
funds associated with the unspent outputs used to generate the randomness, which incurs a
significant cost. Hence, there is an incentive for a dishonest user not to do so.

Surprisingly, using randomness by sending the unspent outputs back to the user, as
suggested in strategy (ii), does not affect the analyst, as the analyst cannot differentiate
between a transfer to the same user and a transfer to a different user in the first place. In
other words, the analyst’s aggregated statistics stay the same whether dishonest users pick
this strategy or not.

This leaves us with the dishonest user’s last strategy (i.e., strategy (iii)), binding various
combinations of unspent outputs with the same total sum for one of the combinations to yield
noise that hides the user’s data. In our implementation, the user cannot simply reorder the
set of unspent inputs and request a new randomness since, as part of the πξ proof, the user
proves that the random seeds of the unspent inputs are sorted in ascending order. Therefore,
the only reason strategy (iii) is possible is that in our implementation, BindRandomness
computes ν1 as a PRF on a vector ω = (ρ1, ρ2, ..., ρm). Indeed, if the user has unspent
outputs corresponding to {ρ1, ρ2, ..., ρl} such that l > m, it has

(
l

m

)
independent attempts

of obtaining a randomness it desires. However, such a strategy can be easily mitigated by
defining ν1 as a vector instead of a single value. Specifically, if in BindRandomness the user
sends: ν⃗1 = (PRF1(ρ1), PRF1(ρ2), ..., PRF1(ρm)) and the analyst checks ν1,i /∈ ACC for
every ν1,i ∈ ν⃗1. This strategy becomes equivalent to the aforementioned strategy (i). We
note that defining ν1 as a vector instead of a single value also eliminates the need for the set
of unspent inputs to be in ascending order.

7 Conclusions

In this work, we describe the VDP transaction scheme that fits the needs of digital payment
systems that require built-in governance and regulations such as CBDCs. The scheme
combines privacy-preserving transactions with statistical insights gathering without harming
privacy. Since the VDP transaction scheme expands the functionality of any given privacy-
preserving transaction system, it can uphold privacy guarantees towards the users. At the
same time, since the VDP transaction scheme incorporates a mechanism for verifiable LDP,
it can provide users with plausible deniability and prevent bias in users’ responses, thus
maintaining the integrity of the statistical insights. To achieve verifiability, we adapt the
implementation of the random response mechanism; We replace the randomness used in the
original random response with a jointly generated randomness and add zk-SNARK proofs.
Furthermore, we prove that our scheme can preserve user privacy and statistical insight
integrity even if one of the main participants (i.e., the user or the analyst) is malicious.

References

1 Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. Crypto-
logy ePrint Archive, Paper 2016/492, 2016. URL: https://eprint.iacr.org/2016/492.

https://eprint.iacr.org/2016/492


D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:21

2 Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. Cryptographic randomized response
techniques. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography
- PKC 2004, 7th International Workshop on Theory and Practice in Public Key Cryptography,
Singapore, March 1-4, 2004, volume 2947 of Lecture Notes in Computer Science, pages 425–438.
Springer, 2004. doi:10.1007/978-3-540-24632-9_31.

3 Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar Elkhiyaoui,
and Björn Tackmann. Privacy-preserving auditable token payments in a permissioned
blockchain system. In AFT ’20: 2nd ACM Conference on Advances in Financial Tech-
nologies, New York, NY, USA, October 21-23, 2020, pages 255–267. ACM, 2020. doi:
10.1145/3419614.3423259.

4 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, pages 459–474. IEEE Computer Society, 2014. doi:10.1109/SP.2014.36.

5 Alex Biryukov and Sergei Tikhomirov. Deanonymization and linkability of cryptocurrency
transactions based on network analysis. In 2019 IEEE European symposium on security and
privacy (EuroS&P), pages 172–184. IEEE, 2019.

6 Ari Biswas and Graham Cormode. Verifiable differential privacy for when the curious become
dishonest, 2022. arXiv:2208.09011.

7 Graeme Blair, Kosuke Imai, and Yang-Yang Zhou. Design and analysis of the randomized
response technique. Journal of the American Statistical Association, 110(511):1304–1319, 2015.

8 Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. Con-
sensys/gnark: v0.6.4, February 2022. doi:10.5281/zenodo.6093969.

9 Reinier Broker. Constructing elliptic curves of prescribed order. Leiden University, June 2006.
Retrieved from https://hdl.handle.net/1887/4425.

10 Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy
in a smart contract world. In International Conference on Financial Cryptography and Data
Security, pages 423–443. Springer, 2020.

11 Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks to local differential
privacy protocols. CoRR, abs/1911.02046, 2019. arXiv:1911.02046.

12 Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks to local differential
privacy protocols. In 30th USENIX Security Symposium (USENIX Security 21), pages 947–964,
2021.

13 Albert Cheu, Adam Smith, and Jonathan Ullman. Manipulation attacks in local differential
privacy. In 2021 IEEE Symposium on Security and Privacy (SP), pages 883–900. IEEE, 2021.

14 Albert Cheu, Adam D. Smith, and Jonathan R. Ullman. Manipulation attacks in local
differential privacy. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pages 883–900. IEEE, 2021. doi:10.1109/SP40001.2021.00001.

15 Christian Covington, Xi He, James Honaker, and Gautam Kamath. Unbiased statistical estim-
ation and valid confidence intervals under differential privacy. arXiv preprint arXiv:2110.14465,
2021.

16 Ana-Maria Creţu, Federico Monti, Stefano Marrone, Xiaowen Dong, Michael Bronstein, and
Yves-Alexandre de Montjoye. Interaction data are identifiable even across long periods of time.
Nature Communications, 13(1):313, 2022.

17 Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. ZKAT-VDP: Zero-Knowledge
Asset Transfer - Verifiable Differential Privacy, 2022. URL: https://github.com/yacovm/
ZKAT-VDP.

18 Danielle Movsowitz Davidow, Yacov Manevich, and Eran Toch. Privacy-preserving payment
system with verifiable local differential privacy (full version). Cryptology ePrint Archive,
Paper 2023/126, 2023. URL: https://eprint.iacr.org/2023/126.

AFT 2023

https://doi.org/10.1007/978-3-540-24632-9_31
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1109/SP.2014.36
https://arxiv.org/abs/2208.09011
https://doi.org/10.5281/zenodo.6093969
https://hdl.handle.net/1887/4425
https://arxiv.org/abs/1911.02046
https://doi.org/10.1109/SP40001.2021.00001
https://github.com/yacovm/ZKAT-VDP
https://github.com/yacovm/ZKAT-VDP
https://eprint.iacr.org/2023/126


1:22 Privacy-Preserving Transactions with Verifiable Local Differential Privacy

19 Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh, and Alex “Sandy” Pentland.
Unique in the shopping mall: On the reidentifiability of credit card metadata. Science,
347(6221):536–539, 2015.

20 Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad. Twilight: A differentially private
payment channel network. In 31st USENIX Security Symposium (USENIX Security 22), pages
555–570, 2022.

21 Guillaume Drevon and Aleksander Kampa. Benchmarking zero-knowledge proofs with isekai,
2019. URL: https://sikoba.com/docs/SKOR_isekai_benchmarking_201912.pdf.

22 Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

23 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensit-
ivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography,
pages 265–284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

24 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

25 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014.

26 Stephen H Fuller and Ariel Markelevich. Should accountants care about blockchain? Journal
of Corporate Accounting & Finance, 31(2):34–46, 2020.

27 Jens Groth. On the size of pairing-based non-interactive arguments. IACR Cryptol. ePrint
Arch., page 260, 2016. URL: http://eprint.iacr.org/2016/260.

28 Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang. Blockmaze: An ef-
ficient privacy-preserving account-model blockchain based on zk-snarks. IEEE Transactions on
Dependable and Secure Computing, 19(3):1446–1463, 2022. doi:10.1109/TDSC.2020.3025129.

29 Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Differential privacy in
blockchain technology: A futuristic approach. Journal of Parallel and Distributed Computing,
145:50–74, 2020.

30 Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. Anomaly detection in
blockchain networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
2022.

31 Wael Issa, Nour Moustafa, Benjamin Turnbull, Nasrin Sohrabi, and Zahir Tari. Blockchain-
based federated learning for securing internet of things: A comprehensive survey. ACM
Computing Surveys, 55(9):1–43, 2023.

32 Bin Jia, Xiaosong Zhang, Jiewen Liu, Yang Zhang, Ke Huang, and Yongquan Liang. Blockchain-
enabled federated learning data protection aggregation scheme with differential privacy and
homomorphic encryption in iiot. IEEE Transactions on Industrial Informatics, 18(6):4049–4058,
2021.

33 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local differential
privacy. Advances in neural information processing systems, 27, 2014.

34 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

35 Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. Preventing manipulation attack in
local differential privacy using verifiable randomization mechanism. In Ken Barker and
Kambiz Ghazinour, editors, Data and Applications Security and Privacy XXXV - 35th Annual
IFIP WG 11.3 Conference, DBSec 2021, Calgary, Canada, July 19-20, 2021, Proceedings,
volume 12840 of Lecture Notes in Computer Science, pages 43–60. Springer, 2021. doi:
10.1007/978-3-030-81242-3_3.

36 Gonzalo Munilla Garrido, Johannes Sedlmeir, and Matthias Babel. Towards verifiable
differentially-private polling. In Proceedings of the 17th International Conference on Availability,
Reliability and Security, pages 1–11, 2022.

https://sikoba.com/docs/SKOR_isekai_benchmarking_201912.pdf
http://eprint.iacr.org/2016/260
https://doi.org/10.1109/TDSC.2020.3025129
https://doi.org/10.1007/978-3-030-81242-3_3
https://doi.org/10.1007/978-3-030-81242-3_3


D. Movsowitz Davidow, Y. Manevich, and E. Toch 1:23

37 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. URL: https:
//bitcoin.org/bitcoin.pdf.

38 Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen. Verifiable
differential privacy. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2741948.2741978.

39 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

40 Rathindra Sarathy and Krishnamurty Muralidhar. Evaluating laplace noise addition to satisfy
differential privacy for numeric data. Trans. Data Priv., 4(1):1–17, 2011.

41 Georgia Tsaloli and Aikaterini Mitrokotsa. Differential privacy meets verifiable computation:
Achieving strong privacy and integrity guarantees. In Mohammad S. Obaidat and Pierangela
Samarati, editors, Proceedings of the 16th International Joint Conference on e-Business and
Telecommunications, ICETE 2019 - Volume 2: SECRYPT, Prague, Czech Republic, July
26-28, 2019, pages 425–430. SciTePress, 2019. doi:10.5220/0007919404250430.

42 Nicolas Van Saberhagen. Cryptonote v 2.0, 2013. Retrieved from https://github.com/
monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf.

43 Yu Wang, Gaopeng Gou, Chang Liu, Mingxin Cui, Zhen Li, and Gang Xiong. Survey of
security supervision on blockchain from the perspective of technology. Journal of Information
Security and Applications, 60:102859, 2021.

44 Yue Wang, Xintao Wu, and Donghui Hu. Using randomized response for differential privacy
preserving data collection. In EDBT/ICDT Workshops, volume 1558, pages 0090–6778, 2016.

45 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

46 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

AFT 2023

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.5220/0007919404250430
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf




Correct Cryptocurrency ASIC Pricing: Are Miners
Overpaying?
Aviv Yaish #

The Hebrew University of Jerusalem, Israel

Aviv Zohar #

The Hebrew University of Jerusalem, Israel

Abstract
Cryptocurrencies that are based on Proof-of-Work (PoW) often rely on special purpose hardware to
perform so-called mining operations that secure the system, with miners receiving freshly minted
tokens as a reward for their work. A notable example of such a cryptocurrency is Bitcoin, which is
primarily mined using application specific integrated circuit (ASIC) based machines. Due to the
supposed profitability of cryptocurrency mining, such hardware has been in great demand in recent
years, in-spite of high associated costs like electricity.

In this work, we show that because mining rewards are given in the mined cryptocurrency,
while expenses are usually paid in some fiat currency such as the United States Dollar (USD),
cryptocurrency mining is in fact a bundle of financial options. When exercised, each option converts
electricity to tokens.

We provide a method of pricing mining hardware based on this insight, and prove that any other
price creates arbitrage. Our method shows that contrary to the popular belief that mining hardware
is worth less if the cryptocurrency is highly volatile, the opposite effect is true: volatility increases
value. Thus, if a coin’s volatility decreases, some miners may leave, affecting security.

We compare the prices produced by our method to prices obtained from popular tools currently
used by miners and show that the latter only consider the expected returns from mining, while
neglecting to account for the inherent risk in mining, which is due to the high exchange-rate volatility
of cryptocurrencies.

Finally, we show that the returns made from mining can be imitated by trading in bonds
and coins, and create such imitating investment portfolios. Historically, realized revenues of these
portfolios have outperformed mining, showing that indeed hardware is mispriced.

2012 ACM Subject Classification Applied computing → Digital cash; Security and privacy →
Economics of security and privacy

Keywords and phrases Cryptocurrency, Blockchain, Proof of Work, Economics

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.2

Related Version See the full version of the paper for proofs and additional details.
Full Version: https://doi.org/10.48550/arXiv.2002.11064 [90]

Funding This research was supported by the Ministry of Science & Technology, Israel.

1 Introduction

The cryptocurrency boom was heralded by the arrival of Bitcoin [56], which introduced the
idea of a decentralized currency to the mainstream. Bitcoin relies on pseudonymous users
called miners to operate the cryptocurrency’s ledger in a decentralized manner. In particular,
a computationally-heavy mechanism called PoW is used to achieve consensus between miners
on the system’s state and secure it from various attacks [72].

© Aviv Yaish and Aviv Zohar;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 2; pp. 2:1–2:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aviv.yaish@mail.huji.ac.il
https://orcid.org/0000-0002-7971-2494
mailto:avivz@cs.huji.ac.il
https://orcid.org/0000-0001-8539-9222
https://doi.org/10.4230/LIPIcs.AFT.2023.2
https://doi.org/10.48550/arXiv.2002.11064
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

Miners are rewarded for their work via a form of computation based lottery, yielding
additional rewards the more they compute on behalf of the system. These mining rewards
have led to an arms-race in which miners purchase increasingly efficient and performant
hardware [6]. Today’s Bitcoin mining is mostly performed in industrial-scale mining “farms”
hosting ASICs tailor-made for mining [61].

To stay competitive, miners buy mining rigs in advance at a significant capital expenditure,
and they go to great lengths to keep their hardware’s electricity cost at a minimum [61]. Thus,
miners turn off their machines if it is unprofitable to mine [58, 68, 46, 42], and even transport
hardware between remote locations on a seasonal basis to save on electricity [62, 18, 40].

The profits derived from mining are highly volatile as they depend on the erratic exchange-
rate of the cryptocurrency received as reward (see Figure 1) and on the level of competition
from other miners. These factors make mining a risky investment and may indirectly hurt
the cryptocurrency if fewer miners are there to secure it.

Despite the high-risk returns from mining, mining calculators utilize basic techniques
to evaluate the price of mining hardware. These naïve approaches revolve around a metric
called the hashprice, which assumes that the currency’s exchange-rate is constant and ignore
the associated risk.

▶ Definition 1 (Hashprice). The hashprice of a specific mining machine is the expected profit
that it produces per unit of computation, given that the exchange-rate of the mined token and
the computational power mining it are constant until the end-of-life of the machine.

This metric was introduced by the Luxur mining pool [47], and is widely used by the
community [54, 67, 26, 60]. Indeed, this metric is used by the top 8 websites which correspond
to the keywords mining calculator [81, 48, 53, 86, 29, 59, 21, 25, 25], according to the web
traffic analyzer similarweb [70]. These sites were frequently recommended on mining-related
resources [91, 74].

1.1 Our Approach
In contrast to using the expected rewards as captured by the hashprice, we advance a
more nuanced approach for evaluating cryptocurrency mining hardware, such as ASICs that
accounts for risk attitudes regarding the exchange rate. Risk attitudes are subjective, and
hard to measure but are reflected in the exchange rate itself. We utilize tools from financial
option pricing to incorporate the market’s risk attitude into the ASIC pricing model.

Specifically, we show that using publicly available information about the market (such as
the interest-rate) and information about the efficiency of hardware (such as hash rate and
power consumption of each device), one can derive a correct price for the hardware. This
price is correct in the sense that any other price creates arbitrage and thus allows market
forces to earn a risk-free profit.

Then, we construct an investment portfolio of tokens and bonds which imitates an ASIC
and provides the same profits as a given mining machine. This portfolio has the same price
as the correct price of the machine which it imitates. We empirically evaluate such imitating
portfolios over historical data and show that they earn more than the corresponding ASICs,
while costing less.

To obtain the correct price and an imitating portfolio which has an equal cost, we prove
ASICs are equivalent to a bundle of financial options that allow their owners to exchange
electricity for coins at different points in time. Then, we present algorithms which compute
the correct hardware cost and the corresponding imitating portfolio.



A. Yaish and A. Zohar 2:3

0.5

1.0

A
nn

ua
l

Vo
la

til
ity

May…'14 Aug…'15 Nov…'16 Mar…'18 Jun…'19 Sep…'20 Dec…'21 Mar…'23
Date

0

10000

20000

30000

40000

50000

60000

70000
U

S
D

BTC…to…USD
Hash…rate
Halving

0.0

0.5

1.0

1.5

2.0

2.5

H
as

he
s…

pe
r…

se
co

nd

1e20

Figure 1 Bitcoin’s exchange rate, annual volatility and global hash-rate, as functions of time.

Summary of Contributions

An economic model for PoW cryptocurrency mining. We model mining while
accounting for the inherent risk due to the volatile exchange-rate of cryptocurrencies. At
first glance it may seem that higher volatility in rewards implies higher risk for miners,
which may devalue mining machines, but in fact, we show that mining machines increase
in value if the cryptocurrency is more volatile. This is because if the exchange rate
plummets, the losses of miners are bounded (they can always shut off their machines
and avoid paying for electricity), but if exchange rates increase steeply their gains can be
significant.
An algorithm for pricing cryptocurrency mining hardware. Using our model,
we provide an algorithm that computes the price of an ASIC given its specifications and
market parameters, without relying on subjective measures like a miner’s risk preference
or the expected exchange-rate of the mined cryptocurrency. We prove that any other
price creates arbitrage.
The effects of risk and delay on the price of mining hardware. We quantify the
impact of the volatility of Bitcoin’s exchange-rate and the delays miners frequently face
when ordering new hardware on the value of mining machines.
Imitating portfolios for mining hardware. We construct an imitating portfolio
consisting of coins and bonds, which ideally provides the same returns as a specific ASIC.
Empirical evaluation. We make a three-way comparison between historical hardware
prices, the correct prices obtained by our results, and the costs of the corresponding
imitating portfolios. Historically, our portfolios earn more than ASICs while costing less,
even when considering trading fees. These results imply that ASICs are overpriced.

1.2 Motivating Example
To motivate our work, we show in Example 2 that the hashprice metric (given in Definition 1)
is flawed. Furthermore, we show that more complex hardware pricing methods such as
using the expected profit of a mining machine produce incorrect prices that create arbitrage
opportunities.

AFT 2023



2:4 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

▶ Example 2. A vendor offers the option of using its ASIC tomorrow to mine a single block.
The vendor assures that if the ASIC is turned on, it will earn exactly 1 Bitcoin (henceforth
denoted as BTC or B), and will require $250 worth of electricity. For simplicity, let the
interest rate be 1.

Assume bitcoin’s value starts at $400 today, and will either double or halve tomorrow
with equal probability. Note that per the definition of the hashrate metric (see Definition 1),
the price of the option is $400− $250 = $150. Furthermore, this price does not depend on
the exchange-rate’s random walk, but rather solely on its current value.

A more complex method to evaluate the price of the option would be to use its expected
profits. At a $200 rate, activating the ASIC will result in a loss of $50, as $250 is paid and only
$200 is received; thus, rational agents will not activate the ASIC, and will lose nothing. On
the other hand, if the exchange rate increases to $800, it is possible to earn $800−$250 = $550
by turning the hardware on. In total, the expected return is 1

2 · $0 + 1
2 · $550 = $275.

It is tempting to say that this is the correct price for the option, but it does not take
exchange-rate volatility into account. We later show that the correct price is in fact $183 1

3 .
To show why both $150 and $275 are incorrect, note that these prices create arbitrage

opportunities. We proceed by constructing a trading strategy that capitalizes on the arbitrage
created by the latter price, and note that a similar strategy can be used for the former.
Assume there is at least one rational buyer for the opportunity, willing to pay $275. If so,
that buyer will surely prefer purchasing it for the lower price of $274!

We can sell the opportunity for the lower price without actually owning it, all the while
promising the buyer that no matter the world state the same exact profits will be earned.
Essentially, we are performing a short on the opportunity.

To fulfill the promise we do the following: immediately upon selling the opportunity we
borrow $183 1

3 from the bank, giving us a total of $183 1
3 + $274 = $457 1

3 . We buy B 11
12 , which

under the current exchange-rate are worth 11
12 · $400 = $366 2

3 . After this, we remain with a
profit of $457 1

3 − $366 2
3 = $90 2

3 , which we pocket as a profit. This is summarized in Table 1.
If bitcoin’s value goes up, our rational buyer will want to turn on the (imaginary) ASIC

and receive the promised B1 reward in exchange for the $250 activation fee, which is paid
to us. We use the fee to pay back the loan, leaving us with $250− $183 1

3 = $66 2
3 , exactly

enough to buy B 1
12 , that together with our existing B 11

12 can be given to the buyer as the
mining reward, thus covering our short. Note we have also paid back all debt, while our
pocketed $90 2

3 profit was untouched. The balances throughout the day are shown in Table 2.
On the other hand, if the value goes down, the rational buyer will not want to pay

the activation fee as it is more expensive than the B1 (= $200) profit; even if the buyer is
interested in receiving a single bitcoin, buying it on the free market is cheaper than activating
the ASIC. So, we have covered our short without having to pay the mining reward. We still
need to repay our $183 1

3 debt, and luckily our coins are worth exactly 11
12 · $200 = $183 1

3 .
Again, we keep our pocketed profit. Table 3 presents all changes in our holdings.

Although we started with no money, we made a riskless profit of $90 2
3 due to the incorrect

pricing of the ASIC. In Section 4, we show how to correctly price it, and prove that when
using our method no arbitrage opportunities arise.

Organization

This paper is structured as follows: we present additional background on cryptocurrencies
and option theory in Section 2. We go on to define a mining model in Section 3, and present
our methods for correctly pricing ASICs in Section 4, deferring most proofs to the full version
[90].We then employ our methods to perform an empirical evaluation using real-world data
in Section 5. We go over related work in Section 6 and conclude with a discussion on the
implication of our results and future work in Section 7.



A. Yaish and A. Zohar 2:5

Table 1 Balance of all assets on the first day of Example 2. In step #1, after selling the
opportunity we have a −1 quantity of it, essentially performing a short on it.

# Step Cash Debt Coins Opportunities

0 Start of day. $0 $0 0 0
1 Sell opportunity. $274 $0 0 −1
2 Borrow $183 1

3 . $457 1
3 $183 1

3 0 −1
3 Buy 11

12 coins. $90 2
3 $183 1

3
11
12 −1

Table 2 Balance of all assets on the second day of Example 2, if the exchange-rate has doubled.
Regarding step #4: giving the buyer 1 coin covers the short on the opportunity.

# Step Cash Debt Coins Opportunities

0 Start of day. $90 2
3 $183 1

3
11
12 −1

1 Get activation fee. $340 2
3 $183 1

3
11
12 −1

2 Pay loan back. $157 1
3 $0 11

12 −1
3 Buy 1

12 coins. $90 2
3 $0 1 −1

4 Pay buyer 1 coin. $90 2
3 $0 0 0

Table 3 Asset balance on the second day, if the exchange-rate has halved. Rational buyers will
not activate the ASIC for a loss, thus there is a 0 amount of the opportunity at step #0.

# Step Cash Debt Coins Opportunities

0 Start of day. $90 2
3 $183 1

3
11
12 0

1 Sell all coins. $274 $183 1
3 0 0

2 Pay loan back. $90 2
3 $0 0 0

2 Background

We now go over preliminary details necessary for our work. We begin by describing in
Section 2.1 the mechanisms which underlie PoW cryptocurrencies, and by reviewing the
economical considerations made by real-world miners in Section 2.2. We finish by giving a
brief overview of option theory in Section 2.3.

2.1 Cryptocurrencies
Bitcoin and other similar tokens let users exchange funds by creating transactions [36] that
are collected in blocks in a decentralized manner by pseudonymous users called miners, who
are allowed to freely join or leave the system. The creation of blocks is called mining. To
enforce some chronological order on transactions, each block must point to a preceding one,
with the resulting data-structure often referred to as a blockchain. Thus, a blockchain is in
essence a decentralized ledger of transactions, where blocks should ideally be mined one after
the other.

Proof-of-Work

Bitcoin relies on a mechanism called PoW to ensure miners invest some expected amount
of effort to create blocks, thus preventing miners from maliciously retroactively changing
the ledger to their benefit [88]. This is enforced by requiring blocks to have a cryptographic

AFT 2023



2:6 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

hash [50] which is lower than some target value (when this hash is interpreted as a number).
The hash function used in Bitcoin is SHA256 [30]. Currently, the best known method for
finding a low SHA256 hash is to try many different inputs by brute force [50]. Thus, the
performance of mining hardware is measured by its hash-rate, the amount of hash calculations
it can perform per unit of time. The mining target value is set by the mechanism to keep block
creation rate roughly constant even when computational power is added to the network [89].
The specific mechanism overseeing this is called the difficulty-adjustment algorithm (DAA).
Thus, the probability that a single miner will create a block decreases if more hash-rate is
competing against it.

In our work, we focus on Bitcoin. Historical data shows that Bitcoin’s hash-rate was
consistently more than 100 times higher than the combined power of other popular crypto-
currencies [8]. This allows us to avoid considerations such as “coin-hopping” (wherein miners
switch between mining different cryptocurrencies), similarly to other papers [32, 89, 72, 37, 79].
Indeed, previous research shows that such behavior is rare in practice [51].

Mining Incentives

To encourage mining even in the face of the ever-mounting computational effort required,
Bitcoin and similar cryptocurrencies reward the creator of each block with a block reward.
As the size of blocks is limited, users can incentivize miners to prefer their transaction over
others by paying a transaction fee to the first miner that includes it in a block. Transaction
fees have roughly amounted to 1.5% of Bitcoin mining profits over the past year [16].

Single miners do not expect to find a block often, and so the majority of bitcoin mining is
done in mining pools [85, 69, 76], where miners mine cooperatively and split rewards amongst
themselves according to their relative contribution. Thus, small and constant returns can be
expected by miners who take part in pools.

2.2 Real-World Considerations of Miners
Cryptocurrency exchange-rates and electricity costs are important considerations for miners
[61, 33, 57, 84]. This is affirmed by large-scale miners, who claim to respond to market
changes by turning mining rigs on and off “at a minute’s notice” and “in real-time” [68, 46, 58].
Indeed, historical data indicates that miners rapidly turn hardware on and off, going as far
as using old and inefficient hardware when the current rates deem it profitable [42]. On the
other end of the spectrum, large-scale miners are not afraid of shutting hardware down for
prolonged periods of time to move it to remote areas with cheap electricity [62, 18, 40].

Such behavior is facilitated by hardware and software vendors, who create products
that are designed to rapidly switch between multiple low-power modes according to market
conditions [10, 75, 42, 23, 22].

Even amateur miners use such optimizations by adopting after-market software that adds
similar functionality to hardware which doesn’t have it by default [74, 12, 3, 15, 82, 13, 83, 24].

2.3 Financial Options
A European call-option is a contract involving two parties and an underlying asset. By
purchasing a call-option, the buyer receives from the seller the right to buy the asset at some
agreed-upon price, the strike price, at a specific future date, the expiration date. As this is
a right and not an obligation, the buyer need not exercise it if deemed unprofitable. For
example, if by the date of expiry the underlying asset’s price is lower than the strike price, it
is preferable to buy the underlying asset directly and to discard the option.



A. Yaish and A. Zohar 2:7

In 1973, the Black-Scholes method for option valuation was proposed by [9], a seminal
work in the field of option theory, and was later expanded upon by Merton [52]. Both rely on
the no-arbitrage principle which argues that options should be priced such that no arbitrage
possibility involving the underlying asset exists. Using option pricing as a foundation, various
financial decisions have been cast as options [14, 78, 77, 27], for example the decision of
whether to delay or abandon a project. This technique is called real option valuation.

Techniques from real option theory are introduced as needed throughout Section 4, with
the required modifications for our setting. Further exploration of the topic is beyond the
scope of this paper, but can be found in classic texts such as [19].

3 Model

We now describe an accurate model which accounts for the considerations made by real-world
miners (see Section 2.2).

3.1 Mining Model
We divide time into discrete mining opportunities (or turns), and assumes a miner can either
activate its hardware or leave it off for the whole duration of a single turn t.

If the ASIC has a hash-rate of h hashes-per-second and the total hash-rate active on the
network excluding the ASIC is H (t), activation of the ASIC allows the miner to receive a
fraction h

H(t)+h of the block-reward, which is Rt coins. This is a highly accurate approximation
of the rewards earned by mining, as explained previously in Section 2.

Denote the ASIC’s efficiency, measured in the Kilowatt-hours (kWhs) required for the
computation of a mining opportunity, as φ, and the cost of electricity as et dollars per kWh.

To model hardware failures, we assume the ASIC “decays” gradually according to a
mortality distribution: let M (t) be the fraction of the ASIC that “remains” after t time
units. For example, M can be a complementary cumulative density function (CDF) of some
distribution [49]; let F be the CDF, then the complementary CDF is defined to be 1− F .

3.2 Financial Model
In our financial model of the world, for simplicity we call the mined cryptocurrency “Bitcoin”,
and refer to the fiat currency in which mining expenses are paid for as the USD, but both
can be replaced by any other similar cryptocurrency and fiat currency.

We model the change in Bitcoin’s exchange rate as a multiplicative random walk. We
denote the Bitcoin-to-USD exchange rate at turn t by ct, the probability for its value to
rise to ∆ct in the next turn by q, and to fall to δct in the next turn by 1− q, resulting in a
binomial price tree. A general form of such a tree is depicted in Figure 2.

While it may seem simplistic to assume that the price at every step can either increase or
decrease by a factor, using sufficiently small steps yields a granular price model. Indeed, this
distribution is commonly used in finance to model the value of assets such as currencies and
stocks [14, 64]. Note that the length of each step of the exchange-rate’s random walk does
not have to coincide with the length of a mining opportunity. As we focus on evaluating a
single mining opportunity, we use arbitrarily small steps to achieve a high granularity.

Denote the economy’s annual multiplicative risk-fee rate as r. We assume 0 < δ < 1 <

r < ∆, otherwise, riskless arbitrage opportunities emerge, which we assume to not exist.
This assumption is crystallized in Definition 3.

AFT 2023



2:8 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

c0

. . .

∆c0

∆2c0

. . .

∆δc0

. . .

δc0

δ2c0

. . .

q 1− q

Figure 2 A coin’s exchange rate as a multiplicative random walk, with a start value of c0, a q

probability to increase by a factor of ∆, and a 1 − q probability to decrease by δ.

▶ Definition 3 (The no-arbitrage assumption). The free market adjusts asset prices such that
it is impossible to outpace market gains without exposure to more risk. If such an arbitrage
opportunity arises, market forces quickly use it until a pricing equilibrium is found, thus
closing the opportunity.

We mainly deal with the following types of assets:
i. The underlying cryptocurrency.
ii. A mining opportunity, denoting its value as V (·).
iii. A risk-free asset. An asset with a future return which is independent of the state of the

world that is reached. Its multiplicative return is the risk-free rate. An example of such
an asset is a government-issued bond, the value of which is denoted by B.

We also create portfolios holding combinations of the above assets, and denote their
values by Φ (·). We assume that assets are traded with sufficient liquidity, a clearly defined
price and that it is possible to hold a “short” position on each one (owing the asset to another
party, equivalent to holding a negative amount of it).

4 Theoretical Results

In this section, we derive the main results that allow us to evaluate the price of a mining
machine, with all proofs given in the full version.

4.1 Pricing an ASIC
An ASIC gives its owner an option to activate it for each of the mining opportunities
available during its lifetime, so an ASIC’s value is exactly the sum of the values of all these
opportunities, and by pricing a single opportunity we can price an ASIC.

▶ Definition 4 (The value of the t-th mining opportunity, at turn k.). Let k ≤ t. Given that
the coin’s exchange rate at k is ck, we shall denote the value of the t-th opportunity at time
k as V (t, k, ck).

Some parameters (such as h) are left out of the notation for brevity.
Recall Example 2, which has demonstrated that it is hard to evaluate a future mining

opportunity, e.g. calculate V (t, k, ck) when k < t, as the future exchange-rate is unknown.
Specifically, that example examined a very basic case: V (1, 0, $400). Thus, we take a step



A. Yaish and A. Zohar 2:9

back and attempt to evaluate something easier, starting with each option’s “immediate” value,
which we soon define, and use a series of theorems and claims to evaluate a future option’s
value relative to arbitrary points in time, thereby giving the tools to calculate V (t, k, ck).

Total ASIC Value

Assuming we have successfully evaluated ASIC activation for a single turn, we can evaluate
an “entire” ASIC received at time s, relative to time t ≤ s:

VASIC (s, t, ct)
def=

∞∑
τ=s

M (τ − s) · V (τ, t, ct) (1)

Reception Delay

A method for evaluating ASIC prices could allow us to estimate the potential decrease in
price associated with receiving hardware farther in the future. Often, ASIC manufacturers
are backlogged and either deliver orders in the far future, or charge a premium for early
deliveries. Assuming ASICs do not decay while in transit, the loss of receiving an ASIC at
time s′ instead of s is:

VASIC (s′, t, ct)− VASIC (s, t, ct) (2)

4.2 Pricing the Current Mining Opportunity

We begin by evaluating the t-th opportunity relative to turn t. Following Definition 4, this is
notated by V (t, t, ct). At turn t, we know everything required to calculate the value of the
t-th mining opportunity, as the biggest cause of uncertainty, the cryptocurrency’s exchange
rate ct, is given. Thus, we call V (t, t, ct) the immediate value of the t-th mining opportunity.

Immediate Value of a Single Opportunity

At the t-th mining opportunity, an ASIC’s owner has the option of paying the electricity
cost of activating the ASIC for the duration of the opportunity, which under our model is
h · φ · et, and in return receive the partial reward of h

H(t)+h ·Rt · ct. This opportunity can
never be worth strictly less than zero, as a miner is not obliged to turn on its ASIC, and
indeed a rational miner will not do so if it incurs a loss.

In total, the value at time t of the t-th mining opportunity is:

V (t, t, ct)
def= max

(
h

H (t) + h
Rtct − hφet, 0

)
(3)

Shutdown Price

Immediately arising from Equation (3) is that if the cost of turning on the ASIC exceeds
the profits, meaning that h

H(t)+h Rtct ≤ hφet, then no miner will turn it on, as paying
the activation cost to buy the mined cryptocurrency on the free market is a better deal
than actually using the hardware. This corresponds with the behavior of actual miners, as
described in Section 2.2.

AFT 2023



2:10 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

4.3 Pricing the Next Mining Opportunity
We now tackle the problem presented in the previous section more generally – pricing the
t-th mining opportunity in relation to turn t− 1. We do so by modifying techniques from
option-pricing theory (as in [9, 28]). Specifically, to price this mining opportunity, we
construct a portfolio of mining opportunities and coins at turn t− 1.

The portfolio is crafted to yield identical valuations at turn t regardless of the change in
the exchange-rate (see Claim 5). Thus, it is termed a risk-free portfolio. Its exact value at
t− 1 can be known by discounting and accounting for the risk-free rate (see Theorem 6).

We consider a portfolio that consists of the t-th mining opportunity and a short on (a
yet to be chosen amount of) at−1 coins, thus its value at turn t− 1 is:

Φ (t− 1) = V (t, t− 1, ct−1)− at−1ct−1 (4)

And, its value at turn t is:

Φ (t) = V (t, t, ct)− at−1ct (5)

▷ Claim 5. A portfolio holding the t’th mining opportunity and a short on at−1 coins,
where: at−1 = V (t,t,∆ct−1)−V (t,t,δct−1)

ct−1(∆−δ) . is a risk free-portfolio for the turn between t − 1, t.
The portfolio’s value in all possible states at t is: Φ (t) = V (t, t, ∆ct−1)− at−1∆ct−1.

The full version [90] contains a formal proof. The main idea is that there is one degree
of freedom (choosing the short amount, at−1) which must satisfy an equation equating the
value of the portfolio in both possible world states.

We now evaluate the return of the portfolio, and use it to price the mining opportunity.

▶ Theorem 6. If no arbitrage opportunities exist, the multiplicative return of holding the
portfolio constructed in Claim 5 between turns t− 1 and t is equal to the risk-free rate.

The proof (given in the full version [90]) shows that every other return contradicts the
no-arbitrage assumption. As in Example 2, we can make a risk-free profit whenever such
arbitrage opportunities arise.

We now reach an expression for the opportunity’s price:

▶ Corollary 7. The value of the t-th opportunity at t− 1 is:

V (t, t− 1, ct−1) = V (t, t, ∆ct−1)− V (t, t, δct−1)
∆− δ

(
1− ∆

r

)
+ V (t, t, ∆ct−1)

r

In the above, all factors can be calculated at time t− 1.

We provide a proof in the full version [90]. It consists of using the return of the portfolio
together with its values at turns t− 1 and t to extract the value of the opportunity at t− 1.

In Example 8, we revisit Example 2 and apply Corollary 7 to it.

▶ Example 8. Surprisingly, the price of the opportunity shown in Example 2 is lower than
the naïve estimate. The opportunity’s immediate value if the exchange-rate has gone up is:

V (1, 1, 800) = max (1 · 800− 250, 0) = $550

And, for the down state it is:

V (1, 1, 200) = max (1 · 200− 250, 0) = $0



A. Yaish and A. Zohar 2:11

By plugging the above into Corollary 7 we obtain the correct value of the opportunity at
turn 0:

V (1, 0, 400) = 550
1 + 550− 0

2− 1
2

(
1− 2

1

)
= $1831

3

According to Theorem 6, any other price creates arbitrage.

4.4 Pricing Relative to an Arbitrary Time
Algorithm 1 extends the previous method to evaluate the t-th opportunity relative to any
previous point in time k. The idea behind the algorithm is to apply the same methods of
Section 4.3 on every possible world-state, starting from turn t and going back, one step at a
time, until reaching k. We now proceed to explain the method in depth.

Algorithm 1 MiningOpportunityValue.
Input : t - the mining opportunity to evaluate.

k - the turn to evaluate relative to.
ck - coin’s exchange-rate at turn k.

Output : value of t-th opportunity at turn k.
for ct ∈ {∆t−k · ck, ∆t−k−1 · δ · ck, . . . , δt−k · ck} do

V (t, t, ct)← h ·max
(

Rt·ct

H(t)+h − φ · et, 0
)

end
for τ ∈ t− 1, . . . , k do

for cτ ∈ {∆τ ck, ∆τ−1δck, . . . , ∆δτ−1ck, δτ ck} do
aτ ← V (t,τ+1,∆·cτ )−V (t,τ+1,δ·cτ )

cτ ·(∆−δ)
Φ (τ + 1)← V (t, τ + 1, ∆ · cτ )− aτ ·∆ · cτ

V (t, τ, cτ )← aτ · cτ + Φ(τ+1)
r

end
end
return V (t, k, ck)

The random-walk describing the coin’s exchange rate for the period between turns k

and t forms a tree with root ck and leaves ∆τ δt−k−τ ck, for every τ ∈ [0, t− k]. The leaves
represent the trivial cases for evaluation, each one corresponds to a possible world state at
turn t. As the opportunity expires at that turn, its value can be calculated directly from the
definition given in Equation (3).

Proceeding inductively, let τ ∈ [k, t− 1]. We shall evaluate the opportunity at one of the
vertices of the (τ − k)-th level, assume it is cτ . It points to two vertices from level τ − k + 1,
specifically ∆cτ , δcτ . Section 4.3 suggests that if the opportunity values for these two vertices
are already calculated, the opportunity’s value at cτ ’s world-state can be obtained. Claim 9
covers this case.

▷ Claim 9. Let τ < t. Given that the opportunity’s valuations at τ + 1 are known, it is
possible to evaluate V (t, τ, cτ ), which is equal to:

V (t, τ, cτ ) = V (t, τ + 1, ∆cτ )− V (t, τ + 1, δcτ )
∆− δ

(
1− ∆

r

)
+ V (t, τ + 1, ∆cτ )

r

AFT 2023



2:12 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

$200

$400

$800 $200

$100

$50

0.5 0.5

(a) Example 11’s equiprobable two turn random
walk, with a starting exchange-rate of $200 per BTC.

$ 550
9

$ 550
3

$550 $0

$0

$0

(b) The value of Example 11’s mining opportunity at
each possible world state, according to Algorithm 1.

Figure 3 Visual depictions of the possible states for Example 11’s exchange-rate random walk,
and the corresponding mining opportunity values and imitating portfolios.

The proof is given in the full version [90]. It uses the valuations at τ + 1 to create a
risk-free portfolio at turn τ that holds the t-th opportunity. The return of the portfolio at
τ + 1 can then be used to retrieve the value of the opportunity, similarly to Corollary 7.

By applying Claim 9 on every vertex of the current level and continuing in a dynamic
manner to previous levels, it is possible to reach our goal and finally derive the value at the
root of the tree, which corresponds to turn k.

A formula for a mining opportunity’s value

Careful mathematical reasoning can be applied to Algorithm 1 to derive a formula for the
value of the t-th opportunity:

▶ Theorem 10. Let γ↓ = 1− ∆
r

∆−δ , γ↑ = γ↓ + 1
r , τ0 =


log

(
(H(t)+h)φet

Rtδt−kck

)
log( ∆

δ )

. The value of the t-th

mining opportunity at turn k < t is:

V (t, k, ck) =
t−k∑

τ=τ0

(
t−k

τ

)
γτ

↑

(−γ↓)k+τ−t
V

(
t, t, ∆τ δt−k−τ ck

)
The proof is given in the full version [90]. By recursively applying Claim 9 on V (t, k, ck),

a sum that only includes values of immediate opportunities is reached; this sum is shortened
by ignoring opportunities with zero value. By Theorem 6, the value which is obtained is the
only one which does not violate the no-arbitrage principle.

Example 11 shows how to use Theorem 10 in a complex setting.

▶ Example 11. Assume that bitcoin’s exchange-rate at turn 0 is $200, and can either double
or halve with equal probability. Extending the walk to two turns produces the tree in
Figure 3a.

Furthermore, assume the vendor from Example 2 offers you the option of using its ASIC
at the second turn for 10 minutes, under the same conditions as before. By following
Algorithm 1, the value of the opportunity at each state can be calculated, as shown in
Figure 3b. The algorithm proceeds as follows:



A. Yaish and A. Zohar 2:13

We start from the leaves and evaluate the immediate value of the opportunity at each one.
At the leaf where the exchange-rate is $800, the opportunity is worth $550. On the other
hand, if the rate is either $200 or $50, the opportunity is worth $0. We have determined the
value of the opportunity at all possible states of turn 2.

Now, by using Claim 9 on each of the two possible states at turn 1, we get that the value
of the opportunity can be either $ 550

3 (if the exchange rate is $400) or $0 (if it is $100).
Finally, we take one step back and look at turn 0. By employing Claim 9 again together

with our previous results, we find that the opportunity is worth $ 550
9 at the first turn.

4.5 Imitating Portfolio
Buying mining hardware can entail difficulties: storing and maintaining it is costly, and
receiving ordered ASICs promptly requires paying a hefty premium when demand is high.

Imitating an ASIC’s revenue using purely financial means (e.g., an investment portfolio
of tokens) might be better – it can start to produce revenue immediately without waiting,
and avoids the aforementioned expenses. In Theorem 12, we show construct such a portfolio
using coins and bonds.

▶ Theorem 12. At turn τ , it is possible to construct an imitating portfolio for the t-th
mining opportunity which is comprised of tokens and bonds. If this portfolio is properly
adjusted at each turn until reaching time t, it can be sold to produce the same profits as the
imitated mining opportunity.

The proof relies on a series of claims, which we go over now. The portfolio we construct
imitates the t-th opportunity between turns τ, τ + 1, for τ < t. Denote by aτ , Bτ the
respective amount of coins and risk-free bonds in the imitating portfolio at time τ . Thus,
the portfolio’s value at time τ is:

Φ (τ) = Bτ + aτ · cτ (6)

And, at τ + 1 it is

Φ (τ + 1) = r ·Bτ + aτ · cτ+1 (7)

▷ Claim 13. If there are no fees for trading bonds and coins, a portfolio can be constructed
at turn τ to be worth exactly the same as the t-th mining opportunity in all world-states of
turn τ + 1: Φ (τ + 1) = V (t, τ + 1, cτ+1). This portfolio is comprised of aτ tokens and Bτ

risk-free bonds, where:

aτ = V (t, τ + 1, ∆ · cτ )− V (t, τ + 1, δ · cτ )
cτ · (∆− δ)

Bτ = ∆ · V (t, τ + 1, δ · cτ )− δ · V (t, τ + 1, ∆ · cτ )
r · (∆− δ)

The proof is similar to that of Claim 5, see the full version [90] for details.

▷ Claim 14. At turn τ , the portfolio constructed in Claim 13 is equal in value to the t-th
mining opportunity: Φ (τ) = V (t, τ, cτ ).

The proof is given in the full version [90]. It relies on showing that at turn τ the risk-free
portfolio of Claim 9 is equal in value to Bτ . Finally, the claim is reached by applying algebraic
manipulations to the definitions of the risk-free portfolio and the portfolio of Claim 13.

We finish the proof of Theorem 12 by combining Claims 13 and 14.

AFT 2023



2:14 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

▶ Corollary 15. The portfolio of Claim 13 is an imitating portfolio for the t-th mining
opportunity between turns τ , τ + 1, meaning the portfolio is equal in value to the opportunity
at both turns. Additionally, if there are no fees, selling the imitating portfolio for turns
τ, τ + 1 at turn τ + 1 generates enough money to buy the imitating portfolio for τ + 1, τ + 2.
Thus, after the initial investment is made, no influx of funds is required to adjust the portfolio
between turns, meaning that the initial purchase of the portfolio costs exactly the same as the
opportunity that it imitates.

Like in Section 4.4, the imitating portfolio can be evaluated at multiple time periods by
dynamically moving backwards in time. Algorithm 2 provides an algorithmic construction
of such a portfolio. If the portfolio changes between turns, the necessary adjustments cost
additional fees; these are included in the empirical evaluation given in Section 5.

Algorithm 2 ImitateMiningOpportunity.
Input : t - the mining opportunity to imitate.

k - the turn to at which to create the portfolio.
ck - coin’s exchange-rate at turn k.

Output : an imitating portfolio for the t-th opportunity relative to turn k.
at ← 0
Bt ← 0
for ct ∈ {∆t−k · ck, ∆t−k−1 · δ · ck, . . . , δt−k · ck} do

V (t, t, ct)← h ·max
(

Rt·ct

H(t)+h − φ · et, 0
)

end
for τ ∈ t− 1, . . . , k do

for cτ ∈ {∆τ ck, ∆τ−1δck, . . . , ∆δτ−1ck, δτ ck} do
aτ ← V (t,τ+1,∆·cτ )−V (t,τ+1,δ·cτ )

cτ ·(∆−δ)

Bτ ← ∆·V (t,τ+1,δ·cτ )−δ·V (t,τ+1,∆·cτ )
r·(∆−δ)

Φ (τ)← Bτ + aτ cτ

V (t, τ, cτ )← Φ (τ)
end

end
return {(aτ , Bτ ) | τ ∈ k, . . . , t}

In Example 16, we construct an imitating portfolio using the results of Section 4.5.

▶ Example 16. Recall Example 11, we revisit it and construct imitating portfolios for each of
the example’s states. These portfolios are summarized in Figure 4. Portfolios are comprised
of holdings in coins and bonds, thus we represent them as tuples where the left item is the
amount of coins, and the right one is the bonds’ value in USD. Portfolios are sold on the last
turn, so all final portfolios hold no assets. The portfolios are constructed like so.

First, evaluate the opportunity’s price at all states. Next, apply Claim 13 on each possible
state at turn 1. The imitating portfolio for the state where the exchange-rate equals $400
is comprised of 550−0

400·(2−0.5) = 11
12 coins, and 2·0−0.5·550

1·(2−0.5) = −$ 550
3 worth of bonds. On the

other hand, if the exchange-rate is $100 then the portfolio has 0−0
100·(2−0.5) = 0 coins and

2·0−0.5·0
1·(2−0.5) = 0 bonds. Finally, the portfolio for the first state has

550
3 −0

200(2−0.5) = 11
18 coins and

2·0− 1
2 · 550

3
1·(2−0.5) = − 550

9 bonds.



A. Yaish and A. Zohar 2:15

B 11
18 , −$ 550

9

B 11
12 , −$ 550

3

B0, $0 B0, $0

B0, $0

B0, $0

Figure 4 Imitating portfolios for each possible world-state of Example 16, per Algorithm 2.

To show that these portfolios are indeed imitating, we analyze their returns on the final
turn. If an imitating portfolio is sold on the final turn, by construction its return should
equal the one given by the actual mining opportunity.

If the exchange-rate is $800, the portfolio we constructed is worth 800 · 11
12 −

550
3 = $550,

so selling it produces exactly the same profits as the opportunity at this state. If the
exchange-rate is $200, look at the two possible cases: if the previous turn’s exchange-rate
was $400, our portfolio is comprised of 11

12 coins and bonds worth −$ 550
3 , thus selling the

portfolio gives a profit of 400 · 11
12 −

550
3 = $0, again equal to the opportunity’s. Conversely, if

the previous rate was $100, our portfolio holds no assets, so there is nothing to sell, and as
before the profit is $0, equal to the opportunity’s.

5 Empirical Evaluation

We now employ our methods on real world data, deriving prices for the Bitmain Antminer
S9, an ASIC which has dominated the market for an extended period of time, and constitutes
around 33% of the currently active hash-rate on Bitcoin [42, 84].

5.1 Parameters
The parameters which are used throughout this section were obtained from real-world data,
and were set to the following values:

ASIC price and specifications

We compare our prices to historical market prices which were obtained from the manufacturer’s
Amazon page. We took hardware specification from [80], and assumed ASICs last 2 years on
average. In fact, hash-rate considerations imply that their profits vanish even faster.

Mining and imitation fees

In our evaluation, we compare between ASICs and their corresponding imitating portfolios.
If there were multiple options for relevant parameters, we always chose the ones that make
the imitating portfolios’ job harder:

AFT 2023



2:16 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

Dec…'15Sep…'16Jul…'17Apr…'18Feb…'19Nov…'19Sep…'20Jun…'21Apr…'22
Date

0

2000

4000

6000

8000

10000

P
ric

e,
…

in
…

U
S

D

Amazon
Expected
Our…method
Imitating

Figure 5 ASIC prices according to different valuation methods, as functions of time, including
the costs associated with the corresponding imitating portoflios.

Electricity fees were set to $0.035 per kWh, lower than the average rates paid by industrial
users and miners in the US [35, 1].
Mining pool fees were set to 2%. Large pools (consistently comprising at least 40% of
Bitcoin’s hash-rate over the past year) have asked for 2.5% [38, 16, 87].
Trading fees for bonds and BTC-to-USD were set to 1%, more than fees offered by large
companies. For example, Coinbase asks for 0.6% at most [20].

Exchange rate, hashrate and interest rate

The historical BTC-to-USD exchange-rate and global hashrate were taken from blockchain.
com. Annual volatility, defined as the standard deviation of log-returns, and future global
hash-rate growth (which we assumed to be exponential in accordance with the literature
[11]) were evaluated using data starting at 2013 and ending at the estimation date. The
economy’s annual risk-free rate was set to 2%.

5.2 Results

We now go over the results of our empirical evaluation.

Official Prices Do Not Account For Risk

We obtain the correct prices for the Antminer S9 by using Algorithm 1 with parameters
corresponding to various points in time.

Figure 5 compares prices given by our method to Bitmain’s official Amazon prices, and to
a naïve evaluation method anecdotally used by miners (labeled “Expected”), which assumes
the future BTC-USD exchange-rate will continue its recent rate of growth. This naïve method
ignores risk and uses only expected values, as in Example 2. The official prices are closer to
the naïve price, suggesting that they do not fully account for risk.

blockchain.com
blockchain.com


A. Yaish and A. Zohar 2:17

Figure 6 Realized revenue (after expenses) and initial cost for a 2-year operation of an ASIC and
its corresponding imitating portfolio. An ASIC’s initial cost is its Amazon price, and its expenses
are the electricity it consumes. The portfolio’s initial cost is the cost of buying it, and its expenses
are the trading fees required for maintaining it over 2 years.

Jul…'16 Nov…'16 Mar…'17 Jul…'17 Nov…'17 Mar…'18 Jun…'18 Oct…'18 Feb…'19
Date

0

1000

2000

3000

4000

U
S

D

ASIC…net…revenue
Imitating…net…revenue

(a) ASIC and portfolio bought on July 2016.

Jul…'17 Nov…'17 Mar…'18 Jun…'18 Oct…'18 Feb…'19 Jun…'19 Oct…'19
Date

0

500

1000

1500

2000

U
S

D

ASIC…net…revenue
Imitating…net…revenue

(b) ASIC and portfolio bought on June 2017.

Mar…'18 Jun…'18 Oct…'18 Feb…'19 Jun…'19 Oct…'19 Jan…'20
Date

0

200

400

600

800

U
S

D

ASIC…net…revenue
Imitating…net…revenue

(c) ASIC and portfolio bought on April 2018.

Jun…'19 Oct…'19 Jan…'20 May…'20 Sep…'20 Jan…'21 May…'21 Aug…'21
Date

0

500

1000

1500

2000

2500

3000

U
S

D

ASIC…net…revenue
Imitating…net…revenue

(d) ASIC and portfolio bought on May 2019.

Figure 7 Realized revenue (after expenses) of an ASIC and its imitating portfolio, each bought
for $1000 at different points in time.

Imitating Portfolios

We now utilize Algorithm 2 to produce imitating portfolios for the Antminer S9. These
portfolios are benchmarked and compared to the actual hardware using the realized exchange-
rates and hash-rates to evaluated the returns made by each.

When evaluated on recent data, our imitating portfolios earned more than the equivalent
ASICs, while costing less to buy and maintain, meaning ASICs are overpriced.

Figure 6 aggregates realized revenues and initial costs of ASICs and the corresponding
imitating portfolios. We assume ASICs are received and activated immediately after purchase,
which is far from typical as usually miners wait a long time to receive hardware. The revenue
for both is after deducting all expenses (electricity for ASICs, and trading fees for portfolios).

Similarly, Figure 7 compares the realized revenue (after expenses) obtained from investing
$1000 in an imitating portfolio with an equal investment in real mining hardware.

AFT 2023



2:18 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Annual…volatility

100

200

300

400

500

600

700

800

Va
lu

e…
ra

tio
,…

in
…

pe
rc

en
t

Purchased…on…Oct…'17
Purchased…on…Sep…'18
Purchased…on…Feb…'20
Purchased…on…Mar…'21
Purchased…on…Jun…'21
Purchased…on…May…'22
Current…volatility
Peak…historical…volatility

(a) Higher volatility increases ASIC value.

0 20 40 60 80 100
Reception…delay,…in…days

40

50

60

70

80

90

100

Va
lu

e…
ra

tio
,…

in
…

pe
rc

en
t

Purchased…on…Jan…'16
Purchased…on…Aug…'17
Purchased…on…Jun…'18
Purchased…on…Apr…'19
Purchased…on…May…'21
Purchased…on…Apr…'22

(b) ASICs received later in time decrease in value.

Figure 8 The effects of volatility and delay on hardware value.

Our imitating portfolio’s revenue is not equal to an ASIC’s because of a gap between
the realized and projected growth rates of the network’s total hash-rate. Also, a portfolio’s
accuracy increases with the granularity of its time-steps, while the adjustments made at every
step might increase its cost. We used 25 steps per mining opportunity, which empirically
produces accurate results.

To provide an additional angle on these results, we show in Figure 5 both the correct
prices of mining hardware over time, and the total cost of the corresponding imitating
portfolios, including the average-case fees paid for all necessary adjustments. Although an
imitating portfolio is more expensive when compared to the correct price, it still costs less
than the official price.

Volatility Increases Value

Figure 8a depicts our evaluation of ASIC prices as a function of volatility, where each line
represents a different purchase date. Bitcoin’s annual volatility, as estimated on September
9th, 2021, and its peak annual volatility, which occurred in the year preceding April 29th,
2018, are depicted as vertical lines.

Our method gives higher prices for ASICs when volatility is higher. For example, an
ASIC bought on June 2021 could cost 20% more if the volatility was at its historical peak.

Of note is the increase in value for hardware bought on February 2020. This can be
explained by the crash in global hashrate experienced at the beginning of 2021 (see Figure 1).
The combination of high volatility and low hashrate means that it is profitable to turn on
hardware which might not be the most efficient or powerful (equivalently, the hardware’s
shutdown price is lower).

Reception Delay Decreases Value

By applying Equation (2) on historical data, we learn that a delay in the reception of an
ASIC can severely lower its value, with a month’s delay decreasing value by 30%, as seen in
Figure 8b.

6 Related Work

To the best of our knowledge, our work is the first to evaluate the price of mining hardware,
and to show that mining hardware can be imitated by purely financial means.



A. Yaish and A. Zohar 2:19

Economic Models of Mining

Other works have attempted to model the economics of mining without evaluating hardware
prices, but most of these have not addressed the risk inherent in exchange-rate fluctuations
and their affect on the economics of mining. For example [44, 45, 55], examine mining
revenue in an economic setting where different cryptocurrencies co-exist. Several papers
explore single-token economic models of mining, but most focus on the willingness of new
miners to enter the market based on expected returns, and usually consider equilibria in a
single shot interaction, e.g. [4, 31], or works such as [71], which consider a myopic Nash
equilibrium in a game model of the bitcoin market. An equilibrium of miners in a bounded
horizon setting is explored in [34, 39], both show that miners may gain by turning their
hardware on and off repeatedly, thereby taking advantage of difficulty adjustments.

Some tried accounting for risk, for example [5], where the price of bitcoin (but not of
mining hardware) is based on user adoption and friction due to exchange-rate uncertainty,
or [7] which focuses on estimating hashrate allocation between multiple tokens by using
miner risk-preference to estimate their expected revenue, which our method shows can give
an incorrect result.

Concurrently and independently of our work, [43] consider mining hardware as an option,
but present a simpler model that lacks several factors inherent to the mining market such as:
changing electricity costs, hardware decay and delivery delays. Our work also adds empirical
evaluation of the model compared to historical data and an analysis of the performance of
imitating portfolios.

Economic Models of Cryptocurrency Security

An analysis of Bitcoin’s security in a model where miner rewards are based on transaction fees
and block-rewards are negligible is carried out in [79]. An economic analysis of the security
of Bitcoin is performed by [17], arguing that when the currency is under attack, its value
drops, causing mining hardware to lose value. In [88], it is shown that a malicious mining
strategy strictly dominates the honest one in Ethereum-like cryptocurrencies, meaning that
attacking the cryptocurrency is riskless when compared to the “honest” mining protocol, but
can earn more profits.

Improving Mining Performance and Mining Pools

Some works attempted to improve the performance of mining machines [2, 41, 73], thus also
increasing profits. But, these do not analyze the value of mining hardware.

A different approach is for so-called “solo” miners to operate as part of mining pools,
which are coalitions of miners who mine together to get a steadier revenue-flow. Indeed, most
mining is performed by pools [85]; thus, risk-aversion is believed to be widespread among
miners. The economics of pools were examined by [63, 66, 65], which again neglected risk.

7 Conclusion

In this paper we show that widespread notions regarding ASIC prices and their dependence
on subjective measures like projected expected exchange-rates are flawed. Instead, we present
a method for correctly pricing mining hardware, and show ASICs can be imitated using
bonds and tokens.

Popular opinion holds that as Bitcoin becomes more widely used, its volatility will
decrease. Our evaluation shows that a decrease in volatility negatively affects the value of
hardware, while at the same time making imitating portfolios cheaper to maintain (smaller

AFT 2023



2:20 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

adjustments are needed). Combined, both negate the financial incentives put in place to
encourage mining. As Bitcoin’s security relies on miner participation, lower mining revenues
hurt security and undermine Bitcoin’s usage as a currency.

Future Work

The security risk inherent in lower volatility can be addressed by adopting random reward
mechanisms to artificially increase volatility: if rewards are made to follow a random walk,
the returns of miners become more volatile, thus increasing potential profits and miner
participation. To prevent miners from foreseeing future profits and stopping mining, rewards
should be determined post-hoc.

We assumed that the global hash-rate is exogenous to the model, a possible extension
could be to endogenize this. Miners may purchase hardware as long as it remains profitable
to do so. Another interesting extension is to consider mining hardware capable of mining
multiple currencies.

These additions could allow using our results to estimate the global-hash rate as dependent
on the reward and difficulty adjustment mechanisms of a coin and its competitors, potentially
helping to design better ones that avoid pitfalls like selfish-mining and “hash-wars”. Hash-rate
could also be analyzed in relation to a coin’s exchange-rate, which are correlated according
to anecdotal evidence, see Figure 1.

Glossary

Following is a list of important notations used in the paper.
VASIC Value of an ASIC, in US dollars.
B The symbol for the Bitcoin cryptocurrency.
R The reward received for mining a block, in tokens.
B Government issued bonds, yielding the risk-free rate.
c The value of a single coin, in USD.
δ The multiplicative factor by which the coin’s price can decrease.
1− q The probability of a decrease in the coin’s price.
φ Kilowatt-hours required for the computation of a single mining opportunity.
e Price of electricity, in US Dollars per kilowatt-hour.
H The global hash-rate active on the network, in hashes-per-second.
h The hash-rate of the ASIC to price, in hashes-per-second.
a Amount of coins to hold a long position on.
M The ASIC’s mortality distribution.
V Value of a mining opportunity, in US dollars.
Φ Value of a portfolio, in US dollars.
r The yearly risk-free rate.
a Amount of coins to hold a short position on.
∆ The multiplicative factor by which the coin’s price can increase.
q The probability of an increase in the coin’s price.



A. Yaish and A. Zohar 2:21

References
1 U.S. Energy Information Administration. Electric power monthly, 2022. URL:

https://web.archive.org/web/20220818154159/https://www.eia.gov/electricity/
monthly/epm_table_grapher.php?t=epmt_5_6_a.

2 J. Anish Dev. Bitcoin mining acceleration and performance quantification. In 2014 IEEE
27th Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–6, San
Francisco, CA, USA, May 2014. IEEE. doi:10.1109/CCECE.2014.6900989.

3 Antpool. Antminertool manual, 2020. URL: https://web.archive.org/web/
20201111172854/https://www.antpool.com/download/tools/002-BulkManagement-en.
pdf.

4 Nick Arnosti and S. Matthew Weinberg. Bitcoin: A Natural Oligopoly. Management Science,
68(7):4755–4771, 2022. doi:10.1287/mnsc.2021.4095.

5 Susan Athey, Ivo Parashkevov, Vishnu Sarukkai, and Jing Xia. Bitcoin pricing, adoption, and
usage: Theory and evidence, 2016.

6 M. Bedford Taylor. The evolution of bitcoin hardware. Computer, 50(9):58–66, 2017. doi:
10.1109/MC.2017.3571056.

7 George Bissias, Brian N. Levine, and David Thibodeau. Using economic risk to model miner
hash rate allocation in cryptocurrencies. In Joaquin Garcia-Alfaro, Jordi Herrera-Joancomartí,
Giovanni Livraga, and Ruben Rios, editors, Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 155–172, Cham, 2018. Springer International Publishing.

8 BitInfoCharts. Bitcoin, ethereum, dogecoin, xrp, ethereum classic, litecoin, monero,
bitcoin cash, zcash, bitcoin gold hashrate historical chart, 2022. URL: https:
//web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/
hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y.

9 Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654, 1973. doi:10.1086/260062.

10 Blockstream. Instant energy demand from the bitcoin network, 2021. URL: https://web.
archive.org/web/20210824180952/https://blockstream.com/energy/.

11 R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Modeling and analysis of
block arrival times in the bitcoin blockchain. Stochastic Models, 36(4):602–637, 2020. doi:
10.1080/15326349.2020.1786404.

12 braiins. Braiins os & braiins os+ custom asic firmware: optimize performance & effi-
ciency, 2018. URL: https://web.archive.org/web/20210812132518/https://bitcointalk.
org/index.php?topic=5036844.0.

13 BRAIINS. Autotuning mining firmware, 2022. URL: https://web.archive.org/web/
20220425034423/https://braiins.com/os/plus.

14 Luiz E Brandão, James S Dyer, and Warren J Hahn. Using binomial decision trees to solve
real-option valuation problems. Decision Analysis, 2(2):69–88, 2005. doi:10.1287/deca.1050.
0040.

15 BTC.com. Using btc tools to do miners’ batch management, 2019. URL:
https://web.archive.org/web/20201129045355/https://help.pool.btc.com/hc/en-
us/articles/360020105012-Miners-Batch-Management.

16 BTC.com. Pool stats, 2022. URL: https://web.archive.org/web/20220820062646/https:
//btc.com/stats/pool?pool_mode=year.

17 Eric Budish. The economic limits of bitcoin and the blockchain. Working Paper 24717,
National Bureau of Economic Research, June 2018. doi:10.3386/w24717.

18 Scott Chipolina. Bitcoin’s hash rate drops as china’s rainy season ends, 2020. URL:
https://web.archive.org/web/20211117210216/https://decrypt.co/46601/bitcoin-
hash-rate-drop-attributed-to-chinese-rainy-season.

19 John H Cochrane. Asset pricing: Revised edition. Princeton university press, Princeton, NJ,
USA, 2009.

AFT 2023

https://web.archive.org/web/20220818154159/https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://web.archive.org/web/20220818154159/https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://doi.org/10.1109/CCECE.2014.6900989
https://web.archive.org/web/20201111172854/https://www.antpool.com/download/tools/002-BulkManagement-en.pdf
https://web.archive.org/web/20201111172854/https://www.antpool.com/download/tools/002-BulkManagement-en.pdf
https://web.archive.org/web/20201111172854/https://www.antpool.com/download/tools/002-BulkManagement-en.pdf
https://doi.org/10.1287/mnsc.2021.4095
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1109/MC.2017.3571056
https://web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y
https://web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y
https://web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y
https://doi.org/10.1086/260062
https://web.archive.org/web/20210824180952/https://blockstream.com/energy/
https://web.archive.org/web/20210824180952/https://blockstream.com/energy/
https://doi.org/10.1080/15326349.2020.1786404
https://doi.org/10.1080/15326349.2020.1786404
https://web.archive.org/web/20210812132518/https://bitcointalk.org/index.php?topic=5036844.0
https://web.archive.org/web/20210812132518/https://bitcointalk.org/index.php?topic=5036844.0
https://web.archive.org/web/20220425034423/https://braiins.com/os/plus
https://web.archive.org/web/20220425034423/https://braiins.com/os/plus
https://doi.org/10.1287/deca.1050.0040
https://doi.org/10.1287/deca.1050.0040
https://web.archive.org/web/20201129045355/https://help.pool.btc.com/hc/en-us/articles/360020105012-Miners-Batch-Management
https://web.archive.org/web/20201129045355/https://help.pool.btc.com/hc/en-us/articles/360020105012-Miners-Batch-Management
https://web.archive.org/web/20220820062646/https://btc.com/stats/pool?pool_mode=year
https://web.archive.org/web/20220820062646/https://btc.com/stats/pool?pool_mode=year
https://doi.org/10.3386/w24717
https://web.archive.org/web/20211117210216/https://decrypt.co/46601/bitcoin-hash-rate-drop-attributed-to-chinese-rainy-season
https://web.archive.org/web/20211117210216/https://decrypt.co/46601/bitcoin-hash-rate-drop-attributed-to-chinese-rainy-season


2:22 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

20 Coinbase. What are the fees on coinbase pro?, 2022. URL: https://web.archive.org/web/
20220406132137/https://help.coinbase.com/en/pro/trading-and-funding/trading-
rules-and-fees/fees.

21 CoinWarz. Bitcoin mining calculator, 2022. URL: https://web.archive.org/web/
20220514110643/https://www.coinwarz.com/mining/bitcoin/calculator.

22 Bitmain Technologies Holding Company. S19 server installation guide, 2020. URL:
https://web.archive.org/web/20220520122512/https://file12.bitmain.com/shop-
product-s3/firmware/4e25b493-58d5-4986-8cff-52006dda2038/2022/01/19/17/
S19ServerManual.pdf.

23 Bitmain Technologies Holding Company. Difference between low power mode and low
power enhanced mode, 2022. URL: https://web.archive.org/web/20220309092700/https:
//support.bitmain.com/hc/en-us/articles/360019738593-Difference-between-Low-
Power-Mode-and-Low-Power-Enhanced-Mode.

24 Bitmain Technologies Holding Company. Recommended antminer monitor and man-
agement tools (apminertool & btc tool), 2022. URL: https://web.archive.org/web/
20220309090337/https://support.bitmain.com/hc/en-us/articles/360023257293-
Recommended-Antminer-monitor-and-management-tools-APMinerTool-BTC-Tool-.

25 BRAIINS Bitcoin Mining Company. Bitcoin mining profitability calculator, 2022. URL:
https://web.archive.org/web/20220714050553/https://insights.braiins.com/en/
profitability-calculator/.

26 BRAIINS Mining Company. Mining insights, 2022. URL: https://web.archive.org/web/
20220818165736/https://insights.braiins.com/en/.

27 Tom Copeland and Vladimir Antikarov. Real options. Texere New York, New York, NY, USA,
2001.

28 John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A simplified approach.
Journal of financial Economics, 7(3):229–263, 1979. doi:10.1016/0304-405x(79)90015-1.

29 CryptoCompare. Bitcoin mining profitability calculator, 2022. URL: https://web.
archive.org/web/20220513095414/https://www.cryptocompare.com/mining/calculator/
btc?HashingPower=40&HashingUnit=TH/s&PowerConsumption=1500&CostPerkWh=0.12&
MiningPoolFee=1.

30 Quynh H Dang et al. Secure hash standard, 2015. doi:10.6028/nist.fips.180-4.
31 Nicola Dimitri. Bitcoin mining as a contest. Ledger, 2(0):31–37, 2017. doi:10.5195/ledger.

2017.96.
32 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In

International conference on financial cryptography and data security, volume 61, pages 436–454.
Springer, Association for Computing Machinery (ACM), June 2014. doi:10.1145/3212998.

33 Amanda Fabiano. Today @bitcoinbeezy gave a great talk at the @bitmaintech event focusing
on how we, as a financing company, evaluate miners, 2022. URL: https://web.archive.org/
web/20220726183620/https://twitter.com/_amanda_fab/status/1551999454433132544.

34 Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos Papadimitriou. Energy equilibria
in proof-of-work mining. In Proceedings of the 2019 ACM Conference on Economics and
Computation, EC ’19, pages 489–502, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3328526.3329630.

35 Cambridge Centre for Alternative Finance. Cambridge bitcoin electricity consumption in-
dex, 2022. URL: https://web.archive.org/web/20220818013329/https://ccaf.io/cbeci/
index.

36 Yotam Gafni and Aviv Yaish. Greedy transaction fee mechanisms for (non-)myopic miners,
2022. doi:10.48550/ARXIV.2210.07793.

37 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, pages 281–310, Berlin, Heidelberg, 2015. Springer.

https://web.archive.org/web/20220406132137/https://help.coinbase.com/en/pro/trading-and-funding/trading-rules-and-fees/fees
https://web.archive.org/web/20220406132137/https://help.coinbase.com/en/pro/trading-and-funding/trading-rules-and-fees/fees
https://web.archive.org/web/20220406132137/https://help.coinbase.com/en/pro/trading-and-funding/trading-rules-and-fees/fees
https://web.archive.org/web/20220514110643/https://www.coinwarz.com/mining/bitcoin/calculator
https://web.archive.org/web/20220514110643/https://www.coinwarz.com/mining/bitcoin/calculator
https://web.archive.org/web/20220520122512/https://file12.bitmain.com/shop-product-s3/firmware/4e25b493-58d5-4986-8cff-52006dda2038/2022/01/19/17/S19 Server Manual.pdf
https://web.archive.org/web/20220520122512/https://file12.bitmain.com/shop-product-s3/firmware/4e25b493-58d5-4986-8cff-52006dda2038/2022/01/19/17/S19 Server Manual.pdf
https://web.archive.org/web/20220520122512/https://file12.bitmain.com/shop-product-s3/firmware/4e25b493-58d5-4986-8cff-52006dda2038/2022/01/19/17/S19 Server Manual.pdf
https://web.archive.org/web/20220309092700/https://support.bitmain.com/hc/en-us/articles/360019738593-Difference-between-Low-Power-Mode-and-Low-Power-Enhanced-Mode
https://web.archive.org/web/20220309092700/https://support.bitmain.com/hc/en-us/articles/360019738593-Difference-between-Low-Power-Mode-and-Low-Power-Enhanced-Mode
https://web.archive.org/web/20220309092700/https://support.bitmain.com/hc/en-us/articles/360019738593-Difference-between-Low-Power-Mode-and-Low-Power-Enhanced-Mode
https://web.archive.org/web/20220309090337/https://support.bitmain.com/hc/en-us/articles/360023257293-Recommended-Antminer-monitor-and-management-tools-APMinerTool-BTC-Tool-
https://web.archive.org/web/20220309090337/https://support.bitmain.com/hc/en-us/articles/360023257293-Recommended-Antminer-monitor-and-management-tools-APMinerTool-BTC-Tool-
https://web.archive.org/web/20220309090337/https://support.bitmain.com/hc/en-us/articles/360023257293-Recommended-Antminer-monitor-and-management-tools-APMinerTool-BTC-Tool-
https://web.archive.org/web/20220714050553/https://insights.braiins.com/en/profitability-calculator/
https://web.archive.org/web/20220714050553/https://insights.braiins.com/en/profitability-calculator/
https://web.archive.org/web/20220818165736/https://insights.braiins.com/en/
https://web.archive.org/web/20220818165736/https://insights.braiins.com/en/
https://doi.org/10.1016/0304-405x(79)90015-1
https://web.archive.org/web/20220513095414/https://www.cryptocompare.com/mining/calculator/btc?HashingPower=40&HashingUnit=TH/s&PowerConsumption=1500&CostPerkWh=0.12&MiningPoolFee=1
https://web.archive.org/web/20220513095414/https://www.cryptocompare.com/mining/calculator/btc?HashingPower=40&HashingUnit=TH/s&PowerConsumption=1500&CostPerkWh=0.12&MiningPoolFee=1
https://web.archive.org/web/20220513095414/https://www.cryptocompare.com/mining/calculator/btc?HashingPower=40&HashingUnit=TH/s&PowerConsumption=1500&CostPerkWh=0.12&MiningPoolFee=1
https://web.archive.org/web/20220513095414/https://www.cryptocompare.com/mining/calculator/btc?HashingPower=40&HashingUnit=TH/s&PowerConsumption=1500&CostPerkWh=0.12&MiningPoolFee=1
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.5195/ledger.2017.96
https://doi.org/10.1145/3212998
https://web.archive.org/web/20220726183620/https://twitter.com/_amanda_fab/status/1551999454433132544
https://web.archive.org/web/20220726183620/https://twitter.com/_amanda_fab/status/1551999454433132544
https://doi.org/10.1145/3328526.3329630
https://web.archive.org/web/20220818013329/https://ccaf.io/cbeci/index
https://web.archive.org/web/20220818013329/https://ccaf.io/cbeci/index
https://doi.org/10.48550/ARXIV.2210.07793


A. Yaish and A. Zohar 2:23

38 Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün Sirer.
Decentralization in bitcoin and ethereum networks. In Sarah Meiklejohn and Kazue Sako,
editors, Financial Cryptography and Data Security, pages 439–457, Berlin, Heidelberg, 2018.
Springer.

39 Guy Goren and Alexander Spiegelman. Mind the mining. In Proceedings of the 2019 ACM
Conference on Economics and Computation, EC ’19, pages 475–487, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3328526.3329566.

40 Samuel Haig. Btc hash rate slumps amid seasonal miner migration in china,
2020. URL: https://cointelegraph.com/news/btc-hash-rate-slumps-amid-seasonal-
miner-migration-in-china.

41 Timo Hanke. AsicBoost - A Speedup for Bitcoin Mining, April 2016. arXiv:1604.00575.
42 Colin Harper and Ethan Vera. Hashrate index 2021 year-end report, 2022.

URL: https://web.archive.org/web/20220113191729/https://blog.hashrateindex.com/
content/files/2022/01/Hashrate-Index-2021-Year-End-Report.pdf.

43 Yoshinori Hashimoto and Shunya Noda. Pricing of mining asic and its implication to the high
volatility of cryptocurrency prices, 2019. doi:10.2139/ssrn.3368286.

44 Adam Hayes. The decision to produce altcoins: Miners’ arbitrage in cryptocurrency markets,
December 2014. doi:10.2139/ssrn.2579448.

45 Adam S. Hayes. Cryptocurrency value formation: An empirical study leading to a cost of
production model for valuing bitcoin. Telematics and Informatics, 34(7):1308–1321, 2017.
doi:10.1016/j.tele.2016.05.005.

46 Christopher Helman. How this billionaire-backed crypto startup gets paid to not
mine bitcoin, 2020. URL: https://web.archive.org/web/20200524160256/https:
//www.forbes.com/sites/christopherhelman/2020/05/21/how-this-billionaire-
backed-crypto-startup-gets-paid-to-not-mine-bitcoin/#7bdc51b97596.

47 Hashrate Index. Bitcoin hashprice index, 2022. URL: https://web.archive.org/web/
20220714205330/https://data.hashrateindex.com/chart/bitcoin-hashprice-index.

48 Hashrate Index. Profitability calculator, 2022. URL: https://web.archive.org/web/
20220623021224/https://hashrateindex.com/tools/calculator.

49 Harold Jeffreys. The theory of probability. OUP Oxford, Oxford, UK, 1998. doi:10.2307/
2669965.

50 Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, New
York, December 2020. doi:10.1201/9781351133036.

51 Sishan Long, Soumya Basu, and Emin Gün Sirer. Measuring miner decentralization in
proof-of-work blockchains, 2022. doi:10.48550/ARXIV.2203.16058.

52 Robert Merton. Theory of rational option pricing. Bell Journal of Economics, 4(1):141–183,
1973.

53 minerstat. Mining profitability calculator, 2022. URL: https://web.archive.org/web/
20220530152147/https://minerstat.com/mining-calculator.

54 Compass Mining. What is hashprice?, 2021. URL: https://web.archive.org/web/
20211019011808/https://compassmining.io/education/what-is-hashprice/.

55 Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari Juels.
Bdos: Blockchain denial-of-service. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, pages 601–619, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3372297.3417247.

56 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//web.archive.org/web/20100704213649/https://bitcoin.org/bitcoin.pdf.

57 John Naughton. As energy prices soar, the bitcoin miners may find they have
struck fool’s gold, 2022. URL: https://web.archive.org/web/20220717043121/https:
//www.theguardian.com/commentisfree/2022/jun/11/as-energy-prices-soar-the-
bitcoin-miners-may-find-they-have-struck-fools-gold.

AFT 2023

https://doi.org/10.1145/3328526.3329566
https://cointelegraph.com/news/btc-hash-rate-slumps-amid-seasonal-miner-migration-in-china
https://cointelegraph.com/news/btc-hash-rate-slumps-amid-seasonal-miner-migration-in-china
https://arxiv.org/abs/1604.00575
https://web.archive.org/web/20220113191729/https://blog.hashrateindex.com/content/files/2022/01/Hashrate-Index-2021-Year-End-Report.pdf
https://web.archive.org/web/20220113191729/https://blog.hashrateindex.com/content/files/2022/01/Hashrate-Index-2021-Year-End-Report.pdf
https://doi.org/10.2139/ssrn.3368286
https://doi.org/10.2139/ssrn.2579448
https://doi.org/10.1016/j.tele.2016.05.005
https://web.archive.org/web/20200524160256/https://www.forbes.com/sites/christopherhelman/2020/05/21/how-this-billionaire-backed-crypto-startup-gets-paid-to-not-mine-bitcoin/#7bdc51b97596
https://web.archive.org/web/20200524160256/https://www.forbes.com/sites/christopherhelman/2020/05/21/how-this-billionaire-backed-crypto-startup-gets-paid-to-not-mine-bitcoin/#7bdc51b97596
https://web.archive.org/web/20200524160256/https://www.forbes.com/sites/christopherhelman/2020/05/21/how-this-billionaire-backed-crypto-startup-gets-paid-to-not-mine-bitcoin/#7bdc51b97596
https://web.archive.org/web/20220714205330/https://data.hashrateindex.com/chart/bitcoin-hashprice-index
https://web.archive.org/web/20220714205330/https://data.hashrateindex.com/chart/bitcoin-hashprice-index
https://web.archive.org/web/20220623021224/https://hashrateindex.com/tools/calculator
https://web.archive.org/web/20220623021224/https://hashrateindex.com/tools/calculator
https://doi.org/10.2307/2669965
https://doi.org/10.2307/2669965
https://doi.org/10.1201/9781351133036
https://doi.org/10.48550/ARXIV.2203.16058
https://web.archive.org/web/20220530152147/https://minerstat.com/mining-calculator
https://web.archive.org/web/20220530152147/https://minerstat.com/mining-calculator
https://web.archive.org/web/20211019011808/https://compassmining.io/education/what-is-hashprice/
https://web.archive.org/web/20211019011808/https://compassmining.io/education/what-is-hashprice/
https://doi.org/10.1145/3372297.3417247
https://web.archive.org/web/20100704213649/https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20100704213649/https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20220717043121/https://www.theguardian.com/commentisfree/2022/jun/11/as-energy-prices-soar-the-bitcoin-miners-may-find-they-have-struck-fools-gold
https://web.archive.org/web/20220717043121/https://www.theguardian.com/commentisfree/2022/jun/11/as-energy-prices-soar-the-bitcoin-miners-may-find-they-have-struck-fools-gold
https://web.archive.org/web/20220717043121/https://www.theguardian.com/commentisfree/2022/jun/11/as-energy-prices-soar-the-bitcoin-miners-may-find-they-have-struck-fools-gold


2:24 Correct Cryptocurrency ASIC Pricing: Are Miners Overpaying?

58 Bloomberg News. Bitcoin ‘hash crash’ rebound points to miners plugging back
in, 2021. URL: https://www.bloomberg.com/news/articles/2021-09-03/bitcoin-hash-
crash-rebound-points-to-miners-plugging-back-in.

59 NiceHash. Profitability calculator, 2022. URL: https://web.archive.org/web/
20220519093350/https://www.nicehash.com/profitability-calculator.

60 Lumerin Protocol. What is hashprice?, 2022. URL: https://web.archive.org/web/
20220314144723/https://medium.com/lumerin-blog/what-is-hashprice-9651cb08b215.

61 Michel Rauchs and Garrick Hileman. Global Cryptocurrency Benchmarking Study. Cam-
bridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cam-
bridge, Cambridge, United Kingdom, 2017. URL: https://EconPapers.repec.org/RePEc:
jbs:altfin:201704-gcbs.

62 Jamie Redman. Chinese bitcoin miners migrate north after wet season, 2019. URL:
https://web.archive.org/web/20220427014036/https://news.bitcoin.com/chinese-
bitcoin-miners-migrate-north-after-wet-season/.

63 M. Rosenfeld. Analysis of Bitcoin Pooled Mining Reward Systems, December 2011. arXiv:
1112.4980.

64 Mark Rubinstein. Implied binomial trees. The journal of finance, 49(3):771–818, 1994.
doi:10.1111/j.1540-6261.1994.tb00079.x.

65 M. Salimitari, M. Chatterjee, M. Yuksel, and E. Pasiliao. Profit maximization for bitcoin
pool mining: A prospect theoretic approach. In 2017 IEEE 3rd International Conference
on Collaboration and Internet Computing (CIC), pages 267–274, San Francisco, CA, USA,
October 2017. IEEE. doi:10.1109/CIC.2017.00043.

66 Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility
of bitcoin mining pool reward functions. In Jens Grossklags and Bart Preneel, editors, Financial
Cryptography and Data Security, pages 477–498, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

67 Spencer Sherwood. Why bitcoin asic prices can reach new highs in 2022, 2022.
URL: https://web.archive.org/web/20220127160904/https://miningstore.com/
understanding-the-bitcoin-mining-rig-market/why-bitcoin-asic-prices-can-reach-
new-highs-in-2022/.

68 MacKenzie Sigalos. As major winter storm descends on texas, bitcoin miners are helping the
power grid brace for impact, 2022. URL: https://web.archive.org/web/20220203143819/
https://www.cnbc.com/2022/02/03/winter-storm-descends-on-texas-bitcoin-miners-
shut-off-to-protect-ercot.html.

69 Paulo Silva, David Vavricka, João Barreto, and Miguel Matos. Impact of geo-distribution
and mining pools on blockchains: A study of ethereum. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 245–252, San
Francisco, CA, USA, June 2020. IEEE. doi:10.1109/DSN48063.2020.00041.

70 similarweb. Website traffic - check and analyze any website, 2022. URL: https://web.archive.
org/web/20220818075305/https://www.similarweb.com/.

71 Rajani Singh, Ashutosh Dhar Dwivedi, Gautam Srivastava, Agnieszka Wiszniewska-Matyszkiel,
and Xiaochun Cheng. A game theoretic analysis of resource mining in blockchain. Cluster
Computing, 23(3):2035–2046, 2020. doi:10.1007/s10586-020-03046-w.

72 Yonatan Sompolinsky and Aviv Zohar. Bitcoin’s security model revisited, 2016. arXiv:
1605.09193.

73 Vikram B Suresh, Sudhir K Satpathy, and Sanu K Mathew. Optimized sha-256 datapath for
energy-efficient high-performance bitcoin mining, November 27 2018. US Patent 10,142,098.

74 taserz. Asic.to firmware s17+ 95th/s • t17+ 80th/s t17 40w/t • s17/t17 on over 250k
asic, 2019. URL: https://web.archive.org/web/20210812103613/https://bitcointalk.
org/index.php?topic=5208500.0.

75 Layer1 Technologies. Building bitcoin batteries, 2019. URL: https://web.archive.org/web/
20220401125045/https://layer1.com/.

https://www.bloomberg.com/news/articles/2021-09-03/bitcoin-hash-crash-rebound-points-to-miners-plugging-back-in
https://www.bloomberg.com/news/articles/2021-09-03/bitcoin-hash-crash-rebound-points-to-miners-plugging-back-in
https://web.archive.org/web/20220519093350/https://www.nicehash.com/profitability-calculator
https://web.archive.org/web/20220519093350/https://www.nicehash.com/profitability-calculator
https://web.archive.org/web/20220314144723/https://medium.com/lumerin-blog/what-is-hashprice-9651cb08b215
https://web.archive.org/web/20220314144723/https://medium.com/lumerin-blog/what-is-hashprice-9651cb08b215
https://EconPapers.repec.org/RePEc:jbs:altfin:201704-gcbs
https://EconPapers.repec.org/RePEc:jbs:altfin:201704-gcbs
https://web.archive.org/web/20220427014036/https://news.bitcoin.com/chinese-bitcoin-miners-migrate-north-after-wet-season/
https://web.archive.org/web/20220427014036/https://news.bitcoin.com/chinese-bitcoin-miners-migrate-north-after-wet-season/
https://arxiv.org/abs/1112.4980
https://arxiv.org/abs/1112.4980
https://doi.org/10.1111/j.1540-6261.1994.tb00079.x
https://doi.org/10.1109/CIC.2017.00043
https://web.archive.org/web/20220127160904/https://miningstore.com/understanding-the-bitcoin-mining-rig-market/why-bitcoin-asic-prices-can-reach-new-highs-in-2022/
https://web.archive.org/web/20220127160904/https://miningstore.com/understanding-the-bitcoin-mining-rig-market/why-bitcoin-asic-prices-can-reach-new-highs-in-2022/
https://web.archive.org/web/20220127160904/https://miningstore.com/understanding-the-bitcoin-mining-rig-market/why-bitcoin-asic-prices-can-reach-new-highs-in-2022/
https://web.archive.org/web/20220203143819/https://www.cnbc.com/2022/02/03/winter-storm-descends-on-texas-bitcoin-miners-shut-off-to-protect-ercot.html
https://web.archive.org/web/20220203143819/https://www.cnbc.com/2022/02/03/winter-storm-descends-on-texas-bitcoin-miners-shut-off-to-protect-ercot.html
https://web.archive.org/web/20220203143819/https://www.cnbc.com/2022/02/03/winter-storm-descends-on-texas-bitcoin-miners-shut-off-to-protect-ercot.html
https://doi.org/10.1109/DSN48063.2020.00041
https://web.archive.org/web/20220818075305/https://www.similarweb.com/
https://web.archive.org/web/20220818075305/https://www.similarweb.com/
https://doi.org/10.1007/s10586-020-03046-w
https://arxiv.org/abs/1605.09193
https://arxiv.org/abs/1605.09193
https://web.archive.org/web/20210812103613/https://bitcointalk.org/index.php?topic=5208500.0
https://web.archive.org/web/20210812103613/https://bitcointalk.org/index.php?topic=5208500.0
https://web.archive.org/web/20220401125045/https://layer1.com/
https://web.archive.org/web/20220401125045/https://layer1.com/


A. Yaish and A. Zohar 2:25

76 Natkamon Tovanich, Nicolas Soulié, and Petra Isenberg. Visual analytics of bitcoin mining
pool evolution: On the road toward stability? In 2021 11th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), pages 1–5, San Francisco, CA, USA, April
2021. IEEE. doi:10.1109/NTMS49979.2021.9432675.

77 Lenos Trigeorgis et al. Real options: Managerial flexibility and strategy in resource allocation.
MIT press, Cambridge, MA, USA, 1996.

78 Lenos Trigeorgis and Jeffrey J Reuer. Real options theory in strategic management. Strategic
Management Journal, 38(1):42–63, 2017.

79 Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, pages 713–728, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3243734.3243737.

80 ASIC Miner Value. Asic miner value, 2021. URL: https://www.asicminervalue.com/.
81 ASIC Miner Value. Miners profitability, 2022. URL: https://web.archive.org/web/

20220808050607/https://www.asicminervalue.com/.
82 Ethan Vera. What is bitcoin mining firmware?, 2020. URL: https://web.archive.org/web/

20220520114305/https://blog.hashrateindex.com/asic-custom-firmware-guide/.
83 VNISH. Firmware for overclocking and downvolt antminer s17pro s17 s17+, 2022.

URL: https://web.archive.org/web/20220520134308/https://vnish-firmware.com/en/
razgon-antminer-s17-s17pro-s17/.

84 Gian M. Volpicelli. As bitcoin falters, crypto miners brace for a crash, May
2022. URL: https://web.archive.org/web/20220531110502/https://www.wired.co.uk/
article/bitcoin-mining-crisis.

85 Canhui Wang, Xiaowen Chu, and Yang Qin. Measurement and analysis of the bitcoin networks:
A view from mining pools. In 2020 6th International Conference on Big Data Computing and
Communications (BIGCOM), pages 180–188, San Francisco, CA, USA, 2020. IEEE, IEEE.
doi:10.1109/bigcom51056.2020.00032.

86 whattomine. Crypto coins mining profit calculator, 2022. URL: https://web.archive.org/
web/20220729175135/https://whattomine.com/.

87 Bitcoin Wiki. Comparison of mining pools, 2022. URL: https://web.archive.org/web/
20220819173306/https://en.bitcoin.it/wiki/Comparison_of_mining_pools.

88 Aviv Yaish, Gilad Stern, and Aviv Zohar. Uncle maker: (time)stamping out the competition
in ethereum. In Proceedings of the 2023 ACM SIGSAC Conference on Computerand Commu-
nications Security (CCS ’23), CCS ’23, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3576915.3616674.

89 Aviv Yaish, Saar Tochner, and Aviv Zohar. Blockchain stretching & squeezing: Manipulating
time for your best interest. In Proceedings of the 23rd ACM Conference on Economics and
Computation, EC ’22, pages 65–88, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3490486.3538250.

90 Aviv Yaish and Aviv Zohar. Pricing asics for cryptocurrency mining, 2023. arXiv:2002.11064.
91 Kristina Zucchi. Is bitcoin mining profitable?, July 2022. URL: https://web.archive.org/

web/20220815040240/https://www.investopedia.com/articles/forex/051115/bitcoin-
mining-still-profitable.asp.

AFT 2023

https://doi.org/10.1109/NTMS49979.2021.9432675
https://doi.org/10.1145/3243734.3243737
https://www.asicminervalue.com/
https://web.archive.org/web/20220808050607/https://www.asicminervalue.com/
https://web.archive.org/web/20220808050607/https://www.asicminervalue.com/
https://web.archive.org/web/20220520114305/https://blog.hashrateindex.com/asic-custom-firmware-guide/
https://web.archive.org/web/20220520114305/https://blog.hashrateindex.com/asic-custom-firmware-guide/
https://web.archive.org/web/20220520134308/https://vnish-firmware.com/en/razgon-antminer-s17-s17pro-s17/
https://web.archive.org/web/20220520134308/https://vnish-firmware.com/en/razgon-antminer-s17-s17pro-s17/
https://web.archive.org/web/20220531110502/https://www.wired.co.uk/article/bitcoin-mining-crisis
https://web.archive.org/web/20220531110502/https://www.wired.co.uk/article/bitcoin-mining-crisis
https://doi.org/10.1109/bigcom51056.2020.00032
https://web.archive.org/web/20220729175135/https://whattomine.com/
https://web.archive.org/web/20220729175135/https://whattomine.com/
https://web.archive.org/web/20220819173306/https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://web.archive.org/web/20220819173306/https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://doi.org/10.1145/3576915.3616674
https://doi.org/10.1145/3490486.3538250
https://arxiv.org/abs/2002.11064
https://web.archive.org/web/20220815040240/https://www.investopedia.com/articles/forex/051115/bitcoin-mining-still-profitable.asp
https://web.archive.org/web/20220815040240/https://www.investopedia.com/articles/forex/051115/bitcoin-mining-still-profitable.asp
https://web.archive.org/web/20220815040240/https://www.investopedia.com/articles/forex/051115/bitcoin-mining-still-profitable.asp




F3B: A Low-Overhead Blockchain Architecture
with Per-Transaction Front-Running Protection
Haoqian Zhang #

École Polytechnique Fédérale de Lausanne, Switzerland

Louis-Henri Merino #

École Polytechnique Fédérale de Lausanne, Switzerland

Ziyan Qu #

École Polytechnique Fédérale de Lausanne, Switzerland

Mahsa Bastankhah #

École Polytechnique Fédérale de Lausanne, Switzerland

Vero Estrada-Galiñanes #

École Polytechnique Fédérale de Lausanne, Switzerland

Bryan Ford #

École Polytechnique Fédérale de Lausanne, Switzerland

Abstract
Front-running attacks, which benefit from advanced knowledge of pending transactions, have
proliferated in the blockchain space since the emergence of decentralized finance. Front-running
causes devastating losses to honest participants and continues to endanger the fairness of the
ecosystem. We present Flash Freezing Flash Boys (F3B), a blockchain architecture that addresses
front-running attacks by using threshold cryptography. In F3B, a user generates a symmetric key to
encrypt their transaction, and once the underlying consensus layer has finalized the transaction, a
decentralized secret-management committee reveals this key. F3B mitigates front-running attacks
because, before the consensus group finalizes it, an adversary can no longer read the content of a
transaction, thus preventing the adversary from benefiting from advanced knowledge of pending
transactions. Unlike other mitigation systems, F3B properly ensures that all unfinalized transactions,
even with significant delays, remain private by adopting per-transaction protection. Furthermore,
F3B addresses front-running at the execution layer; thus, our solution is agnostic to the underlying
consensus algorithm and compatible with existing smart contracts. We evaluated F3B on Ethereum
with a modified execution layer and found only a negligible (0.026%) increase in transaction latency,
specifically due to running threshold decryption with a 128-member secret-management committee
after a transaction is finalized; this indicates that F3B is both practical and low-cost.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Blockchain, DeFi, Front-running Mitigation

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.3

Related Version Full Version: https://arxiv.org/abs/2205.08529 [65]

Funding This research was supported in part by U.S. Office of Naval Research grant N00014-19-
1-2361, the AXA Research Fund, the PAIDIT project funded by ICRC, the IC3-Ethereum Fund,
Algorand Centres of Excellence programme managed by Algorand Foundation, and armasuisse
Science and Technology. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the funding
sources.

Acknowledgements The authors wish to thank Cristina Basescu, Pasindu Nivanthaka Tennage,
Pierluca Borsò-Tan, and Simone Colombo for their extremely helpful comments and suggestions and
especially thank Shufan Wang for prototyping F3B on the Ethereum blockchain.

© Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah, Vero Estrada-Galiñanes, and
Bryan Ford;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haoqian.zhang@epfl.ch
mailto:louis-henri.merino@epfl.ch
mailto:ziyan.qu@epfl.ch
mailto:mahsa.bastan76@gmail.com
mailto:vero.estrada@epfl.ch
mailto:bryan.ford@epfl.ch
https://doi.org/10.4230/LIPIcs.AFT.2023.3
https://arxiv.org/abs/2205.08529
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Flash Freezing Flash Boys(F3B)

Secret-management 
committee(SMC)

(a) Send tx
encrypted to SMC

Senders

Consensus Group

(e) Reconstruct key

(b) Read 
encrypted 

tx

(c) Prepare shares

(f) Decrypt & Execute tx

(d) Release shares

Figure 1 F3B architecture. Senders publish encrypted transactions to the consensus group. The
secret-management committee releases the decryption shares once the transactions are no longer
pending. Finally, the consensus group reconstruct the key and decrypt and execute the transaction.
The secret-management committee and the consensus group can consist of the same set of servers.
For clarity in this paper, we logically separate them into two different entities.

1 Introduction

Front-running is the practice of benefiting from the advanced knowledge of pending transac-
tions [20, 7, 1]. Although benefiting some entities involved, this practice puts others at a
significant financial disadvantage, making this behavior illegal in traditional markets with
established securities regulations [20].

However, the open and pseudonymous nature of blockchain transactions and the difficulties
of pursuing miscreants across numerous jurisdictions have made front-running attractive,
particularly in decentralized finance (DeFi) [38, 20, 15]. Front-running actors in the blockchain
space can read the contents of pending transactions and benefit from them by, e.g., creating
their own transactions and positioning them according to the target transaction [4, 15, 20].

Front-running negatively impacts honest DeFi actors and endangers the fairness of this
multi-billion market [18]. One estimate suggests that front-running attacks amount to $280
million in losses for DeFi actors each month [42]. Front-running also threatens the underlying
consensus layer’s security by incentivizing unnecessary forks [17, 15].

Despite work addressing front-running, several unmet challenges exist, such as high
latency, being restricted to a specific environment, or raising security concerns. Namecoin,
an early example of mitigating front-running attacks by having users send a commit and
later a reveal transaction, requires two rounds of communication with the underlying block-
chain [29]. Submarine further improves Namecoin’s design by hiding the addresses of smart
contracts involved, but it induces three rounds of communication to the underlying block-
chain [39, 29]. Both approaches induce high latency. Other works have taken a different
approach to mitigate front-running attacks by tailoring their solution to a specific application
or consensus algorithm [13, 52, 60, 5, 2, 3, 40, 25].

A promising approach is to use threshold encryption, where clients encrypt their trans-
actions to prevent malicious actors from understanding those transactions, as presented in
Fairblock [43] and Shutter [57, 58]. However, these schemes require clients to choose a future
block to derive the encryption key, which raises security concerns. Suppose a transaction
failed to be finalized in the client-chosen block due to, for example, a crypto mania that
overwhelms the blockchain network [31] or a deliberate denial of service attack [20]. In this
case, the transaction is undesirably revealed (see Section 3.3 for details).



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:3

We present Flash Freezing Flash Boys1 (F3B), a novel blockchain architecture with front-
running protection that has a low latency overhead and is compatible with existing consensus
algorithms and smart contract implementations. Like Fairblock [43] and Shutter [57, 58],
F3B addresses front-running by adopting threshold encryption, but it accomplishes this on a
per-transaction basis rather than a per-block basis. Rather than selecting an encryption
key linked to a future block, clients generate an encryption key for each transaction. This
ensures that a transaction remains confidential until the block containing the transaction
has received enough confirmations.

As described in Figure 1, F3B’s architecture consists of the following steps: (a) A
client encrypts their transaction to a secret-management committee (SMC) and sends their
encrypted transaction to the consensus group that operates the underlying blockchain. (b)
The SMC reads the encrypted transaction from the underlying blockchain. (c) The SMC
prepares the decryption shares for the consensus group. (d) The SMC releases the decryption
shares to the consensus group once the underlying blockchain has finalized the transaction.
(e) The consensus group reconstructs the key. (f) The consensus group decrypts and executes
the transaction. Once the SMC begins to release the decryption shares, malicious actors
cannot launch a front-running attack because the transaction is already irreversibly ordered
on the blockchain. Although adversaries may attempt to run speculative front-running
attacks, where they guess the contents of a transaction on metadata information like the
sender’s address, these attacks are more likely to fail and can prove to be unprofitable [4].
Nonetheless, we discuss mitigation solutions for these attacks in Section 10.4.

F3B addresses two key practical challenges: (a) mitigating spamming of inexecutable
encrypted transactions onto the underlying blockchain, and (b) limiting latency overhead.
To mitigate spamming, we introduce a deposit-refund storage fee for storing encrypted
transactions, along with the standard execution fee (e.g., gas in Ethereum). To limit the
latency overhead, users write only data onto the underlying blockchain once to achieve
front-running protection.

We propose two cryptographic threshold schemes that can plug into F3B: TDH2[56] and
PVSS [53]. TDH2 enables clients to encrypt their transactions under the same public key
of a secret-management committee which is only changeable by time-consuming DKG or
resharing protocols. On the other hand, PVSS empowers clients to adopt a different secret-
management committee for each transaction but at the cost of the additional preprocessing
time for preparing the shares for each transaction.

We implemented a prototype of F3B with post-Merge2 Ethereum [23] as the underlying
blockchain and Dela [19] as the secret-management committee. We measure the latency
overhead by comparing the time it takes to decrypt and execute a transaction with the
time it takes just to execute the transaction. Our analysis shows that, with a committee
size of 128, the latency overhead is 0.026% and 0.027% for Ethereum under the TDH2 and
PVSS respectively; In comparison, Submarine, which also offers per-transaction protection
and hides the address of smart contracts as F3B, exhibits a 200% latency overhead, as it
requires three rounds of communication with the underlying blockchain [39, 11]. For part of
our prototype, we modified Ethereum’s execution layer by adding a new transaction type
featuring encryption and delayed execution. By only modifying the execution layer, we

1 The name Flash Boys comes from a popular book revealing this aggressive market-exploiting strategy
on Wall Street in 2014 [38].

2 The Merge refers to the merge executed on September 15th, 2022, to complete Ethereum’s transition to
proof-of-stake consensus.

AFT 2023



3:4 Flash Freezing Flash Boys(F3B)

can (a) provide compatibility with various consensus algorithms embedded in Ethereum’s
consensus layer, including Proof-of-Work (PoW), Proof-of-Authority (PoA) and the recently
added, Proof-of-Stake (PoS) and (b) protect existing smart contracts without requiring any
code modifications.

In this paper, our key contributions are as follows:
1. The design of a blockchain architecture with front-running protection that uses threshold

encryption on a per-transaction basis, enabling confidentiality for all pending transactions,
even if transactions are delayed, while achieving low overhead.

2. The design of two protocols based on TDH2 and PVSS for F3B satisfies various demands
and user scenarios.

3. A prototype that, on Ethereum’s execution layer, demonstrates F3B’s ability to be agnostic
to (a) the underlying consensus algorithm and (b) to smart contract implementations
while achieving low-latency overhead.

4. A systematic evaluation of F3B on post-Merge Ethereum by looking at transaction latency,
throughput, and reconfiguration costs.

2 Background

In this section, we present a brief background on blockchain and smart contracts, and we
introduce front-running attacks and mitigation strategies.

2.1 Blockchain & Transaction Ordering
A blockchain is an immutable append-only ledger of ordered transactions [44]. However,
transactions go through a series of stages before they are finalized – irreversibly ordered – on
the blockchain. After a sender creates a transaction, they need to propagate the transaction
among the consensus nodes that then place the transaction in a pool of pending transactions,
most commonly known as mempool. Notably, these transactions are not yet irreversibly
ordered, thus opening up the possibility for front-running attacks. Furthermore, under certain
probabilistic consensus algorithms, such as PoW or PoS, a transaction inserted onto the
blockchain can still be reordered by inducing a fork of the underlying blockchain. Hence, to
guarantee irreversible ordering for probabilistic consensus algorithms, a transaction must
receive enough block confirmations – the number of blocks succeeding the block containing
the transaction [44, 34, 14].

2.2 Smart Contract & Decentralized Exchange
A smart contract is an executable computer program modeled after a contract or an agreement
that executes automatically [50]. A natural fit for smart contracts is on top of decentralized
fault-tolerant consensus algorithms, such as PBFT-style algorithms, PoW, and PoS, to ensure
their execution and integrity [63, 44, 32].

Although Bitcoin uses a form of smart contracts [44], it was not until Ethereum’s
introduction that the blockchain space realized Turing-complete smart contracts, the backbone
necessary for creating complex decentralized exchanges. To interact with these complex
smart contracts, users need to pay gas, a pseudo-currency that represents the execution cost
by miners [21]. However, the expressiveness of smart contracts comes with significant risks,
from inadvertent vulnerabilities to front-running. Front-running is exhibited by the lack of
guarantees that the underlying blockchain provides regarding ordering.



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:5

2.3 Front-Running Attacks & Mitigation
The practice of front-running involves benefiting from advanced knowledge of pending
transactions [20, 7, 1]. In itself, knowledge of pending transactions is harmless, but the ability
to act on this information is where the true problem lies. In the context of blockchains, an
adversary performs a front-running attack by influencing the order of transactions, provided
that transactions in the mempool are entirely in the clear.

Cryptocurrencies suffer from mainly three types of front-running attacks [20]: displace-
ment, insertion, and suppression. Displacement is the replacement of a target transaction
with a new transaction formulated by the front-running attacker. Insertion is the malicious
introduction of a new transaction before a target transaction in the finalized transaction
ordering. Suppression is the long-term or indefinite delaying of a target transaction.

In an ideal world, front-running protection would consist of an immediate global ordering
of each transaction, as clients broadcast their transactions to prevent attackers from changing
their order. In reality, even if all participants were honest, such global ordering is practically
impossible due to clock synchronization [16] and consistency problems (e.g., two transactions
having the same time). Malicious participants can still carry out front-running attacks,
because timings can easily be manipulated.

A more practical solution involves encrypting transactions, thereby preventing the con-
sensus group from knowing the contents of the transactions when ordering them. This
solution mitigates front-running attacks as an attacker is hindered from taking advantage of
pending encrypted transactions.

3 Strawman Protocols

In order to explore the challenges inherent in building a framework, such as F3B, we first
examine a couple of promising but inadequate strawman approaches, representative of
state-of-the-art proposals [39, 11, 43, 57] but simplified for expository purposes.

3.1 Strawman I: Sender Commit-and-Reveal
The first strawman design has the sender create two transactions: a commit and a reveal
transaction. The commit transaction is simply a commitment (e.g., hash) of the intended
reveal transaction, which is simply the typical contents of a transaction that is normally
vulnerable to front-running. The sender will propagate the commit transaction and then
wait until its finality by the consensus group, before releasing the reveal transaction. Once
the reveal transaction is propagated, the consensus group proceeds to verify and to execute
the transaction, in the execution order that the commit transaction was finalized on the
blockchain. Given the finality in the former transaction, the sender is unable to change the
contents of the reveal transaction.

This simple strawman protocol mitigates front-running attacks because the commit
transaction determines the execution order and the contents of the commit transaction do not
expose the contents of the reveal transaction. However, this strawman protocol presents some
notable challenges: (a) the sender must remain online to continuously monitor the blockchain
to know when to release their reveal transaction, (b) the reveal transaction might be delayed
due to a congestion event like the cryptokitties mania [31] or a deliberate denial-of-service
(DoS) attack like the Fomo3D incident [20], (c) this approach is subject to output bias, as
the consensus nodes or the sender can deliberately choose not to reveal certain transactions
during the reveal phase [4], such as only revealing profitable ones and aborting others, and
(d) this approach has a significant latency overhead of over 100%, given that the sender must
now send two non-overlapping transactions instead of the one standard transaction.

AFT 2023



3:6 Flash Freezing Flash Boys(F3B)

3.2 Strawman II: The Trusted Custodian
A straightforward method for removing the sender from the equation, after sending the
commit transaction, is to employ a trusted custodian. After the consensus group finalizes the
transaction onto the underlying blockchain, the trusted custodian reveals the transaction’s
contents.

This strawman protocol mitigates front-running attacks, as the nodes cannot read, before
ordering, the contents of the transaction. However, the trusted custodian presents a single
point of failure: Consensus nodes cannot decrypt and execute a transaction if the custodian
crashes. Instead, by employing a decentralized custodian, we can mitigate the single point of
failure issues.

3.3 Strawman III: Threshold Encryption with Block Key
The next natural step is to have a decentralized committee that generates a public key
for each block, thus enabling a user to encrypt their transaction for a future block. The
committee would then release the private key after the block finality. Furthermore, the
committee can use identity-based encryption [55] to enable users to derive a future block key
based on the block’s height.

This strawman protocol seems to mitigate front-running, as the transactions in a block are
encrypted until they are finalized in their intended block. However, if an encrypted transaction
fails to be included in the specified block, its contents will be revealed shortly thereafter
while remaining unfinalized, thus making it vulnerable to front-running. Blockchain networks
have repeatedly observed such failures due to congestion, such as cryptokitties manias [31],
or well-funded DoS attacks, such as the Fomo3D attack that flooded the Ethereum network
with transactions for three minutes [20]. Such an approach can incentivize a consensus node
to intentionally produce an empty block by aiming to reveal the pending transactions for that
block. Therefore, we require a per-transaction rather than a per-block level of confidentiality,
thus ensuring that a transaction is never revealed before it is finalized on the blockchain.

4 System Overview

In this section, we present F3B’s system goals, architecture, and models.

4.1 System Goals
Our system goals, inspired by our strawman protocols, are

Front-Running Protection: prevents entities from practicing front-running.
Decentralization: mitigates a single point of failure or compromise.
Confidentiality: reveals a transaction, only after the underlying consensus layer finalizes
it.
Compatibility: remains agnostic to the underlying consensus algorithm and to smart
contract implementation.
Low-Latency: exhibits low-latency transaction-processing overhead.

4.2 Architecture Overview
F3B, shown in Figure 1, mitigates front-running attacks by working with a secret-management
committee to manage the storage and release of on-chain secrets. Instead of propagating
their transactions in cleartext, the sender can now encrypt their transactions and store the



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:7

corresponding secret keys with the secret-management committee. Once the transaction
is finalized, the secret-management committee releases the secret keys so that consensus
nodes of the underlying blockchain can verify and execute transactions. Overall, the state
machine replication of the underlying blockchain is achieved in two steps: the first is about
the ordering of transactions, and the second is about the execution of transactions. As long
as most trustees in the secret-management committee are secure and honest and the key is
revealed to the public when appropriate, each consensus node can always maintain the same
blockchain state.

F3B encrypts the entire transaction3, such as the smart contract address, inputs, sender’s
signature, and other metadata, as those information can provide enough information to
launch a probabilistic front-running attack, such as the Fomo3D attack [20] or a speculative
attack based on the leakage of metadata [4].

4.3 System and Network Model
F3B’s architecture consists of three components: senders that publish (encrypted) trans-
actions, the secret-management committee (SMC) that manages and releases secrets, and
the consensus group that maintains the underlying blockchain. For the F3B based on the
PVSS scheme, the client can choose a different SMC for each transaction. For the F3B based
on the THD2 scheme, an SMC has a fixed membership over one epoch. When transiting
from one epoch to the next, the SMC can modify its membership under the THD2 scheme
with backward secrecy to prevent new trustees from decrypting old transactions without
interrupting users’ encryption by running a resharing protocol [62].

The secret-management committee and the consensus group can consist of the same set
of servers. For clarity in this paper, we logically separate them into two different entities.

For the underlying network, we assume that all honest blockchain nodes and trustees of
the SMC are well connected and that their communication channels are synchronous, i.e., if
an honest node or trustee broadcasts a message, then all honest nodes and trustees receive
the message within a known maximum delay [46].

4.4 Threat Model
We assume that the adversary is computationally bounded, that the cryptographic primitives
we use are secure, and in particular that the Diffie-Hellman problem and its decisional variant
are hard. We further assume that all messages are digitally signed and that the consensus
nodes and the SMC only process correctly signed messages.

The secret management committee consists of n trustees, where f can fail or behave
maliciously. We require n ≥ 2f + 1 and set the secret-recovery threshold to t = f + 1. We
assume that the underlying blockchain is secure: e.g., at most f ′ of 3f ′ + 1 validators can
fail or misbehave in a PBFT-style or PoS blockchain, or the adversary controls less than 50%
computational power in a PoW blockchain. We acknowledge that the security assumptions
for the secret management committee and the underlying blockchain might differ, potentially
reducing the overall system’s security to the least secure subsystem.

We assume that attackers do not launch speculative front-running attacks [4], but we
present a discussion on some mitigation strategies for reducing side-channel leakage in
Section 10.4.

3 Section 10.4 further discusses how to hide the sender’s address.

AFT 2023



3:8 Flash Freezing Flash Boys(F3B)

Sender Consensus Group Secret-management
committee

Tx=(ctx , ck)

StoreACK / NACK

Blockchain Height + Ctx

Blockchain Height
Commit

Tx

Prepare
Shares
& Wait

Shares of k

ACK / NACK

(1)

(2)

Reconstruct Key(3)

Decrypt & Execute tx(4)

Figure 2 F3B per-transaction protocol steps: (1) Send an encrypted transaction to the underlying
blockchain, (2) Prepare shares by trustees while waiting for transaction finality, (3) Reconstruct the
key, (4) Execute the transaction.

5 F3B Protocol

In this section, we introduce the F3B’s protocol, starting with some preliminaries, followed
by the F3B’s detailed design. The full paper [65] offers a more comprehensive protocol
description, and Section 10 introduces some optimizations.

5.1 Preliminaries
In this subsection, we introduce our preliminaries, including our baseline model for the
underlying blockchain and the cryptographic primitives used in F3B.

Blockchain Model

To compare F3B’s impact, we model the underlying blockchain to involve a consensus protocol
that finalizes transactions into a block that is linked to a previous block. We assume the
underlying block’s time as Lb seconds. In PoW and PoS-based blockchains, a transaction is
finalized only after a certain number of additional blocks have been added to the chain (also
known as block confirmations). Thus, we define that a transaction is finalized after m block
confirmations. Therefore, our baseline transaction latency is mLb.

Shamir’s Secret Sharing

A (t, n)-threshold secret sharing scheme enables a dealer to share a secret s among n trustees
such that any group of t ≤ n or more trustees can reconstruct s and no group less than t

trustees learns any information about s. Whereas a simple secret sharing scheme assumes an
honest dealer, verifiable secret sharing (VSS) enables the trustees to verify that the shares
they receive are valid [24]. Public verifiable secret sharing (PVSS) further improves VSS to
enable a third party to check all shares [53].

Distributed Key Generation (DKG)

DKG is a multi-party (t, n) key-generation process for collectively generating a private-public
key pair (sk, pk), without relying on a single trusted dealer; each trustee i obtains a share
ski of the secret key sk, and collectively obtains a public key pk [27]. Any client can now
use pk to encrypt a secret, and at least t trustees must cooperate to retrieve this secret [56].



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:9

5.2 Protocol Outline

We present the outline of F3B protocols with two different threshold cryptographic schemes.
Figure 2 presents the protocol outline, and the full paper [65] offers a more comprehensive
protocol description.

5.2.1 Protocol based on TDH2

Setup

Before an epoch, the secret-management committee runs a DKG protocol to generate a
private key share ski

smc for each trustee and a collective public key pksmc written onto
the underlying blockchain. To offer chosen-ciphertext attack protection and to verify the
correctness of secret shares, we utilize the TDH2 cryptosystem [56] containing NIZK proofs.

Per-Transaction Protocol

1. Write Transaction: A sender first generates a symmetric key k and encrypts it with pksmc

from the underlying blockchain, thus obtaining the resulting ciphertext ck. Next, the
sender creates their signed transaction and symmetrically encrypts it by using k, denoted
as ctx = enck(tx). Finally, the sender sends (ctx, ck) to the consensus group who writes
the pair onto the blockchain.

2. Shares Preparation by Trustees: Once written, each secret-management committee trustee
reads ck from the sender’s transaction and prepares their decrypted share of k.

3. Key Reconstruction: When the sender’s transaction (ctx, ck) is finalized onto the underlying
blockchain (after m block confirmations), each secret-management committee trustee
releases their share to the consensus group. The consensus group verifies the decrypted
shares and uses them to reconstruct k by Lagrange interpolation of shares when there
are at least t valid shares.

4. Decryption and Execution: The consensus group finally symmetrically decrypts the
transaction tx = deck(ctx) using k, thus enabling it to execute tx.

Resharing Protocol

To modify a SMC’s membership and to offer backward secrecy over epochs, an SMC can
periodically run a verifiable resharing protocol [62] to replace certain trustees or redistribute
the trustees’ private keys. Unlike DKG, resharing keeps the epoch’s public key, thus preventing
undesirable interruptions of encryption services.

5.2.2 Protocol based on PVSS

Per-Transaction Protocol

0. Share Preparation By sender: For every transaction, the sender runs the PVSS protocol
[53] to generate an encrypted key share sharei for each trustee, as well as a corresponding
NIZK proof and public polynomial commitment. The proof and commitment can be used
to verify the correctness of key share and protect against chosen-ciphertext attacks. The
sender obtains the symmetric key k from the PVSS protocol.

AFT 2023



3:10 Flash Freezing Flash Boys(F3B)

m block confirmations Execution Time
Commitment Time

Time:

(a) Execution and finality time in Ethereum.

m block confirmations

Time:

(b) Execution and finality time in F3B.

Figure 3 In Ethereum, once they are inserted in the blockchain, the transactions are executed and
finalized after receiving m block confirmations. Whereas, in F3B, transactions are encrypted, and
their executions are postponed after receiving m block confirmations when the secret-management
committee releases the encryption keys. Both scenarios have a similar finality time.

1. Write Transaction: A sender first creates the ciphertext ck with the key shares, NIZK
proofs, and commitments generated during share preparation. Next, the sender creates
their transaction and symmetrically encrypts it by using the symmetric key k, denoted
as ctx = enck(tx). Finally, the sender sends (ctx, ck) to the consensus group who writes
the pair onto the blockchain.

2. Shares Preparation by Trustees: Same as (2) in 5.2.1.

3. Key Reconstruction: Same as (3) in 5.2.1.

4. Decryption and Execution: Same as (4) in 5.2.1.

5.3 Overhead Analysis

We analyze both protocols’ overheads. Write Transaction (step 1) is identical to sending a
transaction to the underlying blockchain. We assume trustees can finish Shares Preparation
by Trustees (step 2) within the confirmation time of the tx4. Hence, the time for steps 1
and 2 is equivalent to finalizing a transaction on the underlying blockchain and waiting until
its finality, which takes mLb time based on our baseline model (Section 5.1). As in PVSS
protocol, the sender can finish Share Preparation By sender (step 0) before having the tx;
thus step 0 does not contribute to the transaction latency. Comparing our protocol with the
baseline, Key Reconstruction (step 3) and Decryption and Execution (step 4) are additional
steps, and we denote the time of those steps to be Lr.

Figure 3 demonstrates the conceptual difference in finality and execution time between
F3B and the baseline. As the secret-management committee releases the secret keys with a
delay of m blocks, this introduces an execution delay of m blocks. However, in both cases,
to prevent attacks such as double-spending, the recipient should not accept a transaction,
until it is finalized. Therefore on a commercial level, F3B is similar to the baseline because
it exhibits the finality time of a transaction that is of use to the recipient5.

4 As we presented in Section 9, confirmation time in Ethereum is much longer than the share preparation
time by trustees.

5 In F3B, transaction finalization is slower due to the key reconstruction and delayed execution after
transaction finality. However, the overhead is negligible compared to finality time, as discussed in
Section 9.



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:11

5.4 TDH2 and PVSS: Pros and Cons
When applying THD2 and PVSS to F3B, each scheme has some advantages and disadvantages.
This subsection offers qualitative comparisons, whereas Section 9 provides quantitative
comparisons between the two protocols.

Preprocessing: In TDH2, the secret-management committee needs to do DKG per
epoch, whereas in PVSS, the sender needs to prepare shares per transaction.
Membership: In TDH2, the secret-management committee’s membership is fixed per
epoch, whereas in PVSS, the sender can choose a different secret-management committee
for each transaction, providing the best flexibility.
Ciphertext: TDH2 has a constant ciphertext length, whereas PVSS’s ciphertext grows
linearly with the size of the secret-management committee.

In conclusion, no one protocol can completely replace another. System designers need to
choose one or both protocols based on their needs and constraints to mitigate front-running
attacks.

6 Achieving the System Goals

In this section, we present how F3B achieves the system goals outlined in Section 4.1.

Front-Running Protection: prevents entities from practicing front-running. We reason
the protection offered by F3B from the definition of front-running: if an adversary cannot
benefit from pending transactions, he cannot launch front-running attacks. In F3B, the
sole entity that knows the content of a pending transaction is the sender who is financially
incentivized to not release its contents. The content is revealed only when its transaction is
finalized; thus, by definition, the attacker has no means to launch a front-running attack.
However, we acknowledge that attackers can use side channels (e.g. metadata such as sender’s
address and transaction size) of the encrypted transaction to launch speculative front-running
attacks, as discussed in Section 4.4 and Section 10.4. We present a more comprehensive
security analysis discussion in Section 7.

Decentralization: mitigates a single point of failure or compromise. Due to the properties
of DKG [27], THD2 [56], and PVSS [53], the SMC can handle up to t − 1 malicious trustees
and up to n − t offline trustees.

Confidentiality: reveals a transaction, only after the underlying consensus layer finalizes it.
The sender encrypts each transaction with a newly generated symmetric key. The symmetric
key is (a) encrypted under the secret-management committee’s public key in TDH2-based
protocol, (b) embedded into the encrypted shares in PVSS-based protocol. In both protocols,
f + 1 trustees are required to retrieve the symmetric key. Per our threat model, only f

trustees can behave maliciously; this ensures that the symmetric key cannot be revealed. We
outline a more detailed security analysis in Section 7.

Compatibility: remains agnostic to the underlying consensus algorithm and to smart
contract implementation. F3B requires modifying the execution layer to enable encryp-
ted transactions. However, the consensus layer remains untouched, thus agnostic to the
underlying consensus algorithms. Furthermore, F3B does not require to modify smart con-
tract implementations, thus enabling existing smart contracts to benefit from front-running
protection automatically.

AFT 2023



3:12 Flash Freezing Flash Boys(F3B)

Low-Latency: exhibits low-latency transaction-processing overhead. Similar to the
baseline model, F3B requires clients to write only one transaction onto the underlying
blockchain. This enables F3B to have a low-latency overhead compared to other front-
running protection design that require multiple transactions for the same security guarantees.
We present an evaluation of this latency overhead in Section 9.

7 Security Analysis

In this section, we introduce the security analysis of F3B’s protocol.

7.1 Front-Running Protection

From our threat model, we reason about why an attacker can no longer launch front-running
attacks with absolute certainty of a financial reward, even with the collaboration of at most
f malicious trustees. As we assume that the attacker does not launch speculative attacks
based on metadata of the encrypted transactions, the only way the attacker can front-run
transactions is by using the plaintext content of the transaction. As the attacker cannot
access the content of the transaction before it is finalized on the underlying blockchain,
then the attacker cannot benefit from the pending transaction. This prevents front-running
attacks (by the definition of front-running). As we assume that the symmetric encryption we
use is secure, the attacker cannot decrypt the transaction based on its ciphertext. Due to
the properties of TDH2 [56], DKG [27], and PVSS [53] with our threat model, the attacker
cannot obtain the private key and/or reconstruct the symmetric key. Recall that the attacker
can collude with at most only f trustees, and that f + 1 are required to recover or gain
information about the symmetric key.

7.2 Replay Attack

We consider a scenario in which an adversary can copy a pending (encrypted) transaction and
submit it as their own transaction to reveal the transaction’s contents, before the victim’s
transaction is finalized. By revealing the contents of the copied transaction, the attacker can
then trivially launch a front-running attack. However, we explain the reason the adversary is
unable to benefit from such a strategy.

In the first scenario, the adversary copies the ciphertext ck and the encrypted transaction
ctx from txw, then creates a new write transaction tx′

w, digitally signed with their signature.
However, even if the adversary’s tx′

w is decrypted and executed before the victim’s transaction
txw, it effectively results in the blockchain executing txw

6. This leaves the adversary with no
time to front-run their own tx′

w without knowing its contents.
In our second scenario, the adversary instead sends the transaction to a blockchain with

smaller m block confirmations. Consider two blockchains b1 and b2 whose required number
of confirmation blocks are m1 and m2 with m1 > m2. If the adversary changes the label
L to L′ for the blockchain b2 instead of blockchain b1, the secret-management committee
will successfully decrypt the transaction. However, we argue it is hard to form a valid
write-transaction with L′ by the adversary.

6 Note that tx is already a signed transaction; thus, txw and tx′
w have the same effect on the blockchain.



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:13

For the TDH2 protocol, the adversary would need to generate e′ = H1 (c, u, ū, w, w̄, L′)
and f = s + re′, without knowing the random parameter r and s. Suppose the adversary
generates u = gr, ū = ḡr′ with r ̸= r′ and w = gs, w̄ = ḡs′ with s ̸= s′. For tx′

w to be valid,
we must have gf = wue and ḡf = w̄ūe, this implies that (s − s′) + e(r − r′) = 0. As r ̸= r′ ,
the adversary has only a negligible chance of having tx′

w pass verification.
For the PVSS protocol, the adversary must replace the original generator h with h′

derived from H(L′). Hence, the adversary has to do the proofs without secrets. The security
of PVSS guarantees that they only have a negligible probability of succeeding. Note that the
base point has to be random to ensure the security. Using Elligator maps [8] guarantees that
the generator h is random.

8 Incentive

F3B must incentivize actors to operate and follow the protocol honestly. In this section, we
address the critical incentives that, in F3B, prevent spamming transactions and that deter
collaboration among trustees from prematurely revealing transactions.

8.1 Spamming Protection

As the consensus group cannot execute encrypted transactions, an adversary could, at a low
cost, spam the blockchain with non-executable transactions (e.g., inadequate fees, malformed
transactions), thus delaying the finality of honest transactions. To make such an attack
costly, we introduce a storage deposit, alongside the traditional execution fee (e.g., gas
in Ethereum) and adjustable based on the transaction’s size. The underlying blockchain
can deduct the storage deposit from the sender’s balance, much like paying a transaction
fee. Then the blockchain can partially refund the deposit after successful execution by the
consensus nodes. This approach imposes a low-cost fee on compliant users and a penalty on
those who misbehave.

8.2 Operational Incentive

We need a similar incentive structure for the secret-management committees; similar to the
way consensus nodes are rewarded for following the blockchain protocol via an execution
fee. Whereas SMCs could be rewarded using the execution fee, this fee does not prevent
SMC trustees from colluding for their financial gain. For example, an SMC might silently
collude with a consensus group by prematurely giving them the decryption shares. Given
the difficulty of detecting out-of-band collusion, we need to discourage it from doing so by
significantly rewarding anyone who can prove the existence of such collusion.

We propose an incentive structure, where we require each trustee in a secret-manage-
ment committee to lock an amount c for collateral and, in exchange, they are rewarded
proportionally to the staked amount ac for the services they provide. Remind that, based on
our threat model (Section 4.4), t trustees must collude altogether to reconstruct a transaction.
To maintain security, the potential gain that t trustees benefit from front-running must
be less than the potential loss (1 + a)ct, which malicious trustees would incur through the
slashing protocol described in Section 8.3. Hence, a higher potential loss value (1 + a)ct

ensures security for a longer epoch length. If other factors stay consistent, designers can
support a longer epoch length by either increasing the collateral requirement (by raising c)
or by involving more trustees (by increasing t).

AFT 2023



3:14 Flash Freezing Flash Boys(F3B)

8 16 32 64 128
Size of Secret-management Committee

0.001

0.01

0.1

1
La

te
nc

y(
se

c)
Shares Preparation by Sender (PVSS)
Shares Preparation by Trustees
Key Reconstruction
Decryption and Execution

TDH2
PVSS
Both Protocols

Figure 4 The breakdown latency of each step
in F3B by varying the number of secret-manage-
ment committee trustees from 8 to 128 nodes.

Baseline   Strawman F3B-8 F3B-16 F3B-32 F3B-64 F3B-128
Mitigation Method

0.01

0.1

1

10

100

1000

La
te

nc
y(

se
c)

TDH2
PVSS
Strawman

Round 1(Commit)
Round 2(Reveal)

Figure 5 A comparison of the sender commit-
and-reveal approach latency with F3B against
a baseline modeled in Ethereum. The string
“F3B-X” represents X trustees.

8.3 Slashing Protocol
We need to have a protocol that rewards anyone who can prove a trustee’s or the entire secret-
management committee’s misbehavior to discourage the release of the shares prematurely.
At the same time, we do not want anyone to accuse a secret-management committee or a
specific trustee without repercussions if the SMC or trustee did not actually misbehave.

To accomplish our objective, each trustee of the secret-management committee must
stake some amount of cryptocurrency in a smart contract that handles disputes between a
defendant (the entire secret-management committee or a particular trustee) and a plaintiff.
To start a dispute, the plaintiff will invoke the smart contract with the correct decryption
share for a currently pending transaction and their own stake. Suppose the smart contract
validates that this is a correct decryption share and that the dispute started before the
transaction in question was revealed by the secret-management committee. In this case, the
defendant’s stake is forfeited and sent to the plaintiff.

At a protocol level, to prove a correct decryption share in protocol with TDH2, the
plaintiff submits [ui, ei, fi] such that ei = H2

(
ui, ûi, ĥi

)
where ûi = ufi

ui
ei

and ĥi = gfi

hi
ei

. In
the protocol based on PVSS, the plaintiff submits [si, πsi

], where πsi
is the NIZK proof that

shows logg pki = logsi
ŝi. Even if the sender knows si, it is impossible to maliciously slash a

trustee without the πsi
, which only the corresponding trustee knows.

Deploying such a mechanism would require the smart contract to access the ciphertext of
a transaction (e.g., u or ŝi is necessary to verify the submitted share).

9 Evaluation

We prototype F3B by using post-merge Ethereum [23] as the underlying blockchain and
Dela [19] written in Go [28] as the secret-management committee for our evaluation. Remain-
ing consistent with Ethereum’s security assumptions, one epoch length lasts 6.4 minutes and
the trustees forming the secret-management committee from validators for a given epoch are
randomly selected. We instantiate our cryptographic primitives by using the Edward25519
elliptic curve with 128-bit security supported by Kyber [37], an advanced cryptographic
library. We ran experiments on a server with 32GB of memory and 40 (2.1GHz) CPU cores.
The network communication delay is simulated to be a fixed 100ms. We further discuss F3B
integration with Ethereum in Section 10.



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:15

Table 1 Latency Overhead for Ethereum
Blockchain.

Latency Overhead varying SMC sizes

TDH2 PVSS
Confirmations 64 128 64 128

8 0.164% 0.206% 0.160% 0.214%
16 0.082% 0.103% 0.080% 0.107%
32 0.041% 0.052% 0.040% 0.053%
64 0.020% 0.026% 0.020% 0.027%

128 0.010% 0.013% 0.010% 0.013%

Table 2 Storage overhead for two protocols
with different Secret-management Committee
sizes.

Storage Overhead (bytes)

Number of trustees TDH2 Protocol PVSS protocol

8 80 792
16 80 1568
32 80 3120
64 80 6224

128 80 12 432

9.1 Latency

In Figure 4, we present the breakdown latency of each step for both TDH2 and PVSS
protocols after a transaction finality while varying the number of SMC trustees from 8 to 128
nodes: (a) shares preparation by trustees, and (b) key reconstruction, and (c) decryption
and execution. In addition, we show the time needed for PVSS shares generation by the
sender in purple of Figure 4. As discussed in Section 5.3, only (b) and (c) represent the
overhead at the per-transaction level.

Recall that the overall transaction latency using F3B is mLb + Lr (Section 5.2). In
post-Merge Ethereum, the block time is fixed to 12 seconds, i.e., Lb = 12 [9], and, by
official standard, a block requires 64 block confirmations (two epochs) to be “finalized”, i.e.,
m = 64 [22].

Figure 5 presents the end-to-end latency comparison between the baseline protocol (Sec-
tion 5.1), a sender-only commit-and-reveal protocol, as presented in Strawman 1 (Section 3.1),
and F3B’s protocol – varying the size of the secret-management committee stated after
the string “F3B-”. With the new PoS consensus, finalizing any data in Ethereum requires
mLb = 64 ∗ 12 = 768 seconds. The baseline protocol’s total latency is 768 seconds, as it
requires only one write to the blockchain. Recall that in the sender-based commit-and-reveal
approach (Strawman I), the sender commits a hash to the blockchain, taking 768 seconds,
then reveals the transaction in another 768 seconds, totaling 1536 seconds. This results in a
100% latency overhead compared to the baseline, as the two steps must be sequential: the
hash must be finalized on the blockchain before the reveal transaction can be propagated.
Submarine, a more advanced approach that conceals the smart contract address, requires
three sequential transactions. The sender must publish these three transactions in order,
with the blockchain finalizing each one before the next one can be sent, suffering a latency
delay of 768 ∗ 3 = 2304 seconds or a 200% latency overhead compared to the baseline [39, 11].

Compared with F3B, the reveal phase (key-reconstruction step) does not require the
sender to write any data onto the blockchain. Therefore, we emphasize a significant difference
between F3B and other application-based commit-and-reveal approaches, where F3B requires
sending only one transaction to the underlying blockchain. Figure 5 shows that our design
brings a low-latency overhead of 197ms and 205ms for two protocols, equivalent to 0.026%
and 0.027% for Ethereum (relative to the 768 seconds finality time), under an SMC size of
128.

We acknowledge that some Ethereum users may accept a lower confirmation number to
accept a transaction, even though Ethereum officially requires 64 blocks [22]. Without loss of
generality, we outline different confirmation numbers with F3B’s latency overhead in Table 1.

AFT 2023



3:16 Flash Freezing Flash Boys(F3B)

1 2 4 8 16 32 64 128 256 512 1024    2048
Varying batching size with 128 trustees

0.0

50

100

150

200

250

300

350
Th

ro
ug

hp
ut

(tx
/s

ec
)

Throughput TDH2
Throughput PVSS
Latency TDH2
Latency PVSS

0.0

1

2

3

4

5

6

La
te

nc
y(

se
c)

Figure 6 Performance of the key construction.

8 16 32 64 128
Size of Secret-management Committee

0.1

1

10

100

1000

La
te

nc
y(

se
c)

DKG Setup
Resharing, No new trustee
Resharing, Replacing one trustee
Resharing, Replacing a quarter of trustees

Figure 7 The latency cost of DKG setup and
three resharing scenarios.

9.2 Throughput
Figure 6 presents the F3B’s throughput results with a secret-management committee consist-
ing of 128 trustees, assuming the underlying blockchain is not the bottleneck. If the keys are
individually reconstructed, F3B provides limited throughput due to network transmission
overhead incurred from sequential execution. Instead, we can batch keys by reconstructing
them concurrently and presenting them in one network transmission. We present this batch-
ing effect in Figure 6 by varying the batching size to measure throughput and corresponding
latency. By increasing the batching size from 1 to 2048, we can improve throughput from
5 txns/sec to 359 txns/sec with the TDH2 protocol, and from 4 txns/sec to 348 txns/sec
with the PVSS protocol. The increased throughput comes with a higher latency cost: With
a batching size of 2048, the key reconstruction step of TDH2 now takes 5.71 seconds to
process, and the same step of PVSS takes 5.88 seconds; this latency is equivalent to a 0.74%
and 0.77% latency overhead over Ethereum. Our results show that F3B provides more than
sufficient throughput to support Ethereum (15 tx/sec [51]).

9.3 Reconfiguration in TDH2
Figure 7 demonstrates the cost of reconfiguring a secret-management committee in the TDH2
protocol. Recall that DKG is a one-time setup operation per epoch, bootstrapped during
the previous epoch. Our experiment shows that, with a committee size of 128 trustees, DKG
takes about 144 seconds; this is about 37.5% of Ethereum’s epoch time (384 seconds). We
offer a further discussion about the transition between two epochs in Section 10.1. To provide
backward secrecy and dynamic membership, a secret-management committee can run a
verifiable resharing protocol [62] within an epoch and, by keeping the public key, without
interrupting users’ encryption. Figure 7 illustrates the cost of three scenarios: (a) resharing
among the same committee, (b) replacing one trustee, and (c) replacing a quarter of trustees.
They all exhibit latency of the same magnitude.

9.4 Storage Overhead
In the TDH2 protocol, as the symmetric key is encrypted with the shared public key, the
size of ck is independent of the number of trustees. We also optimize the original TDH2
protocol to remove the label L from the ciphertext but only insert L in the computation



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:17

and verification steps of each party (consensus group, secret-management committee, sender)
for protection against replay attacks (Section 7.2). Ultimately, we achieve 80 bytes per
transaction of the storage overhead presented in Table 2.

In the PVSS protocol, however, the ciphertext ck contains encrypted shares, NIZK proofs,
and polynomial commitments. The size of the ck thus approximately grows linearly with the
number of trustees, as demonstrated in Table 2. The difference in storage overhead is one of
the trade-offs when system designers need to consider using which encryption algorithm in
F3B, as discussed in Section 5.4.

10 Discussion

In this section, we discuss some deployment challenges. We leave a detailed analysis for
future work.

10.1 Transition of Epoch
Each epoch has its unique public epoch key for a user to encrypt his symmetric key used
for encrypting a transaction. However, users will have difficulty choosing the correct epoch
key when the time is close to the transition between two epochs. With Fairblock [43] and
Shutter [57, 58], undesirable transaction revealing occurs when a user chooses the wrong
public key. Whereas, if the transaction is not finalized, F3B never reveals any transaction,
regardless of the chosen key; thus offering confidentiality to all unfinalized transactions. We
also expect that such an epoch transition is infrequent, compared with a block transition,
thus it causes much less trouble to users. In F3B, if a user uses an old epoch key for his
encryption, he can safely try again to select the new epoch key. To mitigate the issue even
more, the expiring epoch committee can offer some grace period, thus allowing both old and
new epoch keys to be valid for a certain period. This significantly reduces the danger of a
user choosing an incorrect key.

10.2 Ethereum Gas Fees
Ethereum uses gas fees to cover the cost of executing a transaction and implements a
maximum gas limit per block. Incorporating F3B on Ethereum would then require (1)
that the gas limit of each transaction to be in cleartext, and (2) that the summation of all
transactions’ gas limit within a block does not exceed the block gas limit. This opens the
possibility for another type of spamming attack (Section 8.1), where an adversary submits
transactions with substantial gas limits, thus leaving little room for other transactions.

Recall that the actual gas used by transactions cannot be determined because the
sender encrypts its contents, and that accurately estimating the gas cost of a transaction is
particularly difficult due to the uncertainty of the global state when validators process the
transaction. One potential approach to mitigating this kind of attack would be to then burn
the remaining (unused) gas. However, this approach could be too strict in practice, hence we
can instead envision partial refunds: refunding the remaining gas up to a percentage.

10.3 Verifiable Key Propagation
Under our proposed protocol, every consensus node must fetch the shares and run the
Lagrange interpolation to reconstruct the key. Would it instead be possible for one of the
consensus nodes to reconstruct the symmetric key k from the secret shares and to propagate
it to other consensus nodes with a succinct proof?

AFT 2023



3:18 Flash Freezing Flash Boys(F3B)

Therefore, we propose a solution that requires additional storage overhead in exchange
for faster verification: Instead of constructing their encrypted transaction as (ck, ctx), the
sender additionally adds a hash of the symmetric key hk = H(k) as the third entry, creating
the following signed write transaction: txw = [ck, ctx, hk]sigskA

.
During key reconstruction, after recovering or receiving k, consensus nodes need to verify

whether the hash of k is consistent with the one (hk) published on the ledger. If it is
consistent, a consensus node can continue to decrypt the transaction and propagate the key k

to others. If it is inconsistent, however, a consensus node must reconstruct the key from
decryption shares and publish the shares to the underlying blockchain to slash the sender
who provides a wrong hk.

10.4 Metadata Leakage

In our architecture, adversaries can only observe encrypted transactions until they are
finalized, thus preventing the revelation of transaction contents to launch front-running
attacks. Nevertheless, to launch speculative attacks, adversaries can rely on side channels
such as transaction metadata. Concretely, as the sender needs to pay the storage fee
(Section 8.1) for publishing an encrypted transaction to the underlying blockchain, this leaks
the sender’s address. Knowledge of the sender’s address can help in launching a front-running
attack because an adversary might be able, based on the sender’s history, to predict the
sender’s behavior. To prevent this second-order front-running attack, a sender can use
a different address to pay for the storage fee. The underlying blockchain can also offer
anonymous payment to users, such as Zerocash [49] or a mixing service [66], to further hide
the payment address. Another side-channel leakage is the size of the encrypted transaction or
the time the transaction is propagated. A possible remedy for mitigating metadata leakage
is PURBs [45].

10.5 Key Storage and Node Catchup

In our protocol, if a new node wants to join the consensus group, it cannot execute the
historical transactions to catch up, unless it obtains all decryption keys. The secret-manage-
ment committee or consensus group can store these keys independently from the blockchain,
but this requires them to maintain an additional immutable ledger. As consensus nodes
already maintain one immutable storage medium, namely the underlying blockchain, the
keys can be stored on this medium as metadata; and the blockchain rule can require storing
valid keys when producing blocks.

However, this optimization brings about a timing issue, i.e., When should the blockchain
require the consensus group to store keys in a block? From our protocol, the transaction
is finalized at block height n and revealed at block height n + m, thus making the earliest
block to write the key at block height n + m + 1. With respect to the latest block height to
write the key, there is much more flexibility and we need to consider the balance between
the delay tolerance for all consensus nodes to retrieve the key and the time that consensus
nodes must retain the key. Assuming that the key reconstruction step takes up to δ block
times, the key should be written in or before the block n + m + δ.

Although this setup would work well for a blockchain with fixed block time, care must
be taken for blockchains where block time is probabilistic as the key might not have been
replicated to all consensus nodes at block height n + m + δ, thus some artificial delay for
new blocks could be induced.



H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:19

11 Related Work

Namecoin is a decentralized name service and an early work on front-running protection
using a commit-and-reveal design [29]. In Namecoin, a user first broadcasts a salted hash of
their name and then, after finality, broadcasts the actual name. Our first strawman protocol
(Section 3.1) is based on Namecoin.

After Namecoin, Eskandari et al. [20] systematized front-running attacks on the block-
chain by presenting three types of front-running attacks: displacement, insertion, and
suppression. Daian et al. [15] also quantified front-running attacks from an economic point of
view, determining that front-running attacks can also pose a security risk to the underlying
consensus layer by incentivizing unnecessary forks driven by the maximal extractable value
(MEV).

Many previous works explore the idea of applying threshold cryptography on blockchain.
Virtual ASICs use threshold encryption to implement an all-or-nothing broadcast in the
blockchain layer [26]. Sikka [59], Ferveo (Anoma) [5], Schmid [52], Dahlia [40], and Helix [3]
apply threshold encryption to mitigate front-running but only present discussions with specific
consensus algorithms. Fairblock [43] and Shutter [57, 58] enable encrypted transactions on
a per-block basis, but if an encrypted transaction fails to be included in the sender-chosen
block, then the transaction would be revealed; our Strawman III design (Section 3.3) is based
on their approach.

Calypso is a framework that enables on-chain secrets by adopting threshold encryption
governed by a secret-management committee [33]. Calypso allows ciphertexts to be stored on
the blockchain and collectively decrypted by trustees according to a predefined policy. F3B
leverages Calypso to specifically mitigate front-running attacks and extends its functionality
to release the transaction contents once finalized automatically. F3B adopts per-transaction
encryption, thus protecting all unfinalized transactions from front-running attacks, even if
the transactions are delayed.

Other works adopt different approaches to mitigate front-running. A series of recent
studies focus on fair ordering [30, 35, 36], but they cannot prevent an adversary with a
rapid network connection [4]. Wendy explores the possibility of combining fair ordering
with commit-and-reveal [36] but is in need of quantitative overhead analysis. Submarine is
an application-layer front-running protection approach that extends a commit-and-reveal
design to prevent leakage of the smart contract address. However, it presents a high latency
overhead by requiring senders to have three rounds of communication with the underlying
blockchain [39, 11].

Some works adopt time-lock puzzles [48] to blind transactions. For example, the injective
protocol [12] uses a verifiable delay function [10] to achieve a proof-of-elapsed-time. However,
an open challenge remains to link the time-lock puzzle parameters to an actual real-world
delay [4].

Finally, works such as MEV-SGX [41], Tesseract [6], Secret Network [54], and Fairy [60]
use a trusted execution environment [64] to mitigate front-running. Nevertheless, these
approaches use a centralized component that is then subject to a single point of failure or
compromise [47, 61].

12 Conclusion

In this paper, we have introduced F3B, a novel blockchain architecture that addresses front-
running attacks with TDH2 and PVSS as threshold encryption protocols on a per-transaction
basis. Our evaluation of F3B demonstrates that F3B is agnostic to consensus algorithms

AFT 2023



3:20 Flash Freezing Flash Boys(F3B)

and to existing smart-contract implementations. We have also shown that F3B meets the
necessary throughput while presenting a low-latency overhead, thus fitting with Ethereum.
Given that the deployment of F3B would require modifications to a blockchain’s execution
layer, F3B, in return, would also provide a substantial benefit: the F3B-deployed blockchain
would now, by default, contain standard front-running protection for all applications in need
at once without requiring any modifications to smart contracts themselves.

References
1 Nasdaq: Front running. https://www.nasdaq.com/glossary/f/front-running, 2018. Ac-

cessed: 2022-04-17.
2 Prashant Ankalkoti and SG Santhosh. A relative study on bitcoin mining. Imperial Journal

of Interdisciplinary Research (IJIR), 3(5):1757–1761, 2017.
3 Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen Tamari,

and David Yakira. Helix: A scalable and fair consensus algorithm resistant to ordering
manipulation. Cryptology ePrint Archive, 2018.

4 Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo
Gentile. Sok: Mitigation of front-running in decentralized finance. Cryptology ePrint Archive,
2021.

5 Joseph Bebel and Dev Ojha. Ferveo: Threshold decryption for mempool privacy in bft
networks. Cryptology ePrint Archive, 2022.

6 Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels. Tesseract:
Real-time cryptocurrency exchange using trusted hardware. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 1521–1538, 2019.

7 Dan Bernhardt and Bart Taub. Front-running dynamics. Journal of Economic Theory,
138(1):288–296, 2008.

8 Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 967–980, 2013.

9 Blocks, 2022. Accessed: 2022-10-03. URL: https://ethereum.org/en/developers/docs/
blocks.

10 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Annual international cryptology conference, pages 757–788. Springer, 2018.

11 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards
principled bug bounties and {Exploit-Resistant} smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

12 Eric Chen and Albert Chon. Injective protocol: A collision resistant decentralized exchange
protocol [White paper], 2018. URL: https://coinpare.io/whitepaper/injective-protocol.
pdf.

13 Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostrovsky, and Vassilis Zikas.
Fairmm: A fast and frontrunning-resistant crypto market-maker. Cryptology ePrint Archive,
2021.

14 Coinbase. Coinbase confirmations, 2022(?). Accessed: 2022-03-03. URL: https:
//help.coinbase.com/en/coinbase/getting-started/crypto-education/glossary/
confirmations.

15 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

16 N Neha Dalwadi and C Mamta Padole. Comparative study of clock synchronization algorithms
in distributed systems. Advances in Computational Sciences and Technology, 10(6):1941–1952,
2017.

https://www.nasdaq.com/glossary/f/front-running
https://ethereum.org/en/developers/docs/blocks
https://ethereum.org/en/developers/docs/blocks
https://coinpare.io/whitepaper/injective-protocol.pdf
https://coinpare.io/whitepaper/injective-protocol.pdf
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/glossary/confirmations
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/glossary/confirmations
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/glossary/confirmations


H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:21

17 dapp.org. Uniswap v2 audit report, 2020. Accessed: 2022-01-22. URL: https://dapp.org.
uk/reports/uniswapv2.html.

18 Defi pulse. URL: https://www.defipulse.com/?time=All.
19 Dedis ledger architecture. URL: https://github.com/dedis/dela.
20 Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty:

Front-running attacks on blockchain. In Financial Cryptography Workshops, volume 11599 of
Lecture Notes in Computer Science, pages 170–189. Springer, 2019.

21 Gas and fees, 2022. Accessed: 2022-10-03. URL: https://ethereum.org/en/developers/
docs/gas/.

22 Gasper, 2022. Accessed: 2022-10-03. URL: https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/gasper/.

23 The merge, 2022. Accessed: 2022-10-03. URL: https://ethereum.org/en/upgrades/merge/.
24 Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual

Symposium on Foundations of Computer Science (sfcs 1987), pages 427–438. IEEE, 1987.
25 Flashbots protect. URL: https://docs.flashbots.net/flashbots-protect/overview.
26 Chaya Ganesh, Claudio Orlandi, Daniel Tschudi, and Aviv Zohar. Virtual asics: generalized

proof-of-stake mining in cryptocurrencies. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology, pages 173–191. Springer, 2021.

27 Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 295–310. Springer, 1999.

28 Go. The go programming language, 2009. URL: https://go.dev.
29 Harry A Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and Arvind Narayanan.

An empirical study of namecoin and lessons for decentralized namespace design. In WEIS.
Citeseer, 2015.

30 Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permission-
less setting. Cryptology ePrint Archive, 2021.

31 Olga Kharif. Cryptokitties mania overwhelms ethereum network’s processing, 2017.
URL: https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-
becomes-most-widely-used-ethereum-app.

32 Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th usenix security symposium (usenix security 16), pages 279–296, 2016.

33 Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and
Bryan Ford. Calypso: Private data management for decentralized ledgers. Cryptology ePrint
Archive, 2018.

34 Kraken. Cryptocurrency deposit processing times, 2022(?). Accessed: 2022-03-03. URL:
https://support.kraken.com/hc/en-us/articles/203325283-.

35 Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages
25–36, 2020.

36 Klaus Kursawe. Wendy grows up: More order fairness. In International Conference on
Financial Cryptography and Data Security, pages 191–196. Springer, 2021.

37 https://github.com/dedis/kyberThe Kyber Cryptography Library, 2010 – 2022.
38 Michael Lewis. Flash boys: a Wall Street revolt. WW Norton & Company, 2014.
39 LibSubmarine. Defeat front-running on ethereum, 2017(?). Accessed: 2022-01-24. URL:

https://libsubmarine.org.
40 Dahlia Malkhi and Pawel Szalachowski. Maximal extractable value (mev) protection on a dag.

arXiv preprint arXiv:2208.00940, 2022.
41 Mev-sgx: A sealed bid mev auction design, 2021. URL: https://ethresear.ch/t/mev-sgx-

a-sealed-bid-mev-auction-design/9677.

AFT 2023

https://dapp.org.uk/reports/uniswapv2.html
https://dapp.org.uk/reports/uniswapv2.html
https://www.defipulse.com/?time=All
https://github.com/dedis/dela
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/upgrades/merge/
https://docs.flashbots.net/flashbots-protect/overview
https://go.dev
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://www.bloomberg.com/news/articles/2017-12-04/cryptokitties-quickly-becomes-most-widely-used-ethereum-app
https://support.kraken.com/hc/en-us/articles/203325283-
https://github.com/dedis/kyber
https://libsubmarine.org
https://ethresear.ch/t/mev-sgx-a-sealed-bid-mev-auction-design/9677
https://ethresear.ch/t/mev-sgx-a-sealed-bid-mev-auction-design/9677


3:22 Flash Freezing Flash Boys(F3B)

42 Edvardas Mikalauskas. 280 million stolen per month from crypto transactions, 2021.
Accessed: 2022-02-16. URL: https://cybernews.com/crypto/flash-boys-2-0-front-
runners-draining-280-million-per-month-from-crypto-transactions.

43 Peyman Momeni. Fairblock: Preventing blockchain front-running with minimal overheads.
Master’s thesis, University of Waterloo, 2022.

44 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

45 Kirill Nikitin, Ludovic Barman, Wouter Lueks, Matthew Underwood, Jean-Pierre Hubaux,
and Bryan Ford. Reducing metadata leakage from encrypted files and communication with
purbs. Proceedings on Privacy Enhancing Technologies, 2019(4):6–33, 2019.

46 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 643–673. Springer, 2017.

47 Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Crosstalk:
Speculative data leaks across cores are real. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 1852–1867. IEEE, 2021.

48 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology. Laboratory for Computer
Science, 1996.

49 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE symposium on security and privacy, pages 459–474. IEEE, 2014.

50 Alexander Savelyev. Contract law 2.0:‘smart’contracts as the beginning of the end of classic
contract law. Information & communications technology law, 26(2):116–134, 2017.

51 Markus Schäffer, Monika di Angelo, and Gernot Salzer. Performance and scalability of private
ethereum blockchains. In International Conference on Business Process Management. Springer,
2019.

52 Noah Schmid. Secure causal atomic broadcast, 2021. URL: https://crypto.unibe.ch/
archive/theses/2021.bsc.noah.schmid.pdf.

53 Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to
electronic voting. In Annual International Cryptology Conference, pages 148–164. Springer,
1999.

54 Secret markets: Front running prevention for automated market makers, 2020. URL: https:
//scrt.network/blog/secret-markets-front-running-prevention.

55 Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop on the theory
and application of cryptographic techniques, pages 47–53. Springer, 1984.

56 Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen cipher-
text attack. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 1–16. Springer, 1998.

57 Combating front-running and malicious mev using threshold cryptography. URL: https:
//blog.shutter.network.

58 Shutterized beacon chain. URL: https://ethresear.ch/t/shutterized-beacon-chain/
12249.

59 URL: https://sikka.tech.
60 Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko Vukolić. Adding

fairness to order: Preventing front-running attacks in bft protocols using tees. In 2021 40th
International Symposium on Reliable Distributed Systems (SRDS), pages 34–45. IEEE, 2021.

61 Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the intel {SGX} kingdom with transient {Out-of-Order} execution. In 27th USENIX
Security Symposium (USENIX Security 18), pages 991–1008, 2018.

https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions
https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions
https://crypto.unibe.ch/archive/theses/2021.bsc.noah.schmid.pdf
https://crypto.unibe.ch/archive/theses/2021.bsc.noah.schmid.pdf
https://scrt.network/blog/secret-markets-front-running-prevention
https://scrt.network/blog/secret-markets-front-running-prevention
https://blog.shutter.network
https://blog.shutter.network
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://sikka.tech


H. Zhang, L.-H. Merino, Z. Qu, M. Bastankhah, V. Estrada-Galiñanes, and B. Ford 3:23

62 Theodore M Wong, Chenxi Wang, and Jeannette M Wing. Verifiable secret redistribution for
archive systems. In First International IEEE Security in Storage Workshop, 2002. Proceedings.,
pages 94–105. IEEE, 2002.

63 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

64 Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel® software guard extensions
(intel® SGX) software support for dynamic memory allocation inside an enclave. Proceedings
of the Hardware and Architectural Support for Security and Privacy 2016, pages 1–9, 2016.

65 Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and Bryan Ford. F3b: A low-
latency commit-and-reveal architecture to mitigate blockchain front-running. arXiv preprint
arXiv:2205.08529, 2022.

66 Jan Henrik Ziegeldorf, Roman Matzutt, Martin Henze, Fred Grossmann, and Klaus Wehrle.
Secure and anonymous decentralized bitcoin mixing. Future Generation Computer Systems,
80:448–466, 2018.

AFT 2023





Designing Multidimensional Blockchain Fee
Markets
Theo Diamandis # Ñ

MIT CSAIL, Cambridge, MA, USA

Alex Evans #

Bain Capital Crypto, San Francisco, CA, USA

Tarun Chitra #

Gauntlet, New York, NY, USA

Guillermo Angeris # Ñ

Bain Capital Crypto, San Francisco, CA, USA

Abstract
Public blockchains implement a fee mechanism to allocate scarce computational resources across
competing transactions. Most existing fee market designs utilize a joint, fungible unit of account
(e.g., gas in Ethereum) to price otherwise non-fungible resources such as bandwidth, computation,
and storage, by hardcoding their relative prices. Fixing the relative price of each resource in this
way inhibits granular price discovery, limiting scalability and opening up the possibility of denial-of-
service attacks. As a result, many prominent networks such as Ethereum and Solana have proposed
multidimensional fee markets. In this paper, we provide a principled way to design fee markets
that efficiently price multiple non-fungible resources. Starting from a loss function specified by the
network designer, we show how to dynamically compute prices that align the network’s incentives (to
minimize the loss) with those of the users and miners (to maximize their welfare), even as demand for
these resources changes. We derive an EIP-1559-like mechanism from first principles as an example.
Our pricing mechanism follows from a natural decomposition of the network designer’s problem
into two parts that are related to each other via the resource prices. These results can be used to
efficiently set fees in order to improve network performance.

2012 ACM Subject Classification Theory of computation → Convex optimization; Information
systems → Digital cash; Theory of computation → Algorithmic mechanism design

Keywords and phrases Blockchains, transaction fees, convex optimization, mechanism design

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.4

Related Version Full Version: https://arxiv.org/abs/2208.07919 [27]

Supplementary Material Software (Source Code): https://github.com/bcc-research/resource-
pricing, archived at swh:1:dir:7fda6b4657a257cb9fd944628b905f45ec938c09

Acknowledgements We would like to thank John Adler, Vitalik Buterin, Dev Ojha, Kshitij Kulkarni,
Matheus Ferreira, Barnabé Monnot, and Dinesh Pinto for helpful conversations, insights, and edits.
We’re especially appreciative to John Adler for bearing with us through many drafts of this work
and consistently providing valuable feedback.

1 Introduction

Public blockchains allow any user to submit a transaction that modifies the shared state
of the network. Transactions are independently verified and executed by a decentralized
network of full nodes. Because full nodes have finite resources, blockchains limit the total
computational resources that can be consumed per unit of time. As user demand may
fluctuate, most blockchains implement a transaction fee mechanism in order to allocate finite
computational capacity among competing transactions.

© Theo Diamandis, Alex Evans, Tarun Chitra, and Guillermo Angeris;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tdiamand@mit.edu
https://www.theodiamandis.com
mailto:aevans@baincapital.com
mailto:tarun@gauntlet.network
mailto:gangeris@baincapital.com
https://angeris.github.io
https://doi.org/10.4230/LIPIcs.AFT.2023.4
https://arxiv.org/abs/2208.07919
https://github.com/bcc-research/resource-pricing
https://github.com/bcc-research/resource-pricing
https://archive.softwareheritage.org/swh:1:dir:7fda6b4657a257cb9fd944628b905f45ec938c09;origin=https://github.com/bcc-research/resource-pricing;visit=swh:1:snp:ffd5592e4de0f9b56feaff4882677131a19d6b6c;anchor=swh:1:rev:4435a8cd11287927c69a47afd2bc3a1c5875c9af
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Multidimensional Blockchain Fee Markets

Smart contracts and gas. Many blockchains allow transactions to submit and/or execute
programs that exist on-chain called smart contracts. Once such a transaction is included in
a block, full nodes must re-execute the transaction in order to obtain the resulting updated
state of the ledger. All of these transactions consume computational resources, whose total
supply is finite. To prevent transactions with excessive resource use and transaction spam,
some smart-contract blockchains require users to pay fees in order to compensate the network
for processing their transactions.

Most smart contract platforms calculate transaction fees based on a joint unit of account.
In the Ethereum Virtual Machine (EVM), this unit is called gas. Each operation in the EVM
requires a hardcoded amount of gas which is intended to reflect its relative resource usage.
The network enforces a limit on the total amount of gas consumed across all transactions in
a block. This limit, called the block limit, prevents the chain from expending computational
resources too quickly for full nodes to catch up to the latest state in a reasonable amount of
time. Block limits must take into account the maximum amount of each resource that each
block may consume (such as storage, bandwidth, or memory) without posing an extreme
burden on full nodes meeting the minimal hardware specifications. Because the block limit
fixes the total gas supply in each block, the price of gas in “real” terms (e.g., in terms of US
Dollars) fluctuates based on demand for transactions in the block.

One-dimensional transaction fees. Calculating transaction fees through a single, joint unit
of account, such as gas, introduces two major challenges. First, if the hardcoded costs of each
operation are not precisely reflective of their relative resource usage, there is a possibility of
denial-of-service attacks (specifically, resource exhaustion attacks [44]), where an attacker
exploits resource mispricing to overload the network. Historically, the Ethereum network has
suffered from multiple DoS attacks [13, 14, 52] and has had to manually adjust the relative
prices accordingly (e.g., [12, 22]). Amending the hardcoded costs of each gas operation in
response to such attacks typically requires a hard fork of the client software.

Second, one-dimensional fee markets limit the theoretical throughput of the network.
Using a joint unit of account, such as gas, to price separate resources decouples their price
from supply and demand. As an extreme example to illustrate this dynamic, if the block gas
limit is fully saturated with exclusively CPU-intensive operations, gas price will increase as
transactions compete for limited space. The cost of transactions that consume exclusively
network bandwidth (and nearly no CPU resources) will also increase because these also
require gas, even if demand and supply for bandwidth resources across the network remain
unchanged. As a result, fewer bandwidth-intensive transactions can be included in the block
despite spare capacity, limiting throughput. This limitation occurs because the joint unit
of account only allows the network to price resources relative to each other and not in real
terms based on the supply and demand for each resource. As we will soon discuss, allowing
resources to be priced separately promotes more efficient resource utilization by enabling
more precise price discovery. We note that this increase in throughput need not increase
hardware requirements for full nodes.

Multidimensional fee markets. Due to the potential scalability benefits of more granular
price discovery, a number of popular smart contract platforms are actively exploring multidi-
mensional fee market mechanisms [5, 18]. We discuss some example proposals that are under
active development below.



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:3

Rollups and data markets. Rollups are a popular scaling technology that effectively de-
couples transaction validation and execution from data and consensus [17]. In rollups, raw
transaction data is posted to a base blockchain. Rollups also periodically post succinct proofs
of valid execution to the base chain in order to enable secure bridging, prevent rollbacks, and
arbitrate potential disputes by using the base chain as an anchor of trust. Rollups naturally
create two separate fee markets, one for base layer transactions and one for rollup execution.
As rollups have become a popular design pattern for achieving scalability, specialized block-
chains (called lazy blockchains) that exclusively order raw data through consensus (i.e., do
not perform execution) have emerged [8, 7, 45, 43, 51]. These blockchains naturally allow
for transaction data/bandwidth and execution to be priced through independent (usually
one-dimensional) fee markets [4]. Similarly, Ethereum developers have proposed EIP-2242,
wherein users may submit special transactions which contain an additional piece of data
called a blob [2, 1]. Blobs may contain arbitrary data intended to be interpreted and executed
by rollups rather than the base chain. Later, EIP-4844 extended these ideas by establishing
a two-dimensional fee market wherein data blobs and base-chain gas have different limits
and are priced separately [19]. EIP-4844 therefore intends to increase scalability for rollups,
as blobs do not have to compete with base-chain execution.

Incentivizing parallelization. Most smart contract platforms, including the EVM, execute
program operations sequentially by default, limiting performance. There are several proposals
to enable parallel execution in the EVM which generally fall into two categories. The
first involves minimal changes to the EVM and pushes the responsibility of identifying
opportunities for parallel execution to full nodes [33, 24, 49]. The other approach involves
access lists which require users to specify which accounts their transaction will interact with,
allowing the network to easily identify non-conflicting transactions that can be executed
in parallel [15, 23]. While Ethereum makes access lists optional, other virtual machine
implementations, such as Solana Sealevel and FuelVM, require users to specify the accounts
their transaction will interact with [53, 38, 3]. Despite this capability, a large fraction of
transactions often want to access the same accounts in scenarios including auctions, arbitrage
opportunities, and new product launches. Such contention significantly limits the potential
benefits of the virtual machine’s parallelization capabilities. As a result, developers of
Solana proposed multidimensional fee markets that price interactions with each account
separately [54]. Transactions which require sequential execution are charged higher fees,
incentivizing usage of spare capacity on multi-core machines.

This paper. In this paper, we formally illustrate how to efficiently update resource prices,
what optimization problem these updates attempt to solve, and some consequences of these
observations. We frame the pricing problem in terms of an idealized, omniscient network
designer who chooses transactions to include in blocks in order to maximize total welfare,
subject to demand constraints. (The designer is omniscient as the welfare is unknown and
likely unmeasurable in any practical setting.) We show that this problem, which is the
“ideal end state” of a blockchain but not immediately useful by itself, decomposes into two
problems, coupled by the resource prices. One of these two problems represents the cost
to the network for providing certain resources and is simple enough to be solved on chain.
The other is a maximal-utility problem that miners and users implicitly solve when creating
and including transactions for a given block. Correctly setting the resource prices aligns
incentives such that the resource costs to the network are exactly balanced by the utility
gained by the users and miners. This, in turn, leads to block allocations which solve the
original “ideal” problem, on average.

AFT 2023



4:4 Multidimensional Blockchain Fee Markets

For convenience, we provide appendix A in the full version [27] as a short introduction to
convex optimization. We recommend readers unfamiliar with convex optimization at least
skim this appendix, as it provides a short introduction to all the mathematical definitions
and major theorems used in this paper.

1.1 Related work
The resource allocation problem has been studied in many fields, including operations
research and computer systems. Agrawal, et al. [6] proposed a similar formulation and price
update scheme for fungible resources where utility is defined per-transaction. Prior work
on blockchain transaction fees varies from the formal axiomatic analysis of game theoretic
properties that different fee markets should have [48, 25] to analysis of dynamic fees from
a direct algorithmic perspective [31, 39, 47]. Works of the latter form generally focus on
whether the system converges to an equilibrium. Moreover, these mechanisms focus on
dynamic pricing at the block level (e.g., how many transactions should be allowed in a block?)
and not directly on questions of how capacity should be allocated and priced across different
transaction types.

EIP-1559. EIP-1559 [21], implemented last year, proposed major changes to Ethereum’s
transaction fee mechanism. Specifically, EIP-1559 implemented a base fee for transactions to
be included in each block, which is dynamically adjusted to hit a target block usage and
burned instead of rewarded to the miners. While EIP-1559 is closely related to the problem
we consider, it ultimately has a different goal: EIP-1559 attempts to make the fee estimation
problem easier in a way that disincentivizes manipulation and collusion [16, 48]. We, on the
other hand, aim to price resources dynamically to achieve a given network-specified objective.
Finally, we note that prior work such as [31] has proved incentive compatibility for a large
set of mechanisms that are a superset of EIP-1559. It is likely (but not proven in this work)
that our model fits within an extension of their incentive compatibility framework. We leave
game theoretic analysis and strategies to ensure incentive compatibility as future work.

2 Transactions and resources

Before introducing the network’s resource pricing problem, we discuss the general set up and
motivation for the problem in the case of blockchains.

Transactions. We will start by reasoning about transactions. A transaction can represent
arbitrary data sent over the peer-to-peer network in order to be appended to the chain.
Typically, a transaction will represent a value transfer or a call to a smart contract that exists
on chain. These transactions are broadcasted by users through the peer-to-peer network
and collected by consensus nodes in the mempool, which contains all submitted transactions
that have not been included on chain. A miner gets to choose which transactions from the
mempool are included on chain. Miners may also outsource this process to a block builder in
exchange for a reward [20]. Once a transaction is included on chain, it is removed from the
mempool. (Any conflicting transactions are also removed from the mempool.)

Nodes. Every transaction needs to be executed by full nodes (which we will refer to as
nodes). Nodes compute the current state of the chain by executing and checking the validity
of all transactions that have been included on the chain since the genesis block. Many
blockchains have minimum computational requirements for nodes in a blockchain: any node



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:5

meeting these requirements should be able to eventually “catch up” to the head of the chain
in a reasonable amount of time, i.e., execute all transactions and reach the latest state, even
as the chain continues to grow. (For example, Ethereum requires 4GB RAM and 2TB of
SSD Storage, and they recommend at least a Intel NUC, 7th gen processor [30].) These
requirements both limit the computational resources each block is allowed to consume and
promote decentralization by ensuring the required hardware does not become prohibitively
expensive. If transactions are included in a blockchain faster than nodes are able to execute
them, nodes cannot reconstruct the latest state and can’t ascertain the validity of the chain.
This type of denial of service (DoS) attack is also referred to as a resource exhaustion attack.
(As a side note, in some systems, it is possible to provide an easily-verifiable certificate that
the state is correct. This certificate allows nodes to validate the state of the chain without
executing all past transactions. In these systems, the time-consuming step is generating the
certificate. A similar market mechanism might make sense for these systems, but we do not
explore this topic here.)

Resource targets and limits. There are several ways to prevent this type of denial of
service attack. For example, one method is to enforce that any valid transaction (or sequence
of transactions, e.g., a block) consumes at most some fixed upper bound of resources, or
combinations of resources. These limits are set so that a node satisfying the minimum node
requirements is always able to process transactions quickly enough to catch up to the head of
the chain in a reasonable amount of time. Another possibility is to disincentivize miners and
users from repeatedly including transactions that consume large amounts of resources while
allowing short “bursts” of resource-heavy transactions. This margin needs to be carefully
balanced so that a node meeting the minimum requirements is able to catch up after a
certain period of time. This intuition suggests having both a “resource target” and a larger
“resource limit,” which we will formalize in what follows.

Resources. Most blockchain implementations define a number of meterable resources (simply
resources from here on out) which we will label i = 1, . . . , m, that a transaction can consume.
For example, in Ethereum, the resources could be the individual Ethereum Virtual Machine
(EVM) opcodes used in the execution of a transaction. In this paper, the notion of a resource
is much more general than simply an opcode or an “execution unit”. Here, a resource can refer
to anything as coarse as “total bandwidth usage” or as granular as individual instructions
executed on a specific core of a machine – the only requirement for a resource, as used in
this paper, is that it can be easily and consistently metered across any node. For a given
transaction j = 1, . . . , n, we will let aj ∈ Rm

+ be the vector of resources that transaction j

consumes. In particular, the ith entry of this vector, (aj)i, denotes the amount of resource
i that transaction j uses. We note that the resource usage (aj)i does not, in fact, need to
be nonnegative. While our mechanism works in the more general case (with some small
modifications), we assume nonnegativity in this work for simplicity.

Combined resources. This framework naturally includes combinations of resources as
well. For example, we may have two resources R1 and R2, each cheap to execute once in a
transaction, which are costly to execute serially (i.e., it is costly to execute R1 and then R2 in
the same transaction). In this case, we can create a “combined” resource R1R2 which is itself
metered separately. Note that, in our discussion of resources, there is no requirement that
the resources be independent in any sense, and such “combined resources” are themselves
very reasonable to consider.

AFT 2023



4:6 Multidimensional Blockchain Fee Markets

Resource utilization targets. As mentioned previously, many networks have a minimum
node requirement, implying a sustained target for resource utilization in each group of
transactions added to the blockchain. (For simplicity, we will call this sequence of transactions
a block, though it could be any collection of transactions that makes sense for a given
blockchain.) We will write this resource utilization target as a vector b⋆ ∈ Rm whose ith
entry denotes the desired amount of resource i to be consumed in a block. The resource
utilization of a particular block is a linear function of the transactions included in a block.
We will denote the included transactions as a Boolean vector x ∈ {0, 1}n whose jth entry is
one if transaction j is included in the block and is zero otherwise. We will write A ∈ Rm×n

as a matrix whose jth column is the vector of resources aj consumed by transaction j. We
can then write the total quantity of consumed resources by this block as

y = Ax, (1)

where y ∈ Rm is a vector whose ith entry denotes the quantity of resource i consumed by all
transactions included in the block. Additionally, we can write the deviation from the target
utilization, sometimes called the residual, as

Ax − b⋆,

i.e., a vector whose ith element is the total quantity of resource i, consumed by transactions
in this block, minus the target b⋆

i for resource i. For example, in Ethereum post EIP-1559,
there is only one resource, gas, which has a target of 15M [29]. (We will see later how this
notion of a resource utilization target can be generalized to a loss function.)

Resource utilization limits. In addition to resource targets, a blockchain may introduce a
resource limit b ∈ Rm such that any valid block with transactions x must satisfy

Ax ≤ b.

Continuing the example from before, Ethereum after EIP-1559 has a single resource, gas,
with a resource limit of 30M.

Network fees. We want to incentivize users and miners to keep the total resource usage
“close” to b⋆. To this end, we introduce a network fee pi ∈ R for resource i = 1, . . . , m, which
we will sometimes call the resource price, or just the price. If transaction j with resource
vector aj is included in a block, a fee pT aj =

∑
i pi(aj)i must be paid to the network. (In

Ethereum, the network fee is implemented by burning some amount of the gas fee for each
transaction and can be thought of as the “burn rate”.) For now, we will assume that as the
fee pi gets larger, the amount of resource i used in a block (Ax)i will become smaller and
vice versa.

Resource mispricing. Given A and b, it is, in general, not clear how to set the fees p in order
to ensure the network has good performance (in other words, so that the resource utilization
is “close” to b⋆). As a real world example, starting in Ethereum block number 2283416 (Sept.
18, 2016) an attacker exploited the fact that resources were mispriced for the EXTCODESIZE
opcode, causing the network to slow down meaningfully. This mispricing was fixed via the
hard fork on block 2463000 (Oct. 18, 2016) with details outlined in EIP-150 [12]. (The
effects of this mispricing can still be observed when attempting to synchronize a full node. A
dramatic slowdown in downloading and processing blocks happens starting at the previously
mentioned block height.) Though usually less drastic, there have been similar events on
other blockchains, underscoring the importance of correctly setting resource prices.



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:7

Setting fees. We want a simple update rule for the network fees p with the following
properties:
1. If Ax = b⋆, then there is no update.
2. If (Ax)i > b⋆

i , then pi increases.
3. Otherwise, if (Ax)i < b⋆

i , then pi decreases.
There are many update rules with these properties. As a simple example, we can update the
network fees as

pk+1 =
(
pk + η(Ax − b⋆)

)
+ , (2)

where η > 0 is some (usually small) positive number, often referred to as the “step size” or
“learning rate”, k is the block number such that pk are the resource prices at block k, and
(w)+ = max{0, w} for scalar w and is applied elementwise for vectors. Recently, Ethereum
developers [18] proposed the update rule

pk+1 = pk ⊙ exp (η(Ax − b⋆)) . (3)

Here, exp(·) is understood to apply elementwise, while ⊙ is the elementwise or Hadamard
product between two vectors. The remainder of this paper will show that many update rules
are attempting to (approximately) solve an instance of a particular optimization problem
with a natural interpretation, where parts of the update rule come from a specific choice of
objective function by the network designer. (We show in section 3.3 that a similar rule to (3)
can be derived as a consequence of the framework presented in this paper, under a particular
choice of variable transformation.)

We note that [31] has studied fixed points of such iterations in the one-dimensional case,
extending the analysis of EIP-1559. However, the multidimensional scenario can be quite
a bit more subtle to analyze. For instance, the multiplicative update rule (3) can admit
“vanishing gradient” behavior in high-dimensions [34]. We suspect that the one-dimensional
fee model of [31] can be extended to the multidimensional rules (2) and (3) but leave this for
future work.

3 Resource allocation problem

As system designers, our ultimate goal is to maximize utility of the underlying blockchain
network by appropriately allocating resources to transactions. However, we cannot perform
this allocation directly, since we cannot control what users and miners wish to include in
blocks, nor do we know what the utility of a transaction is to users and miners. Instead,
we aim to set the fees p to ensure that the resource usage is approximately equal to the
desired target, which we will represent as an objective function. We will show later that
the update mechanisms proposed above naturally fall out of a more general optimization
formulation. Similarly to the Transmission Control Protocol (TCP), each update rule is a
result of a particular objective function, chosen by the network designer [42, 41].

Loss function. We define a loss function of the resource usage, ℓ : Rm → R ∪ {∞}, which
maps a block’s resource utilization, y, to the “unhappiness” of the network designer, ℓ(y). We
assume only that ℓ is convex and lower semicontinuous. (We will not require monotonicity,
nonnegativity, or other assumptions on ℓ, but we will show that useful properties do hold in
these scenarios.)

AFT 2023



4:8 Multidimensional Blockchain Fee Markets

For example, the loss function can encode “infinite dissatisfaction” if the resource target
is violated at all:

ℓ(y) =
{

0 y = b⋆

∞ otherwise.
(4)

(Functions of this form, which are either 0 or ∞ at every point, are known as indicator
functions.) Note also that this loss is not differentiable anywhere, but it is convex. Another
possible loss, which is also an indicator function, is

ℓ(y) =
{

0 y ≤ b⋆

∞ otherwise.
(5)

This loss can roughly be interpreted as: we do not mind any usage below b⋆, but we are
infinitely unhappy with any usage above the target amounts. Alternatively, we may only
care about large deviations from the target b⋆:

ℓ(y) = (1/2)∥y − b⋆∥2
2,

or, perhaps, require that the loss is simply linear and independent of b⋆,

ℓ(y) = uT y, (6)

for some fixed vector u ∈ Rm. Another important family of losses are those which are
separable and depend only on the individual resource utilizations,

ℓ(y) =
m∑

i=1
ϕi(yi) (7)

where ϕi : R → R ∪ {∞} for i = 1, . . . , m, are convex, nondecreasing functions. (The loss (5)
is a special case of this loss, while (6) is a special case when the vector u is nonnegative.)
We will make the technical assumption that ϕi(0) < ∞ for every i, otherwise no resource
allocation would have finite loss.

We will see that each definition of a loss function implies a particular update rule for
the network fees p. This utility function can more generally be engineered to appropriately
capture tradeoffs in increasing throughput of a particular resource at the possible detriment
of other resources.

Resource constraints. Now that we have defined the network designer’s loss, which is a
way of quantifying “unhappiness” when the resource usage is y, we need some way to define
the transactions that users are willing to create and, importantly, that miners are willing
(and able) to include. We do this in a very general way by letting S ⊆ {0, 1}n be the set of
possible transactions that users and miners are willing and able to create and include. Note
that this set is discrete and can be very complicated or potentially hard to maximize over
(as is the case in practice). For example, the set S could encode a demand for transactions
which depend on other transactions being included in the block (as is the case in, e.g., miner
extractable value [37, 26, 46]), network-defined hard constraints of certain resources (such as
Ax ≤ b for every x ∈ S), and even very complicated interactions among different transactions
(if certain contracts can, for example, only be called a fixed number of times, as in NFT
mints). We make no assumptions about the structure of this set S but only require that the
included transactions, x ∈ {0, 1}n, obey the constraint x ∈ S.



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:9

Convex hull of resource constraints. A network designer may be more interested in
the long-term resource utilization of the network than the resource utilization of any one
particular block. In this case, the designer may choose to “average out” each transaction over
a number of blocks instead of deciding whether or not to include it in the next block. To
that end, we, as designers, will be allowed to choose convex combinations of elements of the
constraint set S, which we will write as conv(S). (In general, this means that we can pick
probability distributions over the elements of S, and x is allowed to be the expectation of any
such probability distribution; i.e., we only require that, for the designer, x is reasonable “in
expectation”.) Here, components of x may vary continuously between 0 and 1; these values
have a simple interpretation. If xi is not 0 or 1, then we can interpret the quantity 1/xi

as roughly the number of blocks after which transaction i is included. Of course, neither
users nor miners can choose transactions to be “partially included”, so this property will
only apply to the idealized problem we present below. While this relaxation might seem
unrealistically “loose”, we will see later how this easily translates to the realistic case where
transactions are either included or not (that is, xi is either 0 or 1) by users and miners.

Transaction utility. Finally, we introduce the transaction utilities, which we will write as
q ∈ Rn. The transaction utility qj for transaction j = 1, . . . , n denotes the users’ and miners’
joint utility of including transaction j in a given block. Note that it is very rare (if at all
possible) to know the values of q. However, we will see that, under mild assumptions, we do
not need to know the values of q in order to get reasonable prices, and reasonable update
rules will not depend on q.

Resource allocation problem. We are now ready to write the resource allocation problem,
which is to maximize the utility of the included transactions, minus the loss, over the convex
hull of possible transactions:

maximize qT x − ℓ(y)
subject to y = Ax

x ∈ conv(S).
(8)

This problem has variables x ∈ Rn and y ∈ Rm, and the problem data are the resource
matrix A ∈ Rm×n, the set of possible transactions S ⊆ {0, 1}n, and the transaction utilities
q ∈ Rn. Because the objective function is concave and the constraints are all convex, this is
a convex optimization problem. On the other hand, even though the set conv(S) is convex,
it is possible that conv(S) does not admit an efficient representation (for example, it may
contain exponentially many constraints) which means that solving this problem is, in general,
not easy.

Interpretation. We can interpret the resource allocation problem (8) as the “best case
scenario”, where the designer is able to choose which transactions are included (or “partially
included”) in a block in order to maximize the total utility. While this problem is not terribly
useful by itself, since (a) it cannot really be implemented in practice, (b) we often don’t
know q, and (c) we cannot “partially include” a transaction within a block, we will see that
it will decompose naturally into two problems. One of these problems can be easily solved on
chain, while the other is solved implicitly by the users (who send transactions to be included)
and miners (who choose which transactions to include). The solutions to the latter problem
can always be assumed to be integral; i.e., no transactions are “partially included”. This will

AFT 2023



4:10 Multidimensional Blockchain Fee Markets

allow us to construct a simple update rule for the prices, which does not depend on q. For
the remainder of the paper, we will call this combination of users and miners the transaction
producers.

Offchain agreements and producers. Due to the inevitability of user-miner collusion, we
consider the combination of the two, the transaction producers, as the natural unit. For
example, it is not easily possible to create a transaction mechanism where the users are
forced to pay miners some fixed amount, since it is always possible for miners to refund
users via some off-chain agreement [48]. Similarly, we cannot force miners to accept certain
transactions from users, since a miner always has plausible deniability of not having seen
a given transaction in the mempool. While not perfect for a general analysis of incentives,
this conglomerate captures the dynamics between the network’s incentives and those of the
miners and users better than assuming each is purely selfishly maximizing their own utility
(as opposed to strategically colluding) and suffices for our purposes.

3.1 Setting prices using duality
In this section, we will show a decomposition method for this problem. This decomposition
method suggests an algorithm (presented later) for iteratively updating fees in order to
maximize the transaction producers’ utility minus the loss of the network, given historical
observations.

To start, we will reformulate (8) slightly by pulling the constraint x ∈ conv(S) into the
objective,

maximize qT x − ℓ(y) − I(x)
subject to y = Ax

(9)

where I : Rn → R ∪ {∞} is the indicator function defined as I(x) = 0 if x ∈ conv(S) and
I(x) = +∞ otherwise.

Dual function. The Lagrangian [11, §5.1.1] for problem (9) is then

L(x, y, p) = qT x − ℓ(y) − I(x) + pT (y − Ax),

with dual variable p ∈ Rm. This corresponds to “relaxing” the constraint y = Ax to a penalty
pT (y − Ax) assigned to the objective, where the price per unit violation of constraint i is pi.
(Negative values denote refunds.) Rearranging slightly, we can write

L(x, y, p) = pT y − ℓ(y) + (q − AT p)T x − I(x).

The corresponding dual function [11, §5.1.2], which we will write as g : Rm → R ∪ {−∞}, is
found by partially maximizing L over x and y:

g(p) = sup
y

(
pT y − ℓ(y)

)
+ sup

x

(
(q − AT p)T x − I(x)

)
. (10)

Discussion. The first term can be recognized as the Fenchel conjugate of ℓ [11, §3.3]
evaluated at p, which we will write as ℓ∗(p), while the second term is the optimal value of
the following problem:

maximize (q − AT p)T x

subject to x ∈ conv(S),
(11)



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:11

with variable x ∈ Rn. We can interpret this problem as the transaction producers’ problem
of creating and choosing transactions to be included in a block in order to maximize their
utility, after netting the fees paid to the network. (We will sometimes refer to this problem
as the transaction producers’ packing problem.) We note that the optimal value of (11) in
terms of p, which we will write as f(p), is the pointwise supremum of a family of linear (and
therefore convex) functions of p, so it, too, is a convex function [11, §3.2.3]. Note that since
the objective is linear, problem (11) has the same optimal objective value as the nonconvex
problem

maximize (q − AT p)T x

subject to x ∈ S,

where we have replaced conv(S) with S. (See full version [27] appendix A.2 for a simple
proof.) Finally, since f(p) is the optimal value of problem (11) for fees p, the dual function g

can be written as

g(p) = ℓ∗(p)︸ ︷︷ ︸
network

+ f(p)︸︷︷︸
tx producers

.

Since the dual function g is the sum of convex functions ℓ∗ and f , it, too, is convex. (We
will make use of this property soon.) Having defined the dual function g, we will see how
this function can give us a criterion for how to best set the network fees p.

Duality. An important consequence of the definition of the dual function g is weak duality [11,
§5.2.2]. Specifically, letting s⋆ be the optimal objective value for problem (8), we have that
g(p) ≥ s⋆ for every possible choice of price p ∈ Rm. This is true because we have essentially
“relaxed” the constraint to a penalty, so any feasible point x, y for the original problem (9)
always has 0 penalty. (There may, of course, be other points that are not feasible for (9) but
are perfectly reasonable for this “relaxed” version, so we’ve only made the set of possibilities
larger.) The proof is a single line:

g(p) = sup
x,y

L(x, y, p) ≥ sup
y=Ax

L(x, y, p) = sup
y=Ax

(
qT x − ℓ(y) − I(x)

)
= s⋆.

A deep and important result in convex optimization is that, in fact, there exists a p⋆ for
which

g(p⋆) = s⋆,

under some basic constraint qualifications.1 In other words, adding the constraint y = Ax

to the problem is identical to correctly setting the prices p. Since we know for any p that
g(p) ≥ s⋆ then

g(p⋆) = inf
p

g(p),

or, that p⋆ is a minimizer of g. This motivates an optimization problem for finding the prices.

1 The condition is that the relative interior of A conv(S)∩dom ℓ is nonempty. Here, we write A conv(S) =
{Ax | x ∈ conv(S)} and dom ℓ = {x | ℓ(x) < ∞}, while the relative interior is taken with respect to
the affine hull of the set. This condition almost always holds in practice for reasonable functions ℓ and
sets S.

AFT 2023



4:12 Multidimensional Blockchain Fee Markets

The dual problem. The dual problem is to minimize g, as a function of the fees p. In other
words, the dual problem is to find the optimal value of

minimize g(p), (12)

with variable p ∈ Rm. If we can easily evaluate g, then, since this problem is a convex
optimization problem, as g is convex, solving it is usually also easy. An optimizer of the dual
problem has a simple interpretation using its optimality conditions. Let p⋆ be a solution to
the dual problem (12) for what follows. If the packing problem (11) has a unique solution x⋆

for p⋆, then the objective value f is differentiable at p⋆. (See full version [27] appendix A.2.)
Similarly, under mild conditions on the loss function ℓ (such as strict convexity) the function
ℓ∗ is differentiable at y⋆, with derivative satisfying ∇ℓ(y⋆) = p⋆. In this case, the optimality
conditions for problem (12) are that

∇g(p⋆) = y⋆ − Ax⋆ = 0. (13)

In other words, the fees p⋆ that minimize (12) are those that charge the transaction producers
the exact marginal costs faced by the network, ∇ℓ(Ax⋆) = p⋆. Furthermore, these are exactly
the fees which incentivize transaction producers to include transactions that maximize the
welfare generated minus the network loss, subject to resource constraints, since y⋆ and x⋆

are feasible and optimal for problem (8).

Differentiability. In general, g is not always differentiable, but is almost universally subdiffer-
entiable, under mild additional conditions on ℓ (e.g., ℓ does not contain a line). Condition (13)
may then be replaced with

0 ∈ ∂g(p⋆) = −Y ⋆(p⋆) + AX⋆(p⋆),

where

Y ⋆(p) = argmax
y

(
pT y − ℓ(y)

)
,

while X⋆(p) ⊆ conv(S) are the maximizers of problem (11) for price p. We define AX⋆(p) =
{Ax | x ∈ X⋆(p)}, and write ∂g(p⋆) for the subgradients of g at p⋆ (cf., full version [27]
appendix A). The condition then says that the intersection of the extremizing sets Y ⋆(p⋆)
and AX⋆(p⋆) is nonempty at the optimal prices p⋆. We show a special case of this below,
when p = 0, with a direct proof using strong duality that does not require these additional
conditions.

3.2 Properties
There are a number of properties of the prices p that can be derived from the dual problem (12).

Nonnegative prices. If the objective function ℓ is separable and nondecreasing, as in (7),
then any price pi feasible for problem (12) must be nonnegative, pi ≥ 0. (By feasible, we
mean that g(p) < ∞.) To see this, note that, by definition (7), we have

ℓ∗(p) = sup
y

(
pT y − ℓ(y)

)
=

m∑
i=1

sup
yi

(piyi − ϕi(yi)) ,

so we can consider each term individually. If pi < 0 then any yi ≤ 0 must have

piyi − ϕi(yi) ≥ piyi − ϕi(0) → ∞,

as yi → −∞ since ϕi(yi) is nondecreasing in yi. So g(p) → ∞ and therefore this choice of p

cannot be feasible, so we must have that pi ≥ 0.



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:13

Superlinear separable losses. If the losses ϕi are superlinear, in that

ϕi(z)
z

→ ∞, (14)

as z → ∞ and bounded from below, in addition to being nondecreasing, then ℓ∗(p) is finite
for p ≥ 0. This means that the effective domain of g, defined as the set of prices for which g

is finite,

dom g = {p ∈ Rm | g(p) < ∞},

is exactly the nonnegative orthant. (This discussion may appear somewhat theoretical, but
we will see later that it turns out to be an important practical point when updating prices.)
While not all losses are superlinear, we can always make them so by, e.g., adding a small,
nonnegative squared term to ϕi, say

ϕ̃i(z) = ϕi(z) + ρ(z)2
+,

where (z)+ = max{0, z} and ρ > 0, or by setting ϕi(z) = ∞ for z ≥ 0 large enough.

Subsidies. Alternatively, if the function ℓ is decreasing somewhere on the interior of its
domain, then there exist points y⋆ for which prices pi are negative – i.e., sometimes the
network is willing to subsidize usage by paying users to use the network to meet its intended
target. The interpretation is simple: if the base demand of the network is not enough
to meet the target usage, then the network has an incentive to subsidize users until the
marginal cost of the target usage matches the subsidy amounts. We note that this may only
apply to very specific transaction types in practice, as it is difficult to issue subsidies in an
incentive-compatible manner that doesn’t encourage the inclusion of “junk” transactions.

Maximum price. There often exist prices past which transaction producers would always
prefer to not submit a transaction (or, more generally, will only submit transactions that
consume no resources, if such transactions exist). In fact, we can characterize the set of all
such prices.

To do this, write S0 ⊆ S for the set of transactions bundles that use no resources, defined

S0 = {x ∈ S | Ax = 0}.

If 0 ∈ S then S0 is nonempty (as 0 ∈ S0), and we usually expect this set to be a singleton,
S0 = {0}. Otherwise, we are saying that there are transactions that are always costless to
include. Now, we will define the set

P =
⋂

x∈S\S0

{p ∈ Rm
+ | pT Ax > qT x}.

This is the set of prices p ∈ P such that, for every possible transaction bundle x ∈ S, the
price of this transaction bundle, pT Ax, paid to the network, is strictly larger than the total
welfare generated by including it, which is qT x. (That is, any transaction bundle x that is
not costless is always strictly worse than no transaction, for transaction producers, at these
prices.) The set P is nonempty since 1T Ax > 0 for every x ∈ S \ S0 (and S \ S0 is finite) so,
setting p = t1, we have that

pT Ax − qT x = t1T Ax − qT x → ∞ > 0,

AFT 2023



4:14 Multidimensional Blockchain Fee Markets

as t → ∞, so t1 ∈ P for t large enough. The set P is also a convex set, as it is the intersection
of convex sets. Additionally, if p ∈ P , then any prices p′ satisfying p′ ≥ p must also have
p′ ∈ P , where the inequality is taken elementwise. In English: if certain resource prices p ∈ P

would mean that transactions that consume resources are not included, then increasing the
price of any resources to p′ ≥ p also implies the same.

3.3 Solution methods
As mentioned before, the dual problem (12) is convex. This means that it can often be
easily solved if the function g (or its subgradients) can be efficiently evaluated. We will see
that, assuming users and miners are approximately solving problem (11), we can retrieve
approximate (sub)gradients of g and use these to (approximately) solve the dual problem (12).
In a less-constrained computational environment, a quasi-Newton method (e.g., L-BFGS)
would converge quickly to the optimal prices and be efficient to implement. However, these
methods aren’t amenable to on-chain computation due to their memory and computational
requirements. To solve for the optimal fees on chain, we therefore propose a modified version
of gradient descent which is easy to compute and does not require additional storage beyond
the fees themselves.

Projected gradient descent. A common algorithm for unconstrained function minimization
problems, such as problem (12), is gradient descent. In gradient descent, we are given an
initial starting point p0 and, if the function g is differentiable, we iteratively update the
prices in the following way:

pk+1 = pk − η∇g(pk).

Here, η > 0 is some (usually small) positive number referred to as the “step size” or “learning
rate” and k = 0, 1, . . . is the iteration number. This rule has a few important properties.
For example, if ∇g(pk) = 0, that is, pk is optimal, then this rule does not update the prices,
pk+1 = pk; in other words, any minimizer of g is a fixed point of this update rule. Additionally,
this rule can be shown to converge to the optimal value under some mild conditions on g,
cf. [9, §1.2]. This update also has a simple interpretation: if ∇g(pk) is not zero, then a small
enough step in the direction of ∇g(pk) is guaranteed to evaluate to a lower value than pk, so
an update in this direction decreases the objective g. (This is why the parameter η is usually
chosen to be small.)

Note that if the effective domain of the function g, dom g, is not Rm, then it is possible
that the (k + 1)st step ends up outside of the effective domain, pk+1 ̸∈ dom g, so g(pk) = ∞
which would mean that the gradient of g at price pk+1 would not exist. To avoid this, we can
instead run projected gradient descent, where we project the update step into the domain of
g, in order to get pk+1 ∈ dom g, i.e.,

pk+1 = proj(pk − η∇g(p)) (15)

where proj(z) is defined

proj(z) = argmin
p∈dom g

∥z − p∥2
2.

In English, proj(z) is the projection of the price to the nearest point in the domain of g, as
measured by the sum-of-squares loss ∥ · ∥2

2. (This always exists and is unique as the domain
of g is always closed and convex, for any loss function ℓ as defined above.) There is relatively
rich literature on the convergence of projected gradient descent, and we refer the reader
to [50, 9] for more.



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:15

Evaluating the gradient. In general, since we do not know q, we cannot evaluate the
function g at a certain point, say pk. On the other hand, the gradient of g at pk, when g

is differentiable, depends only on the solution to problem (11) and the maximizer for the
conjugate function ℓ∗, at the price pk. (This follows from the gradient equation in (13).) So,
if we know that transaction producers are solving their welfare maximization problem (11)
to (approximate) optimality, equation (13) suggests a simple descent algorithm for solving
the dual problem (12).

From before, let y⋆ be a maximizer of supy

(
yT pk − ℓ(y)

)
, which is usually easy to compute

in practice, and let x0 be an (approximate) solution to the transaction inclusion problem (11)
(observed, e.g., after the block is built with resource prices pk). We can approximate the
gradient of g at the current fees p using (13), where we replace the true solution x⋆ with
the observed solution x0. Since x0 is Boolean, we can compute the resource usage Ax0 after
observing only the included transactions. We can then update the fees pk in, say, block k, to
a new value pk+1 by using projected gradient descent with this new approximation:

pk+1 = proj(pk − η(y⋆ − Ax0)). (16)

Discussion. Whenever ℓ is differentiable at y⋆, we have that ∇ℓ(y⋆) = p. (To see this, apply
the first-order optimality conditions to the objective in the supremum in the definition of ℓ⋆.)
We can then think of y⋆ as the resource utilization such that the marginal cost to the network
∇ℓ is equal to the current fees p. Thus, the network aims to set p such that the realized
resource utilization is equal to y⋆. We can see that (15) will increase the network fee for a
resource being overutilized and decrease the network fee for a resource being underutilized.
This pricing mechanism updates fees to disincentivize future users and miners from including
transactions that consume currently-overutilized resources in future blocks. Additionally,
we note that algorithms of this form are not the only algorithms which are reasonable. For
example, any algorithm that has a fixed point p satisfying ∇g(p) = 0 and converges to this
point under suitable conditions is also similarly reasonable. One well-known example is an
update rule of the form of (3):

pk+1 = pk ⊙ exp(−η∇g(pk)),

when the prices must be nonnegative, i.e., when dom g ⊆ Rm
+ . We note that one important

part of reasonable rules is that they only depend on (an approximation of) the gradient of
the function g, since the value of g may not even be known in practice. Additionally, in some
cases, the function g is nondifferentiable at prices p. In this case, the subgradient still often
exists and convergence of the update rule (16) can be guaranteed under slightly stronger
conditions. (The modification is needed as not all subgradients are descent directions.)

Simple examples. We can derive specific update rules by choosing specific loss functions.
For example, consider the loss function

ℓ(y) =
{

0 y = b⋆

+∞ otherwise,

which captures infinite unhappiness of the network designer for any deviation from the target
resource usage b⋆. The corresponding conjugate function is

ℓ∗(p) = sup
y

(yT p − ℓ(y)) = (b⋆)T p,

AFT 2023



4:16 Multidimensional Blockchain Fee Markets

with maximizer y⋆ = b⋆. (Note that this maximizer does not change for any price p). Since
dom g = Rm, then the update rule is

pk+1 = pk − η(b⋆ − Ax0). (17)

If the utilization Ax0 lies far below b⋆, the fees pk might become negative, i.e., the network
would subsidize certain resource usage to meet the requirement that it must be equal to b⋆.

Nondecreasing separable loss. A more reasonable family of loss functions would be the
nondecreasing, separable losses:

ℓ(y) =
m∑

i=1
ϕi(yi).

From §3.2 we know that the domain of g is precisely the nonnegative orthant when the
functions ϕi are superlinear (i.e., satisfy (14)) and bounded from below, so we have that
proj(z) = (z)+, where (w)+ = max{0, w} for scalar w and is applied elementwise for vectors.
Additionally, using the definition of the separable loss, we can write

ℓ∗(p) =
m∑

i=1
sup
yi

(yipi − ϕi(yi)) .

Letting y⋆
i be the maximizers for the individual problems at the current price pk, we have

pk+1 = (pk − η(y⋆ − Ax0))+.

For example, if ϕi is an indicator function with ϕi(yi) = 0 if yi ≤ b⋆
i and ∞ otherwise, as in

the loss (5), then an optimal point is always y⋆
i = b⋆

i , when pi ≥ 0. Since no updates will
ever set pi < 0, we therefore have,

pk+1 = (pk − η(b⋆ − Ax0))+,

which is precisely the update given in (2).

Exponential update rule. A log transform of the prices leads to an update rule resem-
bling (3), proposed by Ethereum developers [18]. We assume that the loss function is
separable and nondecreasing (cf., §3.2) and that a minimum demand condition is met (given
in the full version [27, §3.2]) so that the prices are strictly positive. As a result, we can write
the prices p as p = exp(p̃) for some p̃ ∈ Rm, where the exponential is applied elementwise.
The gradient with respect to p̃ is ∇g(p̃) = ∇g(p) ⊙ exp(p̃). Writing the resulting gradient
update for p̃ and then taking the exponential of both sides, we get

pk+1 = pk ⊙ exp
(
−pk ⊙ η∇g(pk)

)
.

When we use the indicator loss function (4), we obtain a rule similar to the original EIP-1559
update (3) but with an extra factor of pk in the exponent:

pk+1 = pk ⊙ exp(η(pk ⊙ (Axk − b⋆))). (18)

The lack of this extra factor in EIP-1559 may explain some of the behavior explored in [40].



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:17

Figure 1 Resource utilization for multidimensional pricing (left) clusters closer to target values
than for uniform pricing (right), which includes limited information about individual targets or caps.

4 The cost of uniform prices

In this section, we show that pricing resources using the method outlined above can increase
network efficiency and make the network more robust to DoS attacks and resource demand
distribution shifts. We construct a toy experiment to illustrate these differences between
uniform and multidimensional resource pricing but leave more extensive numerical studies to
future work.

The setup. We consider a blockchain system with two resources (e.g., compute and storage)
with resource utilizations y1 and y2. Resource 1 is much cheaper for the network to use
than resource 2, so b⋆ = (10, 1) and y ≤ b = (50, 5). Furthermore, we assume that there is
a joint capacity constraint on these resources, y1 + 10y2 ≤ 50, which captures the resource
tradeoff. Each transaction aj is therefore a vector in R3

+ with aj = (a1j , a2j , a1j + 10a2j).
As in §3.3, we consider the simple loss function ℓ(y) = 0 if y = b⋆ and +∞ otherwise, which
has the update rule given in (17). In the scenarios below, we compare our multidimensional
fee market approach to a baseline, where both resources are combined into one equal to
a1j + 10a2j with b⋆ = 20% × max(b1, b2) = 10. We demonstrate that pricing these resources
separately leads to better network performance. All code is available at

https://github.com/bcc-research/resource-pricing.

We run simulations in the Julia programming language [10]. The transaction producers’
optimization problem (11) is modeled with JuMP [28] and solved with COIN-OR’s simplex-
based linear programming solver, Clp [32]. The solution is usually integral, but when it is
not, we fall back to the HiGHS mixed-integer linear program solver [35].

Scenario 1: steady state behavior. We consider a sequence of 250 blocks. At each block,
there are 15 submitted transactions, with resource usage randomly drawn as a1j ∼ U(0.5, 1)
and a2j ∼ U(0.05, 0.1). (For example, these may be moderate compute and low storage
transactions.) Transaction utility is drawn as qj ∼ U(0, 5). We initialize the price vector
as p = 0 and examine the steady state behavior, where the price updates and transaction
producer behavior are defined as in the previous section. We use a learning rate η = 1 × 10−2

throughout. The resource utilization, shown in figure 1, suggests that our multidimensional
scheme more closely tracks the target utilities b⋆ than a single-dimensional fee market.
Furthermore, the number of transactions included per block is consistently higher, illustrated
in figure 2 (purple line).

AFT 2023

https://github.com/bcc-research/resource-pricing


4:18 Multidimensional Blockchain Fee Markets

Figure 2 Multidimensional pricing allows us to include more transactions per block (left) by
optimally adjusting prices (right). The thicker line is the four-sample moving average of the data.

Figure 3 Resource utilization for multidimensional pricing (left) clusters closer to target values
than for uniform pricing (right) after a burst to the resource limit to handle transactions that make
heavy use of resource 2.

Scenario 2: transactions distribution shift. Often, the distribution of transaction types
submitted to a blockchain network differs for a short period of time (e.g., during NFT mints).
There may be a change in both the number of transactions and the distribution of resources
required. We repeat the above simulation but add 150 transactions in block 10 with resource
vector aj = (0.01, 0.5). (For example, these transactions may have low computation but high
storage requirements.) We draw the utility qj ∼ U(10, 20) and begin the network at the
steady-state prices from scenario 1. In figure 3, we see that a multidimensional fee market
gracefully handles the distribution shift. The network fully utilizes resource 2 for a short
period of time before returning to steady state. Uniform pricing, on the other hand, does
not do a good job of adjusting its resource usage and oscillates around the target. Figure 4
show that, as a result, multidimensional pricing is able to include more transactions, both
during the distribution shift and after the network returns to steady state. We see that the
prices smoothly adjust accordingly.

5 Extensions

Parallel transaction execution model. Consider the scenario where the nodes have L

parallel execution environments (e.g., threads), each of which has its own set of m identical
resources. In addition, there are r resources shared between the environments. We denote
transactions run on thread k by xk ∈ {0, 1}n. The resource allocation problem becomes



T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:19

Figure 4 Multidimensional pricing allows us to include more transactions per block by optimally
adjusting prices (right). The thicker line is the four-sample moving average of the data.

maximize
L∑

k=1
qT xk − ℓ(y1, . . . , yL, yshared)

subject to yk = Axk, xk ∈ conv(S) k = 1, . . . , L

yshared = Bz, z =
L∑

k=1
xk, z ∈ conv(Sshared)

As before, the Boolean vector sets S and Sshared encode constraints such as resource limits
for each parallel environment and the shared environment respectively. In addition, we’d
expect to have z ≤ 1 if each transaction is only allocated to a single environment, which
can be encoded by Sshared. By stacking the variables into one vector, this problem can be
seen as a special case of (8) and can be solved with the same method presented in this work.
(The interpretation here is that we are declaring a number of “combined resources”, each
corresponding to the parallel execution environments along with their shared resources.)

Different price update speeds. Some resources may be able to sustain burst capacities for
much shorter periods of times than other resources. In practice, we may wish to increase
the prices of these resources faster. For example, a storage opcode that generates a lot of
memory allocations will quickly cause garbage collection overhead, which could slow down
the network. We can update (15) to include a learning rate for each resource. These learning
rates can be chosen by system designers using simulations and historical data. We collect
these in a diagonal matrix D = diag (η1, . . . , ηm) and change the update rule to be

pk+1 = proj(pk − D∇g(pk)).

Contract throughput. Alternatively, we can define utilization on a per-contract basis
instead of a per-resource basis (per-contract fees were recently proposed by the developers
of Solana [54]). We define the utilization of a smart contract j as zj = (wT aj)xj , where w

is some weight vector and xj ∈ Z+ is the number of times contract j is called. In matrix
form, z = AT w ⊙ x, where ⊙ is the Hadamard (elementwise) product. For each contract,
the utilization zj is 0 when xj = 0, which can be interpreted as not calling contract j in a
block. When xj > 0, the utilization is (

∑
i wiaij) xj . When we use per-contract utilizations,

the loss function can capture a notion of fairness in resource allocation to contracts. For
example, we may want to prioritize cheaper-to-execute contracts over more expensive ones
by using, e.g., proportional fairness as in [36], though there are many other notions that may
be useful. With this setup, the resource allocation problem is

AFT 2023



4:20 Multidimensional Blockchain Fee Markets

maximize qT x − ℓ(z)
subject to z = AT w ⊙ x

x ∈ conv(S).

Again, we can introduce the dual variable p ∈ Rn for the equality constraint, and, with a
similar method to the one introduced in this paper, iteratively update this variable to find
the optimal fees to charge for each smart contract call.

6 Conclusion

We constructed a framework for multidimensional resource pricing in blockchains. Using
this framework, we modeled the network designer’s goal of maximizing transaction producer
utility, minus the loss incurred by the network, as a an optimization problem. We used
tools from convex optimization – and, in particular, duality theory – to decompose this
problem into two simpler problems: one solved on chain by the network, and another solved
off chain by the transaction producers. The prices that unify the competing objectives of
minimizing network loss and maximizing transaction producer utility are precisely the dual
variables in the optimization problem. Setting these prices correctly (i.e., to minimize the
dual function) results in a solution to the original problem. We then demonstrated efficient
methods for updating prices that are amenable to on-chain computation and derived an
EIP-1559-like mechanism as an example. In a simple numerical example, we find that the
proposed mechanism allows the network to equilibrate to its resource utilization target more
quickly than uniform pricing, while offering greater throughput without increasing node
hardware requirements. Finally, we show a number of simple extensions to our framework
that capture other proposed mechanisms such as per-contract fees. We find that it allows
the network to equilibrate to its resource utilization target more quickly than the uniform
price case and offers greater throughput without increasing node requirements.

To the best of the authors’ knowledge, this is the first work to systematically study
optimal pricing of resources in blockchains in the many-asset setting. Future work and
improvements to this model include a detailed game-theoretic analysis, extending that of [31],
along with a more concrete analysis of the dynamical behavior of fees set in this manner.
Finally, a thorough numerical evaluation of these methods under realistic conditions (such as
testnets) will be necessary to see if these methods are feasible in production.

References
1 John Adler. Eip-2242: Transaction postdata, 2019. URL: https://eips.ethereum.org/EIPS/

eip-2242.
2 John Adler. Multi-threaded data availability on eth 1. Ethresearch, 2019. URL: https:

//ethresear.ch/t/multi-threaded-data-availability-on-eth-1/5899.
3 John Adler. Accounts, strict access lists, and UTXOs - research / execution, 2020. URL:

https://forum.celestia.org/t/accounts-strict-access-lists-and-utxos/37.
4 John Adler. Wait, it’s all resource pricing? EthCC, 2021. URL: https://www.youtube.com/

watch?v=YoWMLoeQGeI.
5 John Adler. Always has been (or, wait, it’s all resource pricing? part 2). EthCC, 2022. URL:

https://www.youtube.com/watch?v=Zq8uwpX39oI.
6 Akshay Agrawal, Stephen Boyd, Deepak Narayanan, Fiodar Kazhamiaka, and Matei Zaharia.

Allocation of fungible resources via a fast, scalable price discovery method. Mathematical
Programming Computation, pages 1–30, 2022.

7 Mustafa Al-Bassam. LazyLedger: A distributed data availability ledger with client-side smart
contracts. CoRR, abs/1905.09274, 2019. arXiv:1905.09274.

https://eips.ethereum.org/EIPS/eip-2242
https://eips.ethereum.org/EIPS/eip-2242
https://ethresear.ch/t/multi-threaded-data-availability-on-eth-1/5899
https://ethresear.ch/t/multi-threaded-data-availability-on-eth-1/5899
https://forum.celestia.org/t/accounts-strict-access-lists-and-utxos/37
https://www.youtube.com/watch?v=YoWMLoeQGeI
https://www.youtube.com/watch?v=YoWMLoeQGeI
https://www.youtube.com/watch?v=Zq8uwpX39oI
https://arxiv.org/abs/1905.09274


T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:21

8 Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and data availability
proofs: Maximising light client security and scaling blockchains with dishonest majorities,
2018. doi:10.48550/ARXIV.1809.09044.

9 Dimitri P Bertsekas. Nonlinear Programming. Athena Scientific, 3 edition, 1999.
10 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral Shah. Julia: A fresh approach to

numerical computing. SIAM review, 59(1):65–98, 2017.
11 Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.
12 Vitalik Buterin. Eip 150: Gas cost changes for io-heavy operations, 2016. URL: https:

//eips.ethereum.org/EIPS/eip-150.
13 Vitalik Buterin. Geth nodes under attack again, 2016. URL: https://www.reddit.com/

r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=
itxh568s&sh=ee3628ea.

14 Vitalik Buterin. Transaction spam attack: Next steps, 2016. URL: https://blog.ethereum.
org/2016/09/22/transaction-spam-attack-next-steps/.

15 Vitalik Buterin. Easy parallelizability issue #648 ethereum/EIPs, 2017. URL: https://
github.com/ethereum/EIPs/issues/648.

16 Vitalik Buterin. First and second-price auctions and improved transaction-fee markets,
2018. URL: https://ethresear.ch/t/first-and-second-price-auctions-and-improved-
transaction-fee-markets/2410.

17 Vitalik Buterin. An incomplete guide to rollups, 2021. URL: https://vitalik.ca/general/
2021/01/05/rollup.html.

18 Vitalik Buterin. Multidimensional eip 1559. Ethresearch, 2022. URL: https://ethresear.
ch/t/multidimensional-eip-1559/11651.

19 Vitalik Buterin. Proto-danksharding FAQ, 2022. URL: https://notes.ethereum.org/
@vbuterin/proto_danksharding_faq.

20 Vitalik Buterin. State of research: Increasing censorship resistance of transactions under
proposer/builder separation (pbs), 2022. URL: https://notes.ethereum.org/@vbuterin/
pbs_censorship_resistance.

21 Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and Abdelhamid
Bakhta. Eip-1559: Fee market change for eth 1.0 chain, 2019. URL: https://eips.ethereum.
org/EIPS/eip-1559.

22 Vitalik Buterin and Martin Swende. Eip-2929: Gas cost increases for state access opcodes,
2020. URL: https://eips.ethereum.org/EIPS/eip-2929.

23 Vitalik Buterin and Martin Swende. EIP-2930: Optional access lists, 2020. URL: https:
//eips.ethereum.org/EIPS/eip-2930.

24 Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou, and Xian Zhang.
Forerunner: Constraint-based speculative transaction execution for ethereum (full version). In
SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021. ACM, 2021. doi:10.1145/3477132.3483564.

25 Hao Chung and Elaine Shi. Foundations of transaction fee mechanism design. arXiv preprint
arXiv:2111.03151, 2021.

26 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

27 Theo Diamandis, Alex Evans, Tarun Chitra, and Guillermo Angeris. Dynamic pricing for
non-fungible resources: Designing multidimensional blockchain fee markets. arXiv preprint
arXiv:2208.07919, 2022.

28 Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathematical
optimization. SIAM review, 59(2):295–320, 2017.

29 Ethereum. Gas and fees, 2022. URL: https://ethereum.org/en/developers/docs/gas/.

AFT 2023

https://doi.org/10.48550/ARXIV.1809.09044
https://eips.ethereum.org/EIPS/eip-150
https://eips.ethereum.org/EIPS/eip-150
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://github.com/ethereum/EIPs/issues/648
https://github.com/ethereum/EIPs/issues/648
https://ethresear.ch/t/first-and-second-price-auctions-and-improved-transaction-fee-markets/2410
https://ethresear.ch/t/first-and-second-price-auctions-and-improved-transaction-fee-markets/2410
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://ethresear.ch/t/multidimensional-eip-1559/11651
https://ethresear.ch/t/multidimensional-eip-1559/11651
https://notes.ethereum.org/@vbuterin/proto_danksharding_faq
https://notes.ethereum.org/@vbuterin/proto_danksharding_faq
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2929
https://eips.ethereum.org/EIPS/eip-2930
https://eips.ethereum.org/EIPS/eip-2930
https://doi.org/10.1145/3477132.3483564
https://ethereum.org/en/developers/docs/gas/


4:22 Multidimensional Blockchain Fee Markets

30 Ethereum. Run a node, 2022. URL: https://ethereum.org/en/run-a-node/.
31 Matheus Ferreira, Daniel Moroz, David Parkes, and Mitchell Stern. Dynamic posted-price

mechanisms for the blockchain transaction-fee market. In Proceedings of the 3rd ACM
conference on Advances in Financial Technologies, pages 86–99, 2021.

32 John Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, John Forrest, jpfasano, Haroldo Gambini
Santos, Matthew Saltzman, Jan-Willem, Bjarni Kristjansson, h-i gassmann, Alan King,
pobonomo, Samuel Brito, and to st. coin-or/clp: Release releases/1.17.7, January 2022.
doi:10.5281/zenodo.5839302.

33 Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Yu Xia,
Runtian Zhou, and Dahlia Malkhi. Block-STM: Scaling blockchain execution by turning
ordering curse to a performance blessing, 2022. doi:10.48550/ARXIV.2203.06871.

34 Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02):107–116, 1998.

35 Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, 2018.

36 Frank Kelly. Charging and rate control for elastic traffic. European transactions on Telecom-
munications, 8(1):33–37, 1997.

37 Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. Towards a theory of maximal extractable
value i: Constant function market makers, 2022. arXiv:2207.11835.

38 Fuel Labs. GitHub - FuelLabs/fuel-specs: Specifications for the fuel protocol and the FuelVM,
a blazingly fast blockchain VM, 2022. URL: https://github.com/FuelLabs/fuel-specs.

39 Stefanos Leonardos, Barnabé Monnot, Daniël Reijsbergen, Efstratios Skoulakis, and Georgios
Piliouras. Dynamical analysis of the eip-1559 ethereum fee market. In Proceedings of the 3rd
ACM Conference on Advances in Financial Technologies, pages 114–126, 2021.

40 Stefanos Leonardos, Daniël Reijsbergen, Daniël Reijsbergen, Barnabé Monnot, and Georgios
Piliouras. Optimality despite chaos in fee markets. arXiv preprint arXiv:2212.07175, 2022.

41 Steven Low. A duality model of tcp and queue management algorithms. IEEE/ACM
Transactions On Networking, 11(4):525–536, 2003.

42 Steven Low and David Lapsley. Optimization flow control. i. basic algorithm and convergence.
IEEE/ACM Transactions on networking, 7(6):861–874, 1999.

43 Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups, 2021. doi:10.48550/ARXIV.2111.12323.

44 Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering in evm.
arXiv preprint arXiv:1909.07220, 2019.

45 Polygon Team. Introducing avail by polygon‚ a robust general-purpose scalable data availability
layer, 2021. URL: https://blog.polygon.technology/introducing-avail-by-polygon-a-
robust-general-purpose-scalable-data-availability-layer/.

46 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? arXiv preprint arXiv:2101.05511, 2021.

47 Daniël Reijsbergen, Shyam Sridhar, Barnabé Monnot, Stefanos Leonardos, Stratis Skoulakis,
and Georgios Piliouras. Transaction fees on a honeymoon: Ethereum’s eip-1559 one month
later. In 2021 IEEE International Conference on Blockchain (Blockchain), pages 196–204.
IEEE, 2021.

48 Tim Roughgarden. Transaction fee mechanism design. SIGecom Exch., 19(1):52–55, 2021.
doi:10.1145/3476436.3476445.

49 Vikram Saraph and Maurice Herlihy. An empirical study of speculative concurrency in
ethereum smart contracts, 2019. doi:10.48550/ARXIV.1901.01376.

50 Naum Zuselevich Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Series in Computational Mathematics, 1985.

51 Ertem Nusret Tas, Dionysis Zindros, Lei Yang, and David Tse. Light clients for lazy blockchains,
2022. _eprint: 2203.15968.

https://ethereum.org/en/run-a-node/
https://doi.org/10.5281/zenodo.5839302
https://doi.org/10.48550/ARXIV.2203.06871
https://arxiv.org/abs/2207.11835
https://github.com/FuelLabs/fuel-specs
https://doi.org/10.48550/ARXIV.2111.12323
https://blog.polygon.technology/introducing-avail-by-polygon-a-robust-general-purpose-scalable-data-availability-layer/
https://blog.polygon.technology/introducing-avail-by-polygon-a-robust-general-purpose-scalable-data-availability-layer/
https://doi.org/10.1145/3476436.3476445
https://doi.org/10.48550/ARXIV.1901.01376


T. Diamandis, A. Evans, T. Chitra, and G. Angeris 4:23

52 Jeffrey Wilcke. The ethereum network is currently undergoing a DoS attack,
2016. URL: https://blog.ethereum.org/2016/09/22/ethereum-network-currently-
undergoing-dos-attack/.

53 Anatoly Yakovenko. Sealevel‚ parallel processing thousands of smart contracts, 2020.
URL: https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-
smart-contracts-d814b378192.

54 Anatoly Yakovenko. Consider increasing fees for writable accounts issue #21883 solana-
labs/solana, 2021. URL: https://github.com/solana-labs/solana/issues/21883.

AFT 2023

https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://github.com/solana-labs/solana/issues/21883




Security Analysis of Filecoin’s Expected Consensus
in the Byzantine vs Honest Model
Xuechao Wang1 #

Thrust of Financial Technology, HKUST(GZ), Guangzhou, China

Sarah Azouvi #

Protocol Labs, San Francisco, CA, USA

Marko Vukolić #

Protocol Labs, San Francisco, CA, USA

Abstract
Filecoin is the largest storage-based open-source blockchain, both by storage capacity (>11EiB) and
market capitalization. This paper provides the first formal security analysis of Filecoin’s consensus
(ordering) protocol, Expected Consensus (EC). Specifically, we show that EC is secure against an
arbitrary adversary that controls a fraction β of the total storage for βm < 1 − e−(1−β)m, where m

is a parameter that corresponds to the expected number of blocks per round, currently m = 5 in
Filecoin. We then present an attack, the n-split attack, where an adversary splits the honest miners
between multiple chains, and show that it is successful for βm ≥ 1 − e−(1−β)m, thus proving that
βm = 1 − e−(1−β)m is the tight security threshold of EC. This corresponds roughly to an adversary
with 20% of the total storage pledged to the chain. Finally, we propose two improvements to EC
security that would increase this threshold. One of these two fixes is being implemented as a Filecoin
Improvement Proposal (FIP).

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Decentralized storage, Consensus, Security analysis

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.5

Related Version Full Version: https://arxiv.org/pdf/2308.06955.pdf [29]

Acknowledgements The authors would like to thank Guy Goren for his suggestion of Consistent
Broadcast as a mitigation to the n-split attack.

1 Introduction

Filecoin is the largest storage-based blockchain in terms of both market cap [3] and total
raw-byte storage capacity (>11EiB) [6]. In Filecoin, miners, called Storage Providers (SPs),
gain the right to participate in the consensus protocol and to create blocks by pledging
storage capacity to the chain.2 They are in return compensated with a financial reward in
the form of newly minted FIL, the cryptocurrency underlying Filecoin, whenever their blocks
are included on-chain, where probability of a miner minting new block corresponds to their
storage power. The Filecoin consensus mechanism Storage Power Consensus (SPC) consists
mainly of two components: first, a Sybil-resistance mechanism that keeps an accurate map
of the storage pledged by each storage provider; and second, a consensus protocol that can
be run by any set of weighted participants and outputs an ordered list of transactions.

1 Corresponding author, part of work was done at Protocol Labs.
2 Filecoin further incentivizes the storage of “useful” data, where SPs have the additional opportunity to

boost their raw-byte storage power, offering deals to verified clients, yielding quality adjusted power [2].

© Xuechao Wang, Sarah Azouvi, and Marko Vukolić;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xuechaowang@hkust-gz.edu.cn
https://orcid.org/0000-0001-6918-2699
mailto:s.azouvi@gmail.com
https://orcid.org/0000-0002-7133-1937
mailto:marko.vukolic@protocol.ai
https://orcid.org/0000-0002-9898-5383
https://doi.org/10.4230/LIPIcs.AFT.2023.5
https://arxiv.org/pdf/2308.06955.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 EC Security Analysis

In this paper, we ignore the mechanisms that keep the mapping between miners and their
respective storage accurate (i.e., the Sybil-resistance mechanism and the quality adjusted
power policy) and focus on the sub-protocol run by the weighted miners to produce an
ordered list of transactions. This sub-protocol is called Expected Consensus (EC) and weighs
each participant according to their storage power. We assume that the weighted list of miners
is accurately maintained and given as an input to EC. EC is a longest-chain style protocol [1]
(or, more accurately, a heaviest-chain protocol). At a high level, it operates by running a
leader election at every time slot in which, on expectation, m participants may be eligible to
submit a block, where m is a parameter currently equal to 5. Each participant is elected with
probability proportional to their weight. Multiple valid blocks submitted in a given round
may form a tipset, which is a set of blocks sharing the same height (i.e., round number) and
parent tipset. In EC, the blockchain is a chain of tipsets (i.e., a directed acyclic graph [DAG]
of blocks) rather than a chain of blocks. For example, in Figure 1a blocks {A,B,C}, {D,E}
and {F,G,H} each form a different tipset; and in Figure 1b blocks {A,B,C}, {D,E} and {F}
each form a different tipset. Every block in a tipset adds weight to its chain of tipsets, while
the fork choice rule is to choose the heaviest tipset. EC works in a very similar fashion as
longest-chain protocols like Bitcoin do, but it uses tipsets instead of blocks. EC’s security
has, until now, only been argued informally, as with Bitcoin in its early days. Intuitively,
tipsets make it harder for an adversary with less storage to form a competing chain of tipsets
with more blocks than the main chain, as miners can create a number of blocks proportional
to their storage power. This is analogous to Nakamoto’s private attack on the longest-chain
protocol [22]. Specifically, assuming that two competing chains of tipsets are growing, with
different amount of storage power producing the two, since in EC more than one block can
be appended to a chain at each round, the difference between the number of blocks created
on each chain will grow roughly m times faster than in the case without tipset (i.e., where
each chain can grow by at most one block at each round). However, this intuitive security
justification only applies when examining the private attack, a specific instance, not a general
adversary. The lessons learned from the balance attack [23] on GHOST [28] highlight that a
comprehensive analysis encompassing all potential attacks is crucial for assuring the security
of a blockchain protocol. This comprehensive evaluation is the main focus of this paper.

In this work, we conduct a formal security analysis of EC and prove that EC is secure
against any adversary that owns a fraction β of the total storage power for βm < 1−e−(1−β)m

(Section 5). To achieve this, we carefully extend the proof technique developed in [14] to EC:
the key step is to identify the sufficient condition for a block to stay in the chain forever,
regardless of the complex DAG structure in EC. Indeed, the incorporation of tipsets introduces
substantial complexities to the problem. For instance, in the longest-chain protocol, the
chain growth is an independent and identically distributed random variable in each round.
Conversely, within EC, the chain growth becomes dependent on the entire history of the
blockchain, given that it depends on the structure of the DAG. This increased dependency
adds layers of intricacy to the security analysis. Following similar literature [14, 16, 19], we
consider a rather strong adversary, which we specify in Section 2, that has “full control” over
both the network and the tie breaking rule. We then propose an attack, the n-split attack,
in Section 6 in which an adversary with power β such that βm ≥ 1− e−(1−β)m can break the
security of EC, effectively proving that the security threshold βm = 1− e−(1−β)m is tight
for EC. With current parameters, this means that EC is secure against an adversary that
holds roughly 20% of the total storage power. In our attack, an elected leader, controlled
by the adversary, equivocates by sending different blocks to different miners at each round
with the aim to split the honest miners into different chains and thus reducing the weight



X. Wang, S. Azouvi, and M. Vukolić 5:3

(a) Example of a tipset chain: {A,B,C}
is the first tipset after Genesis, and the
parent tipset of {D,E}, which is itself the
parent tipset of tipset {F,G,H}.

(b) Example of two tipsets with equal
weight. Tipset {D,E} and tipset {F} both
have a weight of 5. (roughly, the weight is
calculated as the sum of the blocks in all
the tipsets, see Section 3.3 for details).

Figure 1 Tipset structure in EC.

of each tipsets’ chain. While the honest participants are split and all mine on potentially
many different forks, the adversary can construct a private tipsets’ chain on the side, i.e., a
chain that does not include any block mined by an honest miner (called for simplicity honest
block) and that will not be broadcast to any honest miner until the end of the attack. Finally,
in Section 7, we propose two countermeasures against this attack aimed at augmenting
the security threshold of Filecoin. The first one entails eliminating the concept of tipsets,
substituting EC with the longest-chain protocol [19, 13, 9], as our observations suggest that
lowering the value of m can enhance the security threshold. The second approach involves the
adoption of a consistent or reliable broadcast protocol [12, 18] to prohibit the adversary from
equivocating. Our second countermeasure is currently in the process of being implemented
as a Filecoin Improvement Proposal [7].

Related Work

This work is directly inspired by the line of work formally analyzing longest-chain protocols
either in the proof-of-work case [16, 27, 20] or proof-of-stake [10, 19, 14, 25]. We adapt the
technique in [14] to account for tipsets instead of blocks (see Lemma 5). The main difference
between using a chain of tipsets and a chain of blocks is that in the tipset case, the number
of blocks in the chain at each round can increase by any finite integer value and also depends
on the structure of the DAG. By contrast, in the chain-of-blocks case, the number of blocks
of any honest chain increases by zero or one at each round. This makes the tipset analysis
more complex.

Similar attacks to the one we describe in Section 6 were proposed by Bagaria et al. [10]
in the context of proof-of-stake and by Natoli and Gramoli [23] in the proof-of-work context.
In both these works, the attacks are described on a DAG-based blockchain, where each new
block can include any previous block as its parent. We adapt it to the tipset case, which is
slightly different: in the case of tipsets, a block may have multiple parents, but only blocks
that have themselves the same set of parents can be referenced by the child block. The idea
behind these attacks is to have an adversary publish its blocks in a timely manner on different
forks to ensure that honest miners keep on extending two or even more chains instead of one,
effectively spreading their power (be it stake, computation or storage) on different chains.

AFT 2023



5:4 EC Security Analysis

2 Model

In this section we present our model and assumptions.

2.1 Participants
Filecoin requires participants to pledge storage capacity to the chain to be added to the list
of participants. Following the work in [16, 19] we consider a flat model, meaning that each
participant accounts for one unit of storage. This could easily be extended to a non-flat model
by considering that a participant holding x units of storage controls x “flat” participants.
We consider a static model wherein the set of participants is fixed during the execution of
the protocol. We assume that each participant i possesses a key pair (ski, pki) and that every
participant is aware of the other participants and their respective public keys.

We consider a static adversary that corrupts a fraction β of the participants at the
beginning of the execution of the protocol. In order to defend against an adaptive adversary
who can corrupt honest nodes on the fly (i.e., dynamically, at the start of each round), one
can either use key evolving signature schemes [13] or checkpointing [8]. However, in order to
keep the problem simple, we do not consider an adaptive adversary in this paper.

2.2 Network assumptions
We consider the lock-step synchronous network model adopted in [16, 19]. Time is divided into
synchronized rounds, each indexed with an integer in N. Following Filecoin’s terminology [1],
we refer to each time slot as an epoch. Each epoch has a fixed duration (currently 30 seconds
in Filecoin). To abstract the underlying peer-to-peer gossip network in Filecoin, we simply
assume that all messages sent by honest nodes are broadcast to all nodes and that all honest
nodes re-broadcast any message they deliver. All network messages are delivered by the
adversary, and we allow the adversary to selectively delay messages sent by honest nodes,
with the following restrictions: (i) the messages sent in an epoch must be delivered by the
end of the current epoch; and (ii) the adversary cannot forge or alter any message sent by
an honest node. The adversary does not suffer any network delay. Note that the adversary
can selectively send its message only to a subset of honest nodes. However, due to the
re-broadcast mechanism, all honest nodes will receive the message by the end of the next
epoch.

The non-lock-step synchronous model, also known as the ∆-synchronous model, is also
frequently employed in blockchain security analysis [9, 13, 14, 24, 27]. This model ensures
messages sent by honest nodes are delivered within a sliding window of ∆ epochs. While
this model might be more suitable for proof-of-work blockchains, where miners persistently
mine and broadcast blocks, its application becomes less pertinent for PoS blockchains. In
the latter, honest nodes primarily remain dormant, awaiting the epoch boundaries to send
messages. Given the efficiency of today’s network infrastructure, a 30-second window adopted
by EC is quite conservative. Consequently, we find little justification to incorporate the
∆-synchronous model in our EC analysis.

2.3 Randomness
Random beacon. A random beacon [26] is a system that emits a random number at regular
intervals. EC relies on drand [4], a decentralized random beacon, to provide miners a different
random number at each epoch. This service is run by a set of 16 independent institutions
that run a multi-party protocol to output, at regular intervals, a fresh random number. We



X. Wang, S. Azouvi, and M. Vukolić 5:5

assume that this random number is unbiasable (i.e., truly random) and unpredictable before
the beginning of the epoch. We also assume that each miner in Filecoin has the same view of
each drand output, i.e., that drand is secure. We denote drandi the random beacon emitted
by drand and used by Filecoin miners at epoch i.

Verifiable Random Function. A Verifiable Random Function (VRF) [21] is a function that
outputs a random number in a verifiable way, i.e., everyone can verify that the output is
indeed random and was generated correctly. A VRF is composed of two polynomial-time
algorithms: VRF.Proof and VRF.Verify (we omit the key generation). VRF.Proof takes as
inputs a seed seed and a secret key sk and outputs a tuple (y = Gsk(seed), p = πsk(seed))
where y is a random number and p is a proof that can be used to verify the correctness of y.
VRF.Verify takes as input a tuple (seed, y, p) and a public key pk and uses p to verify that
y = Gsk(seed), in which case it outputs 1; otherwise, it outputs 0. A VRF is correct if:
1. if (y, p) = VRF.Proofsk(seed), then VRF.Verifypk(seed, y, p) = 1;
2. for all (sk, seed), there is a unique y s.t. VRF.Verifypk(seed, y, πsk(seed)) = 1;
3. Gsk(seed) is computationally indistinguishable from a random number for any probabilistic

polynomial-time adversary.

Throughout the rest of this paper, we assume the existence of a correct VRF.

3 Filecoin’s Expected Consensus (EC)

Filecoin’s consensus protocol, EC, consists of three main components: a leader election
sub-protocol, a mining algorithm and a fork choice rule. Briefly, at the beginning of each
epoch, participants will check their eligibility to produce a block by running the leader
election. If they are elected, they use the fork choice rule to select a tipset and include
it as their parent before broadcasting their block. We define the protocol more formally
in this section. However, we intentionally omit some details, such as those regarding how
participants must continually post proofs related to their pledged storage, as they are not
relevant to our analysis. Instead, we assume that all participants continuously maintain one
unit of storage. Furthermore, in practice in Filecoin [1] a participant with power x that is
elected twice in the same epoch will create only one block that weighs twice more. This is
not relevant to our analysis, so we ignore it and prefer a flat model wherein a participant
elected twice simply creates two blocks under two different identities. Such a model will
favor an adversary as we illustrate in Section 6 and hence renders our analysis stronger.

Due to space limitations, a pseudocode representation of the algorithms described in this
section can be found in Appendix A.

3.1 Leader Selection Protocol
EC’s leader election is inspired by Algorand’s cryptographic sortition [17]. Briefly, the
leader selection relies on a Verifiable Random Function (VRF) [21] that takes as input
the drand output value for that epoch. In each epoch, each participant will compute
VRF.Proofsk(seed) = (y = Gsk(seed), p = πsk(seed)) where seed is the drand value. If y is
below a predefined value target that is a parameter of the protocol, then that participant
is elected leader. Any other participant can then use p in order to verify that the random
value y was computed correctly (i.e., VRF.Verifypk(seed, y, p) = 1) and that the participant is
indeed an elected leader. The value of target is chosen such that on expectation m leaders
are elected in each epoch. m is a parameter of the EC protocol currently set to m = 5.

AFT 2023



5:6 EC Security Analysis

Proving that the leader selection mechanism is secure is outside the scope of this paper,
as similar results were already proven in, e.g., Algorand [17]. Instead, we assume that in
each epoch, there is an independent random number of participants that are elected leaders
and that the number of leaders in each epoch follows a Poisson distribution of parameter m.
For a coalition that consists of a fraction α of all the participants, their number of elected
leaders in an epoch follows a Poisson distribution of parameter α×m.

3.2 Block and Tipset Structure
A block is composed of a header and a payload. The payload includes transactions as well
as other messages necessary for maintaining the set of participants up to date. We omit its
content in this analysis.

When a participant is elected to create a block, they include in the header of the block
their proof of eligibility (i.e., the VRF proof), an epoch number (the epoch at which the
block was created), a proof of storage called WinningPost to prove that they maintain the
storage they have pledged (we omit the details of such proof) and finally a pointer to a set
of parent blocks. For a block B, we denote B.parent its parents set and B.epoch its epoch
number. The parents of a block must satisfy certain conditions. First, they must all be
in the same epoch, and that epoch needs to be smaller than the block’s epoch. Second,
all parent blocks need to have the same set of parents themselves. Each set of blocks that
are in the same epoch and have the same set of parents is called a tipset and denoted T .
Formally, a tipset T is a non-empty set of blocks: T = {B1, · · · ,Br}, each of which belongs
to the same epoch, i.e., B1.epoch = · · · = Br.epoch and has the same set of parents, i.e.,
∀(Bi,Bj) ∈ T 2 : Bi.parent = Bj .parent. Since all blocks in a tipset have the same parent, we
abuse the notation and denote T .parent to denote the parent of tipset T . Similarly, T .epoch
denotes the tipset epoch. We note that T .parent is a tipset itself.

Since each block references a set of blocks, a Directed Acyclic Graph (DAG) structure
can be inferred from each block or tipset, where the blocks are the vertices and the references
to parents are the edges. Similarly, the set of tipsets referencing each other as parents form
a chain. For example, Figure 1a represents a chain of 4 tipsets (including the genesis) and a
blockDAG of 9 blocks. Formally, a chain C is then a set of ordered tipsets C = {T0, T1, · · · , Tl}
such that Ti.parent = Ti−1 for all i > 1. By convention, we have T1.parent = T0 =
{Genesis block} and Ti = ∅ if there is no block in epoch i. We note C[Ti] = {T0, T1, · · · , Ti}.
Similarly, for a tipset T , we can infer the associated chain, denoted C[T ] as follows: C[T ] =
{T0, · · · , (T .parent).parent, T .parent, T }.

3.3 Fork Choice Rule and Weight Function
In order to decide which tipset to include as its parents, EC provides a weight function that
assigns a weight to different tipsets. The fork choice rule will then consist of choosing the
tipset with the heaviest weight. In practice, EC’s weight function [1] is a complex function of
(1) the number of blocks in the chain and (2) the total amount of storage committed to the
chain. Moreover, the total amount of storage is taken far in the past to ensure that everyone
agrees on it. Since in our analysis we assume a static model where the set of participants is
fixed during the execution of the protocol, we only take into consideration the number of
blocks in the chain. We discuss the impact of this simplification in Section 8. Formally, for a
tipset T , we denote its weight w(T ) and have:

w(T ) =
∑

Ti∈C[T ]

|Ti|.



X. Wang, S. Azouvi, and M. Vukolić 5:7

In the case of a tie between two chains, a deterministic tie-breaker is used. In practice,
the tipset that contains the smallest VRF value is chosen. However, in our analysis we
consider a powerful adversary that has the power to decide on ties. See Figure 1b for a visual
representation of two tipsets with equal weight.

3.4 Mining Algorithm
We describe the mining algorithm that miners in Filecoin run continuously. At each epoch
i > 0 each participant with key pair (sk, pk) performs the following:
1. Fetch the drand value for epoch i and verify eligibility by checking

Gsk(drandi)
?
≤ target,

where target is chosen such that on expectation m leaders are elected (with m = 5 in the
current implementation).

2. If elected leader, create a block as follows:
Choose the tipset with the highest weight (i.e., the most blocks) and reference it as
the block’s parent.
Include a proof of eligibility (i.e., the VRF value: VRF.Proofsk(drandi) = (y, p)), a
WinningPost to prove storage maintenance, as well as the payload.

3. Broadcast the block newly created.

In parallel, whenever they receive a new block in epoch i, participants verify its validity and,
if it is valid, add it to their blockDAG. A block is valid if and only if:
1. The election proof (y, p) is valid, i.e., VRF.Verifypk(drandi, y, p) = 1 and y ≤ target.
2. The WinningPost is valid (details omitted).
3. All the transactions in the payload are valid (details omitted).
4. All its parent blocks form a valid tipset, i.e.:

They all belong to the same epoch.
They all have the same parents.
They are all valid blocks.

We analyze the backbone of EC in a static setting and hence omit some details of the
protocol. For example, in practice, the leader election mechanism uses a lookback parameter,
meaning that only participants who pledged their storage sufficiently in the past are eligible
for block creation. Because we consider a flat and static model, these details are not relevant
to our analysis.

4 Security Definitions

Security properties. We consider the standard security properties of robust transaction
ledgers defined for blockchain systems [16, 14]. We start by defining a transaction ledger and
confirmed transactions in the ledger.

▶ Definition 1 (Transaction ledger generated by a chain C). Given a chain C, a transaction
ledger L generated by C is a deterministic, totally-ordered and append-only list of transactions.
In particular, if C1 is a prefix of C2, then L1 generated by C1 is a prefix of L2 generated by C2.

For example, one way to generate a transaction ledger from a chain C is to order the
transactions from C by order of chronological appearance (i.e., epoch number where they
appeared in the chain) and lexicographical order. Any deterministic rule is however valid
and we leave this unspecified.

AFT 2023



5:8 EC Security Analysis

▶ Definition 2 (Confirmed transaction parameterized by τ ∈ R). If a transaction tx in the
ledger appears in a block which is mined in epoch j ≤ i− τ , then tx is said to be τ -confirmed
in epoch i.

Our goal is to generate a transaction ledger that satisfies persistence and liveness as
defined in [16, 14]. Together, persistence and liveness guarantee a robust transaction ledger;
transactions will be adopted to the ledger and be immutable.

▶ Definition 3 (Robust transaction ledger from [16, 14]). A blockchain protocol Π maintains
a robust transaction ledger if the generated ledger satisfies the following two properties:

(Persistence) Parameterized by τ ∈ R. If a transaction tx becomes τ -confirmed at epoch i

in the view of one honest node, then tx will be at least τ -confirmed in the same position
in the ledger by all honest nodes for every epoch k ≥ i.
(Liveness) Parameterized by u ∈ R, if a transaction tx is received by all honest nodes at
epoch i, then after epoch i + u all honest nodes will contain tx in the same place in the
ledger forever.

Notations. We then define random variables and stochastic processes of interest and their
properties.

Let α and β be the collective fraction of storage power controlled by honest nodes and
malicious nodes, respectively (α + β = 1). We follow the notations of [11]. Let H [r] and Z[r]
be the number of blocks mined by the honest nodes and by the malicious nodes in epoch r,
then H[r], Z[r] are independent Poisson random variables with means (1 − β)m and βm

respectively [1] (the value of the target parameter is chosen to ensure this). In addition,
the random variables {H[0], H[1], · · · } and {Z[0], Z[1], · · · } are independent of one another,
since the value provided by drand to feed the leader election is random. We now define the
auxiliary random variables X[r] and Y [r] as follows. If at epoch r an honest node mines
at least one block (i.e., H[r] ≥ 1), then X[r] = 1 and epoch r is called a successful epoch,
otherwise X[r] = 0. If at epoch r honest nodes mine exactly one block (i.e., H[r] = 1),
then Y [r] = 1 and epoch r is called a uniquely successful epoch, otherwise Y [r] = 0. Epoch
r is called an isolated successful epoch if it further satisfies that there is no honest block
in epoch r − 1 (i.e., H[r − 1] = 0 and Y [r] = 1). Further, X[r1, r2] and Y [r1, r2] are the
number of successful and uniquely successful epochs, respectively, in the interval (r1, r2], and
H[r1, r2] and Z[r1, r2] are the number of blocks mined by honest nodes and by the adversary
respectively in the interval (r1, r2].

In EC, chains may have equal weights. For simplicity and generality, we assume tie-
breaking always favors the adversary. This means that the persistence will be broken as long
as there are two sufficiently long forks with equal weights.

Given a chain of tipsets C, let C[r] be the chain truncated up to blocks in epoch r. Further,
let w(C) be the weight of C. Let Wmax[r] and Wmin[r] be the maximum and minimum weights
of chains adopted by honest nodes at the end of epoch r. Then, by our network model, we
have:

Wmin[r] ≤Wmax[r] ≤Wmin[r + 1]. (1)

Even if some honest nodes’ chains are “behind” in epoch r, by our re-broadcast mechanism,
their view for epoch r will catch up with the rest of the honest nodes in epoch r + 1.
Furthermore, honest participants always extend the heaviest chain they are aware of, hence
the inequality above.



X. Wang, S. Azouvi, and M. Vukolić 5:9

We also have the following minimum honest chain growth property, which is essential to
our proof. For t ≥ r + 1,

Wmin[t] ≥Wmin[r + 1] + X[r + 1, t] ≥Wmax[r] + X[r + 1, t]. (2)

This inequality again follows from the fact that honest participants always extend the
heaviest chain they know of. However, it could be that different honest participants have
different views and thus create blocks on different chains, hence why we consider X in the
inequality above and not H.

5 Security Proof

In this section, we prove our main theorem, Theorem 4 stated below, parameterized by the
security parameter κ. The proof will proceed in multiple steps. We extend the technique
of Nakamoto blocks developed in [14]. We first define the notion of Nakamoto epochs in
EC and prove that the honest blocks mined in Nakamoto epochs remain in the heaviest
chain forever. Then we show that Nakamoto epochs exist and appear frequently regardless
of the adversarial strategy. Straightforwardly, the protocol satisfies liveness and persistence:
transactions can enter the ledger frequently through the Nakamoto epochs, and once they
enter, they remain at a fixed location in the ledger.

▶ Theorem 4. If βm < 1− e−(1−β)m, then EC generates a robust transaction ledger that
satisfies persistence (parameterized by τ = κ) and liveness (parameterized by u = κ) in
Definition 3 with probability at least 1− e−Ω(κ1−ϵ), for any 0 < ϵ < 1.

5.1 Nakamoto epochs
Let us define the events:

Ers = {event that Z[r − 1, t] < X[r + 1, t] for all t ≥ s},

Fs =
⋂

0≤r≤s−2
Ers,

Us = {event that epoch s is an isolated successful epoch} = {H[s− 1] = 0, Y [s] = 1},

and

Gs = Fs ∩ Us.

We will call epoch s a Nakamoto epoch if the event Gs occurs. And we have the following
lemma.

▶ Lemma 5. If epoch s is a Nakamoto epoch, then the unique honest block mined in epoch s

is contained in any future chain C[t], t ≥ s.

Proof. Let bs be the unique honest block mined in epoch s. We will argue by contradiction.
Suppose Gs occurs and let t ≥ s be the smallest t such that bs is not contained in C[t], an
honest chain adopted by some honest node at the end of epoch t. Let br, mined in epoch r,
be the last honest block on C[t] (which must exist, because the genesis block is by definition
honest). If r > s, then C[r − 1] is the prefix of C[t] before block br, and does not contain
bs (because C[r − 1] is a prefix of C[t]) contradicting the minimality of t. So br must be
mined before or in epoch s. Since epoch s is an isolated successful epoch, we further know

AFT 2023



5:10 EC Security Analysis

Figure 2 Upper bound and lower bound of the weight of C[t] in the proof of Lemma 5. Blocks
with dotted lines are adversarial blocks. The parent links are omitted for readability; each block has
all blocks from the previous epoch as parents.

that r ≤ s − 2. The part of C[t] after block br must consist of all malicious blocks by the
definition of br. Note that this may also include malicious blocks in epoch r (i.e., headstart
of the adversary). Hence, we have an upper bound for the weight of C[t].

w(C[t]) ≤Wmax[r] + Z[r − 1, t] < Wmax[r] + X[r + 1, t], (3)

where the first inequality is illustrated in Figure 2, and the second inequality follows from the
fact that event Fs occurs. We also have a trivial lower bound: w(C[t]) ≥Wmin[t]. Therefore,
we have

Wmin[t] < Wmax[r] + X[r + 1, t], (4)

which contradicts the minimum honest chain growth property (Eqn. 2). ◀

Note that Lemma 5 implies that if Gs occurs, then the entire chain leading to the unique
honest block mined in epoch s from the genesis is stabilized after epoch s.

5.2 Occurrence of Nakamoto epochs

Although the existence of Nakamoto epochs ensures that the block at this epoch will be
finalized, i.e., it will appear in every honest future chain, the question now remains whether
Nakamoto epochs exist at all and, if so, at what frequency they appear. We start answering
this question by proving in the next lemma that Nakamoto epochs have a strictly positive
probability of happening, i.e., the probability of each epoch being a Nakamoto epoch is
strictly positive. Due to space limitations, the detailed proof can be found in Section 5.2 of
the full version [29].

▶ Lemma 6. If βm < 1− e−(1−β)m, then there exists p > 0 such that P (Gs) ≥ p for all s.



X. Wang, S. Azouvi, and M. Vukolić 5:11

5.3 Waiting time for Nakamoto epochs
We have established the fact that the event Gs has P (Gs) ≥ p > 0 for all s. But how long do
we need to wait for such an epoch to occur? We answer this question in the following lemma,
wherein we provide a bound on the probability that in a interval (j, j + k] of k consecutive
epochs, there are no Nakamoto epochs, i.e., a bound on:

q(j, j + k] := P (
j+k⋂

s=j+1
Gc

s),

where Gc
s is the complement of Gs.

▶ Lemma 7. If βm < 1− e−(1−β)m, then there exist constants α, A so that for all j, k ≥ 0,

q(j, j + k] ≤ A exp(−α
√

k). (5)

Proof. Following the definition in Lemma 6, let

B̂rt = event that Z[r − 1, t] ≥ X[r + 1, t].

Similar to the calculation in Lemma 6, we have

P (B̂rt) ≤ A1e−α1ε2(t−r) (6)

for some positive constants A1, α1 independent of r, t.
Also we have

Gc
s = F c

s ∪ U c
s =

⋃
(r,t):r≤s−2,t≥s

B̂rt ∪ U c
s . (7)

Divide (j, j + k] into
√

k sub-intervals of length
√

k (assuming
√

k is a integer), so that the
i-th sub-interval is:

Ji := [j + 1 + (i− 1)
√

k, j + i
√

k].

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all the i = 1 mod 3 sub-
intervals. Introduce the event that in the ℓ-th (1 mod 3) sub-interval (J3ℓ+1), a pure
adversarial chain that is rooted at a honest block (or more accurately a tipset including
at least one honest block) mined in that sub-interval (J3ℓ+1) or in the previous (0 mod 3)
sub-interval (J3ℓ) catches up with a honest block in that sub-interval (J3ℓ+1) or in the next
(2 mod 3) sub-interval (J3ℓ+2).

Formally,

Cℓ =
⋂

s∈J3ℓ+1

⋃
(r,t):r∈J3ℓ∪J3ℓ+1,r≤s−2,t≥s,t∈J3ℓ+1∪J3ℓ+2

B̂rt ∪ U c
s .

Note that for distinct ℓ, the events Cℓ’s are independent since B̂rt’s in different Cℓ’s do not
have overlap (the J intervals were cut specifically for this purpose). Also, we have

P (Cℓ) ≤ P (no Nakamoto epoch in J3ℓ+1) = 1− p < 1 (8)

by Lemma 6.

AFT 2023



5:12 EC Security Analysis

Introduce the atypical events:

B =
⋃

(r,t):r∈(j,j+k] or t∈(j,j+k],r<t,t−r≥
√

k

B̂rt , and

B̃ =
⋃

(r,t):r≤j,j+k<t

B̂rt .

The events B and B̃ are the events that an adversarial chain catches up with an honest block
far ahead (more than

√
k epochs).

By (6) and an union bound we have that

P (B)
≤

∑
(r,t):r∈[j+1,j+k] or t∈[j+1,j+k],r<t,t−r≥

√
k

A1e−α1ε2(t−r)

≤
j+k∑

r=j+1

( ∞∑
t=r+

√
k

A1e−α1ε2(t−r)) +
j+k∑

t=j+1

( t−
√

k∑
r=0

A1e−α1ε2(t−r))
≤ 2k

A1e−α1ε2√
k

1− e−α1ε2 ,

and

P (B̃) ≤
∑

(r,t):r≤j,t>j+k

A1e−α1ε2(t−r)

≤
j∑

r=0

( ∞∑
t=j+k+1

A1e−α1ε2(t−r))
=

j∑
r=0

A1e−α1ε2(j+k+1−r)

1− e−α1ε2

≤ A1e−α1ε2(k+1)

(1− e−α1ε2)2 .

Now, we have:

q(j, j + k]

≤ P (no Nakamoto epoch in
⋃√

k/3
ℓ=0 J3ℓ+1)

≤ P (no isolated successful epoch in
⋃√

k/3
ℓ=0 J3ℓ+1) + P (B) + P (B̃) + P (

√
k/3⋂

ℓ=0
Cℓ)

= e−Ω(k) + P (B) + P (B̃) + (P (Cℓ))
√

k/3 (9)

≤ e−Ω(k) + 2k
A1e−α1ε2√

k

1− e−α1ε2 + A1e−α1ε2(k+1)

(1− e−α1ε2)2 + (P (Cℓ))
√

k/3

≤ A exp(−α
√

k) (10)

for some positive constants A and α. The equality (9) is due to the independence of Cℓ’s
and the inequality (10) is due to (8). Hence the lemma follows. ◀

We can also tighten the exponent, but at the cost of larger constants in the bound. The
proof of the following lemma is almost verbatim identical with the proof of Lemma 7, and its
detailed explanation can be found in Appendix C of the full version [29].



X. Wang, S. Azouvi, and M. Vukolić 5:13

▶ Lemma 8. If βm < 1− e−(1−β)m, then there exist constants αϵ, Aϵ so that for all j, k ≥ 0,

q(j, j + k] ≤ Aϵ exp(−αϵk
1−ϵ), (11)

for any 0 < ϵ < 1.

5.4 Persistence and liveness
Equipped with all the previous lemmas, we can now prove the persistence and liveness
properties of EC for βm < 1− e−(1−β)m.

Proof of Theorem 4. Suppose current epoch is r. Then by Lemma 8, with probability at
least 1− e−Ω(κ1−ϵ), there is at least one Nakamoto epoch in the interval (r− κ, r]. Let epoch
s ∈ (r − κ, r] be a Nakamoto epoch. Then by Lemma 5, the chain up to epoch s − 1 is
permanent since the unique honest block in epoch s never leaves the heaviest chain. Hence
EC is persistent with probability at least 1 − e−Ω(κ1−ϵ). The liveness of EC is simply a
consequence of the frequent occurrence of Nakamoto epochs. Particularly, for each honest
transaction, either it will be included by an honest block B in a Nakamoto epoch or it has
already been included by B’s ancestors. ◀

6 n-split Attack

In order to confirm whether an adversary with power βm ≥ 1− e−(1−β)m can indeed break
the persistence and liveness properties of the system, we consider the following n-split attack.

6.1 Attack description
The attacker tries to split the honest participants among n chains such that in each epoch,
at most one honest block is added to each chain (i.e., no two honest players mine on the
same chain). To do this, the attacker creates n copies of one of its block (each copy has the
same election proof, but different payloads) and sends one different block to each of the n

honest players; see illustration in Figure 3a. To maintain the split for a long period, the
adversary must repeat the attack at every epoch where at least one honest block is mined. In
this case, the weight of the chain of each honest player will increase by two: one honest block
and one adversarial block. For example in Figure 3a, since blocks C and D are both honest
(i.e., created by honest miners), by the next epoch, epoch 3, all the participants will have
received them and use the deterministic tie breaker to all decide to mine on the same tipset,
say {D}. Hence the adversary must create equivocating blocks in epoch 2 as well in order to
ensure that in epoch 3, honest miners all choose different tipsets to append their block to. In
Figure 3b, the adversary sends equivocating blocks E1 and E2 to prevent blocks H and F

from being appended to the same chain. These figures include only two honest blocks at
epoch 2 and 3 for clarity. In practice, the adversary will create as many equivocating blocks
as there are honest miners to ensure that everyone sees a different block and that no two
honest participants mine on the same tipset.

Whenever there is no honest block mined in an epoch, the attacker does nothing. In this
case, the weight of the chain of each honest player will not increase. Meanwhile, the attacker
also reuses all its blocks to build a private chain, i.e., a chain that it does not broadcast to
other participants and that does not include any honest blocks. The expected chain growth
of the adversary’s private chain is βm. The weight of the honest chain increases by two
if there is at least one honest block mined in an epoch (which happens with probability

AFT 2023



5:14 EC Security Analysis

(a) The adversary sends two dif-
ferent blocks B1, B2 in epoch
1 such that in epoch 2, hon-
est blocks C, D have different
parents and hence cannot be in-
cluded in a tipset. The honest
power is thus split between dif-
ferent tipsets’ chains.

(b) The adversary keeps the net-
work split in epoch 3 by creat-
ing two equivocating blocks: E1
and E2 in epoch 2. In epoch
3, honest blocks H and F are
mined on two different tipsets.

(c) If ties are always broken in
favor of the adversary, the ad-
versary can instead create an-
other block B3 in epoch 1. In
epoch 2, blocks E1 and E2 are
preferred to C and D, hence in
epoch 2, all the tipsets’ chains
increase by only one block. The
attack is repeated in the next
epoch, as long as the adversary
has enough blocks to create a
fork as heavy as the honest
chains.

Figure 3 n-split attack. Each block filled in grey is an equivocating block, meaning they were
created by the adversary using the same leader election proof in one epoch. Each green block is an
honest block.

1 − e−(1−β)m), and 0 otherwise (which happens with probability e−(1−β)m). Hence, the
expected chain growth of the honest chain is 2(1− e−(1−β)m). Therefore, this attack succeeds
with non-negligible probability when βm > 2(1− e−(1−β)m), i.e., when the adversarial chain
grows at a higher rate than the honest split chains. Rather than specifying the exact success
probability, we demonstrate that it remains constant, independent of the confirmation depth
τ , as defined in Definition 2. Let L be adversarial lead, i.e., the adversary has a lead of L

additional private blocks over the public heaviest chain. Suppose that with probability pL0 ,
the initial lead before the attack starts is L0. Although pL0 decreases with L0, it remains
non-zero because there’s a chance the adversary could mine L0 blocks before the honest nodes
mine any block. Note that in the n-split attack, as long as the adversarial lead L > 0, the
adversary can invariably split the honest nodes across n chains. Therefore, the adversarial
private chain will grow faster than the honest public chain when βm > 2(1 − e−(1−β)m).
According to the standard random walk (with drift) theory [15], L goes to 0 only with a
probability of e−O(L0). This implies that the n-split attack succeed with probability at least
pL0(1− e−O(L0)), for any value of the confirmation depth τ .

Some numerical results: for m = 3, we have β > 0.512; for m = 5, we have β > 0.382; and
β > 0.284 for m = 7. Approximately, β ≳ 2/m. Intuitively, with this attack, the threshold is
inversely proportional to m, as with a bigger m, the adversary is elected leader more often
and thus has more opportunities to keep the network split. If the adversary were elected
leader on a less regular basis, it would be harder to keep sending equivocating blocks and
thus keep the network split for longer. Note that this threshold applies specifically to the
attack described above, and it differs from the security threshold identified in Theorem 4.
This is because different thresholds may exist for different attacks.

Following the standard model of longest-chain analysis [16, 13, 14], we give the power of
tie-breaking to the attacker (i.e., tie-breaking always favors the attacker’s block). Recall that
the same assumption is made in our model (Section 2) and proof (Section 5). For example in
Figure 3c, if we assume that the adversarial blocks (in red) will always be favored in the



X. Wang, S. Azouvi, and M. Vukolić 5:15

case of two chains with the same number of blocks, then the adversary does not need to
create a block on the same tipset as honest blocks (as in Figure 3b). The adversary will
instead create another block B3 and mine yet on another tipset than the honest participant
in epoch 2. In epoch 3 the adversarial chains ending in tipsets {E1} and {E2} are preferred
over {C} or {D}, hence honest blocks H and F are mined on different forks and each fork’s
weight increased by only one in epoch 2, as opposed to 2 in Figure 3b. By repeating this
attack at each epoch, the weight of the chain of each honest player will only increase by one
when there is at least one honest block mined. Following the same argument as above, this
attack succeeds with non-negligible probability when βm > (1− e−(1−β)m), i.e., when the
adversarial chain grows at a higher rate than the honest split chains. We notice that this
now matches the security threshold in Theorem 4, hence proving that βm = 1− e−(1−β)m

is the tight threshold of the protocol in our security model as defined in Section 2. Indeed,
Theorem 4 proves that no adversary below this threshold can break the security of the EC,
and the n-chain split attack just described proves that an adversary above this threshold can
indeed break the persistence and liveness of the EC.

Some numerical results: for m = 3, we have β ≃ 0.293; for m = 5, we have β ≃ 0.196;
and β ≃ 0.143 for m = 7. Approximately, β ≃ 1/m. As remarked before, the threshold is
inversely proportional to the number of leaders elected as, intuitively, being elected more
often gives more opportunities to an adversary.

6.2 Discussion

Rationality of the attack. We note that this attack is detectable as everyone can see that
blocks with the same proof of eligibility but different payload were created. In practice, this
behaviour is slashable in Filecoin [1]. However, in Filecoin an adversary has the ability to
spread its storage over multiple identities, i.e., create multiple identities that each possesses
one unit of storage. For example in Filecoin the minimum unit of storage that can be pledged
to the chain is 32 GiB. As of August 2023 the total storage pledged to the chain is around
11 EiB [6], hence an adversary that possesses 20% of the total power, i.e., 2.2 EiB could
potentially “spread” its storage over 2.2×1018

32×109 ≃ 108 different identities, that each possesses
32 GiB of storage. At each epoch, except with extremely small probability, the adversary will
have a new “identity” elected to create a block (it is very unlikely for a miner with 32GiB
of storage out of 11 EiB to be elected twice in a row). Assuming that each identity gets
slashed and removed from the list of participants after equivocation, after performing the
attack over 1000 epochs, the adversary will still have 9.9999 · 107 identities left out of 108

and will only be slashed 103

108 = 10−5 of its total collateral. In this analysis we considered
orders of magnitude rather than exact numbers, so for simplicity we counted only the “real
power” and did not account for the “boosted adjusted power” that can be gained through the
FIL+ program [5]. Note that it is not possible for any honest miner to know which identities
belong to the adversary before the equivocation. Hence excluding equivocating participants
from the protocol is not sufficient to prevent the attack.

Furthermore, we note that for the adversary to be slashed, a special transaction, a fraud
proof transaction must be submitted on-chain by any participant. An adversary that is
able to continually exclude honest blocks as is the case with the n-split attack may thus in
practice never be slashed as no honest participant will get the opportunity to include the
slashing transaction on-chain. This is why even when considering incentives and the slashing
mechanism in place, this attack is still rational.

AFT 2023



5:16 EC Security Analysis

Network control. In this attack, we assumed a powerful adversary that not only has the
power to break ties in its favor, but has also full control of the network, as specified in
Section 2.2. However we remark that for this attack to work, an adversary only needs limited
power over the network. Specifically, the adversary needs to be directly connected to every
participants but does not need to control the propagation time between honest participants,
as we illustrate now.

In Filecoin honest miners will stop accepting blocks for an epoch after a cutoff time.
For the split to happen the adversary could send each block B1, . . . , Bn to each different
participants 1, . . . , n right before the cutoff, i.e., participant i receives block Bi from the
adversary just before the cutoff time, ensuring block Bi is accepted by participant i. The
adversary would need to know the propagation time between itself and each participant to
do so, however this is easy to estimate. Since participant i, receives Bi just before the cutoff
time, whatever the propagation delay between i and another honest participant j is, the
adversary is guaranteed that j will received Bi from i after the cutoff time and hence that
any honest miner j ̸= i will not accept Bi.

Furthermore we note that when participant j receives block Bi, after the cutoff, j will
detect the equivocation as j already received block Bj from the adversary. However at that
point, j has already created its block that includes Bj as a parent, hence it is too late for j to
discard Bj due to equivocation. The mitigation that we propose in Section 7.2 changes this.

7 Mitigations

We propose two possible mitigations to the n-split attack described in Section 6 which could
also help increase the security threshold of EC.

7.1 Replace EC by the Longest-chain Protocol in SPC
One solution to the n-split attack is to remove the notion of tipsets and instead change EC to
the longest-chain protocol (i.e., Ouroboros family of protocols [19, 13, 9] in the proof-of-stake
setting), where one block has exactly one parent. In the longest-chain protocol, the effort
of an adversary to split the network would have much less impact on the overall security
of the protocol since each chain can increase by one block at each epoch at most anyway.
Furthermore, moving to the longest-chain protocol allows for inheritance of all the security
properties (e.g., a security threshold of 50%) of all proof-of-stake protocols based on that
setting [13, 10, 14]. Dembo et al. [14] indeed showed that in the longest-chain case, the worst
attack is the private attack. Hence, the n-split attack described in Section 6, or its variant,
would not be the worst attack anymore. However, transitioning from EC to a longest-chain
protocol is not a straightforward task. First, it’s crucial to understand that merely setting
m = 1 does not transform EC into a longest-chain protocol, as more than one block can
still be added per epoch. Furthermore, our analysis indicates that an EC with m = 1 has a
security threshold of approximately 43.2%, as opposed to 50% in the longest-chain protocol.
Consequently, to enhance the security, the concept of a tipset will need to be eliminated.
Implementing such a change, however, would necessitate a hard fork.

7.2 Consistent Broadcast
Another solution is to use a form of consistent or reliable broadcast [12, 18]. This type
of broadcast prevents an adversary from equivocating (i.e., creating two blocks with the
same leader election proof but different contents). The consistent broadcast consists in



X. Wang, S. Azouvi, and M. Vukolić 5:17

(a) Current case.

(b) Case with a (simplified) consistent broadcast.

Figure 4 The dashed arrow represents the arrow of time. The different cutoff and arrival time
are marked with vertical arrows. The adversary ensures that j receives Bj right before the cutoff so
j accepts Bj . In the first case, by the time j sees an equivocation, it is too late as Bj was already
included as a parent. In the second case, assuming j receives Bi before the second cutoff, then j

will discard Bj and not include it as a parent.

adding a second cutoff to the cutoff discussed in Section 6.2. Specifically, it ensures that
after participant j received Bj from the adversary (before the first cutoff), j will wait for
a “second” cutoff before forming its block and including Bj as a parent. When j receives
equivocating block Bi from the adversary, j will detect the equivocation and decide not to
include Bj (neither Bi), hence the attack is mitigated. This is illustrated in Figure 4. The
epoch in Filecoin is thus split as follows: during the first period, participants will store every
valid block received in their “pending blocks” set. In the second period, after the first cutoff
and before the second cutoff, every new valid block received will be stored in the set of
“rejected blocks” for that epoch. In the third period, after the second cutoff, participants will
compare the set of pending blocks and rejected blocks, if they detect equivocating blocks,
they are removed from the pending set. Every block that is left in the pending set will then
be included in the tipset. This implementation as it is simple and backward compatible
(i.e., only requires a soft-fork) although it assumes synchronicity. With consistent broadcast,
however, the adversary is still able to split the network in two ways. First it could do so
by ensuring that only a fraction of the honest nodes accept its block (i.e., the network will
be split between the nodes that accept the adversarial block vs those that do not). The
second way in which the network could be split is if the adversary is elected more than

AFT 2023



5:18 EC Security Analysis

once, say ℓ times in one epoch (here we assume that the adversary controls many different
participants). Then the adversary could similarly ensure that for each block it is able to
create (with different election proofs), only some of the nodes accept it. The network is
then split in 2ℓ ways (all the combination of accept vs reject for each of the ℓ blocks). We
hypothesize that, under a non-equivocating adversary, the security threshold of EC with
m = 5 is approximately 40%. Intuitively, with this level of power, the adversary creates fewer
than two blocks per epoch on average; furthermore, without the ability for equivocation, it is
impossible for the adversary to maintain two chains of equal weights over numerous epochs.
We leave a formal proof as future work.

8 Limitations and Future Work

For practical reasons, this work made a few simplifying assumptions. We discuss them here.

Incentive consideration. This work considers the classic model of honest vs malicious
participants and does not address the rationality of participants. A formal study of incentive
compatibility is also important for understanding the security of EC. However, we leave this
for future work. Assuming a fully malicious adversary that is willing to lose money to attack
the system, a scenario we consider in this paper, makes for a stronger proof than assuming a
rational adversary. In Section 6.2, we discussed why it is realistic to consider an irrational
adversary for the n-split attack we proposed, as slashing may not always be possible if the
adversary has the ability to censor transactions. It still remains to show that the honest
strategy is compatible with a rational strategy even in the presence of an adversary. We
leave this for future work.

Weight function. In our analysis, we only took into consideration the number of blocks in
the chain for the weight function. We leave as future work an analysis that also considers
the total storage, as specified in Expected Consensus [1]. Specifically we believe that a
complex weight function allows for more vectors of attack and that an adversary could use
this to try to blow the weight of its own chain. For example, the adversary could remove its
storage from the main chain and thus decrease the weight of the main chain, while privately
creating an alternative chain that would be heavier because it has more storage pledged.
The mechanisms for maintaining and removing storage are, however, complex and ignored in
this work. For simplicity, we thus consider the weight of a tipset to simply be equal to the
number of blocks referenced in its blockDAG.

9 Conclusion

In this paper we presented a formal analysis of Expected Consensus, a sub-protocol of
Filecoin’s Storage Power Consensus, and we proposed two concrete ways to improve SPC’s
security. One of our mitigations, using consistent broadcast, is currently being implemented
as a Filecoin Improvement Proposal. It remains an open problem to quantify the new security
threshold of EC with this fix, although our proofs remain valid in this case, hence the security
threshold is at least such that βm < 1− e−(1−β)m as proved in Section 5. Furthermore, we
made many simplifying assumptions in this work. It would be interesting to relax these
in the future work; e.g., by extending this proof to the dynamic and asynchronous case,
considering the more complex variant of the weight function or incorporating incentives.



X. Wang, S. Azouvi, and M. Vukolić 5:19

References
1 Filecoin Spec. https://spec.filecoin.io/.
2 A Guide to Filecoin Storage Mining. https://filecoin.io/blog/posts/

a-guide-to-filecoin-storage-mining/. Accessed: 2023-08-02.
3 Coin Market Cap. https://coinmarketcap.com/.
4 Drand. http://https://drand.love/. Accessed: 2022-08-30.
5 Filecoin Plus. https://docs.filecoin.io/basics/how-storage-works/filecoin-plus/.
6 Filfox - Filecoin Explorer. https://filfox.info/en.
7 FIP-0051: Improving EC security with Consistent Broadcast. https://github.com/

filecoin-project/FIPs/blob/master/FRCs/frc-0051.md.
8 Sarah Azouvi and Marko Vukolić. Pikachu: Securing PoS blockchains from long-range attacks

by checkpointing into Bitcoin PoW using Taproot. arXiv preprint arXiv:2208.05408, 2022.
9 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.

Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018.

10 Vivek Bagaria, Amir Dembo, Sreeram Kannan, Sewoong Oh, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Proof-of-stake longest chain protocols: Security vs
predictability. arXiv preprint arXiv:1910.02218, 2019.

11 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602. ACM, 2019.

12 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM (JACM), 32(4):824–840, 1985.

13 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros Praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018.

14 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and Nakamoto always wins. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
859–878, 2020.

15 William Feller. An introduction to probability theory and its applications. Technical report,
Wiley series in probability and mathematical statistics, 3rd edn.(Wiley, New . . . , 1971.

16 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

17 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68, 2017.

18 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian Seredinschi,
and Yann Vonlanthen. Scalable Byzantine reliable broadcast (extended version). arXiv preprint
arXiv:1908.01738, 2019.

19 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

20 Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze
blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 729–744, 2018.

21 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages 120–130. IEEE,
1999.

AFT 2023

https://spec.filecoin.io/
https://filecoin.io/blog/posts/a-guide-to-filecoin-storage-mining/
https://filecoin.io/blog/posts/a-guide-to-filecoin-storage-mining/
https://coinmarketcap.com/
http://https://drand.love/
https://docs.filecoin.io/basics/how-storage-works/filecoin-plus/
https://filfox.info/en
https://github.com/filecoin-project/FIPs/blob/master/FRCs/frc-0051.md
https://github.com/filecoin-project/FIPs/blob/master/FRCs/frc-0051.md


5:20 EC Security Analysis

22 Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system. Bitcoin.–URL:
https://bitcoin. org/bitcoin. pdf, 4(2), 2008.

23 Christopher Natoli and Vincent Gramoli. The balance attack against proof-of-work blockchains:
The r3 testbed as an example. arXiv preprint arXiv:1612.09426, 2016.

24 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchron-
ous networks. In Advances in Cryptology–EUROCRYPT 2017: 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30–May 4, 2017, Proceedings, Part II, pages 643–673. Springer, 2017.

25 Rafael Pass and Elaine Shi. The sleepy model of consensus. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 380–409. Springer,
2017.

26 Michael O Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27(2):256–267, 1983.

27 Ling Ren. Analysis of Nakamoto consensus. Cryptology ePrint Archive, 2019.
28 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.

In Financial Cryptography and Data Security: 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19, pages 507–527. Springer,
2015.

29 Xuechao Wang, Sarah Azouvi, and Marko Vukolić. Security analysis of filecoin’s expected
consensus in the byzantine vs honest model. arXiv preprint arXiv:2308.06955, 2023.

Appendix

A Pseudocode for EC

The main algorithm is presented in Algorithm 1 and the algorithm for block validation is
presented in Algorithm 2.

B Concentration Inequalities

▶ Lemma 9 (Chernoff). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and Xi = 0
with probability 1 − pi, and all Xi’s are independent. Let µ = E[X] =

∑n
i=1 pi. Then for

0 < δ < 1, P(X > (1 + δ)µ) < e−Ω(δ2µ) and P(X < (1− δ)µ) < e−Ω(δ2µ).

▶ Lemma 10 (Poisson). Let X be a Poisson random variable with rate µ. Then for 0 < δ < 1,
P(X > (1 + δ)µ) < e−Ω(δ2µ) and P(X < (1− δ)µ) < e−Ω(δ2µ).



X. Wang, S. Azouvi, and M. Vukolić 5:21

Algorithm 1 Main algorithm.
1: import
2: drand
3: ForkChoiceRule
4: Broadcast
5: VRF
6: isValid (Algorithm 2)
7: Parameters:
8: epochLength
9: m

10: target ▷ Chosen such that m leaders are elected on expectation
11: Init:
12: epochNumber ← 0
13: blockDAG←{Genesis Block}
14: upon event time.Now() % epochLength == 0 do ▷ Beginning of the epoch
15: epochNumber ← epochNumber +1
16: seed← drand(epochNumber)
17: (y, p)← VRF.Proofsk(seed)
18: if y ≤ target then
19: T ←ForkChoiceRule(blockDAG) ▷ Choose the DAG with the most blocks
20: B ← CreateBlock(T , (y, p), epochNumber,WinningPost payload)
21: Broadcast(B)
22: upon event Receiving block B do
23: if isValid(B) == 1 then
24: blockDAG.append(B)

Algorithm 2 isValid(B).
1: Input: block B
2: import
3: drand
4: isPayloadValid
5: isStorageValid
6: Parse (T , (y, p), epochNumber,WinningPost payload) ← B
7: seed← drand(epochNumber)
8: if VRF.Verifypk(seed, y, p) == 0 or y > target then ▷ Check the election proof
9: return 0

10: if isPayloadValid(payload)==0 then ▷ Check the payload
11: return 0
12: if isStorageValid(WinningPost) == 0 then ▷ Check the storage proof
13: return 0
14: for Bi ∈ T do ▷ Check validity of parent blocks
15: if isValid(Bi) == 0 then
16: return 0
17: return 1

AFT 2023





Tailstorm: A Secure and Fair Blockchain for Cash
Transactions
Patrik Keller #

Universität Innsbruck, Austria

Ben Glickenhaus
University of Massachusetts Amherst, MA, USA

George Bissias
University of Massachusetts Amherst, MA, USA

Gregory Griffith
Bitcoin Unlimited

Abstract
Proof-of-work (PoW) cryptocurrencies rely on a balance of security and fairness in order to maintain a
sustainable ecosystem of miners and users. Users demand fast and consistent transaction confirmation,
and in exchange drive the adoption and valuation of the cryptocurrency. Miners provide the
confirmations, however, they primarily seek rewards. In unfair systems, miners can amplify their
rewards by consolidating mining power. Centralization however, undermines the security guarantees
of the system and might discourage users.

In this paper we present Tailstorm, a cryptocurrency that strikes this balance. Tailstorm merges
multiple recent protocol improvements addressing security, confirmation latency, and throughput with
a novel incentive mechanism improving fairness. We implement a parallel proof-of-work consensus
mechanism with k PoWs per block to obtain state-of-the-art consistency guarantees [29]. Inspired
by Bobtail [9] and Storm [4], we structure the individual PoWs in a tree which, by including a list of
transactions with each PoW, reduces confirmation latency and improves throughput. Our proposed
incentive mechanism discounts rewards based on the depth of this tree. Thereby, it effectively
punishes information withholding, the core attack strategy used to reap an unfair share of rewards.

We back our claims with a comprehensive analysis. We present a generic system model which
allows us to specify Bitcoin, Bk [29], and Tailstorm from a joint set of assumptions. We provide
an analytical bound for the fairness of Tailstorm and Bitcoin in honest networks and we confirm
the results through simulation. We evaluate the effectiveness of dishonest behaviour through
reinforcement learning. Our attack search reproduces known optimal strategies against Bitcoin,
uncovers new ones against Bk, and confirms that Tailstorm’s reward discounting makes it more
resilient to incentive layer attacks. Our results are reproducible with the material provided online [30].

Lastly, we have implemented a prototype of the Tailstorm cryptocurrency as a fork of Bitcoin
Cash. The client software is ready for testnet deployment and we also publish its source online [23].

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Proof-of-Work, Blockchain, Cryptocurrency, Mining Rewards, Fairness

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.6

Related Version Extended Version: https://arxiv.org/abs/2306.12206

Supplementary Material Software (Evaluation): https://github.com/pkel/cpr/tree/aft23 [30]
archived at swh:1:dir:3ad6764f1d3e29fdf2a8c959581758c46e0a6817

Software: https://gitlab.com/georgebissias/BCHUnlimited/-/tree/tailstorm_prototype [23]
archived at swh:1:dir:8f9927f6e42866a3f13984232b4004defcdd3a36

Funding George Bissias: Bitcoin Unlimited

Acknowledgements We wish to thank Bitcoin Unlimited for their financial and technical support as
well as Michael Fröwis for his review of this work and for the helpful suggestions he provided.

© Patrik Keller, Ben Glickenhaus, George Bissias, and Gregory Griffith;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 6; pp. 6:1–6:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tailstorm.at.aft@pkel.dev
https://doi.org/10.4230/LIPIcs.AFT.2023.6
https://arxiv.org/abs/2306.12206
https://github.com/pkel/cpr/tree/aft23
https://archive.softwareheritage.org/swh:1:dir:3ad6764f1d3e29fdf2a8c959581758c46e0a6817;origin=https://github.com/pkel/cpr;visit=swh:1:snp:11f23a0ed11d785c20af7646b14d8fd4b0946725;anchor=swh:1:rev:4def12f9f76b900598dc1bd26d7111c0e02e5c49
https://gitlab.com/georgebissias/BCHUnlimited/-/tree/tailstorm_prototype
https://archive.softwareheritage.org/swh:1:dir:8f9927f6e42866a3f13984232b4004defcdd3a36;origin=https://gitlab.com/georgebissias/BCHUnlimited/;visit=swh:1:snp:3cbad20646079ff4ffe092da0ed3e12b9cb1f6c5;anchor=swh:1:rev:012780d6326564e73f75cd82e4277a007e0e9ff3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

1 Introduction

Proof-of-work (PoW) cryptocurrencies can be thought of as stacked systems comprising
four layers. The PoW layer moderates access of weakly identified parties using a mining
puzzle: proposing a new block requires finding a small hash. The consensus layer allows
all participants to agree on a specific block ordering. The application layer maintains a
distributed ledger by writing cryptocurrency transactions into the blocks. Finally, the
incentive layer motivates participation in the PoW layer by minting new cryptocurrency for
successful miners.

The circular dependencies between the layers result in interdependent failures. Consensus
faults are inevitable when individual miners gain too much control [19]. Unreliable consensus
enables double spending and erodes confidence in the cryptocurrency. Devaluation of the
currency renders the mining rewards worthless as well. Lastly, misaligned incentives encourage
centralization among the miners, eventually allowing the strongest one to break consensus.

In this paper, we introduce and analyze Tailstorm, a new cryptocurrency that strengthens
two layers of the stack. We employ an innovative incentive mechanism as well as a state-of-
the-art consensus mechanism, while retaining the PoW and application layers of Bitcoin. We
draw inspiration from the organization of delta blocks in the Storm protocol [4] as well as
the use of partial PoW in the Bobtail [9] and Bk protocols [29].

Bitcoin’s consensus [39] uses a sequential PoW mechanism where each block references a
single parent block. The blocks form a tree and the participants mine new blocks that extend
the longest branch according to the longest chain rule. Blocks off the longest branch are
discarded. Evidently, attackers who possess more than 50 % of the hash rate pose a threat
to the system: they can execute double-spend attacks by mining their own branch until
it eventually becomes the longest. But even less mining power might suffice since honest
participants also discard the blocks of other honest miners if they are not on the same branch.
This happens naturally in realistic networks due to propagation delays. If an attacker can
induce and exploit communication delays, all discarded blocks may benefit the attacker;
effectively increasing their strength [24].

In contrast, Tailstorm implements a parallel PoW consensus mechanism that largely
avoids discarding blocks. For this, we closely follow the approach taken by Keller and Böhme
at AFT ’22 [29]. Their protocol, Bk, confirms each block with k votes. Bk blocks do not
require a PoW, only votes do. Notably, votes confirming the same block can be mined in
parallel because they do not depend on each other. Discarding only occurs when there are
more than k votes for the same block. Even then, individual discarded votes only account
for 1/k of a block’s PoW. As Keller and Böhme [29] argue, this makes consensus more robust
against consensus layer attacks.

But it is futile to analyze the consensus without considering incentives. Ideally, rewards
are distributed fairly, which means that a miner’s expected reward is proportional to its
hash rate. Arnosti and Weinberg [3] show that even small inequalities in reward allocation
encourage substantial centralization of hash rate which ultimately poses a threat to consensus
and the cryptocurrency itself [19].

Unfairness arises from natural network delays and dishonest behavior. Both of these
factors affect Bitcoin. In latent networks, two blocks mined around the same time may refer
to the same parent, even if both miners follow the longest chain rule. One of the blocks will
be discarded, the other rewarded. The stronger miner has more hash rate to support their
own block, hence the weaker miner is worse off. Network-level attackers can additionally
exploit latency to manipulate impartial participants in their favor. But even without delays,



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:3

d = 2
r = 2/3

d = 3
r = 3/3

d = 1
r = 1/3

d = 2
r = 2/3

Figure 1 Example of a Tailstorm blockchain with k = 3 subblocks per summary. Squares are
summary blocks, circles are subblocks, arrows indicate hash-references. Dashed rectangles mark
subblock trees with depth d and discounted subblock reward r. Reduced depth implies lower rewards.

Bitcoin miners with more than one third of the hash rate can reap an unfair share of rewards
by temporally withholding blocks instead of acting honestly [16, 21, 40, 47]. As we will
demonstrate, Bk suffers from the same problem, partly due to its leader election mechanism.

Tailstorm addresses the unfairness problem through an innovative reward scheme that
punishes withholding. The Tailstorm blockchain consists of subblocks and summary blocks.
Similar to Bk, summaries do not require a PoW, but subblocks do. Assembling a new
summary requires k subblocks that confirm the same parent summary. To preserve the
security properties of Bk, subblocks confirming the same summary are conflict-free, and
hence can be mined in parallel. Taking inspiration from Bobtail [9], subblocks optionally
refer to another subblock instead of a summary, and hence form a tree. With Tailstorm, we
propose to discount rewards based on the depth of this tree, as depicted in Figure 1. Mining
subblocks in private causes branching of the tree, reduces its depth, and ultimately leads to
lower rewards.

We support our claims with a comprehensive analysis and make the following contributions.
1. We formulate a generic system model for PoW cryptocurrencies. The models abstracts

PoW and communication, defines a joint set of assumptions, and enables valid comparisons
between different consensus protocols and incentive mechanisms.

2. We specify Bitcoin, Bk, and Tailstorm in the joint model. To isolate the effect of
Tailstorm’s discount reward scheme and Bk’s leader election mechanism, we additionally
specify a hybrid protocol, TS/const, modelling Tailstorm without discounting and Bk

without leader election.
3. We provide an upper bound for the orphan rate of Tailstorm in honest networks. Compared

to Bitcoin [43], Tailstorm creates less orphans and hence presents less opportunity for
unfairness.

4. We implement the system model as a simulator and show that Tailstorm is more fair than
Bitcoin in honest but realistic networks with propagation delays. We confirm Bitcoin’s
inherent tradeoff: while short block intervals are desirable for fast confirmations and a less
volatile stream of rewards, they also bias rewards in favour of strong miners. In Tailstorm,
these concerns are largely separated by configuring long summary block intervals for
fairness and short subblock intervals for fast confirmations and frequent rewards.

5. We evaluate multiple hard-coded attack strategies against the specified protocols, finding
that attacks which are profitable against Bk are less profitable against Tailstorm, with
the TS/const protocol lying in between.

6. We follow Hou et al. [26] and search optimal attack strategies using reinforcement learning.
Our search reproduces optimal strategies against Bitcoin [21, 47] and generally matches
or outperforms the hard-coded strategies. The regularity of our results indicates that
we indeed found near-optimal strategies against all protocols and enables the conclusion
that Tailstorm is less susceptible to incentive layer attacks than the other protocols.

AFT 2023



6:4 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

7. We describe the Tailstorm application layer, which implements a cryptocurrency on top
of the proposed consensus protocol. It preserves Bitcoin’s transaction logic while enabling
faster confirmations. Transactions are stored in subblocks in much the same way that
the Storm protocol [4] stores transactions in delta blocks.

8. Lastly, we implement a prototype of Tailstorm which is ready for testnet deployments
and make the code available online [23].

We structure the paper in order of our contributions. Section 2 defines the system model
and Section 3 presents the specification of Tailstorm. In Section 4, we evaluate the protocols
in an honest network with propagation delays. In Section 5, we evaluate hard-coded attack
strategies, and in Section 6 we conduct the search for optimal policies with reinforcement
learning. Section 7 presents the Tailstorm cryptocurrency and our prototype implementation.
In Section 8, we discuss related work, limitations and future work. Section 9 concludes.

2 System Model

Recall the layered view on PoW cryptocurrencies presented in the introduction: The PoW
layer moderates access using a mining puzzle, the consensus layer establishes a specific block
ordering, the application layer writes cryptocurrency transactions into the blocks, and the
incentive layer mints new cryptocurrency for successful miners. We now present a system
model that abstracts PoW and communication to enable concise specification of the consensus
layer. Application and incentives are considered in later sections.

In practice, PoW consensus protocols are executed as distributed systems, where indepen-
dent nodes communicate over a P2P network. Messages exchanged between the nodes may
be subject to natural or potentially malicious delays. To facilitate specification, we abstract
this distributed system and model it algorithmically. We define a virtual environment that
emulates distributed protocol execution in a single thread of computation. Within the virtual
environment, nodes are represented as numbers, and blocks are represented as vertices in
a directed acyclic graph (DAG). Mining is simulated as a loop with random delays, while
communication is modeled by restricting the visibility of blocks to a subset of the nodes.
The behaviour of nodes is defined by functions, which can be customized to model different
protocols.

We define the virtual environment in Algorithm 1. The environment maintains a DAG
where each vertex represents one block. Each block b has an associated list of parent blocks
that constitute the outgoing edges in the DAG. We denote this list parents(b). In practice,
edges arise from hash references pointing to other blocks in the blockchain. We say that
block b is a descendant of block b′, if b′ is either a parent of b, or is connected transitively
by the parents relationship. In this case, we say b′ is an ancestor of b. Each block has
properties which are assigned as the protocol unfolds. For example, the virtual environment
uses the Boolean property pow(b) to track whether block b has a PoW or not.

We label the participating nodes with integers ranging from 1 to n. For each node, the
virtual environment maintains a local view of the DAG and a preferred tip of the chain.
In Lines 10 and 21, we restrict the local view of node i to blocks where visibility(b, i)
was set to true. Initially, local views are empty and new blocks are not visible to any node.
We denote as tip(i) the preferred tip of node i, the block to which a new block from i

will point. We describe the behaviour of nodes as pure functions. These functions are
called by the environment to obtain instructions from the node which the environment then
interprets according to our assumptions. This makes all modifications of the DAG and all



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:5

Algorithm 1 Virtual Environment.

1 t← Root(); // Root: protocol’s genesis block template
2 b← block obtained from appending template t to the block DAG; // reification
3 for i = 1, . . . , n do // n: number of nodes
4 tip(i)← b; // tip(i): state of node i
5 visibility(b, i)← true; // visibility(b, i): whether node i sees block b

6 while true do // concurrent PoW loop
7 sample delay dpow ∼ Expon(rate λ); // λ: PoW rate
8 sample node i ∼ Discrete(1, . . . , n with weights κ1, . . . , κn); // κ1, . . . κn: relative hash rates
9 wait for dpow seconds, handling other tasks concurrently;

10 with local view of node i do // partial and immutable view on block DAG
11 tmpl← Extend(tip(i)); // Extend: protocol’s mining rule
12 b← block obtained from appending template tmpl to the block DAG; // reification
13 pow(b′)← true; // mark block as mined
14 visibility(b, ·)← false; // block not yet propagated
15 if Validate(b) then Deliver(b, i); // Validate: protocol’s chain structure

16 function Deliver(block b, node i) is // Turn block visible for node . . .
17 for p ∈ parents(b) do // . . . in topological order . . .
18 wait until visibility(p, i) is true;
19 if not visibility(b, i) then // . . . and at most once.
20 visibility(b, i)← true;
21 with local view of node i do // partial and immutable view on block DAG
22 (tip(i), share, append) ← Update(tip(i), b); // Update: protocol’s state update rule

23 for b′ ∈ share and j = 1, . . . , n, j ̸= i do // handle block broadcast requests
24 pick message delay dnet according to network assumptions;
25 Deliver(b′, i) in dnet seconds;

26 for tmpl ∈ append do // handle requests to append blocks without PoW
27 b′ ← block obtained from appending template tmpl to the block DAG; // reification
28 pow(b′)← false; // block has no PoW
29 visibility(b′, ·)← false;
30 if Validate(b′) then Deliver(b′, i); // Validate: protocol’s chain structure

communication explicit in Algorithm 1. In particular, nodes do not directly append blocks
to the DAG; they return block templates, which the environment then reifies by appending a
new block to the DAG.

A protocol is fully specified through four functions: Root and Validate define the
structure of the blockchain, while Update and Extend define the behavior of honest nodes.

The Root function takes no argument and returns a single block, which we call genesis.
Initially, the genesis is the only block in the DAG. Validate takes a block as argument and
returns true if the block is valid and false otherwise. E. g., Bitcoin’s Validate checks the
pow property and that there is exactly one parent. The environment enforces block validity
during the reification of blocks, while deployed protocols would reject invalid blocks in the
communication layer. The genesis is not subject to the validity rule.

The Update function specifies how nodes react to newly visible blocks, after they are
mined locally with PoW, appended locally without PoW, or received from the network. The
function takes two arguments: the node’s currently preferred tip and the new block. The
function returns the new preferred tip, a list of blocks the node intends to share with other
nodes, and a list of block templates it wants to append to the chain without PoW. On the
other hand, the function Extend defines how nodes grow the chain with PoW. It takes a
single argument, a node’s currently preferred tip, and returns a template for the block that
the node intends to mine.

AFT 2023



6:6 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Algorithm 2 Tailstorm: Chain Structure.
1 function Root() is
2 return block template b with summary(b) = true and height(b) = depth(b) = 0;

3 function Validate(block b) is
4 if summary(b) then
5 p← last summary before b;
6 S ← subblocks between b and p;
7 return (|S| = k) ∧ (depth(b) = 0) ∧ (height(b) = height(p) + 1);
8 else // b is subblock
9 p← first parent of b;

10 return
pow(b) ∧ (|parents(b)| = 1) ∧ (depth(b) = depth(p) + 1) ∧ (height(b) = height(p));

We follow related work [51, 43, 15, 37, 29] and model the mining process in continuous
time. The virtual environment generates independent mining delays from the exponential
distribution Expon(λ), with rate λ measured in expected number of proofs-of-work per second.
Accordingly, the expected value of the distribution, 1/λ, is called the mining interval and is
measured in seconds. After each mining delay, the environment randomly selects a successful
miner, obtains a block template from Extend, and reifies the block by appending it to the
DAG. We support arbitrary hash rate distributions among the nodes by setting the weights
κ1, . . . , κn in Line 8 accordingly.

The Deliver function captures the process of making blocks visible to nodes. The
specified protocols have in common that block validation requires knowledge of all referenced
blocks. We avoid a lot of boilerplate code in the specification, by ensuring that parent blocks
are delivered before their children. Upon delivery, the virtual environment first invokes the
Update function to obtain the node’s new preferred tip, a list of blocks the node wants to
share, and a list of block templates the node intends to append without PoW. It then handles
the node’s requests to share and append. Communication is modelled through delayed
delivery, while appends happen immediately.

3 The Tailstorm Protocol

This section specifies the Tailstorm consensus protocol and reward mechanism using the
algorithmic model described in Section 2. The specification serves as the basis for our
theoretical analyses, network simulations, and attack search in subsequent sections. We first
describe Tailstorm’s chain structure in Section 3.1. We then specify the behaviour of honest
nodes in Section 3.2. As a point of reference, we also specify Bitcoin and Bk protocols in
the extended version of the paper. In this section, we assume that the application layer
implements a cryptocurrency which we can use to pay rewards. We defer the description
of Tailstorm’s application layer to Section 7. Throughout this section, we focus on honest
miners who follow the protocol as intended. Later sections will consider dishonest behaviour.

3.1 Chain Structure
Algorithm 2 defines Tailstorm’s chain structure. Each block is either a summary or a subblock.
Subblocks must have PoW and they must have exactly one parent. Summaries do not require
PoW and reference k subblocks, each confirming the same ancestor summary.

Each block b has two integer properties, height(b) and depth(b). The genesis has height
and depth zero. Subblocks inherit the height of their parent and they increment the depth
by one. Summaries increment the height and reset the depth to zero. Figure 1 in Section 1



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:7

Algorithm 3 Tailstorm: Node.
1 function Preference(summary s, summary b) is
2 hs, hb ← height(s), height(b);
3 ns, nb ← size of subblock tree confirming s and b;
4 rs, rb ← reward obtained from (s, b);
5 return (hb > hs) ∨ (hb = hs ∧ nb > ns) ∨ (hb = hs ∧ nb = ns ∧ rb > rs);

6 function Extend(tip t) is // t: currently preferred block
7 if t has children then p← maximum-depth subblock after t else p← t;
8 return subblock template b with
9 parents(b) = [p], height(b) = height(p), and depth(b) = depth(p) + 1;

10 function Update(tip t, block b) is // t: currently preferred block // b: new block
11 pref, share, append← t, [b], []; // new preferred tip, blocks to broadcast, templates to append
12 if summary(b) then
13 if Preference(pref, b) then pref← b;
14 else // b is subblock
15 p← last summary before b;
16 if Preference(pref, p) then pref← p;
17 S ← all subblocks in subblock tree confirming p;
18 if |S| ≥ k then
19 L← result of Algorithm 4: Subblock Selection;
20 create summary template s with parents(s) = L;
21 append ← [s];

22 return pref, share, append;

illustrates a valid Tailstorm chain for k = 3. Note that the subblocks confirming the same
summary form a tree and that the depth property tracks the depth of this tree. The height
property on the other hand counts the number of trees that have been summarized.

To incentivize participation, Tailstorm allocates rewards to the miners of subblocks. The
reward size is proportional to the depth of the subblock tree: let b be a summary block, and
S be the set of subblocks in the corresponding subblock tree. Then all subblocks in S are
allocated the same reward

discount(b) = c

k
· max

x∈S
(depth(x)) , (1)

where c represents a tunable upper limit on the subblock reward. In Figure 1 we show the
rewards for c = 1. Note that the reward scheme punishes non-linearities in the blockchain,
and this punishment affects all included subblocks equally.

3.2 Honest Nodes
Algorithm 3 specifies the behaviour of honest nodes. The algorithm revolves around a
preference order (ln. 1-5) that ranks summaries first by height, then by number of confirming
subblocks, and finally by potential personal reward for the individual node. Nodes set the
highest ranked summary as their preferred summary (ln. 13+16) and they mine subblocks
(ln. 6-9) that confirm their preferred summary. To maximize the depth of the subblock tree,
nodes append their subblocks to the longest existing branch.

Whenever nodes learn about a new block (ln. 10-22), they share it with the other nodes
and they update their preference. As soon as there are k subblocks (ln. 18) confirming the
preferred summary, nodes assemble the next summary. When there are more than k subblock
candidates for the next summary, nodes choose the subblocks to maximize their own rewards.
We present a greedy algorithm for subblock selection in Algorithm 4. Note that nodes may

AFT 2023



6:8 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Algorithm 4 Tailstorm: Subblock Selection.
1 R← ∅; // selected subblocks
2 while |R| < k do // select one subblock per iteration
3 C ← S \R; // S: candidate subblocks
4 for x ∈ C do
5 Bx ← x and all ancestors of x in S;
6 B′

x ← Bx \R; // newly referenced blocks
7 rx ← number of node’s own subblocks in B′

x; // reward
8 C ← {x ∈ C : |R|+ |B′

x| ≤ k}; // enforce tree size k
9 y ← arg maxx∈C rx; // select candidate with highest reward

10 R← R ∪B′
y; // track referenced subblocks

11 return leaves in subblock tree R; // invariant: |R| = k

choose different subblocks and thereby create conflicting summaries. Such conflicts create
temporary forks of the blockchain which are resolved quickly according to the preference
order described above. We analyze the implications on fairness in Section 4.

3.3 Difficulty Adjustment
A major goal for most blockchains, including Tailstorm, is for the blockchain itself to grow
at a constant rate so as to maintain constant transactional throughput. However, in any
deployed blockchain, the puzzle solving rate λ changes over time because nodes may come
and go or may add or remove mining hardware. The changes in solving rate lead to changes
of the growth rate. Adjusting for the fluctuations requires feedback from the consensus to
the PoW layer. Typically, blockchains adjust the puzzle solving difficulty depending on the
observed chain growth using a dynamic difficulty adjustment algorithm (DAA).

There exists a rich body of prior work concerning DAA design and analysis [8, 18, 25, 27,
35], but a deep investigation of ideal DAAs for the Tailstorm protocol is beyond the scope
this paper. We note, however, that existing DAAs for Bitcoin can be adapted to Tailstorm
by counting the number of subblocks where Bitcoin DAAs use the length of the blockchain.
For any Tailstorm block b (summary or subblock), we define

progress(b) = k · height(b) + depth(b) , (2)

which counts the number of PoWs included in the chain. Any Tailstorm DAA should adjust
the puzzle solving difficulty such that progress grows at a constant rate.

3.4 Protocol Variant With Constant Rewards
Tailstorm discounts rewards proportional to the depth of the subblock tree. We see the
discounting mechanism as a core contribution of this paper. To isolate the effect of discounting,
we introduce a protocol variant without discounting, which we call TS/const. While Tailstorm
pays out at most c units of reward per subblock, the TS/const protocol pays out exactly c

units of reward per subblock. In all other aspects, TS/const is identical to Tailstorm.
Note, that the TS/const protocol does not use the subblock tree structure, neither for

consensus nor for incentives. In that regard, TS/const resembles the parallel PoW protocol
Bk [29] where all subblocks refer to a summary, never another subblock. The only difference
with Bk is that TS/const does not implement leader election: while Bk restricts the creation
of the next summary to the miner of the subblock with the smallest hash, any TS/const
node may (re-)create valid summaries locally.



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:9

4 Fairness Under Protocol Compliance

A fair PoW protocol rewards miners in proportion to the amount of work they do. Dispro-
portionate or inconsistent allocation discriminates against weak miners and encourages the
formation of pools and centralization. In this section, we explore the causes of unfairness in
Tailstorm under the assumption that all miners are honest. We measure work in number of
hashes evaluated. The system is fair if rewards are proportional to the miners’ hash rates.

The root cause of unfairness is the inherent asymmetry in reward loss when multiple PoW
solutions are discovered in short order. In Tailstorm, if more than k subblocks are produced,
all having the same height, then all but k of them will be discarded. The discarded blocks
are commonly called orphans and receive no rewards. Typically, miners do not orphan their
own blocks. Since miners with a high hash rate are more often able to choose which blocks
will be orphaned, miners with a relatively low hash rate lose a disproportionate amount of
rewards. In Bitcoin, this effect is amplified because orphaning can occur for each block (set
k = 1 in the above argument).

4.1 Analytical Orphan Rate Analysis
In this section, we develop an analytical model for the orphan rate and use it to compare
the fairness of Bitcoin and Tailstorm. Let B be a random variable denoting the number of
subblocks orphaned during the production of a summary block in Tailstorm or the number
of orphans per block in Bitcoin. The orphan rate is given by ρ = E[B]/k, which represents
the expected number of PoW solutions orphaned for every PoW solution confirmed. In the
remainder of this section, we will derive a bound on ρ.

Following Rizun’s orphan rate analysis for Bitcoin [43], we model block propagation
delays as

τ(τ0, z, Q) = τ0 + zQ, (3)

where τ0 represents network latency (seconds), z represents bandwidth (bytes per second),
and Q represents block size (bytes). In order to adapt this expression for Tailstorm, we
assume that the transactions included in a summary block are spread evenly across the k

subblocks, so the subblock size is Q/k. The expected summary block interval is T and the
subblock mining rate is λ = k/T .

▶ Theorem 1. For network parameters τ0, z, and Q, summary block interval T , and subblock
count k, Tailstorm’s expected orphan rate ρ is bounded from above by:

ρ(τ0, z, Q, T ) ≤ τ0

T
+ zQ

kT
.

Proof. Assume there are k + X subblocks, all pointing to the same summary block. Then, k

of these subblocks will be included in the next summary and X will be orphaned. Recall
from Algorithm 3 that honest miners proceed to the next summary as soon as they learn
of k subblocks. So, if X subblocks are orphaned, they must have been mined before the
kth subblock has propagated to all nodes. Additionally, subblocks k through k + X must
originate from different miners, since no miner orphans its own subblock.

Let Yt be a random variable representing the number of subblocks generated during an
arbitrary time interval t > 0 under the assumption, introduced in Section 2, that mining
intervals are exponentially distributed with rate λ = k/T . A standard result from the theory
of Poisson processes shows that YT ∼ Poisson(k) [46, ch. 5]. The same theory shows that

AFT 2023



6:10 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Table 1 Upper bounds on orphan rate obtained from Theorem 1 assuming various combinations
of k and expected block (Bitcoin) or summary block (Tailstorm) intervals T .

Bitcoin Tailstorm

block interval k = 1 k = 5 k = 10 k = 15

T = 75 seconds 10.08 % 7.35 % 7.01 % 6.89 %
T = 150 seconds 5.04 % 3.67 % 3.50 % 3.45 %
T = 300 seconds 2.52 % 1.84 % 1.75 % 1.72 %
T = 600 seconds 1.26 % 0.92 % 0.88 % 0.86 %

Yt ∼ Poisson(t k
T ) for arbitrary t > 0. According to our network model, the kth subblock

(as well as the k − 1 before) is fully propagated after τ(τ0, z, Q/k) seconds. Thus, X is equal
to Yτ(τ0,z,Q/k) in distribution. E[X] bounds the expected number of subblocks orphaned
per summary block. The orphan rate, that is subblocks orphaned per subblocks included, is
bounded by

ρ(τ0, z, Q, T ) ≤ E[X]
k

=
τ(τ0, z, Q/k) k

T

k
= τ0

T
+ zQ

kT
. (4)

◀

Table 1 shows how the upper bound varies depending on the expected summary block
interval T and the subblock count k. The orphan rate for Bitcoin [43] appears in the column
for k = 1. In this analysis we assume that Q = 32 MB, z = 100 MB/s, and τ0 = 5 s. Generally,
we can see that the orphan rate decreases with both expected summary block interval T

and k. This suggests that, when summary block intervals are constant across protocols,
Tailstorm with high k increases fairness over Bitcoin and Tailstorm with lower k.

4.2 Measuring Fairness in Simulation
Section 4.1 provides an analytical bound for Tailstorm’s orphan rate. This bound is only
tight if all subblocks originate from different miners, which is unlikely to happen in practice.
To obtain a more realistic analysis, albeit in a more specific setting, we now consider strong
miners who are likely to produce multiple blocks within a single propagation delay. Since the
mathematical analysis for this scenario is complex, we rely on simulation instead. Additionally,
instead of using the orphan rate metric, itself only a proxy for fairness, we directly measure
a miner’s deviation from their fair share of rewards.

We implement the virtual environment as described in Section 2, Algorithm 1 and measure
how the choice of protocol – Bitcoin and Tailstorm under various parameterizations – affects
rewards. The network is configured with one weak and one strong miner operating with 1 %
and 99 % of the total hash rate, respectively. All messages are delayed for 6 seconds.

We simulate one million PoW solutions per configuration. We split the simulation into
independent observations, each representing one day of protocol execution. Specifically, with
T denoting the expected summary block interval, we terminate individual executions when
⌊24 × 3600 × k/T ⌋ PoWs are mined. For each execution, we identify the longest chain of
blocks and calculate the accumulated rewards for both miners. Since each observation covers
one day of mining, the variance represents daily volatility of rewards.

A miner’s fair share of reward equals its relative hash rate. To measure fairness, we
compare actual rewards to the fair share. Figure 2 shows the weak miner’s relative reward
as a percentage of its fair share. The leftmost facet shows the Bitcoin protocol for expected



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:11

Figure 2 Observed fairness for different configurations of Bitcoin (leftmost facet) and Tailstorm
(right facets) with expected summary interval T ranging from 600 to 150 seconds. Colors represent
expected subblock mining intervals.

block intervals ranging from roughly 9 seconds to 600 seconds. The remaining three facets
show Tailstorm with summary block intervals T of 600, 300, and 150 seconds for k ranging
from 2 to 64. Like colors represent such configurations where subblocks are generated at the
same frequency λ = k/T . We omit the configurations where the expected subblock interval
T/k is lower than the network propagation delay of 6 seconds.

The Figure illustrates the tradeoff between reward fairness and volatility in Bitcoin
and Tailstorm. In the leftmost facet, it shows how increasing the expected block interval
improves fairness but also increases volatility in Bitcoin. In contrast, the right facets show
how Tailstorm can be configured to independently control both reward fairness (by adjusting
the summary block interval T ) and volatility (by adjusting k). In particular, choosing higher
k leads to more frequent rewards and lower volatility, while longer summary block intervals
tend to increase fairness. The latter observation aligns with the results in Table 1, which
also shows that fairness tends to increase with the summary block interval.

5 Attack Evaluation

We now extend the virtual environment defined by Algorithm 1 in Section 2 to model
adversarial behavior. We then specify and evaluate several attack strategies against Tailstorm.

To account for the possibility of collusion among multiple dishonest parties, we pessimisti-
cally assume that they indeed collude. Therefore, we model a single but strong node deviating
from the protocol. Throughout the remaining sections we refer to the single dishonest node
as the attacker and to the honest nodes as defenders. The attacker observes the virtual
environment’s state and reacts to any updates accordingly. We describe attacks as policies,
which determine the action to take based on the observed state.

5.1 Network

We deploy a virtual environment comprising n nodes. The first node represents the attacker
and is assigned fraction α of the total hash rate. The remaining hash rate is distributed
evenly among the n − 1 defenders. Henceforth, we refer to α as the attacker’s strength.

AFT 2023



6:12 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

In Bitcoin, blocks form a linear chain. If there are two blocks with the same height, only
one will be included in the blockchain long term. Since honest Bitcoin nodes prefer and mine
on the block first received, nodes with better connectivity obtain an advantage. The same
block race situation can arise in Tailstorm. Here, there can be only one summary at each
height and the nodes’ preference of summaries (Alg. 3) likewise depends on the order they
are received. Attackers able to send blocks more quickly might be able to manipulate the
defenders’ preference to suit their needs.

We follow Eyal and Sirer [16] and Sapirshtein et al. [47] who model the block race advantage
with a single network parameter γ, which defines the proportion of defenders, weighted by
hash rate, that will opt for the attacker’s block in the case of a block race. We pessimistically
assume that the attacker receives all blocks without delay. Defender nodes can send blocks
to one another with a negligible delay of ε. When the attacker sends a block to a defender,
we introduce a random delay, which we draw independently from a uniform distribution on
the interval [0, n−2

n−1
ε
γ ].

Note that we chose these delays to enable comparison with related work [16, 47] on selfish
mining against Bitcoin. Other constructions with different distributions are possible but
redundant: γ = 0 implies an inferior network level attacker who wins no block races, γ = 1
models a superior attacker who wins all block races, and intermediate attackers can be
modeled by choosing γ accordingly. The effect of non-negligible delays among the defenders
was analyzed in Section 4.

▶ Theorem 2. Let γ ∈ [0, 1] be given. For any choice of ε > 0 and n > 1
1−γ + 1, our

definition of γ is equal to the attacker’s block race advantage in [16, 47].

Proof. Let A be the event that a randomly chosen honest miner accepts the attacker block
over honest and Ai the event that a specific miner accepts the attacker block. By the law of
total probability we have P [A] = 1

n−1
∑n−1

i=1 P [Ai]. Note also that if we assume w.l.o.g. that
An−1 was the miner of the competing block, then P [An−1] = 0. Since defenders communicate
with each other with delay ε while the attacker communicates with defenders with uniform
random delay up to time n−2

n−1
ε
γ , it must be the case that

P [Ai] = ε

(
n − 2
n − 1

ε

γ

)−1
, ∀i < n − 1 , (5)

provided that n−2
n−1

ε
γ > ε. Choosing n > 1

1−γ + 1 satisfies this constraint. Equality in the
constraint is not valid because it forces P [Ai] = 1 for all γ. Therefore,

P [A] = 1
n − 1

n−1∑
i=1

P [Ai] (6)

= 1
n − 1

n−2∑
i=1

P [Ai] (7)

= n − 2
n − 1

ε
n−2
n−1

ε
γ

(8)

= γ. (9)

◀

Constraint n > 1
1−γ + 1, from Theorem 2, is fundamental; if n is smaller, then it is not

possible for an honest miner to communicate a block to another honest miner faster than the
attacker can. The constraint implies that γ < n−2

n−1 . Hence, we can model γ = 1 only in the



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:13

bc

tip(1) = ba

tip(2)

tip(3) = bd

R(bc)

R′(bc)

R(bd)

R(ba)

Legend:
summary block defenders’ subblock attacker’s subblock

Figure 3 Notation in Section 5.2 Observation Space. This example uses three nodes and k = 3.

limit that the number of miners approaches infinity, which is not possible in practice. Other
authors [16, 47] have directly considered γ = 1, but we feel that the restriction to γ < 1 is
natural. Given that the miner of the defending block in a block race will never adopt the
attacker’s competing block, γ = 1 implies that individual miners have zero hash rate, which
is not realistic.

5.2 Observation Space

The virtual environment maintains complex state. It tracks the full history of blocks, delayed
messages, and the partial views of all nodes. Some of this information is not available to
attackers in practice, other parts are not relevant. To enable concise policies, we follow
Sapirshtein et al. [47] and restrict what the attacker can see.

Figure 3 illustrates our notation. At any given time, let ba = tip(1) denote the attackers
preferred summary block, and let bd denote the best block (according to Preference in
Alg. 3) among the preferred blocks of the defenders: tip(2), . . . , tip(n). We use bc to refer
to the best summary block among the common ancestors of ba and bd. In other words, bc is
the latest block that all nodes agree upon. For any summary block b, we use R(b) to identify
the subblocks which are both a descendant of b and have the same height as b. Note that
Tailstorm’s chain structure (Alg. 2) implies that R(b) and b together span a tree. Section 3
defines the depth of a subblock to be its depth within this tree. We define R′(b) as the largest
subset of R(b) such that all subblocks are mined by the attacker and R′(b) ∪ {b} is still
connected. In the following, we use |S| to refer to the cardinality of a set S and depth[S] to
refer to the maximum depth among all blocks in S. The attacker observes

ha: the attacker’s height advantage, height(ba) − height(bc) ,
hd: the defenders’ height advantage, height(bd) − height(bc) ,
sa: the attacker’s inclusive subblock count, |R(ba)| ,
s′

a: the attacker’s exclusive subblock count, |R′(ba)| ,
sd: the defenders’ subblock count, |R(bd)| ,
da: the attacker’s inclusive depth, depth[R(ba)] ,
d′

a: the attacker’s exclusive depth, depth[R′(ba)] , and
dd: the defenders’ depth, depth[R(bd)] .

The example shown Figure 3 implies (ha, hd, sa, s′
a, sd, da, d′

a, dd) = (1, 1, 2, 2, 2, 2, 2, 2) .

AFT 2023



6:14 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Algorithm 5 Tailstorm: Attacker.

1 function Update(tip t, block b) is // t: currently preferred block // b: new block
2 pref, share, append← t, [], []; // new preferred tip, blocks to broadcast, templates to append
3 if b is own summary block then pref← b;
4 W ← set of withheld blocks (= blocks not shared before);
5 withhold, extend← P(ha, hd, sa, s′

a, sd, da, d′
a, dd); // P: attack policy

6 switch withhold do
7 case Adopt do pref← bd // bd: defender’s block, see Sec. 5.2 ;
8 case Match do share← {x ∈W | progress(x) ≤ progress(bd)} ;
9 case Override do share← {x ∈W | progress(x) ≤ progress(bd) + 1} ;

10 case Wait do nothing;
11 switch extend do
12 case Inclusive do
13 if |R(pref )| ≥ k then // R(b): full subblock tree confirming b, see Sec. 5.2
14 append← summary template using R(pref );

15 case Exlusive do
16 if |R′(pref )| ≥ k then // R′(b): partial subblock tree confirming b, see Sec. 5.2
17 append← summary template using R′(pref );

18 return pref, share, append;

5.3 Action Space
The virtual environment (Alg. 1) calls a node’s Update function whenever this node learns
about a new block: after it was mined locally with PoW, appended locally without PoW,
or received from the network. We implement the attacker’s dishonest Update function in
Algorithm 5. We allow for generic attacks by letting the attacker choose from a set of
potentially dishonest actions. We assume that there is a policy P which maps observations
(see Sect. 5.2) to action tuples of the form (withhold, extend). The withhold action type
controls the preferred tip of the chain and the withholding of blocks. We hereby follow closely
the actions used by Sapirshtein et al. [47] for selfish mining against Bitcoin [16].

Wait Continue mining on ba and withhold new blocks.
Match Release just enough blocks to induce a block race between bd and an attacker block.
Override Release just enough blocks to make the defenders discard their block bd.
Adopt Abort attack, prefer defenders’ block bd, and discard ba.

Recall from Section 2 that “blocks” refers to vertices in the block DAG. This makes the
withhold action protocol-agnostic. For Tailstorm, blocks can be subblocks or summaries.
Note that while Adopt and Wait are always feasible, Match and Override are not. If the
attacker’s chain is too short, the defenders will not consider adopting it. In such cases, Match
and Override, as implemented in Algorithm 5, fall back to releasing all withheld blocks.

The second action type, extend, is specific to Tailstorm. It controls how the attacker
assembles new summary blocks, more specifically, which subblocks it considers for selection
with Algorithm 4.

Inclusive Use all available subblocks to create new summaries.
Exclusive Use only subblocks which were mined by the attacker.

Note that the attacker never delays the next summary block longer than necessary. As
soon as there are enough subblocks for an inclusive or exclusive summary (according to the
chosen action), this summary will be created.



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:15

Figure 4 Observed normalized reward as a function of attacker strength α for different protocols
(color) and reference policies (line style and markers). The three facets represent the network
assumptions γ ∈ {5, 50, 95}%. We set protocol parameter k = 8 where applicable. TS/const is
Tailstorm without reward discounting. We add a gray reference line for the fair reward α (overlaps
with honest policy) and a gray dotted curve for the known upper bound α/(1− α).

5.4 Reference Policies
We evaluate the following policies. In each, the attacker assembles Inclusive summaries.

Honest Emulate Algorithm 3: adopt the longest chain and release all blocks:
Adopt if hd > ha. Otherwise Override.

Get Ahead Withhold own subblocks, release own summaries:
Adopt if hd > ha. Override if hd < ha. Otherwise Wait.

Minor Delay Withhold own subblocks, override defender summaries as they come out:
Adopt if hd > ha. Wait if hd = hc. Otherwise Override.

To evaluate the policies above, we reuse the simulator from Section 4.2, configuring the
network as described in Sections 5.1 to 5.3. We set block race advantage γ ∈ {5, 50, 95} % and
allow the attacker strength α to range from 20 % to 45 %. We run one hundred simulations
per configuration, and stop each as soon as the DAG contains 2048 blocks. At the end of
each simulation we select the longest chain of blocks and calculate its rewards. We configure
Tailstorm’s discount reward scheme, as defined in Section 3.1, with c = 1 such that at most
one unit of reward is minted per unit of chain progress.

Some policies cause more orphans than others. Assuming effective difficulty adjustment
according to Section 3.3, the amount of simulated time depends on the attacker’s behaviour.
The attacker’s mining cost is proportional to the time spent on the attack. To facilitate
comparison across policies, we normalize rewards with respect to simulated time. Formally, we
define the normalized reward as the attacker’s reward up to block b divided by progress(b).
Note that relative reward, a metric commonly used for Bitcoin [55, 16, 47, 54], is not sufficient
to account for Tailstorm’s reward discounting.

Figure 4 reports the average normalized reward (across 100 simulations) on the y-axis
for the varying α on the x-axis and with γ varying by facet. The green curves represent
the different reference policies against Tailstorm. We also evaluate the reference policies
against the TS/const protocol as defined in Section 3.4 (orange curves) and against Bk (red
curves). In addition, we evaluate the SM1 policy against Bitcoin (blue curve) as described
by Sapirshtein et al. [47]. For orientation we include their upper bound α/(1 − α) as a gray
dotted curve and add a solid gray line for α, the expected reward of honest behaviour.

AFT 2023



6:16 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

The figure supports multiple conclusions. First, the curves for the Honest policy coinciding
with the line for α indicates that the policy indeed replicates honest behavior in all evaluated
protocols. Second, comparing the measurements for Tailstorm with the ones for TS/const
shows clearly that the discounting of rewards reduces efficacy of all dishonest reference
policies. Third, Minor Delay is generally the most effective reference policy. Forth, Minor
Delay produces less reward in Tailstorm than SM1 does in Bitcoin. Fifth, for low γ, Minor
Delay is more profitable against Bk than SM1 is against Bitcoin.

Note however, that Minor Delay might not be the best strategy against Tailstorm, just
like SM1 is not always optimal for Bitcoin [47]. This motivates to search for optimal policies.

6 Attack Search

Previous research has identified optimal attacks against Bitcoin and Ethereum through the use
of Markov Decision Processes (MDP) and exhaustive search [55, 21, 47]. However, for more
complex protocols, the state space of MDPs can become prohibitively large, and exhaustive
search becomes impractical [26, 29, 54]. As a result, many authors in the past have resorted
to evaluating hard-coded attacks instead of searching for optimal policies [9, 17, 29, 34, 13].

We adopt the approach introduced by Hou et al. [26] and employ reinforcement learning
(RL) to search for attacks. The observation and action spaces described in Section 5 readily
define a partially observable MDP. To search for optimal attacks, we replace the hard-coded
policy P with an RL agent that learns to select actions based on past observations.

We utilize off-the-shelf RL tooling by first exposing our simulator and attack space as an
OpenAI Gym [10]. Next, we deploy Proximal Policy Optimization (PPO) [48] as our agent.
To support reproduction and future research, we release the Gym as Python package [28]
and include all training scripts in our open source repository [30].

The modularity of our simulator allows us to apply the same RL pipeline to different
protocols. We insert the protocol specifications along with their associated observation
and action spaces, while reusing the virtual environment and network assumptions across
protocols. For Bitcoin, we adopt the attack space defined by Sapirshtein et al. [47]. Details
about the attack spaces for Bitcoin and Bk are provided in the extended version of this paper.

We use Bitcoin as a reference protocol to measure the completeness of our approach.
Previous research by Sapirshtein et al. [47] has yielded the optimal policy. As we will
demonstrate, our search mechanism reproduces these results closely.

We search for optimal policies for all possible combinations of attacker strength α ∈
{20, 25, 30, . . . 45} %, and block race advantage γ ∈ {5, 50, 95} %. We evaluate four protocols:
Bitcoin, Bk, Tailstorm, and TS/const with k = 8 where applicable. In total, this amounts to
7 · 3 · 4 = 84 different learning problems.

For each learning problem, we conduct multiple training runs with varying hyperpara-
meters. For the objective function we choose normalized reward, as evaluated for the reference
policies in Figure 4. From the training we obtain 1292 policies.

We select the best trained policy for each problem by simulating 100 independent protocol
executions for each and proceeding as follows. As in Section 5.4, we stop individual executions
as soon as there are 2048 blocks. We then select the longest chain of blocks and observe the
attacker’s normalized reward. This reward is averaged over the 100 observations per policy
to determine the policy with the highest average reward. For reference, we apply the same
filtering method to select the best policy among the reference policies from Section 5.4.



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:17

Figure 5 Observed normalized reward of the best known policy with the axes set up like in
Figure 4. Solid curves with •-markers represent trained reinforcement learning models. Dashed
curves with ×-markers represent the reference policies defined in Section 5.4.

Figure 5 shows the performance of the selected policies, with γ varying by facet, α on the
x-axis, and average normalized reward on the y-axis. The solid colored curves represent the
best trained policies, while the dashed colored curves represent the best reference policies.
As in Figure 4, we include gray reference curves for Bitcoin’s known upper bound α/(1 − α)
(dotted) and fair share α (solid). Note that for γ = 50 %, Nakamato and Bk visually overlap.

In comparing the performance of different protocols, we say that protocol A performs
better (or worse) than B in the event that A returns fewer (alternatively more) rewards to
the attacker than does B. Figure 5 supports the following conclusions. First, Bk performs
worse than Bitcoin for low γ, but better than Bitcoin for high γ. The break-even point
seems to be at γ = 50 %. Second, Tailstorm consistently outperforms Bitcoin and Bk, even
with constant rewards (TS/const). Moreover, discounting of rewards consistently makes
Tailstorm less susceptible to selfish mining and similar incentive layer attacks. Third, the
learned policies consistently match or outperform the hard-coded reference policies. This
finding is important because anything else would indicate deficiencies in the training. Forth,
the learned policies are close to optimal for Bitcoin. This can be seen in two ways. Firstly,
Sapirshtein et al. showed that the SM1 policy is close to optimal for γ = 0 [47, Fig. 1a].
Our figure for γ = 5% shows that the learned policy matches SM1 (the dashed blue curve
with ×-markers). Secondly, the authors showed that the optimal policy reaches the upper
bound α/(1 − α) for γ = 1 [47, Fig. 1c]. Our figure for γ = 95% shows that the learned policy
matches this bound as well.

Until now, we have evaluated the efficacy of policies in absolute terms. We now take a
different perspective and ask: how strong must an attacker be for dishonest behaviour to
pay off? Recall that honest behaviour implies an expected normalized reward of α (solid
gray line in Figures 4 and 5). To answer the question, we calculate break-even points, which
represent the minimum relative hash rate α, such that following the policy produces more
than α of normalized reward. We start from the optimal policies presented in Figure 5 and
select only those policies that feature dishonest behavior. Recall that each of the remaining
policies was trained on a fixed relative hash rate α. For each protocol and choice of γ, we
select the dishonest policy trained for the lowest α. We then evaluate this policy against
alternative α values ranging from 5 % to 50 %. Our simulator provides noisy observations
and the reward distribution varies stochastically. Hence, we use Bayesian optimization to
minimize the difference between the observed reward and α, i. e., to get as close to the

AFT 2023



6:18 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Table 2 Break-even points: minimal α (in %) where dishonest behaviour (Figure 5) pays off.

Trained Policy Reference Policy

γ 5 % 50 % 95 % 5 % 50 % 95 %

Bitcoin 33.6 26.5 ≤ 5 32.7 24.5 ≤ 5
TS/const 28.9 28.6 21.7 37.9 32.6 28.4
Tailstorm 41.6 35.8 35.8 43.7 41.0 39.3
Bk 22.2 27.8 25.3 31.3 31.1 30.7

break-even point as possible. Table 2 reports the results. Observe that for the trained
policies, the break-even points are consistently either lower or close to the break-even points
of the hard-coded reference policies. Bk, TS/const, and Tailstorm are also less sensitive to
changes in γ than Bitcoin. Tailstorm has the highest break-even points among all protocols,
indicating that it is most resilient to incentive layer attacks.

7 Tailstorm Cryptocurrency

So far, we have focused on Tailstorm’s consensus and incentive mechanisms. Throughout
our analysis, we have assumed a cryptocurrency on the application layer that facilitates the
creation and distribution of rewards to participants of the consensus layer. In this section,
we describe and discuss the Tailstorm cryptocurrency and our prototype implementation.

7.1 Transaction Handling
Tailstorm implements the unspent transaction output (UTXO) model as it is used in
Bitcoin [39]: Each UTXO represents a designated amount of cryptocurrency. Transactions
consume and create UTXOs, but they never create more cryptocurrency than they consume.
Consumed UTXOs cannot be consumed again. Ownership and transfer of value follows from
restricting the consummation of UTXOs to the holders of specific cryptographic keys.

Tailstorm uses the same public key cryptography as Bitcoin, and it also supports Bitcoin’s
UTXO scripting facility. The dissemination and processing of transactions follows Bitcoin’s
approach as well. However, as we describe next, Tailstorm deviates from Bitcoin in how
transactions are recorded in the blockchain.

Taking inspiration from Storm [4], each subblock contains a list of transactions. Let txa
be a transaction listed at position idxa in subblock suba summarized in summary block
suma and let txb, idxb, subb, and sumb be defined similarly. Assume txa and txb are
incompatible, e. g., because they spend the same UTXO twice. If txa and txb are listed
in the same subblock, i. e., suba = subb and idxa ≠ idxb, then this subblock is marked
invalid. We proceed similarly if txa and txb are summarized by different summaries: due to
Tailstorm’s chain structure (see Alg. 2) suma and sumb must differ in height and we mark the
higher one as invalid. Honest nodes ignore invalid blocks and all their descendants at the
consensus layer. Hence, under the above circumstances, incompatible transactions are not
persisted in the blockchain, as is the case in Bitcoin.

However, special attention is required for incompatible transactions in different subblocks
summarized by the same summary block, i. e., suba ̸= subb and suma = sumb. A critical
assumption of our analyses as well as parallel PoW in general [29] is that subblocks confirming
the same summary are compatible and thus can be mined independently. We thus cannot



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:19

mark the summary invalid in this case and the incompatible transactions are persisted in the
blockchain. To resolve this conflict, Tailstorm executes only one of the transactions at the
application layer and ignores the other according the following rules. Let dsta denote the
distance of suba to suma in the block DAG, and let dstb be defined similarly. If dsta < dstb,
then txa is ignored. Ties are broken by the PoW hash function, i. e., if dsta = dstb
and hash(suba) > hash(subb), then txa is ignored. If txa is ignored then all dependent
transactions (i.e. those spending the UTXOs produced by txa) are ignored as well. Note that
even though incompatible transactions are persisted in the blockchain, the double-spending
semantics are equivalent to Bitcoin: offending transactions off the longest branch are ignored.

7.2 Fast Confirmations
To reap the full consistency guarantees of parallel PoW [29], prudent cryptocurrency users
should wait for one summary block confirmation before accepting their transactions as final.
For example, if their transaction is included in subblock suba and first summarized in suma,
then they should wait for another valid summary sumb with height(sumb) = height(suma)+1.
Assuming a 10 minute summary block interval and large k, the full confirmation will likely
occur in 10 to 20 minutes, depending on whether the transaction was included early in the
subblock tree or later.

If time is short and the transacted value is low, e. g. if the user is selling a cup of coffee to
go, they can consider waiting for a number of subblock confirmations instead. For example,
consider Tailstorm with k = 60 and a 10 minute summary block interval. Subblocks will
be mined every 10 seconds in expectation. The heuristics are similar to a fast version of
Bitcoin: If the seller waits for 6 subblock confirmations, i. e., for a subblock subb with
depth(subb) = depth(suba) + 6, the settlement will take about one minute. Invalidation
of the payment, e. g. due to a double spend, implies a fork of the subblock tree of length 6
or more. Tailstorm discounts mining rewards according to the depth of the subblock tree;
whereas the tree could have achieved depth 60, it now can achieve depth at most 54. One
tenth of the minted rewards is lost, and the cost of the coffee is dwarfed.

7.3 Tailstorm Prototype
We have implemented Tailstorm and make the code available online [23]. We started from a
fork Bitcoin Unlimited’s implementation of Bitcoin Cash. Our fork implements the Tailstorm
consensus layer and incentive mechanism as specified in Section 3. The prototype uses k = 3,
but is easily configurable by changing a compile-time flag. The DAA is calibrated for a target
summary block interval of ten minutes. Subblocks are expected to arrive every 200 seconds.

To minimize propagation delays, we have implemented several network compression
mechanisms. First, we adapt the Graphene protocol [41] to avoid redundant transmission
of transactions. Second, we adapt the Compact Block protocol [12] to reduce the size of
summary blocks. Third, the transaction list is encoded bit-efficiently in each subblock.

We leave the implementation of Tailstorm’s application layer, i. e. the transaction handling
as described in Section 7.1, for future work. Finally, we note that our implementation has
minimal testing and, being a prototype, is not ready for production use.

8 Discussion

Tailstorm inherits the consistency guarantees of parallel PoW consensus [29]. To increase
fairness, we discount rewards based on the tree structure of subblocks which itself is inspired
from Bobtail [9]. To obtain fast confirmations, we write transactions into subblocks like

AFT 2023



6:20 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Storm [4]. Alongside these foundational influences, we incorporate insights from a variety of
related works, which we here can only list partially. For more details we refer to the surveys
of Garay and Kiayias [19], describing the different ways of defining the consensus problem,
and Bano et al. [6], focusing on the different solution approaches and protocols.

Tailstorm improves fairness by avoiding orphans and discounting rewards. The former is
not new [2, 50, 51], however, the motivation differs. Sompolinsky and Zohar [51] propose
to improve Bitcoin’s consistency by referencing blocks that would otherwise be orphaned
(called uncles) and then counting both blocks and uncles (GHOST-rule) whereas Bitcoin
counts only the blocks (longest chain rule). However, the authors explicitly avoid rewarding
uncles and hence do not improve fairness. Follow-up work [2, 50] does not discuss rewards
at all. In Ethereum PoW, a deployed variant of GHOST [51], and Kaspa, a deployed variant
of GHOSTDAG [50], uncles receive partial rewards and the blocks that include uncles get
additional rewards. The unfair dynamic of Bitcoin, where included blocks receive the full
reward and orphans none, is largely preserved. We think that GHOST-like protocols can
become more fair by applying Tailstorm’s ideas: discounting of rewards, applied equally to
all involved miners.

Pass and Shi [42] explicitly set out to increase fairness in PoW. Their Fruitchains protocol
uses two kinds of blocks like Tailstorm. Blocks record fruits and fruits record transactions.
Unlike in Tailstorm, both fruits and blocks require PoW. Applying the 2-for-1 trick of
Garay et al. [20], both are mined with the same hash puzzle observing different bits of the
output. Fruits have a lower difficulty and thus are created more frequently. The rewards are
distributed evenly across recent fruits while blocks receive nothing. According to Zhang and
Preneel [54], Fruitchains are more vulnerable to incentive layer attacks than Bitcoin for block
race advantage γ = 0, and thereby less fair. Furthermore, Fruitchains suffer from a tradeoff
between fairness and transaction confirmation time [54]. A related line of research [5, 53]
extends the 2-for-1 into an n-for-1 trick and makes the miners work on multiple chains in
parallel. The chains are then interleaved to form a single coherent transaction ledger. Unlike
Fruitchains, however, Prism [5] and OHIE [53] focus on consistency, liveness, and throughput.
We leave for future work to investigate whether and how the fairness of these protocols can
be improved by applying Tailstorm’s reward discounting.

Kiffer and Rajaraman [33] propose to discount rewards inversely proportional to the overall
hash rate participating in the system. This reduces centralization in their model, but we worry
that motivating lower hash rates might harm the primary goals of consensus: consistency
and liveness. Their mechanism poses an alternative to Bitcoin’s halving mechanism, which
statically reduces block rewards by 50 % roughly once every 4 years, to avoid long term
inflation of the cryptocurrency. In contrast, Tailstorm’s reward discounting is focused on the
short term and punishes non-linearities within a single subblock tree.

But our approach is not without limitations. In Section 4, we analyze the impact of
message propagation delays on fairness. We assume that these delays are uniform, affecting
all miners equally. However, in practice, propagation delays depend on the connectivity
of individual miners. Some inequalities arise from economies of scale, larger miners can
invest more in low latency connections, others from the underlying physics of information
propagation: miners located in the same region or on the same continent implicitly form
are cartel, whereas joining the network from a distant location puts them at a disadvantage.
We leave for future work to analyze how Tailstorm is affected by more realistic network
topologies [1, 14, 38, 44, 45].

In Section 6, we perform a search for optimal attack strategies. Our search algorithm
is based on reinforcement learning (RL), which means it is not exhaustive. It is possible
that the RL agent did not discover the optimal strategy against certain protocols. This



P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:21

challenges our conclusion that Tailstorm is less susceptible to incentive layer attacks than the
other protocols, Bitcoin and Bk. To encourage further exploration we release the RL Gym
environment on PyPI [28], allowing others to discover more effective attacks. Assuming the
absence of better strategies, our results can be confirmed by encoding our attack space as a
Markov Decision Process (MDP) and employing exhaustive search techniques, as has been
done for Bitcoin [21, 47], Ethereum [55] and other longest chain protocols [54]. However,
to the best of our knowledge, such techniques have not yet been successfully applied to
DAG-based protocols like Tailstorm.

Another limitation is that our action space might not cover all possible attacks. We
closely follow the modeling of the selfish mining attack space against Bitcoin [47], where
we observe consent that the four actions Adopt, Match, Override, and Wait are indeed
complete. We are convinced that adding two actions for summary formation, Inclusive and
Exclusive, is enough to represent the most profitable attacks. However, our conclusions
can be challenged by presenting a more effective incentive layer attack against Tailstorm,
which cannot be expressed in our attack space. We encourage this endeavour by making all
analytical code available online [30]. After modifying the attack space, new strategies can
be drafted, evaluated, and optimized, while the virtual environment, protocol specifications,
and RL attack search can be reused without changes.

On a separate note, Carlsten et al. [11] demonstrate that selfish mining becomes more
profitable when considering transaction fees in addition to mining rewards. They present a
strategy targeting Bitcoin which leverages transaction fees to outperform honest behavior for
any α > 0 and γ < 1. Similar attacks are likely feasible against all PoW cryptocurrencies,
including Tailstorm, however they also exceed the scope of this paper.

Lastly, Arnosti and Weinberg [3] show that even small cost imbalances or economies of scale
lead to highly centralized PoW mining ecosystems. While, Tailstorm reduces the imbalances
compared to other PoW protocols we studied, it cannot fully mitigate centralization. Our
notion of fairness revolves around rewarding miners in proportion to their hash rate. This
definition is not new [1, 7, 31, 42, 54]. However, from an economic standpoint, to prevent
centralization, miners should be rewarded in proportion to their operational mining costs [3].
Unfortunately, achieving this goal seems to be impossible. Mining costs primarily depend on
the price and the availability of energy and specialized mining hardware. Purchasing energy
in large quantities tends to be more cost-effective, and strong miners may even consider
operating their own power plants. Scaling up operations also enables miners to develop
and deploy more efficient mining hardware, and then selling it to weak miners after it has
become outdated [52]. Given that these unfair scaling effects do not only affect Tailstorm, but
PoW cryptocurrencies in general, one might be lead to consider alternative approaches like
proof-of-stake [22, 32, 49]. But even then, it remains questionable whether any permissionless
system can fully avoid centralization [36].

9 Conclusion

Tailstorm integrates parallel PoW [29], partial transaction confirmation [4, 9], and a novel
incentive mechanism – reward discounting – into a PoW cryptocurrency that provides fast
and secure confirmations for its users and fair rewards for its miners. We thereby solve a long
standing issue of longest chain protocols, where the operator has to choose between either a
short block interval with fast but less reliable confirmations and unfair rewards, or a long
block interval with slow confirmations and more fair but infrequent rewards. Our prototype
demonstrates that Tailstorm can replace Bitcoin not only theoretically but also in practice.

AFT 2023



6:22 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

Contribution Statement

George originally developed the idea of reward discounting as a way to combat withholding
attacks in Bobtail. George and Gregory refined that idea into an early version of Tailstorm
suitable for a hard fork of Bitcoin Cash. They also contributed to the prototype imple-
mentation. Patrik contributed the protocol specification, simulation-based analyses, and
reinforcement learning interface. George contributed the analytical orphan rate analysis.
George and Patrik contributed the hard-coded reference policies. Ben and Patrik conducted
the attack search with reinforcement learning. Guided by earlier stages of the analyses,
Patrik provided improvements to Tailstorm consensus and its transaction handling. Patrik
and George wrote this paper.

References
1 Mohamed Alzayat, Johnnatan Messias, Balakrishnan Chandrasekaran, Krishna P. Gummadi,

and Patrick Loiseau. Modeling coordinated vs. P2P mining: An analysis of inefficiency and
inequality in proof-of-work blockchains. CoRR, abs/2106.02970, 2021. arXiv:2106.02970.

2 Ignacio Amores-Sesar, Christian Cachin, and Anna Parker. Generalizing weighted trees: a
bridge from bitcoin to GHOST. In Foteini Baldimtsi and Tim Roughgarden, editors, AFT
’21: 3rd ACM Conference on Advances in Financial Technologies, Arlington, Virginia, USA,
September 26 - 28, 2021, pages 156–169. ACM, 2021. doi:10.1145/3479722.3480995.

3 Nick Arnosti and S. Matthew Weinberg. Bitcoin: A natural oligopoly. Manag. Sci., 68(7):4755–
4771, 2022. doi:10.1287/mnsc.2021.4095.

4 awemany. Storm. https://github.com/awemany/storm-sim/blob/master/whitepaper/,
2019.

5 Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
Prism: Deconstructing the blockchain to approach physical limits. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 585–602. ACM, 2019. doi:10.1145/3319535.3363213.

6 Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah
Meiklejohn, and George Danezis. Sok: Consensus in the age of blockchains. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies, AFT 2019, Zurich, Switzerland,
October 21-23, 2019, pages 183–198. ACM, 2019. doi:10.1145/3318041.3355458.

7 Georgios Birmpas, Elias Koutsoupias, Philip Lazos, and Francisco J. Marmolejo Cossío. Fairness
and efficiency in dag-based cryptocurrencies. In Joseph Bonneau and Nadia Heninger, editors,
Financial Cryptography and Data Security - 24th International Conference, FC 2020, Kota
Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture
Notes in Computer Science, pages 79–96. Springer, 2020. doi:10.1007/978-3-030-51280-4_6.

8 George Bissias. Radium: Improving dynamic pow targeting. In Joaquín García-Alfaro,
Guillermo Navarro-Arribas, and Jordi Herrera-Joancomartí, editors, Data Privacy Management,
Cryptocurrencies and Blockchain Technology - ESORICS 2020 International Workshops, DPM
2020 and CBT 2020, Guildford, UK, September 17-18, 2020, Revised Selected Papers, volume
12484 of Lecture Notes in Computer Science, pages 374–389. Springer, 2020. doi:10.1007/
978-3-030-66172-4_24.

9 George Bissias and Brian Neil Levine. Bobtail: Improved blockchain security with
low-variance mining. In 27th Annual Network and Distributed System Security Sym-
posium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020. URL: https://www.ndss-symposium.org/ndss-paper/bobtail-improved-
blockchain-security-with-low-variance-mining/.

https://arxiv.org/abs/2106.02970
https://doi.org/10.1145/3479722.3480995
https://doi.org/10.1287/mnsc.2021.4095
https://github.com/awemany/storm-sim/blob/master/whitepaper/
https://doi.org/10.1145/3319535.3363213
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1007/978-3-030-51280-4_6
https://doi.org/10.1007/978-3-030-66172-4_24
https://doi.org/10.1007/978-3-030-66172-4_24
https://www.ndss-symposium.org/ndss-paper/bobtail-improved-blockchain-security-with-low-variance-mining/
https://www.ndss-symposium.org/ndss-paper/bobtail-improved-blockchain-security-with-low-variance-mining/


P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:23

10 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. arXiv:1606.01540.

11 Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, pages 154–167. ACM, 2016. doi:10.1145/2976749.2978408.

12 Matt Corallo. BIP152: Compact Block Relay. https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki, 2016.

13 Francisco J. Marmolejo Cossío, Eric Brigham, Benjamin Sela, and Jonathan Katz. Competing
(semi-)selfish miners in bitcoin. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019, pages 89–109.
ACM, 2019. doi:10.1145/3318041.3355471.

14 Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew Pachulski,
Andrew Miller, and Bobby Bhattacharjee. Txprobe: Discovering bitcoin’s network topology
using orphan transactions. In Ian Goldberg and Tyler Moore, editors, Financial Cryptography
and Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18-22, 2019, Revised Selected Papers, volume 11598 of Lecture Notes in Computer
Science, pages 550–566. Springer, 2019. doi:10.1007/978-3-030-32101-7_32.

15 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, USA, November 9-13,
2020, pages 859–878. ACM, 2020. doi:10.1145/3372297.3417290.

16 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Nicolas Christin and Reihaneh Safavi-Naini, editors, Financial Cryptography and Data Security
- 18th International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised
Selected Papers, volume 8437 of Lecture Notes in Computer Science, pages 436–454. Springer,
2014. doi:10.1007/978-3-662-45472-5_28.

17 Chen Feng and Jianyu Niu. Selfish mining in ethereum. In 39th IEEE International Conference
on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7-10, 2019, pages
1306–1316. IEEE, 2019. doi:10.1109/ICDCS.2019.00131.

18 Daniel Fullmer and A. Stephen Morse. Analysis of difficulty control in bitcoin and proof-of-work
blockchains. In 57th IEEE Conference on Decision and Control, CDC 2018, Miami, FL, USA,
December 17-19, 2018, pages 5988–5992. IEEE, 2018. doi:10.1109/CDC.2018.8619082.

19 Juan A. Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. In
Stanislaw Jarecki, editor, Topics in Cryptology - CT-RSA 2020 - The Cryptographers’ Track
at the RSA Conference 2020, San Francisco, CA, USA, February 24-28, 2020, Proceedings,
volume 12006 of Lecture Notes in Computer Science, pages 284–318. Springer, 2020. doi:
10.1007/978-3-030-40186-3_13.

20 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.
doi:10.1007/978-3-662-46803-6_10.

21 Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and
Srdjan Capkun. On the security and performance of proof of work blockchains. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 3–16. ACM, 2016. doi:10.1145/
2976749.2978341.

AFT 2023

https://arxiv.org/abs/1606.01540
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/3318041.3355471
https://doi.org/10.1007/978-3-030-32101-7_32
https://doi.org/10.1145/3372297.3417290
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1109/ICDCS.2019.00131
https://doi.org/10.1109/CDC.2018.8619082
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2976749.2978341


6:24 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

22 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 51–68. ACM, 2017.
doi:10.1145/3132747.3132757.

23 Greg Griffith and George Bissias. Tailstorm node implementation. https://gitlab.com/
georgebissias/BCHUnlimited/-/tree/tailstorm_prototype, 2023.

24 Dongning Guo and Ling Ren. Bitcoin’s latency-security analysis made simple. In Maurice
Herlihy and Neha Narula, editors, Proceedings of the 4th ACM Conference on Advances in
Financial Technologies, AFT 2022, Cambridge, MA, USA, September 19-21, 2022, pages
244–253. ACM, 2022. doi:10.1145/3558535.3559791.

25 Thomas M. Harding. Real-time block rate targeting. Ledger, 5, 2020. doi:10.5195/ledger.
2020.195.

26 Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramèr, Giulia Fanti, and
Ari Juels. Squirrl: Automating attack analysis on blockchain incentive mechanisms
with deep reinforcement learning. In 28th Annual Network and Distributed System Se-
curity Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021. URL: https://www.ndss-symposium.org/ndss-paper/squirrl-automating-attack-
analysis-on-blockchain-incentive-mechanisms-with-deep-reinforcement-learning/.

27 Geir Hovland and Jan Kucera. Nonlinear feedback control and stability analysis of a proof-of-
work blockchain. Modeling, Identification and Control, 38(4):157–168, 2017. doi:10.4173/
mic.2017.4.1.

28 Patrik Keller. PyPI release of our reinforcement learning environment as OpenAI Gym.
https://pypi.org/project/cpr-gym/0.7.0/, 2023.

29 Patrik Keller and Rainer Böhme. Parallel proof-of-work with concrete bounds. In Maurice
Herlihy and Neha Narula, editors, Proceedings of the 4th ACM Conference on Advances in
Financial Technologies, AFT 2022, Cambridge, MA, USA, September 19-21, 2022, pages 1–15.
ACM, 2022. doi:10.1145/3558535.3559773.

30 Patrik Keller and Ben Glickenhaus. Source code for our simulator, evaluations, and attack
search. https://github.com/pkel/cpr/tree/aft23, 2023.

31 Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. Blockchain
mining games. In Vincent Conitzer, Dirk Bergemann, and Yiling Chen, editors, Proceedings
of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The
Netherlands, July 24-28, 2016, pages 365–382. ACM, 2016. doi:10.1145/2940716.2940773.

32 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401
of Lecture Notes in Computer Science, pages 357–388. Springer, 2017. doi:10.1007/978-3-
319-63688-7_12.

33 Lucianna Kiffer and Rajmohan Rajaraman. Happy-mine: Designing a mining reward function.
In Nikita Borisov and Claudia Díaz, editors, Financial Cryptography and Data Security - 25th
International Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers,
Part II, volume 12675 of Lecture Notes in Computer Science, pages 250–268. Springer, 2021.
doi:10.1007/978-3-662-64331-0_13.

34 Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to analyze block-
chain consistency. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 729–744. ACM, 2018.
doi:10.1145/3243734.3243814.

35 Daniel Kraft. Difficulty control for blockchain-based consensus systems. Peer-to-Peer Netw.
Appl., 9(2):397–413, 2016. doi:10.1007/s12083-015-0347-x.

https://doi.org/10.1145/3132747.3132757
https://gitlab.com/georgebissias/BCHUnlimited/-/tree/tailstorm_prototype
https://gitlab.com/georgebissias/BCHUnlimited/-/tree/tailstorm_prototype
https://doi.org/10.1145/3558535.3559791
https://doi.org/10.5195/ledger.2020.195
https://doi.org/10.5195/ledger.2020.195
https://www.ndss-symposium.org/ndss-paper/squirrl-automating-attack-analysis-on-blockchain-incentive-mechanisms-with-deep-reinforcement-learning/
https://www.ndss-symposium.org/ndss-paper/squirrl-automating-attack-analysis-on-blockchain-incentive-mechanisms-with-deep-reinforcement-learning/
https://doi.org/10.4173/mic.2017.4.1
https://doi.org/10.4173/mic.2017.4.1
https://pypi.org/project/cpr-gym/0.7.0/
https://doi.org/10.1145/3558535.3559773
https://github.com/pkel/cpr/tree/aft23
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-64331-0_13
https://doi.org/10.1145/3243734.3243814
https://doi.org/10.1007/s12083-015-0347-x


P. Keller, B. Glickenhaus, G. Bissias, and G. Griffith 6:25

36 Yujin Kwon, Jian Liu, Minjeong Kim, Dawn Song, and Yongdae Kim. Impossibility of full
decentralization in permissionless blockchains. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019,
pages 110–123. ACM, 2019. doi:10.1145/3318041.3355463.

37 Jing Li, Dongning Guo, and Ling Ren. Close latency-security trade-off for the nakamoto
consensus. In Foteini Baldimtsi and Tim Roughgarden, editors, AFT ’21: 3rd ACM Conference
on Advances in Financial Technologies, Arlington, Virginia, USA, September 26 - 28, 2021,
pages 100–113. ACM, 2021. doi:10.1145/3479722.3480992.

38 Sami Ben Mariem, Pedro Casas, Matteo Romiti, Benoit Donnet, Rainer Stütz, and Bernhard
Haslhofer. All that glitters is not bitcoin - unveiling the centralized nature of the BTC (IP)
network. In NOMS 2020 - IEEE/IFIP Network Operations and Management Symposium,
Budapest, Hungary, April 20-24, 2020, pages 1–9. IEEE, 2020. doi:10.1109/NOMS47738.2020.
9110354.

39 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, 2008.

40 Kevin Alarcón Negy, Peter R. Rizun, and Emin Gün Sirer. Selfish mining re-examined. In
Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography and Data Security -
24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020
Revised Selected Papers, volume 12059 of Lecture Notes in Computer Science, pages 61–78.
Springer, 2020. doi:10.1007/978-3-030-51280-4_5.

41 A. Pinar Ozisik, Gavin Andresen, Brian Neil Levine, Darren Tapp, George Bissias, and Sunny
Katkuri. Graphene: efficient interactive set reconciliation applied to blockchain propagation.
In Jianping Wu and Wendy Hall, editors, Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM 2019, Beijing, China, August 19-23, 2019, pages 303–317.
ACM, 2019. doi:10.1145/3341302.3342082.

42 Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 315–324.
ACM, 2017. doi:10.1145/3087801.3087809.

43 Peter R. Rizun. Subchains: A technique to scale bitcoin and improve the user experience.
Ledger, 1:38–52, 2016. URL: https://ledgerjournal.org/ojs/index.php/ledger/article/
view/40.

44 Elias Rohrer and Florian Tschorsch. Kadcast: A structured approach to broadcast in blockchain
networks. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
AFT 2019, Zurich, Switzerland, October 21-23, 2019, pages 199–213. ACM, 2019. doi:
10.1145/3318041.3355469.

45 Elias Rohrer and Florian Tschorsch. Blockchain layer zero: Characterizing the bitcoin network
through measurements, models, and simulations. In 46th IEEE Conference on Local Computer
Networks, LCN 2021, Edmonton, AB, Canada, October 4-7, 2021, pages 9–16. IEEE, 2021.
doi:10.1109/LCN52139.2021.9524930.

46 Sheldon M. Ross. Introduction to Probability Models. Elsevier, 2014. doi:10.1016/C2012-0-
03564-8.

47 Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies
in bitcoin. In Jens Grossklags and Bart Preneel, editors, Financial Cryptography and Data
Security - 20th International Conference, FC 2016, Christ Church, Barbados, February 22-26,
2016, Revised Selected Papers, volume 9603 of Lecture Notes in Computer Science, pages
515–532. Springer, 2016. doi:10.1007/978-3-662-54970-4_30.

48 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. arXiv:1707.06347.

49 Jakub Sliwinski and Roger Wattenhofer. Asynchronous proof-of-stake. In Colette Johnen,
Elad Michael Schiller, and Stefan Schmid, editors, Stabilization, Safety, and Security of
Distributed Systems - 23rd International Symposium, SSS 2021, Virtual Event, November

AFT 2023

https://doi.org/10.1145/3318041.3355463
https://doi.org/10.1145/3479722.3480992
https://doi.org/10.1109/NOMS47738.2020.9110354
https://doi.org/10.1109/NOMS47738.2020.9110354
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-030-51280-4_5
https://doi.org/10.1145/3341302.3342082
https://doi.org/10.1145/3087801.3087809
https://ledgerjournal.org/ojs/index.php/ledger/article/view/40
https://ledgerjournal.org/ojs/index.php/ledger/article/view/40
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1109/LCN52139.2021.9524930
https://doi.org/10.1016/C2012-0-03564-8
https://doi.org/10.1016/C2012-0-03564-8
https://doi.org/10.1007/978-3-662-54970-4_30
https://arxiv.org/abs/1707.06347


6:26 Tailstorm: A Secure and Fair Blockchain for Cash Transactions

17-20, 2021, Proceedings, volume 13046 of Lecture Notes in Computer Science, pages 194–208.
Springer, 2021. doi:10.1007/978-3-030-91081-5_13.

50 Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM GHOSTDAG: a scalable
generalization of nakamoto consensus: September 2, 2021. In Foteini Baldimtsi and Tim
Roughgarden, editors, AFT ’21: 3rd ACM Conference on Advances in Financial Technologies,
Arlington, Virginia, USA, September 26 - 28, 2021, pages 57–70. ACM, 2021. doi:10.1145/
3479722.3480990.

51 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In
Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and Data Security -
19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised
Selected Papers, volume 8975 of Lecture Notes in Computer Science, pages 507–527. Springer,
2015. doi:10.1007/978-3-662-47854-7_32.

52 Aviv Yaish and Aviv Zohar. Pricing ASICs for cryptocurrency mining. In Proceedings of the
5th ACM Conference on Advances in Financial Technologies, AFT 2022, Princeton, NJ, USA,
October 21-25, 2023. LIPIcs, 2023.

53 Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. OHIE: blockchain scaling made
simple. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 90–105. IEEE, 2020. doi:10.1109/SP40000.2020.00008.

54 Ren Zhang and Bart Preneel. Lay down the common metrics: Evaluating proof-of-work
consensus protocols’ security. In 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019, pages 175–192. IEEE, 2019. doi:10.1109/SP.
2019.00086.

55 Roi Bar Zur, Ittay Eyal, and Aviv Tamar. Efficient MDP analysis for selfish-mining in
blockchains. In AFT ’20: 2nd ACM Conference on Advances in Financial Technologies, New
York, NY, USA, October 21-23, 2020, pages 113–131. ACM, 2020. doi:10.1145/3419614.
3423264.

https://doi.org/10.1007/978-3-030-91081-5_13
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1145/3479722.3480990
https://doi.org/10.1007/978-3-662-47854-7_32
https://doi.org/10.1109/SP40000.2020.00008
https://doi.org/10.1109/SP.2019.00086
https://doi.org/10.1109/SP.2019.00086
https://doi.org/10.1145/3419614.3423264
https://doi.org/10.1145/3419614.3423264


STROBE: Streaming Threshold Random Beacons
Donald Beaver #

Independent Scholar, Pittsburgh, PA, USA
Konstantinos Chalkias #

Mysten Labs, Palo Alto, CA, USA

Mahimna Kelkar #

Cornell University, New York City, NY, USA
Lefteris Kokoris-Kogias #

Mysten Labs, London, UK
IST Austria, Klosterneuburg, Austria

Kevin Lewi #

Meta Platforms, Inc., Menlo Park, CA, USA
Ladi de Naurois #

Washington DC, USA

Valeria Nikolaenko #

a16z crypto, Palo Alto, CA, USA
Arnab Roy #

Mysten Labs, Palo Alto, CA, USA

Alberto Sonnino #

Mysten Labs, London, UK
University College London, UK

Abstract
We revisit decentralized random beacons with a focus on practical distributed applications. Decent-
ralized random beacons (Beaver and So, Eurocrypt’93) provide the functionality for n parties to
generate an unpredictable sequence of bits in a way that cannot be biased, which is useful for any
decentralized protocol requiring trusted randomness.

Existing beacon constructions are highly inefficient in practical settings where protocol parties
need to rejoin after crashes or disconnections, and more significantly where smart contracts may
rely on arbitrary index points in high-volume streams. For this, we introduce a new notion of
history-generating decentralized random beacons (HGDRBs).

Roughly, the history-generation property of HGDRBs allows for previous beacon outputs to
be efficiently generated knowing only the current value and the public key. At application layers,
history-generation supports registering a sparser set of on-chain values if desired, so that apps like
lotteries can utilize on-chain values without incurring high-frequency costs, enjoying all the benefits
of DRBs implemented off-chain or with decoupled, special-purpose chains. Unlike rollups, HG is
tailored specifically to recovering and verifying pseudorandom bit sequences and thus enjoys unique
optimizations investigated in this work.

We introduce STROBE: an efficient HGDRB construction which generalizes the original squaring-
based RSA approach of Beaver and So. STROBE enjoys several useful properties that make it suited
for practical applications that use beacons:
1. history-generating: it can regenerate and verify high-throughput beacon streams, supporting

sparse (thus cost-effective) ledger entries;
2. concisely self-verifying: NIZK-free, with state and validation employing a single ring element;
3. eco-friendly: stake-based rather than work based;
4. unbounded: refresh-free, addressing limitations of Beaver and So;
5. delay-free: results are immediately available.
6. storage-efficient: the last beacon suffices to derive all past outputs, thus O(1) storage require-

ments for nodes serving the whole history.

2012 ACM Subject Classification Security and privacy → Public key encryption

Keywords and phrases decentralized randomness, beacons, consensus, blockchain, lottery

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.7

Related Version Full Version: https://eprint.iacr.org/2021/1643

Acknowledgements Work done when all the authors were at Novi Research, Meta.

© Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi
de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:don.beaver@gmail.com
mailto:chalkiaskostas@gmail.com
mailto:mahimna@cs.cornell.edu
mailto:eleftherios.kokoriskogias@ist.ac.at
mailto:klewi@meta.com
mailto:lldenaurois@gmail.com
mailto:valeria.nikolaenko@gmail.com
mailto:arnabr@gmail.com
mailto:alberto@sonnino.com
https://doi.org/10.4230/LIPIcs.AFT.2023.7
https://eprint.iacr.org/2021/1643
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 STROBE: Streaming Threshold Random Beacons

1 Introduction

A random beacon is a shared source of agreed-upon random bits. First introduced in 1981
by Rabin [44] in the context of digitally-signed documents, beacons use unpredictability to
put adversarial strategies in doubt. Trusted beacons are increasingly recognized as a critical
resource for Decentralized Finance (DeFi), blockchains, Byzantine Fault Tolerance (BFT),
leader elections, and a range of Decentralized Applications (dApps) including lotteries.

At fundamental protocol layers such as consensus, beacons drastically reduce the time
and effort needed to withstand protocol-defeating attacks. For example, Feldman and
Micali [30] implemented a common coin to achieve 2-round probabilistic consensus, breaking
the deterministic lower bound of f + 1 rounds [26]. As another example, most proof-of-stake
blockchains use randomness to select leaders proposing blocks and, for increased efficiency,
also use randomness to select subcommittees to confirm the blocks. To make sure the
malicious actors have negligibly small window to corrupt the leaders or the subcommittees, it
should be impossible for them to predict or bias the randomness used in the process, which
creates strong demand for good randomness beacon protocols. Moreover, for the light-clients
of these blockchains to synchronize the state, they need to verify the selection of leaders and
subcommittees, implying that they have to verify the random beacon outputs.

At higher levels of abstraction, new and important properties and optimizations emerge.
Crash failures, delays, and asynchrony in the interactions between processes or the execution
of smart contracts in a ledger environment make it essential to have stronger and coordinated
record-keeping, to make it easier to retrieve and verify past results.

To complicate matters, many high-level applications like lotteries or gaming require
high-frequency streams. Frequencies and latencies at the scale of seconds are too slow.
Registering streams bit-by-bit in real-time on a ledger is simply infeasible given transaction
throughput and latencies, let alone enormously cost-prohibitive fees. Registering intermittent
results is a feasible and cheaper workaround - as long as the intermittent results provide
sufficient content and validation to enable optimistic fault detection and recourse for any
on-chain relying parties. To date, such applications either run at very slow speeds (lotteries)
or require centralized trust (gaming platforms).

While a naive approach might register a long sequence accompanied by aggregate signa-
tures and rollups to prove step-by-step correctness, so that relying parties can check content
and validity, we take a novel and alternative approach, employing history generation for
streamlined communication size and speed. Our protocols are direct and simple, providing a
concise element to regenerate the entire back sequence (effectively compressing it) and to
validate it (obviating NIZKs, let alone aggregation).

Decentralized random beacons. Beaver and So presented the first decentralized beacon
(DRB) [4], achieved by way of a threshold homomorphic secret sharing of future bits. Their
approach capitalized on the Blum-Blum-Shub pseudorandom generator [7], in which successive
squares in an RSA ring are produced. By reversing the sequence and employing tricks for
threshold Lagrange interpolation, [4] gave a self-certifying sequence obviating any need for
ZKPs.

History-generating DRBs. A key contribution of this work is the notion and implementation
of history generation, a technique that is essentially equivalent to compressing long sequences
and providing a maximally concise validity check. In the context of random streams produced
by DRBs, we are able to take strong advantage of the sequential nature of the stream to
achieve optimizations exceeding those available to general-purpose calculations-with-ZKPs.



D. Beaver et al. 7:3

Unbounded sequences. In the threshold homomorphic VSS approach of [4], there is a
bound on the number of bits to be produced without engaging in some kind of refreshing
state. The results are limited by stakeholders rather than VDF-style delays: there is no
explicit notion of using work as a computationally-guaranteed limit on the cadence of a
beacon. We address both limitations using a generalized construction without incurring
proof-of-work.

Contributions. STROBE is a decentralized random beacon providing the following proper-
ties:

History-generating: It can regenerate and verify high-throughput beacon streams,
supporting sparse (thus cost-effective) ledger entries;
Concisely self-verifying: It is NIZK-free, with state and validation employing a single
ring element;
Eco-friendly: It is stake-based rather than work-based;
Unbounded: It is refresh-free, addressing limitations of Beaver and So;
Delay-free: Results are immediately available.
Storage-efficient: O(1) storage for nodes serving the whole beacon history.

Roadmap. §2 describes intuitions of our constructions and how applications can benefit
from the novel, history-generating property. We cover related work in §3, with particular
attention to feature tradeoffs in Table 1. Details of the construction appear in §4, with
security model in §5 and proofs in §6. We describe some extension in §7 and application
details in §8.

2 Construction Intuition

Our starting point is to view RSA decryption as a trapdoor one-way function in reverse,
which can be efficiently verified. The beacon output of an epoch is essentially the RSA
decryption of the previous epoch’s output, and this carries on perpetually. The verification
of an output is to just RSA encrypt it with the public key and see that if it equals to the
previous epoch’s output. In this sense, the beacon is self-certifying.

Step 1: Beacon setup. Viewed in a non-distributed setting, the setup of the beacon
generates RSA modulus N = pq along with a root-ing parameter s. Then the beacon
proceeds perpetually as:

x→ x1/s → x1/s2
→ · · · → x1/sT

→ · · ·

To parties that just know about N as a public parameter, this provides some attractive
properties: (1) The next value in the beacon is hard to predict given the earlier values. (2)
It’s easy to verify a beacon value against the last value. In fact, we can check the value
against any historical value, except that it gets progressively harder with the gap. (3) An
especially tantalizing property is that any historical beacon value, can in fact be simply
generated from the knowledge of the current value.

Step 2: Removing the trusted party. Of course, the problem with this is that taking
roots in an RSA ring is hard without knowing the prime factors p and q. So we need a
trusted party holding the primes to be generating all the beacon values. Recent advances

AFT 2023



7:4 STROBE: Streaming Threshold Random Beacons

in distributed RSA modulus generation allows us to generate a public modulus N , with
no single party knowing the factors. Imagine that in addition we also give secret shares of
s−1 (mod ϕ(N)) to n distinct parties:

sk1 + sk2 + · · ·+ skn = s−1 (mod ϕ(N))

At the time epoch T + 1, the n parties can then output xski

T each, where xT is the output
of the last epoch. On multiplying all the public shares, we get xT +1 = xs−1

T (mod N). At
the same time, observe that even (n − 1) of the secret keys are effectively independently
random. Also observe every public share is also self-certifying wrt the last epoch, in the
sense xski

T = (xski

T +1)s.

Step 3: Adapting to the threshold setting. Adapting the n-of-n setting to a threshold
t-of-n setting introduces additional challenges which do not affect known-order groups.
Essentially, Shamir secret sharing involves fractional Lagrange interpolation coefficients
which are efficient to compute to group elements if we know the order. However, this is not
possible to do in the exponent of RSA group elements, as ϕ(N) is not public. We adapt and
extend the techniques pioneered by [4] and also used by [48] to address this challenge. The
core trick is to lift the Lagrange coefficients by a factor of n!, so that they are not fractional
anymore - details in Section 4.

3 Related Work

Random Beacons. Practical bias-resistant random beacons producing regular series of
random outputs typically follow one of three approaches: the first one uses publicly verifiable
secret sharing (PVSS) mechanisms; the second uses verifiable random functions (VRFs),
often in conjunction with threshold cryptography, and the third relies on verifiable delay
functions (VDFs).

Beacons of the first type use the following blueprint design, they need 4 rounds for
n participants to generate a random value. In the first round all nodes simultaneously
secret-share a freshly generated random value s among the rest of the nodes. They do so
by publishing the following values: n shares of s each encrypted under receiving party’s
public key, a commitment to the secret, and a non-interactive zero-knowledge proof that
those were generated correctly. In the second round, the parties run some sort of consensus
algorithm to agree which nodes did the sharing correctly and which failed. This can also be
replaced with posting the shares on chain where anyone can verify the proofs independently,
although this typically relies on consensus provided by a chain (rather than enabled by
the beacon). In the third round, the parties reveal their secrets and in the fourth round
for parties that withheld their secrets, shares of those secrets are broadcast for recovery.
The resulting beacon’s value is derived from the revealed or recovered secrets. The rounds
can be pipelined to get regular random outputs at each round. Starting from the original
proposal of Ouroboros [36] a sequence of papers (Scrape [17], Albatross [18], HydRand [47],
RandHerd [49]), OptRand [6] has improved the communication, computation complexity
per node and the verification complexity for beacon of this type. No centralized or trusted
setup and standard cryptographic assumptions are the main advantages of those protocols.
However, those protocols still remain communication-intensive, since they need to run the full
protocol (including consensus) for every fresh random value and computation wise intensive,
since every party needs to check that every secret-share has been correctly constructed. A



D. Beaver et al. 7:5

public verifier needs O(n) messages to verify each beacon’s value, making it communication-
wise expensive to verify a series of random values. A full chain of our beacon, in contrast,
can be verified using only the current beacon’s output and the public parameters.

Beacons of the second type rely on a setup phase where a secret key is generated in
a distributed manner, after which homomorphic VSS and/or threshold signatures can be
employed. The use of homomorphic VSS was pioneered in the first DRB in 1993 [4],
where successive values of a BBS generator are revealed. The shares of square roots are,
homomorphically and similar in spirit to threshold RSA, square roots of shares. The shares
and the reconstructed values each act as verifiers of previous values (viz. by way of squaring).
This particular solution suffers from a need to refresh to new sequence values periodically; it
is not unbounded as-is.

In numerous other generalized approaches of this second style, nodes can use a unique
threshold signature scheme, such as threshold BLS [10, 11] (tBLS) in Dfinity [34] and
drand [28], or as threshold RSA (tRSA) signatures [48] in Cachin et al. [15]) to sign an
agreed-upon progression of values (either block-hashes, or round-numbers, or a combination
of those). More generally, a verifiable random function is built in these construction to which
unique signatures are a particular instantiatiation, but other constructions are also possible,
e.g. NSEC5 VRF [41] used by Chainlink. The main advantage of those protocols is efficiency
(each party only sends a single message per beacon’s value) and ease of public verifiability
(current beacon’s value can be verified using only public parameters). The disadvantages
are a complicated setup phase (though straightforward when a trusted party is assumed),
for example to generate the threshold key for tBLS over the internet it still takes elaborate
protocols with O(n4) communication complexity costs [35, 38] and O(f) worse case run time.
Alternatively, instead of a threshold key, the parties can use independently generated keys (as
is currently being done in the Ethereum’s RANDAO approach [12]), although unfortunately
such beacons have some small degree of bias from the parties who may decide to withhold
their messages, we therefore do not focus on such beacons here despite the fact that certain
application (e.g. Ethereum’s committees selection) may stay resilient to small bias of the
beacon. We improve on the approach of tRSA by building a random beacon straight from
the RSA assumption requiring no additional proofs for correctness of signature’s shares.
Our scheme naturally gives a novel property of history generation in contrast to existing
approaches.

There is also a third approach that relies on a proof-of-delay mechanism [8]: either a
block-hash is passed through a verifiable delay function (VDF), or the values submitted
by the participants are passed through a VDF function to generate a random value. This
approach makes it simpler to build unbiasable beacons, as the participants will not have
enough time to see how the bias on their contributions would affect the resulting value of
the beacon. Most prominent systems are RANDAO w. VDF [27], continuous VDF [29] and
RandRunner [46]. But those approaches are highly computationally intensive for the prover
and require precise estimates of concrete complexity, which are hard to predict in practice
(competitions with high-reward incentives were set-up by Chia Networks (chia.net) and
Ethereum (ethereum.org) in partnership with Protocol Labs (protocol.ai) to get concrete
estimates of VDFs’ complexity). In the presence of a quantum adversary a quantum-resistant
VDF could be used to produce a quantum-resistant random beacon, e.g. Veedo [50].

Recent surveys [22, 45] systematize knowledge of randomness beacons and discuss the
complexity and practicality of the constructions in more details. In Table 1 we compare
selected beacons to STROBE which is the only one that provides the property of history
generation. Self-cerifying beacons allow to inexpensively verify a beacon value against the

AFT 2023

chia.net
ethereum.org
protocol.ai


7:6 STROBE: Streaming Threshold Random Beacons

previous one; refresh-free beacons allow for generation of indefinite sequence of random values
per single setup; BA-free beacons do not use Byzantine-Agreement protocols. Beacons based
on the RSA assumption require a trusted setup or a distributed RSA modulus generation,
our protocol additionally requires the generation of an inverse of a public exponent. The
VDF-based beacons in RSA groups also do require a trusted setup.

Table 1 Comparison among several beacon protocols.

H
ist

or
y

ge
n Se
lf

ce
rt

ify
in

g

Si
ng

le
ro

un
d

R
ef

re
sh

-
fr

ee

B
A

-
fr

ee

Se
tu

p-
fr

ee

Albatross [18], HydRand [47],
OptRand [6], RandHerd [49] ✗ ✗ ✗ ✓ ✓ ✓ PVSS

RandRunner [46], RANDAO++ [27],
cVDF [29], Veedo [50] ✗ ✗ ✓ ✓ ✓ ✗/ ✓ VDF

Dfinity [34], drand [28] ✗ ✗ ✓ ✓ ✓ DKG tVRF

C03 [13], BS93 [4] ✗ ✓ ✓ ✗ ✓ mod RSA

STROBE (this work) ✓ ✓ ✓ ✓ ✓ mod+
inv

RSA

Distributed generation of an RSA modulus and an inverse of a public exponent. The
setup of our construction requires the generation of an RSA modulus N that is a product of
two primes. The most common way of generating such a modulus in a centralized setting
(a.k.a. with a trusted setup), is to randomly sample κ-bits integers running Miller-Rabin
probabilistic primality tests on them [40,43] until two primes are obtained with overwhelming
probability, multiplying them gives a 2κ-bits bi-prime N . Since currently there is no known
way to sample a bi-prime (using only public randomness) for which nobody knows the
factors, the only way to alleviate the trusted setup is to distribute the generation of the
bi-prime modulus via a dedicated multi-party computation protocol. Boneh and Franklin [9]
initiated the study of distributed RSA modulus generation devising a protocol in a passive
security model with honest majority. The follow-up protocol of Algesheimer, Camenisch and
Shoup [1] devised a protocol for generation of N that is a product of two safe primes, passively
secure with honest majority. The follow-up work has hardened the original Boneh-Franklin’s
protocol to be secure in the presence of actively malicious parties and honest majority [31].
The works mentioned above also generate an inverse (RSA decryption key) in a distributed
manner. An improvement to this part of the protocol was also made by Catalano et al. [19].
A promising approach of getting rid of the setup phase altogether, that was proposed in
RandRunner [46] and in the work of Damgård and Koprowski [24], can potentially get applied
to this work.

4 The STROBE Protocol

We now define the syntax of a History Generating Decentralized Random Beacon (HGDRB)
and describe our STROBE construction.

▶ Definition 1 (HGDRB). A History Generating Decentralized Random Beacon (HGDRB)
is a set of algorithms (Setup, Gen, Eval, V erifyShare, Combine, V erify, Back):



D. Beaver et al. 7:7

Setup: (λ, n, t) → (pk, sk1, · · · , skn). The Setup algorithm takes the security parameter
λ and threshold parameters n and t. The scheme allows t-of-n reconstruction, with secret
shares given to n parties. The output is a public key pk and secret shares sk1, · · · , skn.

Gen: pk → x0. The (one-time) Gen algorithm samples an initial random value x0.
Eval: (ski, xT ) → xT +1,i. Each party takes the last epoch’s (T ) output xT , computes and

outputs a share of the next epoch’s output xT +1,i.
VerifyShare: (pk, xT,i, xT +1,i) → {0, 1}. The VerifyShare algorithm checks the epoch T +1

shares against the corresponding epoch T shares.
Combine: (pk, xT,P1 , xT,P2 , . . . , xT,Pt) → xT +1. Given t shares from epoch T that pass

VerifyShare the Combine algorithm outputs the next epoch’s beacon value xT +1.
Verify: (pk, xT , xT +1) → {0, 1}. The Verify algorithm checks the epoch T +1 beacon output

against the epoch T beacon output.
Back: (pk, xT , k) → xT −k: This outputs the beacon value at epoch T − k given the epoch

T beacon value xT and k < T .

Informally, correctness asserts that honestly computed beacon values will pass verify
checks with respect to previous beacon outputs. The same should hold for share outputs
as well. The Back function allows to compute any historical beacon value efficiently (going
back a polynomial number of epochs).

The STROBE protocol

We now provide our HGDRB construction, called STROBE. It is based on threshold inversion
in RSA groups and its security follows from the RSA assumption.

Setup(λ, n, t): The Setup algorithm takes the security parameter λ and samples an RSA
modulus N = pq with ϕ(N) = 4p′q′.
Sample primes p, q such that p − 1 = 2p′, q − 1 = 2q′ with p′, q′ also being primes.
Pick a prime s, s.t. min(p′, q′) > s > n. Let N = pq and observe that s ∤ ϕ(N).
Sample a1, · · · , at−1 ← [1, N ] and let f(X) = v + a1X + · · · + at−1Xt−1, where v =
(n!s)−1 (mod p′q′).
Send secret shares ski = f(i) (mod ϕ(N)) to parties i ∈ [1, n]. Publish pk = (N, s).

Gen(pk): The Gen algorithm samples a seed value seed← [1, N ]. This is a public random
value that can be computed by MPC or by taking a block hash. It then outputs
x0 = seed4(n!)2

(mod N).
The 4(n!)2 factor is an artifact of the security proof and will be explained in Section 6.

Eval(ski, xT ): Each party takes the last epoch’s (T ) output xT , computes and outputs a
share of the next epoch’s output xT +1,i:

xT +1,i = xski

T = x
f(i)
T (mod N).

VerifyShare(pk, xT,i, xT +1,i): The epoch T + 1 shares can be self-verified against the
corresponding epoch T shares, by checking that

xs
T +1,i = xT,i (mod N).

Combine(pk, xT,P1 , xT,P2 , . . . , xT,Pt): Given t epoch T shares, first check that each of
them pass VerifyShare. Let γ denote the set of these indices {P1, · · · , Pt}. The Combine
algorithm then computes the combined epoch T beacon value xT by computing the
interpolation:

xT =
∏
i∈γ

x
n!Li(0)
T,i (mod N),

AFT 2023



7:8 STROBE: Streaming Threshold Random Beacons

where the Lagrange basis polynomials Li’s are defined as:

Li(X) =
∏

j∈γ,j ̸=i

X − j

i− j
.

The polynomials satisfy the following property: for ∀i, j ∈ γ : Li(i) = 1, and Li(j) = 0
for i ≠ j. The (n!) factor is essential to clear the denominators of the interpolation
coefficients, which makes sure there is no fractional exponent to compute.

Verify(pk, xT , xT +1): The epoch T + 1 beacon output can be self-verified against the
corresponding epoch T beacon output, by checking that

xs
T +1 = xT (mod N).

Back(pk, xT , k): This outputs the beacon value at epoch T − k as:

xT −k = xsk

T (mod N).

We assume that each share carries the identity information (metadata) about which
party generated it. Apart from the V erify (and V erifyShare) algorithms checking against
the last epoch outputs, the Back algorithm provides an alternate way to check against any
previous epoch output, all the way to epoch 0 (and 1). In fact if the shares from epoch 1
are also made part of the trusted pk, then this provides a way of checking the beacon value
without accessing the past beacon values at all. The trade-off is that checking against beacon
values in the past grows computationally expensive with the number of epochs elapsed.
As an extension of the core protocol, we can also leverage techniques from popular VDF
constructions, as described in Section 7. We now give the proof of correctness of the protocol.

4.1 Proof of Correctness of STROBE
We have x0 = seed4(n!)2

. Assume inductively, xT −1 = seed4(n!)2s−T +1
. Correctness of the

beacon outputs follows as below:

xT =
∏
i∈γ

x
n!Li(0)
T,i = x

n!
∑

i∈γ
f(i)Li(0)

T −1 = seed4(n!)2s−T +1n!
∑

i∈γ
f(i)Li(0)

= seed4(n!)2s−T +1n!f(0) = seed(n!)2s−T 4(n!)vs

As v = (n!s)−1 (mod p′q′), we have 4(n!)vs = 4 (mod ϕ(N)). Therefore, seed4(n!)vs =
seed4 (mod N).

Substituting, we get:

xT = seed4(n!)2s−T

.

This carries the induction successfully forward, and also leads to successful verification:
xs

T = xT −1. Similar steps apply to the individual shares as well.

5 Security Model

There are various flavors of security that we could require of a random beacon. To narrow
down the syntax, we will focus on stake-based, self-certifying, threshold beacons. The baseline
security we want is that an adversary should not be able to predict future beacon values
based on seeing past values and corrupting less than a threshold number of participants.



D. Beaver et al. 7:9

Unpredictability vs. Pseudorandomness

We could require the next beacon value to be pseudorandom, instead of just unpredictable.
We observe that we could essentially compile an unpredictable beacon into a pseudorandom
one, either by applying a random oracle (similarly to what is described as “tick-tock” in [29]),
or if we want to avoid the RO assumption, by extracting hardcore bit(s), as in [7]. There
exist applications where unpredictability suffices [21], but in most of the cases, such as a
decentralized lottery or leader election, unbiased randomness is essential [45]. We also note
that, for a self-certifying and/or history generating beacon, there needs to be a part of
the beacon output that cannot be pseudorandom, as otherwise it cannot be used for the
certification assertion and/or historical value computation.

Active vs. Passive

A passive adversary just observes the transcript of an honest run of the protocol, including
public shares and beacon outputs and then tries to predict the next beacon value. An active
adversary, on the other hand, can actively modify the public share values and beacon outputs.
In this paper we consider active adversaries. In our setting, the self-certification essentially
ensures that there is only a unique value for each expected public share or beacon value
that can pass onto the next phase. This makes any adversarial modifications immediately
noticeable and subject to rejection.

Selective vs. Adaptive

Another dimension to specify the adversary is on whether we restrict it to corrupt parties that
it declares upfront (selective), or allow the parties to be corrupted dynamically as it observes
and interacts with the protocol (adaptive). Our core protocol only satisfies selective security
in this respect. We leave it as an open problem to construct an adaptively secure protocol
which retains the efficiency standard of our selective one. A generic (complexity-leveraging)
approach can be used to get an adaptively secure scheme from a selectively secure one:
the reduction simply needs to guess the set of corrupted parties and then run the selective
reduction aborting if the selection of corrupted parties does not match the one requested
by the adversary. This, unfortunately, leads to a loss in security that is exponential in the
number of parties, n, thus limiting the number of parties to be at most logarithmic in the
security parameter λ. There are other promising approaches in the works for threshold RSA
cryptosystems. Canetti et al. [16] proposed a methodology for transforming a selectively-
secure threshold scheme into an adaptively-secure one, where the protocol needs to be
modified to carefully erase secrets and to use simple zero-knowledge proofs, the adversary
is rewinded in the proof which also incurs a security loss although not as large as with the
complexity-leveraging approach. A follow-up work of Almansa et al. [2] simplified this result
for RSA, but at the cost of the secret’s re-sharing after every round, with an emergent benefit
of making the scheme proactively secure. In a proactively secure scheme the adversary can
corrupt at most t players in a time period determined by the protocol. Since the set of
corrupted parties changes, each party can become corrupt at some point (i.e. leak its secrets),
but if the party recovers from a compromise then a subsequent secret’s re-sharing will enable
the party to be honest again.

Given the above discussion, we now formally define the security model that we consider
for our core protocol: unpredictable, passive and selective.

AFT 2023



7:10 STROBE: Streaming Threshold Random Beacons

▶ Definition 2 (Selective-secure Unpredictability). We say that an HGDRB is Selective-secure
Unpredictable if the following adversary has negligible advantage:
1. The Challenger runs Setup(λ, n, t) and outputs pk to the Adversary.
2. The Adversary selects a time epoch S < poly(λ) and a set of parties γ = {P1, P2, · · · , Pt−1}

to corrupt.
3. The Challenger sends the transcript of the protocol till time epoch S to the Adversary, as

well as the secret shares for parties in γ. This includes the outputs of Gen and those of
Eval for all i ∈ [1, n] and T ≤ S.

4. The Adversary outputs a quantity x′.
5. The Adversary wins if V erify(pk, xS , x′) passes.

In the next section, we formally prove that our construction satisfies Selective-Secure
Unpredictability. We also claim that the construction protects against active adversaries, as
the self-verification of beacon and share values ensure that only the unique correct values
would not be rejected.

6 Proof of Security

In this section, we show that the STROBE protocol satisfies Selective-secure Unpredictability
under the RSA assumption.

▶ Definition 3 (RSA Assumption). The Challenger samples RSA number N = pq and picks
a quantity s co-prime to ϕ(N). Then it randomly samples z ← [1, N ] and sends (N, s, z) to
the Adversary. The Adversary outputs y. The RSA assumption states that the probability of
ys = z (mod N) is negligible.

▶ Theorem 4 (Security). The STROBE protocol is Selective-secure Unpredictable under the
RSA Assumption.

Proof. Let (N, s, z) be an RSA challenge for a prime s > n.

Setup. The Challenger outputs pk = (N, s). Suppose the Adversary picks an epoch S

and corrupts parties in the set γ = {P1, · · · , Pt−1}. Sample bP1 , · · · , bPt−1 ← [1, N ]. Send
Adversary shares ski = bi, for all i ∈ γ.

Eval. Consider an implicit polynomial f(X), such that f(0) = v, where v =
(n!s)−1 (mod p′q′), and f(i) = bi, for all i ∈ γ:

f(X) = vL0(X) +
∑
i∈γ

biLi(X).

Here Li(X) are Lagrange basis polynomials of degree t− 1 each:

Li(X) =
∏

j∈{γ∪{0}},j ̸=i

X − j

i− j
.

The polynomials satisfy the following property: for ∀i, j ∈ (γ∪{0}) : Li(i) = 1, and Li(j) = 0
for i ̸= j. Note that it is possible to evaluate zn!Li(j) for any i, j ∈ [0, n], since the (n!) factor
eliminates the denominators of interpolation polynomials, making it possible to evaluate the
exponentiation.



D. Beaver et al. 7:11

Set x0 = z4(n!)2sS and xT,j = z4f(j)(n!)2sS−T +1 . Now, for j ∈ γ, we can compute xT,j

explicitly based on f(j) = bj . We now show that for j /∈ γ, we can compute xT,j without
explicitly computing f(j). Observe that 4v = 4(n!s)−1 (mod ϕ(N))), therefore zv4n!s = z4

hence xT,j can be explicitly constructed as follows:

xT,j = z4f(j)(n!)2sS−T +1
= z(f(j)4n!s)·(n!)sS−T

= z
(4L0(j)+

∑
i∈γ

bi·(4n!s)·Li(j))·(n!)sS−T

Note that the last (n!) factor is essential to make sure we can clear the denominator of
L0(j) and thus avoid any divisions in the exponent. Send x0 and the xT,j ’s for all T ∈ [1, S]
and j ∈ [1, n] to the adversary.

RSA response. Let’s suppose the adversary comes up with x′ as the next epoch candidate.
Given the self-certification checks upto time epoch T , we inductively have xk = xs−k

0 =
z4(n!)2sS−k , for k ∈ [0, S]. If the adversary response x′ passes verification, then we should
have x′s = xS = z4(n!)2 , Let w = (4(n!)2)−1 (mod s) and let w(4(n!)2) = 1 + ks for some
computable integer k. Then x′sw = z4(n!)2w = z1+ks. Therefore, z = (x′wz−k)s. Hence
x′wz−k will be a winning response to the RSA challenge.

Distributions. Finally, we observe that as sS is invertible modulo ϕ(N) and sampling
uniformly from [1, N ] and [1, ϕ(N)] are statistically indistinguishable, the distribution of x0
in the STROBE construction and this proof are statistically indistinguishable. Matching these
distributions is the technical reason behind the extra 4(n!)2 factor in the Gen algorithm. ◀

On active adversaries

An active adversary is allowed to tamper with the intermediate shares and beacon values.
Observe that, as s is invertible with respect to ϕ(N), the beacon values are deterministic in
the past as well as the future, given a current value. Therefore, given the initial value x0, an
adversarially tampered beacon value would be verifiably detected.

It is possible that intermediate shares could be tampered with without detection in certain
circumstances. For example, if one of the parties is absent in all the epochs up to a certain
point and then starts participating. The upshot of such attacks is essentially denial of service.
The correct verifiability of beacon outputs is not affected.

7 Extensions

In this section we discuss some extensions of our core scheme to enable further functionalities
and guarantees.

7.1 Dynamic Beacon Committees
STROBE can also easily handle dynamically changing the participants executing the beacon
protocol. For example, this could involve rotating to a newly chosen committee (even of a
different size) of parties after some fixed number of epochs. The new committee will then
continue to generate future outputs of the beacon. In fact, the new committee can also
be chosen based on the output of the distributed beacon. Dynamic participation can be
accommodated by using the old committee to reshare the secret key to the new committee
through existing literature on dynamic proactive secret sharing [5, 39]. Note however, that
such protocols need to make the assumption that honest parties from previous committees

AFT 2023



7:12 STROBE: Streaming Threshold Random Beacons

delete their shares so that an adversary cannot recover the secret key even by corrupting
more than a threshold number of parties from a previous committee. The above scenario is
also referred to as a “long range” attack (c.f., [21]).

7.2 Succinct Proofs of Beacon Validation
In earlier sections we observed that it is possible to check the beacon value xT at epoch T

against the seed value x0 by checking x0 = xsT

T . However, this takes sequential time T . One
way to speed up verification is to exploit the RSA repeated powering structure of this check
and use existing techniques like [42,51] to add a proof in addition to the beacon value.

In particular, we can just apply Wesolowski’s [51] proof technique in reverse and produce
the proof π = x

⌊sT /ℓ⌋
T , where ℓ is the result (a prime number) of a random oracle H applied

to (x0, xT , T ). The verifier computes ℓ and r as the remainder on dividing sT by ℓ and then
checks x0 = πℓxr

T . However, a drawback of this method is that producing the proof takes
about T time as well, which may not be ideal to do every epoch.

A better approach is to use a continuous VDF [29]. In a continuous VDF, it is efficient to
publish and use intermediate proofs at every time epoch. The Ephraim et al [29] continuous
VDF makes use of the recursive structure of Pietrzak’s VDF [42]. The high level idea is
that they checkpoint a logarithmic number of past values and keep recursively merging an
appropriate number of them in order to prevent growing the proof size. We can also similarly
checkpoint and merge based on a similar recursion, while reversing the order: x0 = xsT/2

u

and xu = xsT/2

T , where u = T/2 is the midpoint.
We can use a continuous VDF at defined intervals as well, instead of every epoch. A

verifier can sequentially compute the expected value until the last such interval and then
just check the VDF proof.

7.3 Deeper Blockchain Integration
The design described in Section 4 relies on external authorities. However, incorporating
STROBE within the infrastructure of a blockchain would enable the generation of randomness
as a side effect of the normal system operations, taking no additional dependency on external
authorities. Allowing efficient reconfiguration of STROBE for permissionless environments
with highly dynamic set of nodes remains an open problem. Nevertheless, integration
of STROBE into permissioned (BFT-based) blockchain platforms is straightforward. For
instance, in Hyperledger Fabric [14], contracts run on private sets of computation nodes and
use the Fabric protocols for cross-contract calls. In this setting, STROBE authorities can
coincide with the Fabric smart contract authorities. Upon a contract setup, they perform a
setup and key distribution, and then start generating randomness when authorized by the
contract. For generating randomness, the only secrets maintained are the private STROBE
authorities keys; all other operations of the contract can be logged and publicly verified. The
threshold trust assumption – namely that of integrity and availability – is preserved.

Incentives for Randomness Generation

One open question is on managing the incentives of releasing shares for the randomness
beacon. On a first sight the fault-tolerance of STROBE makes the problem a public goods
game, since only a threshold needs to participate. One way to break this has been proposed
in prior work [3, 37] where the shares are published on chain and rewards are given only to
“useful” shares (i.e. the first t that make it on-chain). This breaks the public goods game
and makes it a race between the authorities who are eager to release their share and get
rewarded.



D. Beaver et al. 7:13

8 Applications

In this section, we discuss applications of random beacons. In particular, we argue how the
novel history generation feature of STROBE can enable attractive technical advancements in
many scenarios.

8.1 Blockchain Light-clients

Blockchain’s light client [20] is typically a resource-constrained node that performs limited
verification of the blockchain by downloading block headers and verifying high-level state
transitions following consensus decisions. In the context of proof-of-stake blockchains, a
light-client would verify the validators’ signatures over block headers (in BFT-style protocols)
or leader elections (in longest-chain-style protocols), or both (in hybrid-style blockchains),
as well as track the changes to the validator set. Some protocols (e.g. Ethereum 2.0) do
subsampling of the committees artificially lowering the number of parties in order to help
drive the protocol to agreement faster. Both leader election and subsampling is done through
the random-beacon protocols. This guarantees that the process is fair, transparent and
verifiable, as well as that no malicious party can increase the probability of them being
elected, and that no attacker can predict the next leaders or members of the subcommittees
in advance preventing the launch of a targeted attack. All of these properties are provided by
verifiability, uniformity, unbiasability and unpredictability of a random beacon. However, a
major challenge for light-clients is to follow and verify the beacon outputs in order to be able
to follow and verify consensus decisions. A protocol that allows to generate historical values
of the beacon, like ours, would allow the light-client to only verify the latest output and be
able to generate the prior values locally simplifying the process of verifying the leaders and
subcommittees.

8.2 Blockchain-based Gambling and Lotteries

Lotteries and gambling smart contract solutions are gaining in popularity, and a portion
of them advertise transparency, unbiased randomness generation (uncontrollable from par-
ticipants) and consumer privacy. It is well known that the original success of Bitcoin was
partly due to gambling activities, especially via the Satoshi Dice which operated since 2012
and dominated the bitcoin transactions in its first years of operation [32]. There is a growing
number of blockchain gambling contracts, and as of September 2021, according to statistics
provided in [25], there exist at least 151 lottery, 129 casino, 70 poker and generally 600+
gambling smart contracts in Ethereum alone. Moreover, lotteries have also been proposed as
an alternative reward scheme for miners by randomly recirculating lost coins and collecting
gold dust [33].

One of the main advantages of STROBE in this setting is that the latest beacon can
be automatically used to “verifiably” derive all of the previous random numbers down to
the original genesis beacon. This property can be utilized by smart contract developers to
minimize cost by skipping beacon epochs when required, but lotteries can still continuously
run for every epoch. It also works as a DoS defense, especially when the beacon is provided
by an external oracle service to the blockchain; if there is significant delay on updates, the
latest beacon suffices to execute all of the pending lottery games.

AFT 2023



7:14 STROBE: Streaming Threshold Random Beacons

8.3 High-throughput Beacon Streams
There exist applications requiring constant high-throughput of beacons, especially in the
online gaming sector. Most games require a combination of “skills” and “luck”, and as video
gaming has become a market where professional players participate in tournaments with real
prizes, a fair beacon stream would enable new types of transparent gaming features. Due to
potential internet speed issues, server overloading and other factors, reliability might be at
stake [23] and thus, some game providers prefer UDP connections to offer greater flexibility
by executing packets out of order or discarding non important ones [52]. STROBE’s history
generation feature fits really well in streaming designs, and allows client software to generate
game states by computing every missing beacon. Note that in these applications, VDF-based
beacons are not good candidates due to the intrinsic delay and high-latency, while the proof
of stake nature of STROBE offers fairness guarantees by not relying in the event organizer’s
or software publisher’s honesty. Along the same lines, STROBE has an advantage in low
or expensive bandwidth locations (i.e., remote IoT devices) by allowing reading a beacon
infrequently and generating past randomness internally.

Finally, STROBE allows for flexible and more efficient database requirements on nodes
serving the API for the derived random beacon per round. Typically, only the last beacon
suffices, thus O(1) storage, while one can implement a service that maintains a wisely selected
number of checkpoints for faster past-beacon lookups as a trade-off between memory/storage
and computations.

References
1 Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products. In CRYPTO, pages
417–432, 2002.

2 Jesús F Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with
adaptive and proactive security. In EUROCRYPT, pages 593–611, 2006.

3 Zeta Avarikioti, EK Kogias, Roger Wattenhofer, and Dionysis Zindros. Brick: Asynchronous
incentive-compatible payment channels. In FC, pages 209–230, 2021.

4 Donald Beaver and Nicol So. Global, unpredictable bit generation without broadcast. In
EUROCRYPT, pages 424–434, 1993.

5 Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a blockchain keep a secret? In TCC, pages 260–290,
2020.

6 Adithya Bhat, Aniket Kate, Kartik Nayak, and Nibesh Shrestha. Optrand: Optimistically
responsive distributed random beacons. In NDSS, 2023.

7 Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-random
number generator. SIAM J. Comput., 15:364–383, 1986.

8 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO, pages 757–788, 2018.

9 Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys. In CRYPTO,
pages 425–439, 1997.

10 Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

11 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
ASIACRYPT, pages 514–532, 2001.

12 Vitalik Buterin. Vitalik’s annotated ethereum 2.0 spec. https://github.com/ethereum/
annotated-spec/blob/master/phase0/beacon-chain.md#randao, 2020.

https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#randao
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#randao


D. Beaver et al. 7:15

13 Christian Cachin. An asynchronous protocol for distributed computation of RSA inverses and
its applications. In PODC, pages 153–162, 2003.

14 Christian Cachin. Architecture of the Hyperledger blockchain Fabric. In DCCL, 2016.
15 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople:

Practical asynchronous Byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

16 Ran Canetti, Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In CRYPTO, pages 98–116, 1999.

17 Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by public
entities. In ACNS, pages 537–556, 2017.

18 Ignacio Cascudo and Bernardo David. ALBATROSS: publicly attestable batched randomness
based on secret sharing. In ASIACRYPT, pages 311–341, 2020.

19 Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over a shared secret
modulus. In EUROCRYPT, pages 190–206, 2000.

20 Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. SoK: Blockchain
light clients. In FC, 2022.

21 Panagiotis Chatzigiannis and Konstantinos Chalkias. Proof of assets in the Diem blockchain.
In ACNS, pages 27–41, 2021.

22 Kevin Choi, Aathira Manoj, and Joseph Bonneau. SoK: Distributed randomness beacons. In
IEEE S&P, pages 75–92, 2023.

23 Mia Consalvo. Cheating: Gaining advantage in videogames. Mit Press, 2009.
24 Ivan Damgård and Maciej Koprowski. Practical threshold RSA signatures without a trusted

dealer. In EUROCRYPT, pages 152–165, 2001.
25 Dapp.com. List of gambling Ethereum smart contracts, 2021. URL: https://www.dapp.com/

search_product?keyword=gambling.
26 Danny Dolev and H Strong. Polynomial algorithms for multiple processor agreement. SIAM J

Computing, 12(4):656–666, 1982.
27 J. Drake. Minimal VDF randomness beacon. URL: https://ethresear.ch/t/

minimal-vdf-randomness-beacon/3566.
28 Drand - a distributed randomness beacon daemon. URL: https://drand.love/.
29 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable

delay functions. In EUROCRYPT, pages 125–154, 2020.
30 Paul Feldman and Sylvio Micali. Byzantine agreement in constant expected time. In FOCS,

pages 267–276, 1997.
31 Yair Frankel, Philip D MacKenzie, and Moti Yung. Robust efficient distributed RSA-key

generation. In STOC, pages 663–672, 1998.
32 Sally M Gainsbury and Alex Blaszczynski. How blockchain and cryptocurrency technology

could revolutionize online gambling. Gaming Law Review, 21(7):482–492, 2017.
33 Harald Gjermundrød, Konstantinos Chalkias, and Ioanna Dionysiou. Going beyond the

coinbase transaction fee: Alternative reward schemes for miners in blockchain systems. In
PCI, pages 1–4, 2016.

34 Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018.

35 Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In ICDCS, pages
119–128, 2009.

36 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO, pages 357–388, 2017.

37 Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta,
and Bryan Ford. Calypso: Private data management for decentralized ledgers. Proc. VLDB
Endow., 14(4):586–599, 2020.

AFT 2023

https://www.dapp.com/search_product?keyword=gambling
https://www.dapp.com/search_product?keyword=gambling
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://drand.love/


7:16 STROBE: Streaming Threshold Random Beacons

38 Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous dis-
tributed key generation for computationally-secure randomness, consensus, and threshold
signatures. In CCS, pages 1751–1767, 2020.

39 Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari
Juels, and Dawn Song. Churp: Dynamic-committee proactive secret sharing. In CCS, pages
2369–2386, 2019.

40 Gary L Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976.

41 Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan Včelák, Leonid
Reyzin, and Sharon Goldberg. Making nsec5 practical for dnssec. Cryptology ePrint Archive,
2017.

42 Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, pages 60:1–60:15, 2019.
43 Michael O Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,

12(1):128–138, 1980.
44 Michael O. Rabin. Transaction protection by beacons. Journal of Computer and System

Sciences, 27(2):256–267, 1983.
45 Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness beacon protocols.

arXiv preprint arXiv:2205.13333, 2022.
46 Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar Weippl.

Randrunner: Distributed randomness from trapdoor VDFs with strong uniqueness. In NDSS
2022, 2021.

47 Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hydrand: Efficient
continuous distributed randomness. In IEEE S&P, pages 73–89, 2020.

48 Victor Shoup. Practical threshold signatures. In EUROCRYPT 2000, pages 207–220, 2000.
49 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail

Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
IEEE S&P, pages 444–460, 2017.

50 VeeDo is a STARK-based verifiable delay function (VDF) service. URL: https://github.
com/starkware-libs/veedo.

51 Benjamin Wesolowski. Efficient verifiable delay functions. In EUROCRYPT, pages 379–407,
2019.

52 Zheng Xue, Di Wu, Jian He, Xiaojun Hei, and Yong Liu. Playing high-end video games in the
cloud: A measurement study. IEEE Trans. Cir. and Sys. for Video Technol., 25(12):2013–2025,
2014.

https://github.com/starkware-libs/veedo
https://github.com/starkware-libs/veedo


User Participation
in Cryptocurrency Derivative Markets
Daisuke Kawai #

Carnegie Mellon University, Pittsburgh, PA, USA

Bryan Routledge # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Kyle Soska #

Ramiel Capital, New York, NY, USA

Ariel Zetlin-Jones #

Carnegie Mellon University, Pittsburgh, PA, USA

Nicolas Christin #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
As cryptocurrencies have been appreciating against fiat currencies, global markets for cryptocurrency
investment have started to emerge, including, most prominently, derivative exchanges. Different
from traditional derivative markets, cryptocurrency derivative products are directly marketed to
consumers, rather than through brokerage firms or institutional investors. Cryptocurrency derivative
exchange platforms include many game-like features (e.g., leaderboards, chatrooms, loot boxes),
and have successfully attracted large numbers of investors. This paper attempts to discover the
primary factors driving users to flock to these platforms. To answer this question, we have collected
approximately a year worth of user data from one of the leading cryptocurrency derivative exchanges
between 2020 and 2021. During that period, more than 7.5 million new user accounts were created
on that platform. We build a regression analysis, accounting for the idiosyncrasies of the data at
hand – notably, its non-stationarity and high correlation – and discover that prices of two major
cryptocurrencies, Bitcoin and Ethereum, impact user registrations both in the short and long
run. On the other hand, the influence of a less prominent coin, Ripple, and of a “meme” coin
with a large social media presence, Dogecoin, is much more subtle. In particular, our regression
model reveals the influence of Ripple prices vanishes when we include the SEC litigation against
Ripple Labs, Inc. as an explanatory factor. Our regression analysis also suggests that the Chinese
government statement regarding tightening cryptocurrency mining and trading regulations adversely
impacted user registrations. These results indicate the strong influence of regulatory authorities
on cryptocurrency investor behavior. We find cryptocurrency volatility impacts user registrations
differently depending on the currency considered: volatility episodes in major cryptocurrencies
immediately affect user registrations, whereas volatility of less prominent coins shows a delayed
influence.

2012 ACM Subject Classification General and reference → Measurement; Applied computing →
Digital cash

Keywords and phrases Cryptocurrency, Online Markets, Derivatives, Trading, Regression Analysis

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.8

Funding This research was partially supported by Ripple’s University Blockchain Research Initiative
(UBRI) at Carnegie Mellon and by the Carnegie Mellon CyLab Secure Blockchain Initiative. Some
of the authors hold non-negligible cryptocurrency positions, but none on the platform under study.
Daisuke Kawai: DK is supported by the Japanese Government Long-Term Overseas Fellowship
Program.

© Daisuke Kawai, Bryan Routledge, Kyle Soska, Ariel Zetlin-Jones, and Nicolas Christin;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 8; pp. 8:1–8:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dkawai@andrew.cmu.edu
https://orcid.org/0000-0002-1128-6943
mailto:routledge@cmu.edu
http://sulawesi.tepper.cmu.edu/
https://orcid.org/0000-0001-5650-4716
mailto:soska@ramiel.capital
https://orcid.org/0000-0002-9222-4962
mailto:azj@andrew.cmu.edu
https://orcid.org/0000-0001-7556-0238
mailto:nicolasc@andrew.cmu.edu
https://orcid.org/0000-0002-2506-8031
https://doi.org/10.4230/LIPIcs.AFT.2023.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 User Participation in Cryptocurrency Derivative Markets

1 Introduction

Cryptocurrencies have had a growing impact on global finance. Shortly after the emergence
of Bitcoin [33], use cases were primarily as a payment instrument for online fringe activities
such as gambling, or the purchase of illegal goods [11, 31]. However, spot prices (i.e., the
exchange rate to fiat currencies) rapidly skyrocketed – Bitcoin went from being worth nothing
in 2009 to exceeding $60,000 in 2021 – so that cryptocurrencies became an important type
of (speculative) financial asset [16].

Consequently, trading infrastructure rapidly expanded from spot exchanges, where people
exchange cryptocurrencies for fiat currencies [32], to cryptocurrency derivative platforms [44].
Today, approximately 50–100 billion US dollars are traded every day on these off-chain
derivative exchanges.1 This number far exceeds that of cryptocurrency spot markets, and
can be compared to the roughly 200 billion USD traded on the NASDAQ on a given day at
the time of writing.2 In short, cryptocurrency derivative markets are critical to understand
the impact of cryptocurrencies on global finance.

The rapid increase in trading volume and user participation led financial regulators to
pay close attention. The U.S. Securities and Exchange Commission (SEC) Chair famously
emphasized the need for stronger regulations for better investor protection and market
integrity [49]. At the international level, the Financial Stability Board (FSB) raised its risk
evaluation of cryptocurrency and prioritized the risk assessment of cryptocurrency markets
for 2022 [16,17]. Out of these concerns about potential threats, financial authorities took
regulatory measures regarding the cryptocurrency industry [5, 21,50].

These regulatory changes, as well as large price swings, are expected to impact investor
behavior. However, little quantitative analysis has been conducted to measure the degree of
influence of all of these potential factors. The core contribution of this paper is to examine
the degree to which price appreciation, volatility, and regulatory measures influence user
decisions to engage in cryptocurrency investments. To do so, we rely on a dataset we obtained
about the hourly performance data of more than eight million investors (registered by July
20, 2021, and most of whom are presumed to be invididual investors) in one of the largest
cryptocurrency derivatives markets, from which we can derive how many new investors sign
up to the exchange. We use that data to investigate how cryptocurrency prices affect the
number of investors in the market with a regression model that can address the long-run
relationship between the new registration and major cryptocurrency prices.

A prevailing narrative is that short-term speculation motivates cryptocurrency investments
[15,29] – if so, investors should flock to investment platforms as market volatility increases.
We look at the effect of four cryptocurrencies (“reserve” cryptocurrencies like Bitcoin, “meme”
currencies like Dogecoin, etc.) prices and volatility on investor registrations, and build a
regression to tease out factors that appear to matter. Building this regression presents a
number of technical challenges we elaborate on, and our analysis ultimately shows a nuanced
picture. The number of investors increases over time, with both price rise and volatility
acting as a crucial effect on the rate of increase. However, not all currencies are equal:
contrary to Bitcoin or Ethereum, whose price hike and high volatilities immediately affect
user registration, Ripple and Dogecoin prices have much less impact on user registrations in
the short term, and it takes longer time for the impact of their high volatility to materialize.
Our regression also shows the significant influence of regulatory measures. Our analysis shows

1 https://coinalyze.net/futures-data/global-charts/
2 https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary

https://coinalyze.net/futures-data/global-charts/
https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary


D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:3

that the SEC litigation against Ripple Labs, Inc. and its executives basically negated any
positive effect of Ripple’s price rise on user registrations. The same analysis also suggests that
the statement by the Chinese government that it was tightening cryptocurrency regulation3

also adversely affected user registrations.

2 Related work

Bitcoin is a digital asset maintained by cryptographic primitives and distributed ledger
technology. All transactions are recorded on a public ledger (“blockchain”) and verified by
peers engaging in a cryptographic puzzle (“miners”). Originally proposed as a payment
method independent of trusted third parties [33], Bitcoin’s use cases during its first few years
were fraught with controversy: Meiklejohn et al. [31] showed that one of the major outlets
for Bitcoin transactions was Silk Road, a marketplace for (mostly) illegal goods [11]. Moore
and Christin showed that Bitcoin exchanges, where people trade Bitcoin for national (“fiat”)
currencies, frequently failed, and sometimes absconded with their users’ money [32].

Despite (or maybe thanks to) the negative publicity, Bitcoin price skyrocketed within a
few years. Multiple pieces of literature tried to understand why. Kristoufek [27] showed a
correlation between Bitcoin price and the volume of related online search queries. In addition,
they found that increased interest in Bitcoin inflates its price, which leads to a bubble-like
price movement. Ciaian et al. [12] showed that Bitcoin’s attractiveness to investors is an
important driver, along with other conventional economic determinants. Urquhart [45]
showed that an increase in realized Bitcoin price volatility is correlated to a larger number of
related online searches one day later.

More generally, researchers proposed theoretical foundations to integrate various price
determinants that had been observed empirically [7, 13, 34, 35, 40, 43]. Network effects appear
critical: cryptocurrency appeal, and thus price, grows with the number of users, due to the
increased security and (indirectly) usability a large user base provides. For instance, Liu and
Tsyvinski’s recent empirical analysis [28] shows that cryptocurrency prices correlate with the
growth in the number of active on-chain addresses.

By analyzing conditional exposure to tail risks in other cryptocurrencies and in con-
ventional financial asset prices, Borri [8] had showed cryptocurrency prices were affected
by other cryptocurrencies, but were decoupled from conventional financial assets prices.
Iyer [22] argues this may no longer be the case: correlation between cryptocurrency prices
and conventional financial asset prices has been growing.

While this growing body of literature looks into correlations between cryptocurrencies
and other financial assets, relatively little is known about market participants. Baur et al. [6]
analyzed early Bitcoin holder demographics between 2011 and 2013 and showed that the
main purpose of holding Bitcoin is for investment. By analyzing the BitMEX platform, Soska
et al. [44] showed derivative investors were a mix of hobbyists and professional traders – with
the latter often winning against the former. Kawai et al. [26] show that some derivatives
investors provide unreliable investment advice on Twitter.

Despite these advances, many critical issues to characterize cryptocurrency investor
behavior are yet to be answered. One of the issues is the influence of the price of major cryp-
tocurrencies on potential investors – i.e., people who have not yet opened investment accounts
in cryptocurrency markets, but are interested in investing. We argue this understanding is
critical to better constructing a sustainable cryptocurrency investment environment.

3 https://www.gov.cn/xinwen/2021-05/21/content_5610192.htm?ivk_sa=1023197a

AFT 2023

https://www.gov.cn/xinwen/2021-05/21/content_5610192.htm?ivk_sa=1023197a


8:4 User Participation in Cryptocurrency Derivative Markets

3 Dataset

We obtained investor performance records over two years and a half from a large cryptocur-
rency derivative exchange public API, and use a subset of this data in the present paper.
This section first briefly describes perpetual futures, the derivatives product predominantly
traded on the exchange, before discussing the investor data present in our dataset.

3.1 Cryptocurrency derivative exchanges
While several platforms investigated various types of cryptocurrency contracts, BitMEX is
generally credited with pioneering cryptocurrency derivative products, starting in November
2014 [2,3]. Compared to conventional derivatives markets, the most popular contract available
is the perpetual futures contract, which, contrary to conventional derivative products (e.g.,
options), has no expiry date: Investors can hold their positions as long as their margin size is
large enough to avoid liquidation. Soska et al. present a comprehensive study of BitMEX
and of the perpetual futures contract [44]. Below we provide a quick summary of this type
of contract, which subsequently became highly popular on all derivative exchanges, including
the one we study in this paper.

3.1.1 Perpetual futures
Perpetual futures are investments in the future value of underlying cryptocurrencies: a typical
case is the value of Bitcoin (BTC) against US dollar (USD) – or a related “stablecoin” (a
cryptocurrency pegged to a fiat currency) like Tether (USDT). Investors of perpetual futures
can go “long” or “short.” An investor expecting a rise in BTC value against USD will go
long (i.e., bet on the appreciation of BTC); conversely, investors expecting a decline will go
“short.” Longs and shorts are evenly matched among investors: every long contract is paired
with a corresponding short contract placed by other investors.

Perpetual cryptocurrency future markets typically allow very high leverage, far beyond
what their traditional finance counterparts tolerate. For instance, BitMEX [44] allowed up
to 100x leverage. The platform we study allowed up to 125x leverage during the period we
investigate (September 2020–July 2021). In short, an investor could invest up to 125 BTC
worth of USD with only 1 BTC worth of USD as collateral. If the investor goes long (resp.
short), and the value of bitcoin appreciates (resp. depreciates) against the US dollar, the
investor can reap significant profit. On the other hand, leveraged positions are incredibly
risky: for a 125x leveraged position, a swing of (slightly less than)4 0.8% compared to the
purchase price, in the direction opposed to the bet made, results in liquidation. That is, the
investor’s position is immediately closed, and the investor loses all their money.

3.1.2 Performance indices
The exchange we study uses two indices to characterize investor performance: Profit and
Loss (PnL) and Return on Investment (RoI). PnL shows the absolute profit (resp. loss) of an
investment portfolio. An absolute metric, PnL tends to get large with investors who can take
larger positions. On the other hand, the RoI, defined as the PnL divided by the investors’
margin size (i.e., the funds the investor deposited in the market), is independent of the initial
endowment.

4 Due to transaction fees and other early liquidation mechanisms.



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:5

3.1.3 Rankings
The market we study provides ranking information of investors based on their PnL and RoI.
The investor with the highest PnL (or RoI) ranks first, and other investors are sorted in
descending order. Crucially, this ranking includes inactive investors who registered on the
market but do not have any positions. These inactive investors have, by definition, a PnL
and a RoI of zero, which is higher than that of investors who have incurred losses. As a
result, the rank of an investor with a slightly negative PnL/RoI is orders of magnitude larger
than that of an investor with a slightly positive PnL/RoI.

3.1.4 Cryptocurrency prices
The exchange also provides real-time prices of major cryptocurrencies via its public API. We
collect these prices every minute throughout our measurement period. All collected prices
are denominated in Tether (USDT).

3.2 Data collected
The cryptocurrency derivatives exchange we study started to publish ranking information
on a leaderboard in mid-2020. While the leaderboard web front-end only shows the top
investors, the public API initially provided information on every investor on the platform.
Ranking data was updated hourly until May 9, 2021. Updates then shifted to a daily basis,
until July 26, 2021. At that point, the exchange stopped providing ranking data for all
investors; instead, the API now merely matches what the web front-end shows. As a result,
we use data collected between August 20, 2020 and July 20, 2021.

4 Estimating the number of investors

4.1 Number of investors
As discussed above, the exchange API provides performance indices and ranking data about
all investors. Unfortunately, to query data about a specific investor, we need their ID, and
we cannot directly obtain the number of investors on the platform. Instead, we use ranking
data as a proxy to estimate it.

Figure 1 shows the number of investors in our dataset, the maximum PnL rank among
the investors, and their ratio at the beginning of each month in our observation period.

Figure 1 The number of investors in our
dataset and the maximum (lowest) rank among
the investors.

Figure 2 The daily increase in the number of
investors in the market and the prices of Bitcoin
(BTC) and Ether (ETH).

AFT 2023



8:6 User Participation in Cryptocurrency Derivative Markets

The figure shows that we collected data on more than one million investors and this
ratio stays above 0.80 after October 2020 – the first month is an anomaly due to our data
covering only a week or so. The large sample size ensures the lowest rank among collected
investors is statistically very close to the number of investors in the market.5 With this in
mind, Figure 1 shows 7.5 million new investors joined the market increased in the ten months
between September 1, 2020 to July 1, 2021.

Using maximum PnL rank as a proxy, we can estimate the number of investors in the
market on a daily basis, even with an imperfect coverage of investors. Figure 2 shows both
the daily increase in users on the platform, and the Bitcoin (BTC) and Ethereum (ETH)
spot prices. Graphically, there seems to be a strong correlation between the number of new
users joining the market, and the price of these currencies. The outliers (abnormally large
increases) in November 2020 and July 2021 come from data collection errors due to changes
in the exchange API implementation and collector breakdown.

In Section 6, we refine this intuition with a complete regression analysis.

4.2 Leaderboard data idiosyncracies
We have to account for certain idiosyncracies in our data. We infer registration numbers from
the leaderboard data, which we itself get from a public API. However, there may be some
lag times between what the API returns (leaderboard data may not be faithfully updated in
real-time), and actual numbers; this can have an impact on our regression analysis.

Figure 3 Hourly relative increase in the number of investors. The black dots show the exact time
the largest rank in an hour was observed and the relative increase from the previous hour’s largest
rank. The background color shows the number of observations for a block of an hour and a 0.5%
relative increase.

Figure 3 shows when new user registrations appear in our data, on a hourly basis. Each
point corresponds to the relative increase in number of registered users compared to the
previous hour, using the maximum leaderboard rank among observations in the hour as a
proxy, as discussed earlier. We plot this data over our complete measurement interval (so,
roughly 7,000 points corresponding to the number of hourly samples in our 10-month data).
We observe that the reported number of users jumps during 0:00-3:00AM UTC on most days
and usually does not change much thereafter. From this behavior, we hypothesize that the
exchange updates the set of investors in the performance rankings once a day at midnight,
integrating most, if not all, of those who registered in the previous day at that time.

5 As a rough estimation, the probability that the relative error between the lowest rank and the (actual)
number of investors in the market is equal to or less than 0.001% throughout our observation period
(293 days) with one million samples (∼ the number of investors at the beginning of October 2020) is:
P r(Relative Error < 0.001%) =

(
1 − (1 − 0.00001)1,000,000

)293 ≃ 0.987. Given the increasing sample
size, the actual probability is better than the approximation.



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:7

Therefore, we define the number of investors in the market in a day d as Id ≡ maxτ∈d+1 Iτ ,
where Iτ is the largest observed leaderboard rank in a time slice τ . We also define the daily
increase in a day d (Nd) as Nd ≡ Id − Id−1.

5 Regression analysis

We start by discussing the regression variables, before exploring how to construct our
regression, considering the properties of the data we have at our disposal.

5.1 Variables

5.1.1 Daily user increase
Our first month of data has problematically sparse samples (3.0 × 104) and low coverage
(2.67%). Hence, we discard it, and limit our analysis to October 1, 2020–July 20, 2021. We
fix the handful of discontinuities observed in Figure 2 – due to data collection errors – by
removing the outliers and replacing them with linear interpolations.

As Figure 2 shows, the daily increase Nd does not converge or revert to a mean value. In
fact, as we will see in Section 6, Nd is a non-stationary variable. Fortunately, the Box-Cox
transformation [9, 52] allows us to include such variables in an autoregressive model like the
one we consider, by instead using a transformed variable that satisfies certain properties.6 In
our case, the logarithm of the daily increase, log Nd, satisfies these requirements.

5.1.2 Prices
As noted above, we gather per-minute cryptocurrency prices. For currency X, at day d, we
thus collect a vector of prices PX,d = {PX,1, . . . , PX,1440} corresponding to the 1 440 minutes
in a day. The realized daily volatility σX,d is:

σX,d =
√

1440
|PX,d|

∑
τ∈d,τ>1

(log PX,τ − log PX,τ−1)2
,

where PX,τ is the price of cryptocurrency X measured at time τ in day d.
Here too we use a Box-Cox transformation, and consider the logarithm of the daily average

prices, log P̄X,d, as an explanatory variable. Its first difference ∆ log P̄X,d ≡ log P̄X,d −
log P̄X,d−1 is the logarithmic return of the price, showing the approximate percentage change
in the daily price. We will also use the realized volatility σX,d as an additional explanatory
variable. To calculate daily average prices P̄X,d in a manner robust to short-lived volatile
price movements, we will follow Biais et al. [7], by calculating the average of median values
over short time intervals (5 minutes).

We select four cryptocurrencies for their importance and/or unique characteristics.

Bitcoin (BTC). Bitcoin has the largest market cap among cryptocurrencies, and is frequently
touted as the “reserve currency” of the cryptocurrency ecosystem. BTC-USDT is the most
popular futures contract in the exchange we consider, and Bitcoin presents the largest open
interest, that is, the total amount (in USDT) of futures contracts held by market participants.

6 Namely, that the mean and variance of its first difference are stationary.

AFT 2023



8:8 User Participation in Cryptocurrency Derivative Markets

Ethereum (ETH). Ethereum has the second largest market cap among cryptocurrencies,
and features the second largest open interest in the exchange. ETH is the utility token in
the Ethereum blockchain, which supports many smart contracts, including the majority of
decentralized finance (DeFi) contracts and protocols. ETH thus gives us some insights into
potential investor interests (and beliefs) in more elaborate blockchain proposals.

Ripple (XRP). XRP is another major cryptocurrency with a decentralized consensus
mechanism [10]. Ripple Labs, Inc., the company behind XRP, was sued by the U.S. Securities
and Exchange Commission (SEC) in December 2020.7 At the time of writing, the suit has
not been resolved. Among all cryptocurrency legal wranglings, this case is interesting to
understand the potential influence of regulatory measures on user interest in a pretty popular
coin, specifically, the third largest coin by market capitalization at the time.8 Hence, XRP
could give us insight into investor reactions to regulatory issues.

Dogecoin (DOGE). Originally a “meme” cryptocurrency primarily designed with humorous
goals in mind, DOGE received increased attention due to numerous social media campaigns
by influencers touting its potential (notably for tips and micropayments). As a result of the
attention, DOGE soared in value from 0.005 USDT in January 2021 to 0.5 USDT in May
2021, before hitting an all-time high of 0.75 USDT on May 7, 2021. Social media attention
faded away shortly thereafter, and the currency lost significant value. DOGE is thus an
interesting currency to include, as a loose proxy for social media activity.

Table 1 summarizes statistics for the logarithms and realized volatilities for the four
cryptocurrencies above. Reflecting the price hike in DOGE in early 2021, the standard
deviations for DOGE are higher than other variables. We will later use the mean values
and standard deviations of level variables for the Principal Component Analysis (PCA).
Appendix A shows the plot of daily average prices and realized volatilities of four selected
cryptocurrencies.

Table 1 Descriptive statistics for the daily increase in the number of investors and the logarithm
of daily average price and realized volatility of BTC, ETH, XRP, and DOGE.

log N log P̄BT C log P̄ET H log P̄XRP log P̄DOGE σBT C σET H σXRP σDOGE

• Level variable
Mean 9.862 10.371 7.145 -0.636 -3.396 0.047 0.059 0.087 0.100

Median 10.077 10.469 7.434 -0.610 -2.917 0.042 0.051 0.071 0.066
Std. Dev. 0.899 0.518 0.714 0.583 1.923 0.025 0.038 0.060 0.099

Max. 11.465 11.059 8.346 0.589 -0.370 0.233 0.475 0.417 0.900
Min. 7.654 9.261 5.827 -1.556 -5.990 0.010 0.019 0.018 0.015

• First difference
Mean 0.006 0.004 0.006 0.003 0.014

Median -0.012 0.006 0.006 0.002 0.001
Std. Dev. 0.212 0.037 0.046 0.077 0.127

Max. 1.174 0.126 0.163 0.291 1.238
Min. -1.256 -0.145 -0.196 -0.321 -0.470

7 See https://www.sec.gov/news/press-release/2020-338.
8 See https://coinmarketcap.com/historical/20201220/

https://www.sec.gov/news/press-release/2020-338
https://coinmarketcap.com/historical/20201220/


D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:9

5.2 Method
All of our variables are time-dependent and potentially highly correlated. An unbiased regres-
sion analysis generally requires time-dependent variables to be at least (weak-)stationary [4,
19, 20, 30] and to present low correlation [39]. Stationarity means the mean values should
be finite, time-invariant, and auto-covariances should only depend on the time interval over
which they are calculated. By successively differencing a non-stationary variable, we might
eventually end up with a stationary variable (e.g., a random walk variable yt following
yt = yt−1 + ϵt with white noise ϵt is not stationary, but its first difference, ∆yt = ϵt, is). We
denote by I(d) the number of successive differencing operations required to make the tested
variable stationary. I(d), also called the order of integration, will be key in determining
which regression model to use. Also, keeping the correlation between explanatory variables
low is an essential part of pre-processing to hold a regression analysis informative.

5.2.1 Unit root test
To check stationarity, we rely on the unit root test technique. One of the best known such
tests is the Augmented Dickey-Fuller (ADF) test [14]. ADF tests the null hypothesis that
the variable tested is a unit root (i.e., I(1)). If it rejects the null hypothesis with a small
enough p-value, the process is deemed stationary (I(0)). The Phillips-Perron (PP) test [38]
is also widely used to test stationarity. PP assumes the same null hypothesis as ADF, but
allows heteroskedasticity and autocorrelation in the error term. We will use both PP and
ADF in our analysis.

5.2.2 Principal Component Analysis
We employ Principal Component Analysis (PCA, [18]) to solve the problem of high correlation
between explanatory variables. PCA is an orthogonal projection of the original variables
(X) onto a lower-dimensional set of variables (SL), preserving as much information as
possible: SL = X̂WL, where L is the dimension of PCA-vector space (L ≤ dim(X)).
WL is the coefficient matrix for constructing principal components from normalized price-
related variables X̂i, which is composed of the variables normalized with its mean value
(Xi) and standard deviation (

√
V ar(Xi)): X̂i ≡ Xi−Xi√

V ar(Xi)
. Because PCA components

are orthogonal, PCA prevents the regression analysis from being contaminated by highly
correlated components. We can then calculate the original variables’ coefficients from those
for PCA components by simple linear algebraic manipulations.

5.2.3 Autoregressive distributed lag model
We will build our regression using an autoregressive distributed lag (ARDL) model, which,
contrary to most regression models, can accommodate a mixture of I(0) variables and
I(1) variables [36]. This makes it particularly suited to our problem, given the apparent
non-stationarity of at least some of our variables.

We will use the following unrestricted error correction model (UECM) representation of
ARDL in our analysis:

∆l̂og Nd = c0 +
∑

S γSIS,d

+π0 ̂log Nd−1 +
∑

i πivi,d−1 +
∑

i π′
iwi,d−1

+
∑p−1

i=1 αi∆ ̂log Nd−i

+
∑

i

∑qi−1
j=0 βi,j∆vi,d−j +

∑
i

∑q′
i−1

j=0 β′
i,j∆wi,d−j

+ϵd ,

(1)

AFT 2023



8:10 User Participation in Cryptocurrency Derivative Markets

where p, qi(q′
i), IS,d, and ϵd represent the lag order of the normalized daily increase(

l̂og Nd ≡ log Nd−log Nd√
V ar(log Nd)

)
, those for principal components for daily average prices (vi) and

realized volatilities (wi) in d-th day, indicator variables of interest (labeled by S), and the
error term, respectively. α, β, β′, γ, π0, π, and π′ are regression coefficients.

Pesaran et al. [36] propose a bounds test in an ARDL model (PSS-bounds test), to
determine the existence of a long-run equilibrium relationship (i.e., cointegration) between
variables. The test compares the test statistic with two critical boundaries. If the tested
statistic is larger than the upper boundary (called I(1)-boundary), the test confirms the
existence of a long-run relationship; On the other hand, if the tested statistic is lower than
the lower boundary (I(0)-boundary), the test rejects the existence of a long-run relationship.
If the tested statistic falls between the I(0) and I(1) boundary, no conclusion about the
existence, or lack thereof, of a long-run relationship can be derived. PSS-bounds test has five
cases (Case I-V) for the specification of deterministic terms. We consider Case I (no constant
term in the ARDL model), Case II (a constant term in the ARDL model and cointegration),
and III (a constant term in the ARDL model, but no constant term in cointegration). In the
UECM representation, the cointegrations are mainly given by the second line in Eqn. (1):

l̂og Nd + 1
π0

(∑
i πivi,d +

∑
j π′

jwi,d

)
= 0 (Case I) ,

l̂og Nd + 1
π0

(
µ +

∑
i πivi,d +

∑
j π′

jwi,d

)
= 0 (Case II) ,

l̂og Nd + 1
π0

(∑
i πivi,d +

∑
j π′

jwi,d

)
= 0 (Case III) ,

(2)

where µ is the deterministic term(s) for cointegration.
Intuitively, Eqn. (1) says that the change in l̂og Nd is explained by (1) the short-run

change in itself and explanatory variables and (2) the deviation from cointegration (i.e.,
long-run equilibrium status) if it exists.

We can consider the marginal effect of explanatory variables ( ∂ ̂log Nd+k

∂VX,d
) in an arbitrary

temporal duration k (≥ 0) when they converge to zero over time.
Short-run multipliers ( ∂ ̂log Nd

∂VX,d
) represents the immediate impact of an explanatory variable

VX,d. In Eqn. (1), short-run multipliers are given by βi,0 and β′
i,0. The cumulative marginal

effect up to k-th day (
∑k

l=0
∂ ̂log Nd+k

∂VX,d+l
) shows the accumulated impact of change in explanatory

variables lasting for k days, and converges to a finite value as k increase when the marginal
effect converges to zero. Since

∑k
l=0

∂ ̂log Nd+k

∂VX,d+l
=

∑k
l=0

∂ ̂log Nd+l

∂VX,d
, we can also interpret this

quantity as the cumulative effect that today’s change in an explanatory variable will cause
for k days in the future.

Long-run multipliers (limk→∞
∑k

l=0
̂log Nd+k

∂VX,d+l
) denote the cumulative marginal effect on

̂log Nd+k coming from a persistent change in an explanatory variable. From the discussion
above, this quantity represents the cumulative effect today’s change in an explanatory variable
causes in the long future. Going back to Eqn. (1), long-run multipliers are given by −π

π0
and

−π′

π0
for the principal components of daily average prices and realized volatilities, respectively.

Our analysis considers two major regulatory measures that affected cryptocurrency
prices in our observation period, using two indicator variables (IS): (1) the influence of the
SEC litigation against Ripple Labs, Inc. and (2) the Chinese government’s statement that
it planned to tighten cryptocurrency regulation. The big swings in XRP price after the
announcement of the lawsuit may affect newly-participating investor behavior. To capture
the potential effects, we introduce the indicator variable:



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:11

ISEC,d =
{

1 d is before Dec. 22, 2020 ,

0 otherwise .
(3)

Dec. 22, 2020 is the day the SEC publicly announced the lawsuit. In the definition of Eqn. (3),
the sum of the constant term and ISEC (c0 + ISEC) reresents the constant percentage change
in user registrations before the lawsuit was announced; this becomes a constant term (c0)
after that announcement. We employ this definition of ISEC to avoid shifting the critical
values of the PSS-bounds test [36].9

We use another indicator variable to capture the effect of the Chinese government’s
statement. It was published on May 21, 2021 [5]. This statement is considered to have had a
significant impact on wide range of cryptocurrencies adversely.

ICHN,d =
{

1 d ≥ May 21, 2021 ,

0 otherwise .
(4)

A statistically significant coefficient for ISEC and ICHN would indicate a spill-over effect
that is not absorbed in cryptocurrency prices. Geofencing has been an issue for major crypto-
exchanges as evidenced by multiple legal proceedings [46–48, 51], with investors allegedly
residing in countries that restrict participation (specifically, the US and China). We have no
reason to believe the market we study is immune to geofencing issues. Hence, we expect the
announcement of these regulatory actions to impact potential investor behavior. Moreover,
these measures were announced within our observation period, making it possible to precisely
gauge their impact. We also considered the UK ban on retail crypto-derivatives trading
that became effective on Jan. 6, 202110 as a potentially relevant case, but did not observe
any significant impact. We cannot distinguish whether this is because the announcement
was made before our observation period started (June 10, 2020), and investors had already
factored it into account, or because UK regulations have less of an overall impact.

Our analysis uses urca package for R [37] for unit-root tests and statsmodels package for
Python [42] for the remaining analyses. We employ heteroskedasticity autocorrelation (HAC)
robust variance estimation throughout our analyses to compensate for the potential impact
of determinants other than our selected terms and autocorrelation.

6 Results

We start with unit root tests to ensure all variables are I(0) or I(1) so that we can use
ARDL. Then, we consider the correlation between explanatory variables and finally perform
a complete analysis of our ARDL model to tease out the factors behind user registrations.

6.1 Unit root test
Table 2 summarizes the unit root test results for level variables and their first difference,
where we determine the lag order in ADF to minimize Akaike Information Criterion (AIC) [1].
Both ADF and PP provide consistent results about variable stationarity. The analysis shows
that (taking their logarithms), the daily user registration increases and the daily average

9 PSS-bounds test’s critical values must be modified if the regression formula includes indicator variable(s)
that do not disappear as the observation period increases. We defined ISEC in Eqn. (3) to mitigate the
potential contamination from long-lasting non-zero indicator variables.

10 https://www.fca.org.uk/news/press-releases/fca-bans-sale-crypto-derivatives-retail-
consumers

AFT 2023

https://www.fca.org.uk/news/press-releases/fca-bans-sale-crypto-derivatives-retail-consumers
https://www.fca.org.uk/news/press-releases/fca-bans-sale-crypto-derivatives-retail-consumers


8:12 User Participation in Cryptocurrency Derivative Markets

Table 2 Unit root test results.

Level variable First difference

Variable Intercept Intercept and
Trend term Intercept Intercept and

Trend term
Order of

integration

ADF test
log N -1.91 -0.49 -10.07∗∗∗ -10.31∗∗∗ I(1)
log P̄BT C -2.38 -0.45 -6.53∗∗∗ -7.23∗∗∗ I(1)
log P̄ET H -1.84 -0.60 −10.52∗∗∗ −10.70∗∗∗ I(1)
log P̄XRP -1.71 -1.55 −11.12∗∗∗ −11.16∗∗∗ I(1)
log P̄DOGE -1.10 -1.39 −7.85∗∗∗ −7.87∗∗∗ I(1)
σBT C -4.04∗∗∗ -4.02∗∗∗ -9.40∗∗∗ -9.41∗∗∗ I(0)
σET H −4.11∗∗∗ −4.17∗∗∗ −9.78∗∗∗ −9.78∗∗∗ I(0)
σXRP −5.31∗∗∗ −5.29∗∗∗ −7.70∗∗∗ −7.71∗∗∗ I(0)
σDOGE -6.44∗∗∗ −6.53∗∗∗ −9.67∗∗∗ −9.66∗∗∗ I(0)

PP test
log N -1.82 -1.98 -26.53∗∗∗ −26.93∗∗∗ I(1)
log P̄BT C -2.39 -0.27 −14.25∗∗∗ −14.65∗∗∗ I(1)
log P̄ET H -1.85 -0.44 −13.03∗∗∗ −13.15∗∗∗ I(1)
log P̄XRP -1.72 -1.57 −13.03∗∗∗ −13.04∗∗∗ I(1)
log P̄DOGE -1.06 -1.29 −14.60∗∗∗ −14.60∗∗∗ I(1)
σBT C −8.18∗∗∗ −8.40∗∗∗ −31.31∗∗∗ −31.30∗∗∗ I(0)
σET H −9.47∗∗∗ −9.77∗∗∗ −33.92∗∗∗ −33.88∗∗∗ I(0)
σXRP −7.69∗∗∗ −7.70∗∗∗ −26.83∗∗∗ −26.80∗∗∗ I(0)
σDOGE −6.80∗∗∗ −6.91∗∗∗ −21.84∗∗∗ −21.80∗∗∗ I(0)

*, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

prices are unit root I(1), but volatilities are stationary, i.e., I(0). Hence, we can use ARDL
in our analysis for daily registrations and PCA components constructed from price-related
variables: the PCA components, which are composed of the linear combination of log P̄X

and σX , are at most I(1).

6.2 Principal Component Analysis
Table 3 shows that the Pearson correlation coefficients between log daily average prices and
realized volatilities are so high that regression analysis with these variables will suffer from a
multi-collinearity problem [18,39].

Table 3 Pearson correlation coefficients for daily average prices and realized volatilities.

Daily average price Realized volatility

log P̄BT C log P̄ET H log P̄XRP log P̄DOGE σBT C σET H σXRP σDOGE

log P̄BT C 1.00 0.90 0.64 0.78 0.31 0.25 0.27 0.33
log P̄ET H 1.00 0.78 0.95 0.31 0.30 0.20 0.31
log P̄XRP 1.00 0.81 0.12 0.18 0.25 0.24

log P̄DOGE 1.00 0.25 0.25 0.13 0.29
σBT C 1.00 0.92 0.56 0.52
σET H 1.00 0.57 0.49
σXRP 1.00 0.54

σDOGE 1.00

Therefore, we consider the Principal Component Analysis (PCA) of daily average prices
and realized volatilities. Table 4 summarizes the construction of PCA components from
normalized log daily average prices ( ̂log P̄X) and realized volatilities (σ̂X). The table shows



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:13

Table 4 Principal component coefficients and percentage of variance explained by each principal
component.

Daily average price Realized volatility
̂log P̄BT C

̂log P̄ET H
̂log P̄XRP

̂log P̄DOGE % of variance σ̂BT C σ̂ET H σ̂XRP σ̂DOGE % of variance

PC1 0.015 0.017 0.015 0.016 86.0 0.019 0.019 0.016 0.015 70.4
PC2 -0.060 -0.018 0.071 0.011 9.4 -0.031 -0.033 0.027 0.050 16.3
PC3 -0.074 0.036 -0.069 0.095 4.1 -0.013 -0.007 0.070 -0.050 11.3
PC4 -0.146 0.368 0.008 -0.246 0.4 -0.145 0.144 -0.007 0.009 2.0

that the first component (PC1) for both log daily average prices (v1) and realized volatilities
(w1) are composed of the almost equally weighted sum of four coins, which basically denotes
the average trend of cryptocurrency prices and volatilities. The second component in daily
average prices (PC2) has large BTC and XRP coefficients with opposite signs, capturing how
XRP price trends deviate (or get “decoupled”) from BTC price trends, to which the SEC
litigation against Ripple may have contributed. The realized volatilities’ second component
measures the volatility difference between major coins (BTC and ETH), on the one hand,
and relatively less prominent coins (XRP and DOGE), on the other hand. Figure 4 shows

Figure 4 First and second components for log daily average prices (top) and realized volatilities
(bottom).

the first and second components for log daily average prices (v1, v2) and realized volatilities
(w1, w2). As we expect from Table 4, the first component for log daily average prices (v1)
represents cryptocurrency price trends: rising until May 2021 and the subsequent downturn.
The second component for log daily average (v2) prices denotes a sudden decrease in the
value in late December 2020, when the SEC announced its litigation against Ripple. The
increase in early April 2021 might be caused by investors getting more relaxed about the
impact of this litigation on XRP [23]. Finally, the second component for realized volatilities
(w2) displays sharp positive spikes in February and April 2021 caused by XRP and DOGE
as well as the negative spike in May 2021 due to the high volatility of BTC.

AFT 2023



8:14 User Participation in Cryptocurrency Derivative Markets

Table 5 Model selection for ARDL analysis.

Num. of PCA components
for log daily average prices

(Cum. % of variance)

Num. of PCA components
for realized volatilities

(Cum. % of variance)

Indicator
variables

Model 1 1 (86.0%) 1 (70.3%) No
Model 2 2 (95.4%) 1 (70.3%) No
Model 3 2 (95.4%) 2 (86.6%) No
Model 4 2 (95.4%) 2 (86.6%) Chinese govt. statement

Model 5 2 (95.4%) 2 (86.6%) Chinese govt. statement
+ SEC XRP lawsuit

6.3 ARDL model analysis
We next delve into our regression analysis with the ARDL model. We determine the lag
order of autoregressive terms (∆l̂og Nd) and distributed lag terms (∆vi,d and ∆wi,d) to
minimize the Bayesian information criterion (BIC) [41]. In determining the lag orders, we
limit ourselves to a maximum lag order of ten for both autoregressive terms and distributed
lag terms. This means that we consider a lag of up to ten days. Then, we select a model with
the smallest BIC from those with lag orders higher than or equal to one for all distributed lag
terms, so that we can construct a UECM representation. Fortunately, models with smaller
lags yield smaller BIC values than those with higher orders, so our self-imposed limitation
for the maximum lag order does not affect our results.

Model Specification. We consider five models, summarized in Table 5, for analyzing the
influence of cryptocurrency prices on user registrations to a cryptocurrency derivatives market.
Models 1–3 analyze the effect of model complexity. Models 4 and 5 measure the influence of
regulatory measures on daily registration by comparing them with Model 3. During model
selection, we found that models with different combinations of principal components all
reduced to those listed in Table 5. For example, a model selection starting from a model
with the first principal component for log daily prices and the first and second components
for realized volatilities reduces to Model 1 in optimization.

6.3.1 Fitting result
Table 6 summarizes the estimation results for all ARDL regressions. First, our full-fledged
Model 5 exhibits minimum values for all information criteria. That indicates Model 5 is
the best among fitted models. Model 4 presents the second-smallest information criteria
values. These results indicate that adding the indicator variables for controlling regulatory
measures, as well as the selection of principal components, enhances the explanatory power
of our ARDL models.

Second, the first difference of the first principal component (PC1) for the logarithm of
the daily average price (∆v1,d) significantly influences user registrations. Given the standard
deviation for the daily registration (log N) and the logarithm of daily average prices (log P̄X)
in Table 1 and the coefficients for PC1 in Table 4, a 1.0% increase in cryptocurrency prices
for a given day will roughly drive a 2.0% increase in user registrations in the same day.11

This pattern consistently shows up in all models, which indicates that rising cryptocurrency
prices positively correlate with decisions of potential investors to join the market.

11 Due to normalization while constructing the PCA components, we have to multiply the ratio of standard
deviations (

√
V ar(log N)/V ar(log PX)) and the coefficient for constructing PCA (Table 4) to the

coefficient for ARDL in Table 6 to get the coefficient in their original scales.



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:15

Table 6 ARDL regression results for Models 1–5. The values in parentheses are standard errors.

Model 1 Model 2 Model 3 Model 4 Model 5

Const. (c0) -0.002
(0.010)

-0.005
(0.010)

-0.004
(0.010)

0.038∗∗

(0.015)
−0.041
(0.034)

̂log Nd−1
−0.281∗∗∗

(0.073)
−0.440∗∗∗

(0.096)
−0.477∗∗∗

(0.099)
−0.707∗∗∗

(0.104)
−0.712∗∗∗

(0.099)

∆ ̂log Nd−1
−0.234∗∗

(0.095)
−0.152∗

(0.089)
−0.145∗

(0.090) – –

Log daily average price

v1,d−1
4.193∗∗∗

(1.098)
6.749∗∗∗

(1.474)
7.268∗∗∗

(1.517)
11.384∗∗∗

(1.734)
12.730∗∗∗

(1.695)

v2,d−1 – −1.050∗∗∗

(0.253)
−1.211∗∗∗

(0.275)
−1.401∗∗∗

(0.261)
−2.371∗∗∗

(0.467)

∆v1,d
22.940∗∗∗

(2.506)
26.536∗∗∗

(2.596)
24.339∗∗∗

(3.265)
23.245∗∗∗

(2.958)
24.116∗∗∗

(2.916)

∆v2,d – −4.764∗∗∗

(1.187)
−4.783∗∗∗

(1.170)
−5.091∗∗∗

(1.194)
−6.388∗∗∗

(1.425)
Realized Volatility

w1,d−1
0.960∗∗∗

(0.344)
1.334∗∗∗

(0.336)
1.404∗∗∗

(0.360)
1.990∗∗∗

(0.308)
2.241∗∗∗

(0.341)

w2,d−1 – – 0.588∗∗∗

(0.211)
0.343∗∗

(0.174)
0.488∗∗∗

(0.213)

∆w1,d
2.017∗∗∗

(0.450)
2.136∗∗∗

(0.390)
2.038∗∗∗

(0.328)
1.900∗∗∗

(0.349)
2.028∗∗∗

(0.347)

∆w1,d−1
0.793∗∗∗

(0.220)
0.638∗∗∗

(0.216)
0.594∗∗

(0.235) – –

∆w2,d – – 0.138
(0.303)

0.343
(0.174)

0.177
(0.301)

Indicator variables

ICHN – – – −0.201∗∗∗

(0.047)
−0.145∗∗∗

(0.049)

ISEC – – – – 0.239∗∗

(0.095)

PSS-bounds test
Case-I
(w/o const.) 5.263∗∗∗ 5.395∗∗∗ 4.729∗∗∗ 7.442∗∗∗ 7.442∗∗∗

Case-II
(w const.) 3.969∗∗ 4.411∗∗∗ 4.063∗∗ 6.182∗∗ 6.182∗∗∗

Case-III
(w/o const.) 5.271∗∗ 5.457∗∗∗ 4.779∗∗∗ 7.408∗∗∗ 7.408∗∗∗

Best-fit model UECM(2,1,2) UECM(2,1,1,2) UECM(2,1,1,2,1) UECM(1,1,1,1,1) UECM(1,1,1,1,1)
Num. of observations 292 292 292 292 292
Log-Likelihood 64.647 78.637 82.623 95.690 99.369
AIC -111.294 -135.274 -139.246 -167.380 -172.737
BIC -78.265 -94.905 -91.538 -123.300 -124.984
HQIC -98.061 -119.100 -120.132 -149.721 -153.607
R2 0.325 0.387 0.404 0.454 0.467

***, **, and * represent significance at the 1%, 5%, and 10% level.

Third, the first difference of the first principal component for the realized volatilities
(∆w1,d), i.e., the change in the overall volatility trend, shows a similar influence pattern.
The same-day increase in the variable (∆w1,d) consistently has a significant impact on the
daily increase in the number of investors in all models. In the original variables scale, a 0.01
increase in all realized volatilities causes a 3.0% larger user registration on the same day.

These influence patterns of (the logarithm of) daily average prices and realized volatilities
are consistent with often heard narratives about motivations for engaging in cryptocurrency
investments: cryptocurrency investors are supposedly primarily driven by speculation, so
cryptocurrency price rise and high volatilities will drive more user participation.

However, our regression analysis also shows a more complex picture of the factors
influencing investor behavior. Model 4, which includes the indicator variable that captures
the potential impact of the Chinese government’s statement (ICHN ), suggests that the

AFT 2023



8:16 User Participation in Cryptocurrency Derivative Markets

constant term (c0) is positive and significant at the 5% level. This implies that the daily
registration increases (log N) by 3.4% every day in the original scale, which is given by
multiplying ICHN by the standard deviation of log N (= 0.038×0.899), even if cryptocurrency
prices were stable before the statement was published. However, our analysis shows that
the Chinese government statement poured cold water on investor enthusiasm. Specifically,
the influence of ICHN term swallows the constant term, and the sum of these two terms
(c0 + ICHN ) turns to negative (-0.163), meaning that new registrations will decrease by 14.7%
(= 0.163 × 0.899) every day in the original scale if cryptocurrency prices are stable. This
result evidences the strong impact of a specific regulatory issue on investor behavior that is
not explained by decreasing cryptocurrency prices. Note that the constant term for Model 4
does not have to be zero, although we employ PCA for both the dependent and explanatory
variables. This is because the indicator variable (ICHN ) is not centered.12

Finally, we consider the effect of the SEC litigation against Ripple on user registrations.
The constant term (c0) for Model 5 loses significance at the 5% level, and ISEC holds a
large coefficient of 0.239. So, the constant percentage change in user registrations before
the lawsuit announcement (c0 + ISEC) is 0.198, suggesting a 17.8% daily increase in user
registration in its original scale. However, this increase subsided after the litigation was
announced, once again showing that a regulatory issue impacted user behavior.

PSS bounds test result. Next, we consider the long-run effect of prices in detail. Since
marginal effects

(
∂ ̂log Nd+k

∂VX,d

)
for all explanatory variables converge to zero as time goes on

(see Appendix B), we can consider a stable long-run equilibrium state.
Since we use normalized variables for regression (see Section 5), the constant terms

for Models 1–3 are theoretically zero, consistent with the results in Table 6. Hence, the
appropriate bound test case specification for Models 1–3 is Case-I in Eqn. (2). On the other
hand, Table 6 shows that the constant term for Model 4 is non-zero at the 1% significance
level, indicating that Case-II or Case-III are appropriate. There is no theoretical restriction
to determine the appropriate bound test case specification for Model 5, so we consider
Case I–III.

Fortunately, all PSS bounds test results in Table 6 reject the null hypothesis that there is
no cointegration (i.e., an equilibrium state) between the daily user registration and the price-
related variables at the 5% significance level. This result strongly suggests the existence of a
long-run equilibrium relationship between the inflow of new investors to the cryptocurrency
investment market and cryptocurrency prices.

Figure 5 shows the observed user registration and the estimation from our cointegrations
in Models 3–5. It demonstrates that our cointegration replicates the observed data well.
This result has crucial implications. Since cryptocurrency derivatives are traded on off-chain
exchanges, investor demographics, such as population, are not fully observable. This can
cause considerable information asymmetry between market operators and outsiders, such
as investors and financial regulators. However, our cointegration may be useful as an easy
way to estimate the number of market investors from publicly available price data, thereby
reducing this information discrepancy.

12 A linear regression of a normalized dependent variable with normalized explanatory variables requires
that the constant term be zero, as is the case in Models 1–3. However, the sum of the constant term
and the average value of the indicator variable(s) has to be zero when the un-centered variable(s) is/are
integrated. In Model 4, that sum is 0.038 − 0.201 × 61

292 ≃ −4.0 × 10−3, which satisfies this condition.



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:17

Figure 5 The logarithm of daily user registration increase replicated from our cointegration (solid
lines) in Models 3–5 and its observed value (red dashed line).

6.3.2 Individual cryptocurrency influence
This section considers the influence of each cryptocurrency on daily user registrations. Since a
linear algebraic relation connects the original price-related variables and principal components
(SL = X̂WL), we can derive the coefficients for the daily average prices and realized volatilities
in their original scale from those for principal components.

Table 7 summarizes the short-run and long-run multipliers for the daily average prices
and realized volatilities in Models 3–5 in their original scales.

Table 7 Long-run and short-run multipliers. The value in the parentheses are standard errors for
estimates.

Model 3 Model 4 Model 5

Multipliers Short-run Long-run Short-run Long-run Short-run Long-run

log P̄BT C
1.145∗∗∗

(0.181)
0.668∗∗∗

(0.035)
1.148∗∗∗

(0.176)
0.633∗∗∗

(0.028)
1.307∗∗∗

(0.194)
0.822∗∗∗

(0.082)

log P̄ET H
0.621∗∗∗

(0.085)
0.378∗∗∗

(0.011)
0.605∗∗∗

(0.079)
0.384∗∗∗

(0.008)
0.653∗∗∗

(0.080)
0.452∗∗∗

(0.028)

log P̄XRP
0.034

(0.112)
0.071∗

(0.037)
−0.025
(0.116)

0.151∗∗∗

(0.031)
−0.146
(0.302)

0.045
(0.054)

log P̄DOGE
0.161∗∗

(0.023)
0.103∗∗∗

(0.003)
0.151∗∗∗

(0.020)
0.112∗∗∗

(0.003)
0.151∗∗∗

(0.020)
0.119∗∗∗

(0.004)

σBT C
1.229∗∗∗

(0.441)
0.638

(0.499)
1.175∗∗∗

(0.447)
1.373∗∗∗

(0.358)
1.178∗∗

(0.444)
1.379∗∗∗

(0.360)

σET H
0.806∗∗∗

(0.308)
0.352

(0.349)
0.773∗∗

(0.311)
0.881∗∗∗

(0.248)
0.771∗∗

(0.309)
0.874∗∗∗

(0.251)

σXRP
0.553∗∗∗

(0.129)
1.211∗∗∗

(0.199)
0.504∗∗∗

(0.116)
0.882∗∗∗

(0.113)
0.566∗∗∗

(0.132)
1.043∗∗∗

(0.155)

σDOGE
0.346∗∗

(0.135)
0.971∗∗∗

(0.195)
0.310∗∗

(0.121)
0.613∗∗∗

(0.111)
0.363∗∗∗

(0.136)
0.750∗∗∗

(0.147)

Const. (µ) - 0.007
(0.020) - −0.054∗∗∗

(0.019) - 0.057
(.050)

CECT (−π0) - 0.477∗∗∗

(0.099) - 0.707∗∗∗

(0.104) - 0.712∗∗∗

(0.099)

***, **, and * represent significance at the 1%, 5%, and 10% level, respectively.

6.3.2.1 Short-run multipliers

First, we consider the short-run multipliers ( ∂ log Nd

∂VX,d
), the immediate response of daily

registration (log Nd) to the change in an explanatory variable (VX,d). Table 7 clearly shows
that Bitcoin’s average daily price increase and realized volatility have the largest immediate

AFT 2023



8:18 User Participation in Cryptocurrency Derivative Markets

impact on daily user registrations. This result is consistent with the prevailing belief that
Bitcoin drives cryptocurrency investments. In fact, a 1.0% increase in the daily average
BTC price will cause a 1.1–1.3% increase in user registrations on the same day, and higher
volatility can drive registrations further up.

On the other hand, Ripple (XRP) and Dogecoin (DOGE) show smaller immediate
impacts from daily average prices and realized volatilities. DOGE appreciation shows positive
correlations with user registrations in Models 3–5, but the effect magnitude is roughly
one-tenth that of the BTC price. XRP’s price changes do not seem to have a significant
effect on user registrations.

A potential explanation for these sharp differences across cryptocurrencies lies in their
respective popularity. Price swings in Bitcoin and Ethereum gain a lot more media exposure
than other cryptocurrencies, which explains the much stronger correlation between the price
of these currencies, and the changes in user registrations. On the other hand, although
Dogecoin’s social media popularity skyrocketed in early 2021, we do not observe a strong
direct immediate impact on user registrations; presumably, because this popularity did not
immediately percolate to more mainstream media.

6.3.2.2 Long-run multipliers

Next, we consider the long-run multipliers for each cryptocurrency (limk→∞
∑k

l=0
∂ log Nd+k

∂VX,d+l
),

the cumulative influence of the persistent change in an explanatory variable (VX) on the
daily registration (log N). They show an interesting contrast to short-run multipliers.

First, we can observe, in Model 5, a reduction in the long-run multiplier for XRP’s daily
average price when controlling for the SEC Ripple litigation. In Models 3 and 4, where the
indicator variable ISEC is absent, the long-run multiplier is 0.071 (p-value = 0.053) and
0.151 (p-value ≃ 0.000), indicating the influence is either significant (Model 4), or very close
to being significant at the 5% level (Model 3). However, the long-run multiplier for XRP
is insignificant even at the 10% level in Model 5. This result, combined with insignificant
short-run multipliers, indicates that the XRP price trends lost any importance as a potential
investor decision criterion, after the SEC litigation was publicly announced. That is, potential
investors basically stopped considering XRP prices when thinking about whether they should
join in the derivatives market. Incidentally, this litigation is still proceeding at the time of
writing, and is not expected to be resolved between Q3 2023 at the earliest; whether new
investors are still ignoring XRP prices in their decision-making, or whether the situation has
reverted to what it was before the public announcement of the suit is an interesting open
question. (v2 in Figure 4 hints at a possible return to a state of affairs similar to that before
the SEC litigation.)

Regarding realized volatilities, the long-run multipliers show that XRP and DOGE have
larger values than BTC and ETH in Model 3. However, in Models 4 and 5, BTC shows the
largest impact in both daily average price and realized volatilities, indicating the importance
of BTC price also with respect to long-term effects. This implies that not explicitly including
the effects of regulatory measures (especially the one in May) would result in a large estimate
of the impact of less prominent coins.

6.3.2.3 Cumulative marginal effect

Figure 6 shows the cumulative marginal effect (
∑k

l=0
∂ log Nd+k

∂VX,d+l
) of the daily average prices

and realized volatilities in Models 4 and 5. As we discussed in Section 5, the cumulative
marginal effect can be interpreted in two ways. First, it denotes the cumulative marginal



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:19

effect of the change in an explanatory variable (VX) lasting k days. It also shows the
cumulative effect of the change in an explanatory variable that happens today over the
future k days (because

∑k
l=0

∂ log Nd+k

∂Vd+l
=

∑k
l=0

∂ log Nd+l

∂Vd
). The result for daily average prices

Figure 6 The cumulative marginal effect of the daily average prices and realized volatilities up to
two weeks in Models 4 (top panels) and 5 (bottom panels), The black dashed line shows the sum of
cumulative marginal effects for BTC and ETH.

shows that the effect of price change peaks immediately; the maximum influence comes on
the day the price rises except for XRP (whose prices, as discussed above, do not have a
significant short-term impact), and the cumulative effects plateau soon thereafter. In short,
user registration increases by a lot immediately, and, then, the positive influence gradually
decreases.

The effects of the realized volatility also peak within a few days. However, contrary to
the decreasing trend in daily average prices, the cumulative effects pile up as time goes
on. The cumulative effects in major coins, BTC and ETH, have a relatively slight gradient
since the largest impacts manifest themselves on the same day. This means potential
investors immediately react to a volatile situation. Given the chained volatility increase
(volatility clustering) between BTC and ETH (and others) documented in several pieces
of literature [24, 25] – in short, volatility of major coins foster volatile conditions for less
prominent currencies as well – the sum of the influences of these coins (black dashed line in
Figure 6) seemingly has a measurable market impact. In contrast, the cumulative effects
of XRP and DOGE’s realized volatilities accumulate by a large number on the next day
and the day after that. In short, it takes a longer time for novice crypto investors to digest
a volatile situation for relatively minor coins. This is an unsurprising result: contrary to
high volatility in BTC and ETH prices, which can attract high publicity in both traditional
media and social media, high volatility in less prominent coins, such as XRP and DOGE,
will attract the attention of fewer people, which in turn will make its immediate effect more
muted. For instance, as noted above, Dogecoin became a social media darling in early 2021,
but it took a while for this excitement to propagate to mainstream media, and drive outside
investors into cryptocurrency trading.

AFT 2023



8:20 User Participation in Cryptocurrency Derivative Markets

7 Conclusion

From ranking data on the performance of more than eight million investors in a major
cryptocurrency derivatives exchange, we estimated the evolution of the number of market
participants from October 1, 2020 to July 20, 2021.

We graphically observed that the daily increase in the number of users seemed to exhibit a
strong correlation with major cryptocurrency prices. We formalized this result using the high
descriptive capabilities of the autoregressive distributed lag (ARDL) model with Principal
Component Analysis (PCA), which accounts for the idiosyncrasies of our data – numerous
explanatory variables are not stationary, and are highly correlated.

We empirically analyzed the relationship between the daily user registrations and metrics
related to four major cryptocurrencies, Bitcoin, Ethereum, Ripple, and Dogecoin. First,
we showed evidence of a long-run equilibrium relationship between the daily registration
increase and the prices of the selected cryptocurrencies. The relation is useful for estimating
the number of cryptocurrency investors from publicly available price data.

Second, our analysis shows the significant influence of cryptocurrency prices on investor
behavior. High price increases and volatility, in general, have the largest impact on user
registration on the same day. Among the selected cryptocurrencies, the daily average price
of Bitcoin is the largest contributor; this is unsurprising given Bitcoin’s leading status among
cryptocurrencies. Ethereum prices also significantly impact the daily user registration. In
contrast, our analysis shows that Dogecoin prices have a significant but relatively small
influence on user registration. A striking result of our analysis is that the impact of Ripple
price fluctuations disappears when we control for the SEC litigation against Ripple Labs, Inc.
Also, our regression suggests that this lawsuit, and the Chinese government’s statements
on tightening regulation on cryptocurrency mining and trading have a significant negative
impact on user registration. These results indicate the powerful influence of regulatory
measures on investor behavior.

Our regression analysis also evidences the impact of price volatility. All coins we selected
show significant short-run and long-run effects of volatility on user registrations. This result
is consistent with a common narrative that speculation is the primary reason for investors to
start investing, so high volatility will attract more people to cryptocurrency exchanges.

However, our analysis also paints a more nuanced picture of the impact of volatility.
Volatility effects considerably accumulate over time for relatively minor coins, while they are
much more immediate for major cryptocurrencies. This hints at differences in information
propagation speed: prominent coins are constantly scrutinized and trends are publicized in
real-time, while news updates about less prominent coins initially only reach smaller circles
of enthusiasts, mostly on social media, before eventually percolating to the mainstream.

As a limitation, we did not comprehensively assess regulatory measures taken in jurisdic-
tions besides the USA and China. Investor reactions may differ depending on coin specifics,
regulation relevance, and jurisdictional importance to exchanges and derivatives trading.
However, while limited, our analysis clearly documents examples of the critical influence
regulators can have on investor behavior.

Overall, our analysis paints a far more nuanced picture than the simplistic narrative that
cryptocurrency derivatives are purely fueled by short-term speculation. Our empirical analysis
instead shows potentially complex relationships between prices, volatility, and other factors
such as regulatory issues. We hope this could be a starting point to help better understand
investors (especially individuals) decisions to participate in cryptocurrency derivative markets,
despite the odds being frequently stacked against smaller participants [44].



D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:21

References
1 Hirotogu Akaike. Information Theory and an Extension of the Maximum Likelihood Principle,

pages 199–213. Springer Series in Statistics. Springer, 1998.
2 Carol Alexander, Jaehyuk Choi, Hamish R. A. Massie, and Sungbin Sohn. Price discovery

and microstructure in ether spot and derivative markets. International Review of Financial
Analysis, 71:101506, 2020. doi:10.1016/j.irfa.2020.101506.

3 Carol Alexander, Jaehyuk Choi, Heungju Park, and Sungbin Sohn. Bitmex bitcoin derivatives:
Price discovery, informational efficiency, and hedging effectiveness. Journal of Futures Markets,
40(1):23–43, 2020. doi:10.1002/fut.22050.

4 Donald W. K. Andrews. Laws of large numbers for dependent non-identically distributed
random variables. Econometric Theory, 4(3):458–467, 1988. doi:10.1017/S0266466600013396.

5 Caitlin Ostroff Areddy and James T. Bitcoin, ether prices continue falling after china spurs
regulatory fears. Wall Street Journal, May 2021. URL: https://www.wsj.com/articles/
bitcoin-ether-prices-continue-falling-on-regulatory-fears-11621611655.

6 Dirk G. Baur, KiHoon Hong, and Adrian D. Lee. Bitcoin: Medium of exchange or speculative
assets? Journal of International Financial Markets, Institutions and Money, 54:177–189, 2018.
doi:10.1016/j.intfin.2017.12.004.

7 BRUNO BIAIS, CHRISTOPHE BISIÈRE, MATTHIEU BOUVARD, CATHERINE
CASAMATTA, and ALBERT J. MENKVELD. Equilibrium bitcoin pricing. The Jour-
nal of Finance, 78(2):967–1014, 2023. doi:10.1111/jofi.13206.

8 Nicola Borri. Conditional tail-risk in cryptocurrency markets. Journal of Empirical Finance,
50:1–19, 2019. doi:10.1016/j.jempfin.2018.11.002.

9 George EP Box and David R Cox. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), 26(2):211–243, 1964.

10 Brad Chase and Ethan MacBrough. Analysis of the xrp ledger consensus protocol, 2018.
doi:10.48550/ARXIV.1802.07242.

11 Nicolas Christin. Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In Proceedings of the 22nd international conference on World Wide Web,
WWW ’13, pages 213–224, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2488388.2488408.

12 Pavel Ciaian, Miroslava Rajcaniova, and d’Artis Kancs. The economics of bitcoin price forma-
tion. Applied Economics, 48(19):1799–1815, 2016. doi:10.1080/00036846.2015.1109038.

13 Lin William Cong, Ye Li, and Neng Wang. Tokenomics: Dynamic adoption and valuation.
The Review of Financial Studies, 34(3):1105–1155, 2021. doi:10.1093/rfs/hhaa089.

14 David A. Dickey and Wayne A. Fuller. Likelihood ratio statistics for autoregressive time series
with a unit root. Econometrica, 49(4):1057–1072, 1981. doi:10.2307/1912517.

15 Paul Kiernan Duehren and Andrew. Bitcoin price surges on biden’s crypto executive order.
Wall Street Journal, 2022. URL: https://www.wsj.com/articles/biden-to-order-study-
of-cryptocurrency-risk-creation-of-u-s-digital-currency-11646823600.

16 Financial Stability Board. Assessment of risks to financial stability from crypto-
assets, 2022. URL: https://www.fsb.org/2022/02/assessment-of-risks-to-financial-
stability-from-crypto-assets/.

17 Financial Stability Board. Fsb work programme for 2022, 2022. URL: https://www.fsb.org/
2022/03/fsb-work-programme-for-2022/.

18 Maddala G.S. Introduction to Econometrics, 3rd Edition. John Wiley & Sons, 2007.
19 James Hamilton. Time Series Analysis. Princeton University Press, Princeton, NJ, 1994.
20 Bruce Hansen. Econometrics. Princeton University Press, Princeton, NJ, 2022.
21 Anna Hirtenstein. Binance crypto exchange ordered to cease u.k. activities. Wall Street Journal,

June 2021. URL: https://www.wsj.com/articles/binance-crypto-exchange-ordered-to-
cease-u-k-activities-11624812672.

AFT 2023

https://doi.org/10.1016/j.irfa.2020.101506
https://doi.org/10.1002/fut.22050
https://doi.org/10.1017/S0266466600013396
https://www.wsj.com/articles/bitcoin-ether-prices-continue-falling-on-regulatory-fears-11621611655
https://www.wsj.com/articles/bitcoin-ether-prices-continue-falling-on-regulatory-fears-11621611655
https://doi.org/10.1016/j.intfin.2017.12.004
https://doi.org/10.1111/jofi.13206
https://doi.org/10.1016/j.jempfin.2018.11.002
https://doi.org/10.48550/ARXIV.1802.07242
https://doi.org/10.1145/2488388.2488408
https://doi.org/10.1080/00036846.2015.1109038
https://doi.org/10.1093/rfs/hhaa089
https://doi.org/10.2307/1912517
https://www.wsj.com/articles/biden-to-order-study-of-cryptocurrency-risk-creation-of-u-s-digital-currency-11646823600
https://www.wsj.com/articles/biden-to-order-study-of-cryptocurrency-risk-creation-of-u-s-digital-currency-11646823600
https://www.fsb.org/2022/02/assessment-of-risks-to-financial-stability-from-crypto-assets/
https://www.fsb.org/2022/02/assessment-of-risks-to-financial-stability-from-crypto-assets/
https://www.fsb.org/2022/03/fsb-work-programme-for-2022/
https://www.fsb.org/2022/03/fsb-work-programme-for-2022/
https://www.wsj.com/articles/binance-crypto-exchange-ordered-to-cease-u-k-activities-11624812672
https://www.wsj.com/articles/binance-crypto-exchange-ordered-to-cease-u-k-activities-11624812672


8:22 User Participation in Cryptocurrency Derivative Markets

22 Tara Iyer. Cryptic connections. Technical report, International Monetary Fund,
2022. URL: https://www.imf.org/en/Publications/global-financial-stability-notes/
Issues/2022/01/10/Cryptic-Connections-511776.

23 Ryan James. Xrp continues gains following 40% gain on saturday, April 2021. URL: https:
//beincrypto.com/xrp-continues-gains-following-40-gain-on-saturday/.

24 Paraskevi Katsiampa, Shaen Corbet, and Brian Lucey. High frequency volatility co-movements
in cryptocurrency markets. Journal of International Financial Markets, Institutions and
Money, 62:35–52, September 2019. doi:10.1016/j.intfin.2019.05.003.

25 Paraskevi Katsiampa, Shaen Corbet, and Brian Lucey. Volatility spillover effects in leading
cryptocurrencies: A bekk-mgarch analysis. Finance Research Letters, 29:68–74, June 2019.
doi:10.1016/j.frl.2019.03.009.

26 Daisuke Kawai, Alejandro Cuevas, Bryan Routledge, Kyle Soska, Ariel Zetlin-Jones, and
Nicolas Christin. Is your digital neighbor a reliable investment advisor? In Proceedings of
the ACM Web Conference 2023, WWW ’23, pages 3581–3591, New York, NY, USA, 2023.
Association for Computing Machinery. doi:10.1145/3543507.3583502.

27 Ladislav Kristoufek. Bitcoin meets google trends and wikipedia: Quantifying the relationship
between phenomena of the internet era. Scientific Reports, 3(1):3415, 2013. doi:10.1038/
srep03415.

28 Yukun Liu and Aleh Tsyvinski. Risks and returns of cryptocurrency. The Review of Financial
Studies, 34(6):2689–2727, 2021. doi:10.1093/rfs/hhaa113.

29 James Mackintosh. Behind bitcoin price gyrations: Rational action and wild speculation. Wall
Street Journal, May 2021. URL: https://www.wsj.com/articles/bitcoin-is-the-apogee-
of-rational-speculation-11621524833.

30 D. L. McLeish. Dependent Central Limit Theorems and Invariance Principles. The Annals of
Probability, 2(4):620–628, 1974. doi:10.1214/aop/1176996608.

31 Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M. Voelker, and Stefan Savage. A fistful of bitcoins: Characterizing payments among men
with no names. In Proceedings of the 2013 Conference on Internet Measurement Conference,
IMC ’13, pages 127–140, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2504730.2504747.

32 T. Moore and N. Christin. Beware the middleman: Empirical analysis of Bitcoin-exchange
risk. In Proceedings of IFCA Financial Cryptography’13, Okinawa, Japan, April 2013.

33 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

34 Emiliano Pagnotta and Andrea Buraschi. An Equilibrium Valuation of Bitcoin and De-
centralized Network Assets. SSRN Scholarly Paper, Rochester, NY, 2018. URL: https:
//papers.ssrn.com/abstract=3142022.

35 Emiliano S Pagnotta. Decentralizing money: Bitcoin prices and blockchain security. The
Review of Financial Studies, 35(2):866–907, January 2021. doi:10.1093/rfs/hhaa149.

36 M. Hashem Pesaran, Yongcheol Shin, and Richard J. Smith. Bounds testing approaches to
the analysis of level relationships. Journal of Applied Econometrics, 16(3):289–326, 2001.
doi:10.1002/jae.616.

37 B. Pfaff. Analysis of Integrated and Cointegrated Time Series with R. Springer, New York,
second edition, 2008. ISBN 0-387-27960-1. URL: https://www.pfaffikus.de.

38 Peter C. B. Phillips and Pierre Perron. Testing for a unit root in time series regression.
Biometrika, 75(2):335–346, 1988. doi:10.2307/2336182.

39 Thomas P. Ryan. Modern Regression Methods, chapter 4, pages 146–189. John Wiley & Sons,
Ltd, 2008. doi:10.1002/9780470382806.ch4.

40 Linda Schilling and Harald Uhlig. Some simple bitcoin economics. Journal of Monetary
Economics, 106:16–26, 2019. doi:10.1016/j.jmoneco.2019.07.002.

41 Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978. URL: https://www.jstor.org/stable/2958889.

https://www.imf.org/en/Publications/global-financial-stability-notes/Issues/2022/01/10/Cryptic-Connections-511776
https://www.imf.org/en/Publications/global-financial-stability-notes/Issues/2022/01/10/Cryptic-Connections-511776
https://beincrypto.com/xrp-continues-gains-following-40-gain-on-saturday/
https://beincrypto.com/xrp-continues-gains-following-40-gain-on-saturday/
https://doi.org/10.1016/j.intfin.2019.05.003
https://doi.org/10.1016/j.frl.2019.03.009
https://doi.org/10.1145/3543507.3583502
https://doi.org/10.1038/srep03415
https://doi.org/10.1038/srep03415
https://doi.org/10.1093/rfs/hhaa113
https://www.wsj.com/articles/bitcoin-is-the-apogee-of-rational-speculation-11621524833
https://www.wsj.com/articles/bitcoin-is-the-apogee-of-rational-speculation-11621524833
https://doi.org/10.1214/aop/1176996608
https://doi.org/10.1145/2504730.2504747
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://papers.ssrn.com/abstract=3142022
https://papers.ssrn.com/abstract=3142022
https://doi.org/10.1093/rfs/hhaa149
https://doi.org/10.1002/jae.616
https://www.pfaffikus.de
https://doi.org/10.2307/2336182
https://doi.org/10.1002/9780470382806.ch4
https://doi.org/10.1016/j.jmoneco.2019.07.002
https://www.jstor.org/stable/2958889


D. Kawai, B. Routledge, K. Soska, A. Zetlin-Jones, and N. Christin 8:23

42 Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with
python. In 9th Python in Science Conference, 2010.

43 Michael Sockin and Wei Xiong. A model of cryptocurrencies. Working Paper 26816, National
Bureau of Economic Research, 2020. doi:10.3386/w26816.

44 K. Soska, J.-D. Dong, A. Khodaverdian, A. Zetlin-Jones, B. Routledge, and N. Christin.
Towards understanding cryptocurrency derivatives: A case study of BitMEX. In Proceedings
of the 30th Web Conference (WWW’21), 2021.

45 Andrew Urquhart. What causes the attention of bitcoin? Economics Letters, 166:40–44, 2018.
doi:10.1016/j.econlet.2018.02.017.

46 U.S. Commodity and Futures Trading Commission. Cftc charges binance and its founder,
changpeng zhao, with willful evasion of federal law and operating an illegal digital asset
derivatives exchange | cftc, March 2023. URL: From:https://www.cftc.gov/PressRoom/
PressReleases/8680-23.

47 U.S. Commodity Futures Trading Commission. Cftc charges sam bankman-fried, ftx trading
and alameda with fraud and material misrepresentations, August 2022. URL: https://www.
cftc.gov/PressRoom/PressReleases/8638-22.

48 U.S. Commodity Futures Trading Commission. Federal court orders bitmex to pay $100
million for illegally operating a cryptocurrency trading platform and anti-money laundering
violations, August 2022. URL: https://www.cftc.gov/PressRoom/PressReleases/8412-21.

49 U.S. Securities and Exchange Commission. Remarks before the aspen security forum,
2021. URL: https://www.sec.gov/news/public-statement/gensler-aspen-security-
forum-2021-08-03.

50 U.S. Securities and Exchange Commission. Sec charges ripple and two executives with
conducting $1.3 billion unregistered securities offering, 2021. URL: https://www.sec.gov/
news/press-release/2020-338.

51 U.S. Securities and Exchange Commission. Sec files 13 charges against binance entities
and founder changpeng zhao, June 2023. URL: https://www.sec.gov/news/press-release/
2023-101.

52 William W.S. Wei. Time Series Analysis. Oxford University Press, 2013. doi:10.1093/
oxfordhb/9780199934898.013.0022.

AFT 2023

https://doi.org/10.3386/w26816
https://doi.org/10.1016/j.econlet.2018.02.017
From: https://www.cftc.gov/PressRoom/PressReleases/8680-23
From: https://www.cftc.gov/PressRoom/PressReleases/8680-23
https://www.cftc.gov/PressRoom/PressReleases/8638-22
https://www.cftc.gov/PressRoom/PressReleases/8638-22
https://www.cftc.gov/PressRoom/PressReleases/8412-21
https://www.sec.gov/news/public-statement/gensler-aspen-security-forum-2021-08-03
https://www.sec.gov/news/public-statement/gensler-aspen-security-forum-2021-08-03
https://www.sec.gov/news/press-release/2020-338
https://www.sec.gov/news/press-release/2020-338
https://www.sec.gov/news/press-release/2023-101
https://www.sec.gov/news/press-release/2023-101
https://doi.org/10.1093/oxfordhb/9780199934898.013.0022
https://doi.org/10.1093/oxfordhb/9780199934898.013.0022


8:24 User Participation in Cryptocurrency Derivative Markets

A Cryptocurrency prices

This section shows the daily average prices and realized volatilities of the cryptocurrencies
we consider: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), and Dogecoin(DOGE).

Figure 7 The daily average prices (upper panels) and realized volatilities (lower panels).

B Convergence of marginal effects

This section considers the convergence of marginal effects
(

limk→∞
∂ ̂log Nd+k

∂VX,d
= 0

)
.

We can derive the difference equation for a marginal effect from Eqn. (1) and substitute
the coefficients with the estimates in Models 1–5 summarized in Table 6. For example, the
equation for the first principal component of daily average prices (v1,d) in Model 5 is:

∂ ̂log Nd+k

∂v1,d
= (1 + π0)∂ ̂log Nd+k−1

∂v1,d
= (1 − 0.712)∂ ̂log Nd+k−1

∂v1,d
(k ≥ 2) . (5)

It clearly shows that the marginal effect converges to zero as k → ∞. We can similarly
consider the convergence of every marginal effect and confirm that all marginal effects
converge to zero in the limit k → ∞. This means we can consider long-run multipliers for all
explanatory variables.



DeFi Lending During The Merge
Lioba Heimbach #

ETH Zürich, Switzerland

Eric Schertenleib #

ETH Zürich, Switzerland

Roger Wattenhofer #

ETH Zürich, Switzerland

Abstract
Lending protocols in decentralized finance enable the permissionless exchange of capital from lenders
to borrowers without relying on a trusted third party for clearing or market-making. Interest rates
are set by the supply and demand of capital according to a pre-defined function. In the lead-up to
The Merge: Ethereum blockchain’s transition from proof-of-work (PoW) to proof-of-stake (PoS),
a fraction of the Ethereum ecosystem announced plans of continuing with a PoW-chain. Owners
of ETH – whether their ETH was borrowed or not – would hold the native tokens on each chain.
This development alarmed lending protocols. They feared spiking ETH borrowing rates would lead
to mass liquidations which could undermine their viability. Thus, the decentralized autonomous
organization running the protocols saw no alternative to intervention – restricting users’ ability to
borrow.

We investigate the effects of the merge and the aforementioned intervention on the two biggest
lending protocols on Ethereum: AAVE and Compound. Our analysis finds that borrowing rates
were extremely volatile, jumping by two orders of magnitude, and borrowing at times reached 100%
of the available funds. Despite this, no spike in mass liquidations or irretrievable loans materialized.
Further, we are the first to quantify and analyze hard-fork-arbitrage, profiting from holding debt
in the native blockchain token during a hard fork. We find that arbitrageurs transferred tokens
to centralized exchanges which at the time were worth more than 13 Mio US$, money that was
effectively extracted from the platforms’ lenders.

2012 ACM Subject Classification General and reference → Measurement; General and reference →
Empirical studies; Applied computing → Economics

Keywords and phrases blockchain, Ethereum, lending protocol, hard fork

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.9

1 Introduction

Participants in financial markets borrow or lend for a plethora of reasons: raising capital
for investments such as buying a house, saving for retirement, or short-selling securities.
Particularly consequential for the stability of the financial market is leveraged trading.
Thereby, a trader takes on leverage by borrowing from a counterparty, typically a broker or
bank, to buy financial securities. The lender must approve the borrowing and puts certain
restrictions in place to safeguard their funds (margin requirements). Given the counterparty
risks, i.e., the risk that the other party defaults on their contractual obligation, regulators
closely monitor these activities and enforce certain restrictions to reduce the likelihood of
major financial upheaval.

Decentralized Finance (DeFi) promises to offer financial services to users without requiring
prior clearance or a known and trustworthy counterparty. Instead, DeFi is built using smart
contracts, i.e., executable code on the blockchain. Lending protocols have a central role
in the DeFi protocol space. They allow anyone to become a lender by depositing their

© Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 9; pp. 9:1–9:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hlioba@ethz.ch
https://orcid.org/0000-0002-8258-1712
mailto:ericsch@ethz.ch
https://orcid.org/0000-0002-0927-8178
mailto:wattenhofer@ethz.ch
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.4230/LIPIcs.AFT.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 DeFi Lending During The Merge

funds in the protocol. Further, anyone can borrow funds as long as their deposited assets
exceed their borrowed funds in value by a pre-defined margin (over-collateralization). The
restriction to over-collateralize loans on lending protocols is their key to unlocking trustless
loans. Additionally, the over-collateralization margin aims to ensure that there is enough
time for a position at risk of becoming under-collateralized to become liquidated in time for
the debt to be recovered.

Thus, it is crucial for lending protocols to correctly assess the risks of the crypto assets
they allow as collateral in the market and to set the margin accordingly. Lending protocols
strive to find the right balance between (i) offering competitive rates to borrowers and (ii)
low risks for lenders. As the risks associated with the various collateral assets are likely
to change over time, lending protocols can adjust various risk-related parameters, such as
the over-collateralization margin. These changes are generally discussed and decided by the
decentralized autonomous organization (DAO) that governs the protocol.

The Ethereum blockchain is the birthplace of DeFi and the home of the leading lending
protocols in terms of total value locked [27]. Initially, the consensus mechanism of the
Ethereum blockchain relied on the energy-intensive proof-of-work (PoW). Ethereum had
planned for years to switch to the more energy-efficient proof-of-stake (PoS). The Merge,
which was executed in September 2022, marked the end of PoW and the start of PoS.
However, in the lead-up to the merge, there was opposition from parts of the Ethereum
mining community whose business model relied on PoW. They pushed for a hard fork that
would retain a PoW blockchain. Thus, even though the vast majority of the Ethereum
community announced that they would switch to PoS, it was unclear how the value of ETH
would be distributed between the two blockchains.

The approaching merge and possibility of a hard fork, as well as the resulting distribution
of value between the two blockchains posed a challenge to lending protocols. Anyone who
held ETH on the blockchain in the last block before the merge would then own the same
number of tokens on both the PoS chain and the PoW chain after the merge. Thus, given
that future markets indicated that the PoW token (ETHW) would retain a value of a few
percentage points of its PoS counterpart, some users borrowed ETH ahead of the merge in
order to receive both tokens after the merge. We will refer to this as hard-fork-arbitrage, a
form of event-driven arbitrage.

Thus, protocols expected the demand for ETH borrowing to increase drastically and,
as a result, expected both ETH borrowing rates and the utilization, the ratio between the
ETH loans and ETH liquidity, of the ETH market to skyrocket. Furthermore, given the
intertwined nature of DeFi protocols and the central position lending protocols occupy
therein, the stability of these platforms is essential.

In response, the DAOs governing AAVE and Compound, the two largest lending protocols
on the Ethereum blockchain, decided to intervene. While AAVE paused ETH borrowing
entirely ahead of the merge, Compound adjusted the risk parameters that determine the
borrowing rate and capped ETH borrowing. This intervention, however, led to market
distortions that adversely affected lenders, who were effectively on the losing side of the
hard-fork-arbitrage. Furthermore, the lending market dried up as protocols ceased to have
any available liquidity.

Our Contributions
We analyze lending protocols during a critical time period. The execution of the merge on
the Ethereum blockchain tested the resiliency of lending protocols toward significant external
events. Thus, it provides a crucial case study of challenges faced by DeFi protocols under



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:3

extraordinary circumstances. We analyze the effects of the merge on lending protocols as well
as their attempts to mitigate borrowing rate spikes. They feared that such rate spikes would
cause both mass liquidations, i.e., enforced repayment of the debt, and the accumulation of
bad debt, i.e., debt that is not over-collateralized, leading to losses for lenders and potentially
harming their own viability. Our analysis focuses on AAVE and Compound, the biggest
DeFi lending protocols. Together AAVE and Compound account for more than 85% of the
volume locked on lending protocols on the Ethereum blockchain, the home of most DeFi
applications [27].

We find that the changes the protocols implemented, capping borrowing, may have helped
prevent mass liquidations and the accumulation of bad debt but were only partially
successful in keeping rates at normal levels.
We show that the protocols failed to adequately compensate their lenders, thus placing
them at the losing end. The beneficiaries were arbitrageurs, including the now infamous
Alameda research, who extracted in excess of 300,535 ETHW tokens in what we term
hard-fork-arbitrage. To the best of our knowledge, we are the first to study and quantify
hard-fork-arbitrage.
Finally, we find that the widespread use of ETH staked through LIDO as collateral posed
a grave danger to the entire Ethereum blockchain as staking power could have been
gobbled up at a significant discount.

2 Related Work

DeFi lending emerged in 2017 and first became popularized during the 2020 DeFi summer.
Bartoletti et al. [3] provide a systematization of existing knowledge regarding DeFi lending
protocols. Further, they offer a formal framework to model the interactions between users in
lending pools. In the first empirical study of lending protocols, Gudgeon et al. [22] study
different interest rate rules across DeFi lending protocols. Their work analyzes the historical
responses of the markets to their liquidity depths. We, on the other hand, investigate the
response of lending protocols to the merge and illustrate their reliance on intervention.

A recent line of work studies the risks stemming from the increasing complexity of DeFi
protocol compositions. Tolmach et al. [41] provide a formal analysis of DeFi composability
and propose a technique for efficient property verification. A measurement study by Kitzler et
al. [23] empirically analyzes and visualizes DeFi compositions – demonstrating the intertwined
nature of DeFi protocols. Wachter et al. [46] measure growing asset composability as a proxy
for the interoperability of the DeFi applications. This interoperability poses a systemic risk
to the DeFi ecosystem, given its resulting convolution.

The central position of lending in DeFi and the aforementioned intertwined nature of
DeFi can lead to increased sensitivity to shocks in the ecosystem. Chiu et al. [5] outline that
DeFi lending protocols make cryptocurrency prices more sensitive to fundamental shocks.
Their work finds that intervention to provide risk management in DeFi lending protocols may
improve efficiency and stability while compromising decentralization. In our work, we analyze
how actions and interventions taken by DAOs panned out and affected market participants.

DeFi lending is generally used to facilitate crypto asset price speculation as opposed to
real economy lending, as highlighted in a recent bulletin by Aramonte et al. [2]. As the
authors and others [48, 9] point out, the borrowed funds from lending can be reused as
collateral to take out additional loans leading to increased leverage. Such leverage spirals,
which are in part made possible by DeFi composability, exasperate the vulnerability of
lending protocols towards external events. In contrast to these works, we study the response
to and resilience of lending protocols toward external events of lending protocols.

AFT 2023



9:4 DeFi Lending During The Merge

An active line of research documents and measures multiple attacks and arbitrage
opportunities exploiting the design of lending protocols [11, 37, 50]. A particular focus is
placed on liquidations. While Perez et al. [33] study the efficiency of liquidations, Qin et al. [36]
study optimal liquidation strategies. Our work studies and quantifies a novel and previously
unstudied form of arbitrage on lending protocols, which we term hard-fork-arbitrage.

3 Background

In the following, we discuss the specifics regarding the merge on the Ethereum blockchain
(cf. Section 3.1), the PoW hard fork (cf. Section 3.2), as well as the mechanisms of lending
protocols (cf. Section 3.3) and DAOs (cf. Section 3.4).

3.1 The Merge
On 15 September 2022, the merge [13] was executed on the Ethereum mainnet. The merge
marked the end of energy-intensive PoW and the start of energy-efficient PoS for the Ethereum
blockchain.

PoW, originally proposed by Nakamoto [32], is the most established consensus for
blockchains. Miners must solve a computationally intensive puzzle, and the winner of the
puzzle updates the blockchain by appending the newest block. Due to the energy-intensive
nature of PoW, there have long been calls to reduce the energy consumption of blockchains.

The most established blockchain consensus alternative to PoW is the energy-efficient PoS,
which was adopted by Ethereum during the merge. Stakers, the miner counterpart for PoS
blockchains, offer their funds as collateral for the chance to be selected as a block’s validator.
For every block, a staker is selected as the block’s validator. The chance of being selected as
a validator in each round is proportional to their locked-up funds.

3.2 EthereumPoW
Unsurprisingly, there was uproar from the Ethereum mining community before the merge.
The transition rid the miners of their revenue stream and thereby forced them to scrap
their hardware or move to other PoW chains. Thus, there were multiple efforts to fork the
Ethereum blockchain and create a spinoff, PoW version [16, 14]. Chandler Guo, a prominent
cryptocurrency miner, led the most notable effort to the Ethereum blockchain. The resulting
chain is known as EthereumPoW (ETHW) [16].

Thus, ahead of the merge, a chain split into ETH and ETHW was anticipated. Anyone
holding ETH on the original chain right before the merge would automatically receive an
equal amount of ETHW tokens after the fork. Speculations surrounding the upcoming chain
split led to a trading start of ETHW ahead of the merge. ETHW started trading on 9 August
2022 around 97 US$ and was trading around 45 US$ during the merge.

There have been more than twelve Ethereum hard-forks in the past [40], the most
prominent blockchain that resulted from earlier forks being Ethereum Classic (ETC) [12].
This specific fork was anticipated to be particularly challenging for EthereumPoW. Both the
rise of DeFi and the prevalence of asset-backed tokens1 on the Ethereum chain complicated
matters. For example, the organizations behind USDT and USDC, the biggest stablecoins

1 Asset-backed tokens are tokens that derive their value from underlying assets that are not necessarily
on the same blockchain. E.g., the stablecoin USDC is a token emitted by an organization that promises
that for each USDC they hold one US$.



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:5

in terms of market capitalization [6], announced that they would support the transition
to PoS [39, 38]. As they are both asset-backed, users would hold equal amounts of their
USDC/USDT tokens on both chains right after the merge, but the tokens on the ETHW
chain would be worthless as they are no longer backed. Note that not only stablecoins but,
in fact, the vast majority of ERC20 tokens are asset-backed and were therefore expected to
become worthless on the ETHW chain.

3.3 Lending Protocols

Lending protocols are among the most successful DeFi applications. They facilitate trustless
and decentralized cryptocurrency loans. In traditional finance, one generally receives loans
from financial institutions such as banks. As security, banks require collateral for the loan,
for example, the house in the case of a mortgage. Additionally, the conditions of the loan are
negotiated and vary across loans. DeFi, on the other hand, automates lending by relying
on smart contracts. Lending protocols allow anyone to become a lender. By locking their
cryptocurrency assets in the protocol’s smart contract users become liquidity providers. In
exchange for providing capital, they earn interest on their assets. Thus, liquidity providers
are the lynchpin of lending protocols as they provide the capital.

Interest payments are made by borrowers who take out loans against their locked crypto-
currency collateral. More specifically, borrowers can take out loans without prior clearance
by depositing collateral, as long as the collateral is greater in value, i.e., the loans are
over-collateralized. Over-collateralization, thus, is the key behind the trustless nature of
lending protocols, as it protects lenders against downside price movements of the borrowers’
collateral. Once a loan is no longer sufficiently over-collateralized the borrower is incentivized
to adjust the position. Generally, loans are insufficiently collateralized if the value of the
collateral does not exceed the debt value by more than 20%. This margin does vary depending
on the protocol’s risk assessment of the collateral. In case the borrower does not react, the
position will likely be closed by liquidators at a cost for the borrower.

Note that loans on lending protocols are generally for an indefinite time, as interest
payments are made periodically. Additionally, the interest payments are generally variable
and typically dependent on the asset borrowed as well as the utilization. The utilization
at time t of an asset is given as Ut = Lt/Dt, where Lt denotes the total outstanding loans
and Dt denotes the deposits. We will go through the specifics for AAVE and Compound in
the following. AAVE V2 and Compound V2 were the largest and newest markets for ETH2

borrowing around the time of the merge. Together they currently account for more than
85% of the volume locked in lending protocols [27].

Borrowers on AAVE can choose between stable interest payments and variable interest
rate payments. Both are charged periodically, at every time step, and depend on the asset’s
utilization. Note that the interest rate is charged periodically by simply adjusting the balance
of the debt tokens held by the borrowers (debt is compounded). The interest rate a borrower
is charged at time t is given as follows

2 Users technically borrow wrapped ETH (WETH), an ERC20 compatible version of ETH, on the two
protocols. As WETH is simply a wrapped version of ETH that has virtually the same value as ETH,
we refer to WETH as ETH throughout.

AFT 2023



9:6 DeFi Lending During The Merge

rt =


r0 + Ut

Uoptimal
rslope1 if Ut ≤ Uoptimal,

r0 + rslope1 + Ut − Uoptimal

1 − Uoptimal
rslope2 if Ut > Uoptimal,

where Ut is the current utilization of the asset, and r0, rslope1 , rslope2 , Uoptimal are configuration
parameters. Uoptimal is the target utilization of the protocol, once the utilization rises beyond
Uoptimal borrowing rates rise sharply. Note that both the stable and variable interest rates
are computed as indicated above, but the configuration parameters for the same asset differ.
The configuration parameters for ETH were set as indicated in Table 1a during the merge.
Further, we draw both the stable and variable interest rates as a function of the utilization
in Appendix C (cf. Figure 15). Once the utilization surpasses Uoptimal, the interest rises at a
significantly higher rate, i.e., there is a kink in the interest rate curve at Uoptimal. A loan
that is taken out with a variable interest rate is charged periodically according to the current
variable interest rate. On the other hand, a loan that is taken out with a stable interest rate
at time t, rs

t , continues to be charged this rate. Note that the stable rate is not guaranteed
to remain stable for an indefinite time period. Instead, it can be adjusted if the loan’s stable
rate is lower than the current supply rate received by lenders [20].

Table 1 Parameters for ETH on AAVE V2 and Compound ahead of the merge. Note that the
Compound parameters were adjusted on 10 September 2022 (cf. Section 5.1).

(a) AAVE.

Uoptimal r0 rslope1 rslope2 R

stable rate 70% 3% 4% 100% 10%
variable rate 70% 0% 3% 100% 10%

(b) Compound V2.

r0 rslope1 R

variable rate 2% 10% 20%

Lenders, on the other hand, deposit their assets and in return receive continuous interest
rate payments. Precisely, the supply rate, that is the rate they receive, at time t is given as

st = Ut(Ds
t r̃s

t + Dv
t rv

t )(1 − R),

where Ds
t is the share of stable loans, rs

t is the average stable interest rate, Dv
t is the share

of variable loans, and rv
t the variable interest rate. Further, R is the reserve factor, which

signifies the minimum proportion of borrow rate payments that flow into the protocol’s
treasury. Thus, the supply rate is always lower than the borrowing rate, especially when
utilization is low. The difference between the two rates is the revenue source of the protocol.
We note that lenders can withdraw their assets at all times, as long as the utilization allows
for it, i.e., there are sufficient funds that are currently not being borrowed.

As opposed to AAVE, Compound only offers variable interest rate loans. Furthermore,
while AAVE indicates annualized rates and then charges for the time the money was borrowed,
Compound charges a per-block rate. However, the Compound smart contract is configured
with yearly rates and assumes 2,102,400 blocks per year [8]. Throughout this work, whenever
we display annualized rates for Compound, for better comparability with AAVE, we will
assume 6,245 blocks per day (2,279,425 blocks per year), the average number of daily blocks
ahead of the merge.

For ETH, the interest rate at time t is given as follows

rt = r0 + Ut · rslope,



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:7

where Ut is again the utilization, and r0, rslope are configuration parameters3. We provide the
parameters ahead of the merge in Table 1b. Notice that while the interest rate on Compound
is higher than on AAVE for low utilization, it is significantly lower for high utilization.
Similarly to AAVE, lenders on Compound deposit their assets and receive interest payments
continuously. The supply rate is given as

st = rt · Ut(1 − R),

where rt is the borrowing interest rate and the R is again a reserve factor.
On both AAVE and Compound, loans that are close to no longer being sufficiently

over-collateralized become available for liquidation. To be precise, if the health factor of a
position drops below 1, a position can be liquidated. A position’s health factor is given as

H =

∑
i∈A

(Ci · li)∑
i∈A

Di
,

where A is the set of available assets on the platform. Ci is the position’s collateral in asset
i and Di is the position’s debt in asset i. Finally, li is the liquidation threshold for asset
i, which is a configuration parameter. A position with a liquidation threshold of 75% is
considered under-collateralized if the value of the debt rises above 75% in comparison to the
collateral. Once a position becomes available for liquidation, its collateral is auctioned off at
a discount if the liquidator repays the debt in return.

3.4 DAO

Many DeFi protocols, including AAVE and Compound, are governed by a DAO. A DAO is
generally composed of the protocol’s token holders, who come together to make decisions
regarding the protocol according to specified rules that are enforced by the smart contract.
Generally, DAOs can make changes to the protocol itself and make decisions regarding the
protocol’s funds.

The AAVE DAO is composed of AAVE (AAVE’s native token) holders, while the
Compound DAO is composed of COMP (Compound’s native token) holders. Both DAOs
have the power to change the lending protocol’s risk parameters in order to be able to respond
to changing risks regarding the market’s assets. The community generally first discusses
proposed changes and then decides by voting. Depending on the outcome of the vote, the
changes will automatically be adopted by the protocol’s smart contracts.

Finally, despite their name, DAOs are only as decentralized as the distribution of
governance tokens among the actively participating users. However, an analysis of the
voting power of various DAOs has shown that the voting power is generally, in effect, very
concentrated [21].

3 Note that ahead of the merge, ETH adopted Compound’s standard interest rate model, i.e., the interest
rate increases linearly with the utilization and does not exhibit a change in slope. This, however, was
adapted in anticipation of the merge (cf. Section 5).

AFT 2023



9:8 DeFi Lending During The Merge

4 Data

We concentrate the data analysis between 9 August, the day the price for ETHW became
available, and 15 October 2022, a month after the merge. With this time frame, we can
observe behaviors on lending protocols and their implications. Note that we occasionally
include data for shorter or longer time periods to understand general trends better or to
zoom in on details. In the following, we provide a concise description of our data collection.

4.1 Ethereum
To collect data from the Ethereum blockchain, we run an Erigon [25] Ethereum archive node,
i.e., a node that builds an archive of historical state. In particular, we collect data from
AAVE [1] and Compound [7], the two biggest lending protocols on the Ethereum blockchain
that have an ETH borrowing market. To obtain the relevant data from the lending protocols,
we filter for event logs emitted by the two regarding the relevant underlying assets. We also
query the historical state of the lending markets by calling the implemented functions daily
through the web3.eth API [47].

Further, we follow the ETH debt borrowed on the two protocols to identify whether
the debt was transferred to cryptocurrency exchanges and, thereby, likely sold. We filter
through the transaction traces stored on our Erigon archive node. We utilize the Etherscan
(Ethereum block explorer) Label Word Cloud [24] to obtain wallet labels and later be able
to identify transfers to exchanges.

4.2 EthereumPoW
We run a full geth [17] EthereumPoW node to collect EthereumPoW blockchain data. To the
best of our knowledge, geth is the only node implementation specifically for EthereumPoW.

Further, to follow the ETH debt borrowed on the two protocols after the merge, we
filter through the transactions stored on our EthereumPoW node. Note that geth does not
implement a trace filter. Thus, we filter the transactions and identify ETHW transfers done
through a regular transaction, i.e., a transfer from one account to another. We might miss
additional transfers in transactions that execute a contract but still obtain a lower bound for
the ETHW transferred. We utilize the Etherscan Label Word Cloud [24] and OKLINK [19]
(EthereumPoW block explorer) to obtain wallet labels. Note that the addresses owned by
exchanges before the merge still belong to those exchanges on the EthereumPoW blockchain.

4.3 Price Data
We gather hourly price data for the relevant cryptocurrencies from Yahoo Finance [49] by
interacting with their Python API [51]. We use Yahoo Finance price data instead of the
Chainlink price oracle, as Yahoo Finance tracked the ETHW price. However, when discussing
a position’s health, we will utilize prices from the respective Chainlink price oracle [4].

5 Merge Anticipation

We commence the analysis by considering the ETHW price leading up to and post-merge (cf.
Figure 1). Notice that ETHW’s price measured in terms of US$ (in green) and ETH (in red)
moves very similarly. Thus, we infer that the price movements of ETHW were considerably
more pronounced than those of ETH. We also see that the price of ETHW generally falls
in relation to that of ETH, with one notable exception: right before the merge, ETHW’s



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:9

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0

20

40

60

80

100

E
TH

W
-U

S$
price in US$ price in ETH merge

0.01

0.02

0.03

0.04

0.05

E
TH

W
-E

TH

Figure 1 ETHW price in anticipation of and after the merge. The execution of the merge is
marked by the dashed blue line. Notice the sharp price increase right before the merge and the
dramatic price drop by more than 75% right after the merge. The line plots are quite similar as the
ETH-USD price was significantly less volatile around the merge.

price measured in ETH spiked. Further, we notice that the value of ETHW was around
3% that of ETH at the time the merge was executed. Thus, everyone that held ETH right
before the merge – irrespective of whether the ETH was borrowed or not – received ETHW
tokens worth 3% of their holdings. In particular, one only needed to hold the ETH tokens
in one’s wallet for a single block, the last block prior to the merge, in order to receive an
additional 3% in value. Thus, in anticipation of this event, lending protocols feared that
users would take out ETH loans right before the merge in order to profit from the fork.
Note that liquidity providers, with their ETH locked, did not profit from the hard fork and,
thus, had the incentive to pull out their funds, further driving up utilization. As excessive
borrowing activities can cause major distress to lending protocols, they intervened in order
to disincentive/disallow such behavior.

5.1 Compound

On 16 August 2022, one month before the merge, the Compound community started discussing
the consequences of the merge for their protocol. They devised plans to get ahead of the
anticipated event [30]. The Compound community raised concerns regarding the liquidity
risk for ETH ahead of the merge. In particular, they feared that DeFi users would withdraw
ETH from Compound and/or borrow any available ETH. To address this, it was suggested
to update the risk parameter and cap the amount of ETH that can be borrowed. After two
weeks of discussion, a vote was held by the COMP token holders on 8 September 2022 [31].
The community voted in favor of the changes, and the alterations were executed two days
later, on 10 September 2022. Thus, the process took a total of three weeks.

As part of the change, Compound switched the interest rate model for ETH to what they
call the jump interest rate model. In this model the interest rate at time t contains a kink
and is given by

rt =
{

r0 + Ut · rslope1 if Ut ≤ Uoptimal,

r0 + Ut · rslope1 + (Ut − Uoptimal) · rslope2 if Ut > Uoptimal.

Here, Ut is again the asset’s current utilization, and r0, rslope1 , rslope2 , Uoptimal are configur-
ation parameters (cf. Table 2).

AFT 2023



9:10 DeFi Lending During The Merge

Table 2 Parameters for ETH Compound after the adoption of Proposal 122 [30].

Uoptimal r0 rslope1 rslope2 R

variable rate 80% 2% 20% 4910% 20%

To better understand the effect of the imposed changes and the Compound ETH market
ahead of the merge in general, we plot the evolution of the ETH debt and liquidity in
Figure 2a. Further, we show the borrowing rate and utilization over time in Figure 2b. In
both plots, we can clearly see the effect of the merge on Compound’s ETH lending market.

Notice that, as expected, two effects play out simultaneously ahead of the merge. For
one, we observe an increase in debt, i.e., users appear to borrow ETH in order to be able
to exploit this hard-fork-arbitrage opportunity. By borrowing ETH, they can increase the
amount of ETH in their wallet and thereby increase the amount of ETHW they will receive
once the chains forked. In fact, we looked at all wallets that increased their ETH debt by
more than 1,000 ETH between 9 August 2022 and the merge. There were 18 addresses with a
debt increase exceeding 1,000 ETH in total, and we could directly trace 50% of the borrowed
funds to cryptocurrency exchanges (cf. Table 3).

When checking whether the addresses transferred the borrowed funds to cryptocurrency
exchanges, e.g., Binance, Coinbase, FTX, etc., we monitor ETH(W) transfers from the
wallets after they borrowed ETH from Compound. In particular, we check whether any funds
were transferred to deposit addresses of exchanges. Exchanges typically have users transfer
their assets to deposit addresses, these are created for each user, and then the exchanges
forward these funds to their main addresses [45]. We search for transfers to exchanges by
identifying the transfer of funds from the borrower’s address to a deposit address that is
then transferred to a known address of an exchange, in transaction data and their trace data
on the Ethereum blockchain and EthereumPoW blockchain. We remark that we only filter
for these direct transfers to exchanges and thus might miss some additional transfers, where
the borrowing address first transferred the funds to another address they control. Further,
some of the biggest borrowers ahead of the merge were smart contracts (identified in italics
in Table 3) as opposed to externally owned wallets. It is unlikely that the borrowed funds
are transferred directly from these smart contracts to exchanges, and we were also never
able to identify such a transfer. However, while we might miss some additional transfers to
exchanges, only filtering for direct transfers to exchanges allows us to confidently say that the
funds were indeed transferred to exchanges by the borrowers and lets us avoid over-counting.
Thus, providing us with a lower bound for the total amount transferred to exchanges.

Table 3 notes to which exchange(s) funds were transferred by each borrower. Further, we
indicate whether the borrower transferred the funds to exchanges before (on the Ethereum
blockchain) and/or after (on the EthereumPoW blockchain) the merge. Any transfer to
exchanges before the merge was ETH as opposed to ETHW, but some exchanges announced
ahead of time that they would give the users ETHW for the ETH held with them [42]. We
further indicate in Table 3 whether the funds transferred to exchanges amounted to at least
50% and/or 99% of the debt taken on by the address ahead of the merge. Most addresses,
especially if we disregard the smart contracts where our method does not identify transfers
to exchanges, transferred at least half of their new debt to exchanges. While we cannot
determine the exact purpose of these transactions, it is highly likely that they intended to sell
ETHW. Interestingly, the wallet with the highest debt increase ahead of the merge belonged
to the now infamous Alameda Research: the cryptocurrency trading firm that allegedly



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:11

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0

1

2

3

4

5

6

ET
H

 ×
10

5
variable debt
available liquidity

liquidity
borrowing cap

merge
changes implemented

(a) Amount of ETH variable debt, available liquidity, and liquidity on Compound around the merge. The
available liquidity is the difference between liquidity and debt. Ahead of the merge, indicated in the plot,
Compound imposed a borrowing cap of 100’000 ETH and adjusted the interest rate curve. We indicate
the time of the aforementioned changes and show the imposed borrowing cap. Notice that the borrowing
cap was reached ahead of the merge. Additionally, liquidity drops ahead of the merge.

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ra
te

variable borrow rate utilization merge parameter changes

(b) ETH borrow rate and utilization ahead of the merge. Notice the sharp increase in utilization and
borrow rate ahead of the merge and the subsequent sharp drop. Yet, the borrow rate and utilization did
not reach dramatic levels and stayed below 0.1 and 0.35 respectively.

Figure 2 Compound ETH market around the time of the merge. Figure 2a shows the market’s
debt and liquidity, while Figure 2b the borrowing interest rate and utilization.

traded FTX customer funds and lost them. This led to the bankruptcy of FTX in November
2022 [44]. We also want to highlight that we tracked 49,206 ETH(W) to exchanges from only
the borrowers shown in Table 3 – more than 49% of the ETH debt on Compound (100,000
ETH) ahead of the merge. At the time of the merge, the transferred ETHW was worth more
than 2 Mio US$. Note that while borrowers did have to pay interest, these expenses were far
lower than the value of ETHW, as is shown in Appendix B (cf. Figure 13).

Besides observing an increase in debt, especially by the 18 addresses discussed previously,
we also note a decrease in liquidity (cf. Figure 2a). The reasons behind this decrease are
likely more complex. For one, lenders might fear a rise in utilization in Compound’s ETH
market. When utilization levels are very high, lenders can no longer withdraw their funds
(liquidity risk). Additionally, lenders might also wish to receive ETHW on the forked chain.
However, ahead of the merge, the official ETHW Twitter account recommended for funds be
withdrawn from multiple DeFi pools [15], including Compound’s ETH market, in order to
ensure that they would receive ETHW. There was even talk about freezing DeFi contracts
on the ETHW fork [18]. However, if utilization in Compound’s ETH market was high,

AFT 2023



9:12 DeFi Lending During The Merge

Table 3 We analyze ETH(W) transfers to cryptocurrency exchanges of all addresses (contracts
are in italics) whose net borrowing preceding the merge exceeded 1,000 ETH on Compound. Note
that the volume column indicates the debt increase. For each wallet, we display the exchanges to
which funds were transferred and whether this occurred before or after the merge. Further, we
indicate whether the wallet transferred the equivalent in value, at least 50%, and/or at least 99% of
that debt to exchanges.

wallet address volume [ETH] exchanges before after >50% >99%

0x712d0f306956a6a4b4f9319ad9b9de48c5345996 15,000.00 FTX, OKX, MXC, Bybit ✓ ✓ ✓ ✓

0xa9f00c00ea5fd167da64917267e60f9d9430b321 9,640.00 FTX ✓ ✗ ✓ ✗

0xe40eea78752e969022c3dd18ae68713fd003e1c5 7,771.00
0xb0449ec1a8a60f95322617d6ed52e1ba1a7beb49 7,000.05 FTX ✗ ✓ ✓ ✓

0x8888882f8f843896699869179fb6e4f7e3b58888 6,611.92
0x66b870ddf78c975af5cd8edc6de25eca81791de1 5,499.71 Binance, FTX, OKX, Bybit, MXC ✓ ✓ ✓ ✓

0xee8e0fcc8bff03ec5f100d02cb7b3196d78863a7 4,499.92 FTX, MXC, Binance ✓ ✓ ✓ ✓

0x6a704a0e46dcc67a6316644372e261e8fb6f658c 3,000.00 ✗ ✗ ✗ ✗

0xcfc50541c3deaf725ce738ef87ace2ad778ba0c5 2,498.00 Coinbase ✓ ✗ ✗ ✗

0x9681319f4e60dd165ca2432f30d91bb4dcfdfaa2 2,000.00 FTX, Binance ✓ ✓ ✓ ✓

0x5add1cec842699d7d0eaea77632f92cf3f3ff8cf 1,665.05 MXC ✗ ✓ ✗ ✗

0x42283fa21d5642c1744c2888f041ddea5d79149c 1,650.00 ✗ ✗ ✗ ✗

0xde6b2a06407575b98724818445178c1f5fd53361 1,550.00 OKX ✗ ✓ ✓ ✓

0xb5c4402ff7cbe97785dddc768c4e3a4f033474fb 1,501.00 FTX, MXC ✓ ✓ ✓ ✗

0xf71b335a1d9449c381d867f4172fc1bb3d2bfb7b 1,400.00 FTX ✗ ✓ ✓ ✓

0x6d68c0f44e86587aa443ddb12ed9f10920195ada 1,300.00 OKX, Bybit ✗ ✓ ✓ ✓

0xec97b52fc79f9ec7e951f050c80f65cc087197d3 1,100.00 ✗ ✗ ✗ ✗

0xe7072cdf38d3a6a4b92929abc302325f7b1ca628 1,002.00 ✗ ✗ ✗ ✗

it is unlikely that it would decrease after the hard fork. Borrowers have no incentives to
repay their ETHW debt on the EthereumPoW fork, as their collateral assets there are likely
worthless. Thus, users would never be able to withdraw their ETH from Compound on the
EthereumPoW chain even if they were not frozen. Despite a noticeable decrease in liquidity,
the market’s liquidity remained significantly larger than the protocol’s debt, which reached
the borrowing cap of 100,000 ahead of the merge.

Thus, the intervention by the Compound community ensured that the protocol’s utilization
remained relatively low, i.e., it never exceeded 35% (cf. Figure 2b). As a consequence, the
borrowing rate also remained relatively low. We further note that Compound did not
experience an increase in liquidations of positions ahead of the merge. Figure 3a shows the
total number of monthly liquidations and the share of those liquidations that had ETH
debt covered by the liquidators. We presume that it was the intervention by the Compound
community that helped prevent mass liquidation as the borrowing rate never exceeded 10%.

In addition to averting liquidation, the amount of bad debt on Compound, i.e., positions
whose debt value exceeds the collateral value, did not increase significantly in the lead-up
to the merge (cf. Figure 3a). Bad debt can be detrimental to a lending protocol, as the
respective loans become irretrievable and present a loss for lenders. While generally, positions
become liquidated before the debt value exceeds the collateral, extreme price swings can leave
insufficient time to liquidate the positions. Yet, in this case, the stable amount of bad debt
and the overall small share of bad debt (less than 0.01%) relative to the total debt on the
protocol indicates that the increased rates did not impact the protocol’s health significantly.

At the same time, the actions of the Compound community ensured that those who did
manage to take out loans in time, i.e., before the borrowing cap was reached, could make
significant profits. In Figure 4, we plot the break-even borrowing rate in the lead-up to the
merge along with the actual Compound borrowing rate. The break-even borrowing rate
at time t indicates the annualized rate a user would be willing to pay for borrowing ETH
between time t and the merge, given the relative price between ETHW and ETH at time t.



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:13

Sep 2020 May Sep 2021 May Sep 2022 May Sep

100

101

102

103

m
on

th
ly

 n
um

be
r 

of
 li

qu
id

at
io

ns
ETH liquidations liquidations merge

(a) The monthly number of liquidations on Compound. We show in green the total number of liquidations,
and in red the number of liquidations where liquidators covered the position’s ETH debt.

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

102

103

104

105

106

E
TH

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0

50

100

total bad debt total debt merge

(b) Total debt and bad debt, i.e., debt value exceeds the collateral value, on Compound before and after
the merge. The bad debt is a very small proposition of the total debt – less than 0.01%. The inset shows
a close-up of the bad debt on a linear scale. Notice that the bad debt on Compound does not spike up
ahead of the merge.

Figure 3 Stability of ETH borrowing on Compound. Figure 3a shows the number of liquidations
over time and Figure 3b shows the total and bad debt around the time of the merge. An increase in
liquidations was avoided on Compound.

Note that we take the futures price at time t and not the price ETHW started trading at
post-merge, as a borrower at time t could not know this price but rather had to rely on the
price of future contracts. We compute the break-even borrow rate at time t as follows(

1 + pETHW(t)
pETH(t)

) ∆year
∆merge

− 1,

where pETHW(t) is the price of ETHW in US$, pETH(t) is the price of ETH in US$, ∆year is
the number of seconds in a year, and ∆merge the number of seconds until the merge. Notice
that at all times, the break-even borrow rate exceeded the actual borrow rate by at least
one order of magnitude. Further, the break-even borrow rate was, for the most part, smaller
than the maximum possible borrow rate on Compound. We show the maximum borrow
rate before the imposed changes, BR1

max, in violet and the maximum borrow rate after
the imposed changes, BR2

max, in light blue. Thus, users could infer that with a very high
probability the short-term borrowing costs would be significantly lower than the value of
the ETHW, they would receive once the chains forked. As a result, users were enticed to
take leveraged long positions if they still could, i.e., until the borrowing cap was reached.
Importantly, the opposite was true for lenders. They were insufficiently compensated and
would have been better off withdrawing the funds and directly profiting from the merge.

AFT 2023



9:14 DeFi Lending During The Merge

13 17 21 25 29 Sep 05 09 13
2022-Sep

10 2

10 1

100

101

102

103

ra
te

break-even borrow rate
Compound borrow rate

changes implemented
Compound BR1

max

Compound BR2
max

Figure 4 Break-even borrowing rate, i.e., the annualized interest rate users are willing to pay until
the merge in return for ETHW, compared to Compound’s borrowing rate. We indicate the maximum
borrow rate before, BR1

max, and after the implemented changes, BR2
max. Note that Compound’s

borrowing rate was always at least one order of magnitude smaller than the break-even borrow rate.

5.2 AAVE

The AAVE community started discussing the possible repercussions of the merge on 23
August 2022 [35]. They were also concerned that users would borrow as much ETH as possible
to maximize their ETH holdings in anticipation of the fork. Such activity would increase
utilization, make liquidations harder, and possibly lead to ETH suppliers withdrawing their
ETH from the platform.

An additional challenge for AAVE, as opposed to Compound, was that they allow staked
ETH (stETH) – the token users receive in exchange for staking their ETH with LIDO – as
collateral. LIDO [28] is a protocol that allows you to easily stake your ETH on the PoS
consensus layer – the Beacon chain. Normally, in order to stake ETH on the Beacon chain,
users require 32 ETH, but LIDO is a liquid staking solution that allows its users to stake
any amount. Thus, increasing accessibility to ETH staking. Staking rewards received by the
ETH staked through LIDO on the Beacon chain are distributed to the users on a daily basis.
More precisely, LIDO updates its Beacon chain balance every 24 hours on the Ethereum
mainnet. The stETH balances in the wallets automatically update accordingly. Thus, stETH
is an interest-earning token. stETH can be bought and sold by users.

Importantly, staking on the Beacon chain was activated more than a year ahead of the
merge. Thus, many LIDO users had staked their ETH and received stETH in return ahead of
the merge. Some stETH holders decided to utilize their stETH as collateral to take out ETH
loans on AAVE, proceeded to stake the ETH they borrowed on LIDO, again received stETH,
and continued this process. The staking rewards received by stETH holders historically
exceeded the ETH borrowing rates on AAVE, making the aforementioned strategy profitable.
The AAVE community feared liquidations of these positions as ETH borrowing rates were
anticipated to rise ahead of the merge.

In their attempt to mitigate such scenarios, the AAVE community took a different route
than the Compound community. They decided to pause all ETH lending on the platform
ahead of the merge. A vote regarding the proposal was held between 2 and 6 September
2022 [26]. As the community was in favor of the changes, they were implemented on 7
September 2022 – a good week ahead of the merge. Thus, from 7 September onward, it was
no longer possible to borrow ETH on AAVE.



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:15

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0.0

0.2

0.4

0.6

0.8

1.0

ET
H

 ×
10

6

variable debt
stable debt

available liquidity
liquidity

merge
lending paused

(a) Amount of ETH variable debt, stable debt, available liquidity, and liquidity on AAVE around the merge.
The available liquidity is the difference between liquidity and debt. Ahead of the merge AAVE paused
ETH borrowing. We indicate the time of the aforementioned changes. Notice that the available liquidity
continues to sink even though borrowing was paused as lenders are leaving the market. Furthermore, the
slight increase in debt even after lending was paused is due to the fact that interest is accumulated on
Aave.

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

variable borrow rate
stable borrow rate

utilization
optimal utilization

merge
lending paused

(b) The ETH variable and stable borrow rate, as well as utilization ahead of the merge. Notice the sharp
increase in utilization and borrow rate ahead of the merge and the subsequent sharp drop. The utilization
of AAVE’s ETH market reached 100% ahead of the merge even though lending was paused.

Figure 5 AAVE ETH market around the time of the merge. Figure 5a shows the market’s debt
and liquidity, while Figure 5b the borrowing interest rate and utilization.

As shown in Figure 5a these changes prevented a further increase in borrowing. In particu-
lar, the borrowed stable debt volume (red) increased until 7 September but remained basically
flat from the implementation of these changes to the merge. Post-merge, the borrowed volume
drops dramatically, highlighting that this borrowing activity was predominantly fuelled by
speculators betting on the ETHW windfall. Thus, as plotted in Figure 5b, the implemented
changes failed to keep borrowing rates in check. Liquidity providers enticed to directly hold
ETH to themselves profit from the merge, withdrew their funds from the ETH pool, thus
driving up the utilization rate. Additionally, the general uncertainty surrounding lending
platforms in the weeks leading up to the merge may have spooked some lenders, further
increasing outflows. We note that even with this intervention the utilization reached 100%,
but the time it took to reach this level was likely prolonged. If the utilization had reached
this level earlier, total interest payments would have been higher, thus compensating lenders
more fairly.

AFT 2023



9:16 DeFi Lending During The Merge

Table 4 We analyze ETH(W) transfers to cryptocurrency exchanges of all addresses (contracts
are in italics) whose net borrowing in the lead-up to the merge exceeded 1,000 ETH on AAVE. Note
that the volume column indicates the debt increase. For each wallet we display the exchange(s)
to which funds were transferred and whether this occurred before or after the merge. Further, we
indicate whether the wallet transferred the equivalent in value, at least 50%, and/or at least 99% of
that debt to exchanges.

wallet address volume [ETH] exchanges before after >50% >99%

0xd275e5cb559d6dc236a5f8002a5f0b4c8e610701 49,998.89 Bitfinex ✓ ✗ ✓ ✗

0x54dda22ae140edb605c73073eabb6f4aea2fc237 39,999.57 Binance, FTX ✓ ✗ ✓ ✓

0xcde35b62c27d70b279cf7d0aa1212ffa9e938cef 22,762.39 OKX, FTX ✓ ✓ ✓ ✓

0x236f233dbf78341d25fb0f1bd14cb2ba4b8a777c 17,500.00 ✗ ✗ ✗ ✗

0x68963dc7c28a36fcacb0b39ac2d807b0329b9c69 16,022.93 FTX ✓ ✗ ✓ ✓

0xf6bf776c06a9946a7beba3bacbdaeb44e90684e1 15,000.00 FTX ✓ ✗ ✓ ✗

0x68030330e8158be3fa5b3ec3c94bf07e42824b9b 14,894.68 Binance, Bybit, OKX, FTX ✓ ✓ ✓ ✓

0x5beabefb832db8c0f5a2370b447613c8ebe572eb 8,951.73
0x2bde0f6bfc26389fadccee7c1ca14bbf29c45812 7,520.00 ✗ ✗ ✗ ✗

0x4256886373b79e4e12c12b6796e99cde90f5f236 7,353.31
0x321bf29f2d5dad204b5e25c31cac4348b6f29f96 7,304.10
0x8d8b9c79196f32161bcb2a9728d274b3b45eb9af 7,051.00 ✗ ✗ ✗ ✗

0xe40eea78752e969022c3dd18ae68713fd003e1c5 6,950.00
0x4c1bda12452146184a8085c890e22fb7933aff2f 6,250.00
0x48608b596888e0b9512be7f3f5f2e05d3c3d5180 5,300.00 FTX ✓ ✗ ✓ ✓

0xcc8a1601a32b48cebf45224ca6d786c24414a10b 4,500.00 FTX ✓ ✗ ✗ ✗

0x2a0fe598e69a4fc882f6f7a954662cf0a0819467 4,460.18
0xca00bf9fa7bee6034565bf5d8e7f95fe52182241 4,200.00 ✗ ✗ ✗ ✗

0x1bda63dab1743089af8c0c94ed0b75772a9b9858 4,000.40 Binance ✓ ✗ ✓ ✓

0xadbab4f38ff9dcd71886f43b148bcad4a3081fb9 3,998.62 MXC ✗ ✓ ✗ ✗

0x916792f7734089470de27297903bed8a4630b26d 3,768.00 FTX ✗ ✓ ✓ ✓

0xe8b22a88deb45c7848d394fd039b8d811511a9f3 3,000.00 Binance, OKX, FTX ✓ ✗ ✓ ✓

0x9b1945d5434b2e69eb00e44b9022ad4172922eb5 2,999.00
0x2662d826a86d602c01affd6974432e43009eb14b 2,729.17
0xb1473f4d2e416310e4715cc7bcbe8074aed24a56 2,200.00 Bybit, OKX ✗ ✓ ✓ ✓

0xb5c4402ff7cbe97785dddc768c4e3a4f033474fb 2,180.00 MXC, FTX ✓ ✓ ✓ ✗

0x3da0ca6c78ea283200a0d5b2790aa5de280e43cc 2,000.00 ✗ ✗ ✗ ✗

0x66b870ddf78c975af5cd8edc6de25eca81791de1 1,998.65 Binance, Bybit, FTX, MXC, OKX ✓ ✓ ✓ ✓

0x1778767436111ec0adb10f9ba4f51a329d0e7770 1,711.01 FTX ✓ ✗ ✓ ✓

0xa1175a219dac539f2291377f77afd786d20e5882 1,600.00 ✗ ✗ ✗ ✗

0x474e2cb1aac71f66d0aa7adb0cd92c919f842fe4 1,599.88 Binance, MXC, Bybit, FTX ✓ ✓ ✓ ✓

0x7f960b97b12ef8b6828529e961f6646ad764d90b 1,500.00 MXC ✗ ✓ ✓ ✓

0x307111465e4cedd89fa28b9768981b8768a3cabe 1,400.00
0x09d0ed8d3ebf0b0b5d2a3d7096546d6d7085b8bb 1,364.00 FTX ✗ ✓ ✓ ✓

0x74b8c7680502931c33d9446e26592b8318eb7248 1,110.99
0x3d9663bbd7f238b940ad4244fac58ff54ce870dc 1,100.00 Binance, FTX ✓ ✗ ✓ ✓

0xecfb36305daa4244281d8249783bddf0918db361 1,016.00 Binance, FTX ✓ ✗ ✓ ✓

0x7ce450c2974746e3d21b13cb05d253e6fd56f6bd 1,000.00 OKX ✗ ✓ ✓ ✓

0x05f65845a202aadabce5475b6495f54fb2073b04 1,000.00 Peatio ✓ ✗ ✓ ✗

Similarly, as done for Compound in Section 5.1, we again track the funds borrowed by
the biggest AAVE borrowers ahead of the merge to see whether the funds were transferred
to cryptocurrency exchanges – indicating that the borrowers wanted to sell the ETHW. In
Table 4, we indicate whether and when funds were transferred to exchanges for all 38 ETH
borrowers on AAVE that increased their debt by more than 1,000 ETH ahead of the merge.
We highlight smart contract borrowers in italics and note again that for these we were not
able to track direct transfers to cryptocurrency exchanges. Focusing on the borrowers whose
addresses were externally owned wallets, we find that more than 72% of those transferred
at least 50% of the debt they took on directly to cryptocurrency exchanges, while 58%
transferred at least 99%. Further, we find that these 29 borrowers moved 39% (251,329
ETH(W)) of all funds borrowed on AAVE (643,367 ETH(W)) to cryptocurrency exchanges.
The transferred ETHW amounted to more than 11 Mio US$ at the time of the merge. The



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:17

lenders were essentially deprived of these funds, as they were not fairly compensated for their
service as liquidity providers. As we illustrate in Appendix B in Figure 14, the borrowing
costs were far lower than the value of ETHW.

While the borrowing rates on AAVE increased significantly before the merge, the worst
fears of mass liquidations did not materialize. As shown in Figure 6a, the number of
liquidations occurring on AAVE did not rise significantly in the lead-up to the merge.
Similarly, as plotted in Figure 6b, no significant increase in the proportion of bad debt can
be observed. While the utilization rate did spike, this only persisted for a short time, and
as the maximal borrowing rate is capped at 103% on an annualized basis, the total interest
expense for borrowers was manageable.

In Figure 7, we again plot the break-even rate (yellow). As for Compound, the actual
borrowing rates were significantly lower than the break-even rates, making leveraged long
positions in ETH profitable. Given that ETHW futures traded at about 3%, the maximal
annual borrowing rate of 103% that AAVE allows was orders of magnitude lower than the
break-even rate. Thus, the protocol again inadequately compensated lenders.

2021 Apr Jul Oct 2022 Apr Jul Oct

100

101

102

103

m
on

th
ly

 n
um

be
r 

of
 li

qu
id

at
io

ns

ETH liquidations liquidations merge

(a) The monthly number of liquidations on AAVE. We show in green the total number of liquidations,
and in red the number of liquidations where liquidators covered the position’s ETH debt.

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

103

104

105

106

E
TH

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0

250

total bad debt total debt merge

(b) Total and bad debt, i.e., debt value exceeds collateral value, on AAVE before and after the merge.
The bad debt is a very small proposition of the total debt – less than 0.04%. Notice that the bad debt on
AAVE does not spike up ahead of the merge.

Figure 6 Stability of ETH borrowing on Aave. Figure 6a shows the number of liquidations over
time and Figure 6b shows the total and bad debt around the merge. As with Compound, an increase
in liquidations was avoided.

Figure 8 visualizes the average size of a lending position over time. Observe the clear
drop prior to the merge indicating that primarily larger liquidity providers exited, whereas
the smaller players were more likely to stay put. We presume that the larger and likely

AFT 2023



9:18 DeFi Lending During The Merge

13 17 21 25 29 Sep 05 09 13
2022-Sep

10 2

10 1

100

101

102

103
ra

te
break-even borrow rate AAVE borrow rate lending paused AAVE BRmax

Figure 7 Break-even borrowing rate, i.e., the annualized interest rate users are willing to pay
until the merge in return for ETHW, in comparison to variable borrow rate on AAVE. We further
indicate the protocol’s maximum borrow rate, BRmax. Notice the significant discrepancy between
the AAVE variable borrow rate and the break-even borrow rate.

more sophisticated liquidity providers exited the AAVE with their ETH in time, while the
smaller and likely less sophisticated lender remained stuck in the pool once the utilization
reached 100%. Thus, the smaller lenders bore the brunt of the losses as they missed out on
the hard-fork arbitrage.

15 22 Sep 08 15 22 Oct 08
2022-Oct

45

50

55

60

65

70

E
TH

mean lending position size lending paused merge

Figure 8 Mean size of the lending positions on AAVE as a function of time. Notice the drop
prior to the merge, indicating that primarily large lenders exited, while smaller liquidity providers
were left back.

Unlike Compound, AAVE allows stETH to be used as collateral. The value of stETH
stems from the staking rewards as well as the fact that in the future stETH holders will
be able to swap stETH for ETH. However, unlike current ETH holders, stETH owners did
not receive ETHW after the merge. Therefore, unsurprisingly, stETH was trading at a
discount to ETH in the months before the merge (cf. Figure 9). Observe that this discount
is comparable to the value of ETHW. After the merge, the stETH-ETH price recovered and
was again trading close to parity.

While AAVE does not facilitate stETH borrowing, users can use stETH as collateral
to borrow ETH, which in turn can be used to acquire yet more stETH. AAVE allowed
1 stETH to be used to borrow 0.73 ETH – enabling a popular trading strategy as the
difference between the staking rewards and the ETH borrowing costs was quite significant
(cf. Figure 10). For months the staking rewards were significantly higher, enticing investors



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:19

Apr May Jun Jul Aug Sep Oct
2022

0.92

0.94

0.96

0.98

1.00

1.02

st
E

TH
-E

TH
relative price merge

Figure 9 The stETH price over time. In the lead-up to the merge stETH was trading at a
significant discount but returned to price parity after the merge.

May Jul Sep Nov 2022 Mar May Jul Sep

0.00

0.05

0.10

0.15

0.20

ra
te

interest rate stETH borrow rate AAVE merge

Figure 10 Annualized stETH staking rewards (red) and the ETH borrowing rate (green) on
AAVE. In the months prior to the merge the staking rewards were significantly higher than the
borrowing costs, making it profitable for traders to use leverage to buy stETH.

to take on leverage. However, this reversed in the lead-up to the merge as borrowing rates
spiked. This is significant as we find 20.3% of the stETH market capitalization is deposited
on AAVE (cf. Appendix A). As AAVE does not support stETH borrowing, there is no
reason to deposit other than to take out loans. More than one-fifth of the stETH pledged
as collateral makes mass liquidations a real threat to the stETH price and, thereby, to the
blockchain consensus layer, as staking power can be acquired at a discount.

6 Discussion

Intervention by DAOs. While borrowing costs in the days prior to the merge were high
relative to the rates typically seen on these protocols, they were still far lower than the payoff
an ETH borrower could expect. Thus, rates were too low from the lender’s perspective.
Lenders were neither adequately compensated for forgoing this arbitrage opportunity nor
for the uncertainty that surrounded DeFi in general and lending protocols in particular. A
borrower wishing to borrow for the last block prior to the merge should have paid interest
at least equal to the price of one ETHW token – orders of magnitudes more than the
effective rate. Only such a rate would have compensated a lender for not profiting from
the hard-fork-arbitrage. Furthermore, AAVE liquidity providers were unable to withdraw

AFT 2023



9:20 DeFi Lending During The Merge

their funds as the utilization rate approached 100%, thus depriving them of even having the
option to withdraw. Ultimately, the profits the arbitrageurs made at the expense of liquidity
providers, whom the protocols failed to adequately compensate.

In comparison, the largest centralized crypto exchange, Binance, encouraged users to
repay their ETH and, furthermore, withheld the ETHW that was awarded for borrowed
ETH [43]. Whether this course of action was more equitable is surely debatable. In fact,
Binance suspended withdrawals altogether [43]. However, it avoided the situation of charging
extremely high borrowing rates but still kept a lending market open. This was particularly
beneficial for traders who wanted to borrow ETH for reasons other than speculating on the
ETHW tokens.

This discussion highlights that the merge was an extraordinary situation that led to
interventions on both decentralized and centralized lending platforms. They capped borrowing,
limited rates, or tried to deter speculators by withholding the ETHW tokens. For DeFi
lending protocols, this meant having to give up their “no intervention” mantra. While
these interventions safeguarded the protocols as a whole, they were paid for by the liquidity
providers. This lack of compensation contributed to the DeFi lending market drying up.
Given the continued rapid growth of DeFi and the particular importance these protocols
play in this ever-more intertwined system, the lack of liquidity in such extraordinary market
situations poses a grave threat to the broader Ethereum ecosystem. As shown during the
2008 financial crisis, the drying up of the lending market can greatly exacerbate market
downturns.

Furthermore, we stress that the merge was announced well in advance leaving ample time
for the protocols to come up with and implement their proposals. While our study focuses
on one particular hard-fork, Ethereum has gone through more than a dozen hard-forks
since its genesis [40]. Not all of these were announced far ahead of time. Thus, future
more grave outcomes for lending protocols in the face of hard forks cannot be discounted.
Additionally, we note that external market shocks are rarely as foreseeable as in this case.
Rapid, unexpected developments could deprive DAOs of this course of action and pose greater
threats to the viability and security of the protocol. For instance, the recent accumulation
of bad debt on AAVE left by an attacker that borrowed a large amount of CRV tokens for
short-selling, could not be prevented due to events unfolding much more rapidly [10].

Security concerns beyond lending protocols. We note the potential ramifications of the
highly leveraged stETH positions the borrowing spirals created. The reversal of the difference
between staking rewards and borrowing costs made these leveraged positions in stETH
unprofitable. This posed a grave security threat, as a total of 20.3% of stETH was locked
on AAVE. Liquidations due to rising borrowing costs and/or a falling stETH price would
further devalue the collateral of other leveraged stETH holders, resulting in a downward
spiral. The ramifications thereof would spill over to the wider DeFi ecosystem, as users
could, for example, acquire stETH and its staking power at a significant discount. As LIDO
accounts for more than a fourth of staking power on the Beacon chain [34] and given the size
of these lending protocols, their viability is crucial to DeFi as a whole.

Market inefficiencies. Finally, we add that the ETH lending market on AAVE and Com-
pound is an example of market inefficiencies in the cryptocurrency market. In an efficient
market, i.e., a market where prices reflect all relevant information [29], the hard-fork-arbitrage
we studied in this work should not exist as the combined market value of ETH and ETHW
after the fork should be equal to the market value of ETH before the fork (no arbitrage
condition). Thus, the hard-fork-arbitrage is an empirical example of market inefficiencies
in DeFi.



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:21

7 Conclusions

Given the central role of lending protocols in DeFi and the composability of the latter, the
stability of these protocols is crucial to the entire ecosystem. Therefore, unsurprisingly,
concern grew in the months leading up to the merge that hard-fork-arbitrageurs would
borrow large amounts of ETH, which would drive up rates and potentially lead to mass
liquidation. Both Compound and AAVE saw no alternative to intervention and effectively
capped borrowing.

Our analysis finds that these interventions may have helped prevent widespread liquida-
tions. However, these interventions led to market distortions and were made at the expense
of the protocol’s liquidity providers. On the other hand, large borrowers like Alameda
Research, who speculated on the hard-fork-arbitrage transferred proceeds from the hard-fork
arbitrage worth more than 13 Mio US$ at the time of the merge to centralized exchanges.
These tokens were in effect extracted from the liquidity providers, who were by far not
fairly compensated for either their service or for the risk they bore. Furthermore, as the
utilization rate approached 100%, the lending market ceased to function. Neither could
liquidity providers withdraw nor could new debt be taken on, effectively drying up the DeFi
lending market.

Finally, we find that the increased complexity resulting from the ever-increasing compos-
ability of DeFi poses security concerns not only for DeFi protocols but even for the consensus
layer. For example, over one-fifth of the ETH staked through LIDO was locked on AAVE as
collateral during the merge. Widespread liquidations would have led to a dramatic drop in
the price of stETH, effectively giving a discount to anyone wishing to acquire staking power.

References
1 Aave. https://aave.com/, 2022.
2 Sirio Aramonte, Sebastian Doerr, Wenqian Huang, Andreas Schrimpf, et al. Defi lending:

intermediation without information? Technical report, Bank for International Settlements,
2022.

3 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Sok: Lending pools
in decentralized finance. In International Conference on Financial Cryptography and Data
Security, 2021.

4 Chainlink. Decentralized data feeds. https://data.chain.link/, 2023.
5 Jonathan Chiu, Emre Ozdenoren, Kathy Yuan, and Shengxing Zhang. On the inherent fra-

gility of defi lending. https://www.snb.ch/n/mmr/reference/sem_2022_06_03_chiu/source/
sem_2022_06_03_chiu.n.pdf, 2022.

6 Coinmarketcap: Today’s cryptocurrency prices by market cap. https://coinmarketcap.com/,
2023.

7 Compound. https://compound.finance, 2022.
8 Contract 0x0c3f8df27e1a00b47653fde878d68d35f00714c0. https://etherscan.io/address/

0x0C3F8Df27e1A00b47653fDE878D68D35F00714C0#readContract, 2023.
9 Michael Darlin, Georgios Palaiokrassas, and Leandros Tassiulas. Debt-financed collateral

and stability risks in the defi ecosystem. In 2022 4th Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS), pages 5–12. IEEE, 2022.

10 EigenPhi. How aave’s $1.6 million bad debt was created, 2022. URL: https://medium.com/
@eigenphi/how-aaves-1-6-million-bad-debt-was-created-915898d466cc.

11 Shayan Eskandari, Mehdi Salehi, Wanyun Catherine Gu, and Jeremy Clark. Sok: Oracles
from the ground truth to market manipulation. arXiv preprint arXiv:2106.00667, 2021.

12 Ethereum classic. https://ethereumclassic.org/, 2023.
13 Ethereum Foundation. The merge. https://ethereum.org/en/upgrades/merge/, 2023.

AFT 2023

https://aave.com/
https://data.chain.link/
https://www.snb.ch/n/mmr/reference/sem_2022_06_03_chiu/source/sem_2022_06_03_chiu.n.pdf
https://www.snb.ch/n/mmr/reference/sem_2022_06_03_chiu/source/sem_2022_06_03_chiu.n.pdf
https://coinmarketcap.com/
https://compound.finance
https://etherscan.io/address/0x0C3F8Df27e1A00b47653fDE878D68D35F00714C0#readContract
https://etherscan.io/address/0x0C3F8Df27e1A00b47653fDE878D68D35F00714C0#readContract
https://medium.com/@eigenphi/how-aaves-1-6-million-bad-debt-was-created-915898d466cc
https://medium.com/@eigenphi/how-aaves-1-6-million-bad-debt-was-created-915898d466cc
https://ethereumclassic.org/
https://ethereum.org/en/upgrades/merge/


9:22 DeFi Lending During The Merge

14 Ethereumfair. https://etherfair.org/, 2023.
15 EthereumPoW. Ethereumpow (ethw) official twitter, 2022. URL: https://twitter.com/

EthereumPoW/status/1560044879920607233?s=20&t=Kzk1R9j4BK47WKu32M-3zw.
16 Ethereumpow. https://ethereumpow.org/, 2023.
17 ethereumpow. Ethereumpow (ethw) official. https://github.com/ethereumpow, 2023.
18 Ethpow params, 2022. URL: https://github.com/Paul286/go-ethereum/blob/

7cda05854f4db007f459f0771ab24f9450296a89/params/ethpow_params.go.
19 ETHW Explorer. https://www.oklink.com/en/ethw/, 2023.
20 Emilio Frangella. Aave borrowing rates upgraded. https://medium.com/aave/aave-

borrowing-rates-upgraded-f6c8b27973a7, 2022.
21 Robin Fritsch, Marino Müller, and Roger Wattenhofer. Analyzing voting power in decentralized

governance: Who controls daos? arXiv preprint arXiv:2204.01176, 2022.
22 Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. Defi protocols for

loanable funds: Interest rates, liquidity and market efficiency. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 92–112, 2020.

23 Stefan Kitzler, Friedhelm Victor, Pietro Saggese, and Bernhard Haslhofer. Disentangling
decentralized finance (defi) compositions. arXiv preprint arXiv:2111.11933, 2021.

24 Label Word Cloud. https://etherscan.io/labelcloud, 2023.
25 ledgerwatch. Erigon. https://github.com/ledgerwatch/erigon, 2023.
26 Paul Lei, Jonathan Reem, Nick Cannon, Watson Fu, Tony Salvatore, and Sarah Chen. Pause

eth borrowing. https://app.aave.com/governance/proposal/97/, 2022.
27 Lending tvl rankings. https://defillama.com/protocols/lending/Ethereum, 2023.
28 Lido. https://lido.fi, 2022.
29 Burton G Malkiel. Is the stock market efficient? Science, 243(4896):1313–1318, 1989.
30 monet supply. Proposal: Adjust eth interest rate model. https://www.comp.xyz/t/proposal-

adjust-eth-interest-rate-model/3493/1, 2022.
31 MonetSupply. ceth risk mitigation. https://compound.finance/governance/proposals/122,

2022.
32 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business

Review, page 21260, 2008.
33 Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liquidations: Defi on a

knife-edge. In International Conference on Financial Cryptography and Data Security, pages
457–476. Springer, 2021.

34 Pool distribution, 2023. URL: https://beaconcha.in/pools.
35 Primoz. [arc] aave ethpow fork risk mitigation plan. https://governance.aave.com/t/arc-

aave-ethpow-fork-risk-mitigation-plan/9438, 2022.
36 Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais. An empirical

study of defi liquidations: Incentives, risks, and instabilities. In Proceedings of the 21st ACM
Internet Measurement Conference, pages 336–350, 2021.

37 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? arXiv preprint arXiv:2101.05511, 2021.

38 Joao Reginatto. Usdc and ethereum’s upcoming merge. https://www.circle.com/blog/usdc-
and-ethereums-upcoming-merge, 2022.

39 Tether. Usdt supports eth proof-of-stake transition. https://tether.to/en/usdt-supports-
eth-proof-of-stake-transition/, 2022.

40 The history of ethereum. https://ethereum.org/en/history/, 2023.
41 Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. Formal analysis of composable defi

protocols. In International Conference on Financial Cryptography and Data Security, pages
149–161. Springer, 2021.

42 Updates regarding the upcoming ethereum merge (2022-09-13). https://www.binance.com/
en/support/announcement/notice-regarding-the-upcoming-ethereum-merge-2022-08-
25-205de0801a4741c98270fdea6cb06697, 2022.

https://etherfair.org/
https://twitter.com/EthereumPoW/status/1560044879920607233?s=20&t=Kzk1R9j4BK47WKu32M-3zw
https://twitter.com/EthereumPoW/status/1560044879920607233?s=20&t=Kzk1R9j4BK47WKu32M-3zw
https://ethereumpow.org/
https://github.com/ethereumpow
https://github.com/Paul286/go-ethereum/blob/7cda05854f4db007f459f0771ab24f9450296a89/params/ethpow_params.go
https://github.com/Paul286/go-ethereum/blob/7cda05854f4db007f459f0771ab24f9450296a89/params/ethpow_params.go
https://www.oklink.com/en/ethw/
https://medium.com/aave/aave-borrowing-rates-upgraded-f6c8b27973a7
https://medium.com/aave/aave-borrowing-rates-upgraded-f6c8b27973a7
https://etherscan.io/labelcloud
https://github.com/ledgerwatch/erigon
https://app.aave.com/governance/proposal/97/
https://defillama.com/protocols/lending/Ethereum
https://lido.fi
https://www.comp.xyz/t/proposal-adjust-eth-interest-rate-model/3493/1
https://www.comp.xyz/t/proposal-adjust-eth-interest-rate-model/3493/1
https://compound.finance/governance/proposals/122
https://beaconcha.in/pools
https://governance.aave.com/t/arc-aave-ethpow-fork-risk-mitigation-plan/9438
https://governance.aave.com/t/arc-aave-ethpow-fork-risk-mitigation-plan/9438
https://www.circle.com/blog/usdc-and-ethereums-upcoming-merge
https://www.circle.com/blog/usdc-and-ethereums-upcoming-merge
https://tether.to/en/usdt-supports-eth-proof-of-stake-transition/
https://tether.to/en/usdt-supports-eth-proof-of-stake-transition/
https://ethereum.org/en/history/
https://www.binance.com/en/support/announcement/notice-regarding-the-upcoming-ethereum-merge-2022-08-25-205de0801a4741c98270fdea6cb06697
https://www.binance.com/en/support/announcement/notice-regarding-the-upcoming-ethereum-merge-2022-08-25-205de0801a4741c98270fdea6cb06697
https://www.binance.com/en/support/announcement/notice-regarding-the-upcoming-ethereum-merge-2022-08-25-205de0801a4741c98270fdea6cb06697


L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:23

43 Updates regarding the upcoming ethereum merge (2022-09-13). https://www.binance.com/
en/support/announcement/updates-regarding-the-upcoming-ethereum-merge-2022-09-
13-9a4805dffb8741a78f26075762a22a9c, 2022.

44 Fran Velasquez. On-chain data shows close ties between ftx and alameda were there
from the start: Nansen, 2022. URL: https://www.coindesk.com/business/2022/11/22/on-
chain-data-shows-close-ties-between-ftx-and-alameda-were-there-from-the-start-
nansen/.

45 Friedhelm Victor. Address clustering heuristics for ethereum. In International conference on
financial cryptography and data security, pages 617–633. Springer, 2020.

46 Victor von Wachter, Johannes Rude Jensen, and Omri Ross. Measuring asset composability
as a proxy for defi integration. In International Conference on Financial Cryptography and
Data Security, pages 109–114. Springer, 2021.

47 web3.eth api. https://web3py.readthedocs.io/en/v5/web3.eth.html, 2023.
48 Jiahua Xu and Nikhil Vadgama. From banks to defi: the evolution of the lending market. In

Enabling the Internet of Value, pages 53–66. Springer, 2022.
49 Yahoo finance. https://finance.yahoo.com/, 2023.
50 Aviv Yaish, Saar Tochner, and Aviv Zohar. Blockchain stretching & squeezing: Manipulating

time for your best interest. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 65–88, 2022.

51 yfinance. https://pypi.org/project/yfinance/, 2023.

A stETH Market Capitalization and AAVE stETH Collateral

We plot the market capitalization of stETH before and after the merge in Figure 11. The
stETH market capitalization corresponds to the combined ETH balance of LIDO validators
on the Beacon chain. We point out that the stETH market capitalization is ever-increasing in
that time frame, as withdrawals from the Beacon chain have not been activated. At the same
time additional ETH is staked on the Beacon chain and the staked ETH balance increases as
the validators are receiving rewards for performing their duties. Note that validators that do
not carry out their duties correctly will be slashed and the ETH balance will reduce, this,
however, did not happen to a large extent for LIDO validators.

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0

1

2

3

4

5

st
ET

H
 ×

10
6

market capitalization merge

Figure 11 Market capitalization of stETH.

We also plot the amount of stETH locked on AAVE in Figure 12. As stETH cannot
be borrowed, the stETH on AAVE is likely used as collateral to take out debt. A popular
strategy for stETH holders was to take out ETH debt to be able to stake additional ETH
with LIDO [35]. Thus, it is both astonishing and worrying at the same time that around
20% of all stETH are locked on AAVE. A price drop of stETH cloud cause liquidations of

AFT 2023

https://www.binance.com/en/support/announcement/updates-regarding-the-upcoming-ethereum-merge-2022-09-13-9a4805dffb8741a78f26075762a22a9c
https://www.binance.com/en/support/announcement/updates-regarding-the-upcoming-ethereum-merge-2022-09-13-9a4805dffb8741a78f26075762a22a9c
https://www.binance.com/en/support/announcement/updates-regarding-the-upcoming-ethereum-merge-2022-09-13-9a4805dffb8741a78f26075762a22a9c
https://www.coindesk.com/business/2022/11/22/on-chain-data-shows-close-ties-between-ftx-and-alameda-were-there-from-the-start-nansen/
https://www.coindesk.com/business/2022/11/22/on-chain-data-shows-close-ties-between-ftx-and-alameda-were-there-from-the-start-nansen/
https://www.coindesk.com/business/2022/11/22/on-chain-data-shows-close-ties-between-ftx-and-alameda-were-there-from-the-start-nansen/
https://web3py.readthedocs.io/en/v5/web3.eth.html
https://finance.yahoo.com/
https://pypi.org/project/yfinance/


9:24 DeFi Lending During The Merge

15 22 Sep 08 15 22 Oct 08 15
2022-Oct

0.0

0.2

0.4

0.6

0.8

1.0

st
ET

H
 ×

10
6

liquidity lending paused merge

Figure 12 Amount of stETH locked on AAVE around the merge.

13 17 21 25 29 Sep 05 09 13
2022-Sep

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

cu
m

ul
at

iv
e 

bo
rr

ow
 r

at
e

Figure 13 The cumulative interest rate for a borrower on Compound starting from 9 August
2022 until the merge.

loans on AAVE with stETH collateral which would further apply downward pressure on the
stETH price. Thus, the high levels of stETH locked on AAVE pose a security concern for
the Ethereum consensus layer.

B Cumulative Rates on AAVE and Compound

We plot the cumulative borrowing rate a borrower would have paid for an ETH debt taken out
on 9 August 2022, the day ETHW started trading, and held until the merge, 15 September
2022. In Figure 13, we show the cumulative rate that would have been paid by an ETH
borrower. A borrower would have paid around 0.03% for an ETH debt held for that time
window – significantly less than the relative value of ETHW compared to ETH during the
merge. Notice that the rate increases almost linearly as a consequence of the relatively low
borrowing rate on Compound in the lead-up to the merge.

In Figure 14, on the other hand, we plot the cumulative borrowing rate for an ETH
borrower on AAVE during the same time period. The cumulative rate paid on AAVE would
have been higher than on Compound with 1%, but still significantly less than the price of
ETHW in terms of ETH during the merge. The cumulative borrowing rate on AAVE rapidly
increased starting from 7 September 2022 as a result of the sharp increase in the borrowing
rate ahead of the merge.



L. Heimbach, E. Schertenleib, and R. Wattenhofer 9:25

13 17 21 25 29 Sep 05 09 13
2022-Sep

0.000

0.002

0.004

0.006

0.008

0.010

cu
m

ul
at

iv
e 

bo
rr

ow
 r

at
e

Figure 14 The cumulative interest rate for a borrower on AAVE starting from 9 August 2022
until the merge.

C Interest Rate Curves

0.0 0.2 0.4 0.6 0.8 1.0
utilization

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

AAVE (variable) AAVE (stable) Compound

Figure 15 ETH borrowing rates on AAVE and Compound as a function of the utilization.

The interest rate for the two lending protocols are given in Section 3.3. Here, we show
the interest rate curves as a function of utilization for AAVE and Compound in Figure 15.
Furthermore, as described in Section 5.1, Compound updated their interest rate model in
anticipation of the merge to the jump interest rate model that qualitatively looks similar to
that of AAVE.

AFT 2023





FairPoS: Input Fairness in Permissionless
Consensus
James Hsin-yu Chiang #

Aarhus University, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Ittay Eyal #

Technion, Haifa, Israel

Tiantian Gong #

Purdue University, West Lafayette, IN, USA

Abstract
In permissionless consensus, the ordering of transactions or inputs in each block is freely determined
by an anonymously elected block leader. A rational block leader will choose an ordering of inputs
that maximizes financial gain; the emergence of automatic market makers in decentralized finance
enables the block leader to front-run honest trade orders by injecting its own inputs prior to and
after honest trades. Front-running is rampant in decentralized finance and reduces the utility of
the system by extracting financial value from honest trades and increasing demand for block-space.
Current proposals to prevent input order attacks by encrypting user inputs are not permissionless, as
they rely on small static committees to perform distributed key generation and threshold decryption.
Such committees require party authentication, knowledge of the number of participating parties
or do not permit player replaceability and are therefore not permissionless. Moreover, alternative
solutions based on sequencing inputs in order of their arrival cannot prevent front-running in an
unauthenticated peer-2-peer network where message arrival is adversarially controlled.

We present FairPoS, the first consensus protocol to achieve input fairness in the permissionless
setting with security against adaptive adversaries in semi-synchronous networks. In FairPoS, the
adversary cannot learn the plaintext of any client input before it is included in a block in the
chain’s common-prefix. Thus, input ordering attacks that depend on observing pending client inputs
in the clear are no longer possible. In FairPoS, this is achieved via Delay Encryption (DeFeo et
al., EUROCRYPT 2021), a recent cryptographic primitive related to time-lock puzzles, allowing
all client inputs in a given round to be encrypted under a key that can only be extracted after
enough time has elapsed. In contrast to alternative approaches, the key extraction task in delay
encryption can, in principle, be performed by any party in the permissionless setting and requires no
distribution of secret key material amongst authenticated parties. However, key extraction requires
highly specialized hardware in practice. Thus, FairPoS requires resource-rich staking parties to insert
extracted keys into blocks, enabling light-clients to decrypt past inputs and relieving parties who join
the execution from decrypting all inputs in the entire chain history. Realizing this in proof-of-stake is
non-trivial; naive application of key extraction to proof-of-stake can result in chain stalls lasting the
entire key extraction period. We overcome this challenge with a novel key extraction protocol, which
tolerates adversarial delays in block delivery intended to prevent key extraction from completing
on schedule. Critically, this also enables the adoption of a new longest-extendable-chain rule which
allows FairPoS to achieve the same guarantees as Ouroborous Praos against an adaptive adversary.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Front-running, Delay Encryption, Proof-of-Stake, Blockchain

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.10

Related Version Full Version: https://eprint.iacr.org/2022/1442

© James Hsin-yu Chiang, Bernardo David, Ittay Eyal, and Tiantian Gong;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jachiang@cs.au.dk
https://orcid.org/0000-0002-5126-9494
mailto:bernardo@bmdavid.com
mailto:ittay@technion.ac.il
https://orcid.org/0000-0001-7595-2258
mailto:tg@purdue.edu
https://orcid.org/0000-0001-9441-9037
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://eprint.iacr.org/2022/1442
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 FairPoS: Input Fairness in Permissionless Consensus

Funding James Hsin-yu Chiang: The author’s work was partially conducted during a research visit
at the Israel Institute of Technology (Technion), and was supported by the Otto Mønsted foundation,
Innovation Centre Denmark and DTU Compute.
Bernardo David: The author’s work was supported by the Independent Research Fund Denmark
(IRFD) grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B.
Ittay Eyal: The author’s work was supported in part by the Israel Science Foundation (grant No.
1641/18), Avalanche Foundation and IC3.
Tiantian Gong: The author’s work was supported by the National Science Foundation (NSF) under
grant CNS-1846316 and an unrestricted gift from Supra Research.

1 Introduction

In permissionless consensus, the ordering privilege of the block leader is exploited in front-
running [18], where adversarial inputs can be interleaved with honest inputs to extract
financial value from the honest victim in applications such as automatic market makers [5].
Such behaviour financially penalizes the honest user, but also generates excess demand
for block-space since front-running attacks [5] always require additional inputs from the
adversary, inflicting block congestion at times, as acutely observed on Avalanche [2]. Current
proposals to mitigate front-running with varying notions of input fairness violate assumptions
underlying permissionless consensus such as Proof-of-Stake (PoS) [19].

A commonly proposed notion of input fairness requires encrypting inputs which are then
decrypted after finalization1. To guarantee timely decryption and to avoid malicious parties
withholding the reveal of the plaintext input, threshold decryption [32, 7] or identity-based
encryption [33, 21] involving static committees have been proposed. The honest-majority
committees with distributed private or master key material then guarantee the decryption of
inputs as specified by the protocol. However, such protocols require authenticated parties to
prevent Sybil interference and assume secure, private communication and are therefore not
permissionless; ongoing research efforts to lift such protocols into the permissionless setting
are discussed in Section 2.

Alternatively, the notion of sequencing transactions in the order of their arrival at honest
consensus nodes has been proposed in [29, 28, 27, 13]. This is meaningful in the permissioned
setting where communication between client and consensus node is fast, preventing an
adversary to observe a pending transaction and then emit a front-running transaction which
can then propagate faster than the victim’s transaction. However, this notion of input
order fairness does not easily translate to the permissionless setting, where transactions are
propagated across a permissionless, unauthenticated peer-to-peer network where delay is
adversarially controlled.

We introduce FairPoS, a PoS blockchain consensus protocol that achieves a novel notion
of input fairness (Def. 6, Thm. 19) in permissionless consensus, while retaining the security
guarantees of Ouroborous Praos [19]. As in Praos, we prove security against an adaptive
adversary, which controls the network delay and corrupts parties as the protocol execution
unfolds. Our novel notion of input fairness in permissionless consensus guarantees that the
plain-text content of any finalized input (in the common-prefix) could not have been observed
by the adversary prior to its finalization. FairPoS achieves this by encrypting inputs with
the delay encryption scheme by DeFeo et al. [12], which improves on time-lock puzzles [34].

1 In permissionless, longest-chain consensus, input finalization occurs when the block containing the input
joins the common-prefix.



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:3

Classical time-lock puzzles store plaintext messages that can be obtained by clients after an
extraction process that requires performing a known number of non-parallelizable sequential
operations (i.e. requiring a certain minimum amount of time for recovering a message).
However, naively encrypting inputs with time-lock puzzles requires a dedicated extraction
process for each client input, which quickly becomes infeasible at higher throughput. Delay
encryption, in contrast, allows all inputs in a block to be encrypted under a single unknown
key, which can be extracted as time elapses. Hence, only a single key extraction is required
for each block. The extraction procedure to recover the decryption key is parameterized
to run in at least time d, and can be performed by any party with access to specialized
hardware to ensure timely execution. This preserves adaptive security, as no relevant key
material is learned upon corruption of an honest party.

Still, it is not practical for non-staking parties or clients with limited resources to
perform key extraction. First, we expect only resource-rich participants to have access to
the specialized hardware [1] necessary to perform extractions in d time; otherwise, a long-
running, non-trivial extraction cost would be imposed on clients following the blockchain and
interacting with smart contract applications. Secondly, without any integrated mechanism
to publicly expose extraction keys, any party joining the protocol would need to perform
key extractions for all blocks beginning from genesis, which becomes rapidly more expensive
at higher chain lengths. A key contribution of FairPoS is a novel key extraction protocol,
requiring staking parties to insert the extracted keys from past blocks into later, child blocks
of the same chain within a fixed schedule, thus ensuring decryption keys are made public
in lock-step with chain growth. The challenge here is to prevent the arbitrary delay of
adversarial blocks to impede chain growth if honest parties cannot finish key extractions
on time due to delayed arrival of past blocks. In standard blockchain consensus, chains in
the local view can immediately be extended, but parties in FairPoS can only extend a chain
if past key extractions are completed on time. Note that it is not sufficient to require a
block to arrive at an honest party within the maximum network delay, so that key extraction
can begin as intended. The adversary can trivially deliver dishonest blocks to a subset of
honest parties only with the maximum permitted receipt delay, and then induce an additional
network delay as this dishonest block is relayed to others. The local receipt delay of this
block at other parties must then exceed the limit, causing irreconcilable inconsistencies
and potential chain stall. Although such attacks cannot be prevented as the adversary is
permitted to delay messages up to a maximum bound, they are carefully addressed in FairPoS
by incrementing receipt delay bounds for blocks which are further away from the chain tip
(Fig. 3). The novel longest-extendable-chain rule then asserts this notion of timeliness of
block arrivals, guaranteeing that any honest chain can be extended by another honest leader
within a fixed time. We highlight honest chain growth as a critical property and formally
prove that FairPoS achieves both input fairness whilst maintaining the security of Praos [19].

Paper overview. We provide an overview of related work in Section 2. In Section 3,
we introduce Delay Encryption and an abstract model of Ouroborous Praos execution (δ-
PoS). In Section 4, we then define our proposed notion of Input Fairness for permissionless
consensus and present the FairPoS model, extending δ-PoS with delay encryption and a
novel “longest-extendable-chain” selection rule. In Section 5, we gently introduce FairPoS
and formally demonstrate that achieves input fairness whilst maintaining the asymptotic
security of Ouroborous Praos (δ-PoS) against an adaptive adversary. Full proofs of stated
theorems and lemmas are provided in Appendix C of [16].

AFT 2023



10:4 FairPoS: Input Fairness in Permissionless Consensus

2 Related Work

Encrypt-and-reveal with timed cryptography. The basic idea of encrypt-and-reveal is to
encrypt client inputs, and then to decrypt these when they are finalized in the blockchain.
The “blockchain state” implied by the ordering of inputs is then “revealed” as past inputs
are decrypted over time. For “decryption” to be permissionless, it must be possible without
the knowledge of any secret key material; here, time-lock puzzles [34] were first proposed,
which permit any party with the ciphertext to compute the decryption key with d squarings
in a group of unknown order. Similarly, timed commitments were proposed in [11], which
are accompanied by zero-knowledge proof of well-formedness; namely, that the time-lock
commitment is well-formed and opens after d squaring operations. Time-lock puzzles have
been formalized in the universal composability framework in Tardis [6], permitting secure
composition with other protocols.

Mitigating front-running with time-lock puzzles in exchanges has been proposed in
Clockwork [17]. In [26], blockchain inputs are encrypted with time-lock puzzles to prevent
adversarial ordering based on the input plaintext. We note that this approach requires
extracting decryption keys for each submitted input individually, which quickly becomes
impractical for higher throughput levels. Open square [35] proposes a service which permits
users to outsource the extraction of cryptographic time-locks to anonymous servers. De
Feo et al. introduce the first time-lock primitive which permits all clients to encypt to
the same session key, called Delay Encryption (§3.1), which improves on time-lock puzzles
and minimizes “wasted” work spent on solving individual time-locks separately; thus, delay
encryption represents the state-of-the-art in time-lock encryption.

In all timed-crypto primitives, the existence of a “fastest” hardware is assumed. Fur-
thermore, it must be assumed that such hardware is accessible to all participants. We
highlight two open challenges; firstly, there has been little research on parameterizing time-
cryptography for real-world hardware designs. Secondly, the “fastest” hardware design is
likely to be specialized and costly such that in practice, only resource-rich participants are
likely to have access to such extraction hardware. A key objective of FairPoS is to address
the second challenge by requiring block leaders to include extracted keys in the blockchain,
thereby minimizing redundant work and allowing non-staking users to decrypt past inputs in
lockstep with chain growth.

Encrypt-and-reveal with threshold cryptography. An alternative to timed-cryptography
is to rely on a dedicated committee to generate a distributed master key, permitting the
encryption and subsequent decryption of inputs, after they are finalized in the longest
chain. Threshold decryption [7, 32] imposes a significant overhead, as each encrypted input
must be individually decrypted by the dedicated committee. We note a recent you-only-
speak-once (YOSO) line of work that investigates cryptographic protocols via anonymously
elected committees [9, 24, 15, 14, 22] promising player replaceability in the absence of party
authentication. Protocols in the YOSO model allow for permissionless solutions with the
same effect of the aforementioned solutions based on threshold encryption. The concept of
Encryption to the Future [14] allows for encrypting messages in such a way that they can
be decrypted only by the block leader of a later slot, also allowing for realizing “Witness
Encryption on Blockchains” (WEB) as proposed in [24] using threshold Identity Based
Encryption (IBE). However, protocols in the YOSO model require techniques for proactively
secret-sharing state to future committees; accomplishing this with high throughput in a
practical manner remains an open problem. The central technique in the WEB construction



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:5

from [14] is efficiently implemented in [33], which allows clients to encrypt their inputs to
a future round number in string form; the identity-specific key associated with the current
round number is then jointly released by the committee, permitting the public decryption
of client inputs encrypted to the same round. An alternative construction called signature-
based witness encryption is proposed by McFly [21], which realizes a special case of WEB
with an efficient instantiation of the threshold IBE technique from [14]. This approach
permits the encryption of an input to the set of committee verification keys and a round
specific reference string. McFly scales to larger committee sizes, promising practicality for
permissioned consensus systems. We emphasize that such encrypt-and-reveal approaches
are not permissionless; an authenticated party must be assigned to each protocol role in an
execution, communication between committee members must be secure and private and
parties are not arbitrarily replaceable.

Fair ordering. A line of research from authenticated consensus [29, 28, 27, 13] proposes
a notion of fair input ordering. A block leader will order inputs based on their order of
arrival. However, fair ordering is only meaningful in a setting with a secure connection
between client and round leaders: in an unauthenticated, peer-to-peer gossip network setting
common in massively distributed permissionless blockchain protocols, the receipt-order of
messages is adversarially controlled, making it difficult to justify any notion of fair message
arrival. A secure connection with the next block leader implies public knowledge of its
identity, contradicting the permissionless setting. The work of [27] lifts the notion of
receipt-order-fairness to the permissionless setting; however, we argue the adopted notion of
transaction arrival ordering is difficult to justify when client messages are propagated across
an unauthenticated, peer-2-peer network with adversarially controlled delivery schedules; the
adversary observing a propagating client transaction can inject their own inputs and control
the receipt order for each honest consensus node. Moreover, this work is only secure against
static adversaries.

3 Preliminaries

3.1 Delay Encryption
The delay encryption (DE) scheme by De Feo et al. [12] consists of the following four
algorithms: A global DE.Setup parameterized with a security parameter λ ∈ {0, 1}∗ and
delay parameter d generates public encryption (DE.pk) and extraction (DE.ek) keys. In each
round, a public session id ∈ {0, 1}∗ is sampled, and DE.Encaps can be used to generate a pair
(c, k) of a ciphertext c and a key k corresponding to id and the encryption key DE.pk. The
DE.Extract algorithm runs in at least d time, and returns a session key idk, with which the
DE.Decaps algorithm can compute a key k from ciphertext c for all (c, k) generated with the
same session id and public paramaters from a given setup.
1. DE.Setup(λ, d)→ (DE.ek, DE.pk)
2. DE.Encaps(DE.pk, id)→ (c, k)
3. DE.Extract(DE.ek, id)→ idk
4. DE.Decaps(DE.pk, id, idk, c)→ k

Delay encryption is an isogeny-based delay protocol, and similar to [20] is built from isogeny
walks in graphs of pairing friendly supersingular elliptic curves. In implementations [20],
such isogeny evaluations occupy memory space in the terabytes. Parties performing Extract
are expected to deploy specialized FPGA hardware [1] in order to achieve the parameterized
extraction time.

AFT 2023



10:6 FairPoS: Input Fairness in Permissionless Consensus

3.2 Longest-chain PoS model and security
We present a model of longest-chain proof-of-stake protocols, formalized by the Ouroborous
line of work [31, 19, 3] and subsequent improvements [10, 30]. We adopt the approach
of [31, 19, 3, 30], where the PoS protocol is modelled by two orthogonal components: the
first describes the leader election process and the second part models the views of blockchain
trees which result from a protocol execution induced by a given leader schedule.

Idealized leader elections. Time in PoS is divided into units named slots, each capturing
the duration of a single protocol round. In a given round, a party with relative stake α ∈ (0, 1]
becomes a slot leader for a given slot with probability

ϕ(α) = 1− (1− f)α

where parameter active slot coefficient f is the probability that a leader holding all stake
will be elected leader in given slot: importantly, ϕ(α) is maintained even if share α is split
amongst multiple, virtual parties (eq. 2 in [19]). Let a characteristic string w be defined as a
sequence of leader election results, where an election result at slot t is defined as follows.

wt =


0 a single honest leader
1 multiple honest leaders / adversarial leader
⊥ no leader

In PoS [19], leader election is can be modelled by sampling characteristic strings from an
idealized, dominant distribution Df

α that is strictly more adversarial than the true setting
where the adaptive adversary corrupts up to (1−α) of the stake during the protocol execution
(Theorem 8 in [19]). Thus, any security that holds in PoS executions induced by characteristic
strings sampled from Df

α must also hold in the true protocol execution against an adaptive
adversary dynamically corrupting up to 1− α stake.

▶ Definition 1 (Dominant distribution Df
α (Definition 11 in [19])). For an adaptive adversary

corrupting up to 1 − α stake fraction and active slot coefficient f ∈ [0, 1), the dominant
distribution Df

α is defined by the following probabilities:

p⊥ = 1− f p0 = ϕ(α) · (1− f) p1 = 1− p⊥ − p0 (1)

▶ Definition 2 (Blocks, chains, trees and branches). A block B = (sl, st, d, ldr) generated
at slot sl contains state st ∈ {0, 1}∗, data d ∈ {0, 1}∗ and party ldr that generated B and
was the elected block leader of slot sl. A chain is a sequence of blocks B0, ..., Bn associated
with a strictly increasing sequence of slots, where B0 is the genesis block, and the state of
Bi is H(Bi−1), H(·) denoting a collision-resistant hash function. We write C.tip to denote
the block at the tip of chain C and Cj to denote a block B ∈ C such that B.sl = j. If such
a block does not exist, Cj = ⊥. Let C⌈k denote the chain obtained from C by removing the
last k blocks. Multiple chains form a tree if their blocks share state. A branch B in a tree
T is a chain which ends with a leaf block. We write C ⪯ B to indicate C is a prefix of B.
When quantifying over all chains in a tree, ∀C ∈ T , we quantify over all prefixes of all tree
branches. Let len(C) denote the number of blocks in chain C.

A model of δ-PoS executions. As in [23, 31, 19, 3], we model the execution of PoS initiated
upon the activation of an environment Z, which spawns both honest parties H and an
adversary A. Upon each activation by the environment, each party executes the protocol



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:7

δ-PoS consensus model

The δ-PoS state Γt =
(
{T (i), m(i)}i∈H, T A

)
evolves in a single round Γt →wt+1 Γt+1

induced by environment Z, adversary A and characteristic string w as follows.

Trees. Honest {T (i)}i∈H and adv. T A evolve as follows:
T0 T (i)

0 consists of the genesis block.
T1 If wt+1 = 0, a single honest party runs Extend on the longest C in T (i), which is

then added to T (i) and T A.
T2 At any time during the round, adversary A may:

a) Run Extend on a chain in T A for slot t+1 if wt+1 = 1, upon which the extended
chain is added to T A.

b) Update any honest tree view T (i) with an additional chain from T A or an honest
message queue {m(i)}i∈H (see M2).

Msgs. Honest message queues {m(i)}i∈H evolve as follows:
M1 For chain C′ extended by honest party i in the round (T2), the entry (C′,H) is

added to local message queue m(i).
M2 At any time during the round, adversary A may deliver a chain from an entry

(C,P) ∈m(i) to a subset of honest users I ⊆ H:
a) Entry (C,P) in m(i) is updated to (C,P ′), where P ′ = P \ I.
b) Each (C,P) ∈m(i) must be delivered to all honest parties H by slot C.tip.sl + δ,

and is then removed from m(i).

Extend. To extend C, party i generates B = (t + 1, H(C.tip), d, i) with an ordering of
inputs d = {ini}i∈[m] input by environment Z for slot t.

Figure 1 Model of δ-PoS execution induced by environment Z and characteristic string w.

according to Figure 1, which precisely models the adversarial powers to influence the round-
wise evolution of block tree structures in the local view parties as the full PoS protocol in [19],
but omits details such as block proofs, signatures or individual leader election procedures
such as evaluation of verifiable random functions. A given characteristic string w induces
executions of our δ-PoS model that generate local tree structures identical to those resulting
from a full PoS [19] protocol execution that induces a leader election sequence consistent
with w and activates the same parties and adversarial actions.

Let the protocol execution state Γt in slot t, consist of honest party states, including the
local block tree view T (i) and the outbound message queue m(i) for each honest party i ∈ H.
Further, let Γt include the blockchain tree view T A of the adversary.

Γt =
(
{T (i), m(i)}i∈H, T A

)
(2)

The outbound message queue m(i) = {(C,P), ...} in Γt is the set of broadcast, yet undelivered
chains previously sent by honest party i. For each entry (C,P) ∈ m(i), C was initially
broadcast and added to the local message queue at slot C.sl ≤ t. Each entry in m(i) consists
of a chain C and honest party subset P ⊂ H, which has yet to receive the message. A is
required to deliver all honestly broadcast chains with a delay of no more than δ slots. The
model executes round-wise beginning from initial state Γ0, where the tree views of all parties
consist only of the genesis block.

AFT 2023



10:8 FairPoS: Input Fairness in Permissionless Consensus

In each round from slot t to t + 1, the leader is implied by by wt+1 ∈ {0, 1,⊥}. For a
uniquely honest slot, the environment Z is permitted to activate any honest party to extend
the longest chain in its local view, where the inputs for insertion in the block are provided
by Z. We interpret wslot = 1 as a strictly adversarial slot, since the adversary could affect
the structure of local trees views in the same way as multiple honest leaders: namely, by
producing multiple blocks associated with the same slot.

PoS Security. The seminal work on formalizing the Bitcoin backbone protocol [23] proved
liveness and persistence of longest-chain proof-of-work (PoW) protocols in terms of common-
prefix, chain growth and chain quality properties, which are also achieved for PoS in Ouroboros
Praos [19]. We restate these below and formally prove them for FairPoS in Section 5.

▶ Definition 3 (Common prefix, k-CP; with parameter k ∈ N). The chains C1, C2 possessed
by two honest parties at the onset of the slots t1 < t2 are such that C⌈k1 ⪯ C2 , where C⌈k1
denotes the chain C⌈k1 obtained by removing the last k blocks from C1, and ⪯ denotes the
prefix relation.

▶ Definition 4 (Chain growth, (τ, s)-CG; with parameter τ ∈ (0, 1] and s ∈ N). Consider
the chains C1, C2 possessed by two honest parties at the onset of two slots t1, t2 with t2 at
least s slots ahead of t1. Then it holds that len(C2) − len(C1) ≥ τ · s. We call τ the speed
coefficient.

▶ Definition 5 (Chain quality, (µ, k)-CQ; with parameters µ ∈ (0, 1] and k ∈ N).
Consider any portion of length at least k of the chain possessed by an honest party at the
onset of a round; the ratio of blocks originating from the adversary is at most 1− µ. We call
µ the chain quality coefficient.

4 The FairPoS protocol

As in δ-PoS, we model a FairPoS execution that is induced by an environment Z and a
characteristic string w; both protocol participants and adaptive adversary A are spawned
by Z, whereas w governs which parties may be activated by Z to generate blocks at each
slot. The adaptive adversary is permitted to spend its corruption budget on honest parties
anytime; in particular, it can observe any message emitted by an honest party, and then
decide its corruption strategy based on the message sent by the honest user. In FairPoS,
inputs provided to the block leader by Z are delay encrypted. Thus, a party must first be
activated by Z with a plain-text input and execute the input encryption procedure (Fig. 2).
Upon receiving encrypted inputs, Z can forward an ordering of encrypted client inputs to
the elected block leader in the FairPoS execution (Fig. 4).

Z

Input
encryption

FairPoS
consensus

3. Encrypted Input(s)1. Input

2. Encid(Input)

We introduce the FairPoS model in parts. In Section 4.1, we formally define the no-
tion of input fairness in the permissionless setting for clients sending transactions to a
FairPoS execution. In order for an encrypted input to reach the k-common-prefix, the
duration implied by the delay parameter d must be sufficiently long. We then define the



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:9

FairPoS input encryption

Let KES = (Gen,Sign,Verify,Update) denote a key evolving signature scheme and SKE =
(Gen, Enc,Dec) a symmetric-key encryption scheme. Let the genesis block of a chain
contain a delay encryption parameter DE.pk and a chain tip imply account keys
{KES.vki}i∈[n].
Gen. Upon (Gen), set (sk, vk)← Gen(1k, T ), return vk.
Sign. Upon (Sign, C, in)
1. Let id = C.tip, assert vk ∈ accts(C.tip)
2. Set pk as DE.pk contained in chain genesis block C0.
3. Compute (c, k)← DE.Encaps(pk, id).
4. Encrypt input with key k: m← SKE.Enck(in).
5. Generate σ ← KES.Signsk(c |m | id).
6. Set sk← Update(KES.sk), erasing previous signing key.
7. Return (c, m, σ).

Figure 2 Input encryption procedure in FairPoS.

FairPoS input encryption procedure; our protocol deploys key evolving signature schemes as
in Ouroborous Praos [19], which prevents the adaptive adversary from obtaining static key
material upon corrupting an honest party that has just emitted an honestly signed input.

In Sections 4.2 and 4.3, we introduce the formal FairPoS protocol execution model, which
extends δ-PoS with key extraction and a novel longest-extendable-chain selection rule. Here,
encrypted inputs are generated as in Section 4.1 and given by the environment Z to parties
executing the protocol. We first describe how the adversary can prevent key extraction
processes to complete on time by delaying adversarial blocks, thereby motivating the design
of the longest-extendable-chain selection rule in the FairPoS model, which mitigates such ad-
versarial impedance and ensures honest chain growth independent of chosen delay encryption
parameter d.

A security analysis of FairPoS follows in Section 5, where the precise relationship between
input fairness, chain growth, common-prefix and chain quality properties is formalized.

4.1 Input fairness & encryption
▶ Definition 6 (Input fairness, IF). Consider the chain C possessed by an honest party at the
onset of a round, where k-CP holds true. Input fairness holds if for all blocks B ∈ C⌈k: 1. the
adversary cannot decrypt an honestly encrypted input in B before B is in the k-common-prefix;
2. encrypted inputs in B are eventually decrypted by all honest parties.

Input fairness is conditioned on k-common-prefix property in FairPoS. Intuitively, the
extraction delay d in FairPoS must be parameterized, such that the encrypted input can reach
the common-prefix before d time passes. For simplicity, we denote d as time in slots. Note
that input fairness permits an encrypted input to not become finalized and decrypted by the
adversary: we argue this outcome is acceptable as the client transaction is not executed and
thus cannot be exploited in any input ordering attacks. This is consistent with [7, 32, 33].

We sketch the input encryption procedure for FairPoS shown in Figure 2, where the
environment Z provides the plain-text input for a party to encrypt and sign. For a block B,
inputs are encrypted to a session id which is set to the chain tip that B is extending, such

AFT 2023



10:10 FairPoS: Input Fairness in Permissionless Consensus

that id = C.tip and C.tip = B.st. To ensure that a slot leader cannot insert an encrypted
input to a later block, potentially deferring its insertion until the key extraction is completed,
we ensure that the input is bound to a child block of C.tip with a signature.

In the adaptive corruption setting, we deploy an efficient key evolving signature scheme
(KES) [8, 25] as in Ouroborous Praos [19]. Such schemes evolve secret key material forward
with each signature, thereby erasing any information that could be used to generate verifying
signatures of past rounds (See Appendix A of [16]). An adaptive adversary can always
corrupt an honest user who has just broadcast a newly delay encrypted and signed input; with
static key material only, the adversary would learn the signature key and generate verifying
signatures of the delay encrypted input to insert it into any later block, potentially after
decrypting the encrypted input2. In other words, since it is the signature of an honest user
that binds its encrypted input to a specific block, allowing the adaptive adversary to bind
the same honestly encrypted input to a later block will violate input fairness in Definition 6.

For the public verification of such signatures, we assume the presence of logical accounts
for all parties, each associated with a public, signature verification key inferred from the
chain tip.

Malformed inputs. As shown in Fig. 2, it will be possible for adversarial parties to encrypt
malformed inputs; elected, honest block leaders which included these encrypted inputs to
their blocks cannot discern the validity of the plaintext message, as the key extraction
procedure is intended to proceed until the input reaches the k-common-prefix.

We omit a detailed treatment of mitigation techniques, but sketch several possible
approaches. (1) A zero-knowledge proof of well-formedness may accompany each encrypted
input, proving well-formedness of the underlying input. (2) Fees may mitigate denial-of-
service attacks from mal-formed, adversarial inputs; we note that the correct execution- or
gas-dependent fee amount can also be proven in zero-knowledge for certain applications.

We also highlight the existence of consensus protocols with explicit focus on input
finalization for high transaction-throughput [4]. Here, finalized yet invalid inputs are simply
ignored when determining canonical, total ordering of the chain.

4.2 Introducing key extraction in FairPoS
In FairPoS, each block is associated with a session id string, to which inputs in the child block
are encrypted, as required by the input encryption procedure in Fig. 2. The extraction of
the session key idk required to decrypt the finalized, input ciphers is parameterized to take d

slots or rounds. A key design goal of FairPoS is to ensure that the session keys for each block
will be included in later blocks of the same chain so that lightweight clients following the
protocol execution do not need to perform expensive extractions to observe the blockchain
state. This suggests that the protocol must define a fixed “extraction schedule” parameter
D ≥ d, such that the session key of a block B must be included the earliest block following
slot B.sl + D of a chain extending B. Defining such a fixed extraction schedule, however,
is not trivial, as the adversary can delay its own blocks arbitrarily, and reveal them to a
selected subset of honest users only, and thereby induce additional block delays for other
honest parties as the dishonest block must be relayed over the network, further hindering
timely completion of key extraction processes run by honest parties.

2 In practice, clients may be required to safeguard static key material. For modelling consistency, we
assume clients performing the input encryption procedure can be adaptively corrupted just as parties
participating in FairPoS consensus, motivating the use of key evolving signature schemes.



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:11

In this section, we provide preliminary definitions and intuition for how FairPoS achieves
scheduled key extraction without breaking honest chain growth; the latter is formalized as
the ∆-monotonicity property in Definition 7 which also holds in Praos [19]. Then, we define
receipt delays in Definition 8; this is the delay between the onset of a round and the local
arrival time of a block associated with the same round. Given receipt delays, we then show a
naive application of maximum receipt delay limits for blocks. The idea here is to ensure key
extraction processes are initiated in a timely manner by requiring blocks to arrive within
a maximum duration after their scheduled generation. We then show how the adversary
can attack such a naive scheme and cause chain stalls (eq. 3). This attack is overcome in
FairPoS by carefully incrementing maximum receipt delays for blocks further away from the
chain-tip, as illustrated in Example 9. We demonstrate that FairPoS achieves ∆-monotonicity
in Theorem 10, a key property required for FairPoS security (§5). A more formal treatment
of the full FairPoS consensus protocol follows in Section 4.3.

▶ Definition 7 (∆-Monotonicity, from [19]). Let T =
⋃

i∈H T (i) be an honest tree rooted in
genesis resulting from an execution of protocol π in a δ-synchronous network: it consists of
all chains broadcast by honest parties. Further, let depthT (i) denote the length of the chain
in T extended by the uniquely honest leader of slot i. T exhibits the ∆-monotonicity property
if the following holds true.

For all uniquely honest slots (i, j) s.t. j ≥ i + ∆ :
depthT (j) > depthT (i)

In PoS executed in a δ-synchronous setting, δ-monotonicity is trivially achieved: any honest
block tip must arrive in the view of other honest party after δ slots, and is thus considered
as a chain candidate for extension by any honest leader applying the longest chain selection
rule.

We introduce a formal notion of receipt delay, which, informally, quantifies how far a
local key extraction process is “behind schedule” due to adversarial delay of block arrival.

▶ Definition 8 (Receipt delay). Let r(i)(B) : B → Z0 be the delay in slots between B.sl and
the local arrival of block B from the view of the party (i). If B is an empty-block (⊥), we
define the receipt delay to be ⊥.

When the extraction window is defined as a slot interval preceding genesis, where slot indices
are “negative”, let the receipt delay is defined as ⊥. We allow a receipt delay of ⊥ to be
interpreted as a receipt delay of 0.

Attack on receipt delay consistency. The receipt delay of each block B must be bounded
by the protocol in order to guarantee a fixed future slot in which the honest party can
complete the extraction of the session key of B and produce a valid block. However, note
that the receipt delay is defined on the local view of a single party; the adversary can trivially
achieve inconsistencies in receipt delays between honest parties, such that arrival of a block
is considered “on-time” by party, but “too late” by another. We illustrate such an attack on
receipt delay consistency (Eq. 3) between honest parties.

A CA−−→ Pi
CA|Bi−−−−→ {Pj}j∈H (3)

For simplicity, consider a chain CA, which consists of adversarial blocks only. Then, let the
adversary forward the chain to an honest party Pi, such that all receipt delays for each block
in CA are exactly the maximum receipt delay permitted by the protocol. Should honest Pi

AFT 2023



10:12 FairPoS: Input Fairness in Permissionless Consensus

Local view of honest party (a)

Local view of honest party (b)

Leader of slot t: (a)

3. Δ-WindowExt-Win.

w =

Max. receipt delay:
2. Δ-Window 1. Δ-Window 0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0

Leader of
slot t+Δ: (b)

Ext-Window

w =

Max. receipt delay:
3. Δ-Window 2. Δ-Window

234345456
1. Δ-Window

123 012

2343454 123 012

0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

Ext. Schedule (D) = d + 4δ = 8 + 4

Figure 3 Key extraction in (d=8, δ=1, ∆=3)-FairPoS with maximally permitted receipt delays.

extend CA and subsequently deliver CA | Bi to all other honest parties {Pj}j∈H:j ̸=i with a
network delay of δ slots, the receipt delays of blocks in CA in the view of the other honest
parties will violate the protocol, as these will be r(j)(B) = r(i)(B) + δ for each B ∈ CA; by
assumption, r(j)(B) is the maximum permitted by the protocol. Thus, the honest chain
tip Bi will never be extended by other honest parties, as its prefix CA contains blocks with
invalid receipt delays, violating ∆-monotonicity for any ∆; in the view of other parties,
CA | Bi is an invalid chain.

FairPoS key extraction. We overcome this class of attacks in FairPoS by permitting
increasing receipt delay limits for blocks that are farther away from the chain tip (Figure 4).
The high-level idea is as follows: To achieve ∆-monotonicity (Def. 7), we consider honest
block leaders of slots which are ∆ slots apart. Even if the receipt delay view of a block may
differ from one honest leader at slot t to the leader of a later slot t + ∆, the leader at t + ∆
will grant the same block a higher, maximum receipt delay to account for any additional
network delays induced by the adversary, as shown above. Our protocol permits independent
choices of extraction delay (d), network delay (δ), montonicity parameter (∆) satisfying
Eq. 5. We provide a discussion of parameterizations of (d, δ, ∆)-FairPoS in Sec. 4.3. Before
formalising the FairPoS key extraction protocol, we provide an example parameterization of
FairPoS for intuition.

▶ Example 9. We illustrate an execution of (d=8, δ=1, ∆=3)-FairPoS in Fig. 3, where the
local chain view of honest parties (a) and (b) is shown. Here, party (a) is elected block leader
at slot t, whereas party (b) is elected block leader at slot t + ∆; for ∆-monotonicity to hold,
the chain extended by (a) must be extendable by (b); in party (b)’s local view, this requires
all blocks in the chain to respect the receipt delays imposed by the protocol, even if the
adversary has induced inconsistent receipt delays between honest parties. For simplicity, we
assume no leaderless slots (⊥) in this example.

Receipt delay limits (“max. receipt delay” in Fig. 3) imposed by FairPoS are organised in
slot intervals, called ∆-windows. Beginning from the current slot, preceding slots are divided
into slot windows of ∆ = 3 length. Each slot position within a n’th ∆-window is granted an
additional receipt delay of delta in the subsequent (n + 1)’th Delta window. The extraction
window defines the blocks for which the session keys must be extracted and included into the
block of the current slot; note that the extraction schedule (D = d + 4δ = 12) is consistent
with the maximum receipt delay (4δ = 4) imposed on blocks in the extraction window.

Fig. 3 illustrates a worst case scenario; honest party (a) is extending a fully adversarial
chain, where the adversary has forwarded the blocks to party (a) only, with the maximally
permitted receipt delays. Honest party (a) broadcasts the chain upon extending it in slot t,



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:13

such that all blocks arrive at party (b) with an additional, worst case network delay δ = 1.
However, note that in the view of block leader party (b), each block of the chain in the n’th
∆-window is now in the (n + 1)’th ∆-window, which tolerates an additional receipt delay of
δ = 1. Thus, this chain from party (a) is extendable by party (b) after ∆ slots, implying
∆-monotonicity for ∆ = 3.

We highlight that each honest party has no knowledge of whether blocks were generated
by an adversary or honest party. Further, no honest party can infer the true receipt delays
in the local views of other honest parties. Informally, the FairPoS key extraction protocol is
designed to accommodate the “worst case” adversarial interference shown in this example.

4.3 The (d, δ, ∆)-FairPoS consensus protocol
We formalize the key extraction protocol introduced in §4.2 and present the full FairPoS
execution model (Fig. 4) which also extends δ-PoS (Fig. 1) with a novel longest-extendable-
chain selection rule. The design of FairPoS permits scheduled key extraction for each block
whilst maintaining ∆-monotonicity (Def. 10), essential for the security of FairPoS (§5).

Extraction window. A FairPoS protocol instance is parameterized with
extraction schedule D, the duration after which the extracted session keys of a block are
due in the next, available block. Here, we must account for the possibility of a gap between
the chain tip and the current slot, for which no extracted keys could have been inserted. We
therefore require a notion of an extraction window that denotes a window of preceding slots,
for which associated blocks have key extractions due in the current slot. We first formalize
gap2tip(t, C) as the number of empty slots between slot t and C.tip.sl.

gap2tip(t, C) = t− tip(C).sl for t > tip(C).sl

Then, the extraction window of current slot t and chain C with extraction schedule D can be
defined as the range of slots, which are at least D slots in the past and are associated with
blocks in C without key extractions already inserted in C due to a non-empty gap2tip(t, C).

extWinD(t, C) = (t−D − gap2tip(t, C) : t−D ] (4)

Extraction schedule & ∆-windows. Let (d, δ, ∆)-FairPoS be parameterized by delay encryp-
tion parameter d > 0, maximum network delay δ ≥ 0 and desired monotonicity parameter
∆ > δ (Definition 7). Parameters d, δ, and ∆ are chosen to satisfy the following relation.
Note that n denotes the number of ∆-windows in extraction schedule D (see ∆-windows in
Fig. 3).

D = n∆ where n = d/(∆− δ) s.t. n ∈ Z (5)

In words: the extraction schedule D is divisible by ∆. Furthermore, the number of ∆-windows
in D must equal d/(∆ − δ). We define the m’th “∆-window” of the current slot t as the
following slot interval, consistent with Figure 3.

∆WinD(t, m) = (t− (m + 1)∆ : t−m∆] for m ∈ [0 : D

∆) (6)

AFT 2023



10:14 FairPoS: Input Fairness in Permissionless Consensus

Chain extendability. A chain C is extendable by leader of slot t with local receipt delay
view r(i) if the receipt delays specific to each slot and ∆-window are satisfied, as implied by
conditions 1 , 2 and 3 in Equation (7).

ext(t, C, r(i)) =
{

1 1 ∧ 2 ∧ 3

0 otherwise

1 ∀m ∈ [0 : D
∆ ) :

∀j ∈ ∆WinD(t, m) : r(i)(Cj) ≤ mδ + (t−m∆− j)

2 ∀j ∈ extWinD(t, C) : r(i)(Cj) ≤ D
∆ δ + (t−D − j)

3 ∀B ∈ C : B contains valid idk for each block in its extWin

(7)

Concretely, condition 1 reflects the maximum permitted receipt delays for each slot in the
m’th ∆-window. Condition 2 describes the maximum permitted receipt delays for slots in
the extraction window (Eq. 4). Observe that these conditions are satisfied in the view of
parties (a) and (b) in Figure 3 since the maximum receipt delays imposed by FairPoS are
satisfied. Condition 3 states that all blocks in the chain must include valid session keys
from past, parent blocks in their respective extraction windows.

▶ Theorem 10. (∆-Monotonicity of FairPoS) Every protocol execution of (d, δ, ∆)-FairPoS
results in an honest tree T that exhibits the ∆-monotonicity property.

Proof (Sketch). ∆-monotonicity holds, because each slot in the m’th ∆-window is granted
an additional δ receipt delay budget in the m+ 1’th ∆-window. Thus, if a chain is extendable
(eq. 7) in the view of an honest party, the same chain must be extendable by all other parties
following δ slots, despite the attack shown in eq. 3 that induces inconsistent receipt delays.
Intuitively, the protocol can tolerate worst-case, receipt delay inconsistencies of δ slots from
such attacks because each block is granted an additional δ in delay budget after ∆ slots. The
formal proof of Theorem 10 is stated in Appendix C of [16]. ◀

FairPoS execution model. We can now state the full FairPoS protocol and its execution
model in Fig. 4. FairPoS extends the δ-PoS model in Figure 1 with the longest-extendable-
chain selection rule, key extractions and the insertion of delay encrypted inputs, generated
by the procedure in Figure 2. The protocol execution state of (d, δ, ∆)-FairPoS is extended
with local receipt delays:

Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
(8)

Views in initial state Γ0 contain a genesis block, which includes public parameters
DE.pk, DE.ek. Importantly, we require the adversary A and each honest party to perform
exactly one extraction step for each pending key extraction in each round of the execution.
Thus, no party or adversary gains a time advantage in extracting session keys from blocks
(See E1 in Figure 4). It remains to formally define the longest extendable chain selection in
the local view of an honest party.

Longest-extendable-chain selection. In FairPoS, an honest slot leader chooses to extend the
longest extendable chain in its local tree view T (i), where chain extendability was previously
defined in Eq. 7.

maxExtChain(t, T (i), r(i)) = arg max
C∈T (i):ext(t,C,r(i))

len(C) (9)



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:15

(d, δ, ∆)-FairPoS consensus model

The (d, δ, ∆)-FairPoS state Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
evolves in a single round

induced by environment Z, adversary A and characteristic string w as follows.

Trees. Honest {T (i)}i∈H and adversarial T A evolve as in δ-PoS (Fig. 1) except that
the honest leader i extends the longest-extendable chain (Eq. 9) in its view T (i).

Msgs. Honest message queues {m(i)}i∈H evolve as in δ-PoS (Fig. 1).

Receipt delays. The receipt delays {r(i)}i∈H in Γt evolve as follows:
R1 For each chain C delivered to honest party i by A at slot t + 1: for each newly seen

block Cj ∈ C, party i records r(i)(Cj)← t + 1− Cj .sl.

Extraction. Each honest party i ∈ H and adversary A performs:
E1 In each round, exactly a single Extract step on each block in its local view for which

key extraction is pending.

Extend. Party i generates B = (t, H(C.tip), dext|dins, Pi) where
dext = (idk, idk′, ...) are extractions of blocks in C within extWinD(t, C) (Eq. 4).
dins = {(cj , mj , σj)}j∈[n] is an ordering of encrypted inputs from enviroment Z;
Upon receiving dins from Z, party i asserts for each entry;
∃vkj ∈ accts(C.tip) : 1← KES.Verifyvkj

((cj |mj |C.tip), σj).
Then, party i adds chain C′ = C | B to its local view.

Figure 4 Model of FairPoS execution induced by environment Z and characteristic string w.
Encrypted inputs are generated in the input procedure in Fig 2 of §4.1.

4.4 Parameterization of FairPoS
We note that in parameterizing (d, δ, ∆)-FairPoS, the maximum network delay δ is conser-
vatively chosen to reflect network realities. For given δ, monotonicity parameter ∆ and key
extraction delay d can be chosen quasi-independently. For given choices of ∆ > δ, any d

is permitted that satisifies Equation (5); namely, d must be any multiple of (∆ − δ). In
Section 5, we show that the probability of input fairness being violated by the adversary
falls exponentially in d (Theorem 19). Thus, the security of input fairness can be chosen
independently of that of common-prefix, chain growth and chain quality properties. This is
important for utility; a larger d increases the robustness of input fairness, but this comes at
a cost of the freshness of blockchain state.

Freshness of visible blockchain state. All proposed encrypt-and-reveal approaches (Sec-
tion 2) to input fairness naturally accept a compromise in the “freshness” of visible blockchain
state; a delay parameter d naturally induces a gap between the current slot, and the most
recent block in the past with already decrypted inputs. In practice, clients must submit
inputs which are then applied to a blockchain state which is not yet decrypted - in other
words, clients must generate inputs based on older blockchain state. In applications with
frequent inputs accessing the same public state, such as in decentralized finance [36], this
likely results in increased number of invalid or reverted transactions, affecting the utility
of the blockchain. In decentralized exchanges, for example, the market price is constantly

AFT 2023



10:16 FairPoS: Input Fairness in Permissionless Consensus

0 10 20 30 40
5

10

15

20

25

30

d

D
−

d

(δ, ∆) = (6, 7)
(δ, ∆) = (6, 10)
(δ, ∆) = (6, 13)
(δ, ∆) = (6, 16)
(δ, ∆) = (6, 19)

Figure 5 The decryption gap (D − d) between key extraction schedule (D) and key extraction
delay (d) is shown for selected parameterizations of (d, δ, ∆)-FairPoS. Decryption gap D − d can
be interpreted as the “efficacy” of the key extraction protocol in FairPoS, which aims to provide
extracted keys to blocks as soon as possible.

adjusted with each submitted trade. A trade order with a price limit informed by an outdated
price can become invalidated, as the older, lower price is no longer be available when the
encrypted trade order is finally decrypted. We emphasize that the trade-off between utility
and robustness of input fairness (Thm. 19) in FairPoS can be adjusted independently of
the structural blocktree properties of common-prefix (Thm. 15), chain growth (Thm. 16)
and chain quality (Thm. 17); in some applications a small, yet non-negligible probability
of front-running may be acceptable for a fresher, decrypted blockchain state offered by a
smaller delay extraction d parameter.

Decryption gap. Parameterizations of (d, δ, ∆)-FairPoS always imply an extraction schedule
greater than the extraction delay parameter (D > d) for non-zero network delay parameter δ

(Eq. 5). Let D − d denote the “decryption gap”; informally, it represents how much sooner
the consensus node performing key extraction can decrypt a block compared to a light-weight
client, which must wait for the extracted key to be included in a later block. This “slack”
in extraction schedule D is necessary to maintain consensus security due to adversarial
block delays attacking receipt delay consistency between honest users illustrated in §4.2. We
emphasize that the decryption gap D − d does not represent a compromise in input fairness
or structural security properties; instead, it reflects the efficacy of the FairPoS key extraction
protocol, which aims to provide extracted keys to lightweight clients as soon as possible after
these are extracted.

Figure 5 shows the “decryption gap” D− d for selected protocol parameters (d, δ = 6, ∆).
We highlight the first trade-off between ∆−δ and decryption gap D−d; a higher monotonicity
parameter ∆ in ∆− δ implies slower chain extendability, but can be exchanged for a smaller
decryption gap, implying higher chain utility for light clients. Furthermore, delay encryption
delay parameter d and decryption gap D − d are linearly correlated for given δ and ∆;
designing a secure key extraction protocol with sublinear decryption gap represents an
interesting problem for future work.

5 FairPoS security

Having presented a formal model of (d, δ, ∆)-FairPoS we proceed to demonstrate that it
satisfies common-prefix (Def. 15), chain growth (Thm. 16), chain quality (Thm. 17) and
input fairness (Thm. 19).



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:17

Informally, common-prefix is demonstrated by showing that any execution of (d, δ, ∆)-
FairPoS produces local blocktree views which could have resulted from a ∆-PoS execution;
since common-prefix is interpreted as a structural branching property of local blocktree views,
this allows us to directly inherit common-prefix from ∆-PoS previously proven in Praos [19].
Chain growth and chain quality are implied by ∆-monotonicity of FairPoS, previously shown
in Theorem 10. Finally, input fairness in FairPoS is inferred from common-prefix, chain
growth and chain quality.

5.1 Common-prefix in FairPoS
Demonstrating k-common-prefix in FairPoS is accomplished by formally relating the tree
views generated in an execution of (d, δ, ∆)-FairPoS with those that could have resulted from
δ-PoS. Let the honest tree of protocol execution state

Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
be the union of honest tree views at slot t:

T H(Γt) =
⋃

i∈H
T (i) (10)

In the analysis of PoS [19, 30], the branching structure of the honest tree informs us about
events where a local chain was abandoned for a longer, alternative branch according to
the longest chain selection rule. Informally, the common-prefix property is violated if the
k-common-prefix shared between prior and newly adopted chains if their shared prefix is
“too short”. We begin our analysis with the (viable) branches which could have been adopted
by honest parties in the first place.

Viable branches in PoS. A viable branch B in a tree T must exceed all honest chains-
tips generated more than δ slots prior to B.tip.slot: this property arises from the honest
application of the longest chain rule. The honest leader of B.tip.slot must have received any
honest chain-tips generated δ slots prior and considered them as alternative candidates for
extension. Therefore, the viable branch B must exceed these in length. For branch B ∈ T ,
we first formalize its set of alternative chain candidates as follows.

altChnsδ(B, T ) =

{ C ⊆ T | C.tip.ldr ∈ H ∧ B.tip.sl > C.tip.sl + δ }
(11)

For a PoS protocol execution state Γt =
(
{T (i), m(i)}i∈H, T A

)
, the set of well-formed, viable

branches is formalized as the set of branches with lengths exceeding their honest, alternative
chains.

viableBranchesPoS
δ (Γt) =

{∀B ∈ T H(Γt) | len(B) > arg max
C ∈ altChnsδ(B,T H(Γt))

len(C) } (12)

Viable chains in FairPoS. The notion of viable branches must be strengthened for FairPoS
since the longest-extendable-chain rule introduces additional constraints for the adoption of
a chain in the local honest tree view. Let the extendable prefix of a branch B in the view of
honest parties at slot t be defined as the “longest extendable prefix” of a branch.

extPrefix(t,B, {r(i)}i∈H) = arg max
C⪯B : ∃i∈H : ext(t,C,r(i))

len(C) (13)

AFT 2023



10:18 FairPoS: Input Fairness in Permissionless Consensus

For a (d, δ, ∆)-FairPoS state, let the set of viable chains be defined as the extendable
prefixes (Equation (13)) of branches in the honest tree with lengths which exceed those of its
alternative chains (Equation (11)) generated ∆ slots prior: by the ∆-monotonicity property
(Theorem 10), these chains must have been extendable by the leader that generated the
respective prefix and considered these as candidates for extension. Viable chains in FairPoS
are defined as;

viableChainsFairPoS
∆ (Γt) = { C ⊆ T H(Γt) | 1 ∧ 2 }

1 ∃B ∈ T H(Γt) : C = extPrefix(t,B, {r(i)}i∈H)
2 len(C) > arg max

C′ ∈ altChns∆(C,T H(Γt))
len(C′)

(14)

In words; a viable chain in FairPoS and the local honest view must 1 be an extendable
prefix and 2 this prefix must also exceed its alternative chains in length.

Next, we restate the divergence notion from Praos [19, 30] which formally describes the
magnitude of branching caused by the switching between viable chains.

▶ Definition 11 (Divergence). For two chains C1 and C2, define their divergence to be the
quantity

div(C1, C2) = min(len(C1), len(C2))− len(C1 ∩ C2)

where C1 ∩ C2 denotes the common prefix of C1 and C2. We extend this notion of divergence
to the protocol execution state Γ resulting from the execution of protocol π induced by
characteristic w in the δ-synchronous setting: here, the maximum divergence over any two
viable chains is quantified.

divπ
δ (Γ) = maxC1,C2∈viableBranchesπ

δ
(Γ)div(C1, C2)

Finally, we define the divergence of a characteristic string w to be the maximum divergence
observable over all states which could have resulting from protocol executions induced by w.
More formally, let execπ

δ (Γ0, w) denote all possible executions of π beginning with state Γ0
which could have been induced by w in a δ-synchronous network. Then the divergence of a
characteristic string w is defined as:

divπ
δ (w) = maxΓ∈reachableπ

δ
(Γ0,w)divπ

δ (Γ)
where reachableπ

δ (Γ0, w) = {Γ | ∃λ ∈ execπ
δ (Γ0, w) : Γ0

λ−→ Γ}
(15)

For PoS, the probability that the divergence exceeds k-blocks over an execution of R

slots, is given by the following theorem from [19]. Bounding the probability of divergence
naturally implies common-prefix security.

▶ Theorem 12. (PoS Divergence, Theorem 4 in [19]) Let active slot coefficient f ∈
(0, 1] and α be such that α(1 − f)∆ = (1 + ϵ)/2 for some ϵ > 0. Further, let w be a
string drawn from {0, 1,⊥}R according to Df

α. Then we have Prw←$Df
α
[divPoS

∆ (w) ≥ k] ≤
exp(ln(R)− Ω(k −∆)).

Towards demonstrating k-common prefix in FairPoS, we first present a central theorem,
which states that for all executions of (d, δ, ∆)-FairPoS in the δ-synchronous setting, there
exists an execution of PoS in the ∆-synchronous setting, such that viable chains of the
d, δ, ∆-FairPoS honest tree are equivalent (≡) to the viable branches of the PoS honest tree:
here, we define the equivalence of chains such that only their structural properties are
considered, formally stated in Appendix B of [16].



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:19

▶ Theorem 13 (Equivalent trees). For any (d, δ, ∆)-FairPoS execution λ induced by a
characteristic string w ∈ {0, 1,⊥}∗, Γ0 →λ Γ, there exists a ∆-PoS execution λ′ induced by
the same w, Γ′0 →λ′ Γ′, such that the viable chains in Γ are equivalent to the viable branches
in Γ′.

∀w ∈ {0, 1,⊥}∗ : ∀λ ∈ execFairPoS
δ (Γ0, w), Γ0

λ−→ Γ :
∃λ′ ∈ execPoS

∆ (Γ′0, w), Γ0
λ′

−→ Γ′ :

viableChainsFairPoS
δ (Γ) ≡ viableBranchesPoS

∆ (Γ′)

We refer to the full proof of Theorem 13 in Appendix C of [16]; here, we demonstrate
how to match any honest and adversarial action in ∆-PoS with a corresponding honest
or adversarial action in (d, δ, ∆)-FairPoS such that the viable branches of (d, δ, ∆)-FairPoS
evolve in lockstep with the viable chains in the ∆-PoS execution.

Since divergence is defined over viable chains and viable branches, we can infer Corollary 14
from Theorem 13.

▶ Corollary 14. ∀w ∈ {0, 1,⊥}∗ : divFairPoS
δ (w) ≤ divPoS

∆ (w)

This allows us to infer k-common-prefix from bounding the probability of the event divPoS
∆ (w) >

k for w ←$ Df
α in PoS [19].

▶ Theorem 15 (k-Common prefix in FairPoS). Let A be an adaptive adversary against the
protocol (d, δ, ∆)-FairPoS that corrupts up to (1−α) stake, where α be such that α(1− f)∆ =
(1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. The probability that A makes
the protocol violate the k-common-prefix property in a δ-synchronous environment throughout
a period of R slots is no more than exp(ln R + ∆− Ω(k)).

Proof. Let w be drawn from dominant distribution Df
α (Equation (1)), with honest stake α

and parameter f satisfying α(1− f)∆ = (1 + ϵ)/2 for some ϵ > 0. From Corollary 14 and
Theorem 12 we infer the following:

Pr
w←Df

α

[divFairPoS
δ (w) ≥ k] ≤ Pr

w←Df
α

[divPoS
∆ (w) ≥ k] ≤ exp(ln R + ∆− Ω(k)) (16)

From Corollary 14, divFairPoS
δ (w) ≥ k =⇒ divPoS

∆ (w) ≥ k, implying the left equality
in Equation (16). The right inequality is inferred from Theorem 12. ◀

5.2 Chain growth, chain quality and input fairness
Both chain growth and chain quality of FairPoS can be derived from ∆-monotonicity of
FairPoS (Theorem 10) and probabilities bounding security failure from PoS [19]. We refer to
Appendix C in [16] for the full proofs of the following security theorems.

▶ Theorem 16 ((τ, s)-Chain growth in (d, δ, ∆)-FairPoS). Let A be an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1− α) stake, where α be such that
α(1−f)∆ = (1+ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then the probability
that A makes the protocol violate the chain growth property with parameters s ≥ 4∆ and
τ = cα/4 throughout a period of R slots, is no more than exp(−cαs/(20∆) + lnR∆ + O(1)),
where c denotes the constant c := c(f, ∆) = f(1− f)∆.

AFT 2023



10:20 FairPoS: Input Fairness in Permissionless Consensus

▶ Theorem 17 ((µ, k)-Chain quality in (d, δ, ∆)-FairPoS). Let A be an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1 − α) stake, where α be such
that α(1 − f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then the
probability that A makes FairPoS violate the chain quality property with parameters k and
µ = 1/k throughout a period of R slots, is no more than exp(ln R− Ω(k)).

Input fairness is obtained from chain growth, common prefix and chain quality. Informally,
given time d and chain growth rate τ , we can determine common-prefix and chain quality
parameters such that a decrypted input must have sufficient time (d slots) to reach finalization
or lie in an abandoned chain.

▶ Lemma 18 (Input fairness from CG, CP and CQ in (d, δ, ∆)-FairPoS). Input fairness
is implied in an execution of (d, δ, ∆)-FairPoS, in which (τ, d)-chain growth, (dτ(τ − δ/(∆−
δ))− 1)-common prefix and (1/(D + 1), D + 1)-chain quality hold, where D = d∆/(∆− δ)

In the full proof of Lemma 18 in Appendix C of [16], we derive the relation between the
security parameters of chain growth, common-prefix and chain quality shown above such that
there is always sufficient time for an honestly encrypted input to reach the common-prefix;
here we must carefully accomodate “time advantages” granted to the adversary. Firstly,
observe that whenever there are empty slots between the chain tip and current slot, the
adversary is granted time to decrypt the current session key without any progress towards
finalization. Secondly, in the case of a leading adversarial block-span, the adversary is granted
another head start in completing key extraction, as it can generate the block span prior to
their associated slots and begin key extraction ahead of time.

▶ Theorem 19 (Input fairness in (d, δ, ∆)-FairPoS). Let A be an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1− α) stake, where α be such that
α(1 − f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then, the
probability that A makes the FairPoS violate the input fairness property falls exponentially
with d.

Theorem 19 is proven in Appendix C in [16] which relates the delay extraction parameter d

with the security parameters of k-common-prefix, (τ, s)-chain growth and (µ, k)-chain quality.

6 Conclusion

We presented FairPoS, the first longest-chain, proof-of-stake protocol achieving input fairness
against an adaptive adversary. When adopting the leader election procedure from Ouroborous
Praos [19] or one that induces leader sequences (i.e. characteristic strings) consistent with
the dominant distribution (Definition 1), FairPoS achieves input fairness in addition to the
common-prefix, chain-growth and chain-quality properties of PoS [19]. We note that Kiayas
et al. [30] provide tighter bounds for k-common prefix in PoS. Applying this updated analysis
framework to security of FairPoS is planned as future work.



J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:21

References
1 VDF Alliance. VDF Alliance Official Wiki. https://supranational.atlassian.net/wiki/

spaces/VA/overview, 2022.
2 Avalanche. Apricot Phase Four: Snowman++ and Reduced

C-Chain Transaction Fees. https://medium.com/avalancheavax/
apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf,
2021.

3 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018. doi:10.1145/3243734.3243848.

4 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019. doi:
10.1145/3319535.3363213.

5 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Maximizing extract-
able value from automated market makers. arXiv preprint arXiv:2106.01870, 2021. URL:
https://arxiv.org/pdf/2106.01870.

6 Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine Oechsner.
Tardis: a foundation of time-lock puzzles in uc. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part III, pages 429–459.
Springer, 2021. doi:10.1007/978-3-030-77883-5_15.

7 Joseph Bebel and Dev Ojha. Ferveo: Threshold Decryption for Mempool Privacy in BFT
networks. Cryptology ePrint Archive, 2022. URL: https://eprint.iacr.org/2022/898.

8 Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448. Springer, Heidelberg,
August 1999. doi:10.1007/3-540-48405-1_28.

9 Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290.
Springer, Heidelberg, November 2020. doi:10.1007/978-3-030-64375-1_10.

10 Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexander Russell. Linear
consistency for proof-of-stake blockchains. arXiv preprint arXiv:1911.10187, 2019. URL:
https://arxiv.org/abs/1911.10187.

11 Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology—CRYPTO 2000:
20th Annual International Cryptology Conference Santa Barbara, California, USA, August
20–24, 2000 Proceedings, pages 236–254. Springer, 2000. URL: https://link.springer.com/
content/pdf/10.1007/3-540-44598-6.pdf#page=248.

12 Jeffrey Burdges and Luca De Feo. Delay encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 302–326. Springer, 2021.
doi:10.1007/978-3-030-77870-5_11.

13 Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. Quick Order Fairness. arXiv preprint
arXiv:2112.06615, 2021. URL: https://arxiv.org/abs/2112.06615.

14 Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring, and Jes-
per Buus Nielsen. Encryption to the future - A paradigm for sending secret messages to future
(anonymous) committees. In ASIACRYPT 2022, Part III, LNCS, pages 151–180. Springer,
Heidelberg, December 2022. doi:10.1007/978-3-031-22969-5_6.

15 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO YOSO: Fast and
simple encryption and secret sharing in the YOSO model. In ASIACRYPT 2022, Part I, LNCS,
pages 651–680. Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22963-3_22.

AFT 2023

https://supranational.atlassian.net/wiki/spaces/VA/overview
https://supranational.atlassian.net/wiki/spaces/VA/overview
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3319535.3363213
https://doi.org/10.1145/3319535.3363213
https://arxiv.org/pdf/2106.01870
https://doi.org/10.1007/978-3-030-77883-5_15
https://eprint.iacr.org/2022/898
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-030-64375-1_10
https://arxiv.org/abs/1911.10187
https://link.springer.com/content/pdf/10.1007/3-540-44598-6.pdf#page=248
https://link.springer.com/content/pdf/10.1007/3-540-44598-6.pdf#page=248
https://doi.org/10.1007/978-3-030-77870-5_11
https://arxiv.org/abs/2112.06615
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22963-3_22


10:22 FairPoS: Input Fairness in Permissionless Consensus

16 James Hsin-yu Chiang, Bernardo David, Ittay Eyal, and Tiantian Gong. FairPoS: Input
Fairness in Permissionless Consensus. https://eprint.iacr.org/2022/1442, 2023. Full paper
version.

17 Dan Cline, Thaddeus Dryja, and Neha Narula. ClockWork: An Exchange
Protocol for Proofs of Non Front-Running. In The Stanford Blockchain
Conference 2020, 2020. URL: https://www.media.mit.edu/publications/
clockwork-an-exchange-protocol-for-proofs-of-non-front-running/.

18 P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. Flash
boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. In IEEE Symposium on Security and Privacy, pages 910–927. IEEE, 2020. doi:
10.1109/SP40000.2020.00040.

19 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018. doi:10.1007/978-3-319-78375-8_3.

20 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 248–277. Springer, 2019. doi:
10.1007/978-3-030-34578-5_10.

21 Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly: Verifiable
encryption to the future made practical. Cryptology ePrint Archive, 2022. URL: https:
//eprint.iacr.org/2022/433.

22 Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-interactive threshold
cryptosystems through anonymity. Cryptology ePrint Archive, Report 2021/1290, 2021. URL:
https://eprint.iacr.org/2021/1290.

23 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015. doi:10.1007/978-3-662-46803-6_
10.

24 Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song. Storing
and retrieving secrets on a blockchain. In PKC 2022, Part I, LNCS, pages 252–282. Springer,
Heidelberg, May 2022. doi:10.1007/978-3-030-97121-2_10.

25 Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 332–354. Springer, Heidelberg,
August 2001. doi:10.1007/3-540-44647-8_20.

26 Fredrik Kamphuis, Bernardo Magri, Ricky Lamberty, and Sebastian Faust. Revisiting
transaction ledger robustness in the miner extractable value era. In International Con-
ference on Applied Cryptography and Network Security, pages 675–698. Springer, 2023.
doi:10.1007/978-3-031-33491-7_25.

27 Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permis-
sionless setting. In Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop,
pages 3–14, 2022. doi:10.1145/3494105.3526239.

28 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
Strong Order-Fairness in Byzantine Consensus, 2021. URL: https://eprint.iacr.org/2021/
1465.

29 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Annual International Cryptology Conference, pages 451–480. Springer, 2020.
doi:10.1007/978-3-030-56877-1_16.

30 Aggelos Kiayias, Saad Quader, and Alexander Russell. Consistency of proof-of-stake blockchains
with concurrent honest slot leaders. In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), pages 776–786. IEEE, 2020. doi:10.1109/ICDCS47774.2020.
00065.

https://eprint.iacr.org/2022/1442
https://www.media.mit.edu/publications/clockwork-an-exchange-protocol-for-proofs-of-non-front-running/
https://www.media.mit.edu/publications/clockwork-an-exchange-protocol-for-proofs-of-non-front-running/
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2021/1290
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-031-33491-7_25
https://doi.org/10.1145/3494105.3526239
https://eprint.iacr.org/2021/1465
https://eprint.iacr.org/2021/1465
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1109/ICDCS47774.2020.00065
https://doi.org/10.1109/ICDCS47774.2020.00065


J.-H.-y. Chiang, B. David, I. Eyal, and T. Gong 10:23

31 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017. doi:10.1007/978-3-319-63688-7_12.

32 Dahlia Malkhi and Pawel Szalachowski. Maximal Extractable Value (MEV) Protection on a
DAG. arXiv e-prints, pages arXiv–2208, 2022. URL: https://arxiv.org/abs/2208.00940.

33 Peyman Momeni. Fairblock: Preventing blockchain front-running with minimal overheads.
Master’s thesis, University of Waterloo, 2022. URL: https://eprint.iacr.org/2022/1066.

34 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
Technical report, Massachusetts Institute of Technology. Laboratory for Computer Science,
1996. URL: http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf.

35 Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket Kate, and Domin-
ique Schröder. Opensquare: Decentralized repeated modular squaring service. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
3447–3464, 2021. doi:10.1145/3460120.3484809.

36 Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
William J Knottenbelt. Sok: Decentralized finance (defi). arXiv preprint arXiv:2101.08778,
2021. URL: https://arxiv.org/abs/2101.08778.

AFT 2023

https://doi.org/10.1007/978-3-319-63688-7_12
https://arxiv.org/abs/2208.00940
https://eprint.iacr.org/2022/1066
http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf
https://doi.org/10.1145/3460120.3484809
https://arxiv.org/abs/2101.08778




Correlated-Output Differential Privacy and
Applications to Dark Pools
James Hsin-yu Chiang #

Aarhus University, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Mariana Gama #

COSIC, KU Leuven, Belgium

Christian Janos Lebeda #

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Abstract
In the classical setting of differential privacy, a privacy-preserving query is performed on a private
database, after which the query result is released to the analyst; a differentially private query
ensures that the presence of a single database entry is protected from the analyst’s view. In this
work, we contribute the first definitional framework for differential privacy in the trusted curator
setting (Fig. 1); clients submit private inputs to the trusted curator, which then computes individual
outputs privately returned to each client. The adversary is more powerful than the standard setting;
it can corrupt up to n− 1 clients and subsequently decide inputs and learn outputs of corrupted
parties. In this setting, the adversary also obtains leakage from the honest output that is correlated
with a corrupted output. Standard differentially private mechanisms protect client inputs but do
not mitigate output correlation leaking arbitrary client information, which can forfeit client privacy
completely. We initiate the investigation of a novel notion of correlated-output differential privacy to
bound the leakage from output correlation in the trusted curator setting. We define the satisfaction
of both standard and correlated-output differential privacy as round differential privacy and highlight
the relevance of this novel privacy notion to all application domains in the trusted curator model.

We explore round differential privacy in traditional “dark pool” market venues, which promise
privacy-preserving trade execution to mitigate front-running; privately submitted trade orders and
trade execution are kept private by the trusted venue operator. We observe that dark pools satisfy
neither classic nor correlated-output differential privacy; in markets with low trade activity, the
adversary may trivially observe recurring, honest trading patterns, and anticipate and front-run
future trades. In response, we present the first round differentially private market mechanisms that
formally mitigate information leakage from all trading activity of a user. This is achieved with
fuzzy order matching, inspired by the standard randomized response mechanism; however, this also
introduces a liquidity mismatch as buy and sell orders are not guaranteed to execute pairwise, thereby
weakening output correlation; this mismatch is compensated for by a round differentially private
liquidity provider mechanism, which freezes a noisy amount of assets from the liquidity provider
for the duration of a privacy epoch, but leaves trader balances unaffected. We propose oblivious
algorithms for realizing our proposed market mechanisms with secure multi-party computation
(MPC) and implement these in the Scale-Mamba Framework using Shamir Secret Sharing based
MPC. We demonstrate practical, round differentially private trading with comparable throughput as
prior work implementing (traditional) dark pool algorithms in MPC; our experiments demonstrate
practicality for both traditional finance and decentralized finance settings.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Differential Privacy, Secure Multi-party Computation, Dark Pools, Decent-
ralized Finance

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.11

© James Hsin-yu Chiang, Bernardo David, Mariana Gama, and Christian Janos Lebeda;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jachiang@cs.au.dk
https://orcid.org/0000-0002-5126-9494
mailto:bernardo@bmdavid.com
mailto:mariana.botelhodagama@esat.kuleuven.be
https://orcid.org/0000-0002-2759-043X
mailto:chle@itu.dk
https://orcid.org/0000-0001-9517-8466
https://doi.org/10.4230/LIPIcs.AFT.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 Correlated-Output Differential Privacy and Applications to Dark Pools

P1

P2 T A

P3

x1

x2

M(x = x1, x2, x3)x3

P1 P1

P2 C P2

P3 P3

x1

x2

M1(x = (x1, x2, x3))

M2(x)

M3(x)x3

Figure 1 The standard model of differential privacy (L) vs. the trusted curator model (R). In this
work, we contribute the first definitional framework for differential privacy in the trusted curator
model (§3.1).

Related Version Full Version: https://eprint.iacr.org/2023/943

Supplementary Material Software: https://github.com/maargama/CorrOutDP-darkpool
archived at swh:1:dir:3db7239f8dc2f11cc277b8c18dd37d5d5aae7f79

Funding James Hsin-yu Chiang: Part of the work was supported by a DTU Compute scholarship.
Bernardo David: This work was supported by the Independent Research Fund Denmark (IRFD)
grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B.
Mariana Gama: This work was supported by CyberSecurity Research Flanders with reference
number VR20192203 and by the FWO under an Odysseus project GOH9718N.
Christian Janos Lebeda: This work was supported by the VILLUM Foundation grant 16582.

1 Introduction

In the standard differential privacy setting (Fig. 1, left), a single analyst (A) receives a
query on private inputs from clients (P1, P2, P3) computed by the trusted third party (T ). A
differentially private query protects the privacy of an input xi submitted by client Pi. In
the trusted curator model (Fig. 1, right), the curator C evaluates a function on all privately
submitted inputs, (y1, y2, y3)←M(x1, x2, x3), and returns each output yi privately to client
Pi, which may be corrupted by the adversary. A (classically) differentially private mechanism
M will protect the honest input x1. However, if honest output y1 = M1(x1, x2, x3) and
adversarial output yi̸=1 = M i(x1, x2, x3) are correlated, honest y1 may be trivially inferred
from an adversarial yi̸=1, breaking client privacy. In this work, we introduce correlated-output
differential privacy (§3.3) to protect against such leakage to achieve client privacy in the
setting of the trusted curator. The conjunction with standard differential privacy protecting
inputs is defined as round differential privacy (§3.4), protecting the entire client transcript
in each interaction round. In this model, the adversary can inject inputs to each round;
round differential privacy insures that such a chosen-input attack has a bounded effect
on the honest user’s output. We highlight the investigation of round differentially private
algorithms for general and specific application domains as a research question of independent
interest. In this work, we investigate round differentially private market applications to
prevent front-running in traditional or decentralized finance.

The term front-running originates from the notion of “getting in front” of pending trades.
A party anticipating a large buy order may purchase the same asset first, as the pending
large buy order will likely drive up the price of the asset; the front-running party can then
sell the asset at a higher price following the execution of the large buy order. Front-running
occurs whenever submitted trade orders that have yet to be executed are observable by the

https://eprint.iacr.org/2023/943
https://github.com/maargama/CorrOutDP-darkpool
https://archive.softwareheritage.org/swh:1:dir:3db7239f8dc2f11cc277b8c18dd37d5d5aae7f79;origin=https://github.com/maargama/CorrOutDP-darkpool;visit=swh:1:snp:e0f73f67d30cf7efb6e2c497894268e109a87635;anchor=swh:1:rev:1e787978ca51b159fe3063548813fb3d41ec005f


J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:3

front-running adversary. In traditional finance, the presence of pending orders may be public
or inferred from market order books. In decentralized finance, pending transactions are
publicly gossiped across a peer-to-peer network. In both settings, front-running is prevalent.

In traditional finance, Dark Pool venues [25] promise the private execution of trades.
Here, clients submit private orders to the venue operator, who then computes the execution
of trades without leaking pending orders submitted by clients; pre-trade privacy ensures that
pending orders remain private, whilst post-trade privacy protects the privacy of the trade
execution. An initial attempt to provide both pre-trade and post-trade privacy would be to
implement a market venue with a trusted curator role; in each round, parties can submit the
trade orders privately to the curator, which then computes an optimal matching of submitted
trade orders. The trade results are then privately output to each participating client. Since
all communication between individual client and curator is private, no trade orders or trade
outcomes are explicitly leaked. Removing the trusted curator role in dark pools with secure
multi-party computation (MPC) has been recently explored in [6, 7, 12, 13], demonstrating
practical run-times amenable to real-world trading volume.

However, we observe that round differential privacy is violated in classical order-matching
algorithms run by dark pool venues; a trade execution always implies a counter-party, thus
revealing the presence of another trade in the opposing direction (Lemmas 4 and 6); such
leakage occurs because trade execution are necessarily correlated between different parties.
In venues with low trade volume, such inferences may lead to practical attacks. Consider the
Time-Weighted Average Price (TWAP)1 trade, where a larger trade volume is scheduled as
smaller trades over time to minimize price impact. If the periodic execution of such smaller
trades is detected early, the remaining trade schedule can be anticipated and front-run. This
motivates our investigation of market mechanisms with formal, privacy guarantees protecting
the full transcript of interactions between trader and dark pool venue.

In this work, we contribute round-differentially-private (§4) market mechanisms for the
trusted curator model. Here, the actual “trade”, “no-trade” outcome for each order is de-
termined by sampling a Bernoulli distribution biased towards the deterministically computed,
optimal matching. However, since trades are filled or not filled based on independently
sampling trade outcomes, there is no guarantee that each executed trade is matched with an
equivalent volume in the opposing direction; therefore, a liquidity deficit may occur. Here,
market makers or liquidity providers make up for liquidity deficits. To prevent liquidity
providers from learning about the traded volume of a single user from their updated liquidity
balances, a random, yet bounded amount of market maker liquidity is frozen to obtain
round differential privacy; frozen liquidity is returned to the market makers at the end of
each privacy epoch, that is sufficiently long for honest users to complete long-running trade
strategies.

We instantiate our fuzzy order matching market mechanisms with oblivious MPC al-
gorithms (§5) and implement these algorithms using the Scale-Mamba framework [3] with
Shamir Secret Sharing based MPC; history has shown that dark pool venue operators
frequently exploit confidential order flow information [20, 21, 19], thus motivating us to
demonstrate practical feasibility of distributing round differential private market mechanisms
across MPC committees in lieu of a trusted operator. We show that our algorithms not
only satisfy stronger privacy guarantees than considered in previous work, they also achieve
high order throughput appropriate for most real-world settings. In fact, even with the
additional overhead induced by round differentially private algorithms, we obtain runtimes

1 https://en.wikipedia.org/wiki/Time-weighted_average_price

AFT 2023

https://en.wikipedia.org/wiki/Time-weighted_average_price


11:4 Correlated-Output Differential Privacy and Applications to Dark Pools

comparable to the algorithms presented in prior work implementing traditional dark pools
in MPC [12]. Finally, we emphasize that our fair market mechanism designs are applicable
to both traditional dark pool venue operators and decentralized finance. Our fair markets
can be instantiated in privacy-preserving smart contract frameworks realized by an MPC
committee and privacy-preserving ledger, most recently demonstrated by Baum et al. in [4]
with minimal complexity overhead; here, trade execution is settled in private on a public
ledger.

1.1 Related Work
Differentially private markets. Chitra et al. [11] propose a Uniform Random Execution
algorithm which permutes and splits submitted trades in a randomized, differentially private
manner. We note that [11] does not offer output or post-trade privacy; all executed trades
are seen by the adversary. Thus, this approach does not contribute to our goal of protecting
the privacy of long-running trader strategies performed over multiple rounds.

Dark pool markets. Recent proposals [6, 7, 12, 13] have convincingly demonstrated that the
role distribution of the dark pool operator can be instantiated in practice with multi-party
computation (MPC) to prevent abuse of private order information. Still, these works also do
not consider the entirety of information flow leaking from all honest trader activity; Firstly,
adversarial outputs reveal information about privately submitted honest inputs (Lemma 4)
and secondly, outputs are correlated, such that an adversary also obtains information about
honest outputs (Lemma 6). In the decentralized finance setting, homomorphic encryption has
been proposed to aggregate orders obliviously [24]; however, since all inputs are encrypted to
the same public key, any subsequent decryption to reveal the aggregated order will leak the
privacy of any single trade, if all but one client has been corrupted.

Differential privacy and MPC. Whilst differentially private mechanisms have been imple-
mented in MPC, these works do not consider privacy over the full, individual transcript in the
trusted curator model (§3.1), where clients submit private inputs and receive private outputs.
Instead, the MPC output is a single query result computed over inputs from a private
database. Here, the returned query is not considered private. The main use-case is generating
differentially private machine learning models over private data with MPC [22, 1, 27, 23].

2 Preliminaries

Differential privacy. Differential privacy was introduced in [14] as a technique for quantifying
the privacy guarantees of a mechanism. A central concept is the definition of neighbouring
datasets which are denoted x ∼ x′. Intuitively, this definition is used to capture the
information we want to protect. Typically x and x′ are identical except for the data about
one individual. We formally define neighbouring inputs in our setting of the trusted curator
in Section 3.1. Differential privacy is a restriction on how much the output distribution of a
mechanism can change between any neighbouring input datasets.

▶ Definition 1 ((ε, δ)-DP). A randomized mechanism M satisfies (ε, δ)-differential privacy
if for all pairs of neighbouring datasets x ∼ x′ and all sets of outputs S we have:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(x′) ∈ S] + δ



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:5

Multi-party computation. Multi-party computation is a cryptographic technique that
allows a set of n mistrustful parties to calculate a function of their own private inputs without
revealing them. We consider an MPC protocol based on Shamir secret sharing, where a
secret value s is shared by giving each party i the evaluation f(i) of a polynomial f of degree
t and coefficients in Fp such that f(0) = s. The protocol assumes an honest majority, i.e.,
t < n/2, and it is actively secure with an abort, meaning that a malicious party deviating
from the protocol is caught with overwhelming probability and the honest parties abort
the protocol when this happens. In this work, we use Scale-Mamba [3], a framework that
implements various MPC protocols in the preprocessing model. In this methodology, the
computation has a preprocessing phase where input independent data is generated. This
data is then used in the input dependent online phase, where the desired computation over
private inputs is performed.

3 Round differential privacy in the trusted curator model

In this section, we first formalize the round-based trusted curator model (§3.1). Round
differential privacy is defined over two distinct notions: (1) Input differential privacy (§3.2)
protects the honest input, and mirrors the classic notion of differential privacy over a
private database. (2) Correlated output differential privacy (§3.3) protects leakage from
correlated outputs, and represents a novel privacy notion of general interest for all application
domains. Round differential privacy (§3.4) is defined over (1) and (2); here, we also form-
alize multi-round differential privacy, to protect the entire honest transcript over multiple
interaction rounds in the trusted curator model.

3.1 The trusted curator
We first define our proposed notions of privacy in the “trusted curator” model (Fig. 1), which
can then seamlessly be applied to the setting of secure multi-party computation. The trusted
curator C interacts with parties P1, ..., Pn, which are assumed to have established private,
authenticated communication links with the trusted curator. Interaction proceeds in rounds,
each consisting of the following phases.
1. Input phase All parties send their individual inputs to the trusted curator C, which

obtains the input set x1, ..., xn from parties P1, ..., Pn respectively.
2. Evaluation phase Upon receiving all inputs, the trusted curator locally computes a

known algorithm M over inputs received in the input phase: namely y←M(x), where
x = (x1, ..., xn) and y = (y1, ..., yn). Further, curator C is assumed to have access to
randomness to evaluate randomized algorithms.

3. Output phase The trusted curator privately sends each output element yi in y to
party Pi, and enters the input phase again. Any “public output” ypub is encoded in each
individual output; ∀i ∈ [n] : ypub ∈ yi.

Client corruption. The adversary A can statically corrupt up to n− 1 clients, upon which
it decides what inputs the corrupted clients submit in each interaction round. The adversary
decides corrupted inputs and observes the output for each corrupted client returned from the
trusted curator; the adversary cannot corrupt the curator itself. We denote the adversarial
output view from a round evaluating mechanism M on round inputs x as MA(x).

Public outputs. We permit the trusted curator to also return public outputs; naturally,
any public output is part of the adversarial output view MA(x).

AFT 2023



11:6 Correlated-Output Differential Privacy and Applications to Dark Pools

Privacy against the network adversary. We assume that the physical presence of a party in
each round is observable by the network adversary. Since obfuscating the active participation
across the network may be challenging, we assume parties to be physically online and to
participate in each round, but permit them to submit dummy inputs, allowing for passive
participation and obfuscating the logical presence of a party in a given round. Without
dummy inputs, the physical presence of a party will always leak the presence of a logical
input contributed by a party to the computation by the trusted curator; in the setting of
privacy-preserving markets, for example, the network adversary would learn that a party is
submitting some trade in a given round.

Further, we assume that parties can anonymously submit inputs to the trusted curator via
techniques such as mixnets [9, 8], thereby hiding their identity from the network adversary.
In practice, parties can delegate the physical interaction with the trusted curator model in
each round to trusted servers, and only need to come online when they wish to forward a
valid, non-dummy input.

Group privacy. We highlight that individual differential privacy guarantees introduced in
the subsequent section naturally imply group privacy; a mechanism protecting the presence
of a single client can do so for multiple clients, consuming equal privacy budget amounts for
each additional group member.

3.2 Differential privacy for inputs
In the standard setting of differential privacy, an analyst performs a query on a private
database and the result of the query is released to the analyst; a differentially private query
bounds how much the analyst output distribution changes, upon adding or removing an
entry in the private database.

We adapt the classic notion of differential privacy to the setting of the trusted curator.
Instead of protecting private database entries, we first wish to protect inputs submitted by
honest clients. We introduce a dummy value that allows clients to have no impact on a given
round. Thus, the following definition of neighbouring input vectors follows directly from the
standard definition of neighbouring databases under the add/remove relation in the classic
setting.

▶ Definition 2 (neighboring input vectors). Input vectors x = (x1, ..., xn) and x′ =
(x′

1, ..., x′
n) of equal length are neighboring, denoted as x ∼ x′, if the following holds true;

∃i ∈ [n] : xj = x′
j for all j ̸= i and (xi = dummy or x′

i = dummy)

For a randomized algorithm M evaluated on input vector x, let MA(x) = {Yj}j∈A denote
output distributions observed by corrupted clients. Then, the following definition follows
directly from the standard notion [15] of differential privacy where we consider the input
vector as the private database on which the query M is performed and the adversary obtains
the output view MA(x) of all corrupted parties. Note that there is no restriction on the
output distribution seen only by the honest user.

▶ Definition 3 ((ε, δ)-input DP). For an evaluation of (ε, δ)-input differentially private
algorithm M in the trusted curator model over neighboring private input vectors x ∼ x′, the
following must hold for any adversarially observable output event SA.

Pr[ MA(x) ∈ SA ] ≤ exp(ε) · Pr[ MA(x′) ∈ SA ] + δ



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:7

As we will see in Section 3.3, input differential privacy is necessary, but insufficient
to protect both in- and output of an honest client in the trusted curator round. Whilst
Definition 3 protects the privacy of a user input, it does not guarantee that the honest
output remains private. This motivates correlated-output differential privacy, introduced in
the subsequent section Section 3.3. Again, the standard setting of differential privacy does
not consider the privacy of the query output, as there is only a single query result released
publicly or to the adversarial analyst.

▶ Lemma 4. Dark Pools violate (ε, δ)-input differential-privacy for any δ < 1.

Proof (Sketch). A dark pool venue operator can be idealized as a trusted curator which
privately receives trade orders from clients. Upon evaluating the market algorithm in private,
it privately outputs trade executions to clients. Assume an honest user submits the only
buy order and the corrupted client submitting a sell order observes that its trade order is
executed. Any change in the honest counter-party’s privately submitted buy order cancels
the matching of this order pair, observable to the adversary with probability 1, thereby
violating Definition 3. ◀

Adversarially chosen inputs. Note that input differential privacy in Definition 3 naturally
protects against chosen input attacks; informally, such an attack permits the adversary to
change its inputs and observe induced effects on its output distributions to learn something
about honest inputs. However, note that (ε, δ)-input DP applies equal privacy guarantees to
any input submitted to the trusted curator. Thus, for appropriately chosen privacy parameters,
a chosen input attack on an (ε, δ)-input DP mechanism will not reveal meaningful information
to the adversary, as its chosen input perturbation will not induce a sufficiently observable
effect on its output distributions.

3.3 Differential privacy for correlated outputs
In contrast to prior work, where a single output is returned from a differentially-private
mechanism, we must protect the privacy of outputs that are returned from the trusted
curator to individual clients over private channels. Even if input differential privacy protects
honest inputs, the individual outputs returned to clients may still be strongly correlated,
potentially allowing honest outputs to be inferred from corrupted ones.

▶ Definition 5 ((ε, δ)-correlated-output DP). For an evaluation of (ε, δ)-correlated output
differentially private algorithm M in the trusted curator model over fixed input vector x, the
following must hold for any adversarial output event SA and any honest output event Sh.

Pr[ MA(x) ∈ SA |Mh(x) ∈ Sh ] ≤ exp(ε) · Pr[ MA(x) ∈ SA |Mh(x) ̸∈ Sh ] + δ

Definition 5 is interpreted as follows; for any set of inputs and two different honest output
events (Mh(x) ∈ Sh vs. Mh(x) ̸∈ Sh), the output distribution MA(x) of the adversary
remains (ε, δ)-similar. In other words, any change in the honest output can only have a
bounded effect on the adversarially observable output distribution.

We highlight an immediate consequence of Definition 5 for economic applications; a
correlated-output DP mechanism cannot distribute funds to all clients where the supply of
output funds is known or public; an adversary corrupting n− 1 clients can trivially infer the
funds privately output to the single honest client by just aggregating its own outputs and
observing the difference to the total supply. Thus;

AFT 2023



11:8 Correlated-Output Differential Privacy and Applications to Dark Pools

▶ Lemma 6. Economic mechanisms evaluated in the trusted curator model which allocate a
fixed supply of “assets” over client outputs violate (ε, δ)-correlated-output differential privacy
for any δ < 1.

Overcoming this is not straight-forward, as financial applications cannot be allowed to arbit-
rarily mint or create funds out of thin air. We overcome these constraints by performing fuzzy
matching of orders and temporarily freezing funds to achieve correlated-output differential
privacy in rDP-volume-match (Section 4.1) and rDP-double-auction (Section 4.2).

Applications with correlated outputs. We argue there exist many applications in the
trusted curator setting which require correlated outputs; most closely related to this work are
economic applications which govern the private allocation of finite resources, which include
auctions, markets, financial derivatives and other economic contracts.

3.4 Single-round & Multi-round privacy
Since (ε, δ)-input DP and (ε, δ)-correlated-output DP protect different parts of the honest
round transcript, we must formally consider two separate privacy budgets which are consumed
with each interaction round in the trusted curator model. We define differential privacy for
each interaction round with the trusted curator as follows.

▶ Definition 7 (Round-DP). The evaluation of a mechanism that satisfies (εin, δin)-input
DP and (εout, δout)-correlated-output DP is (εin, δin)-(εout, δout)-round differentially private.

Definition 7 implies that the privacy of input and outputs may be parameterized independently.
Indeed, this permits the trade-off between utility and privacy for different parts of the honest
transcript to be decided separately; the input to an evaluation round may require a higher
degree of privacy than the returned output or vice versa.

Multi-round privacy. When applying differential privacy to queries on a static database, m

instances of (εi, δi)-differentially private queries taken together are (ε1 + ... + εm, δ1 + ... + δm)
differentially private using basic composition [15] with tighter bounds known using advanced
composition [17]. However, in the trusted curator model, the curator accepts fresh inputs in
each interaction round, allowing us to consider each round input as disjoint, private data.
We define multi-round differential privacy as the sensitivity of the adversarial output view
over m rounds to changes in inputs submitted and outputs received by a single client.

▶ Definition 8 (m-round-DP). Let the adversarial output view over m interaction rounds
between n-clients and the trusted curator be given as MA

1 (x1), ... , MA
m(xm). Then, we define

this m-round transcript as;

MA
mul(x̄) = (MA

1 (x1), ... , MA
m(xm)) where x̄ = (x1, ... , xm) are round-specific client inputs.

Let m-round client inputs x̄ = (x1, ..., xm) and x̄′ = (x′
1, ..., x′

m) be neighboring if they only
differ in inputs submitted by a single client throughout the m rounds;

∃!client i : ∀round r ∈ [m] :
(

xr = x′
r

)
or

(
xr ∼ x′

r where xr(i) ̸= x′
r(i)

)
Further, we denote an m-round output event for the adversary and honest client as SA

mul =
SA

1 , ...,SA
m and Sh

mul = Sh
1 , ...,Sh

m respectively.



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:9

The m-round interaction is (εin, δin)-(εout, δout)-m-round differentially private if for any
two neighbouring m-round inputs x̄ and x̄′, any adversarial and honest m-round events SA

mul
and Sh

mul, the following holds true;

Pr[ MA
mul(x̄) ∈ SA

mul ]
≤ exp(εin) · Pr[ MA

mul(x̄′) ∈ SA
mul ] + δin (a)

Pr[ MA
mul(x̄) ∈ SA

mul |Mh
mul(x̄) = Sh

mul ]
≤ exp(εout) · Pr[ MA

mul(x̄) ∈ SA
mul |Mh

mul(x̄) ̸= Sh
mul ] + δout (b)

The following theorem relates single-round DP (def. 7) with m-round DP (def. 8),
allowing us to achieve multi-round privacy from sequential interaction rounds between clients
and the trusted curator.

▶ Theorem 9 (m-round composition (updated 2)). Let there be m consecutive inter-
action rounds with n clients and the trusted curator. In each round, the trusted cur-
ator evaluates round-specific algorithms M1, ..., Mm that are run independently and are
(εin

1 , δin
1 )-(εout

1 , δout
1 ) , ... , (εin

m, δin
m)-(εout

m , δout
m ) round differentially private and evaluated on

round-specific input vectors x1, ... , xm. Then, the m-round evaluation is( ∑
j∈[m]

εin
j ,

∑
j∈[m]

δin
j

)
−

( ∑
j∈[m]

εout
j ,

∑
j∈[m]

δout
j

)
m-round differentially private.

Proof. We use the basic version of the adaptive composition theorem for the proof. Since
the inputs in each round are either equal or neighboring, the m-round notion of input DP
(Eq. (a) in Def. 8) follows directly from applying the Composition Theorem for approximate
DP (see [26, Theorem 22]).

Towards satisfying the m-round notion of correlated-output DP (Eq. (b) in Def. 8) notice
that for each round we can define the event Sh that the honest output agrees with Sh

mul.
Definition 5 then tells us that each round is (εj , δj)-indistinguishable. Similar to the input DP
we can use the Composition Theorem to get guarantees for the m-round correlated-output
DP. ◀

4 Round differentially private market mechanisms

We propose round differentially private market mechanisms in the trusted curator model.
These include volume matching of orders, where a batch of buy and sell orders (§4.1) are
matched at a given exchange rate determined at an external reference market, and double
auctions (§4.2), where buy and sell orders also feature price limits, such that a clearing price
must first be computed for each round before orders can be matched. Following a gentle
introduction, each algorithm is formally proven to satisfy round differential-privacy.

To realize any meaningful notion of privacy in practice, we later distribute the trusted
curator by means of secure multi-party computation (MPC) in section §5.

4.1 Round-DP volume matching
In volume matching, the exchange rate is pre-determined by an external reference rate. A
trader only chooses to submit a sell, buy or to abstain from the round with a dummy order.
We introduce a (εin, δin)-(εout, δout)-round differentially private volume matching algorithm

AFT 2023



11:10 Correlated-Output Differential Privacy and Applications to Dark Pools

named rDP-Volume-match, overcoming the privacy limitations of the traditional dark pool
setting, where a matched buy and sell order pair implies leaking the presence of an order
execution to the counter-party and thereby violates both input- and correlated-output
differential privacy (Lemmas 4 and 6). We overcome this privacy challenge with the following
two phases in the rDP-Volume-match algorithm (Fig. 2).

1. Fuzzy order matching. In the first phase of rDP-volume-match, orders are matched in a
“fuzzy” manner; following a preliminary, deterministic matching step which maximizes number
of trades, each final trade output (trade/no-trade) for each client is sampled independently
from a distribution parameterized by εin and biased towards the preliminary matching result;
we adapt this technique from the standard randomized response mechanism [15, 28], that is
both (εin, 0)-input and (0, 0)-correlated output differentially private; the latter property arises
naturally from the independent sampling of outputs which occurs in randomized response.
Randomized, fuzzy matching of orders also implies that the final aggregate exchange of assets
may not sum to zero; in any given round, the total buy volume may not equal the total sell
volume. We handle this mismatch in the second phase of rDP-volume-match.

2. Liquidity compensation. We introduce a liquidity provider, which compensates for the
mismatch between buy and sell volume; however, without any additional treatment, the
adversary corrupting n− 1 traders and the liquidity provider can trivially learn the honest
output from the implied flow of assets between corrupt and honest parties (e.g. output
correlation). To ensure that the corrupt liquidity provider’s output is correlated-output
differentially private, a randomized amount of its liquidity is frozen; here, the parameterization
of rDP-Volume-match permits the choice of an upper limit (ρmax) on frozen volumes of both
the risky and numeraire asset types, thereby bounding the opportunity cost imposed on
the liquidity provider. We define a privacy epoch over multiple rounds in Definition 10,
during which the privacy guarantees of rDP-volume-match hold; if the frozen liquidity is later
returned to the liquidity provider, round differential privacy is no longer guaranteed. In
practice, we argue that it is acceptable to guarantee round differential privacy for a bounded
number of rounds, during which honest users can complete their multi-round trading strategy
without front-running interference. For privacy guarantees to hold indefinitely, assets would
have to burned. Note that assets are never minted, preserving the integrity of their supply.
We also note that, in principle, multiple liquidity providers could participate in each round
of rDP-Volume-Match; we model a single liquidity provider to simplify exposition and formal
proofs.

Next, we detail and motivate steps of rDP-volume-match and refer to Fig. 2 for a formal
description of the algorithm.

Orders in rDP-Volume-match. Let a valid, privately submitted trade order be the tuple
(b, s, id), where b and s represent buy and sell bits respectively, and id is the trader identifier.
Thus, let (b, s) ∈ [(1, 0), (0, 1), (0, 0)] represent a buy, sell and dummy order respectively. We
fix buy and sell unit volumes such that a single sell and buy order always match in exchanged
asset value.

1a. Deterministic matching (1a. in Fig. 2). Let the number of orders sent to the trusted
curator by n clients be x = {(b, s, id1), ..., (b, s, idn)}. Then, the maximum possible number
of matches between buy (b, s) = (1, 0) and sell (b, s) = (0, 1) orders is computed, which is



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:11

rDP-Volume-match. Following inputs are assumed to be well-formed for simplicity.
Each trader P trd

i ∈ (P trd
1 , ...,P trd

n ) inputs trade order (bi, si, idi).
The liquidity provider P liq inputs liquidity amounts (xliq

0 , xliq
1 ).

The privacy parameters εin, εout, δout > 0 and ρmax.

1. Fuzzy order matching

1a. Deterministic matching of buy & sell orders
Aggregate number of buy and sells; ∀i: B ← B + bi, and S ← S + si

Determine the number of matched pairs; u← min(B, S).
Match u pairs of buy and sell orders;
Let matchi ∈ {0, 1} indicate a match for party Pi for i ∈ [n].

1b. Randomized response over order matches
∀i: If matchi, sample tradei ←$ eεin

/(1 + eεin
), otherwise tradei ←$ 1/(1 + eεin

)
If tradei is true and (bi, si) ̸= (0, 0);
∗ Return (bout

i = 1, sout
i = 0, idi) to P trd

i for a buy order (bi = 1, si = 0)
∗ Return (bout

i = 0, sout
i = 1, idi) to P trd

i for a sell order (bi = 0, si = 1)
Else return (bout

i = 0, sout
i = 0, idi) to P trd

i

2. Liquidity compensation

2a. Liquidity compensation for sampled trades
Aggregate final buy and sell volumes; ∀i: ob ← ob + bout

i , and os ← os + sout
i

Determine the liquidity mismatch; ∆0 ← (os − ob) and ∆1 ← −∆0

2b. Randomized liquidity freezing
Sample frozen volumes; ∀t ∈ {0, 1} : ρt ←$ Pfrz (Param. by ρmax, εout, δout in Eq. 4).
Return liquidity amounts (yliq

0 , yliq
1 )← (xliq

0 + ∆0 − ρ0 , xliq
1 + ∆1 − ρ1) to P liq.

Freeze (ρ0, ρ1), return to P liq at the end of the privacy epoch.

Figure 2 RDP-Volume-match algorithm.

simply the smaller of the number of buy b and sell s orders. Let the result of the deterministic
matching phase be the bit array match = (match1, ..., matchn), where bit matchi indicates if
the i’th submitted order was matched (1) or not (0). Once the total number of preliminary
matched pairs is computed, they are assigned randomly to the non-dummy orders; dummy
orders are never matched.

1b. Randomized response over matches (1b. in Fig. 2). Here, we apply the standard
randomized response mechanism [15, 28] to determine whether a trade or no-trade is returned
to the trader who submitted a valid trade order; for each bit in array match where matchi = 1,
the probability of the final tradei bit equaling 1 or 0 is given by;

Pr[ tradei = 1 |matchi = 1 ] = eεin
/(1 + eεin

) (1)

Pr[ tradei = 0 |matchi = 1 ] = 1/(1 + eεin
)

Conversely, for each bit matchi = 0 in match and in the case that party i did not submit a
dummy order, the probability of the final tradei outcome being sampled as 1 or 0 is given by;

Pr[ tradei = 1 |matchi = 0 ] = 1/(1 + eεin
) (2)

Pr[ tradei = 0 |matchi = 0 ] = eεin
/(1 + eεin

)

AFT 2023



11:12 Correlated-Output Differential Privacy and Applications to Dark Pools

Thus, for parties submitting valid, non-dummy trades, each of the final trading results in
array trade = [trade1, ..., traden] is obtained from independently sampling from distributions
Eq. 1 or 2 according to the matchi bit output from the deterministic matching subroutine
[1a]. Trader outputs are given by the array [(bout

1 , sout
1 , id1), ..., (bout

n , sout
n , idn)], where each

entry (bout
i , sout

i , idi) returned to party i indicates whether a buy (bout
i , sout

i ) = (1, 0), sell
(bout

i , sout
i ) = (0, 1) or no trade (bout

i , sout
i ) = (0, 0) was executed;

We emphasize that a trade can only be executed if a non-dummy order was submitted
at the beginning of the round, and in the same direction (sell or buy) as intended by the
trader. Dummy orders always return (bout, sout) = (0, 0) as output; the fuzzy matching is
only applied to valid, non-dummy orders only, and thus the trading “interface” remains the
same as in traditional volume matching algorithms; a trade order is either filled or not at all.

2a. Liquidity compensation for sampled trades (2a. Fig. 2). Fuzzy matching of orders via
randomized response implies that traded volumes from step [1b] in rDP-volume-match do not
match precisely; for the trade outputs [(bout

1 , sout
1 , id1), ..., (bout

n , sout
n , idn)], the following can

occur;∑
i∈[n]

sout
i ̸=

∑
i∈[n]

bout
i

Since sells and buys may not cancel out, we introduce the presence of a liquidity provider,
which compensates for this mismatch in traded asset liquidity. Then, the amount of the
numeraire asset (∆0) and risky asset (∆1) provided (∆ < 0) or received (∆ > 0) by the
liquidity provider is given as;

∆0 = −
∑
i∈[n]

sout
i − bout

i ∆1 =
∑
i∈[n]

sout
i − bout

i (3)

The liquidity provider compensates for this liquidity imbalance resulting from fuzzy
matching; its initial balances (xliq

0 , xliq
1 ) are updated to (xliq

0 + ∆0, xliq
1 + ∆1); however, note

that any change in the honest user’s trade execution will affect ∆0, ∆1 with probability 1,
observable by the corrupted liquidity provider and violating correlated-output differential
privacy (Def. 5); relaxing the correlation between the final exchange of assets and the update
in funds observed by the liquidity provider can only imply the minting or removal of funds
in the round outputs.

We propose a compromise, which is a randomized mechanism to freeze liquidity, protecting
the privacy of traders for the m-round duration that the liquidity remains frozen; we call this
a privacy epoch (Def. 10). Our algorithm DP-volume-match refrains from minting, preserving
the integrity of the underlying asset types.

2b. Randomized liquidity freezing (2b. in Fig. 2). (L8 in Figure 6). The liquidity provider
inputs (xliq

0 , xliq
1 ) amounts of numeraire (0) and risky (1) asset to a given round, and is

returned updated reserve balances (yliq
0 , yliq

1 ) = (xliq
0 + ∆0 − ρ0, xliq

1 + ∆1 − ρ1), where (ρ0, ρ1)
is the volume of assets (0) and (1) frozen in the given round and returned at the end of the
privacy epoch, chosen to be sufficiently long to protect a common trading strategies executed
over multiple rounds.

Note that it would be easy to freeze liquidity with perfect privacy if we had unbounded
liquidity. The liquidity provider could provide n units of each asset in every round and
liquidity would be frozen such that (yliq

0 , yliq
1 ) = (xliq

0 − n, xliq
1 − n). However, the required

liquidity would not be feasible for large n. Our mechanism instead provides a trade-off



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:13

0 2 4 6 8 10 12

10−6

10−5

10−4

10−3

10−2

10−1

100

ρmax

δou
t

εout = 0.0
εout = 0.5
εout = 1.0
εout = 1.5
εout = 2.0
εout = 2.5

Figure 3 We plot selected parameterizations of Pfrz in Eq. 4. The choice of parameters represents
a trade-off between degree of privacy (εout, δout) and frozen funds (ρmax).

between privacy and frozen liquidity. In each round we sample ρ0 ∈ [0, ρmax] and set
ρ1 = ρmax − ρ0. We give the probability mass function Pfrz from which ρ0 is sampled in
Equation (4); this distribution is parameterized by a maximum amount of frozen liquidity
ρmax ≥ 1 in the round, and correlated-output differential privacy parameters εout, δout.

Pfrz(ρ0) =


δout · exp(εout · ρ0) ρ0 ∈ [ 0 : ⌈ρmax−1

2 ⌉ ]
δout · exp(εout · (ρmax − ρ0)) ρ0 ∈ [ ⌈ρmax−1

2 ⌉+ 1 : ρmax ]
0 otherwise

(4)

The sensitivity of ρ0 +∆0 and ρ1 +∆1 to the execution of a single trade is ±1. Distribution
frz allocates probability mass across multiples of unit trade volume; neighbouring freezing
events ρt and ρt ± 1 are allocated probabilities which differ by factor exp(εout). Since we
limit the amount of frozen tokens to the range [0 : ρmax], we must accept a non-zero δout

probability of violating (εout)-correlated-output differential privacy (See Lemma 13).

Parameterization of Pfrz. The freeze distribution is parameterized by (εout, δout, ρmax), but
we note that these cannot be chosen independently; parameters are set so the aggregate
probability mass of the Pfrz is 1. We illustrate various parameterizations of εout, δout and
ρmax in Fig. 3. To achieve (2.5, 4.5 · 10−4)-correlated-output differential privacy, ρmax must
be set to 6, implying that up to 6 unit volumes of each asset type provided by the liquidity
provider will be frozen. Lowering the ρmax reduces frozen liquidity, but implies higher privacy
parameters δout or εout. For ρmax = 6 and rounds exceeding 103 number of submitted orders
(as benchmarked in §5.3), we argue the opportunity cost of freezing up to 6 unit volumes of
each asset represents an acceptable cost for round-differential-privacy.

Cost of liquidity provisioning. In fuzzy order matching, the worst case liquidity mismatch
occurs when all submitted orders are in the equal direction and are all executed or fulfilled.
Here, the maximum mismatch in liquidity is exactly the number of clients submitting orders
in the round. Thus, the liquidity provider has to provide as much liquidity as number
of clients (xliq

0,1 = n), in addition to ρmax of each asset type in each round. However, in
rDP-Volume-match, the exchange rate is decided apriori according to an external reference
price; we argue that the vast majority of the liquidity can be sourced directly from the
external market trading at the reference price. In the blockchain context, this could be a

AFT 2023



11:14 Correlated-Output Differential Privacy and Applications to Dark Pools

large Automatic Market Maker with sufficient liquidity, thereby reducing the amount of
liquidity required from the liquidity provider to just ρmax of each asset type. We leave the
detailed analysis of effective incentivization of liquidity provisioning to future work; we
imagine traders submitting trade fees in each round, but do not model this explicitly.

▶ Definition 10 (Privacy epoch). We define a privacy epoch over the repeated execution of
rDP-Volume-match for m rounds, during which the participating liquidity provider contributes
amounts of risky and numéraire assets to be frozen in each round; all frozen funds are
returned when the m rounds of the privacy epoch are completed.

We emphasize that the following privacy properties hold for client in- and outputs during
the duration of a single private epoch; once the frozen funds are returned, round differential
privacy no longer holds. For purposes of mitigating front-running, we argue that the epoch
duration should be chosen to be sufficiently long permit the execution of common, long-
running honest user strategies. Alternatively, if the frozen funds provided by the liquidity
provider are never returned or burnt, the following privacy properties hold absolutely.

We refer to Appendix A of [10] for formal proofs of the following theorem and lemmas
which demonstrate round differential privacy for rDP-Volume-matching.

▶ Theorem 11. rDP-Volume-matching is (εin + εout, δout)-(εout, δout)-m-round-differentially-
private.

Theorem 11 follows directly from Lemmas 13 and 14, while the latter is demonstrated by
leveraging bounds from Lemmas 12 and 13; we refer to the proof strategy in Appendix A of
[10].

▶ Lemma 12. rDP-Volume-matching is (εin, 0)-input differentially private against an ad-
versary that sees the adversarial trade outputs.

▶ Lemma 13. rDP-Volume-matching is (εout, δout)-correlated-output differentially private.

▶ Lemma 14. rDP-Volume-matching is (εin + εout, δout)-input differentially private.

4.2 Round DP double auctions
We propose a round differentially private double auction algorithm, called DP-double-auction
for the trusted curator setting. Here, we introduce an initial sub-routine to compute an (εin

1 , 0)-
input differentially-private clearing price from trade orders input to the round. Subsequently,
rDP-volume-match (§4.1) is performed on the subset of trade orders with price limits consistent
with the clearing price.

For each round, we assume a discrete price range r = [r1, ..., rl]; without differentially
privacy, the discrete price maximizing the number of order matches would be selected; to
preserve input differential privacy, the exponential mechanism is applied to determine the
clearing price.

Orders in rDP-double-auction. Inputs submitted to DP-double-auction are input in the
form of x = [(w1, dir1, id1), ..., (wn, dirn, idn)], where each valid trade order (wi, diri, idi),
contains bit array wi = [wi1, ..., wil], where each bit wij indicates whether user i is willing to
buy (diri = 0) or sell (diri = 1) at price rj ∈ r.



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:15

Round differentially private clearing price. In the spirit of the round differentially private
mechanisms introduced thus far, rDP-double-auction first computes a deterministic clearing
price, and then applies a randomized, mechanism to determine the final, (εin

1 , 0)-input
differentially private clearing price. Note that since the clearing price is “publicly” released,
there is no private client output privacy to protect. For each discrete price index j ∈ [l], we
aggregate trade orders willing to sell or buy at price rj ∈ r. Let Sj denote all sell orders
willing to sell at price rj ∈ [r] and Bj denote all buy orders willing to buy at price rj ∈ [r].
Then, the number of matched pairs at price rj is given by uj = min(Bj , Sj), resulting in
ux = {u1, ..., uj}. Here, we interpret (ux : Z≤l → Z≤n/2) as the utility function for sampling
the final clearing price with the exponential mechanism.

The exponential mechanism, first introduced by McSherry and Talwar [18], realizes
a probability distribution over a range of events, for which the mechanism designer can
express a utility score function ux applicable to each event; thus, events can be allocated
probability mass proportional to exp

(
εin

1 · ux(r)/(2∆u)
)
, where ∆u denotes the sensitivity

of the utility function to a change to a single input. In other words, the mechanism designer
can influence the probability distribution over events by allocating higher utility scores to
preferred outcomes.

In DP-double-auction, the sensitivity of ux(j) at any discrete price index j ∈ [l] is simply
1; thus ∆u = 1. A change in an honest input from valid to a dummy order or from a dummy
order to valid affects at most one match per price. Therefore,

∆u = max
x,x′

max
j∈[l]

| ux(j)− ux′(j) |≤ 1

Then, the probability distribution over which the clearing price is sampled is given by the
exponential mechanism parameterized by utility function ux, which in turn is determined
from the submitted trade orders x. Thus, the probability of each discrete price rj ∈ r is
given by;

Pr[j] = exp(εin
1 · ux(j)/2)∑

i∈[|r|] exp(εin
1 · ux(i)/2)

(5)

Since the exponential mechanism is (εin
1 , 0)-input differentially-private over all inputs

([18]), we consume εin
1 of our (εin, 0)-input differential-privacy budget when outputting the

clearing price computed over x, leaving another εin
2 for the subsequent rDP-volume-match at

price r, such that εin = εin
1 + εin

2 .

rDP-Volume matching at clearing price. We subsequently apply rDP-volume-match from
Section 4.1 at sampled clearing price from the preceding exponential mechanism step,
returning the trade outputs from DP-volume-match privately to each trading client and frozen
liquidity amounts to the liquidity provider.

▶ Theorem 15. rDP-double auction is m-round-differentially-private.

We refer to Appendix A of [10] for the formal proof of Theorem 15.

5 Round-DP market mechanisms with MPC

To obtain a fair market in practice, we instantiate the trusted curator with a set of MPC
parties who execute the market mechanisms described in Sections 4.1 and 4.2 using an MPC
protocol. In Sections 5.1 and 5.2, we present a formal description of the proposed market
mechanisms, as well as some textual explanation for the steps of the algorithms where some
care is required to ensure the efficiency of the MPC execution.

AFT 2023



11:16 Correlated-Output Differential Privacy and Applications to Dark Pools

We implement our oblivious algorithms in the online/offline preprocessing paradigm;
during a preceding (off-line) preprocessing phase, secret-shared data is generated which is
independent of secret client inputs. When running experiments, we focus on benchmarking
online phases, as pre-processing phase can be outsourced or parallelized. Thus, in Section 5.3,
we present online runtimes for both the rDP-volume-match algorithm and the rDP-double-
auction algorithm. We show that, even though these algorithms satisfy stronger privacy
guarantees than those in previous works on dark pools using MPC, high order throughput is
still achieved. Indeed, the runtimes of our rDP-volume-match algorithm are in the same order
of magnitude as those of the Bucket Match algorithm from [12], which provides a similar
functionality but without round-differential-privacy. The rDP-double-auction algorithm, on
the other hand, has a more expensive input correctness check, becoming more expensive as
we consider more price points. Even so, it can process around one thousand orders in just
2 seconds when considering 100 price points. Thus, we introduce the possibility for users
to choose the prices at which they wish to trade while achieving practical throughput and
satisfying round-differential-privacy.

5.1 rDP-volume-match with MPC
The formal description of the rDP-volume-match algorithm instantiated with MPC is presented
in Figures 5 and 6. Note that both the order format and the InputCheckVM procedure in
Figure 5, as well as the first 2 steps of the MatchVol procedure in Figure 6 are identical to
the ones in the Bucket Match algorithm from [12].

Randomness sampling. We note that distributions sampled during the randomized matching
response and the liquidity compensation are independent of the input orders, and can thus
be obliviously sampled ahead of time by running the procedure NoiseGen in Figure 6 together
during the preprocessing phase of the MPC algorithm. The sampling, described in Figure 4,
is performed using the inverse transform sampling method, adapted from [16]. To sample a
random value from a distribution given by probability mass function P , we start by taking
the corresponding cumulative distribution function, FX(x) =

∑
xi≤x P (X = xi). We then

sample a secret shared value ⟨z⟩ ∈ (0, 1] uniformly at random, which can be derived from a
randomly generated integer as shown in [16]. The desired distribution can now be obtained
by taking the first x such that FX(x) is greater or equal to ⟨z⟩.

Sample: On input P , the probability distribution of a discrete random variable X that may
take k different values x1, ...xk:
1. Sample ⟨z⟩ ∈ (0, 1] uniformly at random.
2. For all i: Fi ←

∑i

j=1 P (X = xj)
3. For all i: ⟨ci⟩ ← (Fi ≥ ⟨z⟩).
4. For all i: ci ← Open(⟨ci⟩).
5. Return xj for the lowest j such that cj = 1.

Figure 4 Sampling from a probability distribution P with MPC..

Input format check. Since the orders are secret shared among the MPC parties, a format
verification step is required. I.e., we need to check that every order i is such that (bi, si) ∈
{(1, 0), (0, 1), (0, 0)}. To do so, we run the InputCheckVM procedure in Figure 5, where orders
without the correct format are rejected.



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:17

InputCheckVM: On input x′ = [x′
1, ..., x′

n], where x′
i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩) and bi, si, idi ∈ Fp:

Check validity of inputs bits: (0, 0) ∨ (0, 1) ∨ (1, 0).
1. Sample αi, βi, γi uniformly at random.
2. ⟨ti⟩ ← αi · (⟨bi⟩ · ⟨bi⟩ − ⟨bi⟩) + βi · (⟨si⟩ · ⟨si⟩ − ⟨si⟩) + γi · (⟨bi⟩ · ⟨si⟩)
3. ti ← Open(⟨ti⟩)
4. If ti = 0 then add x′

i to a list x, otherwise reject x′
i.

5. Return x.

Figure 5 Input correctness check for the rDP-volume-match algorithm (from [12], Figure 3)..

NoiseGen: Use Sample from Figure 4 to compute the noise for steps 5 and 9:
For all i: ⟨πi⟩ ← Sample(Prr) (def. in Eq. 1).
⟨ρ0⟩, ⟨ρ1⟩ ← Sample(Pfrz) (def. in Eq. 4)

rDP-volume-matching: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n ) and P liq, respectively,
where x′ = [x′

1, ..., x′
n], x′

i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩), xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩) and bi, si, idi, xliq

0 , xliq
1 ∈ Fp:

1. Let x← InputCheckVM(x′)
2. Let y, yliq ← MatchVol(x, xliq)
3. Return y = [y1, ..., yn], yliq to (P trd

1 , ...,P trd
n ) and P liq, respectively.

Subroutines invoked by rDP-volume-matching

MatchVol: On input x = [x1, ..., xn] and xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩):

Step [1a] Deterministic matching of buy & sell orders
1. For all i: ⟨B⟩ ← ⟨B⟩+ ⟨bi⟩, and ⟨S⟩ ← ⟨S⟩+ ⟨si⟩
2. Let ⟨c⟩ ← (⟨S⟩ > ⟨B⟩) and ⟨u⟩ ← ⟨c⟩ · ⟨B⟩+ (1− ⟨c⟩) · ⟨S⟩.
3. For all i: ⟨bigi⟩ ← ⟨c⟩ · ⟨si⟩+ (1− ⟨c⟩) · ⟨bi⟩.
4. For all i, let ⟨σb

i ⟩ ←
∑i

h=1⟨bh⟩ and ⟨σs
i ⟩ ←

∑i

h=1⟨sh⟩.
5. For all i, let ⟨σ′

i⟩ ← ⟨c⟩ · ⟨σs
i ⟩+ (1− ⟨c⟩) · ⟨σb

i ⟩
6. For all i, let ⟨match′

i⟩ ← (⟨σ′
i⟩ ≤ ⟨u⟩) · ⟨bigi⟩

7. For all i: ⟨matchi⟩ ← (1− ⟨c⟩) · ⟨si⟩+ ⟨c⟩ · ⟨bi⟩+ ⟨match′
i⟩

8. Set match = [⟨match1⟩, ..., ⟨matchn⟩]
Step [1b] Randomized response over order matches

9. For all i:
Let ⟨tradei⟩ ← ⟨πi⟩ · ⟨matchi⟩+ (1− ⟨πi⟩) · (1− ⟨matchi⟩)
Let ⟨bout

i ⟩ ← ⟨bi⟩ · ⟨tradei⟩
Let ⟨sout

i ⟩ ← ⟨si⟩ · ⟨tradei⟩
Add yi = (⟨bout

i ⟩, ⟨sout
i ⟩, ⟨idi⟩) to the output list y.

Step [2a] Liquidity compensation for sampled trades
10. For all i: ⟨ob⟩ ← ⟨ob⟩+ ⟨bout

i ⟩, and ⟨os⟩ ← ⟨os⟩+ ⟨sout
i ⟩

11. Let ⟨∆0⟩ ← (⟨os⟩ − ⟨ob⟩) and ⟨∆1⟩ ← −⟨∆0⟩
Step [2b] Randomized liquidity freezing

12. yliq = (⟨yliq
0 ⟩, ⟨y

liq
1 ⟩)← (⟨xliq

0 ⟩+ ⟨∆0⟩ − ⟨ρ0⟩ , ⟨xliq
1 ⟩+ ⟨∆1⟩ − ⟨ρ1⟩)

13. Update (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩)← (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩) + (⟨ρ0⟩, ⟨ρ1⟩)
14. Return y = [y1, ..., yn], yliq.

Figure 6 rDP-volume-matching algorithm with MPC.

Fuzzy order matching. To achieve the desired differential privacy guarantees, we avoid
revealing any of the secret shared values throughout the computation. This is unlike the
Bucket Match mechanism from [12], where the trading direction with the most total volume
was revealed, and the matching procedure was simplified by opening successful orders as soon
as they were matched. As a consequence, we obtain a more complex, oblivious procedure,

AFT 2023



11:18 Correlated-Output Differential Privacy and Applications to Dark Pools

described in MatchVol in Figure 6. Here, we calculate the cumulative total volume for each
i and for each direction, thus obtaining ⟨σb

i ⟩ and ⟨σs
i ⟩ (note that we need to perform the

calculations in both directions to hide which direction has more total volume). We then
compare ⟨u⟩ (the total matched volume in each direction) with the cumulative volume at
each index i, and accept every order i until ⟨u⟩ is exceeded. A randomized response over the
matches is obtained by using the randomness ⟨πi⟩ sampled during MPC pre-processing.

Liquidity compensation. This phase of the oblivious algorithm, realized in step 12 of the
MatchVol procedure (Fig. 6), is identical to the liquidity compensation procedure described
in Section 4.1, except that we are now operating over secret shared values.

5.2 rDP-double-auction with MPC
The formal description of the rDP-double-auction algorithm instantiated with MPC is presented
in Figures 7 and 8.

Input format check. The correctness of the inputs is verified by the procedure InputCheckDA
in Figure 7, which checks that ⟨diri⟩ as well as every ⟨wij⟩ are bits and rejects order i if that
is not the case. For the orders in the correct format, this procedure additionally converts
⟨wij⟩ and ⟨diri⟩ into a sequence of pairs (⟨bij⟩, ⟨sij⟩), where ⟨bij⟩ and ⟨sij⟩ represents whether
order i is a buy, sell or a dummy for price j (i.e., ⟨bij⟩ and ⟨sij⟩ have the same meaning as
in Section 5.1, but are now associated with a specific price rj).

InputCheckDA: On input x′ = [x′
1, ..., x′

n], where x′
i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩]

and wij , diri, idi ∈ Fp:
Check all inputs are bits.

1. For all j: sample αij uniformly at random.
2. Sample βi uniformly at random.
3. ⟨ti⟩ ← αi1 · (⟨wi1⟩ · ⟨wi1⟩ − ⟨wi1⟩) + ... + αil · (⟨wil⟩ · ⟨wil⟩ − ⟨wil⟩)
4. ⟨ti⟩ ← ⟨ti⟩+ βi · (⟨diri⟩ · ⟨diri⟩ − ⟨diri⟩)
5. ti ← Open(⟨ti⟩)
6. If ti ̸= 0 then reject x′

i. Otherwise, continue to the next step.
7. For all j, let ⟨bij⟩ = ⟨wij⟩ · (1− ⟨diri⟩) and ⟨sij⟩ = ⟨wij⟩ · ⟨diri⟩.
8. Add xi = (⟨bi1⟩, ⟨si1⟩, ..., ⟨bil⟩, ⟨sil⟩, ⟨idi⟩) to a list x.
9. Return x.

Figure 7 Input correctness check for rDP-double-auction..

Exponential mechanism. We obliviously determine how many orders can be matched at
each price point by calculating ⟨uj⟩ for each price rj the same way as ⟨u⟩ was calculated
in the rDP-volume-matching algorithm. The exponential mechanism can now be used to
select the best trading price. The probability Pr[j] associated with price point rj depends
on the corresponding utility value ⟨uj⟩, and since the utility must remain private, the
calculated probabilities Pr[j] will also be secret shared values. While this does not affect the
sampling procedure (the algorithm in Figure 4 remains unchanged if the probability mass
function is private), computing each Pr[j] will require the expensive evaluation of a secure
exponentiation.

To avoid exponentiation and efficiently compute the selection probabilities with MPC, we
use the techniques proposed in [5]. Firstly, instead of considering the selection probabilities
as given in Eq. 5, we reduce the complexity by calculating unnormalized probabilities ⟨Wj⟩



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:19

(called weights), where ⟨Wj⟩ = exp(ε · ⟨uj⟩/2). The clearing price sampling can later be
performed using these weights by multiplying ⟨z⟩ with

∑l
j=1 exp(ε · ⟨uj⟩/2), as shown in

steps 4-8 of FindPrice in Figure 8. Secondly, there are two possible solutions for computing
the weights according to the value of εin

1 (recall that εin
1 is the input privacy budget consumed

when executing the exponential mechanism; εin
1 is public and fixed beforehand):

(i) For εin
1 = 2 · ln(2), we get ⟨Wj⟩ = 2⟨uj⟩. This value can be directly written as

(⟨0⟩, ⟨0⟩, ⟨2⟩, ⟨uj⟩) by using the floating-point notation introduced in [2]. With this nota-
tion, a secret shared floating-point value ⟨f⟩ is represented as a tuple (⟨s⟩, ⟨o⟩, ⟨v⟩, ⟨p⟩)
with f = (1− 2 · s) · (1− o) · v · 2p, where s is the sign bit (set to 1 when f is negative),
o is the zero bit (set to 1 when f is zero), v is the mantissa and p the exponent.

(ii) For εin
1 = 2·ln(2)/2d, where d ∈ N, we get ⟨Wj⟩ = 2⟨uj⟩/2d = 2⌊⟨uj⟩/2d⌋ ·2(⟨uj⟩ mod 2d)/2d .

The weight ⟨Wj⟩ can thus be obtained by calculating the exponentiation with base 2
on the integer part of ⟨uj⟩/2d, and multiplying it by a corrective term 2(⟨uj⟩ mod 2d)/2d

which takes one out of 2d possible values depending on uj . The 2d possible terms are
publicly pre-computed and the correct one is obliviously selected using ⟨uj⟩.

There is an additional procedure in [5] for calculating the weights for arbitrary values of
εin

1 . This procedure relies on the decomposability of the considered utility function, meaning
that clients can locally calculate the weights associated with their own inputs and these can
later be combined to obtain a correct global weight using MPC. Since our utility function is
not decomposable, this method is not applicable. An alternative for computing the weights
for arbitrary εin

1 would be to first publicly calculate all the possible weights according to the
amount of submitted orders, and then obliviously select the correct weight for each price
point. This would however imply several secure comparisons and become inefficient for large
amounts of submitted orders and available price points. It is therefore preferable to choose
εin

1 according to the formats in (i) or (ii), which already provide considerable flexibility.

rDP-double-auction: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n ) and P liq, respectively,
where x′ = [x′

1, ..., x′
n], x′

i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩], xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩) and

wij , diri, idi, xliq
0 , xliq

1 ∈ Fp, as well as a list of prices r = [r1, ..., rl]:
1. Let x← InputCheckDA(x′)
2. xmatch, ⟨cR⟩, ⟨uR⟩ ← FindPrice(x)
3. Execute MatchVol from Figure 6 from step 3 with inputs xmatch = [xmatch

1 , ..., xmatch
n ], xliq,

⟨cR⟩ and ⟨uR⟩.
Subroutine invoked by rDP-double-auction

FindPrice: On input x = [x1, ..., xn], where xi = (⟨bi1⟩, ⟨si1⟩, ..., ⟨bil⟩, ⟨sil⟩, ⟨idi⟩):
1. For all j: ⟨Bj⟩ ← ⟨Bj⟩+ ⟨b1j⟩+ ... + ⟨bnj⟩, and ⟨Sj⟩ ← ⟨Sj⟩+ ⟨s1j⟩+ ... + ⟨snj⟩.
2. For all j, let ⟨cj⟩ ← (⟨Sj⟩ > ⟨Bj⟩) and ⟨uj⟩ ← ⟨cj⟩ · ⟨Bj⟩+ (1− ⟨cj⟩) · ⟨Sj⟩.
3. Calculate weights ⟨W1⟩, ..., ⟨Wl⟩ using Algorithm 3 from [5] on input ⟨u1⟩, ..., ⟨ul⟩.
4. For all j: ⟨Fj⟩ ←

∑j

h=1⟨Wh⟩
5. Sample ⟨z′⟩ ∈ (0, 1] uniformly at random and let ⟨z⟩ ← ⟨z′⟩ · ⟨Fl⟩.
6. For all j: ⟨qj⟩ ← (⟨Fj⟩ ≥ ⟨z⟩).
7. For all j: qj ← Open(⟨qj⟩).
8. R← rj for the lowest j such that qj = 1.
9. Set xmatch

i = [⟨biR⟩, ⟨siR⟩, ⟨idi⟩].
10. Return xmatch = [xmatch

1 , ..., xmatch
n ], ⟨cR⟩ and ⟨uR⟩.

Figure 8 rDP-double-auction algorithm with MPC.

AFT 2023



11:20 Correlated-Output Differential Privacy and Applications to Dark Pools

Figure 9 Runtimes in seconds (with logarithmic scale on the x-axis) for the online phase of the
rDP-volume-match algorithm.

After a price is selected, we can run the rDP-volume-matching algorithm in Figure 6,
starting from step 3 of the MatchVol procedure. Note that since we do not know which orders
accept the selected price, every order submitted to the double auction will also be considered
when subsequently executing the volume matching. Orders that did not accept the select
price will appear as dummies during the matching.

5.3 Experiments
To benchmark the performance of our MPC algorithms, we implemented and executed them
using Scale-Mamba [3] with Shamir secret sharing between 3 parties. All the parties are run
on identical machines with an Intel i-9900 CPU and 128GB of RAM. The ping time between
all the machines is 1.003 ms. Precise numerical values for the results presented here are given
in Appendix B of [10].

Online phase of rDP-volume-match. The runtimes for the online phase of one round of the
rDP-volume-match algorithm for an increasing number of submitted orders can be found in
Figure 9. These runtimes include the InputCheckVM procedure described in Figure 5 which,
is identical to the one in the “Bucket Match” dark pool algorithm from [12], and has an
average runtime of 0.00013 seconds (0.13 ms) per order. The randomness sampling for the
randomized matching response and the frozen liquidity can be done in the preprocessing
phase of the MPC, and is thus not considered for the presented results. The runtimes
increase approximately linearly with the number of orders (note the logarithmic scale on the
horizontal axis), and we see that our algorithm achieves a high order throughput, taking
just under 4 seconds to process 10 thousand orders. While InputCheckVM is identical to the
input correctness check of the Bucket Match algorithm from [12], our matching procedure
MatchVol is slower than the one in Bucket Match. Because of the stronger privacy guarantees
we want to satisfy, we cannot reveal intermediary computation results such as which direction
has larger total volume or which orders are already matched, as in the Bucket Match. This
results in a more complex (and thus more expensive) matching phase. Nonetheless, we note
that our runtimes are in the same order of magnitude as the ones presented in [12]. Our
rDP-volume-match algorithm can process 10 thousand orders in 3.94 seconds. The Bucket
Match algorithm, on the other hand, processes 26838 orders in 4.14 seconds, i.e., it processes



J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:21

around 2.5 times as many orders in a similar amount of time. The slightly lower throughput
of rDP-volume-match should still be high enough for most real-world applications, especially
considering the improved privacy it provides.

Online phase of rDP-double-auction. The runtimes for the online phase of the rDP-double-
auction algorithm for an increasing number of submitted orders and different values of εin

1
can be found in Figure 9. These runtimes include the InputCheckDA procedure described in
Figure 7, as well as the FindPrice procedure from Figure 8 and the MatchVol from Figure 6
starting from step 3.

Figure 10 Runtimes in seconds (with logarithmic scale on the x-axis) for the online phase of
the rDP-double-auction algorithm with different values of εin

1 , showing: (left) selection between 10
different price points; (right) selection between 100 different price points. εin

1 is the amount of input
privacy budget consumed when executing the exponential mechanism to find the clearing price.

The average runtime of InputCheckDA is of 0.00030 seconds (0.30 ms) per order when
considering 10 price points and 0.00145 seconds (1.45 ms) per order when considering 100
price points. The percent contribution of this part of the algorithm to the total runtime
becomes more significant as the number of orders increases, constituting around 50% of the
total runtime across all εin

1 values when considering 10 thousand orders with 10 price points,
and 70% to 80% when considering 10 thousand orders with 100 price points, depending on
the choice of εin

1 . The FindPrice procedure, on the other hand, does not get significantly
slower with the increase in the number of orders. This is also the only part of the algorithm
that depends on the choice of εin

1 , since the method for calculating the weights associated
with each price point changes depending on εin

1 , as described in Section 5.2. As expected,
the difference in runtime for different εin

1 ’s becomes more noticeable when considering more
price points, with FindPrice taking around 2.2 seconds more with εin

1 = ln(2)/2 than with
εin

1 = 2 ln(2). Nonetheless, this increase remains comparatively small when we consider large
numbers of orders.

6 Future work

In this work, we have initiated the study of differential privacy in the trusted curator model,
resulting in a definitional framework of round differential privacy, which protects both
private inputs and private, yet correlated-outputs. We argue this setting applies to many
economic or financial application domains. We introduce round differentially private market
mechanisms for traditional finance, but also decentralized finance when instantiated with
privacy-preserving smart contracts [4].

AFT 2023



11:22 Correlated-Output Differential Privacy and Applications to Dark Pools

We highlight the investigation of general correlated-output differentially private mechan-
isms for common output correlation classes as an interesting avenue for future work. In the
setting of standard differential privacy, the Laplace, Gaussian or exponential mechanisms
provide “plug-and-play” techniques to transform query algorithms into differentially privacy
mechanisms. The investigation of similarly general techniques to achieve correlated-output
differential privacy would represent a useful toolkit in the trusted curator setting. Achiev-
ing efficiency for such generalized mechanisms with custom MPC protocols would greatly
facilitate the deployment of round-differentially-private mechanisms in practice.

References
1 Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick McDaniel. Achieving

secure and differentially private computations in multiparty settings. In 2017 IEEE Symposium
on Privacy-Aware Computing (PAC), pages 49–59. IEEE, 2017. doi:10.1109/PAC.2017.12.

2 Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, 2013.

3 Abdelrahaman Aly, Kelong Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Oliver Scherer, Peter Scholl, Nigel P. Smart, Titouan Tanguy, and Tim Wood. SCALE-
MAMBA v1.12: Documentation, 2021. URL: https://homes.esat.kuleuven.be/~nsmart/
SCALE/Documentation.pdf.

4 Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen. Eagle:
Efficient Privacy Preserving Smart Contracts. Cryptology ePrint Archive, 2022. URL: https:
//eprint.iacr.org/2022/1435.

5 Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially
private median. In 29th USENIX Security Symposium (USENIX Security 20), pages 2147–
2164. USENIX Association, August 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/boehler.

6 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. MPC joins the dark side. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
pages 148–159, 2019. doi:10.1145/3321705.3329809.

7 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Multi-party computation mechanism
for anonymous equity block trading: A secure implementation of turquoise plato uncross.
Intelligent Systems in Accounting, Finance and Management, 28(4):239–267, 2021. doi:
10.1002/isaf.1502.

8 David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De Ruiter,
and Alan T Sherman. cmix: Mixing with minimal real-time asymmetric cryptographic
operations. In Applied Cryptography and Network Security: 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 557–578. Springer,
2017. doi:10.1007/978-3-319-61204-1_28.

9 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981. URL: https://www.doi.org/10.1145/
358549.358563.

10 James Hsin-yu Chiang, Bernardo David, Mariana Gama, and Christian Janos Lebeda.
Correlated-Output Differential Privacy and Applications to Dark Pools. https://eprint.
iacr.org/2023/943, 2023. Full paper version.

11 Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential privacy in constant function
market makers. Cryptology ePrint Archive, 2021. URL: https://eprint.iacr.org/2021/1101.

12 Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P Smart, and
Younes Talibi Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using buckets.
Cryptology ePrint Archive, 2021. To appear at FC’22. https://eprint.iacr.org/2021/1549.

https://doi.org/10.1109/PAC.2017.12
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435
https://www.usenix.org/conference/usenixsecurity20/presentation/boehler
https://www.usenix.org/conference/usenixsecurity20/presentation/boehler
https://doi.org/10.1145/3321705.3329809
https://doi.org/10.1002/isaf.1502
https://doi.org/10.1002/isaf.1502
https://doi.org/10.1007/978-3-319-61204-1_28
https://www.doi.org/10.1145/358549.358563
https://www.doi.org/10.1145/358549.358563
https://eprint.iacr.org/2023/943
https://eprint.iacr.org/2023/943
https://eprint.iacr.org/2021/1101
https://eprint.iacr.org/2021/1549


J.-H.-y. Chiang, B. David, M. Gama, and C. J. Lebeda 11:23

13 Mariana Botelho da Gama, John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui.
All for one and one for all: Fully decentralised privacy-preserving dark pool trading using
multi-party computation. Cryptology ePrint Archive, Paper 2022/923, 2022. URL: https:
//eprint.iacr.org/2022/923.

14 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006. doi:10.1007/11681878_14.

15 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. doi:
10.1561/0400000042.

16 Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pryvalov.
Differentially private data aggregation with optimal utility. In Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC 2014, New Orleans, LA, USA, December
8-12, 2014, ACSAC ’14, pages 316–325, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2664243.2664263.

17 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 1376–1385.
JMLR.org, 2015.

18 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.
doi:10.1109/FOCS.2007.66.

19 United States of America before the Securities and Exchange Commission. In the matter of
itg inc. and alternet securities, inc., exchange act release no. 75672. https://www.sec.gov/
litigation/admin/2015/33-9887.pdf, 12 Aug 2015.

20 United States of America before the Securities and Exchange Commission. In the matter of
pipeline trading systems llc, et al., exchange act release no. 65609. https://www.sec.gov/
litigation/admin/2011/33-9271.pdf, 24 Oct 2011.

21 United States of America before the Securities and Exchange Commission. In the matter
of liquidnet, inc., exchange act release no. 72339. https://www.sec.gov/litigation/admin/
2014/33-9596.pdf, 6 Jun 2014.

22 Manas Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via
aggregation of locally trained classifiers. Advances in neural information processing sys-
tems, 23, 2010. URL: https://proceedings.neurips.cc/paper_files/paper/2010/file/
0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf.

23 Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson, Anderson
Nascimento, and Martine De Cock. Training differentially private models with secure multiparty
computation. arXiv preprint arXiv:2202.02625, 2022. URL: https://arxiv.org/abs/2202.
02625.

24 Penumbra. ZSwap documentation. https://protocol.penumbra.zone/main/zswap.html,
2023.

25 Monica Petrescu and Michael Wedow. Dark pools in european equity markets: emergence,
competition and implications. ECB Occasional Paper, (193), 2017. doi:10.2866/555710.

26 Thomas Steinke. Composition of differential privacy & privacy amplification by subsampling.
CoRR, abs/2210.00597, 2022.

27 Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-cryptography:
marrying differential privacy and cryptography in emerging applications. Communications of
the ACM, 64(2):84–93, 2021. doi:10.1145/3418290.

28 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965. doi:10.1080/
01621459.1965.10480775.

AFT 2023

https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2664243.2664263
https://doi.org/10.1109/FOCS.2007.66
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://arxiv.org/abs/2202.02625
https://arxiv.org/abs/2202.02625
https://protocol.penumbra.zone/main/zswap.html
https://doi.org/10.2866/555710
https://doi.org/10.1145/3418290
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1080/01621459.1965.10480775




SoK: Privacy-Enhancing Technologies in Finance
Carsten Baum #

Technical University of Denmark, Lyngby, Denmark

James Hsin-yu Chiang #

Aarhus University, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Tore Kasper Frederiksen #

Zama, Paris, France

Abstract
Recent years have seen the emergence of practical advanced cryptographic tools that not only
protect data privacy and authenticity, but also allow for jointly processing data from different
institutions without sacrificing privacy. The ability to do so has enabled implementations of a
number of traditional and decentralized financial applications that would have required sacrificing
privacy or trusting a third party. The main catalyst of this revolution was the advent of decentralized
cryptocurrencies that use public ledgers to register financial transactions, which must be verifiable
by any third party, while keeping sensitive data private. Zero Knowledge (ZK) proofs rose to
prominence as a solution to this challenge, allowing for the owner of sensitive data (e.g. the identities
of users involved in an operation) to convince a third party verifier that a certain operation has been
correctly executed without revealing said data. It quickly became clear that performing arbitrary
computation on private data from multiple sources by means of secure Multiparty Computation
(MPC) and related techniques allows for more powerful financial applications, also in traditional
finance.

In this SoK, we categorize the main traditional and decentralized financial applications that can
benefit from state-of-the-art Privacy-Enhancing Technologies (PETs) and identify design patterns
commonly used when applying PETs in the context of these applications. In particular, we consider
the following classes of applications: 1. Identity Management, KYC & AML; 2. Markets &
Settlement; 3. Legal; and 4. Digital Asset Custody. We examine how ZK proofs, MPC and related
PETs have been used to tackle the main security challenges in each of these applications. Moreover,
we provide an assessment of the technological readiness of each PET in the context of different
financial applications according to the availability of: theoretical feasibility results, preliminary
benchmarks (in scientific papers) or benchmarks achieving real-world performance (in commercially
deployed solutions). Finally, we propose future applications of PETs as Fintech solutions to currently
unsolved issues. While we systematize financial applications of PETs at large, we focus mainly on
those applications that require privacy preserving computation on data from multiple parties.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases DeFi, Anti-money laundering, MPC, FHE, identity management, PETs

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.12

Related Version Full Version: https://eprint.iacr.org/2023/122

Funding Carsten Baum: Part of the work was carried out while the author was visiting Copenhagen
University and supported by Partisia. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of Partisia.
James Hsin-yu Chiang: This work was supported by a DTU Compute scholarship.
Bernardo David: The project was supported by the Independent Research Fund Denmark (IRFD)
grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B, and by DIREC.
Tore Kasper Frederiksen: This work was carried out while working at Protocol Labs and the
Alexandra Institute (supported by Copenhagen Fintech as part of as part of the “National Position
of Strength programme for Finans & Fintech” funded by the Danish Ministry of Higher Education
and Science).

© Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 12; pp. 12:1–12:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cabau@dtu.dk
mailto:jachiang@cs.au.dk
mailto:bernardo@bmdavid.com
mailto:tore.frederiksen@zama.ai
https://doi.org/10.4230/LIPIcs.AFT.2023.12
https://eprint.iacr.org/2023/122
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 SoK: Privacy-Enhancing Technologies in Finance

1 Introduction

Modern Cryptography and Traditional Finance. Due to their sensitive nature, financial
applications require strong security guarantees. Clearly, it is necessary to ensure authenticity
and integrity of any financial operation, i.e. guaranteeing that the operation has been
ordered by an entity authorized to do so and that this order has not been tampered with.
Moreover, it is also necessary to achieve privacy, i.e. preventing attackers from obtaining
sensitive information related to financial operations (e.g. the identities of entities involved in
a transaction and/or the value of that transaction). In the digital realm, authenticity and
privacy guarantees can be achieved against powerful adversaries who control communication
networks (e.g. the Internet) by means of digital signatures and encryption, respectively.

A Decentralized Conundrum. The meteoric rise of decentralized financial applications
based on cryptocurrencies and smart contracts hosted on blockchain platforms brought
to light a whole new set of challenges. While traditional financial applications are hosted
and executed by financial institutions in a centralized manner, the decentralized nature of
blockchain-based applications requires all operations to be verifiable by third parties by
means of publicly available records. If only simple cryptographic primitives are employed,
this means that sensitive data that was once internally handled by financial institutions must
now be exposed on the blockchain in order to perform a financial application. For example,
Bitcoin requires revealing the sender and the receiver of a financial token that is transferred,
so that a transfer transaction is considered valid if and only if the rightful owner of the token
signs it.

Privacy-Enhancing Technologies (PETs) to the Rescue. While sacrificing privacy to
achieve decentralization may be acceptable in some situations, most financial operations
involving companies and private citizens cannot be conducted in this manner due to a number
of reasons (e.g. protecting business interests and complying to regulations). In order to
solve this issue, the cryptocurrency community turned to Privacy-Enhancing Technologies
(PETs) that allow for achieving the same authenticity and privacy guarantees as in traditional
centralized financial applications while providing the public verifiability guarantees needed
in decentralized blockchain platforms. In particular, many of the first proposals towards this
goal involved using a technology called Zero Knowledge (ZK) proof systems [67] : a method
that allows the owner of sensitive data to prove a statement about this data without having
to reveal it. For example, in the token transfer transaction example, a ZK proof allows a
user to prove that an “encrypted” transfer transaction has been signed by the rightful owner
of the token, without revealing neither the owner’s nor the receiver’s identity, e.g. as in [15].

From Decentralized to Traditional Finance. The vast usefulness of advanced PETs in
blockchain applications also sparked an interest in deploying similar solutions for traditional
financial applications. The aforementioned ZK proof technology has also been used in
innovative solutions to the Know Your Client (KYC) and Anti Money Laundering (AML)
problems commonly encountered in the banking industry, e.g., as in [79, 118, 115, 110]. As
in the case of privacy preserving cryptocurrency transactions, in many scenarios an entity
wants to prove that they comply with KYC/AML regulations without revealing their identity
nor their sensitive data. For example, a client can prove to a third party service provider
that their identity has been verified by their bank and that they are authorized to use a
certain service and perform operations up to a certain financial volume, while keeping their
identity, and other attributes (e.g. the list of operations they are allowed to perform) private.



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:3

PETs for the Masses - or - From ZK to MPC. The ZK proof technology lends itself
extremely well to applications that require a single entity to publicly prove a statement about
its private data, e.g. the KYC/AML or cryptocurrency examples above. However, it is limited
by the fact that the entity who generates a ZK proof must necessarily know all the private
information about which the statement is proven. This is a serious limitation in two cases: 1.
applications that must process sensitive data provided by multiple entities; 2. applications
where certain data (e.g. cryptographic secret keys) are far too valuable to be stored on
a single device, which leaks the data if its security is compromised. Fortunately, these
limitations can be addressed by means of secure Multiparty Computation (MPC) [36, 66],
which allows a set of entities to jointly execute an arbitrary program that computes on an
“encrypted” version of their private data and only reveals the output of this computation.

For example, specific-purpose MPC protocols have long been used for sealed-bid auc-
tions [70, 25] among entities who do not trust each other, nor a third party auctioneer. In
this case, the parties provide as input “encrypted” versions of their bids and jointly compute
a program that determines the winner of the auction, without revealing the value of the
bids or any other information. In the context of blockchain-based cryptocurrencies, MPC
protocols [77] have also been successfully deployed [42] for protecting secret signature keys
used to authorize/authenticate transactions. In this case, many entities locally store a “share”
of the signing key that does not reveal any information about the key itself unless all shares
are united. When a transaction must be signed, all these entities use MPC to jointly execute
a program that takes as input all the signing key shares, reconstructs the true key and
computes the signature on the given transaction, while only revealing the resulting signature
and nothing else. Since knowledge of the key is split among many entities, an attacker now
has to compromise many, potentially all, entities instead of a single server.

Systematizing Privacy-enhancing Technologies in Finance
The goal of this SoK is to systematize financial applications that can benefit from PETs, as well
as systematizing relevant PETs according to their respective applications and technological
readiness. As summarized in Table 1, we consider 5 main classes of financial applications,
which are each addressed in the specific section indicated next to the application class name.
At a high level, these applications can be potentially facilitated by the PETs indicated in the
PET column of Table 1, which are introduced in detail in Section 2. In particular, we focus
on financial applications that require handling private data from multiple entities, as ZK
proof technology for financial applications has been extensively addressed in previous works
(e.g. [24, 3, 4, 91]). While we aim at providing a general overview of PETs for financial
applications covering broad ranges of both PETs and applications, we do not intend to
provide an exhaustive review of the PET literature. For each class of applications, we strive
to survey the works that introduced the most relevant insights and groundbreaking results,
since it would be infeasible to cover every single optimization of each PET that would be
relevant for each application.

The financial applications we cover and the respective relevant PETs are summarized as
follows:

Identity, KYC & AML (Section 3): Identity management is a classical problem that has
the added challenges of Know Your Client (KYC) and Anti Money Laundering (AML)
regulations in the financial sector. PETs can be used in these applications to provide
robust identity management with privacy preserving methods for enforcing KYC & AML
regulations in both decentralized and traditional scenarios.

AFT 2023



12:4 SoK: Privacy-Enhancing Technologies in Finance

Table 1 PET stack for financial applications. TSS = Threshold Secret Sharing, DP = Differ-
ential Privacy, (F)HE=(Fully) Homomorphic Encryption, PSI = Private Set Intersection, MPC
= Multiparty Computation, ZK = Zero Knowledge proofs. See Section 2 for a discussion of each
concept.

PET (§2)

(§3) Identity, KYC & AML MPC, ZK

(§A, [10]) Legal MPC, ZK

(§B, [10]) Digital Asset Custody TSS, MPC

(§4) Markets & Settlement (F)HE, MPC, ZK

(§5) Future applications PSI, DP, MPC

Legal Procedures (Section A in [10]): Many legal procedures require evidence to be presen-
ted in court. However, in many cases the evidence or even the relevant law/regulation
must be kept private. PETs allow for such legal procedures to be conducted without
sacrificing neither privacy nor auditability (i.e. the ability of any entity to verify that a
legal procedure has been properly executed). Furthermore, due to the novelty of PETs
it is not always clear how they fit within existing legal frameworks and how they might
help and provide utility while fulfilling privacy regulations such as GDPR.

Digital Asset Custody (Section B in [10]): Digital assets such as cryptocurrencies are usu-
ally transferred by means of a digital signature, which can only be generated given a
secret key. Since storing this key in a single device poses a risk of key leakage, PETs
can be employed to distribute the signing power (and thus the power to move the asset)
among many entities, in such a way that the system is only compromised if all entities
are compromised.

Markets & Settlements (Section 4): Both the traditional and decentralized financial mar-
kets use complex trading instruments that may be abused by entities who retain privileged
information about trades. PETs provide a robust solution to this issue via distributed
“Dark Pools” or privacy preserving DeFi mechanisms (e.g. Automated Market Makers)
that process trades without revealing any sensitive information to the entities evolved.

Future Applications (Section 5): Besides financial applications that have already been ad-
dressed in previous work, we propose that several PETs can be potentially used to address
other interesting challenges in finance. In particular, recent advances in PETs enable the
execution of advanced machine learning (ML) algorithms on private data, allowing for
detecting patterns (e.g. for fraud) without revealing neither the ML models nor the data.

2 Available Privacy-enhancing Technologies

Before we describe applications of Privacy-Enhancing Technologies (PETs) to finance, we
will give a short overview over existing PETs and how mature they are.

Zero-Knowledge proofs. Zero-Knowledge proofs [67] are cryptographic algorithms which
allows a prover to convince a distrusting verifier that a certain statement is true. While the
statement (usually specified in the form of a program) is known to the verifier, the proof (e.g.
a certain input that makes the program output 0) is never leaked to the verifier. There exists



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:5

a large variety of different ZK proof algorithms, and choosing the optimal proof depends
largely on the application. Recently, efforts have been underway to standardize ZK proofs1

to make them more accessible to practitioners.

Private Set Intersection. Private Set Intersection (PSI) [58] allows two (or more) distrusting
parties with respective input sets S1 and S2 to securely learn their intersection, i.e. S1 ∩ S2,
without revealing the non-intersecting elements to the other party. For example, if party
1 has S1 = {a, b, d} and party 2 has S2 = {b, c, e} then both parties will learn that they
have b in common in their sets. At the same time, party 2 will not learn that party 1 also
had a, d in its input set and vice-versa for c, e. Highly efficient PSI protocols have been
developed recently and some, such as the one developed by Chen et al. [39] found applications
in industry.

Threshold Secret Sharing. Threshold Secret Sharing (TSS) allows a dealer to distrib-
ute [100] a secret x among n different parties, who each receive a share of the secret. Given
a threshold t < n, TSS guarantees that if t or less parties pool their shares together, then
they cannot reconstruct any information about x. If instead more than t parties cooperate
(i.e. pool their shares), then x can be reconstructed. Multiple versions of secret sharing
exist, for example with security against share-holders who don’t act honestly during the
reconstruction of the secret [41, 93]. Moreover, secret-sharing can be generalized so that not
a threshold decides about the possibility of reconstruction, but instead any pattern can be
used by the sender of the shares.

Multiparty Computation. Cryptographic protocols for Multiparty Computation (MPC) [14,
37, 65] allow 2 or more mutually distrusting parties who each have an input xi to evaluate an
arbitrary function y = f(x1, . . . , xn) on their inputs. MPC guarantees that only the function
output y and no other information about the inputs is revealed. One can see PSI as a special
case of MPC where the computed function is the intersection of input sets. MPC can be made
robust against parties who maliciously deviate from the protocol description, and security
usually holds if less than a threshold t of the participants in the computation collaborate to
undermine the security. Therefore, MPC can be seen as constructing a distributed trusted
entity. It is worth highlighting that MPC can be carried out in many different security and
communication models. In particular the communication model can have a big impact on
the possible use-cases and security of the protocol. For example in a synchronous model
any message sent can be assumed to arrive within a fixed amount of time, whereas in
the asynchronous model messages can be arbitrarily, even infinitely, delayed. Hence the
synchronous model is more suited for protocols being run on a stable network, like a LAN.
Recent progress in MPC research has made practical use of MPC possible2.

Fully-Homomorphic Encryption. Fully-Homomorphic Encryption (FHE) is a special type
of encryption scheme first proposed in [95] and later realized in [63]. In FHE, everyone with
a so-called public key can encrypt information, while only the holder of the private key
can decrypt it later. In addition, given encrypted of data as well as the public key, anyone
can perform computations on the encrypted data and evaluate algorithms on secret inputs.
For example. Given encryption [x], [y], [z] of the values x, y, z, FHE allows to compute an

1 See https://zkproof.org/.
2 https://www.mpcalliance.org/

AFT 2023

https://zkproof.org/
https://www.mpcalliance.org/


12:6 SoK: Privacy-Enhancing Technologies in Finance

encryption [x · y + z] of x · y + z or any other efficiently computable algorithm on these inputs.
The clue is that the decryptor who obtains [x ·y +z] will only learn x ·y +z but not the inputs
to the computation. Although concrete FHE schemes are relatively new, the technology is
already somewhat mature3 and powerful testing implementations4 are available.

Differential Privacy. Differential Privacy [55] (DP) is a technique to compute add noise to
outcomes of algorithms such that leakage about the inputs of the computation is minimized.
The level of the noise is calibrated such that mathematical guarantees about the privacy of
the inputs can be given.

Readiness of the technologies. We next try to make a rough evaluation of the market
readiness and usability of the different technologies. Our main metric for this is the Technology
Readiness Level (TRL). Recall that the TRL scale is an estimation of technology maturity,
originally developed by NASA and standardized by ISO [71]. The scale goes from 1 to 9,
where level 1 indicates the initial studies of moving general research into applied research
and level 9, means the system has been proven successful in the real-world. The systems we
are considering in this paper are far up the scale so we outline what exactly we mean by the
different TRL levels achieved for these systems:

7. Demonstration of the system in an operational environment. E.g. beginning of alpha-
testing.

8. The system is fully developed and functioning under expected real-world conditions.
9. The system is actually deployed and used by end-users.

We summarize the main privacy enhancing technologies we consider in this SoK and our
judgement of their Technology Readiness Level (TRL) in Table 2.

While the TRL level provides one metric in judging the market application of a technology;
overhead (in particular in computation and communication) is another important factor, in
particular when it comes to scalability and wideness of deployment.

Hence we have include overhead indicators in Table 2 in order to illustrate the typical
overhead of the different technologies relate. An interesting observation on overhead is that
DP can be applied with barely any computational overhead and TSS (without key generation)
can in some situations have an overhead only linear in the amount of servers involved. Some
ZK on the other hand (in particular SNARKs [17]) has the powerful feature that it can
reduce the communication and computation overhead over native computation (for some of
the involved parties only!). This feature has been used widely in practice, in particular in
the blockchain setting for example to aggregate validation of multiple transactions through a
zk-rollup [43].

A note on Trusted Execution Environments. Trusted Execution Environments (TEE)
such as Intel’s SGX are special modes of modern processors. A processor in its trusted
execution setting guarantees that programs and their data are shielded from every other
program running on the computer - even the operating system or any user having full access.
A secure TEE allows to build many of the aforementioned PETs such as ZK proofs, PSI,
MPC etc. “cheaply” and without additional cryptographic tools. In practice, SGX and
similar technologies from other vendors5 are regularly broken and do not offer the protection
that they claim. We therefore do not consider it as a PET in this document.

3 https://fhe.org/
4 https://www.openfhe.org/
5 See e.g. the exhaustive list on https://sgx.fail/.

https://fhe.org/
https://www.openfhe.org/
https://sgx.fail/


C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:7

Table 2 Technology Readiness Level (TRL) between 1-9 of different PETs along with how much
overhead they typically add when used in the most suitable contexts. An empty circle means close
to no overhead, and a full circle means multiple orders of magnitude. Finally a dot means less than
native communication/computation. See Section 2 for a discussion of each concept.

PET (§2) TRL Comp. Overhead Comm. Overhead Demonstrated by

ZK 9 · · Ethereum [43], Filecoin [76]

TSS 9 Zengo [75]

DP 9 Apple [53]

PSI 8 Apple [16]

MPC 7 JP Morgen [46], Meta [35]

FHE 7 Zama [96]

3 Identity, KYC, AML

A general issue facing the financial world is the validation of customer identities and attributes.
Laws and regulations require financial institutions, both classical and decentralized, to employ
Know Your Customer (KYC) rules, for example to prevent money laundering and to be able
to aid in criminal cases - or even to lock accounts in case of sanctions. Being able to correctly
determine a legal owner of an account can in itself help in preventing money laundering by
precluding the use of fake accounts which could otherwise aid in smurfing, see Sec. 3. In the
EU this is for example in place through the Anti-Money Laundering Directives and in the
US through the Money Laundering Control Act of 1986. In the classical banking setting
such validations are carried out through customers going to their physical bank and bringing
required documents to prove their identity, residence or perhaps even criminal history, of
which the bank would keep a copy. However, with the advent of online-only banks such as
Lunar, Revolut and N26, along with crypto-currency exchanges like Binance and Coinbase,
such validations become tricky, as there are no physical locations to validate identities.

Today KYC is instead carried out online, and in many cases through machine learning
algorithms, where customers upload copies of their data which gets validated. When it
comes to security this unfortunately has several disadvantages: i) it is easy to create a
picture of a document or manufacture it, or even modify some data of a real document [105];
and ii) the leakage of legitimate documents online allows an adversary to steal identities.
Simply considering how often a copy of ones passport is needed (e.g. basically any hotel or
accommodation in any country), it is not hard to see that copies of legitimate documents will
be easy to find on the dark market. Even though requirements can be made to include selfies
or short videos to validate authenticity, this has turned into a race against Photoshop and
deep fakes, which have shown tremendous advancement in the recent years [106]. While such
attacks are also possible in physical space (i.e. creating fake documents and having them
validated by a human), they are significantly more cumbersome due to human involvement
and more expensive to mount, and therefore do not scale like digital-only attacks. Thus it is
clear that the digital attack vector on KYC is the weakest link in account validation.

Identity management

One possible way of combating attacks when validating digital copies of physical identity
documents is simply to move the documents into the digital realm. Digital signatures
and revocation systems can ensure that digital documents are legitimate. This is done

AFT 2023



12:8 SoK: Privacy-Enhancing Technologies in Finance

by combining them with an identification scheme where a user needs to prove they know
a password/key used in the construction of their digital identity. This can prevent theft
by simply copying the digital document. Often a simple password or key is not deemed
secure enough in financial applications by law [90], and a second factor is required.Thus
the use of authentication apps is common in electronic ID (eID) solutions, like the Danish
MitID. Such eID solutions validate user-identities by a trusted issuer during setup, allowing
other applications to piggy-back on existing validation. This naturally comes with a risk
of compromise or identity sharing through the eID provider, although it may arguably be
harder than with their physical counterparts.

Single Sign-On. eIDs are typically validated by a centralized and trusted server that is
able to perform relevant logging, and hence poses a risk to user privacy. Furthermore, such
identity management is not exclusive to official or government identities, but can involve
any kind of self-reported identity, which is the case for example for a Facebook or Google
account. These platforms act as federated identity management services, allowing the sharing
of the user’s identity, along appropriate attributes of the user, to third-party websites. Thus
facilitating a single sign-on (SSO) system. In this setting, the server validating the user’s
identity is known as the identity provider (IdP), which would be Facebook or Google in the
above example. The third-party website is known as the service provider. This could for
example be Netflix or Spotify. The idea of an SSO service goes beyond simply having an
IdP facilitating a user authenticating towards a service provider. In fact an IdP may gather
certified attributes about a user from multiple trusted issuers, and sign off on the user indeed
being validated to have such attributes. This for example happens when Facebook validates
that a given user has access to a specific email account, or phone number. While using an
SSO makes things much simpler for a user, it also is a big privacy issue as an IdP now holds
a large amount of the user’s personal information, along with knowledge of whenever the
user users this information and towards which service provider. Furthermore, it also means
that large amount of trust has to be put in the IdP as they would be able to impersonate
any of their users towards any service provider. While such a thing is also possible for
any attribute issuer (to a lesser extent) it becomes more of a problem for an IdP as they
must be user-friendly enough that they can be used several times a day and since their only
job is authentication. Hence becoming more exposed. Beyond this, simply using an SSO
service can also lead to traceability and linkability of the user across the web. Traceability
means that a user can be identified from the data resulting from using their eID. Whereas
linkability means that it is possible for different service providers to find out if they have
the same users. This can be an issue even if the user is authenticated using a pseudonym,
since all it takes is one sharing of personal data, such as credit card information at a service
provider, to de-anonymize the user. However, works like PASTA [2] and PESTO [12] use
threshold cryptography to enhance the security of IdPs and limit traceability and linkability
without reducing the usability. I.e. password based authentication can still be used and
they remain compliant with solutions like OAuth and OpenID Connect. While they only
focus on password-based authentication, they can be generalized to support multi-factor
authentication [57] and thus be used when multi-factor authentication is required for financial
compliance, as e.g. in Europe according to PSD2 [90].

Decentralized Identifiers. With the advent of blockchain technologies a lot of work has
sprung up, trying to remove centralization from the management of eIDs. This is generally
known as a Decentralized Identifier (DID) [102], but often also called Self-Sovereign Identity



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:9

(SSI), specifically when the user is in full control over the usage of their decentrally stored
eIDs. The overall idea is that any kind of attribute provider issues a pseudonym to a user’s
blockchain account, reflecting a specific attribute. The user can then later use the pseudonym
to prove certain certain attributes, or to simply get a reusable link to their pseudonymous
identity at the same identity provider. However, it is clear to see that this basic construction
is unfortunately not enough to ensure privacy, as again it possible to link the user across the
internet (or blockchain) through their pseudonym. For this reason DID systems are starting
to incorporate more advanced cryptographic constructions allowing users to anonymously
prove that they hold a certain pseudonym towards a service provider (in order to facilitate
authentication). Such a construction is known as a cryptographic credential.

Camenisch and Lysyanskaya [29] were the first to show a fully self-managed solution
allowing users to prove their identity has been certified by a trusted provider, in an anonymous
manner. Their credential construction affords validation of issuance from a trusted authority,
while allowing the user to anonymously use it and preventing anyone who does not know
the user’s key6 to impersonate it. However their construction did not allow the validation
of arbitrary predicates on the attributes. Something which is needed in many financial
situations. Consider for example the case for loan or insurance issuance, where the customer’s
financial situation or health status has to be validated. Classically these must be provided as
signed physical documents from the customer’s attribute provider (such as credit bureaus),
but the line of work on credentials, known as attribute based credentials shows how to achieve
this in the digital sphere [30, 98] with cryptographic security and privacy guarantees. It
was later shown how to compute arbitrary predicates on the certificated attributes [27].
Further development of such schemes into commercial products have been done by both IBM
with their Idemix framework [31] and by Microsoft through U-Prove [88]. The underlying
primitives have even been taken up by standardization frameworks such as W3C [101]. Still,
despite such commercial traction, widespread adoption is still lacking. Moreover, in the
context of DeFi systems, decentralized versions of anonymous credentials [62, 26, 5, 48] have
been proposed.

One could imagine that the requirement for self-managed private keys could be the reason
that such approaches lack adoption since the regular news bulletins of people having lost
their cryptocurrency keys, show that self-administered key management is not for the general
public. However, multiple solutions based on threshold cryptography can be used to securely
store keys under a client’s password [28, 72]. A more likely explanation might be the need of
existing attribute providers to completely change their work-flow and systems, without any
direct financial, legal or customer requirements.

Deploying Privacy Preserving Identity Management. Fortunately, recent research have
shown how PETs can be used to get certified attributed from issuers without modifying
existing infrastructure, when such attributes can be retrieved from the provider through
TLS-secured connections. The Town Crier system [117] shows how to construct certified
attributes using secure hardware (like Intel SGX and using a TLS connection with a trusted
provider). Concretely, they discussed how such certified attributes could be relayed to smart-
contracts to allow more advanced decentralized user-attribute validation. Later, DECO [118]
then showed how to remove the need for secure hardware and replace it with MPC while
achieving the same goal. However, they extended their construction to also integrate with

6 Allowing the user to fully control the use of their credential through a single key can be conceptually
advantageous.

AFT 2023



12:10 SoK: Privacy-Enhancing Technologies in Finance

zero-knowledge proofs, allowing clients to construct certified proofs of arbitrary predicates on
attributes from any provider, trusted through a TLS certificate which provides online access
to the user’s attributes. This could for example include a bank providing online banking
access, where a user would then be able to construct a proof that they hold a bank account
with e.g. at least $20.000. If the user’s government provides an online residency portal, then
it could also be used for the users to prove that they legally reside in a given city in a given
country without leaking their exact address.

The CanDID system [79] fully realizes a DID system with legacy support through either
Town Crier or DECO. This is achieved through the usage of an MPC committee that validates
legacy identity data and constructs a zero-knowledge friendly credential. Based on this
credential, a user can prove arbitrary predicates on their attributes towards any provider.

Using attribute based credential allows the construction of fully private identity and
attribute-based systems. However, in some situations full privacy might be undesirable,
we would rather want to privately validate whether transactions are permissible based on
attributes or identity, for example by ensuring that the identity of the credential holder
is not on a deny-list. Kohlweiss et al. [74] showed that such a system can efficiently be
constructed on top of credentials. The construction allows an auditor to specify any predicate
on the attributes in a credential, where the identity of the credential holder gets leaked if the
predicate is fulfilled. Such conditional privacy leakage could prove tremendously helpful in
fighting money laundering as we discuss next.

Anti Money Laundering. Money laundering is the process of concealing the origins of
money, such as financial gains from drug trafficking or other serious crimes, by changing its
origin to a benevolent source. This is because criminals must acquire many services and
goods in the regular economy: put simply, most luxury car dealers don’t accept briefcases full
of bills. Money laundering is a huge problem in the financial sector: the estimated amount
of laundered money is at the level of 2-3% of the national GDP in the US alone, excluding
tax evasion [94, Chap. 2].

Getting large amount of illegitimate cash into the financial system requires multiple steps
and multiple accounts to avoid raising suspicion. Simply getting dirty money into the system
is known as placement. A concrete and common approach for this is known as smurfing,
where multiple legal people deposit small amounts of money for a criminal, with the promise
of earning a small amount as a kick-back. After a period of time the smurfs move the money
out of their accounts (minus their fee), by transferring to other accounts controlled by the
criminal. If this process is done with small amounts, and the receiving party’s account is not
flagged, then smurfing is hard to identify7.

Once the money is in the legal financial system, it needs to be mixed with legitimate
transfers, to counter suspicions caused by the initial transfers. This involves creating
reasonable and justifiable transfers among multiple accounts of multiple entities in a process
known as layering. By setting up a layering scheme through multiple banks, in different legal
jurisdictions, using different legal entities, it becomes almost impossible to trace the flow of
money. This is because the involved banks are (reasonably!) not allowed to communicate
private account and customer information about the sender and recipient of a money transfer.
After the layering, the money is finally moved out of financial institutions and into legitimate
investments such as real estate or legitimate businesses. This last step is known as integration.

7 This step is sometimes also realized through other means, such as deposits from cash-driven businesses
such as laundromats or food trucks.



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:11

What banks do to counter money laundering. As banks cannot share account and customer
information with each other it is extremely hard for them to trace dirty money during layering.
To address this, banks use multiple approaches usually subsumed as Anti-Money Laundering
(AML) techniques. For example, banks internally use a suspiciousness score for customers.
It is based on a base score, which is derived from the meta information about the account
and its owner. The score may be derived from e.g. age of the account/holder, amount of
money in the account, expected income and nationality of the owner. Through transfers,
the base score is then updated, e.g. based on the score of the account a transfer goes to or
comes from if both sender and receiver account are held by the same bank. If they instead
are held by different banks, then metadata such as the amount of money going in/out and
the frequency of the transfers is used in updates.

Finally, banks do have one common tool in measuring the suspiciousness of transfers, and
that is a common, yet secret, grey list. This grey list contains accounts that have been deemed
significantly suspicious, but for whom no provable money laundering has been identified yet.
A transfer to or from a grey-listed account significantly increases the suspiciousness score.
At certain time intervals, the suspiciousness score of an account is checked against a certain
threshold and if the score is too high, then it gets flagged for manual8 inspection.

What can banks do? Due to GPDR and other privacy laws, it is not possible for banks
to directly share meta-information about accounts or its owner without their consent.
Furthermore, if a bank finds a flagged account it believes is engaging in illegal activities then
when informing authorities, it must be able to explain to said authorities how they came
to this conclusion. Hence the bank’s judgements must be auditable by a third party. If the
conclusion depends on data received from other financial institutions, the bank must be able
to point to this data and the third party must trust it as well. While data from banks from
within the same legal framework (the EU, USA, etc.) is usually considered as valid, data
from international banks, in particular those from countries with a history of corruption, has
less trustworthiness.

Implementing sufficient and efficient AML techniques is also difficult due to the quantities
of information involved. AML technologies should ideally be scalable to include all transac-
tions and accounts. At the same time, even a limited AML technology which only covers
cross-country transfers or an arbitrary subset of accounts, could still make a substantial dent
into the suspected large amount of money laundering currently going unnoticed.

Cryptography and AML. The conjunction of AML and MPC is new and the main bodies
of work on the topic are by Zand et al. [115] and Egmond et al. [110]. Zand et al. show how
computation on secret data can be used to notify an auditor of suspicious behavior. Egmond
et al. show, in collaboration with multiple banks, how to use additively homomorphic
encryption to obliviously update risk scores, and eventually (with consent from collaborating
banks) decrypt the risk scores and flag accounts and customers appropriately.

However, related to this is the area of auditability of confidential transactions. As for
example discussed by Tomescu et al. [108] where users are given a limited monthly “anonymity”
budget. This budget is a certain amount of currency they are able to transfer anonymously
per month. However, transfers surpassing this amount, is subject to deanonymization and
clearance by a trusted auditor.

8 In practice it turns out that about 95% of automatically flagged accounts are false-positives.

AFT 2023



12:12 SoK: Privacy-Enhancing Technologies in Finance

Finally, we note that a survey of real world concepts using PETs to combat financial
crime has been conducted by the Future of Financial Intelligence Sharing consortium [81].
Unfortunately, many of their mentioned solutions require a trusted party to be involved.

As mentioned above, AML in centralized banking is challenging as the transaction graph
is hidden due to e.g. privacy regulations. However in the decentralized finance space, such
transaction graphs are usually visible. This is why most popular cryptocurrencies, such as
Bitcoin, Ethereum or Cardano, are only pseudonymous and not anonymous9. Cryptocurrency
exchanges such as Coinbase and Binance allow to turn large amount of cryptocurrency into
Fiat currencies. These exchanges are required by law to enforce know-your-customer (KYC)
rules. Through the help of transaction graph analysis firms such as Chainalysis, it has
become hard to launder money using pseudonymous cryptocurrencies.

Researchers have also proposed mechanisms to enforce AML even if transactions are kept
private. This includes using an escrow system where anonymity and privacy can be broken
in case suspicious activities occur, such as transfers to or from an account known to be used
by criminals [97, 86, 8, 48]. Such escrow mechanisms does not necessarily imply the usage of
a trusted third party, as the data for escrow activities can e.g. be shared using Threshold
Secret Sharing. Another approach is to specify a small budget per client which they can use
every month for anonymous payments. After the client has made more transactions than
covered by this budget, any future transactions can be traced [113, 108]. Although seemingly
a good compromise between privacy and security, this does still pose a risk to smurfing.

4 Markets & Transaction Settlement

In this section, we systematize PETs in market and settlement applications.
In financial markets, there is a need for auctions and markets with fairness guarantees, as

rational actors are incentivized to collude and front-run honest parties, if the true valuation
or trade-intent of the latter is revealed. Here, we first consider the traditional finance setting
(§4.1), where the settlement of transactions is handled by traditional, asynchronous settlement
processes. In the presence of a public ledger (§4.2), settlements occur synchronously and
immediately after a transaction is completed. Such a mechanism also permits the “netting”
of inter-bank payments (§4.3) to minimize the liquidity requirements on participating banks;
this must done with PET approaches, since the public ledger would otherwise expose all
individual payment orders, a clear breach of consumer privacy.

Finally, we highlight approaches to achieve bidder privacy in demand-response electricity
markets (Appendix C in [10]), which coordinate the remote scheduling of power consuming
devices to match forecast production from sustainable production sources; the submission
of granular device-level information to an auction in the clear can reveal the activity and
presence of customers at home, violating their privacy.

4.1 Markets in Traditional Finance
The first setting reflects an idealized view of traditional finance, where accounts and balances
are generally maintained by financial institutions and considered private. Here, the settlement
of auctions, or exchange transactions, occur asynchronously; whilst the counterparty risk from

9 We note that there exist privacy-focused blockchains like ZCash, Monero, or Dash that hide the
transaction graph. Moreover, one can build private transactions on top of non-privacy focused blockchains
using e.g. Zether [22] that leverages encryption and ZK proofs. Finally, mixers such as Tornado [92]
take transfers from many users and put them into a holding account, from which they can later be
transferred to the intended recipient.



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:13

Table 3 Auctions & Markets: no benchmarks ( ), preliminary benchmarks ( ), benchmarks
achieving real-world performance with traditional market parameters ( ).

Setting Applications Privacy Benchmarks PET Works

Markets in
Traditional Finance

(§4.1)

Distributed
sealed-bid
auctions

Single-sided Bid privacy MPC
[56], [70],
[25], [85]

Double-sided Bid privacy MPC [19], [18]

Public verifiability - HE+ZK [89]

Distributed
Dark Pools

Continuous matching Order privacy MPC [33]

Periodic matching
Order privacy MPC [34], [44]

Order privacy FHE [7]

with many assets Order privacy MPC+HE [34]

with many servers Order privacy MPC [44]

Public verifiability - HE+ZK [107]

Markets on
Public Ledgers

(§4.2)

Decentralized
sealed-bid
auctions

Single-sided Order privacy MPC+ZK
[6], [49],

[60]

Privacy-preserving
Decentralized
Exchanges

Futures
Periodic matching

Net position
privacy

MPC+ZK [80]

Periodic matching
Balance privacy
Partial order privacy

MPC+ZK [68]

Order privacy
(Balance privacy)

MPC+ZK [11], ([9])

Intent-based
order matching

Balance privacy
Order privacy

ZK [20], [114]

Balance privacy
Order privacy

WKA [87]

Settlement on
Public Ledgers

(§4.3)

Liquidity preserving
inter-bank netting

-
Payment privacy ZK [32]
Payment privacy
& Robustness

MPC+ZK [50]

Demand-Response
Markets

(Appendix C in [10])

Distributed auctions
for demand flexibility

Double-sided
(Single buyer)

Device power
constraint privacy

MPC
[1], [119]

[59]

defaulting on obligations implied by pending transactions is real, we consider it an orthogonal
challenge addressed in the public ledger setting (§4.2, §4.3). Clearing prices and executed
volumes are considered public information as this information is forwarded to institutions
executing the settlement. This first setting intends to achieve resilience against dishonest
venue operators and participants attempting to obtain a financial gain from unwarranted
information flow. Communication between parties generally assumes direct, authenticated
channels, implying the knowledge of identities and a pubic key infrastructure.

Distributed Sealed-bid Auctions. One-off, sealed-bid auctions are frequently performed in
the sale of frequency-spectrum rights, government contracts, real-estate and other private
items, such as art. In open-cry, single-sided auctions, bids are broadcast publicly until no
additional bids are made. However, the leakage of bids or orders can be exploited by the
adversary for financial gain. In Vickrey auctions, where the winner pays the price submitted
by the second-highest bid, the auction operator collecting the submitted bids is incentivized
to collude with other bidders to increase the second-highest bid price and maximize auction
fees. The auction operator must also be trusted to not reveal anything about submitted bids,
in order for all bidders to submit their true valuation. The advent of the public, commercial
internet coincides with the first protocol proposals which permit the execution of one-time,
sealed-bid auctions by distributing the role of the auction operator, thereby removing the
need for a trusted auction venue.

AFT 2023



12:14 SoK: Privacy-Enhancing Technologies in Finance

Franklin et al. [56] propose a one-sided auction protocol, where the auction venue is
distributed amongst multiple servers; bidders submit their signed bids as verifiable secret-
shares (VSS) to participating servers during the bidding phase. Subsequently, bids and
signatures are jointly reconstructed by all servers, upon which all bid information becomes
public. Verifiable secret-sharing ensures that bidders submit well-formed bids. As long as a
single server is honest, the reconstruction of bids will not occur before the end of the bidding
phase. However, it is often important to protect the privacy of bids, even if they are not
successful; the valuation may reveal a bidding strategy for another, related auction.

In the work of Harkavy et al. [70], MPC is deployed to maintain the privacy of all
submitted bids; only the winning bid is made public. Naor et al. [85] propose a variant
of MPC with garbled circuits, to reduce the rounds of communication, thereby improving
performance. Cachin [25] builds a purpose-built, privacy-preserving protocol, which permits
the comparison (>) of prices between two parties with the help of an untrusted third party.
An auction determining the highest bidder is then constructed from this primitive.

The first work to demonstrate the feasibility of privacy-preserving (one-time) double-sided,
sealed-bid auctions was proposed by Bogetoft et al. [19]. Later secure auctions were used
in practice [18], to facilitate the auctioning of sugar beet delivery contracts in Denmark.
Concretely, farmers producing sugar beets hold contracts which represent an obligation and
right to deliver beets to the the (single) Danish sugar beet processor Danisco. The trading
of such contracts permits the reallocation of contracts to the most efficient producers, but
such an exchange run by Danisco would permit it to learn information about the economic
circumstances of producers, potentially compromising sugar beet farmers during contract
negotiations. The matching and determination of a price computation from 1229 buy and
sell orders was achieved in approximately half an hour by an MPC committee of 3 servers;
a throughput volume sufficient for a one-time auction, but unacceptable for traditional
electronic security exchanges. Notice, however, that cryptographic techniques have improved
drastically since this work. Such an auction would run much more efficiently today.

Publicly verifiable auction operators are proposed in the work of Parkes et al. [89], a
weaker alternative to implementing the auction operator with MPC; instead, the dark pool
venue is still operated by single entity, but provides cryptographic proofs that the auction
algorithm is performed correctly by the venue operator. Whilst this prevents the auction
venue from manipulating the correct evaluation of auction bids, it does not prevent the
auction operator from leaking bid information to malicious participants.

Distributed Dark Pools. Dark pools have gained adoption in traditional finance as venues
where submitted orders are not publicly accessible, thus minimizing the potential price
impact caused by signalling trade intent to front-running market participants. As is the case
with auction venues, the dark pool operator must be trusted to not share the order flow
information with malicious participants, a trust assumption that is frequently violated in
practice (Table 1 in [34]), motivating the need for distributing the role of the venue operator.

Whilst the matching of orders in a secret order book is a natural domain of MPC,
we observe that current proposals illustrate specific configurations and architectures for
distributed dark pools that may or may not match throughput observed in traditional,
centralized dark pool markets. In particular, the choice of auction clearing algorithm
remains a deciding feasibility factor. Whilst secret-sharing based MPC schemes permit secret
computation with n participating servers, the runtime bottleneck generally lies in the amount
of communication that is required between servers. This is because MPC has a specific model
of defining computations, and certain auction clearing algorithms can be realized with less
communication overhead in MPC than others.



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:15

In the case of auction clearing algorithms, which must compute a clearing price from
current bids and sell orders, the sorting thereof by price limit induces many comparisons
(>, <, =) between secret-shared values, which in turn imply sub-protocols generating the
majority of communication cost. Alternatively, order matching based on volume only (where
prices are determined by third party price feeds) can greatly accelerate throughput, as
the expensive clearing price evaluation is not required. Furthermore, whether orders are
processed continuously or periodically also greatly affects the real-world applicability of the
following distributed dark pool protocols.

Continuous Double Auctions with MPC: A recent line of work by Smart et al. [33, 34,
44, 45] implements and examines real-world, double-side auction algorithms. In the initial
work [33], continuous double auctions (CDA) are implemented in a distributed fashion
across servers running an MPC. Continuous double auctions maintain a limit order book
(LOB) where buy and sell orders are ordered by ascending and descending price respectively;
each incoming order is matched against one or more LOB orders if it crosses the “spread”
between best buy (or sell) prices; its remaining volume is then inserted into the LOB. It is
also the most expensive exchange algorithm since (1) each single order must be matched
against m other fulfilled orders and (2) its remaining trade volume must be inserted into a
(potentially large) order book of N size. Benchmarking such an algorithm requires specifying
the expected state of the order book, given the sensitivity of CDA run-time on (1) the average
number of matched orders m; and (2) the expected order book length N . In the dark CDA
implementation of Cartlidge et al. [33], run with 3 servers and Shamir-sharing based MPC, a
worst-case throughput of 34 − 43 orders per second for LOB parameters m = 3 and N ≈ 30
is achieved. This work demonstrates that distributed CDA with MPC cannot yet match
the throughput volumes of traditional CDA venues10. In contrast, periodic order matching
greatly improves the performance of distributed dark pools.

Periodic Double Auctions with MPC: Periodic auctions in the dark pool setting imple-
mented with MPC promise throughput that match those of traditional dark pool markets,
as shown in these works by Cartlidge et al. [33, 34]. In periodic auctions, limit orders are
submitted during an open auction period after which a clearing price is computed during
the clearing phase, which maximizes the volume of matched orders (unmatched orders are
carried over to the next round). In contrast to CDA algorithms, where orders are processed
individually against a potentially large order book, periodic auctions only need to compute a
single clearing price for the entire batch in a given period. In fact, real-world order execution
throughput has been achieved with a realistic number of asset pairs.

In [34], the London Stock Exchange Group’s Turquoise Plato Uncross, a widely-used
traditional dark pool supporting thousands of assets, is implemented with promising results.
Based on volume observed on the real-world Turquoise Plato Uncross venue, it is assumed that
order book clearing occurs at most every 5 seconds, where at most 2000 newly input orders
must be processed across an asset universe of 4000 financial instruments. This throughput
was successfully handled by smaller MPC committee sizes of 2 (dishonest majority) and
3 (honest-majority), but required multiple MPC instances, each handling orders trading a
small subset of all assets (Figure 1). For example, ∼ 280 MPC committee instances are each
randomly assigned 16 assets in each round by a gateway engine. This gateway periodically

10 In their work, the runtime of MPC pre-processing is neglected, which represents a non-trivial “hidden”
computational cost that can be performed during “offline” hours or outsourced to dedicated pre-
processing workers; pre-processing generally does not limit the maximum, sustainable throughput of
MPC.

AFT 2023



12:16 SoK: Privacy-Enhancing Technologies in Finance

P1 P2

P3

P4 P5

P6

P7 P8

P9

P10 P11

P12

Traders

Private orders Secret, randomized asset pair assignment

Gateway MPC

A C

D

B

P1

P2 P3

P4

P5 P6

P10

P11 P12

P7

P8 P9

Figure 1 In [34], a gateway MPC (A) distributes inbound received orders across multiple MPC
committees (B,C,D) to improve order clearing throughput. MPC servers never learn the asset pairs
its committee is assigned in each round.

reassigns asset subsets to new MPC instances in order to break potential linkages between
orders across time periods. We note that auction algorithms are not entirely oblivious. Indeed,
the direction of orders are leaked in [33, 34], whilst volumes and order limits remain private.

Complementary follow-up work by Da Gama et al. [44, 45] both focus on (single-asset)
privacy-preserving volume matching, which enables further performance gains since the
clearing prices are determined by an external reference price; [44] introduces an improved
MPC volume matching algorithm which permits dummy orders and hides the trade direction.
[45] scales volume matching up to MPC instances consisting of ∼ 100 servers and shows
the economic costs associated with operating such a single server in a MPC instance of up
to 100 servers to be below ∼ 0.10 USD and ∼ 0.025 USD for computation and network
communication respectively in each auction round; the negligible cost demonstrates the
feasibility of market participants contributing to the distributed operation of dark pools.

Periodic Double Auctions with FHE: JP Morgan has demonstrated initial results in work
by Balch et al. [7] to realize dark pool venues where the venue operator is not distributed,
but computes the periodic volume matching over data encrypted under a jointly controlled
public key; here, the secret encryption key material used in the threshold fully homomorphic
encryption is held in secret-shared form by all participants (Figure 2). While the computation
can be done by one party on the ciphertexts (not knowing their plain values), the participants
then later take part in a so-called distributed decryption protocol which reconstructs the
outcomes to the venue operator. Whilst [7] benchmark periodic volume matching implemented
with threshold FHE, the omission of the partial decryption sub-protocol complicates the
evaluation of its performance. Still, FHE offers an alternative approach to secret sharing-based
MPC which promises competitive performance; fewer communication rounds are required,
since computation is performed locally by the dedicated venue operator over encrypted data,
although local computation (over encrypted data) is more costly.

Publicly, verifiable dark pool operator: Similar to verifiable one-sided auctions [89], a
weaker notion of order privacy for dark pools is proposed in the following work by Thorpe et
al. [107], where the venue operator only reveals a homomorphically encrypted order book to
traders; the operator itself, however, maintains the encryption key and can thus compute
over the order book plaintext. Each update to the public, encrypted order book triggered
by a submitted order is accompanied with a zero-knowledge range proof generated by the
operator; any public party can locally re-compute the claimed update over encrypted values
and verify zero-knowledge range proofs that guarantee that the plaintext values lies within
certain ranges, thereby enabling verification of comparison statements between encrypted
values. This system ensures the correctness of each order book update without revealing
the order details themselves. [107] implements the CDA algorithm in a publicly verifiable
manner; as in [89], this approach does not prevent any misuse of the order information held
by the operator.



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:17

Encrypted inputs MPC input protocol
MPC

Committee

TraderFHE
Evaluator

E

P1

P2 P3

P4

P5 P6

P1

P2 P3

P4

P5 P6

Figure 2 In [7], market auctions are implemented with fully homomorphic encryption (FHE);
here, the encryption key is jointly generated by key servers (P1-P3), but the FHE evaluation is
solely performed by the evaluator, who never learns the plaintext of the inputs or intermediary
results. Decryption of the FHE output requires interaction with all key servers. In contrast,
private computation with MPC in [33] requires interaction amongst MPC servers (P4-P6) for each
(multiplicative) operation.

4.2 Markets on Public Ledgers

The advent of public ledger protocols [61, 73, 64] resulting from permissionless participation
of servers across the public internet promises a truly “server-less” system of transaction
settlements, no longer dependent on any single trusted intermediary. The state of the ledger
is public and its integrity is publicly verifiable (by any online party) through local verification
of all previously finalized transactions sequenced in form of an append-only list, or blockchain.
Observe that access to such a global transaction history also implies a Turing-complete state
machine. Hence it can be used to realize smart contracts, which represent user-deployed
programs run by the “servers” that run the blockchain protocols. Smart contracts can be
used to construct custom ledgers [ERC20, ERC721], but also to facilitate more advanced
functionalities such as decentralized auctions or decentralized exchanges (DEX), which forgo
the need for trusted venue operators. In contrast to traditional finance, market applications
in the public ledger setting offer instant settlement; any market application implemented
with smart contracts instances permits the simultaneous evaluation and settlement between
participants. Despite scalability challenges arising from the vast number of participants
running the blockchain backbone protocol, the promise of instant settlement would allow the
mitigation of counter-party risk, a real cost to transactions conducted in traditional finance
today.

However, the public verifiability of a public ledger also introduces novel challenges for
financial applications; account balances are public by default and leak information about
submitted bids, trades or margin positions; the latter must be backed by valid balances. In
decentralized finance (DeFi) [112], front-running is indeed rampant in decentralized exchanges
(DEX) [109], since pending transactions leak trade intent to the adversary which can precisely
order and inject transactions to execute optimal front-running strategies. Thus, proposals
have been made to implement private balances on public ledgers with publicly verifiable,
non-interactive zero-knowledge [99, 23]. However, a privacy-preserving ledger (even with
standard smart contract support) is generally not sufficient for privacy-preserving financial
applications such as exchanges [13].

Privacy-preserving ledgers generally complicate the realization of smart contracts, since
these must verify and update account balances known only to its owners according to
an agreed-upon transition logic. For decentralized exchanges implemented in the privacy-
preserving ledger setting, this requires the presence of a secure multiparty computation
instance, to which users can privately input their trade orders and private balances; the

AFT 2023



12:18 SoK: Privacy-Enhancing Technologies in Finance

MPC

Clients Clients

MPC inputs

Confidential Deposits

Authorisation

Confidential Payouts

Public Ledger

Smart
Contract

P1

P2 P3

MPC outputs

Figure 3 We sketch the architecture of privacy-preserving smart contract applications in MPC
with instant settlement on a (confidential) ledger; clients provide input parameters to the MPC
instance, and forward financial deposits to a smart contract in a confidential manner. The MPC
privately returns computation output to clients, but also authorizes a new financial distribution
which is paid out to the clients by the smart contract functionality.

MPC then computes an updated DEX state and private balances, which are then updated
on the ledger (Figure 3). Enforcing consistency between the secret, internal MPC state and
private account balances on the ledger requires protocol design advances illustrated in the
subsequent paragraphs. We emphasize that counter to popular belief, zero-knowledge is
not sufficient to realize universally expressive, privacy-preserving smart contracts, as the
witness (or secret state) for decentralized privacy-preserving applications are partially held by
separate, distrusting parties; instead, function evaluation over private inputs from separate
parties and secret-shared data is the natural domain of secure multiparty computation.

We note there are privacy-preserving smart contract proposals which shield private
data [104, 103] held by individual users or private contract logic [20], but such techniques
are generally limited in their expressiveness. The work of Bowe et al.[20] only supports two
parties, and is not widely used to realize privacy-preserving financial applications.

Sealed-bid Auctions (with Instant Settlement). The first work by Bag et al. [6] to realize
sealed-bid auctions specifically in the setting of public ledgers focuses on using the blockchain
as a communication medium instead of a settlement layer; as a permissionless protocol,
any party can anonymously post an arbitrary message to the bulletin board, visible to all
other parties. For protocols with low communication rounds, this is a practical solution; in
particular, the simplicity of evaluating single-sided sealed-bid auctions permits task-specific
secure multiparty protocols which only require public message broadcasts. The SEAL [6]
protocol proposes the use of a anonymous veto protocol [69] requiring only two communication
two rounds, that is then repeated once by auction bidders for each bit of their bid price,
thereby removing the necessity an auctioneer role entirely. In particular, the veto protocol of
[69] receives the private input bi ∈ {0, 1} for party i ∈ [n], for each of the m bits representing
the permissible price range; the parties learn the highest bid, bit by bit. Each execution of
the veto protocol will thus publicly output 1 if one of the users submits a veto; thus, by
repeating the veto protocol for each bit position, all participants receive the highest bid
without revealing the prices of failed bids. [6] assumes participants to behave according to
the protocol (semi-honesty).

This mechanism was later adopted and hardened by FAST [49] to be secure against
malicious participants not adhering to the protocol. Furthermore, [49] introduces guaranteed
settlement on the public ledger featuring privacy-preserving deposits. Participants are thus
committed to execute the payment for their bids if these are successful during the auctions.
Cheating participants are penalized by having their deposits slashed and reimbursed to other



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:19

parties; non-interactive zero-knowledge proofs from all parties ensure that parties only submit
a veto if it is consistent with their initial bid (in commitment form on the ledger); still, despite
the privacy-preserving aspects of the anonymous veto protocol, privacy leakage occurs when
the highest bidder learns when he overtakes the second highest bidder. The work of Ganesh
et al. [60] adopts a similar construction which is proven to be game-theoretically secure; it is
rational to pursue the honest protocol despite any strategy chosen by other players. The work
of Chin et al. [40] does not employ zero-knowledge proofs to shield commmitted funds for a
single-sided, sealed-bid auction; deposits are sent to committed, yet undeployed contracts
and are thus indistinguishable from normal Ethereum transactions, a similar technique used
in Breidenbach et al. [21] to commit inputs to smart contracts without revealing them to
the front-running adversary. This approach only guarantees k-anonymity and relies on the
presence of other, unrelated transactions.

Privacy-preserving Decentralized Exchanges. We note a number of recent proposals for
privacy-preserving DEX applications in recent years; intent-based privacy-preserving DEX
applications mirror the functionality of over-the-counter (OTC) venues (in traditional finance)
and only require a public ledger, but do not scale well and are not widely deployed. Privacy-
preserving and front-running secure DEX protocols generally involve private ledger deposits
and perform the order matching in an MPC instance, as is the case in distributed Dark Pool
proposals previously described in Section 4.1, but offer instant settlement following each
DEX round (Figure 3).

Intent-based, privacy-preserving DEX. In the works of [20] and [87], a simpler model
of a decentralized exchange is implemented; a bulletin board functionality provided by a
public ledger permits a “maker” to broadcast their trade intent. An interested counter-party
or “taker” then directly opens an authenticated communication channel with the maker to
jointly perform a privacy-preserving atomic swap on the public ledger [20]. Intent-based
DEX protocols resemble over-the-counter models in traditional finance. [87] introduces a
“witness key agreement” (WKA) construction which preserves the privacy of the maker’s
offer; the WKA allows a taker to establish a shared secret key with a maker which has
posted its order in commitment form to the ledger. The key agreement protocol succeeds if
the committed, private order fulfills a relation determined by the taker. This key permits
subsequent anonymous communication with the maker to finalize the transaction.

Privacy-preserving Futures DEX. An interesting example of decentralized exchanges is
illustrated by Massacci et al. [80], which realizes a futures exchanges modelled closely after
the Chicago Mercantile Exchange; here, the future obligation (or contract) to buy or sell a
commodity is traded. The net position of a market participant is the sum of both current
liquidity balances and future obligations; importantly, a party holding a future to “sell” a
given commodity, must always hold sufficient liquidity to acquire the respective commodity,
as it otherwise would default on its contractual obligation. Thus, a net position that falls
below zero must be liquidated to protect the counter-party of any futures contract held by
the liquidated party. Achieving this in a privacy-preserving manner without revealing the
net position of a party is the goal of the work of [80].

If the net position of a participant is revealed, price manipulations could be conducted
with the explicit intention of forcing the liquidation of otherwise valid positions. Thus, [80]
proposes a similar scheme to [99], where the net position of each account is committed
in a cryptographic accumulator. The validity of each update to the account is proven in

AFT 2023



12:20 SoK: Privacy-Enhancing Technologies in Finance

Gridlock

500

500

1000

1500500

500

A

B C

A

B C

Post
Netting

+ 1000

- 500 - 500

500

500

1000

500

Figure 4 We adopt a netting example from [111]; processing of individual payment orders may
fail due to a lack of liquidity (left), as balances must remain positive following execution of each
individual payment. Netting relaxes this constraint; balances need only to be positive following
execution of all payments orders (right).

zero-knowledge, whilst the trading venue is executed in a MPC instance, similarly to the
Dark Pool proposals in Section 4.1. [80] requires parties participate in the protocol for
each account update, even if this means the liquidation of their own account. We note that
the subsequent privacy-preserving smart contract framework instantiated with MPC and a
confidential ledger [9] achieves the privacy guarantees of [80] without permitting users to
block application liveness.

Front-running Secure DEX. A general motivation for privacy in decentralized exchanges is
the front-running of DEX applications in Decentralized Finance due to public transactions
and accounts in the default ledger setting; Despite offering instant settlement of trades and
transactions, pending user input authorizations generally broadcast a users trade intent
before their finalization. To this end, P2DEX [11] proposes the first privacy-preserving
decentralized exchange, which can operate and settle transactions across multiple ledger
instances; clients submit orders to an MPC committee which computes the order matching
and subsequently settles these on the respective public ledgers; since the trade inputs are
private, front-running is mitigated. Follow-up work [9] generalizes this model to a setting
with confidential accounts; here, all zero-knowledge proofs are moved outside the MPC
computation, as computing such proofs inside the MPC remains generally unfeasible for
real-world application. The work of Govindarajan et al. [68] realizes a privacy-preserving
DEX in a similar manner; here, however, the actual order matching is computed in the clear of
a smart contract over anonymized trade lists to accelerate the determination of a clearing price.

4.3 Inter-bank Netting on Public Ledgers
Inter-bank payment requests are currently submitted to the real-time gross settlement
(RTGS) system managed by the central bank to update the accounts of sending and receiving
financial institutions. In times of low liquidity, a bank may fail to honor individual payment
instructions, as the liquidity requirement may exceed its balance and credit line granted
by the central bank; a gridlock occurs, when a failed payment settlement prevents further
payment instructions from being processed. Given the large payment volumes processed each
day, liquidity saving mechanisms are implemented which settle payment instructions on a
netting basis (Figure 4).

Recent work has proposed distributing the role of the RTGS operator with a public
ledger protocol, whilst implementing efficient netting protocols with smart contracts [111, 84],
thereby increasing system resiliency as the operational liability burden on the central bank



C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:21

operator today is very high. Whilst the aforementioned works implement inter-bank netting of
queued payments, the nature of public ledgers means that payment instructions are revealed
to parties participating in the underlying blockchain backbone protocol. Instead, [32] proposes
payment instructions to be posted to the ledger in commitment form accompanied with non-
interactive zero-knowledge proofs attesting their well-formedness. Here, local netting solutions
are computed by each participating bank and verified by a coordinating smart contract, which
verifies correctness of all submitted, local netting solutions without revealing amounts and
the identity of institutions. Since parties must compute partial netting solutions, the protocol
of [32] is not robust against cheating participants, who can stall or abort the netting process
by posting invalid partial netting proposals. In contrast, [50] computes the netting solution
inside an MPC instance, thereby achieving fault tolerance against dishonest participants.
Despite initial implementation benchmarks provided by works above, it remains an open
question in what configuration such systems can scale to real-world payment settlement
volume and what netting frequency is required in practice.

5 Future applications

We will now outline which other PET use cases could be of interest in the financial sector in
the foreseeable future. While many of the use cases previously described in this work may
also not yet be production-ready, we want to highlight areas in this section which we think
deserve more attention by researchers and practitioners. This necessarily is of speculative
nature, so the reader may see this as food for thought.

Voting. Voting is a standard mechanism in deciding on future policies. While in many
cases it is sufficient to make the whole voting process public, this is not always possible.
For example, a voter may fear repercussions or embarrassment if his or her vote becomes
public. Hence, to ensure honest digital voting, cryptographic voting algorithms have to be
used. These ensure that election outcomes can be computed while individual votes cannot
be attributed to participants. While such cryptographic voting can be realized using MPC
or FHE, a dedicated line of work started by Chaum [38] presents highly efficient dedicated
voting protocols. Cryptographic voting mechanisms find interesting applications in the DeFi
space, e.g. for privacy-preserving Decentralized Anonymous Organizations (DAOs). In
particular, a treasury system for DAOs based on electronic voting has been proposed in [116]
and a board room voting scheme based on smart contracts (and this amenable to the DAO
scenario) has been proposed in [82]. We believe that these techniques may also be useful
for coordination among classical banking institutions and other financial operations (e.g.
shareholder meetings).

Fraud detection. Both insurance and gambling are known as industries where companies
in the sector exchange information on their customers in order to detect fraud or exploitative
customers11. This information sharing may be problematic for privacy reasons, and it
also leaks information about suspected but ultimately honest customers if done in plain.
PETs such as PSI might be an interesting tool to construct a trusted intermediary. This
intermediary can obtain information from participating companies and alerts them if e.g.
more than 3 of them share the same customer. Here, PSI can ensure that only those customers
are revealed that appear often enough.

11 For example the infamous “Griffin Book”.

AFT 2023



12:22 SoK: Privacy-Enhancing Technologies in Finance

Better and fairer pattern recognition. In section 3 we have outlined how AML does benefit
from recognition of suspicious patterns. Such patterns, if one wants to keep up in the digital
age, must be learned from a large dataset and must be updated frequently. Moreover, many
companies in an industry have an interest in pooling their data with other institutions for
the purpose of learning these patterns. At the same time, they may not want to share raw
customer or transaction data. Another, related area is assessing the credit risk of potential
customers. Here, the risk becomes more accurate the more participants can contribute
information or models. At the same time, input providers have an interest to keep their data
private (for data protection or to protect intellectual property).

Both applications fall into the area of privacy-preserving Machine Learning [78, 54, 83] or
confidential benchmarking [47] which are subfields of MPC. While these areas have received
much attention recently12, optimized applications to finance seem to be lacking.

Another important aspect is that (automatically generated) models should not be biased
against certain groups. While fair machine learning itself is a rapidly developing field, its
application to finance [51] may deserve more attention.

Privacy preserving mitigation of systemic risk. Audits of financial institutions guarantee
that their balances plus credit cover outstanding obligations. This reduces counter-party
risk and means that the overall system can rely less on biasable methods such as ratings
and reputation. At the same time, an audited company may not want to open its books
fully to the public, or it might not be guaranteed that these books are correct. [80] have
shown how audits can be realized using ZK proofs, although limited to the futures market.
We believe that this concept may be generalized to the wider financial system to permit
privacy-preserving audits.

References
1 Aysajan Abidin, Abdelrahaman Aly, Sara Cleemput, and Mustafa A Mustafa. An mpc-based

privacy-preserving protocol for a local electricity trading market. In Cryptology and Network
Security: 15th International Conference, CANS 2016, Milan, Italy, November 14-16, 2016,
Proceedings 15, pages 615–625. Springer, 2016.

2 Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee. PASTA:
PASsword-based threshold authentication. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 2042–2059. ACM Press, October
2018. doi:10.1145/3243734.3243839.

3 Ghada Almashaqbeh and Ravital Solomon. Sok: Privacy-preserving computing in the block-
chain era. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages
124–139, 2022. doi:10.1109/EuroSP53844.2022.00016.

4 Nasser Alsalami and Bingsheng Zhang. Sok: A systematic study of anonymity in cryptocur-
rencies. In 2019 IEEE Conference on Dependable and Secure Computing (DSC), pages 1–9,
2019. doi:10.1109/DSC47296.2019.8937681.

5 Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar Elkhiyaoui,
and Björn Tackmann. Privacy-preserving auditable token payments in a permissioned
blockchain system. In AFT ’20: 2nd ACM Conference on Advances in Financial Tech-
nologies, New York, NY, USA, October 21-23, 2020, pages 255–267. ACM, 2020. doi:
10.1145/3419614.3423259.

6 Samiran Bag, Feng Hao, Siamak F Shahandashti, and Indranil Ghosh Ray. SEAL: Sealed-bid
auction without auctioneers. IEEE Transactions on Information Forensics and Security,
15:2042–2052, 2019.

12 Privacy-preserving Machine Learning opens up interesting use cases, but it does not come without its
own problems. See [52] for a good overview.

https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1109/EuroSP53844.2022.00016
https://doi.org/10.1109/DSC47296.2019.8937681
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259


C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:23

7 Tucker Balch, Benjamin E Diamond, and Antigoni Polychroniadou. SecretMatch: inventory
matching from fully homomorphic encryption. In Proceedings of the First ACM International
Conference on AI in Finance, pages 1–7, 2020.

8 Amira Barki and Aline Gouget. Achieving privacy and accountability in traceable digital
currency. Cryptology ePrint Archive, Report 2020/1565, 2020. URL: https://eprint.iacr.
org/2020/1565.

9 Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen. Eagle:
Efficient Privacy Preserving Smart Contracts. Cryptology ePrint Archive (To appear in
Financial Cryptography and Data Security 2023), 2022. URL: https://eprint.iacr.org/
2022/1435.

10 Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen. SoK:
Privacy-Enhancing Technologies in Finance, 2023. Full version. URL: https://eprint.iacr.
org/2023/122.

11 Carsten Baum, Bernardo David, and Tore Kasper Frederiksen. P2DEX: privacy-preserving
decentralized cryptocurrency exchange. In International Conference on Applied Cryptography
and Network Security, pages 163–194. Springer, 2021.

12 Carsten Baum, Tore Kasper Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai.
PESTO: proactively secure distributed single sign-on, or how to trust a hacked server. In
IEEE European Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September
7-11, 2020, pages 587–606. IEEE, 2020. doi:10.1109/EuroSP48549.2020.00044.

13 Carsten Baum, James Hsin yu Chiang, Bernardo David, Tore Kasper Frederiksen, and
Lorenzo Gentile. Sok: Mitigation of front-running in decentralized finance. Cryptology ePrint
Archive, Paper 2021/1628, 2021. To appear on the Proceedings of the The 2nd Workshop
on Decentralized Finance (DeFi) in Association with Financial Cryptography 2022. URL:
https://eprint.iacr.org/2021/1628.

14 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988. doi:10.1145/62212.62213.

15 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014. doi:10.1109/SP.2014.36.

16 Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe. The apple PSI
system, 2021. Accessed on 02/08/2023. URL: https://www.apple.com/child-safety/pdf/
Apple_PSI_System_Security_Protocol_and_Analysis.pdf.

17 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi
Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012. doi:10.1145/2090236.
2090263.

18 Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas Jakobsen,
Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In
Roger Dingledine and Philippe Golle, editors, FC 2009, volume 5628 of LNCS, pages 325–343.
Springer, Heidelberg, February 2009.

19 Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter, and Tomas
Toft. A practical implementation of secure auctions based on multiparty integer computation.
In Giovanni Di Crescenzo and Avi Rubin, editors, FC 2006, volume 4107 of LNCS, pages
142–147. Springer, Heidelberg, February / March 2006.

20 Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 947–964. IEEE, 2020.

AFT 2023

https://eprint.iacr.org/2020/1565
https://eprint.iacr.org/2020/1565
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2023/122
https://eprint.iacr.org/2023/122
https://doi.org/10.1109/EuroSP48549.2020.00044
https://eprint.iacr.org/2021/1628
https://doi.org/10.1145/62212.62213
https://doi.org/10.1109/SP.2014.36
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263


12:24 SoK: Privacy-Enhancing Technologies in Finance

21 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards
principled bug bounties and {Exploit-Resistant} smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

22 Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards
privacy in a smart contract world. In Joseph Bonneau and Nadia Heninger, editors, FC
2020, volume 12059 of LNCS, pages 423–443. Springer, Heidelberg, February 2020. doi:
10.1007/978-3-030-51280-4_23.

23 Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy
in a smart contract world. In International Conference on Financial Cryptography and Data
Security, pages 423–443. Springer, 2020.

24 Joseph Burleson, Michele Korver, and Dan Boneh. Privacy-protecting regulatory solutions
using zero-knowledge proofs: Full paper, 2020. URL: https://a16zcrypto.com/privacy-
protecting-regulatory-solutions-using-zero-knowledge-proofs-full-paper/.

25 Christian Cachin. Efficient private bidding and auctions with an oblivious third party. In
Proceedings of the 6th ACM Conference on Computer and Communications Security, pages
120–127, 1999.

26 Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 683–699. ACM
Press, October / November 2017. doi:10.1145/3133956.3134025.

27 Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 345–356. ACM
Press, October 2008. doi:10.1145/1455770.1455814.

28 Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Memento: How to
reconstruct your secrets from a single password in a hostile environment. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 256–275.
Springer, Heidelberg, August 2014. doi:10.1007/978-3-662-44381-1_15.

29 Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonym-
ous credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.
doi:10.1007/3-540-44987-6_7.

30 Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
56–72. Springer, Heidelberg, August 2004. doi:10.1007/978-3-540-28628-8_4.

31 Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous
credential system. In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 21–30. ACM Press,
November 2002. doi:10.1145/586110.586114.

32 Shengjiao Cao, Yuan Yuan, Angelo De Caro, Karthik Nandakumar, Kaoutar Elkhiyaoui, and
Yanyan Hu. Decentralized privacy-preserving netting protocol on blockchain for payment
systems. In Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography and Data
Security, pages 137–155, Cham, 2020. Springer International Publishing.

33 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. MPC joins the dark side. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
pages 148–159, 2019.

34 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Multi-party computation mechanism
for anonymous equity block trading: A secure implementation of turquoise plato uncross.
Intelligent Systems in Accounting, Finance and Management, 28(4):239–267, 2021.

35 Benjamin Case, Richa Jain, Alex Koshelev, Andy Leiserson, Daniel Masny, Thurston Sandberg,
Ben Savage, Erik Taubeneck, Martin Thomson, and Taiki Yamaguchi. Interoperable private
attribution: A distributed attribution and aggregation protocol. Cryptology ePrint Archive,
Paper 2023/437, 2023. URL: https://eprint.iacr.org/2023/437.

https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/978-3-030-51280-4_23
https://a16zcrypto.com/privacy-protecting-regulatory-solutions-using-zero-knowledge-proofs-full-paper/
https://a16zcrypto.com/privacy-protecting-regulatory-solutions-using-zero-knowledge-proofs-full-paper/
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/586110.586114
https://eprint.iacr.org/2023/437


C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:25

36 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume
293 of LNCS, page 462. Springer, Heidelberg, August 1988. doi:10.1007/3-540-48184-2_43.

37 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.
doi:10.1145/62212.62214.

38 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

39 Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1243–1255. ACM Press, October / November 2017. doi:
10.1145/3133956.3134061.

40 Kota Chin, Keita Emura, Kazumasa Omote, and Shingo Sato. A Sealed-bid Auction with
Fund Binding: Preventing Maximum Bidding Price Leakage. In 2022 IEEE International
Conference on Blockchain (Blockchain), pages 398–405. IEEE, 2022.

41 Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In 26th FOCS, pages
383–395. IEEE Computer Society Press, October 1985. doi:10.1109/SFCS.1985.64.

42 Coinbase. Coinbase to acquire leading cryptographic security company, Unbound Security,
November 2021. URL: https://www.coinbase.com/blog/coinbase-to-acquire-leading-
cryptographic-security-company-unbound-security.

43 d1onys1us. Zero-knowledge rollups, 2023. Accessed on 02/08/2023. URL: https://ethereum.
org/en/developers/docs/scaling/zk-rollups/.

44 Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P Smart, and
Younes Talibi Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using buckets. In
International Conference on Financial Cryptography and Data Security, pages 20–37. Springer,
2022.

45 Mariana Botelho da Gama, John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. All for
one and one for all: Fully decentralised privacy-preserving dark pool trading using multi-party
computation. Cryptology ePrint Archive, 2022. URL: https://eprint.iacr.org/2022/923.

46 Mariana Botelho da Gama, John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Privacy-
preserving dark pools. Cryptology ePrint Archive, 2022. URL: https://eprint.iacr.org/
2022/923.

47 Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas Toft.
Confidential benchmarking based on multiparty computation. In Jens Grossklags and Bart
Preneel, editors, FC 2016, volume 9603 of LNCS, pages 169–187. Springer, Heidelberg, February
2016.

48 Ivan Damgård, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and Luisa Siniscal-
chi. Balancing privacy and accountability in blockchain identity management. In Kenneth G.
Paterson, editor, CT-RSA 2021, volume 12704 of LNCS, pages 552–576. Springer, Heidelberg,
May 2021. doi:10.1007/978-3-030-75539-3_23.

49 Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. FAST: fair auctions via secret
transactions. In International Conference on Applied Cryptography and Network Security,
pages 727–747. Springer, 2022.

50 Angelo De Caro, Andrew Miller, and Amit Agarwal. Privacy-Preserving Decentralized Multi-
Party Netting, September 29 2022. US Patent App. 17/216,644, https://patents.google.
com/patent/US20220309492A1/en.

51 Leo de Castro, Jiahao Chen, and Antigoni Polychroniadou. Cryptocredit: securely training
fair models. In Proceedings of the First ACM International Conference on AI in Finance,
pages 1–8, 2020.

52 Emiliano De Cristofaro. A critical overview of privacy in machine learning. IEEE Security &
Privacy, 19(4):19–27, 2021. doi:10.1109/MSEC.2021.3076443.

AFT 2023

https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1109/SFCS.1985.64
https://www.coinbase.com/blog/coinbase-to-acquire-leading-cryptographic-security-company-unbound-security
https://www.coinbase.com/blog/coinbase-to-acquire-leading-cryptographic-security-company-unbound-security
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923
https://doi.org/10.1007/978-3-030-75539-3_23
https://patents.google.com/patent/US20220309492A1/en
https://patents.google.com/patent/US20220309492A1/en
https://doi.org/10.1109/MSEC.2021.3076443


12:26 SoK: Privacy-Enhancing Technologies in Finance

53 Apple Differential Privacy Team. Learning with privacy at scale. Accessed on 02/08/2023.
URL: https://docs-assets.developer.apple.com/ml-research/papers/learning-with-
privacy-at-scale.pdf.

54 Wenliang Du, Mikhail J Atallah, et al. Privacy-preserving cooperative scientific computations.
In csfw, volume 1, page 273, 2001.

55 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume
3876 of LNCS, pages 265–284. Springer, Heidelberg, March 2006. doi:10.1007/11681878_14.

56 Matthew K Franklin and Michael K Reiter. The design and implementation of a secure auction
service. IEEE Transactions on Software Engineering, 22(5):302–312, 1996.

57 Tore Kasper Frederiksen. A holistic approach to enhanced security and privacy in digital
health passports. In Delphine Reinhardt and Tilo Müller, editors, ARES 2021: The 16th
International Conference on Availability, Reliability and Security, Vienna, Austria, August
17-20, 2021, pages 133:1–133:10. ACM, 2021. doi:10.1145/3465481.3469212.

58 Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 1–19. Springer, Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_1.

59 Mariana Gama, Fairouz Zobiri, and Svetla Nikova. Multi-party computation auction
mechanisms for a p2p electricity market with geographical prioritization, 2022. URL:
https://www.esat.kuleuven.be/cosic/publications/article-3526.pdf.

60 Chaya Ganesh, Bhavana Kanukurthi, and Girisha Shankar. Secure Auctions in the Presence
of Rational Adversaries. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1173–1186, 2022.

61 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281–310. Springer, 2015.

62 Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous credentials. In
NDSS 2014. The Internet Society, February 2014.

63 Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009. doi:10.1145/1536414.
1536440.

64 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium on
operating systems principles, pages 51–68, 2017.

65 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages
174–187. IEEE Computer Society Press, October 1986. doi:10.1109/SFCS.1986.47.

66 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. doi:10.1145/28395.28420.

67 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May
1985. doi:10.1145/22145.22178.

68 Kavya Govindarajan, Dhinakaran Vinayagamurthy, Praveen Jayachandran, and Chester
Rebeiro. Privacy-preserving decentralized exchange marketplaces. In 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2022.

69 Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In International Workshop
on Security Protocols, pages 202–211. Springer, 2009.

70 Michael Harkavy, J Doug Tygar, and Hiroaki Kikuchi. Electronic auctions with private bids.
In USENIX Workshop on Electronic Commerce, 1998.

https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/3465481.3469212
https://doi.org/10.1007/978-3-540-24676-3_1
https://www.esat.kuleuven.be/cosic/publications/article-3526.pdf
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/22145.22178


C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:27

71 Space systems — Definition of the Technology Readiness Levels (TRLs) and their criteria of
assessment. Standard, International Organization for Standardization, Geneva, CH, November
2013.

72 Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-minimal
password-protected secret sharing based on threshold OPRF. In Dieter Gollmann, Atsuko
Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58. Springer,
Heidelberg, July 2017. doi:10.1007/978-3-319-61204-1_3.

73 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017.

74 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-preserving blueprints. IACR
Cryptol. ePrint Arch., page 1536, 2022. URL: https://eprint.iacr.org/2022/1536.

75 Team KZen. Bitcoin wallet powered by two-party ECDSA extended abstract. URL: https:
//github.com/ZenGo-X/gotham-city/blob/master/white-paper/white-paper.pdff.

76 Protocol Labs. Filecoin: A decentralized storage network, 2017. URL: https://filecoin.io/
filecoin.pdf.

77 Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 1837–1854, 2018.

78 Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 36–54. Springer, Heidelberg, August 2000.
doi:10.1007/3-540-44598-6_3.

79 Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, Tyler
Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller. CanDID: Can-do
decentralized identity with legacy compatibility, sybil-resistance, and accountability. In 2021
IEEE Symposium on Security and Privacy, pages 1348–1366. IEEE Computer Society Press,
May 2021. doi:10.1109/SP40001.2021.00038.

80 Fabio Massacci, Chan Nam Ngo, Jing Nie, Daniele Venturi, and Julian Williams. FuturesMEX:
secure, distributed futures market exchange. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 335–353. IEEE, 2018.

81 Nick Maxwell. Case studies of the use of privacy preserving analysis to tackle financial
crime, January 2021. URL: https://www.future-fis.com/uploads/3/7/9/4/3794525/
ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_
preserving_analysis_-_v.1.3.pdf.

82 Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart contract for boardroom
voting with maximum voter privacy. In Aggelos Kiayias, editor, FC 2017, volume 10322 of
LNCS, pages 357–375. Springer, Heidelberg, April 2017.

83 Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE
Computer Society Press, May 2017. doi:10.1109/SP.2017.12.

84 Ken Naganuma, Masayuki Yoshino, Hisayoshi Sato, Nishio Yamada, Takayuki Suzuki, and
Noboru Kunihiro. Decentralized netting protocol over consortium blockchain. In 2018
International Symposium on Information Theory and Its Applications (ISITA), pages 174–177.
IEEE, 2018.

85 Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM Conference on Electronic Commerce, pages 129–139,
1999.

86 Neha Narula, Willy Vasquez, and Madars Virza. zkLedger: Privacy-Preserving Auditing
for Distributed Ledgers. In Sujata Banerjee and Srinivasan Seshan, editors, 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2018, Renton, WA,
USA, April 9-11, 2018, pages 65–80. USENIX Association, 2018. URL: https://www.usenix.
org/conference/nsdi18/presentation/narula.

AFT 2023

https://doi.org/10.1007/978-3-319-61204-1_3
https://eprint.iacr.org/2022/1536
https://github.com/ZenGo-X/gotham-city/blob/master/white-paper/white-paper.pdff
https://github.com/ZenGo-X/gotham-city/blob/master/white-paper/white-paper.pdff
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1109/SP40001.2021.00038
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis_-_v.1.3.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis_-_v.1.3.pdf
https://www.future-fis.com/uploads/3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_studies_of_the_use_of_privacy_preserving_analysis_-_v.1.3.pdf
https://doi.org/10.1109/SP.2017.12
https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula


12:28 SoK: Privacy-Enhancing Technologies in Finance

87 Chan Nam Ngo, Fabio Massacci, Florian Kerschbaum, and Julian Williams. Practical witness-
key-agreement for blockchain-based dark pools financial trading. In International Conference
on Financial Cryptography and Data Security, pages 579–598. Springer, 2021.

88 Christian Paquin. U-Prove Technology Overview V1.1. Tech report, Microsoft Corpora-
tion, April 2013. URL: https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/U-Prove20Technology20Overview20V1.120Revision202.pdf.

89 David C Parkes, Michael O Rabin, Stuart M Shieber, and Christopher Thorpe. Practical
secrecy-preserving, verifiably correct and trustworthy auctions. Electronic Commerce Research
and Applications, 7(3):294–312, 2008.

90 THE EUROPEAN PARLIAMENT and THE COUNCIL OF THE EUROPEAN UNION.
Directive (EU) 2015/2366 of the european parliament and of the council, November 2015.
URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&
from=EN.

91 Juha Partala, Tri Hong Nguyen, and Susanna Pirttikangas. Non-interactive zero-knowledge
for blockchain: A survey. IEEE Access, 8:227945–227961, 2020. doi:10.1109/ACCESS.2020.
3046025.

92 Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado Cash Privacy Solution,
version 1.4, December 2019. URL: https://web.archive.org/web/20211026053443/https:
//tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf.

93 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.
doi:10.1145/73007.73014.

94 Peter Reuter and Edwin M. Truman. Chasing Dirty Money: The Fight Against Money
Laundering. Peterson Institute for International Economics, 2004.

95 Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

96 Umut Sahin. How to get started with concrete - zama’s fully homomorphic encryption compiler,
2023. Accessed on 02/08/2023. URL: https://www.zama.ai/post/how-to-started-with-
concrete-zama-fully-homomorphic-encryption-compiler.

97 Tomas Sander and Amnon Ta-Shma. Flow control: A new approach for anonymity control in
electronic cash systems. In Matthew Franklin, editor, FC’99, volume 1648 of LNCS, pages
46–61. Springer, Heidelberg, February 1999.

98 Olivier Sanders. Efficient redactable signature and application to anonymous credentials. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 628–656. Springer, Heidelberg, May 2020. doi:
10.1007/978-3-030-45388-6_22.

99 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE symposium on security and privacy, pages 459–474. IEEE, 2014.

100 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
101 Manu Sporny, Dave Longley, and David Chadwick. Verifiable credentials data mode, 2022.

URL: https://www.w3.org/TR/vc-data-model/.
102 Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie Steele, and Christopher

Allen. Decentralized identifiers (DIDs), 2022. URL: https://www.w3.org/TR/did-core.
103 Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev. ZeeStar: Private

Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1543–1543. IEEE Computer Society, 2022.

104 Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and Martin
Vechev. zkay: Specifying and enforcing data privacy in smart contracts. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security, pages 1759–1776,
2019.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Technology20Overview20V1.120Revision202.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Technology20Overview20V1.120Revision202.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://doi.org/10.1109/ACCESS.2020.3046025
https://doi.org/10.1109/ACCESS.2020.3046025
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://web.archive.org/web/20211026053443/https://tornado.cash/audits/TornadoCash_whitepaper_v1.4.pdf
https://doi.org/10.1145/73007.73014
https://www.zama.ai/post/how-to-started-with-concrete-zama-fully-homomorphic-encryption-compiler
https://www.zama.ai/post/how-to-started-with-concrete-zama-fully-homomorphic-encryption-compiler
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-45388-6_22
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/did-core


C. Baum, J.-H.-y. Chiang, B. David, and T. K. Frederiksen 12:29

105 Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your weight(s): A large-scale
study on insufficient machine learning model protection in mobile apps. In Michael Bailey and
Rachel Greenstadt, editors, USENIX Security 2021, pages 1955–1972. USENIX Association,
August 2021.

106 Shahroz Tariq, Sowon Jeon, and Simon S. Woo. Am I a real or fake celebrity? evaluating face
recognition and verification apis under deepfake impersonation attack. In Frédérique Laforest,
Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel
Médini, editors, WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon, France,
April 25 - 29, 2022, pages 512–523. ACM, 2022. doi:10.1145/3485447.3512212.

107 Christopher Thorpe and David C Parkes. Cryptographic securities exchanges. In International
Conference on Financial Cryptography and Data Security, pages 163–178. Springer, 2007.

108 Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta, Benny Pinkas,
and Avishay Yanai. UTT: Decentralized ecash with accountable privacy. Cryptology ePrint
Archive, Report 2022/452, 2022. URL: https://eprint.iacr.org/2022/452.

109 Christof Ferreira Torres, Ramiro Camino, and Radu State. Frontrunner jones and the raiders
of the dark forest: An empirical study of frontrunning on the ethereum blockchain. In
Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX
Security 2021, August 11-13, 2021, pages 1343–1359. USENIX Association, 2021. URL:
https://www.usenix.org/conference/usenixsecurity21/presentation/torres.

110 Marie Beth van Egmond, Thomas Rooijakkers, and Alex Sangers. Privacy-Preserving
Collaborative Money Laundering Detection. ERCIM News, 2021(126), 2021. URL:
https://ercim-news.ercim.eu/en126/special/privacy-preserving-collaborative-
money-laundering-detection.

111 Xin Wang, Xiaomin Xu, Lance Feagan, Sheng Huang, Limei Jiao, and Wei Zhao. Inter-bank
payment system on enterprise blockchain platform. In 2018 IEEE 11th international conference
on cloud computing (CLOUD), pages 614–621. IEEE, 2018.

112 Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
William J Knottenbelt. Sok: Decentralized finance (defi). arXiv preprint arXiv:2101.08778,
2021. URL: https://arxiv.org/abs/2101.08778.

113 Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. PRCash: Fast, private
and regulated transactions for digital currencies. In Ian Goldberg and Tyler Moore, editors,
FC 2019, volume 11598 of LNCS, pages 158–178. Springer, Heidelberg, February 2019. doi:
10.1007/978-3-030-32101-7_11.

114 Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando Krell,
and Philippe Camacho. Veri-zexe: Decentralized private computation with universal setup.
Cryptology ePrint Archive, 2022.

115 Arman Zand, James Orwell, and Eckhard Pfluegel. A Secure Framework for Anti-Money-
Laundering using Machine Learning and Secret Sharing. In 2020 International Conference
on Cyber Security and Protection of Digital Services (Cyber Security), pages 1–7, 2020.
doi:10.1109/CyberSecurity49315.2020.9138889.

116 Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. A treasury system for crypto-
currencies: Enabling better collaborative intelligence. In NDSS 2019. The Internet Society,
February 2019.

117 Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
270–282. ACM Press, October 2016. doi:10.1145/2976749.2978326.

118 Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels. DECO:
Liberating web data using decentralized oracles for TLS. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1919–1938. ACM Press, November
2020. doi:10.1145/3372297.3417239.

AFT 2023

https://doi.org/10.1145/3485447.3512212
https://eprint.iacr.org/2022/452
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://ercim-news.ercim.eu/en126/special/privacy-preserving-collaborative-money-laundering-detection
https://ercim-news.ercim.eu/en126/special/privacy-preserving-collaborative-money-laundering-detection
https://arxiv.org/abs/2101.08778
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1109/CyberSecurity49315.2020.9138889
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/3372297.3417239


12:30 SoK: Privacy-Enhancing Technologies in Finance

119 Fairouz Zobiri, Mariana Gama, Svetla Nikova, and Geert Deconinck. A Privacy-Preserving
Three-Step Demand Response Market Using Multi-Party Computation. In 13th Int. Conf.
Innov. Smart Grid Technol.(ISGT North Am. 2022), Washingt. DC (to Appear), 2022. URL:
https://www.esat.kuleuven.be/cosic/publications/article-3451.pdf.

https://www.esat.kuleuven.be/cosic/publications/article-3451.pdf


Decentralization Cheapens Corruptive Majority
Attacks
Stephen H. Newman
Princeton University, NJ, USA

Abstract
Corruptive majority attacks, in which mining power is distributed among miners and an attacker
attempts to bribe a majority of miners into participation in a majority attack, pose a threat to
blockchains. Budish bounded the cost of bribing miners to participate in an attack by their expected
loss as a result of attack success. We show that this bound is loose. In particular, an attack may
be structured so that under equilibrium play by most miners, a miner’s choice to participate only
slightly affects the attack success chance. Combined with the fact that most of the cost of attack
success is externalized by any given small miner, this implies that if most mining power is controlled
by small miners, bribing miners to participate in such an attack is much cheaper than the Budish
bound. We provide a scheme for a cheap corruptive majority attack and discuss practical concerns
and consequences.

2012 ACM Subject Classification Theory of computation → Algorithmic mechanism design; Applied
computing → Digital cash

Keywords and phrases Blockchain, Majority Attack, Corruptive Majority Attack

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.13

Acknowledgements Thanks to Matt Weinberg for substantial discussion, feedback, and advice.

1 Introduction

Blockchain- and consensus-based ledger protocols are generally susceptible to majority attacks,
in which an attacker gains control of a majority of mining power and uses it to create a
new canonical transaction history which diverges substantially from the original heaviest
chain [11]. This attack may be highly profitable: on currency-only blockchains, this enables
doublespend attacks and may cause chaos and/or devaluation, all of which may be used for
economic gain. On blockchains that implement higher-level protocols and applications, such
as Ethereum, attackers may also retroactively alter the state of smart contracts or other
time-varying constructs, with similar consequences.

Historically, concerns about majority attacks have been dismissed as irrelevant to the
current state of major cryptocurrencies. Budish argues that this is not necessarily the case
in the long run (or even currently): the cost of an attack on the blockchain is proportional
to the mining payout rate, so large transaction flow relative to this cost makes majority
attacks profitable [3]. We show that under simple assumptions about the distribution of
miner powers, the situation is far worse than Budish’s upper bound suggests. Budish bounds
the necessary payout to miners as the cost to them of attack success. While the cost of
attack success is indeed well-estimated by Budish, individual miners’ actions are typically
not substantially causally correlated with attack success, and so it suffices to pay miners
their cost of attack success times the marginal increase in attack success probability which
resulted from their actions. As a result, in the by-design scenario where miners are small
and therefore no individual or small group can exercise substantial control over a blockchain
(though this is not always the stable state of affairs [1]), corruptive majority attacks are both
cheap and hard to prevent, implying that cryptocurrencies are less game-theoretically stable
than previously believed.

© Stephen H. Newman;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.AFT.2023.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Decentralization Cheapens Corruptive Majority Attacks

After a brief exposition of our model, we develop a simple framework for miner incentive
analysis that illuminates the action/result-correlation aspect of their incentive problem. In
particular, we show that for small miners, costs of participation in an attack are mostly
externalized and sometimes very small. We then develop a more rigorous model of corruptive
attacks, in which miners can change their behavior from timestep to timestep depending on
state of the attack, and show that appropriately structured attacks succeed and are cheap
with high probability. We give a practical example of such an attack on Bitcoin, including
calculation of expected cost and discussion of profitability. We discuss novel and previously
proposed economic-incentive-based prevention and mitigation strategies. We also give a brief
overview of some of the noneconomic incentives that affect the feasibility/likelihood of such
an attack.

Related Work

The consideration of majority attacks against digital currencies dates back to at least
Nakamoto’s work [11]. Bonneau noted the danger of bribery-based attacks and discussed
attack methodologies and potential countermeasures in [2]. Since then, a variety of game-
theoretic attack techniques (e.g. [8]) and practical methodologies (e.g. [9]) have been
proposed. Judmeyer et al. provide a broad overview of bribery attack modeling in [7],
including majority attacks. Several majority attacks have also been conducted against a
variety of cryptocurrencies, with varying results, as summarized (as of 2019) by [12].

The central – and often ignored – obstacle in conducting a majority attack is the long-term
cost to miners resulting from currency devaluation stemming from the attack, as first noted
in [11]. Budish analyzed this concept in detail, providing a formal model of the cost to a
majority miner and approximating it for Bitcoin in [3]. Moroz et al. responded with a model
of an attack-counterattack game with a liquid mining power marketplace, arguing that in
the Budish setting, the threat of counterattack served to deter majority attacks designed to
allow doublespending [10].

There is also growing interest in the effects of incentive manipulation on a wider class of
social-choice mechanisms without money. For instance, bribery [6] and coalition effects [14]
have been studied in the context of voting, and there is continuing investigation into similar
effects in matching markets and other contexts.

2 Modeling Mining and the Cost of Corruption

2.1 Mining Model

We assume a model of mining and miner incentives similar to that of Budish [3]. We assume
a fixed set M of miners, with a function ϕ : M → R≥0 mapping miners to their powers
(hashrates in the case of hash-based PoW coins, for instance), and denote the total power
Φ def=

∑
m∈M ϕ(m). We assume that each block mined is mined by a random miner, chosen at

time of mining, with independent probability ϕ(m)
Φ of selecting miner m to mine any given

block. A miner who mines a block receives reward R for doing so. We assume that miners
may choose to dedicate mining power to an attacker whose goal is to execute a majority
attack. For simplicity (and optimistically for stability against such attacks), we assume that
miners who attack on a mining turn receive no block rewards that turn.



S. H. Newman 13:3

2.2 Miner Valuation Model
We assume that miners extract value exclusively from present and future mining activity. In
particular, we will consider two primary costs to miners of selling mining power: the direct
expected lost revenue from lost time mining, and the expected lost future revenue from the
increased chance of a majority attack as a result of providing hashpower. We will assume
(pessimistically for the attacker) that a successful majority attack will cost a miner exactly
their time-discounted expected future revenue1. This will be indicated by vR for some value
v to be bounded later.

As in Budish’s work, the primary cost of attacks will lie in compensating miners for the
change in the likelihood of attack success due to their participation – the cost of corruption.
We wish to bound this.

2.3 Budish’s Cost of Corruption
Budish argued (and we agree) that the cost to miners caused by an attack is bounded by
a sum of two costs. The more obvious component is their expected immediate loss: their
lost mining revenue as a result of devoting mining time to the attack. This may be trivially
upper-bounded as

T
ϕ(m)

Φ R

for an attack stretching over T timesteps, where R is the block reward, and will be negligible
compared to the second component of the loss in most cases.

The more subtle loss which a miner incurs is their expected devaluation loss: their
time-discounted future loss of revenue as a result of currency collapse. Following Budish’s
analysis, we may bound this by

v
ϕ(m)

Φ R

for some constant multiplier v.2 For instance, assuming constant distribution of mining
power for a cryptocurrency which pays k fixed block rewards R per year, v = 1

1− k√0.95
≊ 20k

would reflect the sum of expected income for all time with 5%/year discounting applied. In
most cases, however, v is substantially lower. For instance, assuming that R halves every
few years (or that the total mining power of other miners is large and doubles every few
years) we may bound v as the number of blocks in just a few years – and assumptions about
ongoing costs of mining and revenue from selling mining equipment in a crash further reduce
this estimate.

Combining the above two losses, we may weakly incentivize a miner m ∈ M to participate
in an attack of duration T by paying them (T + v) ϕ(m)

Φ R. Summing across miners, we see
that it costs

(T + v)R

to pay all miners to participate.

1 This corresponds to the assumption that a successful attack will prevent any future mining, while a
failed attack does not change the value of future mining, causing the largest possible losses to miners.

2 We assume that a coin will have no change in value under attack failure and will undergo total and
permanent devaluation under attack success. This represents an optimistic assumption from the point
of view of stability, as it drives the expected cost to miners of an attack (and therefore the cost of said
attack) as high as possible.

AFT 2023



13:4 Decentralization Cheapens Corruptive Majority Attacks

As Budish points out, this may already be dangerous. TR is low compared to potential
profit, and v may be as well – for blockchains where Φ is expected to rise rapidly (PoW coins,
for instance), gross mining income for given hardware is expected to drop proportionately,
implying that almost all income is obtained in the next few years of mining. For instance,
assuming v ≊ 2 · 105, the number of Bitcoin blocks in a little under four years, we get an
attack price above 1.2 · 106 BTC, slightly over 5% of BTC in existence. Even in cases where
mining power does not substantially increase (some PoS protocols, for instance) and currency
valuation is expected to remain approximately constant, v may be bounded by the number
of blocks in twenty years, as v ϕ(m)

Φ R is then enough to purchase a stock market portfolio
which, if it yields 5%/year over inflation, will be more profitable than mining at relative
power ϕ(m)

Φ assuming constant currency valuation.

2.4 The Participation-Success Matrix
We first consider a binary model for action during an attack: during an attack, a player
p may either participate or refuse to participate, and the attack will succeed or fail with
probabilities determined by the participation/refusal of the various miners. Player p’s reward
will depend on both participation/refusal and success/failure.

We note something simple but interesting: when a player’s reward depends mostly on
success or failure, and success/failure is only slightly affected by participation/refusal, the
marginal cost of participation/refusal is much lower than the difference in reward between the
success and failure cases. Consider, for instance, a small miner who participates in a majority
attack which is expected to permanently crash Bitcoin if it succeeds. Assume that their
expected time-discounted future valuation was U , and that their expected mining reward
over the course of the attack period is u << U . Then, excluding order-u increases in payout
due to difficulty reduction, their mining payoff matrix is

Attack succeeds Attack fails

Participate 0 U

Refuse u U + u

For instance, considering the cases where the miner is sure that the attack will (succeed/-
fail) regardless of their action, their expected loss as a result of participating in the attack
is bounded by (0/u). Relaxing this slightly, if they are sure that their participation affects
attack success chance by at most ϵ, their expected losses are at most u + ϵU .

2.5 Bounding Expected Devaluation Loss
The difference between our bound on cost of corruption and Budish’s is simple: while Budish
proposed paying all miners their expected losses from an attack, we propose paying them
only the marginal increase in their expected losses as a result of their participation in the
attack. We consider an explicitly multiparty attack: the attacker attempts to corrupt many
smaller miners into attack participation, and therefore must pay them only the damage they
expect to cost themselves by joining. Under this view, Budish’s cost of corruption is not
tight – it pays miners enough to convince them to join even in a case where act/no-act and
success/failure are perfectly correlated. This is generally far from the truth: the smaller a
miner is, the less impact their choice has on their perceived likelihood of attack success (and
therefore their expected loss).



S. H. Newman 13:5

Let f( ϕ(m)
Φ ) : [0, 1] → [0, 1] be a bound on the probability, as estimated by a miner m,

that miner m’s participation in the attack will cause it to succeed (i.e. that it will not succeed
if they do not participate, and will succeed if they do). Then we may tighten the bound on
their devaluation loss to f( ϕ(m)

Φ ) ϕ(m)
Φ Rv and the bound on their total loss to(

T + f

(
ϕ(m)

Φ

)
v

)
ϕ(m)

Φ R

3 A Thresholding Corruptive Attack

We now analyze the attack implied by the above payout rule. Assume for the moment that
we can verify full participation in an attack. Pick a start time for the attack, and pay any
miner m who participates in the attack

(T + fmaxv) ϕ(m)
Φ R

for fmax chosen such that
∑

m:f
(

ϕ(m)
Φ

)
≤fmax

ϕ(m) is substantially greater than Φ
2 . If each

miner acts rationally, any miner m with f( ϕ(m)
Φ ) ≤ fmax will participate, and our attack will

succeed. Summing across all miners, total cost of the attack is bounded by

(T + fmaxv) R

which for small values of fmax is much smaller than the attack cost under Budish’s analysis.

3.1 Estimating v

v depends on changing economic conditions, the specifics of the protocol under attack, and
other real-world factors [3]. In Bitcoin and other PoW coins, for instance, v equal to the
number of blocks in a few years (i.e. ϕ(m)

Φ vR equal to undiscounted gross earnings over
the next few years) may be a reasonable estimate, given reward halving, electricity costs,
continual improvements in mining hardware, and regulatory concerns. Notably, payouts
from attack participation provide substantial security as compared to mining, for the same
real-world reasons as cited above. For more in-depth discussion of v, see [3].

3.2 Estimating f

We have two means of bounding f . First, under the assumption that
∑

m∈M : ϕ(m)
Φ ≤fmax

ϕ(m)
Φ

is substantially greater than 1
2 , f

(
ϕ(m)

Φ

)
is likely bounded on the close order of ϕ(m)

Φ , as the
expected distribution of participants should not concentrate except possibly at nearly all
players participating or nearly no players participating (in which case f(m) is very low). As
such, fmax is only required to be big enough to make the above fraction substantially greater
than 1

2 , and will therefore be small for a well-decentralized blockchain. The cheaper attack
price that results from smaller miners under this bound corresponds to the fact that these
smaller miners externalize more of the damage caused by participating – a miner’s expected
loss from participation is quadratic in their power, but their expected damage is linear.

Second, and more concerningly, if we can convince all miners that the attack is destined
to succeed, f becomes 0, as no individual miner’s choice will affect the attack. Convincing
miners that the attack will almost surely succeed likewise forces f very low.

Both of these dynamics will prove relevant in the next model.

AFT 2023



13:6 Decentralization Cheapens Corruptive Majority Attacks

4 Refining the Model: A Block-By-Block Attack

The previous model relied on the assumption that miner behavior over the course of an
attack will not change, and assumed a somewhat arbitrary bound on f . We now consider a
multiparty refinement of the classical model for majority attacks. An attack is modeled as a
T -step game with chance. The state of the game at the conclusion of timestep t ∈ {1, . . . , T }
is given by an integer lt indicating the length discrepancy between the attacking and defending
chains (positive if the defending chain is longer), with l0 the distance from the attack fork
point to the tip of the heaviest chain at the start of the attack.

The attacker wins the game at the first timestep t where lt = 0; if no such timestep has
occurred by t = T , the attacker loses. As in [7] (in the case of zero native attacker power),
miners are partitioned into two groups. We assume that a substantial set of the miners are
honest (will always defend), either because we have not provided them sufficient economic
incentive to attack, as will be the case for very large miners, or because of non-economic
factors. We will model the remaining non-committed miners as rational agents that choose
to mine for either the attacker or the defender based on expected time-discounted future
rewards. At each step t, all miners decide to either attack or defend, and a random miner
is chosen with probability proportional to their mining power. If that miner is defending,
they mine a block on the canonical chain, setting lt = lt−1 + 1. If attacking, they mine a
block on the attacking chain, setting lt = lt−1 − 1, and they receive a payout ct−1,l from the
attacker for their choice to attack. Equivalently, we may model miners as making the choice
to attack/defend after they are selected as the current round’s block miner. At the end of
the game, if the attacker lost, each miner m receives payout v ϕ(m)

Φ R, their expected future
mining returns.

Our payout rule will not incentivize participation by miners of size > γΦ, so we assume
for simplicity that all such miners are part of the honest pool – though if they do, it will aid
the attack. We assume that the honest miners have combined mining power ≤ gDefΦ. We
will again exploit the fact that the actions of small miners (of power ≤ γΦ, for our purposes)
are only slightly correlated with attack success chance to construct a cheap attack.

4.1 A Payout Rule With Unique Subgame Perfect Nash Equilibrium
As before, our payouts will come in two varieties. Every time a miner mines a block on
the attacking chain (as opposed to the defending chain), they lose their block reward R

that would have been paid out on the defending chain. We therefore provide them a payout
of R via the defending chain every time they mine an attacking block. This means that,
no matter the eventual state of the attack, their block-reward payouts are identical across
all of their strategy options, and their net rewards therefore follow those of the attacking
game described above up to a constant. To incentivize miners to participate in the attack,
it therefore suffices to provide a payout rule which enforces a unique Nash equilibrium of
participation in said game. From an intuitive point of view, we hope to create a payment rule
which causes the attack to have a very high chance of succeeding regardless of the behavior
of any individual miner. This, in turn, should allow us to pay each individual miner very
little, as their marginal loss as a result of participation will be low.

We first define a pseudo-value function

wmax
t,l =


l = 0 : 0
t = T, l > 0 : vγR

t < T, l > 0 : gDefw
max
t+1,l+1 + (1 − gDef)wmax

t+1,l−1 + γ(wmax
t+1,l+1 − wmax

t+1,l−1)



S. H. Newman 13:7

This is motivated by the following theorem:

▶ Theorem 1. Fix a payout scheme where the miner who mines block t from the initial state
(t − 1, l) receives (if they mined the block on the attacking chain) ct−1,l = (wmax

t,l+1 − wmax
t,l−1).

This scheme admits a unique subgame perfect Nash equilibrium in the mining game described
earlier, under which all non-committed miners participate in the attack on every block.

Proof. We define the value function for miner m as

wt,l(m) =


l = 0 : 0
t = T, l > 0 : v ϕ(m)

Φ R

t < T, l > 0 : gDefwt+1,l+1 + (1 − gDef)wt+1,l−1 + ϕ(m)
Φ ct,l

We induct backwards from t = T on the joint hypotheses that:
1. wt,l(m) is equal to the expectation of the sum of attack payouts and time-discounted

post-attack mining rewards for a miner m in the non-committed group playing the
subgame perfect Nash equilibrium strategy.

2. Any non-committed miner selected at time t is incentivized to participate in the attack
at step t given the above payout.

The first claim is trivial at t = T , as the attack’s success/failure is determined at the
end of step T , and our choice for wT,l reflects the expected future rewards under those
circumstances. The second claim at t = T follows fairly simply: if their decision would
determine attack success, they are paid vγR > v ϕ(m)

Φ R (their expected loss from attack
success), and if not, they are paid nothing (for uniqueness, assume a very small payment in
this case).

Given that the hypotheses hold for t > t0, we may show that hypothesis 1 holds for t = t0:
observe that as every non-committed miner will attack on the next step, the state (t0, l) has
chance gDef of evolving to (t0 + 1, l + 1) and chance (1 − gDef) of evolving to (t0 + 1, l − 1).
Moreover, the chance that miner m will be selected to mine the next block (and therefore
reap an additional reward of ct0−1,l = (wmax

t0,l+1 − wmax
t0,l−1)) is ϕ(m)

Φ .
It remains to show hypothesis 2 for t = t0 given hypothesis 1 for t ≥ t0 and hypothesis 2

for t > t0. We may observe that by hypothesis 1, the loss incurred for participating on step
t0 is (wt0,l+1(m) − wt0,l−1(m)). It therefore suffices to demonstrate that this is less than
wmax

t0,l+1 − wmax
t0,l−1. wt,l(m) is in fact positive-linear in ϕ(m)

Φ , and so as it is increasing in l,
(wt0,l+1(m)−wt0,l−1(m)) is positive-linear in the same. At ϕ(m)

Φ = γ, we have wt,l(m) = wmax
t,l

and so (wt0,l+1(m) − wt0,l−1(m)) = (wmax
t0,l+1 − wmax

t0,l−1); therefore, for ϕ(m)
Φ ≤ γ, we have

(wt0,l+1(m) − wt0,l−1(m)) ≤ (wmax
t0,l+1 − wmax

t0,l−1) as desired. ◀

The attacker must be able to credibly commit to their payout scheme to make the reward
scheme accurate (and therefore for the equilibrium to hold). This is reasonable – presuming
that their payout for attack failure is at least vγR plus the sum of their payouts (which we
will see is small), they are incentivized to keep paying under the Nash equilibrium regardless
of the game state (as their reward is inverse to that of a miner with power γv). This may
also be generalized to arbitrary behavior, assuming that the attacker and the participant
miners can agree on an expectation of future miner behavior.

AFT 2023



13:8 Decentralization Cheapens Corruptive Majority Attacks

4.2 Success Likelihood, Expected Attack Length, and Expected Attack
Cost

We assume gDef + γ < 1
2 . Attack success probability is at least the probability that, had the

attack been allowed to continue for T steps whether or not lt became 0, lT would have been
≤ 0. We know that lt decreases with probability 1 − gDef and increases with probability gDef ,
so after T steps, it has expectation l0 − T (1 − 2gDef) (assuming counterfactually that we
continued the attack after lt = 0). Then for T > l0

1−2gDef
, Hoeffding’s inequality gives that

the probability that lT > 0 is

≤ exp
[

−
1
2 (l0 − T (1 − 2gDef))2

T

]
Expected time to attack conclusion is bounded by the expected stopping time of the

biased random walk described above, equal to l0
1−2gDef

.
We now prove a generic bound on ct−1,l. First, let

(
Xt,l

)
t,l

be a (t, l)-indexed collection
of random walks on the integers s.t. Xt,l starts at time t at position l, goes to time T , and
increases/decreases at each step with probabilities (gDef + γ), (1 − gDef − γ) respectively. For
i ≥ t, let Xt,l

i be the position of Xt,l at time i. The choice of the step probabilities gives us
that, by its definition, wmax

t,l = vγR Pr
[
mini∈{t,...,T } Xt,l

i ≤ 0
]
. Now by coupling the walks

Xt,l+1 and Xt,l−1 so that one increases on step i iff the other does, we have

wmax
t,l+1 − wmax

t,l−1 = vγR Pr
[

min
i∈{t,...,T }

Xt,l+1
i ∈ {1, 2}

]
= vγR

T∑
τ=t

Pr
[
Xt,l+1

τ ∈ {1, 2}
]

Pr
[

τ = arg min
i∈{t,T }

Xt,l+1
i |Xt,l+1

τ ∈ {1, 2}

]
Each of the terms in the sum may be bounded. Proofs of these results are contained in

the appendix.

▶ Lemma 2.

Pr
[
Xt,l+1

τ ∈ {1, 2}
]

≤ 1√
τ − t

(1 − gDef − γ)5/2

√
2π (gDef + γ)7/2

▶ Lemma 3.

Pr
[

τ = arg min
i∈{t,T }

Xt,l+1
i |Xt,l+1

τ ∈ {1, 2}

]
≤ e− 1

2 (T −τ)(1−2gDef−2γ)2

We also require a technical lemma:

▶ Lemma 4. Let 0 < a ≤ 1. Then

T∑
i=t

e−a(T −i)

max(
√

i − t, 1)
≤ min

 2√
T + 1 − t − 2 ln(1+

√
T +1−t)
a

, 1 + 1
1 − e−a


Combined, these yield a straightforward bound on worst-case total attack cost:

▶ Theorem 5. The worst-case cost of the wmax-attack is bounded by

TR +
T∑

t=1
ct−1,lt

≤ TR + vγR

[
4 ln(1 +

√
T )

(1 − 2gDef − 2γ) +
√

2
π

(1 − gDef − γ)5/2

(gDef + γ)7/2 2
√

T

]



S. H. Newman 13:9

Figure 1 Probability of attack success and expected attack cost (excluding per-block payouts of
R) for an attack with given T and l0 = 150, γ = 0.05, gDef = 0.4.

We also have a much lower bound on expected attack cost.

▶ Theorem 6. The expected cost of the wmax-attack is bounded by

R

(
l0
2 + 1

2
l0

1 − 2gDef

)
+ vγRTe− (1−2gDef −2γ)2T/2−(1−2gDef )l0

2

Critically, for sufficiently large T , we observe exponential decay in the expected attack cost
beyond the per-block payout.

These bounds are far from tight. A graph of expected attack cost (excluding the per-block
payouts of R) and attack success likelihood in terms of T for an attack against l0 = 150
is included in Figure 1. The attack cost peaks when success is uncertain, as this is where
participation/refusal has the strongest effect, and falls off rapidly as attack success becomes
certain.

Two remaining points about the asymptotics are of interest. First, as l0 increases, both
attack success chance and attack cost converge more quickly in terms of T

l0
, as the expected

result concentrates better. In particular, the premium over the naive cost of mining energy
required to perform a range-l0 attack in which 1 − gDef of mining power is participating is
logarithmic in l0, not linear. Second, due to the exponential term, γ does not need to be low
to make the attack cost very low. For instance, γ = .2, gDef = .25 yields quite feasible attacks
for T

l0
substantially greater than 1−2gDef

(1−2gDef−2γ)2 . However, only a mild amount of successful
collusion (two miners of size .15, for instance) is needed to prevent this attack.

5 Relative Immunity of Proof-of-Stake: Ethereum

Ethereum contains a significant defense against attacks of this type: slashing [5]. As Ethereum
severely penalizes stakers who validate on two incompatible chain branches, the internalized
penalty for attack participation as compared to attack non-participation may be as high as
the Budish payout if the attack is not expected to reduce the price of Ethereum. If attackers
will lose their stake, the expected future payoff matrix is

AFT 2023



13:10 Decentralization Cheapens Corruptive Majority Attacks

Attack succeeds Attack fails

Participate 0 0
Refuse 0 ϕ(m)

Φ vR

This implies that short-range attacks (those in which attackers must possess vulnerable
stake on the true chain) will cost close to the Budish estimate. Ethereum also has weak
subjectivity: the property that any agent entering the network with access to a sufficiently
recent honest network state can independently determine the present honest state [4].
Assuming access to such states for entrants, this renders long-range attack impossible, so
decentralization does not meaningfully reduce Ethereum attack cost.

6 Practical Economic Considerations

Attackers face two primary logistical difficulties: estimating the total power of participants
and coordinating the attack. For PoW blockchains, both of these are ameliorated by setting
up a specialized mining pool (with similar structure to that of [2], albeit different intent).
Such a pool could function normally until attack time, at which point it could begin sending
work units for the attack chain, instead of the consensus chain. This approach has important
secondary advantages: mining pools are commonly understood and easy to work with, and
by offering low pool fees (or even paying pool participants slightly more than they mine,
as suggested by [2] for a different purpose), switchover in advance of the attack could be
incentivized while negligibly increasing attack cost. Stratum v2 supports header-only mining,
allowing miners to attempt to mine an externally specified block, which should allow easy
coordination of attack mining. The remaining coordination difficulty is in payout – corruption
payouts cannot flow through the original chain due to likelihood of devaluation. Assuming
that another cryptocurrency (for instance, a PoS-based one) is expected to be unaffected by
the attack, it could be used as a payment medium; otherwise, a classical medium would be
needed.

Regarding pool mining, we also note that the attack proposed in Section 4 can be
enhanced to provide lower payout variability with small increase in cost: in addition to the
payouts given to participants who mine blocks, duplicate the defending-chain payout and
split it proportionate to mining power across the pool. This guarantees participants the
same consistency of payout as they would have received had they been participating in a
large mining pool, while keeping cost similar, and may incentivize risk-averse/small miners
to participate.

7 Attacker Incentives and Dangers

We first estimate the cost of a medium-range majority attack on Bitcoin. Distribution of
control of mining capacity is a closely guarded secret, but mining power appears to be
significantly spatially and internationally distributed [13]. Assume that miners representing
60% of mining power will participate if we set γ = 1/20 (i.e. gDef = 0.4). Consider an attack
with a backwards range of l0 = 150 blocks (about one day, for Bitcoin). Solving the recursion
explicitly, expected attack cost for T = 2500 is < (0.01v + 450)R, and probability of success
≥ 1 − 10−12. Assuming v = 158000 (the number of Bitcoin blocks in a little over 3 years),
expected attack cost is ≤ 1942R, or a little under 12.2k BTC/310M USD at time of writing.
Maximum potential attack cost is substantially higher – 2.38vR, or about 2.35M BTC/60B
USD – but given that attack cost concentrates with exponential falloff, this may be insurable.
γ and gDef may also be substantially overestimated here, leading to inflated cost bounds



S. H. Newman 13:11

– if we take γ = 0.03, gDef = 0.2, maximum payout is less than 820k BTC/21B USD and
expected payout is just over 1293 BTC/33M USD for a T = 400 attack (with attack success
chance ≥ 1 − 10−7).

This attack is cheap enough to be profitable, and therefore dangerous. Open Bitcoin
options volume has consistently held above $5 billion USD for four years, and has been
substantially higher during peaks. Daily trading volume of BTC has stayed well above 200000
BTC for a similar period, and most BTC options are relatively short-term. Attackers able to
successfully trade and liquidate options at these scales could make substantial profit.

One example of an attack strategy is as follows. First, buy B “covering” units of BTC,
and short-sell a separate B units of BTC. Sell the covering units, and attack to revert that
transfer. Provided that the attack succeeds, the recouped covering bitcoin may be used to
cover the short position, and as its initial buy cost and sale profit are approximately equal,
the net profit of the attack is equal to the gross income from the short sale. In the case of
attack failure, the buy and sell costs of the covering units cancel, and cost is equal to the
cost of covering the short positions minus the profit from selling them (i.e., it is as if the
attackers had simply shorted BTC), less transaction costs from the purchase and sale. Even
in this case, the attack may substantially devalue BTC, creating some profit from the short
position.

If blockchain technologies become more mainstream, non-currency-oriented attacks will
become increasingly appealing. When substantial value may be placed on non-currency
attributes of the chain (such as smart contract or DAO state, ownership of a NFT, etc.) in
unpredictable ways, many non-obvious attack incentives will exist. This also makes attack
attribution more difficult.

In addition to potentially being profitable, a majority attack may significantly if not
completely devalue the attacked currency, and possibly others as well. The economic impact
of this could be substantial. At time of writing, the global market cap of cryptocurrencies
stands at about $1 trillion USD, and various state or non-state actors may stand to gain
substantially from a crash precipitated by an attack.

8 Economic Prevention and Mitigation

On a protocol level, this attack is equivalent to a 51% attack, and the same impossibility
results apply to protocol-level defense. On a non-protocol level, [2] discusses several prevention
measures. We discuss the most relevant of these, and some others, here.

8.1 Coalitions

In response to an incipient attack, a coalition of miners may agree on a mutual behavior
contract designed to disincentivize attack participation. In particular, miners could commit
to non-subgame-perfect equilibrium strategies, such as defending until a certain threshold of
miners have been shown to participate in the attack, and then attacking thereafter, which
stymie the given payout rule. However, credible commitment is difficult for miners, and such
Nash equilibria are not robust to the attacker designing new payout schemes in response. We
conjecture that given any such commitment scheme, the attacker can design a bribery system
with expected payout and failure probability bounded by those of the subgame perfect Nash
equilibrium and corresponding payout rule. For instance, in the above example, the attacker
could increase payouts to miners until the threshold has been passed, and then remove them
once it has.

AFT 2023



13:12 Decentralization Cheapens Corruptive Majority Attacks

Coalitions with leaders, such as some mining pools, present a separate danger to block-
chains: if coalition mining power is controlled by a player whose expected future payout from
attack failure is lower than vR, the controller may be incentivized to make the coalition
participate even if it falls above the power threshold. For instance, if the controller of some
mining pool receives 1% of the profits generated, they will be incentivized to cause the pool
to participate if its power is ≤ 100γΦ.

8.2 Social Consensus as Deterrence/Mitigation

If a sufficiently broad set of participants wishes, they may fork or otherwise alter the
blockchain after an attack in an attempt to reverse the effects of the attack. This is unlikely
to prevent profit-taking, as it must be done rapidly enough to fix all manipulated transactions
before they can be used for profit. For instance, in the attack proposed in the previous
section, the sale of B units of BTC must be fixed as canonical before it can be sold again in
the attack chain. Moreover, this has obvious disadvantages for regular use, and does not
prevent repeated sabotage attacks [3], which would effectively make the blockchain unusable
(which can itself be profitable for an attacker).

8.3 Counterattacks and the Model of Moroz et al.

Moroz et al. [10] argue that in many cases, the threat of counterattacks renders double-spend
attacks unprofitable. They analyze a model in which a single large transaction is in contention
between the sender (the attacker) and the receiver (the defender), with the former wishing to
establish a heaviest chain not including the transaction and the latter wishing the opposite.
Each party is allowed to purchase mining power on an open market in order to attempt
majority attacks to shift consensus, and take turns doing so. Moroz et al. find that under
certain conditions, the only equilibrium strategy is to not attack in the first place.

However, their model (and therefore results) are inapplicable in our case, as both parties
may have external rewards which do not depend on the final status of the transaction. The
success of one or more attacks will almost certainly substantially reduce the value of the
attacked cryptocurrency, independent of the final state of the blockchain. This itself may be
a major source of utility for the attacker (see Section 7) and disutility for the defender (the
defender will recoup coins of lesser value if they are successful, and if they hold additional
units of the currency, those two will be devalued by attacks).

When this assumption is changed, the no-attack equilibrium established by Moroz et
al. does not hold, and attack with no response is equilibrium in many practical cases. For
instance, if a single successful attack will massively devalue a currency, but the attacker can
make profit from this event, the attack is incentivized even if it will be counterattacked, and
a counterattack is generally not incentivized.

8.4 Countercorruption

As noted in [2], miners above the threshold, targets of a large double-spend, and other entities
with stake in the success of blockchains may be incentivized to attempt to bribe miners to
not participate. While this may be theoretically sufficient in some cases, it is undesirable for
a variety of reasons discussed in [2].



S. H. Newman 13:13

8.5 Extra Confirmations

Historically, requiring more confirmations has been seen as a natural way to secure transac-
tions. However, the attack cost for even long-range attacks is relatively low, and the splitting
tactic noted by [2] likely allows evasion unless many transactions require extremely long
confirmation periods.

9 Non-Economic Prevention and Mitigation

We see that there exist potential large-scale corruptive majority attacks which are incentive-
compatible for all participants and highly profitable for the attacker, and that economic
forces are insufficient to disincentivize attack initiation or participation. However, this does
not preclude non-economic forces preventing these attacks in practice. We briefly discuss
three potential avenues of prevention.

9.1 Social Consensus

If a power-weighted majority of miners refuse to participate, the attack will be stymied [2].
However, for this to work, we require a broad coalition of miners to act against their own
self-interest for philosophical or other non-economic reasons. Miners have regularly behaved
selfishly in contravention of protocol [15], so confidence that they will behave selflessly in this
case seems misplaced. For instance, miners did not leave F2Pool in large numbers despite
its timestamp manipulation, implying that miners are willing to participate in activity with
negative network consequences for mildly increased personal profit.

9.2 Force

Actors subject to the jurisdiction of a force (legal or otherwise) able to both detect attack
organizers/participants and impose sufficient punishments against them are unlikely to
perform/abet attacks. Most immediately, various state actors are likely to take a dim view
of such an attack. In the United States, for instance, any attempt to organize such an attack
would likely constitute securities market manipulation, and while the legal system is woefully
unequipped to deal with the consequences of a double-spend attack, organizing (and perhaps
merely participating in) one would likely incur substantial civil and criminal liability. This
may be enough to dissuade most actors from performing a majority attack, but it will not
be enough to disincentivize those who operate outside the bounds of the law and/or with
other motivations. Even individuals subject to regulatory jurisdiction may be insufficiently
deterred if the attack is conducted through privacy-preserving tools, as attribution in such a
case might be difficult.

9.3 Non-Profitability

One of the incentives to carry out such an attack is profitability. Substantially reducing the
viability of profiting off of the collapse of a cryptocurrency could reduce or eliminate the
profit motive for majority attacks if its price is expected to collapse by the time the heaviest
chain is revised.

AFT 2023



13:14 Decentralization Cheapens Corruptive Majority Attacks

10 Conclusion: What Do We Trust?

We clarify the analysis of miner incentives surrounding majority attacks, showing that the
cost to bribe miners into attacking may be far less than previously believed. The cost is low
enough that a corruptive majority attack could be profitable if combined with an appropriate
strategy combining shorting and doublespending. Moreover, the value of the attack scales
with the value of the blockchain and its associated assets/activity, and the cost of the attack
decreases as the miner pool becomes more diverse and incentive-driven, implying that the
danger will likely continue to increase as cryptocurrencies grow. Mitigating these attacks
through mechanism design is nearly impossible, as doing so would require a method to either
force small miners to internalize large social costs or prevent the attacker from profit-taking.

It is unclear whether these attacks can be prevented by non-economic factors. Further
work is needed to determine the likelihood of attack in real-world contexts, but such analysis
will necessarily be somewhat speculative. Even if these forces can prevent attacks in practice,
the advantages of using distributed systems over more classical ledgers become substantially
less clear when trust in their stability rests on widespread altruism, institutional force, or
other non-economically-motivated behavior. Further analysis of the non-economic forces
that may prevent majority attacks, and their implications for the usefulness and viability of
blockchain technologies, is warranted.

References

1 Nick Arnosti and S Matthew Weinberg. Bitcoin: A natural oligopoly. Management Science,
68(7):4755–4771, 2022.

2 Joseph Bonneau. Why buy when you can rent? bribery attacks on bitcoin-style consensus.
In Financial Cryptography and Data Security: FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers
20, pages 19–26. Springer, 2016.

3 Eric Budish. The economic limits of bitcoin and the blockchain. Technical report, National
Bureau of Economic Research, 2018.

4 Vitalik Buterin. Proof of stake: How i learned to love weak sub-
jectivity, November 2014. URL: https://blog.ethereum.org/2014/11/25/
proof-stake-learned-love-weak-subjectivity.

5 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

6 Piotr Faliszewski, Jörg Rothe, and Hervé Moulin. Control and bribery in voting, 2016.
7 Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Peter Gaži,

Sarah Meiklejohn, and Edgar Weippl. Sok: Algorithmic incentive manipulation attacks on
permissionless pow cryptocurrencies. In Financial Cryptography and Data Security. FC 2021
International Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5,
2021, Revised Selected Papers 25, pages 507–532. Springer, 2021.

8 Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transactions. In
Financial Cryptography and Data Security: FC 2017 International Workshops, WAHC, BIT-
COIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21,
pages 264–279. Springer, 2017.

9 Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing miners.
In Financial Cryptography and Data Security: FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers 22, pages
3–18. Springer, 2019.

https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity


S. H. Newman 13:15

10 Daniel J Moroz, Daniel J Aronoff, Neha Narula, and David C Parkes. Double-spend coun-
terattacks: Threat of retaliation in proof-of-work systems. arXiv preprint arXiv:2002.10736,
2020.

11 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

12 Savva Shanaev, Arina Shuraeva, Mikhail Vasenin, and Maksim Kuznetsov. Cryptocurrency
value and 51% attacks: evidence from event studies. The Journal of Alternative Investments,
22(3):65–77, 2019.

13 Wei Sun, Haitao Jin, Fengjun Jin, Lingming Kong, Yihao Peng, and Zhengjun Dai. Spatial
analysis of global bitcoin mining. Scientific Reports, 12(1):1–12, 2022.

14 Lirong Xia. The impact of a coalition: Assessing the likelihood of voter influence in large
elections. In Proceedings of the 24th ACM Conference on Economics and Computation, pages
1156–1156, 2023.

15 Aviv Yaish, Gilad Stern, and Aviv Zohar. Uncle maker:(time) stamping out the competition
in ethereum. Cryptology ePrint Archive, 2022.

A Notation Reference

For convenience, we define the notations that appear in this paper here:
M : the set of miners.
Φ: the total mining power of all miners.
ϕ : M → [0, Φ]: the function mapping miners to their mining powers.
T : the duration, in blocks, of an attack.
R: the (expected) value of mining a block under the stable condition of the blockchain.
v: a multiplier such that any miner m who expects per-block reward ϕ(m)

Φ R has time-
discounted total future profits ≤ v ϕ(m)

Φ R. That this exists (and may be reasonably
bounded) follows from time-discounting, reduction in rewards over time, and hardware
improvement/death.
f

(
ϕ(m)

Φ

)
: an upper bound on miner m’s estimate of the probability that their

participation/non-participation in the attack will determine whether it succeeds.
fmax: a threshold on f . We design an attack which will incentivize participation by
miners with f

(
ϕ(m)

Φ

)
≤ fmax.

γ: a threshold on ϕ(m)
Φ with similar purpose to the above.

gDef : the fraction of total power held by honest miners.

B Proofs of Results in Section 4

Lemma 2

Proof.

Pr
[
Xt,l+1

τ ∈ {1, 2}
]

=
(

τ − t
τ−t+l

2

)
(1 − gDef − γ)

τ−t+l
2 (gDef + γ)

τ−t−l
2

+
(

τ − t
τ−t+l−1

2

)
(1 − gDef − γ)

τ−t+l−1
2 (gDef + γ)

τ−t−l+1
2

AFT 2023



13:16 Decentralization Cheapens Corruptive Majority Attacks

where the binomial coefficient
(

n
k

)
is taken to be 0 if k is fractional. One term will always be

0, and so letting m = τ − t, we may bound this by

sup
l∈{0,1,...,m}

(
m

m+l
2

)
(1 − gDef − γ)

m+l
2 (gDef + γ)

m−l
2

Note that this is effectively only over l of the same parity as τ − t.
Let Kl =

(
m

m+l
2

)
(1 − gDef − γ) m+l

2 (gDef + γ) m−l
2 . This admits a smooth extension to

l ∈ [0, τ−t] via the gamma function. We may bound this extension (via Stirling approximation)
by

Kl ≤ sup
l∈[0,τ−t]

√
m

2π m+l
2

m−l
2

(m)m(
m+l

2
) m+l

2
(

m−l
2

) m−l
2

(1 − gDef − γ)
m+l

2 (gDef + γ)
m−l

2 ≤

We observe that for integer l of parity τ − t,

Kl+2

Kl
=

m!
( m−(l+2)

2 )!( m+(l+2)
2 )!

m!
( m−l

2 )!( m+l
2 )!

1 − gDef − γ

gDef + γ

= m − l

m + l + 2
1 − gDef − γ

gDef + γ

In particular, Kl is maximized across integers at the lowest l of parity τ − t s.t. the
above ratio is ≤ 1 (as this ratio is decreasing in l). Solving m−l

m+l+2
1−gDef−γ

gDef+γ = l gives
l = m(1−2(gDef +γ))−2(gDef +γ). In particular, the integer lmax maximizing Kl is somewhere
between m(1 − 2(gDef + γ)) − 3 and m(1 − 2(gDef + γ)). Plugging l∗ = m(1 − 2(gDef + γ))
into our bound on Kl gives

1
2
√

m

√
1

2(gDef + γ)(1 − 2(gDef + γ))

Moreover, we may note that

Kl∗−c

Kl∗
=

Γ
(

m+l∗

2

)
/Γ

(
m+l∗−c

2

)
Γ

(
m−l∗+c

2
)

/Γ
(

m−l∗

2
) (1 − gDef − γ)c/2(gDef − γ)−c/2

≤
(

(m + l∗)(1 − gDef − γ)
(m − l∗)(gDef + γ)

)c/2

=
(

1 − gDef − γ

gDef + γ

)c

Then letting lmax ∈ [l∗ − 3, l∗] be the maximizer of Kl, we obtain that

sup
l

Kl = Klmax ≤ 1√
2πm

√
1

(gDef + γ)(1 − gDef − γ)

(
1 − gDef − γ

gDef + γ

)3
◀



S. H. Newman 13:17

Lemma 3
Proof. It suffices to observe that

Pr
[

τ = arg min
i∈{t,T }

Xt,l+1
i |Xt,l+1

τ ∈ {1, 2}

]
≤ Pr

[
τ = arg min

i∈{τ,T }
Xt,l+1

i |Xt,l+1
τ ∈ {1, 2}

]

= Pr
[

τ = arg min
i∈{τ,T }

X
τ,Xt,l+1

τ
i

]
≤ Pr

[
X

τ,Xt,l+1
τ

T ≥ X
τ,Xt,l+1

τ
τ

]
≤ e− 1

2 (T −τ)(1−2gDef−2γ)2

by Hoeffding’s inequality applied to X
τ,Xt,l+1

τ

T − X
τ,Xt,l+1

τ
τ , which is by definition a sum of

T − τ random variables which are independently −1 with probability 1 − gDef − γ and 1 with
probability gDef + γ. ◀

Lemma 4
Proof. T = t is trivial. Otherwise, fix t < k ≤ T . Then

T∑
i=t

e−a(T −i)

max(
√

i − t, 1)
≤

k−1∑
i=t

e−a(T −i)

max(
√

i − t, 1)
+

T∑
i=k

e−a(T −i)

max(
√

i − t, 1)

≤
k−1∑
i=t

e−a(T −(k−1))

max(
√

i − t, 1)
+

T∑
i=k

e−a(T −i)
√

k − t

≤
(

1 +
√

k − 1 − t
)

e−a(T −(k−1)) + 1√
k − t

1
1 − e−a

Setting k = max
(

⌈T − 2 ln(1+
√

T +1−t)
a + 1⌉, t + 1

)
yields that the above is

≤ min

 1
1 +

√
T + 1 − t

+ 1√
T + 1 − t − 2 ln(1+

√
T +1−t)
a

, 1 + 1
1 − e−a


≤ min

 2√
T + 1 − t − 2 ln(1+

√
T +1−t)
a

, 1 + 1
1 − e−a

 ◀

Theorem 5
Proof. We have

ct−1,l = wmax
t,l+1 − wmax

t,l−1

= vγR
T∑

τ=t

Pr
[
Xt,l+1

τ ∈ {1, 2}
]

Pr
[

τ = arg min
i∈{t,T }

Xt,l+1
i |Xt,l+1

τ ∈ {1, 2}

]

≤ vγR
(1 − gDef − γ)5/2

√
2π (gDef + γ)7/2

T∑
τ=t

e− 1
2 (T −τ)(1−2gDef−2γ)2

max
(√

τ − t, 1
)

by Lemmas 2 and 3. Applying Lemma 4 with a = (1−2gDef−2γ)2

2 , combined with the trivial
bound ct−1,l ≤ wmax

t,l+1 ≤ vγR yields

AFT 2023



13:18 Decentralization Cheapens Corruptive Majority Attacks

ct−1,l ≤ vγR min

 (1 − gDef − γ)5/2

√
2π (gDef + γ)7/2

2√
T + 1 − t − 4 ln(1+

√
T +1−t)

(1−2gDef−2γ)2

, 1


≤ vγR min

 (1 − gDef − γ)5/2

√
2π (gDef + γ)7/2

2√
T + 1 − t − 4 ln(1+

√
T )

(1−2gDef−2γ)2

, 1


Then the result follows directly from partitioning the indices at T +1−4 ln(1+

√
T )

(1−2gDef−2γ)2 . ◀

Theorem 6
Proof. Fix two walks X and Y on the integers starting at l0. At each step, let X increment
with probability gDef and decrement with probability 1 − gDef , and let Y increment with
probability gDef + γ and decrement with probability 1 − gDef − γ. X will correspond to game
state (until hitting 0 – i.e. the distributions of lt and Xt are identical over positive integers),
and Yt is a virtual walk corresponding to the wmax recurrence.

Fix k > l0. By Hoeffding’s inequality on Xt, the probability that lt ≥ k for given
t is ≤ e− (k+(1−2gDef )t)2

2t ≤ e−(1−2gDef)( (1−2gDef )t

2 +k). Taking a union bound across all t, the
probability that there exists a timestep t with lt ≥ k is

≤
T∑

i=1
e−(1−2gDef)( (1−2gDef )t

2 +k)

<

∞∑
t=1

e−(1−2gDef)( (1−2gDef )t

2 +k)

<
e−(1−2gDef)k

1 − e− (1−2gDef )2
2

We may observe by its recursion that

wmax
t,l = vγR Pr[min

i∈[T ]
Yi > 0|Yt ≤ l]

≤ vγR Pr[YT > 0|Yt ≤ l]

≤

(1 − 2gDef − γ)(T − t) < l : vγR

(1 − 2gDef − γ)(T − t) ≥ l : vγRe− (l−(1−2gDef −γ)(T −t))2

2(T −t)

≤ vγRel(1−2gDef−2γ)− (1−2gDef −2γ)2(T −t)
2

where the concentration follows from Hoeffding’s inequality. We may also bound the prob-
ability that the attack has not succeeded by the start of step t, conditioned on there not
existing a timestep t with lt ≥ k, as

Pr[Xt−1 > 0| sup
i∈[T ]

Xi < k] ≤ Pr[Xt ≥ 0| sup
i∈[T ]

Xi < k]

≤ Pr[Xt ≥ 0]

≤ el0(1−2gDef)− (1−2gDef )2t

2

by the same.



S. H. Newman 13:19

Finally, we observe that

ct−1,Xt−1 ≤ wmax
t,Xt−1+1 ≤ e(Xt−1+1)(1−2gDef−2γ)− (1−2gDef −2γ)2(T −t)

2

In particular, conditioned on ∀i ∈ [T ] : Xi < k, we have

ct−1,l Pr[Xt ≥ 0|∀i ∈ [T ] : Xi < k] ≤ el0(1−2gDef)+k(1−2gDef−2γ)−T (1−2gDef−2γ)2/2

Then we bound expected attack cost C (excluding the per-attacking-block payout) as

E[C] ≤ E[C] Pr[∃t ∈ [T ] : Xt ≥ k] + E[C|∀t ∈ [T ] : Xt < k]

≤ E[C] Pr[∃t ∈ [T ] : Xt ≥ k] +
T∑

t=1
ct−1,Xt−1<k Pr[Xt−1 > 0| sup

i∈[T ]
Xi < k]

≤ vγR

[
T

e−(1−2gDef)k

1 − e− (1−2gDef )2
2

+ Tel0(1−2gDef)+k(1−2gDef−2γ)−T (1−2gDef−2γ)2/2

]

Solving −(1 − 2gDef)k = l0(1 − 2gDef) + k(1 − 2gDef − 2γ) − T (1 − 2gDef − 2γ)2/2 yields
k = (1−2gDef−2γ)2T/2−(1−2gDef)l0

2−4gDef−2γ and therefore total expected cost

≤ vγRTe
−(1−2gDef) (1−2gDef −2γ)2T/2−(1−2gDef )l0

2−4gDef −2γ

≤ vγRTe− (1−2gDef −2γ)2T/2−(1−2gDef )l0
2

The expected number of attacking blocks mined is bounded by l0
2 + 1

2
l0

1−2gDef
(as the

biased random walk is expected to last l0
1−2gDef

steps, and if the attack lasts k blocks, the
attackers mine at most l+k

2 of them. Then total expected attack cost is bounded by

R

(
l0
2 + 1

2
l0

1 − 2gDef

)
+ vγRTe

(1−2gDef −2γ)2T/2−(1−2gDef )l0
2 ◀

AFT 2023





Proofs of Proof-Of-Stake with Sublinear
Complexity
Shresth Agrawal #

Technische Universität München, Germany

Joachim Neu #

Stanford University, CA, USA

Ertem Nusret Tas #

Stanford University, CA, USA

Dionysis Zindros #

Stanford University, CA, USA

Abstract
Popular Ethereum wallets (like MetaMask) entrust centralized infrastructure providers (e.g., Infura)
to run the consensus client logic on their behalf. As a result, these wallets are light-weight and
high-performant, but come with security risks. A malicious provider can mislead the wallet by faking
payments and balances, or censoring transactions. On the other hand, light clients, which are not in
popular use today, allow decentralization, but are concretely inefficient, often with asymptotically
linear bootstrapping complexity. This poses a dilemma between decentralization and performance.

We design, implement, and evaluate a new proof-of-stake (PoS) superlight client with concretely
efficient and asymptotically logarithmic bootstrapping complexity. Our proofs of proof-of-stake
(PoPoS) take the form of a Merkle tree of PoS epochs. The verifier enrolls the provers in a bisection
game, in which honest provers are destined to win once an adversarial Merkle tree is challenged
at sufficient depth. We provide an implementation for mainnet Ethereum: compared to the state-
of-the-art light client construction of Ethereum, our client improves time-to-completion by 9×,
communication by 180×, and energy usage by 30× (when bootstrapping after 10 years of consensus
execution). As an important additional application, our construction can be used to realize trustless
cross-chain bridges, in which the superlight client runs within a smart contract and takes the role of
an on-chain verifier. We prove our construction is secure and show how to employ it for other PoS
systems such as Cardano (with fully adaptive adversary), Algorand, and Snow White.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Proof-of-stake, blockchain, light client, superlight, bridge, Ethereum

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.14

Related Version Full Version: https://eprint.iacr.org/2022/1642

Supplementary Material Software: https://github.com/lightclients/poc-superlight-client/
tree/master, archived at swh:1:dir:0108d316b0418717635ba996b1f6bbcff8fe5b94

Funding Joachim Neu: Supported by the Protocol Labs PhD Fellowship.
Ertem Nusret Tas: Supported by the Stanford Center for Blockchain Research.
Dionysis Zindros: Supported in part by funding from Harmony.

Acknowledgements The authors thank Kostis Karantias for the helpful discussions on bisection
games, and Daniel Marin for reading early versions of this paper and providing suggestions. The
work of JN was conducted in part while at Paradigm. The work of SA was conducted in part while
at Common Prefix.

© Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.agrawal@tum.de
https://orcid.org/0000-0002-7914-5979
mailto:jneu@stanford.edu
https://orcid.org/0000-0002-9777-6168
mailto:nusret@stanford.edu
https://orcid.org/0000-0001-6061-9700
mailto:dionyziz@stanford.edu
https://orcid.org/0000-0002-1978-594X
https://doi.org/10.4230/LIPIcs.AFT.2023.14
https://eprint.iacr.org/2022/1642
https://github.com/lightclients/poc-superlight-client/tree/master
https://github.com/lightclients/poc-superlight-client/tree/master
https://archive.softwareheritage.org/swh:1:dir:0108d316b0418717635ba996b1f6bbcff8fe5b94;origin=https://github.com/lightclients/poc-superlight-client;visit=swh:1:snp:70f576bb0c823bd62ef3974f333df092e44de9b8;anchor=swh:1:rev:c8d3adb65d47be0138daab2166ba90c34feca326
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Proofs of Proof-Of-Stake with Sublinear Complexity

1 Introduction

If I want to check how much money I have on Ethereum, the most secure way is to run my
own full node. Sadly, this requires downloading more than 500 GB of data and can take
up to 5 days to sync. Because of this, most Ethereum users today outsource the task of
maintaining the latest state to a third-party provider such as Infura or Alchemy. This allows
the user to run a lightweight wallet, such as MetaMask1, on their browser or smartphone.

What can go wrong if Infura is compromised or turns malicious? As per the current wallet
design, the wallet will blindly trust the provider and therefore show incorrect data. This is
enough to perform a double spend. For example, imagine Bob wants to sell his car to Eve.
Regrettably, Eve has compromised Infura. Eve claims that she has paid Bob. Bob checks his
MetaMask wallet and sees an incoming and confirmed transaction from Eve. Unfortunately,
even though the wallet is non-custodial, this transaction never happened, but is fraudulently
reported by Infura to Bob. Since Bob trusts his wallet, and his wallet trusts Infura, he hands
over the car keys to Eve. By the time Bob realizes he cannot use this money, Eve has long
disappeared with his car in Venice. From the point of view of Infura, this is a huge liability.
If Infura is compromised, then all of its users are immediately compromised.

This creates a dilemma between good performance and security for the users. This
problem is not unique to Ethereum and appears in all proof-of-stake (PoS) systems. In this
paper, we resolve this dilemma by constructing a PoS blockchain client which is both efficient
and secure. We solve this problem by constructing a protocol that allows efficiently verifying
the proof-of-stake blockchain without downloading the whole PoS. We call such constructions
succinct proofs of proof-of-stake. These allow us to build superlight clients, clients whose
communication complexity grows sublinearly with the lifetime of the system.

Contributions.
1. We give the first formal definition for succinct proof of proof-of-stake (PoPoS) protocols.
2. We put forth a solution to the long-standing problem of efficient PoS bootstrapping. Our

solution is exponentially better than previous work.
3. We report on our implementation of a fully functional and highly performant superlight

client for mainnet Ethereum. It is the first such construction for Ethereum. We measure
and contrast the performance of our client against the currently proposed design for
Ethereum.

4. We theoretically show our construction is secure for Ethereum and other PoS blockchains.

1.1 Construction Overview
Let us discuss the intuition about how our construction works. We start with the existing
full node design and iteratively make it more lightweight.

Full nodes. A full node client boots holding only the genesis block and connects to other full
nodes (known as provers) in order to synchronize to the latest tip. The full node downloads
the entire chain block-by-block verifying each transaction in the process. This incurs high
communication and computational complexity. Once the client verifies the latest tip, it has

1 MetaMask has 21,000,000 monthly active users as of July 2022 [48] and is the most popular non-custodial
wallet [16].



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:3

calculated the latest state and can answer user queries such as “what is my balance?”. In
order for the full node to get to the correct tip, at least one connection to an honest peer is
required (this is known as the existential honesty assumption [26, 25, 27, 44]).

Sync committees. Let’s try to improve on the efficiency of the full node to make it a light
client. PoS protocols typically proceed in epochs during which the validator set is fixed. In
each epoch, a subset of validators is elected by the protocol as the epoch committee. This is
a set of public keys. The security of the protocol assumes that the majority [17, 39, 19, 3] or
super-majority [9, 13, 5, 51] of the committee members are honest during the epoch. The
current committee signs the latest state. Therefore, the client does not need to download all
the blocks, but instead only needs to download the latest state and verify the committee
signatures on it. However, the stake changes hands in every epoch. Hence, to perform the
verification at some later epoch, the client needs to keep track of the current committee. To
help the client in this endeavor, the committee members of each epoch, while active, sign a
handover message inaugurating the members of the new committee [28]. This enables the
light client to discover the latest committee by processing a sequence of such handovers.

Optimistic light client construction. Light clients like these already exist. Regrettably,
they still need to download all committees of the past to verify the current state. In this
paper we propose better solutions. The first idea, which we call the optimistic light client
construction, is for the prover to work as follows: For each committee, take its members,
concatenate them all together, and hash them into one hash. The prover then sends this
sequence of hashes (one for each committee) to the client. Since the client is connected to
at least one honest prover, at least one of these provers will answer truthfully. If multiple
provers give conflicting claims to the client, all it needs to do is to find which one is truthful.
To do this, it compares the claims of all provers pairwise. If two provers disagree, the client
focuses on the first point of disagreement in their hash sequences, and asks each prover to
provide the respective handover signatures to substantiate their claim. Each prover reveals
the committee attested by the hash at that point, the previous committee and the associated
handover messages. Upon validating these messages, which can be done locally and efficiently,
the client identifies the truthful party, and accepts its state. A lying prover will not be able
to provide such a handover for an invalid committee. Once the client rejects the invalid
committee claims, it will have calculated the latest committee, and can proceed from there
as usual.

Superlight clients. Even though the complexity is concretely improved, the sequence of
committee hashes still grows linearly with the lifetime of the protocol. To achieve sublinear
complexity, we improve the procedure to find the first point of disagreement. To this end,
our final PoPoS protocol requires each prover to organize its claimed sequence of committees
– one per epoch – into a Merkle tree [43]. The roots of those trees are then sent over to the
client, who compares them. Upon detecting disagreement at the roots, the client asks the
provers to reveal the children of their respective roots. By repeating this process recursively
on the mismatching children, it arrives at the first point of disagreement between the claimed
committee sequences, in logarithmic number of steps. After the first point of disagreement
is found, the client works similarly to the optimistic light client construction. This process
achieves logarithmic communication.

AFT 2023



14:4 Proofs of Proof-Of-Stake with Sublinear Complexity

Bridges. Our PoPoS construction has two main applications: Superlight proof-of-stake
clients that can bootstrap very efficiently, and trustless bridges that allow the passing of
information from one proof-of-stake chain to another. For bridging, we note that a trustless
bridge is nothing more than an on-chain superlight client. It connects a source PoS blockchain
to any other destination blockchain. To do this, a smart contract on the destination chain,
which runs an implementation of our superlight client code (e.g., in Solidity), is deployed.
Whenever some information of interest appears on the source chain, any helpful but untrusted
relayer can submit this information, together with the PoPoS proof to the smart contract. If
the information is inaccurate, another relayer challenges the first one by participating in our
interactive bisection game within a dispute period [40], submitting one transaction for every
round of interaction of the PoPoS protocol. If both chains are PoS, the bridge can be made
bidirectional by running PoPoS superlight clients on both chains. To incentivize on-chain
participation, relayers who submit accurate information are rewarded, whereas relayers who
submit inaccurate information need to put up a collateral which is slashed and is used to
reward the challenger.

1.2 Implementation Overview
In addition to our theoretical contributions, we report on our open source implementation
(spanning about 8,200 lines of TypeScript code and 2,300 downloads from the community) of
our protocol for the Ethereum mainnet. Our implementation is fully functional and supports
all RPC queries used by typical wallets, from simple payments to complex smart contract
calls. It takes the form of a modular daemon that augments any existing Ethereum wallet’s
functionality (such as MetaMask’s) to be trustless, without changing any user experience.
We perform measurements using the light client protocol currently proposed for Ethereum.
We find that this protocol, while much more efficient than a full node, is likely insufficient to
support communication-, computation-, and battery-constrained devices such as browsers and
mobile phones. Next, we measure the performance of our implementation of an optimistic
light client for Ethereum that achieves significant gains over the traditional light client.
We demonstrate this implementation is already feasible for resource-constrained devices.
Lastly, our implementation includes a series of experiments introducing a superlight client for
Ethereum that achieves exponential asymptotic gains over the optimistic light client. These
gains constitute concrete improvements over the optimistic light client when the blockchain
system is long-lived and has an execution history of a few years. We compare all three clients
in terms of communication (bandwidth and latency), computation, and energy consumption.

1.3 Related Work
Table 1 compares the current paper with related work. Proof-of-work superlight clients
have been explored in the interactive [35] and non-interactive [37] setting using various
constructions [36, 32, 6]. Such constructions are backwards compatible [53, 38] and have been
deployed in practice [18]. They have also been used in the context of bridges [33, 2, 40, 52].
Several proof-of-stake-specific clients [28, 14, 22] improve the efficiency of full nodes, but
require linear communication. Chatzigiannis et al. [15] provide a survey of light clients.

Our construction is based on refereed proofs [12, 30, 31, 46]. PoPoS constructions can also
be built via (recursive) SNARKs/STARKs [4, 24], some achieving constant communication.
However, these are clients for chains that were designed from the start to be proof-friendly.
Current attempts [50, 45] to retrofit popular PoS protocols (e.g., Ethereum and Cosmos)
with SNARK-based proofs are expensive (annual prover operating-cost of six to seven figures



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:5

Table 1 Comparison with previous works in terms of asymptotic Θ̃ communication complexity,
interactivity, and cryptographic model. Interactivity is the number of rounds, ignoring constants.
Low communication and rounds of interactivity are preferable. N : number of epochs. L: number of
blocks per epoch. Common prefix parameter k is constant.

SPV
PoW
[26]

KLS
[35]

FlyClient
[6]

Superblocks
[37, 36]

Full
PoS
[39]

Mithril
[14]

Coda
[4]

PoPoS
(this work)

Communication NL log(NL) poly log(NL) log(NL) NL N + L 1 log(N)
Interactivity 1 log(NL) 1 1 1 1 1 log(N)
Work/stake work work work work stake stake both stake
Model RO RO RO RO standard RO CRS standard
Primitives hash hash hash hash hash, sig hash,

sig, ZK
hash,

sig, ZK
hash, sig

USD).2 Additionally, since [50, 45] do not include recursive proving/verification, they require
the validator to remain online (to avoid linear overhead), which may be a suitable assumption
for bridges, but not for bootstrapping light clients (e.g., intermittently online mobile wallets).
Unlike proof-based approaches, our protocol does not require changes in the PoS protocol,
and relies on simple primitives such as hashes and signatures. Our prover is stateless and
adds only a few milliseconds of computation time to an existing full node. Our light client
allows for bootstrapping from genesis with sublinear overhead.

Some clients obtain a checkpoint [41, 8] on a recent block from a trusted source, after
which they download only a constant number of block headers to identify the tip. Our
construction allows augmenting these clients so that they can succinctly verify the veracity
of a checkpoint without relying on a trusted third party.

1.4 Outline
We present our theoretical protocol in a generic PoS framework, which typical proof-of-stake
systems fit into. We prove our protocol is secure if the underlying blockchain protocol satisfies
certain simple and straightforward axioms. Many popular PoS blockchains can be made to fit
within our axiomatic framework. We define our desired primitive, the proof of proof-of-stake
(PoPoS), together with the axioms required from the underlying PoS protocol in Sec. 3. We
iteratively build and present our construction in Secs. 4 and 5. We present the security claims
in Sec. 8. For concreteness, and because it is the most prominent PoS protocol, we give a
concrete construction of our protocol for Ethereum in Sec. 6. Ethereum is the most widely
adopted PoS protocol. Interestingly, Ethereum directly satisfies our axiomatic framework
and does not require any changes on the consensus layer at all. The applicability of our
framework to other PoS chains such as Ouroboros (Cardano), Algorand, and Snow White
are discussed in the full version of this paper [1].

The description of our implementation and the relevant experimental measurements
showcasing the advantages of our implementation are presented in Sec. 7.

2 For example, according to [50, Section 6], proving consensus (of 128 validators) on one Cosmos block
takes 18 seconds on 32 instances of Amazon AWS c5.24xlarge. (We are unable to independently
reproduce this finding because the authors of zkBridge have not disclosed their code.) At Cosmos’
block rate of 1 block per second, that would require 18 × 32 continuously operating c5.24xlarge
instances, costing annually $12,967,488 on Amazon AWS (annual pricing, us-east-1 region, June 2023),
or $1,749,600 on Hetzner’s equivalents. Scaling this proportionally for Ethereum (×4 for sync committee
size 512, /12 for block rate 1 block per 12 seconds) yields an estimate of $583,333 annually.

AFT 2023



14:6 Proofs of Proof-Of-Stake with Sublinear Complexity

2 Preliminaries

Proof-of-stake. Our protocols work in the proof-of-stake (PoS) setting. In a PoS protocol,
participants transfer value and maintain a balance sheet of stake, or who owns what, among
each other. It is assumed that the majority of stake is honestly controlled at every point
in time. The PoS protocol uses the current stake distribution to establish consensus. The
exact mechanism by which consensus is reached varies by PoS protocol. Our PoPoS protocol
works for popular PoS flavours.

Primitives. Participants in our PoS protocol transfer stake by signing transactions using a
signature scheme [34]. The public key associated with each validator is known by everyone.
The signatures are key-evolving, and honest validators delete their old keys after signing [29,
19].3 We also use a collision resistant hash function. We highlight that it does not need to
be treated in the Random Oracle model, and no trusted setup is required for our protocol
(beyond what the underlying PoS protocol may need).

Types of nodes. The stakeholders who participate in maintaining the system’s consensus
are known as validators. In addition to those, other parties, who do not participate in
maintaining consensus, can join the system, download its full history, and discover its current
state. These are known as full nodes. Clients that are interested in joining the system and
learning a small part of the system state (such as their user’s balance) without downloading
everything are known as light clients. Both full nodes and light clients can join the system
at a later time, after it has already been executing for some duration |C|. A late-joining
light client or full node must bootstrap by downloading some data from its peers. The
amount of data the light client downloads to complete the bootstrapping process is known
as its communication complexity. A light client is succinct if its communication complexity
is O(poly log(|C|)) in the lifetime |C| of the system. Succinct light clients are also called
superlight clients. The goal of this paper is to develop a PoS superlight client.

Time. The protocol execution proceeds in discrete epochs, roughly corresponding to mod-
erate time intervals such as one day. Epochs are further subdivided into rounds, which
correspond to shorter time durations during which a message sent by one honest party is
received by all others. In our analysis, we assume synchronous communication. The validator
set stays fixed during an epoch, and it is known one epoch in advance. The validator set of
an epoch is determined by the snapshot of stake distribution at the beginning of the previous
epoch. To guarantee an honest majority of validators at any epoch, we assume a delayed
honest majority for a duration of two epochs: Specifically, if a snapshot of the current stake
distribution is taken at the beginning of an epoch, this snapshot satisfies the honest majority
assumption for a duration of two full epochs. Additionally, we assume that the adversary
is slowly adaptive: She can corrupt any honest party, while respecting the honest majority
assumption, but that corruption only takes place two epochs later. This assumption will
be critical in our construction of handover messages that allow members of one epoch to
inaugurate a committee representing the next epoch (cf. Sec. 4).

3 Instead of key-evolving signatures, Ethereum relies on a concept called weak subjectivity [8]. This
alternative assumption can also be used in the place of key-evolving signatures to prevent posterior
corruption attacks [20].



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:7

The prover/verifier model. The bootstrapping process begins with a light client connecting
to its full node peers to begin synchronizing. During the synchronization process, the full
nodes are trying to convince the light client of the system’s state. In this context, the light
client is known as the verifier and the full nodes are known as the provers. As usual, we
assume the verifier is connected to at least one honest prover. The verifier queries the provers
about the state of the system, and can exchange multiple messages to interrogate them about
the truth of their claims during an interactive protocol.

Assumptions. We make two central assumptions: Firstly, that the light client can commu-
nicate interactively with full nodes. This is contrary to, for example, proof-based clients.
Interactivity incurs a penalty when our light client runs on-chain, because it requires receiving
data over the course of multiple transactions. This is expensive in gas and time consuming
in delays. Secondly, that the light client has at least one honest connection. Many protocols
assume this. For example, a Bitcoin full node is not secure if all connections are dishonest.
In current systems, such as Ethereum, light clients typically connect to RPC nodes instead
of full nodes. It is better to trust at least one among many RPC connections is honest (as
opposed to having a single RPC connection), but one may still become eclipsed. To resolve
this concern, we advocate for light clients to connect to full nodes directly, which would make
this assumption more reasonable. Due to these two assumptions, we caution the reader to
be aware of the current limitations of our work, understanding it is not always applicable.

Notation. We use ϵ and [ ] to mean the empty string and empty sequence. By x ∥ y, we mean
the string concatenation of x and y encoded in a way that x and y can be unambiguously
retrieved. We denote by |C| the length of the sequence C; by C[i] the ith (zero-based) element
of the sequence, and by C[−i] the ith element from the end. We use C[i:j] to mean the
subarray of C from the ith element (inclusive) to the jth element (exclusive). Omitting i

takes the sequence to the beginning, and omitting j takes the sequence to the end. We
write A ≼ B to mean that the sequence A is a prefix of B. We use λ to denote the security
parameter. Following Go notation, in our multi-party algorithms, we use m 99K A to indicate
that message m is sent to party A and m L99 A to indicate that message m is received from
party A.

Ledgers. The consensus protocol attempts to maintain a unified view of a ledger L. The
ledger is a sequence of transactions L = (tx1, tx2, . . .). Each validator and full node has a
different view of the ledger. We denote the ledger of party P at round r as LP

r . Nodes joining
the protocol, whether they are validators, full nodes, or (super)light clients, can also write
to the ledger by asking for a transaction to be included. In a secure consensus protocol, all
honestly adopted ledgers are prefixes of one another. We denote the longest among these
ledgers as L∪

r , and the shortest among them as L∩
r . We will build our protocol on top of PoS

protocols that are secure. A secure consensus protocol enjoys the following two virtues:

▶ Definition 1 (Consensus Security). A consensus protocol is secure if it is:
1. Safe: For any honest parties P1, P2 and rounds r1 ≤ r2: LP1

r1
≼ LP2

r2
.

2. Live: If all honest validators attempt to write a transaction during u consecutive rounds
r1, . . . , ru, it is included in LP

ru
of any honest party P .

Transactions. A transaction encodes an update to the system’s state. For example, a
transaction could indicate a value transfer of 5 units from Alice to Bob. Different systems
use different transaction formats, but the particular format is unimportant for our purposes.

AFT 2023



14:8 Proofs of Proof-Of-Stake with Sublinear Complexity

A transaction can be applied on the current state of the system to reach a new state. Given
a state st and a transaction tx, the new state is computed by applying the state transition
function δ to the state and transaction. The new state is then st′ = δ(st, tx). For example,
in Ethereum, the state of the system encodes a list of balances of all participants [7, 49].
The system begins its lifetime by starting at a genesis state st0. A ledger also corresponds
to a particular system state, the state obtained by applying its transactions iteratively
to the genesis state. Consider a ledger L = (tx1 · · · txn). Then the state of the system
is δ(· · · δ(st0, tx1), · · · , txn). We use the shorthand notation δ∗ to apply a sequence of
transactions tx = tx1 · · · txn to a state. Namely, δ∗(st0, tx) = δ(· · · δ(st0, tx1), · · · , txn).

Because the state of the system is large, the state is compressed using an authenticated
data structure (e.g., Merkle Tree [43]). We denote by ⟨st⟩ the state commitment, which is
this short representation of the state st (e.g., Merkle Tree root). Given a state commitment
⟨st⟩ and a transaction tx, it is possible to calculate the state commitment ⟨st′⟩ to the new
state st′ = δ(st, tx). However, this calculation may require a small amount of auxiliary data
π such as a Merkle tree proof of inclusion of certain elements in the state commitment ⟨st⟩.
We denote the transition that is performed at the state commitment level by the succinct
transition function ⟨δ⟩. Concretely, we will write that ⟨δ(st, tx)⟩ = ⟨δ⟩ (⟨st⟩ , tx, π). This
means that, if we take state st and apply transaction tx to it using the transition function
δ, and subsequently calculate its commitment using the ⟨·⟩ operator, the resulting state
commitment is the same as the one obtained by applying the succinct transition function ⟨δ⟩
to the state commitment ⟨st⟩ and transaction tx using the auxiliary data π. If the auxiliary
data is incorrect, the function ⟨δ⟩ returns ⊥ to indicate failure. If the state commitment uses
a secure authenticated data structure such as a Merkle tree, we can only find a unique π

that makes the ⟨δ⟩ function run successfully.

3 The PoPoS Primitive

The PoPoS abstraction. Every verifier V online at some round r holds a state commitment
⟨st⟩V

r . To learn about this recent state, the verifier connects to provers P = {P1, P2, · · · , Pq}.
All provers except one honest party can be controlled by the adversary, and the verifier does
not know which party among the provers is honest (the verifier is assumed to be honest). The
honest provers are always online. Each of them maintains a ledger Li. They are consistent
by the safety of the underlying PoS protocol. Upon receiving a query from the verifier, each
honest prover sends back a state commitment corresponding to its current ledger. However,
the adversarial provers might provide incorrect or outdated commitments that are different
from those served by their honest peers. To identify the correct commitment, the light client
mediates an interactive protocol among the provers:

▶ Definition 2 (Proof of Proof-of-Stake). A Proof of Proof-of-Stake protocol (PoPoS) for
a PoS consensus protocol is a pair of interactive probabilistic polynomial-time algorithms
(P, V ). The algorithm P is the honest prover and the algorithm V is the honest verifier. The
algorithm P is ran by an online full node, while V is a light client booting up for the first
time holding only the genesis state commitment ⟨st0⟩. The protocol is executed between V

and a set of provers P. After completing the interaction, V returns a state commitment ⟨st⟩.

Security of the PoPoS protocol. The goal of the verifier is to output a state commitment
consistent with the view of the honest provers. This is reflected by the following security
definition of the PoPoS protocol.



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:9

▶ Definition 3 (State Security). Consider a PoPoS protocol (P, V ) executed at round r,
where V returns ⟨st⟩. It is secure with parameter ν if there exists a ledger L such that
⟨st⟩ = δ∗(st0,L), and L satisfies:

Safety: For all rounds r′ ≥ r + ν: L ≼ L∪
r′ .

Liveness: For all rounds r′ ≤ r − ν: L∩
r′ ≼ L.

State security implies that the commitment returned by a verifier corresponds to a state
recently obtained by the honest provers.

4 The Optimistic Light Client

Before we present our succinct PoPoS protocol, we introduce sync committees and handover
messages, two necessary components we use in our construction. We also propose a highly
performant optimistic light client as a building block for the superlight clients.

Sync committees. To allow the verifier to achieve state security, we introduce a sync
committee (first proposed in the context of PoS sidechains [28]). Each committee is elected
for the duration of an epoch, and contains a subset, of fixed size m, of the public keys of the
validators associated with that epoch. The committee of the next epoch is determined in
advance at the beginning of the previous epoch. All honest validators agree on this committee.
The validators in the sync committee are sampled from the validator set of the corresponding
epoch in such a manner that the committee retains honest majority during the epoch. The
exact means of sampling are dependent on the PoS implementation. One way to construct
the sync committee is to sample uniformly at random from the underlying stake distribution
using the epoch randomness of the PoS protocol [39, 23]. The first committee S0 is recorded
by the genesis state st0. We denote the set of public keys of the sync committee assigned to
epoch j ∈ N by Sj , and each committee member public key within Sj by Sj

i , i ∈ N.

Handover signatures. During each epoch j, each honest committee member Sj
i of epoch

j signs the tuple (j + 1, Sj+1), where j + 1 is the next epoch index and Sj+1 is the set of
all committee member public keys of epoch j + 1. We let σj

i denote the signature of Sj
i on

the tuple (j + 1, Sj+1). This signature means that member Sj
i approves the inauguration

of the next epoch committee. We call those handover signatures4, as they signify that the
previous epoch committee hands over control to the next committee. When epoch j + 1
starts, the members of the committee Sj assigned to epoch j can no longer use their keys to
create handover signatures.5 As soon as more than m

2 members of Sj have approved the
inauguration of the next epoch committee, the inauguration is ratified. This collection of
signatures for the handover between epoch j and j + 1 is denoted by Σj+1, and is called
the handover proof. A succession S = (Σ1, Σ2, . . . , Σj) at an epoch j is the sequence of all
handover proofs across an execution until the beginning of the epoch.

In addition to the handover signature, at the beginning of each epoch, honest committee
members sign the state commitment corresponding to their ledger. When the verifier learns
the latest committee, these signatures enable him to find the current state commitment.

4 Handover signatures between PoS epochs were introduced in the context of PoS sidechains [28]. Some
practical blockchain systems already implement similar handover signatures [54, 42].

5 This assumption can be satisfied using key-evolving signatures [29, 19], social consensus [8], or a static
honest majority assumption.

AFT 2023



14:10 Proofs of Proof-Of-Stake with Sublinear Complexity

A naive linear client. Consider a PoPoS protocol, where each honest prover gives the verifier
a state commitment and signatures on the commitment from the latest sync committee SN−1,
where N is the number of epochs (and N − 1 is the last epoch). To convince the verifier that
SN−1 is the correct latest committee, each prover also shares the sync committees S0 . . . SN−2

and the associated handover proofs in its view. The verifier knows S0 from the genesis
state st0, and can verify the committee members of the future epochs iteratively through
the handover proofs. Namely, upon obtaining the sync committee Sj , the verifier accepts a
committee Sj+1 as the correct committee assigned to epoch j + 1, if there are signatures on
the tuple (j + 1, Sj+1) from over half of the committee members in Sj . Repeating the process
above, the verifier can identify the correct committee for the last epoch. After identifying
the latest sync committee, the verifier checks if the state commitment provided by a prover
is signed by over half of the committee members. If so, he accepts the commitment.

It is straightforward to show that this strawman PoPoS protocol (which we abbreviate as
TLC) is secure (Def. 3) under the following assumptions:
1. The underlying PoS protocol satisfies safety and liveness.
2. The majority of the sync committee members are honest.
When all provers are adversarial, the verifier might not receive any state commitment from
them. Even though generally at least one prover is assumed to be honest, the strawman
protocol does not need this for the correctness of the commitment accepted by the verifier,
since the verifier validates each sync committee assigned to consecutive epochs, and does not
accept commitments not signed by over m

2 members of the latest committee.
Regrettably, the strawman protocol is O(|C|) and not succinct: To identify the lastest

sync committee, the verifier has to download each sync committee since the genesis block.
In the rest of this paper, we will improve this protocol to make it succinct.

The optimistic light client (OLC). We now reduce the communication complexity of the
verifier. In this version of the protocol, instead of sharing the sync committees S0 . . . SN−2 and
the associated handover proofs, each honest prover P sends a sequence of hashes h1 . . . hN−1

corresponding to the sync committees S0 . . . SN−1. Subsequently, to prove the correctness
of the state commitment, the prover P reveals the latest sync committee SN−1 assigned to
epoch N − 1 and the signatures by its members on the commitment. Upon receiving the
committee SN−1, the verifier checks if the hash of SN−1 matches hN−1, and validates the
signatures on the commitment.

Unfortunately, an adversarial prover P ∗ can claim an incorrect committee S∗,N−1, whose
hash h∗,N−1 disagrees with hN−1 returned by P . This implies a disagreement between the
two hash sequences received from P and P ∗. The verifier can exploit this discrepancy to
identify the truthful party that returned the correct committee. Towards this goal, the
verifier iterates over the two hash sequences, and finds the first point of disagreement. Let j

be the index of this point such that hj ̸= h∗,j and hi = h∗,i for all i < j. The verifier then
requests P to reveal the committees Sj and Sj−1 at the preimage of hj and hj−1, and to
supply a handover proof Σj for Sj−1 and Sj . He also requests P ∗ to reveal the committees
S∗,j and S∗,j−1 at the preimage of h∗,j and h∗,j−1, and to supply a handover proof Σ∗,j for
S∗,j−1 to S∗,j . As hj−1 = h∗,j−1 by definition, the verifier is convinced that the committees
Sj−1 and S∗,j−1 revealed by P and P ∗ are the same.

Finally, the verifier checks whether the committees S∗,j and Sj were inaugurated by
the previous committee Sj−1 using the respective handover proofs Σj and Σ∗,j . Since Sj−1

contains over m
2 honest members that signed only the correct committee Sj assigned to epoch

j, adversarial prover P ∗ cannot create a handover proof with sufficiently many signatures



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:11

π

S 0
 S 1

  S
 2

  S
 3

 

σj signs
 S

 j
  S

 j+1

genesis keys
 S

 N-2
 S N-1

 

current epoch keys

hash

 S
 j-1 ... ...

jj-1 j+1

h0 h1

h000

h0000 h0001

h00000 h00001 h00010 h00011 h11110 h11111

h1111

Figure 1 The handover tree, the central construction of our protocol. The root of the Merkle
tree is the initial proof π. During the bisection game, the signatures between the challenge node j

and its neighbours j − 1 and j + 1 are validated.

inaugurating S∗,j . Hence, the handover from Sj−1 to S∗,j will not be ratified Σ∗,j , whereas
the handover from Sj−1 to Sj will be ratified by Σj . Consequently, the verifier will identify
P as the truthful party and accept its commitment.

In the protocol above, security of the commitment obtained by the prover relies crucially
on the existance of an honest prover. Indeed, when all provers are adversarial, they can
collectively return the same incorrect state commitment and the same incorrect sync com-
mittee for the latest epoch. They can then provide over m

2 signatures by this committee on
the incorrect commitment. In the absence of an honest prover to challenge the adversarial
ones, the verifier would believe in the validity of an incorrect commitment.

The optimistic light client reduces the communication load of sending over the whole sync
committee sequence by representing each committee with a constant size hash. However,
it is still O(|C|) as the verifier has to do a linear search on the hashes returned by the two
provers to identify the first point of disagreement. To support a truly succinct verifier, we
will next work towards an interactive PoPoS protocol based on bisection games.

5 The Superlight Client

Trees and mountain ranges. Before describing the succinct PoPoS protocol and the
superlight client, we introduce the data structures used by the bisection games.

Suppose the number of epochs N is a power of two. The honest provers organize the
committee sequences for the past epochs into a Merkle tree called the handover tree (Fig. 1).
The jth leaf of the handover tree contains the committee Sj of the jth epoch. A handover
tree consisting of leaves S0, . . . , SN−1 is said to be well-formed with respect to a succession
S if it satisfies the following properties:
1. The leaves are syntactically valid. Every jth leaf contains a sync committee Sj that

consists of m public keys.
2. The first leaf corresponds to the known genesis sync committee S0.
3. For each j = 1 . . . N − 1, Σj consists of over m

2 signatures by members of Sj−1 on (j, Sj).

Every honest prover holds a succession of handover signatures attesting to the inauguration
of each sync committee in its handover tree after S0. These successions might be different
for every honest prover as any set of signatures larger than m

2 by Sj can inaugurate Sj+1.
However, the trees are the same for all honest parties, and they are well-formed with respect
to the succession held by each honest prover.

AFT 2023



14:12 Proofs of Proof-Of-Stake with Sublinear Complexity

When the number N of epochs is not a power of two, provers arrange the past sync
committees into Merkle mountain ranges (MMRs) [47, 21]. An MMR is a list of Merkle trees,
whose sizes are decreasing powers of two. To build an MMR, a prover first obtains a binary
representation 2q1 + . . . + 2qn of N , where q1 > . . . > qn. It then divides the sequence of sync
committees into n subsequences, one for each qi. For i ≥ 1, the ith subsequence contains the
committees S

∑i−1
n=1

2qi
, . . . , S(

∑i

n=1
2qi )−1. Each ith subsequence is organized into a distinct

Merkle tree Ti, whose root, denoted by ⟨Ti⟩, is called a peak. These peaks are all hashed
together to obtain the root of the MMR. We hereafter refer to the index of each leaf in these
Merkle trees with the epoch of the sync committee contained at the leaf. (For instance, if
there are two trees with sizes 4 and 2, the leaf indices in the first tree are 0, 1, 2, 3 and the
leaf indices in the second tree are 4 and 5.) The MMR is said to be well formed if each
constituent tree is well-formed (but, of course, only the first leaf of the first tree needs to
contain the genesis committee). To ensure succinctness, only the peaks and a small number
of leaves, with their respective inclusion proofs, will be presented to the verifier during the
following bisection game.

Different state commitments. We begin our construction of the full PoPoS protocol
(abbreviated SLC for Super Light Client) by describing the first messages exchanged between
the provers P and the verifier. Each honest prover first shares the state commitment signed
by the latest sync committee at the beginning of the last epoch N − 1. If all commitments
received by the verifier are the same, by existential honesty, the verifier rests assured this
commitment is correct, i.e., it corresponds to the ledger of the honest provers at the beginning
of the epoch. Otherwise, the verifier requests from each prover in P : (i) the MMR peaks ⟨T ⟩i,
i ∈ [n] held by the prover, where n is the number of peaks, (ii) the latest sync committee
SN−1, (iii) a Merkle inclusion proof for SN−1 with respect to the last peak ⟨T ⟩n, and (iv)
signatures by the committee members in SN−1 on the state commitment given by the prover.

Upon receiving these messages, the verifier first checks if there are more than m
2 valid

signatures by the committee members in SN−1 on the state commitment. It then verifies the
Merkle proof for SN−1 with respect to ⟨T ⟩n. As the majority of the committee members in
SN−1 are honest, it is not possible for different state commitments to be signed by over half
of SN−1. Hence, if the checks above succeed for two provers P and P ∗ that returned different
commitments, one of them (P ∗) must be an adversarial prover, and must have claimed an
incorrect sync committee S∗,N−1 for the last epoch. Moreover, as the Merkle proofs for both
S∗,N−1 and SN−1 verify against the respective peaks ⟨T ⟩n and ⟨T ⟩∗

n, these peaks must be
different. Since the two provers disagree on the roots and there is only one well-formed MMR
at any given epoch, therefore one of the provers does not hold a well-formed MMR. This
reduces the problem of identifying the correct state commitment to detecting the prover that
has a well-formed MMR behind its peaks.

Bisection game. To identify the honest prover with the well-formed MMR, the verifier
(Alg. 1) initiates a bisection game between P and P ∗ (Alg. 2). Suppose the number of epochs
N is a power of two. Each of the two provers claims to hold a tree with size N (otherwise,
since the verifier knows N by his local clock, the prover with a different size Merkle tree
loses the game.) During the game, the verifier aims to locate the first point of disagreement
between the alleged sync committee sequences at the leaves of the provers’ Merkle trees, akin
to the improved optimistic light client (Sec. 4).

The game proceeds in a binary search fashion similar to refereed delegation of compu-
tation [12, 11, 30]. Starting at the Merkle roots ⟨T ⟩ and ⟨T ⟩∗ of the two trees, the verifier
traverses an identical path on both trees until reaching a leaf with the same index. This



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:13

Algorithm 1 Run by the verifier during the bisection game to identify the first point of disagreement
between the provers’ leaves (cf. Fig. 2). Here, P and P ∗ denote the honest and adversarial provers,
whereas ⟨T ⟩ and ⟨T ⟩∗ denote the roots of their respective Merkle trees with size ℓ.

1: function FindDisagreement(P, ⟨T ⟩, P ∗, ⟨T ⟩∗, ℓ)
2: hc, h∗

c ← ⟨T ⟩, ⟨T ⟩∗

3: while ℓ > 1 do
4: (h0, h1) L99 P ; (h∗

0, h∗
1) L99 P ∗

5: if hc ̸= H(h0 ∥h1) then return ▷ P loses
6: if h∗

c ̸= H(h∗
0 ∥h∗

1) then return ▷ P ∗ loses
7: if h0 ̸= h∗

0 then
8: h∗

c , hc ← h∗
0, h0; (open, 0) 99K P ; (open, 0) 99K P ∗

9: else
10: h∗

c , hc ← h∗
1, h1; (open, 1) 99K P ; (open, 1) 99K P ∗

11: ℓ← ℓ//2
12: S L99 P ; S∗ L99 P ∗

13: return S, S∗

Algorithm 2 Run by an honest prover during the bisection game to reply to the verifier V ’s
queries. The sequence S0, . . . , SN−1 denotes the sync committees in the prover’s view.

1: function ReplyToVerifier(S0, . . . , SN−1)
2: T ←MakeMT(S0, . . . , SN−1); T .root 99K V ; j ← 0
3: while T .size > 1 do
4: (T .left.root, T .right.root) 99K V ; (open, i) L99 V

5: if i = 0 then
6: T ← T .left
7: else
8: T ← T .right
9: j ← 2j + i

10: Sj 99K V

leaf corresponds to the first point of disagreement. At each step of the game, the verifier
asks the provers to reveal the children of the current node, denoted by hc and h∗

c on the
respective trees (Alg. 2, l. 4). Initially, hc = ⟨T ⟩ and h∗

c = ⟨T ⟩∗ (Alg. 1, l. 2). Upon receiving
the alleged left and right child nodes h∗

0 and h∗
1 from P ∗, and h0, h1 from P , he checks if

hc = H(h0 ∥ h1) and h∗
c = H(h∗

0 ∥ h∗
1), where H is the collision-resistant hash function used

to construct the Merkle trees (Alg. 1, ll. 5 and 6). The verifier then compares h0 with h∗
0,

and h1 with h∗
1 to determine if the disagreement is on the left or the right child (Alg. 1, ll. 7

and 9). Finally, he descends into the first disagreeing child, and communicates this decision
to the provers (Alg. 2, l. 4); so that they can update the current node that will be queried in
the next step of the bisection game (Alg. 2, ll. 6 and 8).

Upon reaching a leaf at some index j, the verifier asks both provers to reveal the alleged
committees Sj and S∗,j at the pre-image of the respective leaves. If j = 1, he inspects
whether Sj or S∗,j matches S0. The prover whose alleged first committee is not equal to S0

loses the game.
If j > 1, the verifier also requests from the provers (i) the committees at the (j − 1)th

leaves, (ii) their Merkle proofs with respect to ⟨T ⟩ and ⟨T ⟩∗, and (iii) the handover proofs
Σj and Σ∗,j . The honest prover responds with (i) Sj−1 assigned to epoch j − 1, (ii) its
Merkle proof with respect to ⟨T ⟩, and (iii) its own view of the handover proof Σj (which
might be different from other provers). Upon checking the Merkle proofs, the verifier is now

AFT 2023



14:14 Proofs of Proof-Of-Stake with Sublinear Complexity

Algorithm 3 Run by the verifier to identify the first different peak in the MMRs of the two provers.
Here, ⟨T ⟩1,...,n and ⟨T ⟩∗1,...,n denote the peaks of the honest and adversarial provers respectively.

1: function BisectionGame(P , P ∗)
2: ⟨T ⟩1,...,n L99 P

3: ⟨T ⟩∗1,...,n L99 P ∗

4: for i = 1 to n do
5: if ⟨T ⟩i ̸= ⟨T ⟩

∗
i then

6: ℓ← size of the ith Merkle Tree
7: return FindDisagreement(P , ⟨T ⟩i, P ∗, ⟨T ⟩∗i , ℓ)

convinced that the committees Sj−1 and S∗,j−1 revealed by P and P ∗ are the same, since
their hashes match. The verifier subsequently checks if Σj contains more than m

2 signatures
by the committee members in Sj−1 on (j, Sj), and similarly for P ∗.

The prover that fails any of checks by the verifier loses the bisection game. If one prover
loses the game, and the other one does not fail any checks, the standing prover is designated
the winner. If neither prover fails any of the checks, then the verifier concludes that there are
over m

2 committee members in Sj−1 that signed different future sync committees (i.e., signed
both (j, Sj) and (j, S∗,j), where (j, Sj) ̸= (j, S∗,j)). This implies Sj−1 is not the correct
sync committee assigned to epoch j − 1, and both provers are adversarial. In this case, both
provers lose the bisection game. In any case, at most one prover can win the bisection game.

Bisection games on Merkle mountain ranges. When the number of epochs N is not
a power of two, the verifier first obtains the binary decomposition

∑n
i=1 2qi = N , where

q1 > . . . > qn. Then, for each prover P , he checks if there are n peaks returned. For
two provers P and P ∗ that have n peaks but returned different commitments, the verifier
compares the peaks ⟨T ⟩i of P with ⟨T ⟩∗

i of P ∗, and identifies the first different peak (Alg. 3).
It then plays the bisection game as described above on the identified Merkle trees. The only
difference with the game above is that if the disagreement is on the first leaf j of a later tree,
then the Merkle proof for the previous leaf j − 1 is shown with respect to the peak of the
previous tree.

Prover complexity. Given all past sync committees, the prover constructs the MMR in
linear time. The MMR is updated in an online fashion as time evolves. Every time a new
sync committee appears, it is appended to the tree in log N time. The space required to
store the MMR is linear.

Tournament. When there are multiple provers, the verifier interacts with them sequentially
in pairs, in a tournament fashion. It begins by choosing two provers P1 and P2 with different
state commitments from the set P (Alg. 4, l. 7). The verifier then pits one against the other,
by facilitating a bisection game between P1 and P2, and decides which of the two provers loses
(Alg. 4, l. 8). (There can be at most one winner at any bisection game). He then eliminates
the loser from the tournament, and chooses a new prover with a different state commitment
than the winner’s commitment from the set P to compete against the winner. In the event
that both provers lose, the verifier eliminates both provers, and continues the tournament
with the remaining ones by sampling two new provers with different state commitments. This
process continues until all provers left have the same state commitment. This commitment
is adopted as the correct one. A tournament started with q provers terminates after O(q)



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:15

Algorithm 4 Tournament conducted by the verifier among provers P to identify the state
commitment ⟨st⟩. The verifier uses BisectionGame (cf. Fig. 2, Algs. 1 and 3) between two provers
and deduce at most one winner. Here, pop removes and returns an arbitrary element of a set.

1: function Tournament(P)
2: P ← pop(P); good← {P}; ⟨st⟩ ← P. ⟨st⟩
3: for P ∈ P do
4: if ⟨st⟩ = P. ⟨st⟩ then
5: good← good ∪ {P}
6: continue
7: for P ∗ ∈ good do
8: if BisectionGame(P, P ∗) = P then
9: good← {P}; ⟨st⟩ ← P. ⟨st⟩

10: break
11: return ⟨st⟩

  
  

  
 

        
    

  
 

honest
prover

adversary

honest 
verifier

open right

open right

  
 

σ?

  ,

Figure 2 Honest and adversarial prover in the PoPoS bisection game (cf. Algs. 1, 2 and 3).
The verifier iteratively requests openings of tree nodes from both provers, until the first point of
disagreement is discovered.

bisection games, since at least one prover is eliminated at the end of each game. In the full
version of the paper [1], we prove the security of the tournament by showing that an honest
prover never loses the bisection game and an adversarial prover loses against an honest one.

Past and future. Now that the verifier obtained the state commitment signed for the most
recent epoch, and confirmed its veracity, the task that remains is to discern facts about
the system’s state and its history. To perform queries about the current state, such as
determining how much balance one owns, the verifier simply asks for Merkle inclusion proofs
into the proven state commitment.

One drawback of our protocol is that the state commitment received by the verifier is the
commitment at the beginning of the current epoch, and therefore may be somewhat stale. In
order to synchronize with the latest state within the epoch, the verifier must function as a
full node for the small duration of an epoch. This functionality does not harm succinctness,
since epochs have a fixed, constant duration. For example, in the case of a longest-chain
blockchain, the protocol works as follows. In addition to signing the state commitment, the
sync committee also signs the first stable block header of its respective epoch. The block

AFT 2023



14:16 Proofs of Proof-Of-Stake with Sublinear Complexity

header is verified by the verifier in a similar fashion that he verified the state commitment.
Subsequently, the block header can be used as a neon genesis block. The verifier treats the
block as a replacement for the genesis block and bootstraps from there6.

One aspect of wallets that we have not touched upon concerns the retrieval and verification
of historical transactions. Consider a client that wishes to verify the inclusion of a particular
historical transaction tx in the chain. Let’s assume that tx is included in a block B of epoch j.
This can be checked as follows. The verifier, as before, identifies the root of the correct
handover tree. The verifier next asks the prover to provide him with the sync committee of
epoch j + 1, with the corresponding inclusion proof, as well as the first stable block header
B′ of that epoch signed by the committee. Subsequently, he requests the short blockchain
that connects B to B′. As blockchains are hash chains, this inclusion cannot be faked by an
adversary.

6 Proof-of-Stake Ethereum Light Clients

The bisection games presented in Sec. 5 can be applied to a variety of PoS consensus
protocols to efficiently catch up with current consensus decisions. In this section we present
an instantiation for Ethereum. We also detail how to utilize the latest epoch committee to
build a full-featured Ethereum JSON-RPC. This allows for existing wallets such as MetaMask
to use our construction without making any changes. Our implementation can be a drop-in
replacement to obtain better decentralization and performance.

Our PoPoS protocol for Ethereum does not require any changes to the consensus layer,
as Ethereum already provisions for sync committees in the way we introduced in Sec. 4.

6.1 Sync Committee Essentials
Sync committees of Ethereum contain m = 512 validators, sampled uniformly at random
from the validator set, in proportion to their stake distribution. Every sync committee is
selected for the duration of a so-called sync committee period [23] (which we called epoch
in our generic construction). Each period lasts 256 Ethereum epochs (these are different
from our epochs), approximately 27 hours. Ethereum epochs are further divided into slots,
during which a new block is proposed by one validator and signed by the subset of validators
assigned to the slot. At each slot, each sync committee member of the corresponding period
signs the block at the tip of the chain (called the beacon chain [23]) according to its view.
The proposer of the next slot aggregates and includes within its proposal the aggregate sync
committee signature on the parent block. The sync committees are determined one period in
advance, and the committee for each period is contained in the block headers of the previous
period. Each block also contains a commitment to the header of the last finalized block that
lies on its prefix.

6.2 Linear-Complexity Light Client
Light clients use the sync committee signatures to detect the latest beacon chain block
finalized by the Casper FFG finality gadget [9, 10]. At any round, the view of a light
client consists of a finalized_header, the current sync committee and the next committee.
The client updates its view upon receiving a LightClientUpdate object (update for short),

6 While bootstrapping, the verifier can update the state commitment by applying the transactions within
the later blocks on top of the state commitment from the neon genesis block via the function ⟨δ⟩.



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:17

that contains (i) an attested_header signed by the sync committee, (ii) the corresponding
aggregate BLS signature, (iii) the slot at which the aggregate signature was created, (iv) the
next sync committee as stated in the attested_header, and (v) a finalized_header (called the
new finalized header for clarity) to replace the one held by the client.

To validate an update, the client first checks if the aggregate signature is from a slot larger
than the finalized_header in its view, and if this slot is within the current or the next period.
(Updates with signatures from sync committees that are more than one period in the future
are rejected.) It then verifies the inclusion of the new finalized header and the next sync
committee provided by the update with respect to the state of the attested_header through
Merkle inclusion proofs. Finally, it verifies the aggregate signature on the attested_header by
the committee of the corresponding period. Since the signatures are either from the current
period or the next one, the client knows the respective committee.

After validating the update, the client replaces its finalized_header with the new one, if
the attested_header was signed by over 2/3 of the corresponding sync committee. If this
header is from a higher period, the client also updates its view of the sync committees.
Namely, the old next sync committee becomes the new current committee, and the next sync
committee included in the attested_header is adopted as the new next sync committee.

6.3 Logarithmic Bootstrapping from Bisection Games
The construction above requires a bootstrapping light client to download at least one update
per period, imposing a linear communication complexity in the life time of the chain. To
reduce the communication load and complexity, the optimistic light client and superlight
client constructions introduced in Secs. 4 and 5 can be applied to Ethereum.

A bootstrapping superlight client first connects to a few provers, and asks for the Merkle
roots of the handover trees (cf. Sec. 5). The leaf of the handover tree at position j consist of
all the public keys of the sync committee of period j concatenated with the period index j.
If all the roots are the same, then the client accepts the sync committee at the last leaf as
the most recent committee. If the roots are different, the client facilitates bisection games
among conflicting provers. Upon identifying the first point of disagreement between two
trees (e.g., some leaf j), the client asks each prover to provide a LightClientUpdate object to
justify the handover from the committee Sj−1 to Sj . For this purpose, each prover has to
provide a valid update that includes (i) an aggregate signature by 2/3 of the set Sj−1 on an
attested_header, and (ii) the set Sj as the next sync committee within the attested_header.
Upon identifying the honest prover, and the correct latest sync committee, the client can ask
the honest prover about the lastest update signed by the latest sync committe and containing
the tip of the chain.

6.4 Superlight Client Architecture
On the completion of bootstrapping, the client has identified the latest beacon chain block-
header. The blockheader contains the commitment to the state of the Ethereum universe
that results from executing all transactions since genesis up to and including the present
block. Furthermore, this commitment gets verified as part of consensus. The client can
perform query to the fullnode about the state of Ethereum. The result of the query can be
then verified against the state commitment using Merkle inclusion proofs. This allows for
the client to access the state of the Ethereum universe in a trust-minimizing way.

Fig. 3 depicts the resulting architecture of the superlight client. In today’s Ethereum,
a user’s wallet typically speaks to Ethereum JSON-RPC endpoints provided by either a
centralized infrastructure provider such as Infura or by a (trusted) Ethereum full node (could

AFT 2023



14:18 Proofs of Proof-Of-Stake with Sublinear Complexity

Server Client

Superlight
client prover

Full node
Ethereum

JSON-RPC

Superlight
client verifier

Ethereum
JSON-RPC
shim/proxy W

al
le

t

E
th

er
eu

m

P
2P

ne
tw

or
k

JS
O

N
-R

P
C

Bisection
games

New txs.

getProof

Sync info. Consensus tip

Figure 3 Ethereum superlight client architecture: On server side, an Ethereum full node feeds
sync information to a bisection game prover sidecar. On client side, a bisection game verifier feeds
the consensus tip into an Ethereum JSON-RPC shim/proxy, which forwards transactions coming
from the wallet to the Ethereum full node, and resolves state queries with reference to the established
consensus tip using Ethereum’s getProof RPC endpoint.

be self-hosted). Instead, the centerpiece in a superlight client is a shim that provides RPC
endpoints to the wallet, but where new transactions and queries to the Ethereum state are
proxied to upstream full nodes, and query responses are verified w.r.t. a given commitment
to the Ethereum state. This commitment is produced using two sidecar processes, which
implement the prover and verifier of the bisection game. For this purpose, the server-side
sidecar obtains the latest sync information from a full node, using what is commonly called
“libp2p API”. The client-side sidecar feeds the block header at the consensus tip into the
shim.

7 Experiments

To assess the different bootstrapping mechanisms for Ethereum (traditional light client
= TLC; optimistic light client = OLC; superlight client = SLC), we implemented them
in ≈ 2000 lines of TypeScript code (source code available on Github7). We demonstrate
an improvement of SLC over TLC of 9× in time-to-completion, 180× in communication
bandwidth, and 30× in energy consumption, when bootstrapping after 10 years of consensus
execution. SLC improves over OLC by 3× in communication bandwidth in this setting.

7.1 Setup
Our experimental scenario includes seven malicious provers, one honest prover, and a
verifier. All provers run in different Heroku “performance-m” instances located in the “us”
region. The verifier runs on an Amazon EC2 “m5.large” instance located in “us-west-2”.
The provers’ Internet access is not restricted beyond the hosting provider’s limits. The
verifier’s down- and upload bandwidth is artificially rate-limited to 100 Mbit/s and 10 Mbit/s,
respectively, using “tc”. We monitor to rule out spillover from RAM into swap space.

7 The superlight client prototype is at https://github.com/lightclients/poc-superlight-client. The
optimistic light client implementation is at https://github.com/lightclients/kevlar and https:
//kevlar.sh/. The RPC shim is at https://github.com/lightclients/patronum.

https://github.com/lightclients/poc-superlight-client
https://github.com/lightclients/kevlar
https://kevlar.sh/
https://kevlar.sh/
https://github.com/lightclients/patronum


S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:19

0 50 100 150 200
0

50

100

150

200
5

20

200 500

100
200 500

100

200 500

Total communication [Mbytes]

TLC OLC SLC 5 y 10 y 15 y 20 y 30 y

0 1 2 3 4 5
0

20

40

60

20

50

200

500 3650

50

200

50

200
500

10950

2

5
20
100

5000

Total communication [Mbytes]

T
im

e-
to

-c
om

pl
et

io
n

[s
ec

on
ds

]

Figure 4 Time-to-completion and total communication (averaged over 5 trials) incurred by
different light clients for varying internal parameters (marker labels; TLC/OLC: batch size b,
SLC: Merkle tree degree d) and varying consensus execution horizon. For SLC, the curves for
the considered execution horizons are virtually identical; thus, only the curve for 30 years (most
challenging scenario) is shown. Pareto-optimal tradeoffs are at “tip” of resulting L-shape’: for 10
years execution, at b ≈ 200 (TLC), b ≈ 500 (OLC), and d ≈ 100 (SLC), respectively. OLC and SLC
vastly outperform TLC, e.g., for 10 years execution: 9× in time-to-completion, 180× in bandwidth.
In this setting, SLC has similar time-to-completion as OLC, and 3× lower communication.

In preprocessing, we create eight valid traces of the sync committee protocol for an
execution horizon of 30 years. For this purpose, we create 512 cryptographic identities
per simulated day, as well as the aggregate signatures for handover from one day’s sync
committee to the next day’s. In some experiments, we vary how much simulated time has
passed since genesis, and for this purpose truncate the execution traces accordingly. One
of the execution traces is used by the honest prover and understood to be the true honest
execution. Adversarial provers each pick a random point in time, and splice the honest
execution trace up to that point together with one of the other execution traces for the
remaining execution time, without regenerating handover signatures, so that the resulting
execution trace used by adversarial provers has invalid handover at the point of splicing. We
also vary the internal parameters of the (super-)light client protocols (i.e., batch size b of
TLC and OLC, Merkle tree degree d of SLC).

7.2 Time-To-Completion & Total Verifier Communication
The average time-to-completion (TTC) and total communication bandwidth (TCB) required
by the different light client constructions per bootstrapping occurrence is plotted in Fig. 4
for varying internal parameters (batch sizes b for TLC and OLC; Merkle tree degrees d for
SLC) and varying execution horizons (from 5 to 30 years). Pareto-optimal TTC and TCB
are achieved for b and d resulting “at the tip” of the “L-shaped” plot. For instance, for 10
years execution, TLC, OLC and SLC achieve Pareto-optimal TTC/TCB for b ≈ 200, b ≈ 500,
and d ≈ 100, respectively. Evidently, across a wide parameter range, OLC and SLC vastly
outperform TLC in both metrics; e.g., for 10 years execution and Pareto-optimal parameters,
9× in TTC, and 180× in TCB. In this setting, SLC has similar TTC as OLC, and 3× lower
TCB (5× lower TCB for 30 years). For a closed-form expression describing the trade-off
between latency and bandwidth, and the optimal choice of tree degree see Tas et al. [46].

AFT 2023



14:20 Proofs of Proof-Of-Stake with Sublinear Complexity

1.875 3.75 7.5 15 30
0

50

100

150

Execution horizon [years]

T
im

e-
to

-c
om

pl
et

io
n

[s
e c

on
ds

] OLC (b = 20) SLC (d = 2)

Figure 5 Time-to-completion (averaged over 5 trials) of OLC/SLC increase linearly/logarithmi-
cally with the execution horizon, respectively.

TLC OLC SLC
0

20

40

60

80 82

12.2 11.7

Time-to-completion [s]

Idle TLC OLC SLC
0

5

10

15

1.66

13.3

2.81 2.94

Power [W]

TLC OLC SLC
0

0.1

0.2

0.3 0.30

0.01 0.01

Energy [Wh]

Figure 6 Energy required to bootstrap after 10 years of consensus execution using different
light client constructions (averaged over 5 trials for TLC, 25 trials for OLC and SLC; internal
parameters b = 200, b = 500, d = 100, respectively); also disaggregated into power consumption and
time-to-completion. Energy required by OLC/SLC is 30× lower than TLC. Contributions ≈ 4× and
≈ 7× can be attributed to lower power consumption and lower time-to-completion, respectively.

The fact that both TLC and OLC have TCB linear in the execution horizon, is readily
apparent from Fig. 4. The linear TTC is visible for TLC, but not very pronounced for
OLC, due to the concretely low proportionality constant. In comparison, SLC shows barely
any dependence of TTC or TCB on the execution horizon, hinting at the (exponentially
better) logarithmic dependence. To contrast the asymptotics, we plot average TTC as a
function of exponentially increasing execution horizon in Fig. 5 for OLC and SLC with
internal parameters b = 20 and d = 2, respectively. Note that these are not Pareto-optimal
parameters, but chosen here for illustration purposes. Clearly, TTC for OLC is linear in the
execution horizon (plotted in Fig. 5 on an exponential scale), while for SLC it is logarithmic.

7.3 Power & Energy Consumption
A key motivation for superlight clients is their application on resource-constrained platforms
such as browsers or mobile phones. In this context, computational efficiency, and as a proxy
energy efficiency, is an important metric. We ran the light clients on a battery-powered
System76 Lemur Pro (“lemp10”) laptop with Pop!_OS 22.04 LTS, and recorded the decaying
battery level using “upower” (screen off, no other programs running, no keyboard/mouse
input, WiFi connectivity; provers still on Heroku instances). From the energy consumption
and wallclock time we calculated the average power consumption. As internal parameters



S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:21

for TLC, OLC, and SLC, we chose b = 200, b = 500, and d = 100, respectively (cf. Pareto-
optimal parameters in Fig. 4). The energy required to bootstrap 10 years of consensus
execution, averaged over 5 trials for TLC, and 25 trials for OLC and SLC, is plotted in Fig. 6.
We disaggregate the energy consumption into power consumption and TTC for each light
client, and also record the power consumption of the machine in idle. (Note, discrepancies in
Figs. 4 and 6 are due to the light clients running on Amazon EC2 vs. a laptop.)

OLC and SLC have comparable TTC and power consumption, resulting in comparable
energy consumption per bootstrap occurrence. The energy required by OLC and SLC is 30×
lower than the energy required by TLC per bootstrap occurrence (right panel in Fig. 6). This
can be attributed to a ≈ 4× lower power consumption (middle panel in Fig. 6) together with
a ≈ 7× lower TTC (left panel in Fig. 6). The considerably lower energy/power consumption
of OLC/SLC compared to TLC is due to the lower number of signature verifications (and
thus lower computational burden). Note that a sizeable fraction of OLC’s/SLC’s power
consumption can be attributed to system idle (middle panel in Fig. 6). When comparing
light clients in terms of excess energy consumption (i.e., subtracting idle consumption) per
bootstrapping, then OLC and SLC improve over SLC by 64×.

8 Analysis

The theorems for succinctness and security of the PoPoS protocol are provided below. Proofs
are in the full version of this paper [1]. Security consists of two components: completeness
and soundness.

▶ Theorem 4 (Succinctness). Consider a verifier that invokes a bisection game at round
r between two provers that provided different handover tree roots. Then, the game ends in
O(log(r)) steps of interactivity and has a total communication complexity of O(log(r)).

▶ Theorem 5 (Completeness). Consider a verifier that invokes a bisection game at round r

between two provers that provided different handover tree roots. Suppose one of the provers is
honest. Then, the honest prover wins the bisection game.

▶ Theorem 6 (Soundness). Let Hs be a collision resistant hash function. Consider a verifier
that invokes a bisection game executed at round r of a secure underlying PoS protocol between
two provers that provided different handover tree roots. Suppose one of the provers is honest,
and the signature scheme satisfies existential unforgeability. Then, for all PPT adversarial
provers A, the prover A loses the bisection game against the honest prover with overwhelming
probability in λ.

▶ Theorem 7 (Tournament Runtime). Consider a tournament ran at round r with |P| provers
one of which is honest. The tournament ends in O(|P| log(r)) steps of interactivity, and has
total communication complexity O(|P| log(r)).

▶ Theorem 8 (Security). Let Hs be a collision resistant hash function. Consider a tournament
executed between an honest verifier and |P| provers at round r. Suppose one of the provers
is honest, the signature scheme satisfies existential unforgeability, and the PoS protocol is
secure. Then, for all PPT adversaries A, the state commitment obtained by the verifier at
the end of the tournament satisfies state security with overwhelming probability in λ.

AFT 2023



14:22 Proofs of Proof-Of-Stake with Sublinear Complexity

References
1 Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs of proof-of-

stake with sublinear complexity. Cryptology ePrint Archive, Paper 2022/1642, 2022. URL:
https://eprint.iacr.org/2022/1642.

2 Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations with
pegged sidechains, 2014. URL: https://blockstream.com/sidechains.pdf.

3 Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In CCS,
pages 913–930. ACM, 2018.

4 Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized
cryptocurrency at scale. Cryptology ePrint Archive, Paper 2020/352, 2020. URL: https:
//eprint.iacr.org/2020/352.

5 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus, 2018.
arXiv:1807.04938v3.

6 Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients
for cryptocurrencies. In IEEE Symposium on Security and Privacy, pages 928–946. IEEE,
2020.

7 Vitalik Buterin. A next-generation smart contract and decentralized application platform,
2014.

8 Vitalik Buterin. Proof of Stake: How I Learned to Love Weak Subjectivity, Novem-
ber 2014. URL: https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-
subjectivity/.

9 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget, 2017. arXiv:
1710.09437v4.

10 Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan,
Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining ghost and casper, 2020. arXiv:
2003.03052v3.

11 Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using
multiple servers. In CCS, pages 445–454. ACM, 2011.

12 Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation. Inf.
Comput., 226:16–36, 2013.

13 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, pages
173–186. USENIX Association, 1999.

14 Pyrros Chaidos and Aggelos Kiayias. Mithril: Stake-based threshold multisignatures. Cryptol-
ogy ePrint Archive, Paper 2021/916, 2021. URL: https://eprint.iacr.org/2021/916.

15 Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok: Blockchain light
clients. In Financial Cryptography, volume 13411 of LNCS, pages 615–641. Springer, 2022.

16 ConsenSys. MetaMask Surpasses 10 Million MAUs, Making It The World’s Leading
Non-Custodial Crypto Wallet, August 2021. URL: https://consensys.net/blog/press-
release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-
custodial-crypto-wallet/.

17 Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. Cryptology ePrint Archive, Paper 2016/919,
2016. URL: https://eprint.iacr.org/2016/919.

18 Stelios Daveas, Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. A gas-efficient
superlight bitcoin client in solidity. In AFT, pages 132–144. ACM, 2020.

19 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of LNCS, pages 66–98. Springer, 2018.

20 Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. A survey
on long-range attacks for proof of stake protocols. IEEE Access, 7:28712–28725, 2019.

https://eprint.iacr.org/2022/1642
https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://arxiv.org/abs/1807.04938v3
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://arxiv.org/abs/1710.09437v4
https://arxiv.org/abs/1710.09437v4
https://arxiv.org/abs/2003.03052v3
https://arxiv.org/abs/2003.03052v3
https://eprint.iacr.org/2021/916
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://eprint.iacr.org/2016/919


S. Agrawal, J. Neu, E. N. Tas, and D. Zindros 14:23

21 Grin Developers. Merkle Mountain Ranges (MMR). URL: https://docs.grin.mw/wiki/
chain-state/merkle-mountain-range/.

22 Ethereum Developers. Altair Light Client – Light Client, 2023. URL: https://github.com/
ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/
altair/light-client/light-client.md.

23 Ethereum Developers. Altair Light Client – Sync Protocol, 2023. URL: https://github.com/
ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/
altair/light-client/sync-protocol.md.

24 Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa Oines, Marek
Olszewski, Michael Straka, Eran Tromer, and Psi Vesely. Plumo: Towards scalable interoperable
blockchains using ultra light validation systems, 2020. URL: https://docs.zkproof.org/
pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf.

25 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. Cryptology ePrint Archive, Paper 2014/765, 2014. URL:
https://eprint.iacr.org/2014/765.

26 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT (2), volume 9057 of LNCS, pages 281–310. Springer, 2015.

27 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In CRYPTO (1), volume 10401 of LNCS, pages 291–323. Springer,
2017.

28 Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In IEEE
Symposium on Security and Privacy, pages 139–156. IEEE, 2019.

29 Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying.
In CRYPTO, volume 2139 of LNCS, pages 332–354. Springer, 2001.

30 Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.
Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security Symposium, pages
1353–1370. USENIX Association, 2018.

31 Kostis Karantias. Sok: A taxonomy of cryptocurrency wallets. Cryptology ePrint Archive,
Paper 2020/868, 2020. URL: https://eprint.iacr.org/2020/868.

32 Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Compact storage of superblocks for
nipopow applications. In MARBLE, pages 77–91. Springer, 2019.

33 Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Proof-of-burn. In Financial Cryp-
tography, volume 12059 of LNCS, pages 523–540. Springer, 2020.

34 Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition.
CRC Press, 2014.

35 Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of
work with sublinear complexity. In Financial Cryptography Workshops, volume 9604 of LNCS,
pages 61–78. Springer, 2016.

36 Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in logarithmic space. In
CCS, pages 3487–3501. ACM, 2021.

37 Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work.
In Financial Cryptography, volume 12059 of LNCS, pages 505–522. Springer, 2020.

38 Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path to superlight
blockchain clients. In AFT, pages 205–218. ACM, 2021.

39 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of LNCS,
pages 357–388. Springer, 2017.

40 Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Financial Cryptography
Workshops, volume 11599 of LNCS, pages 21–34. Springer, 2019.

41 Jae Kwon and Ethan Buchman. A network of distributed ledgers – cosmos whitepaper. URL:
https://v1.cosmos.network/resources/whitepaper.

AFT 2023

https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/5c64a2047af9315db4ce3bd0eec0d81194311e46/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/e9f1d56807d52aa7425f10160a45cb522345468b/specs/altair/light-client/sync-protocol.md
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-plumo_celolightclient.pdf
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2020/868
https://v1.cosmos.network/resources/whitepaper


14:24 Proofs of Proof-Of-Stake with Sublinear Complexity

42 Rongjian Lan, Ganesha Upadhyaya, Stephen Tse, and Mahdi Zamani. Horizon: A gas-efficient,
trustless bridge for cross-chain transactions, 2021. arXiv:2101.06000v1.

43 Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO,
volume 293 of LNCS, pages 369–378. Springer, 1987.

44 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In EUROCRYPT (2), volume 10211 of LNCS, pages 643–673, 2017.

45 Succinct Labs. Building the end game of interoperability with zkSNARKs, 2023. URL:
https://www.succinct.xyz/.

46 Ertem Nusret Tas, Dionysis Zindros, Lei Yang, and David Tse. Light clients for lazy blockchains.
Cryptology ePrint Archive, Paper 2022/384, 2022. URL: https://eprint.iacr.org/2022/384.

47 Peter Todd. Merkle mountain ranges, October 2012. URL: https://github.com/
opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

48 Jason Wise. Metamask Statistics 2023: How Many People Use Metamask?, March 2023. URL:
https://earthweb.com/metamask-statistics/.

49 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.
50 Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia, Dan

Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges made practical. In CCS, pages
3003–3017. ACM, 2022.

51 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.

52 Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro
Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt. Sok: Communication across
distributed ledgers. In Financial Cryptography (2), volume 12675 of LNCS, pages 3–36.
Springer, 2021.

53 Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar R. Weippl, and
William J. Knottenbelt. A wild velvet fork appears! inclusive blockchain protocol changes in
practice - (short paper). In Financial Cryptography Workshops, volume 10958 of LNCS, pages
31–42. Springer, 2018.

54 Maksym Zavershynskyi. ETH-NEAR Rainbow Bridge, August 2020. URL: https://near.org/
blog/eth-near-rainbow-bridge/.

https://arxiv.org/abs/2101.06000v1
https://www.succinct.xyz/
https://eprint.iacr.org/2022/384
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://earthweb.com/metamask-statistics/
https://near.org/blog/eth-near-rainbow-bridge/
https://near.org/blog/eth-near-rainbow-bridge/


Condorcet Attack Against Fair Transaction
Ordering
Mohammad Amin Vafadar #

University of Alberta, Edmonton, Canada

Majid Khabbazian #

University of Alberta, Edmonton, Canada

Abstract
We introduce the Condorcet attack, a new threat to fair transaction ordering. Specifically, the attack
undermines batch-order-fairness, the strongest notion of transaction fair ordering proposed to date.
The batch-order-fairness guarantees that a transaction tx is ordered before tx′ if a majority of nodes
in the system receive tx before tx′; the only exception (due to an impossibility result) is when tx
and tx′ fall into a so-called “Condorcet cycle”. When this happens, tx and tx′ along with other
transactions within the cycle are placed in a batch, and any unfairness inside a batch is ignored.

In the Condorcet attack, an adversary attempts to undermine the system’s fairness by imposing
Condorcet cycles to the system. In this work, we show that the adversary can indeed impose
a Condorcet cycle by submitting as few as two otherwise legitimate transactions to the system.
Remarkably, the adversary (e.g., a malicious client) can achieve this even when all the nodes in
the system behave honestly. A notable feature of the attack is that it is capable of “trapping”
transactions that do not naturally fall inside a cycle, i.e. those that are transmitted at significantly
different times (with respect to the network latency). To mitigate the attack, we propose three
methods based on three different complementary approaches. We show the effectiveness of the
proposed mitigation methods through simulations, and explain their limitations.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Transaction ordering, fairness, Condorcet cycle

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.15

1 Introduction

The first blockchain application, Bitcoin, emerged in the midst of the financial crisis of 2008,
caused in part by the excessive trust placed in centralized institutions. Blockchain technology
changed this. In blockchain, there is no central authority or intermediary controlling the entire
system. Instead, transactions are validated and included through a consensus mechanism
among the participating parties. Decentralization also promotes transparency and reduces
the possibility of fraud or corruption since all transactions are publicly recorded and visible
to all participants on the network.

Despite the decentralized nature of blockchain systems, the ordering of transactions is
carried out in a centralized manner; the miner/validator who creates a block determines the
ordering of transactions within the block. This gives too much power to a single entity as
the success and profitability of a transaction can be determined by the order in which the
transaction appears in a block [6, 1, 8, 9, 16]. For instance, when a Non-Fungible Token
(NFT) is dropped in a given block, transactions positioned earlier in the block have a higher
chance of acquiring the NFT compared to those placed later.

To address this issue, several existing works [12, 20, 11, 4, 10, 13] proposed decentralized
methods for handling transaction ordering, where instead of a single node, a committee
of nodes collectively decide on the ordering of received transactions. At the core of these

© Mohammad Amin Vafadar and Majid Khabbazian;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vafadar@ualberta.ca
https://orcid.org/0009-0003-0861-9131
mailto:mkhabbazian@ualberta.ca
https://orcid.org/0000-0002-6338-2945
https://doi.org/10.4230/LIPIcs.AFT.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Condorcet Attack

methods, each node in the system reports a list of transactions in the order the node has
received them. The system then generates and agrees on a “fair” ordering by taking the
reported orderings into account.

Finding a fair ordering is not trivial. For instance, suppose that for any two transactions
tx1 and tx2, we require tx1 to be placed before tx2 if a large majority of nodes in the system
claim to have received tx1 before tx2. Despite being a primitive requirement, no method
can provide a guarantee due to an impossibility result rooted in social choice theory [2]. As
an example, consider a system consisting of three nodes, where each node has received three
transactions: tx1, tx2, and tx3. Suppose the nodes report the ordering as [tx1, tx2, tx3],
[tx2, tx3, tx1], and [tx3, tx1, tx2]. In this case, tx1 is reported to be before tx2 by two
nodes (i.e. the majority), tx2 is reported to be before tx3 by two nodes, and tx3 is reported
to be before tx1 by two nodes. This essentially creates a cycle, referred to as Condorcet
cycle [5], which prevents any final ordering from respecting the views of the majority on how
transactions should be ordered.

The existing fair ordering methods adopt a relaxed approach to ordering transactions
inside a Condorcet cycle. For instance, Cachin et al. in Quick-Fairness [4] do not mention
any ordering mechanism for such transactions, and Kelkar et al. in Aequitas [12] suggest a
simple alphabetical ordering. This relaxed approach is, perhaps, due to two reasons: 1) it is
not possible to guarantee fair ordering of transactions inside a cycle; 2) Condorcet cycles
occur infrequently in practice, and when they do occur, they usually involve transactions that
are received around the same time by the nodes in the system. Nevertheless, in this work,
we show that Condorcet cycles deserve more attention as they can be created “artificially”
by adversaries through what we refer to as the Condorcet attack. An interesting feature of
the Condorcet attack proposed in this work is that it can be conducted by a client outside
the system. In particular, the attack can be effectively executed even when all the nodes in
the system are honest!

As will be explained later, in the Condorcet attack, an adversarial client sends a small
number of transactions to different nodes in the system. The adversary chooses the timing and
order of these transactions to create a Condorcet cycle that traps many honest transactions
in it (a Condorcet cycle with only the adversary’s transactions in it is all but harmless to the
system.). This cycle has to be broken by the leader in a leader-based method in order to
establish a total ordering. Even if the leader is honest, the act of breaking the cycle could
change the order of honest transactions, which would have otherwise been appropriately
ordered1.

Defending against the Condorcet attack is not straightforward. It is partly because it is
challenging to differentiate between honest transactions and otherwise valid transactions that
are submitted with the intention of creating a cycle. It becomes notably more challenging
to safeguard the system when, in addition to the adversarial client outside the system, the
leader and possibly a fraction of the nodes in the system are adversarial. Nevertheless,
in this work, we propose three mitigation techniques based on three different approaches.
The proposed techniques complement each other and can work together harmoniously to
maximize resistance against the attack.

In summary, we make the following contributions. We introduce a framework for a new
type of attack (Condorcet attack) against fair transaction ordering. We show that the attack
can be highly successful in trapping honest transactions in a cycle. To mitigate the attack,
we propose three techniques based on three different complimentary approaches, and show
the effectiveness of the technique through simulations.

1 Kelkar et al. [11] consider it a success for an adversary if the adversary places two transactions into the
same cycle when they should not have been.



M. A. Vafadar and M. Khabbazian 15:3

2 Related Work

The classical approach to mandating fair transaction ordering is through secure causal
ordering, a method introduced by Birman and Reiter in 1994 [17], and later improved by
Cachin et al. in 2001 [3]. This method uses encryption to conceal the content of transactions
during the ordering process, and allows decryption of transactions only after the order of
transactions is finalized. This prevents an adversary from observing the content of transactions
during the ordering process, thereby effectively eliminating attacks such as the sandwich
attack [16] that rely on inspecting transaction contents. However, the method is unable to
prevent “blind front-running attacks” where, for instance, the adversary’s sole objective is to
order her transaction first (to, for example, get priority in purchasing a token). In addition,
the method cannot prevent attacks based on transactions’ metadata, as metadata (such as
the source of a transaction) is not encrypted.

The second approach to mandating fair transaction ordering involves a first-come, first-
served strategy. This approach is complementary to the first approach and has been the
focus of several recent studies. The existing methods that follow this strategy can be
broadly classified into two categories: timestamp-based methods and batch-based methods.
Timestamp-based methods are computationally inexpensive but require synchronized clocks.
Batch-based methods, on the other hand, offer stronger fairness than timestamp-based
methods, but can tolerate fewer adversarial nodes.

Timestamp-based Methods. An example of a timestamp-based protocol is Pompe [20] due
to Zhang et al. Pompe introduces a notion of fairness called the ordering linearizability. This
notion stipulates that if the highest timestamp of a transaction tx is less than the lowest
timestamp of a transaction tx′ among honest nodes, then tx must be ordered before tx′

in the final order of transactions. Although it can enforce ordering linearizability, Pompe
suffers from censorship issues, as noted in [11].

Kursawe’s Wendy protocol [13] is another timestamp-based protocol that defines a notion
of fairness called timed-relative-fairness. This notion requires that if all honest nodes received
a transaction tx before time τ , and transaction tx′ after τ , then tx must be ordered before
tx′.

Batch-based Methods. Aequitas [12] by Kelkar et al. is a batch-based method proposed
for fair transaction ordering. Aequitas enforces a fairness notion known as the γ-batch-order-
fairness. The notion requires that if two transactions tx and tx′ are received by all nodes
in a system with n nodes, and γn nodes received tx before tx′, then all honest nodes must
output tx no later than tx′. Aequitas suffers from high communication complexity of O(n3),
and can guarantee only a weak notion of liveness, one of the two pillars of consensus security.

The second batch-based method is Quick-Fairness [4] proposed by Cachin et al. This
method enforces a fairness notion called the κ-differential order-fairness. This notion
mandates that if the number of nodes that have received transaction tx before tx′ exceeds
κ + 2f for some κ ≥ 0, then tx should be ordered no later than tx′, where f is the maximum
number of adversarial nodes in the system. Kelkar et al. [11] show that this notion of
fairness is indeed a re-parameterized version of the γ-batch-order-fairness notion. They
also demonstrate that the Quick-Fairness protocol satisfies fairness only when all nodes are
honest.

Kelkar et al. addressed the shortcomings of Aequitas in their protocol called Themis [11].
Themis satisfies the γ-batch-order-fairness notion, and solves the liveness problem of Aequitas.
Moreover, SNARK-Themis variant offers a communication complexity of O(n) and standard

AFT 2023



15:4 Condorcet Attack

Themis offers a communication complexity of O(n2) instead of O(n3) offered by Aequitas. In
addition, it satisfies a more generalized notion of fairness than the one used in Quick-Fairness
and a stronger notion of fairness than those used in the existing time-based methods. For
these reasons, in our work, we focus on Themis and Aequitas as the state-of-the-art fair
transaction ordering methods.

3 Model

System. We consider a permissioned system with a committee of n nodes. The nodes
receive transactions directly from clients, and submit the list of their received transactions
together with the order in which the transactions were received to a special node called the
leader. The leader collects the lists of transactions from the nodes, and proposes a final
ordering using a pre-decided fair-ordering protocol. The leader in the system is not fixed,
and can change through a pre-determined protocol.

Fair Ordering. We adopt the batch-order-fairness from [12, 11], the strongest notion of fair
ordering proposed to date. For a parameter 1

2 < γ ≤ 1, the batch-order-fairness specifies
that if a fraction γ of nodes receive a transaction tx before receiving another transaction
tx′, then tx must be placed in the order before tx′, with exceptions allowed only if tx
and tx′ are within the same Condorcet cycle (Condorcet cycles are defined in Section 4).
Transactions within a cycle are placed in a batch, and are ordered by a method that we refer
to as batch-ordering scheme. The existing fair ordering protocols either do not specify a
batch-ordering scheme or propose a simple one (e.g., an alphabetical-based scheme [12]).

Network. The network utilizes public key infrastructure and secure digital signatures for
communications. As in [12], we consider two networks: the (standard) internal network
(for communication amongst nodes in the system) and the external network (for clients to
transmit their transactions to the system).

We assume that the network operates under partial synchrony [7], meaning that there
is a network delay ∆ (not known to the nodes) that limits the amount of time it takes for
messages to be delivered between nodes.

Adversary. We consider an adversary who has control over f ≥ 0 out of n nodes, and also
possesses at least one client capable of submitting transactions to the system. The adversary
can deviate arbitrarily from the protocol. The adversary does not have control over the
external network, but may have full control over the internal network, hence can delay and
reorder messages up to the bound ∆.

4 Preliminaries

Graph Terminology. We use G = (V, E) to denote a graph with the set of vertices V and
the set of edges E. In this work, each vertex represents a transaction, therefore, we use
the terms vertices and transactions interchangeably. Unless otherwise specified, we use an
unweighted and directed graph. In the case of a weighted graph, the weight or cost associated
with the edge (u, v) ∈ E is represented by w(u, v).

A tournament graph is a directed graph where every pair of distinct vertices is connected
by a directed edge in either of two possible directions. A Strongly Connected Component
(SCC) in a graph is a maximal subgraph in which there is a path from every vertex to every



M. A. Vafadar and M. Khabbazian 15:5

other vertex. A condensation graph is obtained from the original graph by combining its
SCCs into a single vertex. A Directed Acyclic Graph (DAG) is a directed graph that contains
no cycles, meaning it is possible to move from one vertex to another along the directed edges,
but it is not possible to return to the original vertex by following a sequence of directed
edges. A topological sort is an ordering of the vertices in a DAG such that for every directed
edge (u, v), vertex u appears before vertex v. In other words, if there is a directed edge from
vertex u to vertex v, then u must appear before v in the topological sort. A Hamiltonian
Path is a path in a graph that passes through every vertex exactly once. A Hamiltonian
Cycle is a cycle in a graph that passes through every vertex exactly once.

Themis. Themis is the latest ordering method which achieves batch-order-fairness in the
presence of an adversary who controls up to f < (2γ−1)n

4 nodes out of n nodes. Themis
categorized received transactions into three different categories.

Solid Transactions: A transaction is solid if it has been received by at least n − 2f

nodes. A solid transaction is one that has been received by enough honest nodes that the
leader can unambiguously include it in the current proposal while respecting the fairness
guarantees.
Blank Transactions: A transaction is blank if it has not been received by at least
n(1 − γ) + f + 1 nodes. A blank transaction has not been received by enough nodes
yet, hence excluding it from the current proposal will not violate fairness with respect to
transactions that are included.
Shaded Transactions: A shaded transaction is a transaction that is neither solid nor
blank. A shaded transactions is received by enough nodes to be included to preserve
fairness, but not enough nodes to finalize its position in the current proposal.

Themis is a leader-based method and works in three phases, as described below.

Phase 1 (Fair Propose): The Fair Propose phase is the first phase of the algorithm, where
each node proposes a set of transactions and their local orderings to the leader. The
leader then uses the local orderings of n − f nodes to build a dependency graph. In
the dependency graph, an edge from a vertex v1 to v2 indicates that the transaction v1
should be placed before the transaction v2. From the dependency graph, the leader then
computes the condensation graph and its topological sorting to output a fair ordering.
Phase 2 (Fair Update): The Fair Update phase is the second phase of the algorithm,
where the leader node updates the ordering for previous proposals. This is necessary
since this is part of the deferred ordering technique, and new transactions may depend
on previously proposed transactions, and these dependencies need to be accounted for in
the ordering. The Fair Update algorithm takes the local transaction orderings of n− f

nodes for previously proposed shaded transactions as input and outputs the updated
dependencies.
Phase 3 (Fair Finalize): The Fair Finalize phase is the third and final phase of the
algorithm, where a sequence of proposals is finalized into a final ordering. The Fair
Finalize algorithm updates the graphs for each proposal and computes the condensation
graphs and their topological sorting. It then retrieves the final transaction ordering for each
proposal based on the Hamiltonian cycles of the vertices in the sorted condensation graphs.

AFT 2023



15:6 Condorcet Attack

Condorcet Cycles. As mentioned above, Themis constructs a dependency graph, a directed
graph where each vertex represents a transaction, and an edge from a vertex v1 to v2
indicates that the transaction corresponding to v1 should be placed before the transaction
corresponding to v2. We refer to any cycle in this dependency graph as a Condorcet cycle.
We note that cycles can occur in a dependency graph because of the Condorcet paradox [11].

5 Condorcet Attack

In this section, we present the framework of the Condorcet attack. The attack aims at
trapping honest transactions (i.e., transactions submitted by honest clients) inside a Condorcet
cycle. If there is no effective batch-ordering scheme in place (e.g., if the batch-ordering
scheme is alphabetical-based as suggested in [12]), this can change the ordering of the honest
transactions even when all the nodes in the system are honest.

An adversary can take different strategies to impose a Condorcet cycle. For instance,
suppose that the adversary controls f nodes, including the leader, in the system. The
adversary then controls f local orderings, and can manipulate these orderings in a way to
create a cycle. In the simulation section, we show that this strategy can not only create a
cycle but also chain the cycles to involve more honest transactions. Nevertheless, the length
of these cycles is typically small and the chain usually breaks rather quickly. As a result,
this strategy is not effective in trapping distant transactions2 (e.g., two transactions whose
times of submission are separated by a multiple of the average network latency).

Another strategy, which is the one we take in this work, is to create a Condorcet cycle by
injecting (valid) transactions into the system following a pre-described pattern. This can be
done by an adversarial client outside the system, and can be effective even when all the nodes
in the system are honest. The attack will be more effective in creating cycles and bypassing
potential countermeasures if the adversary controls a fraction of nodes in the system (see
Example 5).

The immediate damage of imposing a Condorcet cycle, as mentioned earlier, is that it
can change the true ordering of honest transactions. In addition to this, the attack may be
used to conduct other malicious activities; for instance, the adversary can create a cycle and
then with the help of an adversarial leader can try to place its own transaction in desired
positions in the final ordering.

▶ Example 1. Let P = {P1, P2, P3} be a partition of nodes, where P1, P2 and P3 are three
parts with almost equal size. In this simple example, the adversary C uses/injects two
transactions A, B (i.e., S = {A, B}). In the initialization phase, C sends the transaction A and
then B to all the nodes in part P1, and sends the transaction B to all the nodes in part P2 (it
sends no transactions to the nodes in part P3). Then, after the pause period, C sends A to
all the nodes in part P2, and transaction A and B, in that order, to all the nodes in part P3.
Suppose that during the pause phase, the nodes receive three honest transactions tx1, tx2,
and tx3 all the in that order. The local ordering of transactions at each node will be then:

P1 : [A, B, tx1, tx2, tx3]
P2 : [B, tx1, tx2, tx3, A]
P3 : [tx1, tx2, tx3, A, B]

2 The analysis of why this occurs is left for future work.



M. A. Vafadar and M. Khabbazian 15:7

Note that without the adversarial client C disturbing the system (i.e., without transactions A
and B), the system would have had an easy job of ordering the honest transactions as all
the nodes in the system have received the honest transactions in the same order, i.e. [tx1,
tx2, tx3]. Because of the adversary’s transactions A, B, and C, however, we have a cycle now
as illustrated in Figure 1. In this figure, an edge from a transaction tx to a transaction tx′

indicates that the majority of the nodes have received tx before tx′.

tx2

tx1 tx3

B A

Figure 1 A Condorcet cycle created using two transactions A and B.

Attack Framework. In this section, we provide a general construction that encompasses
the different variants of the Condorcet attack. Let C be a client controlled by the adversary,
and S be a set of arbitrary but valid transactions created by C. Let P be a partition of the
nodes in the system. In its general form, the Condorcet attack is executed in three phases:

Phase 1 (Initialization): In this phase, the client C sends a number of transactions from
the set S to each node in the system. The set of transactions sent to a node can be
different from that sent to another node. More specifically, the client C assigns a subset
Si of S (possibly an empty subset) to each part Pi in the partition P . It then determines
an ordering for each subset Si, and sends the transactions in Si to all the nodes in part
Pi with the determined order.
Phase 2 (Pause): In the second phase, the attacker waits for a specific amount of time,
referred to as the pause time, for the honest transactions to be received by the nodes.
The adversary can trap more transactions within a cycle as the pause time increases.
However, the pause time should be limited to a single consensus round in the system as
the attack should not extend across multiple consensus rounds.
Phase 3 (Finalization): The third and final phase is the finalization phase, where the
attacker completes the Condorcet cycle by sending a new set of transactions to each
part in the partition. More specifically, the client C assigns a subset S ′

i of S (typically a
different subset than Si, used in the initialization phase) to each part Pi in the partition
P . It then determines an ordering for each subset S ′

i, and sends the transactions in S ′
i to

all the nodes in part Pi with the determined order.

▶ Remark 2. In practice, nodes in the system may receive some honest transactions during
the initialization and/or finalization phases. These transactions may or may not get trapped
in the Condorcet cycle. Based on our simulation results, however, the vast majority of honest
solid transactions during the pause time fall into the Condorcet cycle.

▶ Remark 3. A potential issue that can impact the success of the Condorcet attack is that
the external network may deliver the transactions injected by the adversary out of order.
For instance, in Example 1, the transactions A and B may be received out of order by the

AFT 2023



15:8 Condorcet Attack

nodes in part P1, in which case a cycle does not occur. If the network is prone to packet
reordering, then to improve its success, the adversary can execute multiple Condorcet attacks
concurrently through what we refer to as cloning.

Cloning. Packet reordering can happen in a network because of various factors such as
network congestion, routing algorithms, and the physical distance between the source and
the destination. To conduct a successful Condorcet attack, it is important that nodes receive
the injected packets in the order they were transmitted; a deviation from the intended order
may result in the failure of the attack.

To increase the success probability of the attack in the presence of network reordering, the
adversary can send cloned transactions to the nodes: Instead of sending a single transaction
A, the adversary sends multiple clones of the transaction. For instance, in Example 1, the
adversary can send A1 and A2 instead of A, and sends B1 and B2 instead of B. Essentially, the
adversary interleaves the execution of two Condorcet attacks (for better results, the adversary
can interleave several instances of the attack). Then, if the network does not change the order
of the transactions, the nodes in parts P1, P2, and P3 will receive transactions as follows:

P1 : [A1, A2, B1, B2, tx1, tx2, tx3]
P2 : [B1, B2, tx1, tx2, tx3, A1, A2]
P3 : [tx1, tx2, tx3, A1, A2, B1, B2]

In Section 7.3, we show that cloning can significantly increase the success rate of the Condorcet
attack in the presence of network reordering.

Impact on Current Solutions. The current fair transaction ordering protocols either do
not offer a batch-ordering scheme (e.g. [4]) or offer a primitive one (e.g. [12]). For instance,
the proposed batch-ordering scheme in Aequitas [12] is alphabetical ordering. Therefore, if
an adversary creates a Condorcet cycle, as in Example 1, the honest transactions will be
ordered alphabetically rather than by the time of their arrival.

Themis [11], proposes a more thoughtful batch-ordering scheme. In this scheme, a
Hamiltonian cycle is built and then used to order transactions in the cycle. The latest
version of Themis at the time of writing this work suggests to break the weakest link in
the Hamiltonian cycle in order to convert it into a Hamiltonian path. We use this version
of Themis in our work. In the best-case scenario, the order of honest transactions in the
Hamiltonian cycle is preserved. Even in this case, the final ordering of these transactions
can change because the Hamiltonian cycle has to be converted into a path by breaking the
cycle at one point. It is at this point where honest transactions can be divided into two
groups. The ordering of the honest transactions within each group remains correct, but the
ordering of any two transactions from different groups will be incorrect. Therefore, similar
to [4] and [12], Themis is vulnerable to the Condorcet attack even if all the nodes (including
the leader) in the system are honest.

To combat the Condorcet attack, a natural approach is to use a strong batch-ordering
scheme. For instance, in Example 1, we can observe that all the nodes report tx1 before tx2,
and all the nodes report tx2 before tx3, whereas only two third of the nodes report A before
B. In this example, the weakest link is between adversarial transactions, and breaking it (as
suggested by Themis) does not change the true ordering of the honest transactions. This
solution works for the scenario described in Example 1. However, this solution may not work
in other settings, for example when the adversary controls a faction of nodes in the system
(see Example 5).



M. A. Vafadar and M. Khabbazian 15:9

6 Mitigation

Despite its simplicity, it is not straightforward to completely defeat the Condorcet attack. In
the following, we present three mitigation techniques based on three different approaches to
hinder an adversary from successfully executing the attack. We elaborate on the strength of
each technique and confirm it through simulations later in Section 7. We also explain the
limitation of each technique, i.e. under what settings/assumptions the technique may not be
effective.

An interesting feature of the proposed mitigation methods is that they do not conflict
with each other, thus in practice, they can be applied together for the maximum defense
against the attack. Another interesting feature of the proposed mitigation methods is that
they can be easily applied to Themis, which is currently the strongest fair-ordering solution
in the literature. We elaborate on this when we cover each proposed mitigation.

6.1 Ranked Pairs Batch-ordering
The approach we take in our first proposed mitigation is to use a strong batch-ordering
scheme to order transactions within a batch. Formally, a batch-ordering scheme is a method
that takes as input a strongly connected (possibly weighted) directed graph G = (V, E),
and returns an ordering of the vertices V . The strongly connected graph represents the
transactions that are in a batch/cycle.

The candidate for our batch-ordering scheme is ranked pairs, an electoral system developed
by Nicolaus Tideman in 1987 [19]. Ranked pairs satisfies many natural and well-studied
axiomatic properties in social choice theory3 and is resistant to certain manipulations
including adding, deleting and changing a fraction of orderings reported by nodes [15]. In
ranked pairs, the ordering is essentially achieved by choosing a maximal subset E′ of E in
the inputted graph G = (V, E) with high weights such that G′ = (V, E′) is a DAG. The DAG
is then used to establish an ordering of the vertices V .

More specifically, our ranked pairs batch-ordering scheme takes as input a weighted
directed graph G = (V, E). Let E1 = E. In step i, i ≥ 1, the algorithm selects an edge
(u, v) ∈ Ei with the highest weight4. It then sets the order u ≺ v, unless this violates the
transitivity of the orders decided in previous steps. Finally, it sets Ei+1 ← Ei\{(vi, vj)}, and
terminates if Ei+1 = ∅.

We note that the idea in the above batch-ordering scheme is to establish an ordering
using the strongest edges in G. This will be an effective defense against the Condorcet attack
if the ordering of the honest transactions has “strong support” in the system. In a special
case where all the nodes are honest, and all support/report the same ordering of honest
transactions, the Condorcet attack can be fully prevented as stated in the following theorem.

▶ Proposition 4. Suppose that the Condorcet attack succeeds in creating a Condorcet cycle.
Let tx1, tx2, . . . , txm be the set of honest transactions in the Condorcet cycle. Suppose that
all the nodes in the system are honest and report txi before txj for every 1 ≤ i < j ≤ m.
Then the proposed ranked pairs batch-ordering scheme returns the true ordering of the honest
transaction, that is it orders txi before txj for every 1 ≤ i < j ≤ m.

3 besides Schulze, ranked pairs is the only existing electoral system that satisfies anonymity, Condorcet
criterion, resolvability, Pareto optimality, reversal symmetry, monotonicity, and independence of
clones [18].

4 When there are multiple edges with the highest weight, one can be chosen according to a fixed tie-breaking
method.

AFT 2023



15:10 Condorcet Attack

Proof. Let G = (V, E) be the graph with V representing the transactions in the Condorcet
cycle, and the weight of each edge (u, v) ∈ E, represented as w(u, v), be equal to the number
of nodes that reported u before v. Let u1, u2, . . . , um be the vertices in V that represent the
honest transactions. Let Ef ⊆ E be the set of all edges with the full support of the nodes,
that is

Ef = {e ∈ E|w(e) = n},

where n is the number of nods in the system. Since all the nodes in the system have the
same view on the ordering of the honest transactions, we get that (ui, uj) ∈ Ef for every
1 ≤ i < j ≤ m. We note that the sub-graph G′ = (V, Ef ) of G is cycle free, as otherwise
there will be a cycle in the ordering of individual nodes. The ranked pairs batch-ordering
algorithm first chooses all the edges in Ef before proceeding with other edges in E. When
the algorithm covers all the edges in Ef the true ordering of the honest transactions will be
set, and cannot be changed by the remaining steps of the algorithm. ◀

Limitation. Proposition 4 considers an ideal scenario where 1) all the nodes are honest,
and 2) they all report the honest transaction in the same order. If one of the above two
conditions does not hold, however, the Condorcet attack may be able to create a cycle (see
the following example).

▶ Example 5. Consider a system with n = 5 nodes. Let tx1, tx2, tx3 be three honest
transactions. An adversarial client C can create a Condorcet cycle of the form

N1 : [A1, A2, A3, A4, tx1, tx2, tx3]
N2 : [A2, A3, A4, tx1, tx2, tx3, A1]
N3 : [A3, A4, tx1, tx2, tx3, A1, A2]
N4 : [A4, tx1, tx2, tx3, A1, A2, A3]
N5 : [tx3, tx2, tx1, A1, A2, A3, A4]

where A1, A2, A3, A4 are the transactions submitted by C. Note that all the nodes, except
Node 5, report the order [tx1, tx2, tx3], while node 5 reports [tx3, tx2, tx1] (Node 5 is either
controlled by the adversary or is an honest node who has simply received the transactions
in this order). If we run the proposed ranked pairs batch-ordering scheme on this cycle,
the returned order of honest transactions may be incorrect. It is because the edge between
any pair of transactions has a weight of 4 in the dependency graph. As a result, an edge
between two honest transactions such as tx1 and tx2 may be eliminated in the ranked pairs
method, which would result in tx2 and tx3 to be ordered before tx1. As for Themis, if we
use the proposed method by Yannis Manoussakis [14] (as suggested by Themis), we get the
Hamiltonian cycle (A1, A2, A3, A4, tx1, tx2, tx3). All the edges in this cycle have the identical
weight of four, hence there is no distinct weakest edge. Therefore, Themis may remove any
of the edges in the cycle. If the removed edge is between two honest transactions, the final
ordering of honest transactions would be incorrect. We remark that both the ranked pairs
batch-ordering scheme and Themis would order honest transactions correctly if Node 5 order
honest transactions as [tx1, tx2, tx3]. This example, therefore, shows that the adversary
has more power in modifying the order of honest transactions if (in addition to injecting
transactions) it controls a number of nodes in the system (e.g. Node 5 in this example).

▶ Remark 6. To use the proposed ranked pairs batch-ordering scheme in Themis, we can
simply replace the Hamiltonian-based batch-ordering scheme of Themis with the ranked pairs
batch-ordering scheme in the FairFinalize algorithm. We remark that the weight information
of the dependency graph is available within the FairFinalize algorithm, thus this replacement
is possible.



M. A. Vafadar and M. Khabbazian 15:11

6.2 Post-decryption Resolution
In secure causal ordering, as mentioned earlier, transactions are ordered while they are
encrypted, and get decrypted only once a total ordering is committed [17, 3]. This prevents
an adversary from observing the contents of transactions while they are being ordered, hence
eliminating those front-running attacks (e.g. the sandwich attack [16]) that must examine
the content of transactions.

To mitigate the Condorcet attack, we propose to maintain the above strategy, except we
leave the ordering of transactions inside a Condorcet cycle to after they are decrypted. Note
that after the decryption of these transactions, an adversary cannot impose a change to the
ordering as 1) there is already a consensus on the set of transactions that must be included,
thus the adversary cannot add or remove any transaction to the set; 2) the ordering of the
transactions is performed locally at each node using a pre-determined algorithm. In other
words, it is too late for the adversary to manipulate the ordering of transactions, although
the contents of transactions are disclosed.

Once the transactions within a cycle are decrypted, their contents are disclosed, enabling
them to be partitioned into independent groups (i.e., transactions inside different groups are
independent of each other). Each group can then be ordered independent of the others. By
implementing this measure, the adversary is unable to manipulate the ordering of honest
transactions if the adversary’s transactions are independent of honest transactions. This
is because the adversary’s transactions will not fall within any group that includes honest
transactions. Note that we still need to order the groups themselves (i.e. which group comes
first, which comes second, and so on). As transactions across various groups have no effect
on one another, the groups can be safely ordered using a pre-determined algorithm such as
ranked pairs as described in Section 6.1.

▶ Remark 7. In the Themis protocol, we can apply the above post-decryption resolution
method within the FairFinalize algorithm: If transactions A and B are independent, the edge
between them in the dependency graph can be safely removed.

Limitation. The post-decryption resolution prevents the adversary from manipulating the
order of honest transactions if the adversary’s transactions are independent of the honest
transactions. In certain scenarios, however, the adversary may be able to create dependencies.
For instance, consider a situation where a popular NFT is dropping in a block currently
being formed. Given the high demand, many transactions are transmitted with the intention
of acquiring this NFT. Recognizing this, the adversary can execute the Condorcet attack
by using transactions that fall within the same dependency group as those attempting to
acquire the NFT.

Another limitation of the post-decryption resolution is the computational burden it places
on the system to identify dependencies between transactions.

6.3 Broadcast
In the Condorcet attack, the adversary follows a well-structured three-phase strategy: in
the first phase, the adversary sends a set of transactions, then pauses in the second phase,
and then finishes the attack by sending another round of transactions in the third phase.
The idea behind our third mitigation technique is to disturb/break the above pattern by
broadcasting transactions inside the system as soon as they arrive at an honest node. Because
of the broadcast, the adversary’s transactions that were submitted in the first phase will

AFT 2023



15:12 Condorcet Attack

propagate in the system, which can nullify the adversary’s target in the third phase since the
transactions that the adversary transmits in the third phase have already been received by
the nodes (thus their order has already been decided by the nodes).

In Section 7.5, we observe that this strategy proves highly effective in mitigating the
suggested Condorcet attack. However, it is important to note that this strategy does incur
increased communication overhead as a drawback. For instance, in Themis, nodes transmit
transactions only to the leader as opposed to broadcasting in the network by themselves.
Therefore, when applied to Themis, the above strategy will increase Themis’s communication
overhead (although it does not increase Themis’s quadratic communication complexity).

Limitation. The main limitation of the above broadcast-based mitigation technique is that it
will be ineffective if the adversary has strong control over the internal network. For instance,
in Themis and Aequitas, it is assumed that the adversary controls all message delivery in
the internal network, and can delay messages up to a bound ∆. If ∆ is large enough (e.g., if
it is larger than the duration of the Condorcet attack) then the adversary can circumvent
the proposed mitigation by delaying all the broadcast transactions so they are delivered only
after the attack is complete.

7 Simulation

To assess the impact of the Condorcet attack, as well as the effectiveness of the proposed
mitigation methods, we conduct a series of experiments through simulations. In this section,
we present the results of these experiments.

Environments. Our simulation encompasses four environments. The first environment
captures the honest setting, where all the nodes and clients are honest, thereby eliminating
the possibility of a Condorcet attack. Even in this environment, Condorcet cycles can occur.
Therefore, we are interested to know if our proposed ranked pairs batch-order scheme can
more effectively order transactions within a cycle than the Hamiltonian-cycle-based scheme
used in Themis.

In the second environment, all the nodes in the system are honest, but there is an external
adversary, who conducts the Condorcet attack from outside the system. In this environment,
we are interested to evaluate the success rate and impact of the Condorcet attack (i.e., how
many honest transactions the adversary can trap within a cycle).

In the third environment, we introduce packet reordering to the external network. We
evaluate the impact of this on the success rate of the Condorcet attack. We also observe how
the cloning method can help the adversary to improve its success rate.

The last environment that we consider is similar to the second environment, except this
time we guard the system using the proposed mitigation methods. In this environment, we
measure the impact of the Condorcet attack in order to examine the strength of the proposed
mitigation methods.

Clients. We use a sending process to submit all the clients’ transactions to the system.
The sending process transmits transactions in sequence at discrete times ti, i ≥ 0. At each
time instance, the process sends (n copies of) the transaction of a given client to all the n

nodes in the system. Each copy of the transaction will arrive at its destination node with a
random delay drawn independently from a distribution named NetworkDist. We refer to
this distribution as the network latency. We use another distribution, GenerationDist, to



M. A. Vafadar and M. Khabbazian 15:13

determine the delay between two consecutive time instances (i.e. ti+1 − ti follows the
GenerationDist distribution). Similar to [11], we set both GenerationDist and
NetworkDist to exponential distributions with means of one and r, respectively. We refer to
r as external network ratio. One can think of r as the expected number of clients who
transmit transactions within a time frame equal to the average network latency.

Themis Variant. In our simulations, we use the practical Themis variant with the
communication complexity of O(n2), instead of the the SNARK-Themis variant. In our
simulations, all transactions are eventually received by each node in a single round.
Therefore, the choice of γ does not have any impact on the simulation results (hence, we
simply set γ = 1). We used the latest version of Themis, which breaks the Hamiltonian cycle
by removing the weakest link. The weakest link is the link that has the least weight or
support in the Hamiltonian cycle. To construct a Hamiltonian cycle, we used the proposed
method by Yannis Manoussakis [14] as suggested by Themis.

7.1 Honest Environment
Honest Environment Setting. In this environment, all the nodes and clients are honest, and
consequently, there is no Condorcet attack. Nevertheless, as shown in Figure 2, Condorcet
cycles can occur particularly when the external network ratio is greater than one.

To obtain the results plotted in Figure 2, we varied the external network ratio from 0.01
to 1000. For each given network ratio, and each network size of n = 21 and n = 101, we
conducted 100 simulation runs. In each run, the sending process transmitted 100 transactions
(at 100-time instances drawn from the GenerationDist distribution). Once every node
received all the transmitted transactions, we proceeded to generate the dependency graph
using the Themis algorithm. By examining the graph (i.e. extracting strongly connected
components) we then identified all the Condorcet cycles.

Cycle Length. An interesting observation from Figure 2 is that when the external network
ratio is less than about one, Condorcet cycles rarely occur. As the external network ratio
becomes larger than one, however, Condorcet cycles start to appear. For high values of the
external network ratio, as depicted in Figure 2, Condorcet cycles not only occur frequently
but also include many of the transmitted transactions. Overall, this observation suggests a
critical threshold at which the system’s behavior, with respect to creating Condorcet cycles,
significantly changes.

Condorcet Cycles Categories. We refer to Condorcet cycles that are not created by an
adversary as natural Condorcet cycles. Conversely, we call a Condorcet cycle adversarial
if it is created by an adversary. In Section 6.1, we proposed a ranked pairs batch-ordering
scheme to handle the ordering of transactions within an adversarial Condorcet cycle. Later
in this section, we demonstrate that the proposed scheme indeed alleviates the severity of
the Condorcet attack.

Ranked Pairs Performance. Here, we show (Figure 3) that the proposed ranked pairs
batch-ordering scheme is also a good candidate for ordering transactions within a natural
Condorcet cycle. Consequently, even in an honest environment, we can improve fairness in
ordering transactions by replacing the existing batch-ordering schemes (i.e., the alphabetical
scheme, and the Hamiltonian-based scheme of Themis) with the proposed ranked pairs
batch-ordering scheme.

AFT 2023



15:14 Condorcet Attack

(a) The chance of a Condorcet cycle. (b) Number of transactions in cycles.

Figure 2 Condorcet cycles in the honest environment.

Batch Ordering-Schemes Performance Comparison. In Figure 3, the external network
ratio (the x-axis) ranges from 1 to 1000; this is the range in which Condorcet cycles naturally
occur. The y-axis shows the fraction of transaction pairs that are ordered correctly according
to their transmission time. Each data point in Figure 3 is the average of values obtained over
100 simulation runs. The data presented in this figure demonstrate the superiority of the
proposed ranked pairs batch-ordering scheme for two network sizes of n = 21 and n = 101.

(a) The number of nodes is n = 21. (b) The number of nodes is n = 101.

Figure 3 Fraction of correctly ordered transactions in the honest environment.

7.2 Adversarial Environment
Adversarial Environment Setting. In the existing adversarial environments in the literature,
there is often at least one (typically up to f = θ(n)) adversarial node in the system. In our
adversarial environment, in contrast, all the nodes in the system can be honest. There is,
however, an adversarial client in our environment who orchestrates the Condorcet attack
from outside the system.

In this section, we evaluate the performance of the Condorcet attack in this environment.
In particular, we measure the success rate of the attack in the number of honest transactions
it can trap within a cycle. The measurement is carried out for external network ratios r less



M. A. Vafadar and M. Khabbazian 15:15

than one, as natural Condorcet cycles are rare in this regime, particularly when r ≪ 1. This
allows us to assess the strength of the attack in creating cycles in a setting where Condorcet
cycles do not naturally happen.

In our simulation, we simply use two adversarial transactions to create the Condorcet cycle
as described in Example 1. We set the pause time of the Condorcet attack to τ ∈ {10, 50}
times the mean of the GenerationDist distribution. This means that, on average, τ honest
transactions are transmitted to the system during the pause time.

In parallel to the transmissions of honest transactions, the two adversarial transactions
are transmitted to create a Condorcet cycle. Once all transactions are received by the nodes,
we calculate two separate dependency graphs: one considering the adversarial transactions,
and one ignoring them. By comparing these two dependency graphs, we then assess the
impact of the attack on the final ordering.

Condorcet Attack Performance. Figures 4 and 5 show the average number of the honest
transactions that the attack can trap within cycles over two different settings: τ = 10
and τ = 50. As shown, for a wide range of external network ratios, the attack can trap
nearly all the honest transactions that are transmitted during the pause time (about 9
honest transactions in the setting τ = 10, and nearly 49 honest transactions in the setting
τ = 50). This demonstrates the strength of the attack, considering that, on average τ honest
transactions are submitted to the system during the pause time (and the attack traps nearly
all of them).

(a) τ = 10, n = 21. (b) τ = 10, n = 101.

Figure 4 Number of honest transactions trapped in Condorcet cycles for τ = 10.

7.3 Network Reordering

In the Condorcet attack, the adversary sends a sequence of transactions in a particular order
to create a cycle. The external network may, however, change the order of transactions
transmitted, which can, in turn, reduce the attack’s success rate. To evaluate this, we
performed simulations over a network which changes the order of two consecutively
transmitted transactions with probability 0 ≤ p ≤ 0.5. For each value of p, we performed
1000 runs of simulations. The success rate of the attack was set to the fraction of runs in
which the attack successfully trapped the honest transactions in a Condorcet cycle.

AFT 2023



15:16 Condorcet Attack

(a) τ = 50, n = 21. (b) τ = 50, n = 101.

Figure 5 Number of honest transactions trapped in Condorcet cycles for τ = 50.

Using the above setting, we conducted two instances of the Condorcet attack. The first
instance uses two adversarial transactions A and B as in Example 1, and takes the following
pattern:

P1 : A, B, Pause
P2 : B, Pause, A
P3 : Pause, A, B

As illustrated in Figure 6, this instance is sensitive to network reordering (the success
rate of the attack drops quickly with p). As shown in the figure, the attack’s success rate
increases when we use the second instance of cloning described below.

In our second instance (denote as tx = 4 in Figure 6), the adversary partitions nodes
into four parts P1, P2, P3 and P4, and uses four transactions (A, B, C and D) instead of two,
in the following pattern:

P1 : A, B, Pause , C, D
P2 : B, C, Pause , D, A
P3 : C, D, Pause , A, B
P4 : D, A, Pause , B, C

This instance of the Condorcet attack is more robust against network reordering as
demonstrated in Figure 6. As in the first instance, the success rate of the instance can be
boosted using the cloning method. In particular, note that the second instance together with
a single clone is almost fully resistant to network transaction reordering.

7.4 A Non-Injective Condorcet Attack
Injecting transactions into the system is a key component of the proposed Condorcet attack.
Without this component, an adversary has limited power in creating cycles even when the
adversary controls the leader and a faction of all the nodes in the system.

To illustrate the above point, we conducted simulations over two networks with sizes:
n = 21 and n = 101. In our simulation, the adversary controls the maximum fraction of
nodes, including the leader, allowed by Themis (a quarter of nodes minus one). All these



M. A. Vafadar and M. Khabbazian 15:17

(a) The number of nodes is n = 21. (b) The number of nodes is n = 101.

Figure 6 Impact of network reordering on the success of the Condorcet attack.

nodes report the order of their received transactions in reverse, in a strategy to create
Condorcet cycles5. The external network ratio is varied from 0.01 to 100 to capture a wide
range of network conditions. The total number of transmitted transactions is set to 100.

To evaluate the impact of the above strategy in creating cycles, we created two dependency
graphs. The first graph represents the scenario where the adversarial nodes reverse their
orderings, whereas the second graph represents the scenario where the adversarial nodes
report the true ordering. Figure 7 shows the results of our simulation.

Non-Injective Condorcet Attack Performance. As shown in Figure 7, the adversary’s
attempts to create cycles are largely unsuccessful in the region where the external network
ratio is less than one. We note that in this region, the average temporal gap between two
different transaction transmissions is more than the average network latency. In particular,
when r ≪ 1 (i.e., when transactions are transmitted far apart in time with respect to the
network latency), honest nodes in the system have a clear view of the true ordering of
transactions. In this region, the adversary is all but powerless in creating cycles6, as evident
in Figure 7. In contrast, in the same region, an external adversary can create a cycle using
the proposed Condorcet attack, even when all the nodes in the system are honest.

7.5 Mitigation
In this section, we evaluate the performance of our mitigation methods in preventing or
minimizing the impact of the Condorcet attack.

Ranked-pairs-based Mitigation Method. To evaluate the effectiveness of this mitigation,
we conducted a simulation over two network sizes of n = 21 and n = 101. We set the pause
time of the attack to 10 times the mean of GenerationDist, and set the total number of
honest transactions to 20. We varied the external network ratio r from 0.001 to 1. Recall

5 We note that this may not be an optimum strategy to create Condorcet cycles. Nevertheless, we believe
that an optimum strategy (which may be computationally intractable) may not be significantly more
successful than the adopted strategy. We leave the validation of this claim for future work.

6 When r > 1 (i.e., in the region where Condorcet cycles naturally emerge) the adversary achieves some
degree of success in creating larger cycles than naturally occur.

AFT 2023



15:18 Condorcet Attack

(a) The number of nodes is n = 21. (b) The number of nodes is n = 101.

Figure 7 The non-injective attack has limited power in creating cycles.

that in this range of external network ratio (i.e., r < 1), Condorcet cycles do not emerge
naturally; rather they are created by the Condorcet attack. To evaluate the true impact of
our ranked-pars mitigation method, therefore, we focused on this region.

Ranked Pairs Mitigation Performance. Figure 8 compares the performance of our proposed
ranked-pairs-based mitigation method to the Hamiltonian-based method used in Themis, and
the simple alphabetical method. The results show that the proposed ranked-pairs method
achieves a low error rate, indicating that it can effectively order honest transactions correctly
even when they fall in a Condorcet cycle. In contrast, the Themis algorithm’s error rate
increases as the network ratio increases, and reaches as high as about 25%. The error rate
in the case of alphabetical ordering is 50%. Note that a random ordering method can, on
average, correctly orders 50% of all the pairs of transactions. In this sense, the worst-case
transaction ordering error is 50%, which is the case for the alphabetical method (this method
is essentially a random ordering method).

(a) The number of nodes is n = 21. (b) The number of nodes is n = 101.

Figure 8 The performance of the proposed ranked pairs-based mitigation method.

The Broadcast-based Mitigation Method. To evaluate the effectiveness of the broadcast-
based mitigation method, we conducted simulations using two network sizes: n = 21 and
n = 101. We introduced a new exponential distribution called InternalNetworkDist, which



M. A. Vafadar and M. Khabbazian 15:19

captures the random delays experienced by messages within the internal network. Specifically,
we sample from InternalNetworkDist to determine the delay between sending a transaction
from one node to another node. This is in contrast to NetworkDist, which is used to
determine the random delays between a client and a node in the external network.

In our simulation, we set the mean of InternalNetworkDist to r′. We refer to r′ as the
internal network ratio. In our simulations, we set τ to 10 times the mean of GenerationDist
(i.e. τ = 10 · r), and set the total number of honest transactions to 20. We fixed the external
network ratio to r = 0.1, to ensure that no natural Condorcet cycles were created, and varied
the internal network ratio r′ from 0.01 to 1000.

Broadcast Environment Categories. We analyzed the number of honest transactions
trapped in a Condorcet cycle under three different settings. In the first setting, referred
to as the “honest setting”, nodes did not broadcast and the adversary did not conduct a
Condorcet attack. In the second setting, nodes still did not broadcast, but the adversary
attempted a Condorcet attack. Finally, in the last setting, the adversary launched an attack
while the nodes employed the broadcasting method to mitigate it.

Broadcast Mitigation Performance. Figure 9 shows the result of our simulations in the
above three settings. The results demonstrate that the proposed broadcast-based mitigation
is highly effective in preventing the adversary from creating a Condorcet cycle and trapping
honest transactions. This can be attributed to two key factors: Firstly, the mitigation
strategy disrupts the completion of the pause phase, thereby preventing honest transactions
from being trapped in a Condorcet cycle. When the internal network ratio r′ is smaller than
the pause time, almost no transactions are trapped. Interestingly, even when r′ exceeds the
pause time, the adversary cannot achieve the same level of performance. It is because the
broadcast of transactions with the internal network can still somewhat disturb the ordering
of adversarial transactions. This reduces the success rate of the attack as the specific ordering
of adversarial transactions is crucial for creating a Condorcet cycle. If, on the other hand,
the adversary has enough control over the internal network to delay transactions as much as
the pause time, it can circumvent the proposed broadcast-based mitigation as the adversary
can enforce the ordering of its transactions within the internal network by delaying all the
messages.

(a) The number of nodes is n = 21. (b) The number of nodes is n = 101.

Figure 9 The performance of the proposed broadcast mitigation method.

AFT 2023



15:20 Condorcet Attack

8 Conclusion

Condorcet cycles can occur naturally. While these natural cycles may not significantly disrupt
fairness in the system since transactions falling within these cycles are typically received
around the same time, the artificial creation of Condorcet cycles can lead to significant
unfairness in the system. In this paper, we showed that even with all nodes in the system
behaving honestly, it is relatively simple to generate such artificial cycles. Furthermore, we
demonstrated that these created cycles possess significant power, as they can trap transactions
submitted at widely different times that would not naturally fall within a cycle.

To address this attack, we proposed three mitigation methods using different approaches.
These methods complement one another and can be employed collectively to fortify the
defensive measures against the attack. Through simulations, we showcased that despite their
described limitations, the proposed mitigation methods can substantially reduce the adverse
impact of the Condorcet attack.

References
1 Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo

Gentile. Sok: Mitigation of front-running in decentralized finance. IACR Cryptol. ePrint
Arch., page 1628, 2021. URL: https://eprint.iacr.org/2021/1628.

2 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors.
Handbook of Computational Social Choice. Cambridge University Press, 2016. doi:10.1017/
CBO9781107446984.

3 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer, 2001. doi:10.1007/3-540-44647-8_31.

4 Christian Cachin, Jovana Micic, Nathalie Steinhauer, and Luca Zanolini. Quick order fairness.
In Financial Cryptography and Data Security - 26th International Conference, FC 2022,
Grenada, May 2-6, 2022, Revised Selected Papers, Lecture Notes in Computer Science, pages
316–333. Springer, 2022. doi:10.1007/978-3-031-18283-9_15.

5 M. d. Condorcet. Essay on the application of analysis to the probability of majority decisions.
Paris: Imprimerie Royale, 1785.

6 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges. CoRR, abs/1904.05234, 2019. arXiv:1904.
05234.

7 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988. doi:10.1145/42282.42283.

8 Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty:
Front-running attacks on blockchain. In Andrea Bracciali, Jeremy Clark, Federico Pintore,
Peter B. Rønne, and Massimiliano Sala, editors, Financial Cryptography and Data Security
- FC 2019 International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis,
February 18-22, 2019, Revised Selected Papers, volume 11599 of Lecture Notes in Computer
Science, pages 170–189. Springer, 2019. doi:10.1007/978-3-030-43725-1_13.

9 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. CoRR, abs/2203.11520, 2022. doi:10.48550/arXiv.2203.11520.

10 Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the
permissionless setting. In Jason Paul Cruz and Naoto Yanai, editors, APKC ’22: Proceedings of
the 9th ACM on ASIA Public-Key Cryptography Workshop, APKC@AsiaCCS 2022, Nagasaki,
Japan, 30 May 2022, pages 3–14. ACM, 2022. doi:10.1145/3494105.3526239.

https://eprint.iacr.org/2021/1628
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1017/CBO9781107446984
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/978-3-031-18283-9_15
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234
https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/978-3-030-43725-1_13
https://doi.org/10.48550/arXiv.2203.11520
https://doi.org/10.1145/3494105.3526239


M. A. Vafadar and M. Khabbazian 15:21

11 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. IACR Cryptol. ePrint Arch., page 1465, 2021.
URL: https://eprint.iacr.org/2021/1465.

12 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes
in Computer Science, pages 451–480. Springer, 2020. doi:10.1007/978-3-030-56877-1_16.

13 Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains.
In AFT ’20: 2nd ACM Conference on Advances in Financial Technologies, New York, NY,
USA, October 21-23, 2020, pages 25–36. ACM, 2020. doi:10.1145/3419614.3423263.

14 Yannis Manoussakis. A linear-time algorithm for finding hamiltonian cycles in tournaments.
Discret. Appl. Math., 36(2):199–201, 1992. doi:10.1016/0166-218X(92)90233-Z.

15 David C. Parkes and Lirong Xia. A complexity-of-strategic-behavior comparison between
schulze’s rule and ranked pairs. In Jörg Hoffmann and Bart Selman, editors, Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada. AAAI Press, 2012. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI12/paper/view/5075.

16 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022, pages 198–214. IEEE, 2022. doi:10.1109/SP46214.2022.9833734.

17 Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM
Transactions on Programming Languages and Systems, 16(3):986–1009, 1994. doi:10.1145/
177492.177745.

18 Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-
consistent single-winner election method. Soc. Choice Welf., 36(2):267–303, 2011. doi:
10.1007/s00355-010-0475-4.

19 T. N. Tideman. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3):185–206, September 1987. doi:10.1007/bf00433944.

20 Yunhao Zhang, Srinath T. V. Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine
ordered consensus without byzantine oligarchy. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020, pages
633–649. USENIX Association, 2020. URL: https://www.usenix.org/conference/osdi20/
presentation/zhang-yunhao.

AFT 2023

https://eprint.iacr.org/2021/1465
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1145/3419614.3423263
https://doi.org/10.1016/0166-218X(92)90233-Z
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5075
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5075
https://doi.org/10.1109/SP46214.2022.9833734
https://doi.org/10.1145/177492.177745
https://doi.org/10.1145/177492.177745
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1007/bf00433944
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao




Pay Less for Your Privacy: Towards Cost-Effective
On-Chain Mixers
Zhipeng Wang #

Imperial College London, UK

Marko Cirkovic #

University of Bern, Switzerland

Duc V. Le1 #

Visa Research, Sunnyvale, CA, USA

William Knottenbelt #

Imperial College London, UK

Christian Cachin #

University of Bern, Switzerland

Abstract
On-chain mixers, such as Tornado Cash (TC), have become a popular privacy solution for many
non-privacy-preserving blockchain users. These mixers enable users to deposit a fixed amount of
coins and withdraw them to another address, while effectively reducing the linkability between these
addresses and securely obscuring their transaction history. However, the high cost of interacting
with existing on-chain mixer smart contracts prohibits standard users from using the mixer, mainly
due to the use of computationally expensive cryptographic primitives. For instance, the deposit cost
of TC on Ethereum is approximately 1.1M gas (i.e., 66 USD in June 2023), which is 53× higher than
issuing a base transfer transaction.

In this work, we introduce the Merkle Pyramid Builder approach, to incrementally build the
Merkle tree in an on-chain mixer and update the tree per batch of deposits, which can therefore
decrease the overall cost of using the mixer. Our evaluation results highlight the effectiveness of
this approach, showcasing a significant reduction of up to 7× in the amortized cost of depositing
compared to state-of-the-art on-chain mixers. Importantly, these improvements are achieved without
compromising users’ privacy. Furthermore, we propose the utilization of verifiable computations to
shift the responsibility of Merkle tree updates from on-chain smart contracts to off-chain clients,
which can further reduce deposit costs. Additionally, our analysis demonstrates that our designs
ensure fairness by distributing Merkle tree update costs among clients over time.

2012 ACM Subject Classification Security and privacy → Pseudonymity, anonymity and untrace-
ability

Keywords and phrases Privacy, Blockchain, Mixers, Merkle Tree

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.16

Related Version Full Version: https://eprint.iacr.org/2023/1222 [39]

Funding Duc V. Le: Supported by a grant from Protocol Labs to the University of Bern.

Acknowledgements The authors thank anonymous reviewers for helpful feedback.

1 The main part of the work was conducted while the author was at the University of Bern.

© Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knottenbelt, and Christian Cachin;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 16; pp. 16:1–16:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhipeng.wang20@imperial.ac.uk
mailto:marko.cirkovic@students.unibe.ch
mailto:duc.le@visa.com
mailto:w.knottenbelt@imperial.ac.uk
mailto:christian.cachin@unibe.ch
https://doi.org/10.4230/LIPIcs.AFT.2023.16
https://eprint.iacr.org/2023/1222
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

1 Introduction

Permissionless blockchains, such as Bitcoin [29] and Ethereum [41], provide pseudonymity
rather than complete anonymity. Each transaction is openly recorded in plaintext on the
public ledger, revealing details such as the transaction amount, timestamp, and the addresses
of the sender and recipient. While this information alone may not directly expose the
individuals involved, it poses a risk as malicious actors can exploit it to analyze and link
addresses, potentially compromising the anonymity of users [15, 44, 37, 38].

To enhance the privacy on non-privacy-preserving blockchains, on-chain mixers [4, 6, 1, 23]
have been proposed. On-chain mixers are Decentralized Applications running on a blockchain
with smart contracts, in which users deposit a fixed amount of coins into a pool, and
subsequently withdraw those coins to a different address. When being used properly, on-
chain mixers enable unlinkability between the deposit and the withdrawal addresses. The
most active on-chain mixer, Tornado Cash (TC), has accumulated more than 51K unique
deposit addresses for its largest pool [38]. The set of deposit addresses is similar to k-
anonymity, which allows a withdrawal to be hidden among a set of k other deposits. The
larger anonymity set size is accumulated, the harder it can link a user’s withdrawal address
to the corresponding deposit address.

However, achieving unlinkability through on-chain mixers comes at the cost of expensive
deposit operations, making it difficult for regular users to use them. In particular, on-chain
mixers use Merkle tree with Snark-friendly hash functions such as MiMC [7] and Poseidon [18]
to record deposit and withdrawal history. When a deposit happens, the new leaf is appended
sequentially to the Merkle tree. This update operation is the most expensive operation for
on-chain mixers. In particular, depositing into TC costs approximately 1.1M gas, equating
to roughly 66 USD as of June 2023. Such high costs can potentially discourage users from
utilizing the mixer, thereby impeding the growth rate of the anonymity set size. Consequently,
it becomes crucial to address these expensive deposit costs to ensure wider adoption and
encourage the continued expansion of the anonymity set size.

In this paper, we propose two approaches to reduce the overall deposit costs in on-chain
mixers. Firstly, we introduce the Merkle Pyramid Builder approach, in which we batch
the deposits together and renew the Merkle tree per batch. This approach provides a
promising solution to the scalability and efficiency challenges of on-chain mixers. Secondly,
we propose the utilization of off-chain verifiable computation to further minimize deposit costs.
This approach empowers clients to perform Merkle tree updating computations locally and
provide cryptographic proofs to validate the accuracy of these computations. By shifting the
responsibility of updating the Merkle tree from on-chain smart contracts to off-chain clients,
we can significantly reduce the associated costs, enhancing the overall system efficiency.

Our contributions can be summarized as follows.

1. Merkle Pyramid Builder. We propose the Merkle Pyramid Builder (MPB) approach,
which batches the deposits in a queue and reduces the Merkle tree update times in an on-chain
mixer. This approach decreases the average number of times to execute the expensive Merkle
tree with smart contracts per deposit. We locally implement the improved mixer with MPB
construction, and our evaluation results demonstrate its remarkable ability to reduce deposit
costs by 7× compared to the widely adopted TC mixer.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:3

2. Off-Chain Deposit Proof Generation. We employ Verifiable Computation (VC) tech-
niques to further minimize the cost of updating the Merkle tree. This is accomplished by
offloading computations to the off-chain environment, effectively eliminating the computa-
tional requirements imposed on the smart contract. Our empirical evaluation results indicate
that this approach further reduces the cost of a single deposit update.

3. Formal On-Chain Mixer Analysis Framework. We provide a formal framework to
analyze the on-chain mixers by considering the properties of correctness, privacy, availability,
efficiency, and fairness. We prove that our deposit-cost-reduction approaches offer enhanced
efficiency without deteriorating other properties. Particularly, our analysis shows that the
improved mixers can also guarantee fairness, with which the clients’ costs for interacting with
the mixer can be amortized over time. Furthermore, our analysis framework is of independent
interest and could be applied to analyze other mixer designs.

The full version of this paper is available at [39].

2 Preliminaries

2.1 On-chain Mixers
On non-privacy-preserving blockchains, transactions are recorded in plaintext on the public
ledger. On-chain mixers, inspired by Zerocash [32], are one of the most widely-used privacy
solutions for non-privacy-preserving blockchains. On-chain mixers are running on top of
blockchains with smart contracts, e.g., Ethereum and Binance Smart Chain (BSC). Upon
using a mixer, a user deposits a fixed denomination of coins into a pool and later withdraws
these coins to another address [4, 5, 6, 1, 23]. When used properly, mixers can break the
linkability between addresses, and thus enhance users’ privacy. The largest on-chain mixer,
TC, has accumulated over 3.54M ETH from more than 39K Ethereum addresses [38].

2.2 Cryptographic Primitives
Notation. We denote by 1λ the security parameter and by negl(λ) a negligible function in
λ. We express by (pk, sk) a pair of public and private keys. Moreover, we require that pk can
always be efficiently and deterministically derived from sk, and denote extractPK(sk) = pk
to be the deterministic function to derive pk from sk. We denote Z≥a as the set of integers
that are greater or equal a, {a, a + 1, . . . }. We let PPT denote probabilistic polynomial time.
We denote st[a, b, c . . . ] as an instance of the statement st where a, b, c . . . have fixed and
public values. We use a shaded area i, j, k to denote the private inputs in the statement
st : {(a, b, c; i, j, k) : f(a, b, c, x, y, z) = true}.

Collision Resistant Hash Functions. A family H of hash functions is collision-resistant, iff for
all PPTA, given h

$←− H , the probability thatA finds x, x′, such that h(x) = h(x′) is negligible.
We refer to the cryptographic hash function h as a fixed function, h : {0, 1}∗ → {0, 1}λ. For
the formal definitions of the hash function family, we refer readers to [31].

zk-SNARK. A zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-
SNARK) is a “succinct” non-interactive zero-knowledge proof (NIZK) for arithmetic circuit
satisfiability. The construction of zk-SNARK is based on a field F and an arithmetic
circuit C. An arithmetic circuit satisfiability problem of a circuit C : Fn × Fh → Fl is
captured by the statement stC : {(x, wit) ∈ Fn × Fh : C(x, wit) = 0l}, with the language
LC = {x ∈ Fn | ∃ wit ∈ Fh s.t. C(x, wit) = 0l}.

AFT 2023



16:4 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

▶ Definition 1 (zk-SNARK). zk-SNARK for arithmetic circuit satisfiability is a triple of
efficient algorithms (Setup, Prove, Verify):

(ek, vk)← Setup(1λ, C) takes as input the security parameter and the arithmetic circuit
C, outputs an evaluation key ek, and a verification key vk.
π ← Prove(ek, x, wit) takes as input the evaluation key ek and (x, wit) ∈ stC , outputs a
proof π for the statement x ∈ LC .
0/1← Verify(vk, π, x) takes as input the verification key vk, the proof π, the statement
x, outputs 1 if π is valid proof for the statement x ∈ LC .

Commitment Scheme. A commitment scheme allows an entity to commit to a value while
keeping it hidden, with the option of later revealing the value. A commitment scheme
contains two rounds: committing and revealing. During the committing round, a client
commits to selected values while concealing them from others. The client can choose to
reveal the committed value during the revealing round, and another entity can verify its
consistency.

▶ Definition 2 (Commitment Scheme). A commitment scheme includes two algorithms:
cm ← Commit(m, r) accepts a message m and a secret randomness r as inputs and
returns the commitment string cm.
0/1← Verify(m, r, cm) accepts a message m, a commitment cm and a decommitment
value r as inputs, and returns 1 if the commitment is opened correctly and 0 otherwise.

A secure commitment scheme satisfies two requirements: (i) Binding: Except for a negli-
gible probability, no adversary can efficiently create cm, (m1, r1), and (m2, r2) such that
Verify(m1, r1, cm) = Verify(m2, r2, cm) = 1 and m1 ̸= m2. (ii) Hiding: Except for a
negligible probability, cm does not reveal any information about the committed data.

Authenticated Data Structure. An Authenticated Data Structure (ADS) is a data structure
that not only stores information but also provides a cryptographic proof of the integrity
and authenticity of its contents. It allows for efficient verification of data integrity without
requiring the entire data structure to be transmitted or stored alongside the proof. In this
work, we adopt the Merkle tree as an ADS for set membership proof.

▶ Definition 3 (Merkle Tree). A Merkle tree leverages a collision-resistant hash function h

to construct the data structure. The four algorithms work as follows:
root ← Init(1λ, X) takes the security parameter and a list X = (x1, . . . , xn) as inputs,
constructs a tree that stores x1, . . . , xn in the leaves, and finally outputs a root, root.
pathi ← Prove(i, x, X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and a list X =
(x1, . . . , xn) as inputs, and outputs the proof pathi, which can prove that x is in X. The
proof generation time is proportional to n, while the proof size grows logarithmically with
n.
0/1← Verify(i, xi, root, pathi) takes an element, xi ∈ {0, 1}∗, an index 1 ≤ i ≤ n, y ∈
{0, 1}λ and a proof π as inputs, and outputs 1 if π is correctly verified and 0 otherwise.
y′ ← Update(i, x, X) takes an element x ∈ {0, 1}∗, 1 ≤ i ≤ n and X as inputs, and
outputs y′ = Init(1λ, X ′) where X ′ is X but xi ∈ X is replaced by x.

A Merkle tree should satisfy correctness and security. For the formal definitions of these
properties, we refer to the cryptography introduction book of Boneh and Shoup [13].



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:5

Cost for Appending to Merkle tree. Let T be a Merkle hash tree of size n and assume
that all internal nodes are stored. If a single element is appended, the computational cost of
updating a Merkle hash tree is O(log n) if the internal tree nodes are stored. This can be
done by traversing the right-most path of the tree and modifying at most O(log n) internal
nodes of the tree.

Inefficiency of Multiple Appending Operations in Existing On-Chain Mixers. We observe
that despite the theoretically efficient append operation, the utilization of a SNARK-friendly
hash function still leads to a log n cost of appending that amounts to around 1M gas. For k

deposits, this operation is repeated k times, raising the cost to O(k · log n).
However, in a conventional mixer, to assimilate within a sufficiently large anonymity

set, users often wait several days before withdrawing funds [38, 23]. Consequently, this
suggests that the Merkle tree update operation could be processed in a batch rather than
individually each time. This adjustment could potentially decrease the cost from O(k log(n))
to O(k + log(n)). Further details on this improvement will be provided in Section 5.

Efficient Replace. The update algorithm described previously needs the entire set X to be
able to recalculate the root. Nevertheless, it is feasible to update the root without knowing
the entire set. Specifically, we can update the root in O(log(|X|)) operations using only the
information about the node membership that one wants to replace and the current root.
This update will allow an efficient on-chain update of the Merkle tree.

root′
dep/⊥ ← Replace(i, x, rootdep, pathi, x′): takes as input the index i, the old element

x and its membership proof pathi, and the new element, x′ that we want to put in the
i-th position. The algorithm verifies the membership of both x in the old rootdep using
pathi, abort otherwise. Once the verification returns 1, it recomputes the root root′

dep

using x′ and pathi.
This efficient update is needed for the construction using verifiable computation.

3 On-chain Mixer System

This section presents the on-chain mixer system’s components and the algorithms for the
setup phase, the client, and the smart contract.

3.1 System Components
The system consists of two components: the client and the smart contract. A client controls
blockchain addresses to interact with the smart contract, which governs a pool of assets. A
client can either deposit/withdraw coins into/from the pool. The smart contract manages
both deposit and withdrawal actions. The contract keeps track of various data structures
and parameters to verify the validity of transactions that are sent to the contract.

3.2 Contract Setup
In the setup phase, all public parameters and the mixer smart contract are generated. The
contract will be initialized with different data structures to avoid double withdrawal.

Furthermore, the deposit amount is specified as a fixed deposit amount of coins, amt. The
smart contract is set up with two empty lists: (i) DepositList, which includes all commitments
cm contained in depositing transactions; (ii) NullifierList, which contains all unique identifiers
(i.e., sn) appeared in withdrawal transactions. We refer to pph as the state of the contract at

AFT 2023



16:6 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

block height h. The state includes all data structures of the contract, which were initialized
in the setup phase. This state is implicitly provided to all client and contract algorithms.
Finally, the smart contract is deployed on-chain in this phase.

3.3 Client Algorithm

A client can interact with the smart contract using the following algorithms. Note that
each transaction is signed by the client using the private key associated with the blockchain
address which issues the transaction.

(wit, txdep) ← CreateDepositTx(sk, amt) takes a private key sk and an amount amt
as inputs, and outputs a witness wit and a deposit transaction txdep.
txwdr ← CreateWithdrawTx(sk′, wit) takes as input a private key sk′ (which can be
different from sk) and a witness wit, and outputs a withdrawal transaction txwdr.

3.4 Smart Contract Algorithm

The smart contract handles mixer deposits and withdrawals, with the following algorithms:
0/1 ← AcceptDeposit(txdep) takes as an input the deposit transaction txdep, and
outputs 1 if the transaction was successful and 0 otherwise.
0/1 ← IssueWithdraw(txwdr) takes the withdrawal transaction txwdr as the input,
and outputs 1 and transfers amt coins to the sender txwdr.sender if the transaction was
successful. Otherwise, the algorithm outputs 0.

3.5 System Goals

A secure on-chain mixer aims to satisfy the following properties.

Privacy. An on-chain mixer can break the linkability between user addresses. Consider an
adversary with access to the entire history of all deposit and withdrawal transactions made
to the mixer contract. Given a client who deposits into and withdraws from the mixer, the
system ensures that the adversary cannot (i) link the deposit and withdrawal transactions
issued by the client, and (ii) link the deposit and withdrawal addresses used by the client.

Correctness. A client cannot withdraw more coins from the contract than the client deposits.
Moreover, a client cannot withdraw coins from the mixer prior to the deposit. The property
prevents a client from stealing coins from the contract or other clients.

Availability. Clients should always be able to use the mixer. No entity can prevent clients
from depositing or withdrawing coins.

Efficiency. The system should efficiently update clients’ deposits and withdrawals, without
causing expensive costs.

Fairness. Given a time interval, the costs of clients who deposit into (resp. withdraw from)
the mixer during the interval remain approximately equal. This property allows for the
amortization of costs over time, contributing to a balanced and equitable user experience.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:7

4 Basic On-chain Mixer

4.1 Cryptographic Building Blocks
In the following, we present the cryptographic building blocks to construct on-chain mixers.

Deposit Commitments. Let (Com, Verify) be a commitment scheme that satisfies the
hiding and binding properties. To deposit into the contract, a client samples two randomnesses
kdep, r, and computes the commitment cm = Com(m, r) as a part of a deposit transaction.
In practice, the commitment scheme can be realized using a secure hash function Hp :
{0, 1}λ × {0, 1}λ → F.

Merkle Tree for Deposits. In an on-chain mixer, the leaves of the Merkle tree are initialized
with zero values. The mixer smart contract preserves the Merkle tree Tdep of all deposit
commitments. When deposit transactions occur, the smart contract keeps track of the total
number of deposit transactions and updates the tree using the AcceptDeposit algorithm.
We define the Merkle proof for commitment cmi as pathi. In addition, we define the root of
the Merkle tree at block h as rootcurr

wdr. We also denote rootdep.blockheight as the height of
the blockchain block at the moment when rootdep is updated. Definition 4 formally defines a
deposit Merkle tree. Note that H2p : F× F→ F is a collision-resistant hash function.

▶ Definition 4 (Deposit Merkle Tree). A deposit Merkle tree encompasses three essential
algorithms, namely T.Init(), T.Prove(), and T.Verify(), as defined in Definition 3. Addi-
tionally, the tree can be efficiently updated in a batch using the following algorithm:

rootnew ← T.Update(Q) takes a list Q containing new hashes as input. The algorithm
inserts the elements in Q into the existing Merkle tree, and thus the new root will be
updated. The output is the new root, rootnew.

Withdrawal Proof. To withdraw coins from the smart contract, a client needs to satisfy:
1. The client has committed values for certain existing deposit commitments utilized to

construct the tree root using zk-SNARK.
2. The nullifier in the withdrawal transaction has not been used to withdraw previously.
3. The private key used to issue the withdrawal transaction is known by the client.
In short, a client needs to provide a proof showing the following statement for a Merkle tree
Tdep with the root rootdep:

stwdr : {(pk, sn, rootdep;sk, kdep, r, pathi) : pk = extractPK(sk) ∧ sn = Hp(kdep, 0λ)∧
cm = Com(kdep, r) ∧ T.Verify(i, cm, rootdep, pathi))} (1)

where pk, sn, rootdep are public values and sk, kdep, r, pathi are private values2.

4.2 Workflow of Basic On-chain Mixer
Fig. 1a shows a basic solution for an on-chain mixer system, which is adopted by existing
on-chain mixers, e.g., TC [4], Typhoon Network (TN) [6], and Cyclone [1]. In a nutshell, the
high-level workflow of a basic on-chain mixer is as follows:

2 sk is not needed in the private values if the zk-SNARK has simulation extractability property [8].

AFT 2023



16:8 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

Mixer Smart Contract

... 0 0 0

Merkle Tree

(a) Basic on-chain mixer. The Merkle tree
is updated for every successful deposit.

Mixer Smart Contract

Merkle Treequeue

(b) Improved on-chain mixer with MPB. The Merkle tree is
updated once the leaves in the subtree corresponding to the
deposit queue are full.

Figure 1 Overview of basic and improved on-chain mixer systems.

1. For each deposit transaction, a client adopts an address to issue a transaction, which
transfers a fixed amount of coins into the mixer smart contract and generates a deposit
commitment. The contract uses the Merkle trees of one pool to record the deposit
commitments. Whenever a new deposit is made, the corresponding tree is updated,
generating a new root. The recently updated roots are stored in a root list.

2. To withdraw, the client provides a withdrawal proof. The proof essentially shows that the
client knows the secret to open a commitment in a deposit transaction and a membership
proof by providing a path from the commitment to one root stored in the roots list
(cf. Equation 1). The client will receive coins after the contract verifies the proof. The
contract also records all withdrawal transactions’ unique nullifiers.

4.3 System Goals of Basic On-chain Mixer
The basic mixers satisfy correctness, privacy, availability, and fairness when used properly:

Correctness. To issue a withdrawal, a client is required to present a proof associated with a
unique nullifier. The mixer smart contract maintains a record of all unique nullifiers associated
with withdrawals. Consequently, a client is restricted from issuing more withdrawals than
the number of deposits they have previously conducted with the mixer.

Privacy. Considering the presence of n deposits within a mixer, a client’s new deposit
transaction becomes concealed amidst the n transactions sharing the same deposit amount.
Furthermore, by employing separate deposit and withdrawal addresses, the probability of an
adversary successfully linking the accurate deposit and withdrawal transactions is 1

n .

Availability. As the mixer operates on a permissionless blockchain, which utilizes a global
peer-to-peer network, adversaries are unable to impede clients from engaging with the mixer.

Fairness. The Merkle tree is updated for each deposit, resulting in equal gas fees for clients.
When clients withdraw from the mixer, they incur costs for proof verification. These deposit
and withdrawal costs are dependent on the gas price. Therefore, assuming the gas price does
not fluctuate over a short timeframe, the mixer ensures fairness of costs.

However, we contend that the existing basic on-chain mixer design lacks efficiency since
clients are required to pay a high deposit cost for updating the entire Merkle tree. In typical
basic mixers such as TC, whenever a deposit request is made, the new coin is sequentially
inserted into the Merkle tree, necessitating an update to the entire tree. This update
operation becomes even more costly due to the utilization of Snark-friendly hash functions.
For instance, by analyzing the 156,466 deposit transactions in the TC 0.1, 1, 10, and 100



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:9

Rootdeposit-queue
1. iteration

2. iteration

3. iteration

4. iteration

Figure 2 Graphical illustration of the Merkle Pyramid Builder approach with a deposit queue
size of four. cmi represents the deposit commitment. In the first iteration, a deposit is made and
included in the deposit queue. For subsequent deposits, the client combines the new deposit with
the previously stored deposit, generating a new value that replaces the previous deposit in the queue.
The second and third deposits are appended to the queue. Upon the fourth deposit, all hashes,
including the root, are computed using all the values in the deposit queue. Finally, the deposit
queue is cleared, and the process restarts from the beginning for the next deposit.

ETH pools from block 9,117,019 (December 16th, 2019) to 16,329,600 (January 3rd, 2023),
we discovered that the average deposit cost for a TC ETH pool is approximately 1,111,030
gas, which is roughly 53 times higher than the Ethereum base fee of 21,000 gas.

5 Improving On-chain Mixers via Merkle Pyramid Builder

Existing on-chain mixers suffer from expensive deposit costs due to the frequent update of the
Merkle tree per deposit. However, the one-deposit-one-update approach appears redundant
since it is advisable to wait for other clients to deposit before initiating a withdrawal [38, 23].
To reduce the update time of the Merkle tree, we draw inspiration from the concept of Merkle
tree mountain range [30, 33]. Accordingly, we propose a novel method called MPB.

Deposit-Queuing. To optimize the cost of deposits, we introduce a deposit-queuing method
that batches transactions, resulting in less frequent updates of the Merkle tree.

▶ Definition 5 (Deposit-Queuing). A deposit-queuing method consists of three algorithms:
qempty ← CreateQueue(l) takes as input an integer l, which specifies the number of
deposit transactions to be batched. It returns an empty queue qempty with a size of
l, designed to store the nodes in a subtree with a height of log2 l. A deposit queue is
considered full when all the leaves in the corresponding subtree are occupied.
q′ ← Enqueue(q, cm) takes as input a queue q containing internal nodes of the subtree
that can be used as helpers for an efficient update and a new commitment cm. As shown
in Fig. 2, this procedure resembles the storage of internal nodes in the Merkle Mountain
Range [33] and accumulator construction outlined in [30]. The function produces a new
output queue q′ containing internal nodes that enable the subtree to perform efficient
updates during subsequent deposits.
qempty ← ClearQueue(q) takes as input a queue q. The algorithm returns an empty
queue corresponding to a new subtree.

AFT 2023



16:10 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

ContractSetUp(1λ)

1 : Sample Hp : {0, 1}λ × {0, 1}λ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount
3 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d} where xi = 0 for all xi ∈ X

4 : Initialize an empty tree rootdep = T.Init(1λ, X),
5 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep, for 1 ≤ i ≤ k

6 : Construct Cwdr for statement described in Equation 1

7 : Let Π be the zk-SNARK instance. Run (ekdep, vkdep)← Π.Setup(1λ, Cwdr)
8 : Initialize: DepositList = {}, NullifierList = {}, TotalFee = 0
9 : Initialize: DepositQueue← CreateQueue(l)

10 : Deploy smart contract with parameters :
pp = (F, Hp, H2p, amt, feed, T, index, RootListwdr,k, DespositQueue,

(ekdep, vkdep), DepositList, NullifierList, TotalFee)

Figure 3 Pseudocode for the smart contract setup in a mixer with MPB.

Merkle Pyramid Builder Approach. As shown in Fig. 1b, the key concept is to avoid
frequent updates of the Merkle tree by aggregating deposit transactions and performing
collective updates. In this approach, a deposit queue of size l corresponds to a subtree with
a height of log2 l, as illustrated in Fig. 2. Notably, every even deposit in the sequence incurs
no additional computational cost. However, each odd deposit requires hashing all the hashes
up to the tree until no values remain on the left side within the same subtree. Finally, every
l-th deposit necessitates computing all the hashes up to the root.

5.1 Contract Setup
The contract setup phase is to generate all the cryptographic parameters used in the protocol.
In the setup phase (cf. Fig. 3), the algorithm ContractSetUp samples two secure hash
functions Hp and H2p from the collision-resistant hash families. The procedure further
initializes amt as the fixed amount of coins that can be deposited into the mixer contract.

Setup Merkle Tree. We denote T as the deposit commitment Merkle tree with depth d.
The algorithm T.Init initializes T as described in Section 4.1. The algorithm also initiates
RootListwdr,k to be the list of k most recent roots of T , which can address the concurrency
issue for withdrawal transactions.

Setup zk-SNARK Parameters. We initialize a zk-SNARK instance Π with the algorithm
Π.Setup with Cwdr as input, which can output two keys (ekdep, vkdep).

Setup Commitments and Nullifier Lists. The contract initializes two empty lists: (i)
DepositList, which contains all cm included in deposit transactions; (ii) NullifierList, which
contains all unique nullifiers sn committed in withdrawal transactions.

Setup Deposit Queue. The DepositQueue is initialized to track the number of deposit
transactions in the queue and the number of transactions that have been hashed. This
information determines whether the subsequent client needs to bear the cost of updating the
Merkle tree. Note that the queue size log2 l is the height of the subtree.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:11

Client(sk, amt) Smart Contract

CreateDepositTx(sk, amt) :

1 : Sample (kdep, r) $←− {0, 1}λ

2 : Compute cm = Hp(kdep, r)
3 : return wit = (kdep, r),

txdep = (amt, cm, feed)

txdep AcceptDeposit(txdep)

1 : Parse txdep = (amt′, cm, fee′
d)

2 : Require: amt=amt′, feed = fee′
d, index < 2d

3 : Append cm to DepositList
4 : Increment index = index + 1
5 : DepositQueue = Enqueue(DepositQueue, cm)
6 : TotalFee = TotalFee + feed

// The subtree is full
7 : if DepositQueue is full:
8 : Compute rootnew from DespositQueue
9 : ClearQueue(DespositQueue)

10 : Append rootnew to RootListwdr,k

// Compensate the tree updater
11 : Do txdep.sender.transfer(TotalFee)
12 : TotalFee = 0
13 : else :
14 : Enqueue(DespositQueue, cm)
15 : return 1

Figure 4 Deposit interactions between the client and the smart contract in a mixer with MPB.
The computation of rootnew (in line 8) can be done via the efficient replace function Def.2.2. We
also note that line 3 is only for readability; in practice, users do not have to pay storage cost and
can retrieve the list through emitted onchain events.

Functionality of RootListwdr,k. Similar to existing on-chain mixers [4, 23], our mixer
contract maintains a list of the k most recent roots, denoted as RootListwdr,k. This list serves
as an “AllowList” [16] to maintain a list of authorized parties (i.e., roots), which can address
the concurrency issue.

Consider a scenario where user Bob attempts to withdraw using the most recently updated
root rootk−1 from the RootListwdr,k. If an attacker, Alice, manages to make k deposits prior
to Bob’s withdrawal, these deposits would prompt k updates to the Merkle tree, effectively
removing rootk−1 from the refreshed RootListwdr,k and invalidating it for withdrawal.

However, as demonstrated in [23], this attack’s cost is at least k× (amt + fee), where amt
represents the number of coins supported by the mixer pool (e.g., 0.1, 1, 10, and 100 for the
TC ETH pools), and fee denotes the deposit fee. Moreover, the cost is higher in our improved
mixer with MPB, as it typically requires k × l deposits to trigger k Merkle tree updates.

Importantly, the presence of the RootListwdr,k does not introduce any vulnerability
to double withdrawals. The only downside is that users might experience a marginally
smaller anonymity set than the actual one. For instance, a user might use the root root0
(corresponding to |CmpSeth| deposits), but due to concurrency, the latest root available may
be rootk−1 (corresponding to |CmpSeth|+ k deposits). In reality, k ≪ |CmpSeth| (e.g., in TC,
k is set to 100, while there are more than 26, 000 deposits in each ETH pool [38]), rendering
the difference in the anonymity set negligible.

5.2 Deposit Interaction
Fig. 4 shows the deposit process of a client in the mixer. This step allows the client to deposit
coins into the mixer pool and obtain the witness for future withdrawal.

AFT 2023

https://etherscan.io/address/0x910cbd523d972eb0a6f4cae4618ad62622b39dbf#code


16:12 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

Client(sk) Smart Contract

CreateWithdrawTx(sk, wit) :

1 : Parse wit = (kdep, r)

2 : Obtain pph from the contract

3 : Compute snwdr = Hp(kdep, 0λ)
4 : Compute cm = Hp(kdep, r)

5 : Get index i of cm from DepositListh

6 : Choose rootdep ∈ RootListwdr,k

7 : Compute pathh
dep,i s.t.:

T.Verify(i, cm, rootdep, pathh
dep,i) = 1

8 : Form witdep = (sk, kdep, r, pathh
dep,i)

9 : πwdr ← Π.Prove(ekdep, witdep,

st[pk, snwdr, rootdep])
10 : return txwdr = (snwdr, rootdep, πwdr)

txwdr IssueWithdraw(txwdr) :

1 : Parse: txwdr = (snwdr, rootdep, πwdr)
2 : Require:
3 : rootdep ∈ RootListwdr,k

4 : snwdr /∈ NullifierList
5 : Π.Verify(vkdep, πwdr, st[txwdr.sender,

snwdr, rootdep]) = 1
6 : Append snwdr to NullifierList

// Send the original deposit back
7 : Do txwdr.sender.transfer(amt)
8 : return 1

Figure 5 Withdrawal interactions between the client and the smart contract in a mixer with
MPB. The state of the contract at block height h is denoted by pph. The withdrawal transaction
txwdr contains the proof πwdr that proves the client’s knowledge of cm = Hp(kdep, r) which is a valid
member of the Merkle tree with the root rootwdr.

Client. A client deposits coins into the contract using the algorithm CreateDepositTx.
The client first randomly selects two parameters kdep and r, which are used to construct the
commitment cm. The lengths of kdep and r are defined and fixed during the initial setup.
The deposit transaction txdep consists of the commitment cm and the coins amt that the
client wants to deposit. Moreover, the client needs to specify the deposit fee feed in the
transaction. To issue the transaction txdep, the client must use their private key sk to sign it.
In addition, a witness wit is issued, which will be used to withdraw the coins in the future.

Contract. Upon receiving a deposit transaction txdep, the smart contract verifies that (i)
the amount of coins and fees are as requested, and (ii) there is available space in the Merkle
tree. If both conditions are met, the commitment in txdep is added to the DepositList. If
the deposit queue is not full, the deposit fee will be added to the current total fee TotalFee.
Otherwise, the total fee will be transferred to the last client and be reset as 0. With the
algorithm Enqueue, the list DespositQueue will be updated. Moreover, if this deposit queue
is full, the Merkle tree will be updated using the algorithm T.Update, and the smart contract
will clear the deposit queue and finally add the new root to the list RootListwdr,k.

Note that the last client in a deposit queue will pay the gas cost for updating the
Merkle tree. To guarantee fairness, the previous clients in the queue need to transfer
additional deposit fees feed to the smart contract, which will be accumulated and serve as the
reimbursement for the last client. A more comprehensive analysis of the deposit fee design
will be presented in Section 6.4.

5.3 Withdrawal Interaction

Fig. 5 shows the mixer withdrawal interaction. This step allows the client to use the secret
witness to generate a proof which is used to withdraw the corresponding deposited coins.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:13

Client(sk, amt) Smart Contract

CreateDepositTx(sk, amt) :

1 : Sample (kdep, r) $←− {0, 1}λ

2 : Compute cm = Hp(kdep, r)

3 : Read DepositQueue, RootListwdr,k

4 : rootold
dep = RootListwdr,k[−1]

5 : Compute pathindex from DepositQueue

6 : input := (index, 0, rootold
dep, pathindex, cm)

7 : rootnew, πdep ← VcProve(ekvc
dep, input)

8 : return wit = (kdep, r),
txdep = (amt, rootnew, πdep, cm, feed)

txdep AcceptDeposit(txdep)

1 : txdep = (amt′, rootnew, πdep, cm, fee′
d)

2 : Require:

amt = amt′, feed = fee′
d, index < 2d

3 : Append cm to DepositList
4 : index = index + 1
5 : TotalFee = TotalFee + feed

6 : // The subtree is full
7 : if DepositQueue is full:

8 : rootold
dep = RootListwdr,k[−1]

9 : Compute pathindex from DepositQueue

10 : input := (index, 0, rootold
dep, pathindex, cm)

11 : Require VcVerify(vkvc
dep, input,

rootnew, πdep) = 1

12 : Append rootnew to RootListwdr,k

// Compensate the tree updater
13 : Do txdep.sender.transfer(TotalFee)
14 : TotalFee = 0
15 : ClearQueue(DespositQueue)
16 : else :
17 : Enqueue(DespositQueue, cm)
18 : return 1

Figure 6 Deposit interactions between the client and the smart contract in a mixer with VC.

Client. A client needs to create a withdrawal proof πwdr with the secret witness wit, and
the private key sk′, to withdraw amt to the public key pk′. The proof πwdr should be able to
prove the three conditions mentioned in Section 4.1. The client then issues the withdrawal
transaction txwdr, which consists of the nullifier snwdr, the root rootdep, and the proof πwdr.

Contract. When receiving a withdrawal transaction txwdr = (snwdr, rootdep, πwdr), the
contract checks the proof, πwdr, and confirms that the nullifier snwdr is not in the NullifierList.
The contract then appends snwdr to NullifierList to avoid future double withdrawals. Finally,
the smart contract transfers amt coins to the withdrawal address specified by the client.

5.4 Further Improvement with Verifiable Computation Techniques
In this section, we employ verifiable computation techniques [17, 22] to enhance the efficiency
of deposit costs. In an on-chain mixer utilizing VC, the key idea is to conduct the computation
off-chain. In this approach, the client evaluates the Merkle tree root and transmits both the
result and a proof of correct computation to the smart contract. The contract subsequently
verifies the validity of the proof to ensure the accuracy of the computation.

5.4.1 Building Blocks for On-Chain Mixer with VC
Verifiable Computation Scheme. In a VC scheme (cf. Definition 6), the verifier selects
a function and an input to send to the prover. The prover evaluates the function on the
input and returns the result, along with proof attesting to the result’s validity. The verifier

AFT 2023



16:14 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

then verifies that the output provided by the prover indeed corresponds to the result of
the function evaluated on the given input. The objective is to achieve efficient verification,
significantly faster than the actual computation of the function itself.

▶ Definition 6 (Verifiable Computation Scheme). Let f be a function, expressed as an
arithmetic circuit over a finite field F, and let λ be a security parameter.

(ek, vk)← VcInit(1λ, f) takes a security parameter and an arithmetic circuit as input
and generates two public keys: an evaluation key ek and a verification key vk.
(y, π) ← VcProve(ek, x) takes as input an element x and the evaluation key ek and
computes y = f(x) and a proof π that y has been correctly computed.
0/1← VcVerify(vk, x, y, π) takes the verification key vk, the input/output (x, y) of the
computation f and the proof π and outputs 1 if y = f(x) and 0 otherwise.

Any SNARK instance (e.g., Groth16 [19]) can be used to construct a VC scheme.

Deposit Proof. To deposit coins to the smart contract, a client needs to give a proof
showing the following relation for a Merkle tree T with a root rootdep:

stdep : {pk, cm, rootold
dep, rootnew

dep , pathi : rootnew
dep = T.Replace(index, 0, rootold

dep, pathi, cm)} (2)

In this construction, the function f that we want to verify is the replacement algorithm (i.e.,
Replace) defined for the Merkle tree.

Concurrent Updating Operations. During the construction process using VC, it is possible
to encounter a situation where two users are simultaneously updating the tree. However, this
does not present a problem. Both deposits will be processed since the smart contract only
accepts the VC proof when the queue is full. Consequently, only one user (the faster one) is
required to pay and is subsequently compensated for the computation cost. Meanwhile, the
other deposit will be placed as the first element of the queue.

5.4.2 Algorithms for On-Chain Mixer with VC
Contract Setup. The ContractSetUp algorithm of a mixer with VC differs from the
MPB method (cf. Section 5.1): An additional instance must be initialized for the verifi-
able computation (cf. Section 5 in the full version of this paper [39]). The rest remains
unchanged. In particular, we initialize a verifiable computation instance Πdep with the
algorithm Πdep.VcInit with Cdep as input. We obtain two keys (ekvc

dep, vkvc
dep).

Deposit Interaction. Fig. 4 shows the deposit interaction between a client and the mixer
with VC, in which the client computes the updated root when depositing into the mixer.

Client. The only difference between a mixer with the MPB and the one with VC is that
the last client must compute and prove the valid computation of the new root in addition to
cm and amt. The rest remains unchanged.

Contract. In contrast to MPB, the smart contract now performs fewer calculations. The
smart contract checks the client’s proof of the validity of the new root. If the proof is valid,
the root of the contract is modified to match the client’s root.

Withdraw Interaction. Because the verifiable computation only alters the deposit method,
the way to withdraw coins in a mixer stays the same as in Section 5.1.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:15

6 System Analysis

In this section, we prove that our improved mixers with MPB and VC both can guarantee
privacy, correctness, availability, and fairness, while they achieve different degrees of efficiency.

6.1 Privacy

6.1.1 Linking deposit and withdrawal transactions

Using a similar definition proposed in the AMR system [23], we first investigate the potential
for an adversary to establish a link between a withdrawal transaction and its associated deposit
transaction. We denote h as the height of the blockchain. Given a block height h, we define
CmpSeth as the set of commitments of deposits made by honest users within a mixer pool.
Within this context, for a given cm ∈ CmpSeth, we denote txdep(cm) as the deposit transaction
which includes cm. Given a deposit transaction txdep including the commitment cm, and a
withdrawal transaction txwdr with the nullifier sn, we say sn is originated from cm (denoted
as sn origin← cm) if ∃(k, r) ∈ {0, 1}λ, s.t., cm = Com(k, r) ∧ snwdr = Hp(k, 0λ). Therefore,
the adversarial advantage of linking the withdrawal transaction txwdr to its corresponding
deposit transaction txdep, can be quantified as the probability that an adversary correctly
guesses the commitment that originates the nullifier value in txwdr (cf. Definition 7).

▶ Definition 7 (Adversarial Advantage in Transaction Linking). Let A be a PPT adversary,
and txh

wdr be a valid withdrawal transaction issued at block h by an honest user. Let snh
wdr be

the nullifier included in txh
wdr. We define the adversarial advantage as follows:

Advh
A,tx = Pr[A(txh

wdr)→ txdep(cm), s.t. cm ∈ CmpSeth ∧ snh
wdr

origin← cm]

6.1.2 Linking deposit and withdrawal addresses

In practice, a user may utilize the same address to make multiple deposits or withdrawals
within a mixer pool [38]. Rather than linking individual deposit and withdrawal transactions,
the adversary may choose to target the linkability between addresses, specifically linking
deposit and withdrawal addresses controlled by the same user.

Given a block height h, we denote DepAddrSeth as the set of addresses that are used to
deposit coins into a mixer pool from honest users, and WdrAddrSeth as the set of withdrawal
addresses of honest users.

Given a deposit address addrd ∈ DepAddrSeth and a withdrawal address addrw ∈
WdrAddrSeth, we say addrd and addrw are linked if they belong to the same user, i.e., the
user controls both the private keys of addrd and addrw. We denote this as addrd

link↔ addrw.
Therefore, the adversarial advantage of linking the withdrawal address addrw to the

corresponding deposit address addrd, is the probability that an adversary can correctly
determine if they are controlled by the same user (cf. Definition 8).

▶ Definition 8 (Adversarial Advantage in Addresses Linking). Let A be a PPT adversary, and
addrw ∈WdrAddrSeth be an address that has been previously used to withdraw coins from the
mixer pool before the block height h. We define the adversarial advantage as follows:

Advh
A,addr = Pr[A(addrw)→ addrd, s.t. addrd ∈ DepAddrSeth ∧ addrd

link↔ addrw]

AFT 2023



16:16 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

6.1.3 Privacy Analysis
We present the following claims to analyze the adversarial advantages of linking transactions
and addresses in our improved mixers. For detailed proofs, we refer the reader to the full
version of this paper [39].

▷ Claim 9. Under the assumption that all underlying cryptographic primitives are secure,
the adversarial advantage in linking a withdrawal transaction at block height h to the
corresponding deposit transaction (cf. Definition 7) satisfies: Advh

A,tx ≤ 1
|CmpSeth| + negl(λ).

▷ Claim 10. Under the assumption that all underlying cryptographic primitives are
secure, the adversarial advantage in linking a withdrawal address at block height h to the
corresponding deposit address (cf. Definition 8) satisfies: Advh

A,addr ≤ 1
|DepAddrSeth| + negl(λ).

▶ Remark. Note that the increase in deposit transactions will not always decrease the
adversarial advantage in linking deposit and withdrawal addresses, because an address can
be used to deposit multiple times in a mixer pool. We also remark that the deposits in the
queue are not considered in our privacy analysis, because they are not finalized and do not
contribute to the set of commitments CmpSeth and the set of deposit addresses DepAddrSeth.

6.2 Correctness
In the following, we prove that our system can guarantee correctness by demonstrating that
the probability that an adversary can withdraw more times than deposits is negligible.

Consider an adversary who deposits into the mixer via a transaction txh
dep at block h, and

the transaction includes the commitment cm. We define the adversarial advantage of double
withdrawing as the probability that the adversary can generate two withdrawal transactions
linking to txh

dep (cf. Definition 11).

▶ Definition 11 (Adversarial Advantage in Double Withdrawing). Let A be a PPT adversary,
which issues a deposit transaction txh

dep at block h. Let cm be the commitment included in
txh

dep. We define the adversarial advantage as follows:

Advh
A,ww = Pr[A(txh

dep(cm))→
(

tx0
wdr

(
snh0

wdr

)
, tx1

wdr

(
snh1

wdr

))
s.t. snh0

wdr

origin← cm ∧ snh1
wdr

origin← cm ∧ h0 > h ∧ h1 > h ∧ snh0
wdr ̸= snh1

wdr]

Intuitively, double withdrawals occur when the adversary manages to generate two different
nullifiers, snh0

wdr and snh1
wdr, both originating from the same commitment cm. However, the

probability of this event is negligible (cf. Claim 12).

▷ Claim 12. Assuming that all underlying cryptographic primitives are secure, the adversarial
advantage in successfully generating two distinct withdrawal transactions which correspond
to the same deposit transaction (cf. Definition 11) satisfies: Advh

A,ww ≤ negl(λ).

6.3 Availability
Our system, comprising either MPB or VC, ensures availability. Similar to existing on-chain
mixers such as TC [4] on Ethereum and TN [6] on BSC, our improved mixer can operate
autonomously on smart-contract-enabled blockchains. It should be noted that a centralized
regulator could affect the availability of an on-chain mixer. For instance, the regulator can
impose sanctions [36] on on-chain mixers and require decentralized application frontends
or Front-running as a Service (e.g., Flashbots MEV-boost relays) to censor mixer-related



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:17

Table 1 Deposit cost calibration over time. The first l− 1 clients’ cost in the li-th deposit queue
is calibrated by the total cost in the previous queue.

deposit queue li−1 li

Cost
first l − 1 clients d0

i−1 d0
i = Ci−1

l

last client d1
i−1 d1

i

total Ci−1 = (l − 1) · d0
i−1 + d1

i−1 Ci = (l − 1) · d0
i + d1

i

transactions [14]. However, users still have the option to utilize the command line interface
or intermediary addresses to bypass the censorship and interact with the on-chain mixer
smart contracts [40].

6.4 Fairness
To ensure fairness, our improved mixer employs a mechanism that ensures nearly equal fees
are paid by all l clients in the same deposit queue when updating the Merkle tree. The
approach involves each client in the queue, except the last one, paying an additional gas fee
of d0 in their deposit transactions to the smart contract. The contract then keeps track of
the accumulated fees, totaling (l − 1) · d0. When it is the turn of the l-th client to update
the Merkle tree and clear the queue, the client will be responsible for paying the remaining
gas fees, denoted as d1. Note that gas prices can vary over time, which means that the cost
for each client needs to be adjusted accordingly. To achieve this, the payment fees for clients
in the li-th deposit queue are calibrated based on the total cost of the li−1-th queue, where
i ≥ 1. Specifically, if the total update cost of the li−1-th queue is Ci−1, then the average
cost for the previous l − 1 clients in the li-th deposit queue is calculated as Ci−1

l . Table 1
illustrates the deposit costs for clients in a queue. It is worth noting that while the cost of
the last client technically differs slightly from that of the remaining l − 1 clients, we can
prove that the improved mixer achieves fairness through the following analysis.

We first provide the definition of fairness for an on-chain mixer.

▶ Definition 13 (ϵ-Fairness). Given two blocks b0, b1, and their corresponding gas prices
price(b0) and price(b1), we say a mixer achieves ϵ-fairness if the deposit costs cost(b0)
and cost(b1) in blocks b0 and b1 satisfy |cost(b0)− cost(b1)| ≤ ϵ · |price(b0)− price(b1)|.

We proceed to prove that our improved mixer can achieve ϵ-fairness when adopting the
deposit cost calibration design in Table 1.

▷ Claim 14. Given a timeframe T covers at least two deposit queues li−1 and li, whose final
deposits occur in block bli−1 and bli

respectively. Assuming that the deposit gas for updating
the Merkle tree in different queues is constant, denoted as gasupdate, then our improved
mixer can achieve ϵ-fairness in the timeframe, where ϵ = gasupdate.

6.5 Efficiency
6.5.1 Efficiency for On-Chain Mixer with MPB
Compared to the basic on-chain mixer design (cf. Section 4), our improved mixer system
offers enhanced efficiency. We consider a deposit Merkle tree with a size of n. In a basic
on-chain mixer, the computation cost for l deposits is l · O (log(n)) as the entire Merkle

AFT 2023



16:18 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

tree for each deposit needs to be updated. However, in our improved mixer design with
an l-length deposit queue, the Merkle tree only needs to be updated once per l deposits.
Therefore, the computation cost for l deposits is l + O (log(n)).

We further define the ratio as γ = l+O(log(n))
l·O(log(n)) to quantify the times of the saving deposit

cost in our improved mixer compared to the basic mixer solution. Note that the deposit
queue size l is much smaller than the Merkle tree size n; therefore, γ = l

O(log(n)) + O(log(n))
l ≈

O(log(n))
l . The larger the queue size l, the more deposit cost clients can save. However, the

finalization time of the deposit is also increasing over l. We should properly choose the size l

to deal with the trade-off between the deposit cost and finalization time. We will provide
the detailed evaluation results in Section 7.2.

6.5.2 Efficiency for On-Chain Mixer with VC
Thanks to VC, the deposit cost in a mixer can further be reduced. Consider that the
computation cost of verifying an updated Merkle tree root is costVc, and the cost of generating
an updated Merkle tree root is costGc. Therefore, in a basic on-chain mixer, the computation
cost for l deposits is l · O (log(n)) · costGc as the Mekle tree is updated per deposit. The
computation cost for l deposits in an improved mixer with VC is l+O (log(n))·costVc+costGc.
The deposit cost saving is γvc = l+O(log(n))·costVc+costGc

l·O(log(n))·costGc = l
O(log(n))·costGc +

costVc+ costGc
O(log(n))

l·costGc ≈
costVc+ costGc

O(log(n))
l·costGc . Note that in verifiable computations, the computation cost of verification

costVc is inferior to the cost of proof generation costGc. Therefore, an on-chain mixer with
verifiable computations can reduce deposit costs more than one with MPB. Section 7.4 will
provide more quantification results.

7 Evaluation

In this section, we implement our improved mixer designs and evaluate their performance.

Cryptographic Primitives. We adopt Groth’s zk-SNARK, Groth16 [19], as our instance of
zk-SNARK owing to its efficiency in terms of its proof size and the calculations required by
the verifier. Although the original Groth16 does not have simulation intractability proof, it
is recently proven to achieve weak simulation extractability [8]. We elaborate more on the
discussion in the full version of this paper [39]. We employ the Pedersen hash function [26]
for Hp and the MiMC hash function [7] for H2p, as cryptographic hash functions. Compared
to arithmetic circuits that rely on other hash functions, such as Jubjub [3], arithmetic circuits
that employ MiMC hash can produce a smaller number of constraints and operations. In
addition to being created exclusively for SNARK applications, MiMC hash functions are also
very gas-efficient for Ethereum smart contract applications.

Software Setup. For the arithmetic circuit design, we leverage the Circom library [9] to
build the withdrawal circuit, Cwdr, for the relation specified in Equation 1. We utilize
Groth16[19] proof system implemented by the snarkjs package [10] to construct the client’s
algorithms.. We establish a trusted environment for evaluating the mixer smart contract and
clients. We deploy the on-chain mixer system on the EVM ganache [2].

Hardware Setup. We perform our experiment on a standard desktop system with an 11th
Gen Intel(R) Core(TM) i7-11800H with 2.30G CPU and 16GB RAM in configuration.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:19

10 15 20 25 30
Merkle Tree Depth

0
1
2
3
4
5
6
7

D
ep

lo
ym

en
t C

os
ts

 
in

 G
as

 (×
10

6 )

Figure 7 Cost of deploying the MPB smart
contract with different Merkle tree sizes.

21 22 23 24 25 26 27 28

Desposit-Queue Size

0

50

100

150

200

Ex
pe

ct
ed

 F
in

al
iz

at
io

n 
Ti

m
e 

(h
)

 
fin

al
(

,l
)

0.1 ETH pool, = 269 blocks
1 ETH pool, = 136 blocks
10 ETH pool, = 156 blocks
100 ETH pool, = 232 blocks

Figure 8 Expected deposit finalization time
in TC ETH pools with various deposit queue sizes.

21 22 23 24 25 26 27 28

Desposit-Queue Size

1
2
3
4
5
6
7
8
9

10
11

D
ep

os
it 

G
as

 C
os

t 
 in

 G
as

 (×
10

5 )

deposit cost in TC: 1,111,030 gas

146k

Merkle Tree Depth
10
15
20
25
30

Figure 9 Average deposit costs per client for
various queue sizes and Merkle tree depths. The
deposit cost in TC (dashed line) is ≈ 1.1M gas.

21 22 23 24 25 26 27 28

Desposit-Queue Size

1
2
3
4
5
6
7
8
9

10
11

D
ep

os
it 

G
as

 C
os

t 
 in

 G
as

 (×
10

5 )

deposit cost in TC: 1,111,030 gas

Merkle Tree Depth = 20
Merkle Pyramid Builder
Merkle Pyramid Builder
+Verifiable Computation

Figure 10 Average on-chain deposit costs per
client for various deposit queue sizes. The VC
approach can further reduce the deposit cost.

7.1 Evaluating Merkle Pyramid Builder Costs
We evaluate the performance of the MPB system using different configurations of Merkle
tree depths (i.e., d = 10, 15, 20, 25, 30) and deposit queue lengths (l = 2, 4, 8, 16, 32, 64, 128).

On-chain Deployment Costs. Fig. 7 shows the expense associated with deploying smart
contracts. The Merkle tree depth does not have a huge influence on the deployment costs:
the total cost is always between 6M and 7M gas. However, the deployment cost is a one-time
expense that can be amortized over the duration of the contract.

On-chain Deposit Costs. Fig. 9 provides a visualization of the cost reduction achieved
by increasing the size of the deposit queue. We observe that after reducing or raising the
depth of the Merkle tree, the cost decreases or increases, accordingly. Note that reducing the
depth of the Merkle tree reduces the number of users, while raising the depth significantly
increases the time required to compute the withdrawal proof. We can also observe that for a
deposit queue of length 128, the gas costs are around 146K, which is consistent amongst
the various Merkle tree depths. Figure 9 also shows that this cost is merely 1

7 of the cost of
depositing in TC. Note that the costs associated with the deposit queue with a size of one,
would roughly correspond to those of TC.

7.2 Evaluating Deposit Finalization Time
The deposit queue sizes will affect the deposit finalization time, i.e., the time that users need
to wait for their deposits to be updated in the Merkle tree. To quantify the waiting time,
we crawl the historical deposits in the TC four ETH pools (i.e., 0.1, 1, 10, and 100 ETH
pools) over time. As shown in the full version of this paper [39], from October 1st, 2020 to

AFT 2023



16:20 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

0 50 100 150 200 250 300
Gas Price Difference (Gwei)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

Gas price diff. for 1 day
Gas price diff. for 2 days
Gas price diff. for 3 days
Gas price diff. for 7 days

Figure 11 Distribution of gas price differences
for TC deposit transactions.

2020 2021 2022 2023
Time

0

100

200

300

400

G
as

 P
ric

e 
(G

w
ei

)

TC deposit txs
All Ethereum txs

Figure 12 Average gas price of TC deposit
transactions over time.

August 8th, 2022 (i.e., the date when Office of Foreign Assets Control (OFAC) announced
the sanctions against TC), the average number of daily deposits in the four pools is 51± 25.
Even after the OFAC sanctions’ announcement, the average number is still 9± 8. Therefore,
when the deposit queue size is set as 32, users merely need to wait for less than 4 days on
average to ensure their deposits are finalized in a TC pool adopting our MPB method.

To further quantify the expected finalization time, we define ∆ as the average timeframe
between two deposits. Therefore, the expected finalization time Efinal(∆, l) of a client in a
deposit queue with the size l is Efinal(∆, l) =

∑l
i=1

1
l · (l − i) ·∆ = (l−1)·∆

2 .
Based on our empirical data, we can calculate that the average timeframes between two

deposits in the TC 0.1, 1, 10, and 100 are 269, 136, 156, and 232 blocks respectively. Fig. 8
shows the expectation of the deposit finalization time when choosing different deposit queue
sizes for TC ETH pools. Note that we set the block timeframe as 12s, which corresponds to
the slot time in the post-merge Ethereum. The results indicate that the expected deposit
finalization time increases linearly over the deposit queue size.

7.3 Evaluating Deposit Gas Prices
In the following, we leverage the gas prices of TC historical deposit transactions to quantify
our improved mixer’s fairness.

Fig. 12 shows the average gas price of TC deposit transactions and all Ethereum trans-
actions over time. We observe that generally, the TC deposit transactions have almost the
same average gas price as other Ethereum transactions. To further measure the variance
of gas price, we calculate the differences between sequential daily deposits in TC ETH pools.
As shown in Fig. 11, we plot the distribution of the gas price differences for the deposits
in sequential n days, where n = 1, 2, 3 and 7. We observe that more than 80% gas price
differences in n(n ≤ 7) days are inferior to 30 GWei. Therefore, if we set the expected deposit
finalization time as less than 7 days, the deposit cost differences between the last client and
other clients in the same queue are inferior to 30 GWei × gasupdate. Recall that gasupdate is
the total gas consumed for updating the Merkle tree in an on-chain mixer (cf. Section 6.4).

When setting the deposit queue size as 25, and the Merkle tree depth as 20, we have
gasupdate = 25 × 1.78× 105 = 5.69M gas (cf. Fig. 9). We can further calculate that the cost
difference is 5.69× 106 × 30× 109 Wei = 1.7× 1017 Wei = 0.17 ETH.

7.4 Evaluating Verifiable Computation Costs
TC supports anonymity mining [35] to incentivize users to user their ETH mixer pool. In
order to claim the anonymity mining rewards, users can provide the Merkle tree roots to
show their deposit and withdrawal transactions have already been successfully performed.



Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:21

This design is similar to our deposit with off-chain proof generation. Therefore, to evaluate
the deposit cost of VC, we adopt a similar circuit of TC anonymity mining3 to implement
the VC deposit contract and test it locally. Our evaluation shows that the average deposit
cost of VC is approximately 436K gas. Thus, the saving deposit cost ratio of a client in a
deposit queue of size l can be calculated as 1M

436K·l = 2.29
l .

Note that in the improved mixer with VC, the smaller the queue size (i.e., l) is, the more
cost per client can save (cf. Fig. 10). Therefore, when combining VC and MPB approaches,
our improved mixer enables a significant improvement in the cost with a small deposit queue
size (e.g., 4 or 8), which allows a short waiting time for deposit finalization.

8 Related Work

Blockchain Add-On Privacy Solutions. To enhance the privacy of non-privacy-preserving
blockchains such as Bitcoin and Ethereum, numerous mixers are proposed in academic works
or deployed in practice. For instance, Meiklejohn et al. [25] propose a smart-contract-based
mixer named Möbius, which adopts linkable ring signatures and stealth addresses [28] to
hide the addresses of transaction senders and recipients. However, the anonymity set size of
Möbius is limited by the ring size, and the withdrawal cost increases linearly with the ring
size. CoinJoin [24] is a Bitcoin mixer, which enables a user can collaborate with others to
merge multiple transactions, thereby breaking the linkability between addresses. On-chain
mixers [4, 6, 5, 1] are inspired by Zerocash [32] and are running on smart-contract-enabled
blockchains to obfuscate the link between the users’ deposit and withdrawal using ZKPs.
Le et al. propose an on-chain mixer design [23], which incentivizes users to participate in a
mixer. Shortly after [23], TC follows by adding anonymity mining as a deposit reward scheme
for attracting users [35]. In addition to blockchain add-on privacy solutions, several existing
works have proposed privacy-enhanced and regulated solutions for Central Bank Digital
Currencies (CBDCs). These solutions include UTT [34], PEReDi [21], and Platypus [43].
Despite their theoretical promise, the practicality of implementing and running these solutions
efficiently on the Ethereum platform remains unclear.

Blockchain Mixer Analysis. Although mixers can break the linkability among user addresses
by design, in practice, mixers are not being used properly. Wu et al. [42] propose a generic
abstraction model for Bitcoin mixers. They identify two mixing mechanisms, i.e., swapping
and obfuscating, and present a method to reveal mixing transactions that leverage the
obfuscating mechanism. Through analyzing the mixing activities in TC [4] and TN [6],
Wang et al. [38] proposes five heuristics to link the deposit and withdrawal addresses of
on-chain mixers. Their heuristics can reduce a mixer’s anonymity set size by more than
34.18%. Moreover, Wang et al.’s measurement work [38] also indicates that the reward
mechanism of on-chain mixers tends to attract profit-driven but privacy-ignorant users.

9 Discussion

Trade-Off Between Latency and Cost. In our MPB mixer design, typically, the last
depositor in a deposit queue initiates the Merkle tree update when the queue is full. However,
we recognize the potential for including an optional function that allows any user to pay and
trigger this update. This functionality would enable users to achieve faster-verified deposits

3 https://github.com/tornadocash/tornado-anonymity-mining

AFT 2023

https://github.com/tornadocash/tornado-anonymity-mining


16:22 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

by updating the tree without waiting for the queue to be filled. In such cases, the tree
updater must strike a balance between latency and cost since the accumulated fees in an
unfilled queue may not fully compensate for the updater’s expenses.

Trade-Off Between Storage and Computation. In MPB, the subtree is updated with every
deposit to optimize on-chain storage costs while maintaining a balance between storage and
update efficiency. Specifically, in MPB, the total computation cost of updating a queue with
l deposits is l + O (log(n)), and the storage cost is O (log l). An alternative approach is to
use a more “naive” batch update, where the mixer contract keeps a record of all l deposits in
the queue and updates the subtree per queue. In this case, the total computation cost is still
l + O (log(n)), and the storage cost is O (l).

Comparison with Other Data Structures. In addition to MPB, we have also conducted
tests on other data-authenticated structures, such as dynamic RSA accumulators [11, 27, 12].
Accumulators offer the capability to generate proofs that demonstrate the membership of
potential items in a specific set. One notable advantage of RSA accumulators is their efficiency
in adding new items to an existing set. However, we observe that they do not effectively
reduce deposit appending costs, as the mixer contract is required to perform expensive
primality testing to identify prime numbers [20] as commitments on-chain. Furthermore, the
process of proving membership in zero knowledge will incur significantly higher expenses.

Weak Simulation Extractability of Groth16. It is well-known that Groth16 zk-SNARK is
malleable. Hence, one needs to use a deterministic nullifier to prevent double withdrawing.
Also, in our design (refer to Eq. 1), it is necessary for a user to supply the associated private
key sk as part of the private input (i.e., witness). This measure is taken to mitigate the risk
that an adversary can replace a public key with his public key. However, in practice, we
only need to use the public as a parameter to the public input. This is considered secure,
given that Groth16 is recently proven to have the weak simulation extractability property [8].
This means that an adversary cannot produce a valid proof for a different input instance.
Adopting this approach can notably reduce the proof generation costs for provers.

10 Conclusion

This paper investigates how to reduce the deposit cost of on-chain mixers. We first propose a
design named MPB, which batches deposits in a queue and updates the Merkle tree per batch.
This methodology reduces the Merkle tree update times and, thus, decreases the deposit cost.
Specifically, our evaluation results show that MPB can achieve 7× fewer costs for depositing
than state-of-the-art on-chain mixers. Moreover, we leverage off-chain verification to reduce
the cost further. We also prove that our improved on-chain mixer designs can guarantee
correctness, privacy, availability, efficiency, and fairness. We hope our work can engender
further research into more secure and user-friendly on-chain mixers.

References
1 Cyclone. Available at: https://cyclone.xyz/bsc.
2 Ganache. Available at: https://trufflesuite.com/ganache/.
3 Jubjub. Available at: https://z.cash/technology/jubjub/.
4 Tornado cash. Available at: https://tornado.cash/, before August 8th, 2022.
5 Typhoon.cash. Available at: https://typhoon.cash/.

https://cyclone.xyz/bsc
https://trufflesuite.com/ganache/
https://z.cash/technology/jubjub/
https://tornado.cash/
https://typhoon.cash/


Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:23

6 Typhoon.network. Available at: https://app.typhoon.network/.
7 Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:

Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 191–219. Springer, 2016.

8 Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another look at
extraction and randomization of groth’s zk-snark. In Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised
Selected Papers, Part I 25, pages 457–475. Springer, 2021.

9 Jordi Baylina, Kobi Gurkan, Roman Semenov, Alexey Pertsev, adria0, Ehud Ben-Reuven,
arnaucube, Eduard S., and Marta Bellés. circomlib, 2020. Available at: https://github.com/
tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc.

10 Jordi Baylina, Kobi Gurkan, Roman Semenov, Alexey Pertsev, adria0, Ehud Ben-Reuven,
arnaucube, Eduard S., and Marta Bellés. snarkjs, 2020. Available at: https://github.com/
tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5.

11 Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Advances in Cryptology—EUROCRYPT’93: Workshop on the Theory
and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings
12, pages 274–285. Springer, 1994.

12 Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to iops and stateless blockchains. In Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part I 39, pages 561–586. Springer, 2019.

13 Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.6, 2023.
14 Chainalysis. Understanding tornado cash, its sanctions implications, and key com-

pliance questions, 2022. Available at: https://blog.chainalysis.com/reports/
tornado-cash-sanctions-challenges/.

15 Dmitry Ermilov, Maxim Panov, and Yury Yanovich. Automatic bitcoin address clustering. In
2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
pages 461–466. IEEE, 2017.

16 Davide Frey, Mathieu Gestin, and Michel Raynal. The synchronization power (consen-
sus number) of access-control objects: The case of allowlist and denylist. arXiv preprint
arXiv:2302.06344, 2023.

17 Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010:
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings
30, pages 465–482. Springer, 2010.

18 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for zero-knowledge proof systems. In USENIX Security
Symposium, volume 2021, 2021.

19 Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35, pages
305–326. Springer, 2016.

20 Joe Hurd. Verification of the miller–rabin probabilistic primality test. The Journal of Logic
and Algebraic Programming, 56(1-2):3–21, 2003.

21 Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. Peredi: Privacy-enhanced,
regulated and distributed central bank digital currencies. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 1739–1752, 2022.

AFT 2023

https://app.typhoon.network/
https://github.com/tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc
https://github.com/tornadocash/circomlib#c372f14d324d57339c88451834bf2824e73bbdbc
https://github.com/tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5
https://github.com/tornadocash/snarkjs#869181cfaf7526fe8972073d31655493a04326d5
https://blog.chainalysis.com/reports/tornado-cash-sanctions-challenges/
https://blog.chainalysis.com/reports/tornado-cash-sanctions-challenges/


16:24 Pay Less for Your Privacy: Towards Cost-Effective On-Chain Mixers

22 Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 839–858. IEEE, 2016.

23 Duc V Le and Arthur Gervais. Amr: Autonomous coin mixer with privacy preserving reward
distribution. ACM Conference on Advances in Financial Technologies (AFT’21), 2021.

24 Greg Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin forum, 2013.
25 Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling for transaction privacy.

Proceedings on Privacy Enhancing Technologies, 2018(2):105–121, 2018.
26 Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th Symposium on

Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings, pages 80–91. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238183.

27 Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy (SP),
pages 397–411. IEEE, 2013.

28 Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, et al. An empirical analysis
of traceability in the monero blockchain. Proceedings on Privacy Enhancing Technologies,
2018(3):143–163, 2018.

29 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at:
https://bitcoin.org/bitcoin.pdf.

30 Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accumulators for distributed pki.
In Security and Cryptography for Networks: 10th International Conference, SCN 2016, Amalfi,
Italy, August 31–September 2, 2016, Proceedings 10, pages 292–309. Springer, 2016.

31 Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and collision
resistance. In International workshop on fast software encryption, pages 371–388. Springer,
2004.

32 Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy (SP), pages 459–474. IEEE, 2014.

33 Peter Todd. Merkle mountain ranges, 2018. Available at: https://github.com/
opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md.

34 Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta, Benny Pinkas,
and Avishay Yanai. Utt: Decentralized ecash with accountable privacy. Cryptology ePrint
Archive, Paper 2022/452, 2022. URL: https://eprint.iacr.org/2022/452.

35 TornadoCash. Tornado.cash governance proposal, 2020. Available at: https://tornado-cash.
medium.com/tornado-cash-governance-proposal-a55c5c7d0703.

36 U.S. DEPARTMENT OF THE TREASURY. U.s. treasury sanctions notorious virtual currency
mixer tornado cash, 2022. Available at: https://home.treasury.gov/news/press-releases/
jy0916.

37 Friedhelm Victor. Address clustering heuristics for ethereum. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February
10–14, 2020 Revised Selected Papers 24, pages 617–633. Springer, 2020.

38 Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi Zhou, Lifeng Gao, Pascal Berrang,
Benjamin Livshits, and Arthur Gervais. On how zero-knowledge proof blockchain mixers
improve, and worsen user privacy. In Proceedings of the ACM Web Conference 2023, pages
2022–2032, 2023.

39 Zhipeng Wang, Marko Cirkovic, Duc V. Le, William Knottenbelt, and Christian Cachin. Pay
less for your privacy: Towards cost-effective on-chain mixers. Cryptology ePrint Archive,
Paper 2023/1222, 2023. URL: https://eprint.iacr.org/2023/1222.

https://doi.org/10.1109/SFCS.2003.1238183
https://bitcoin.org/bitcoin.pdf
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://eprint.iacr.org/2022/452
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://tornado-cash.medium.com/tornado-cash-governance-proposal-a55c5c7d0703
https://home.treasury.gov/news/press-releases/jy0916
https://home.treasury.gov/news/press-releases/jy0916
https://eprint.iacr.org/2023/1222


Z. Wang, M. Cirkovic, D. V. Le, W. Knottenbelt, and C. Cachin 16:25

40 Zhipeng Wang, Xihan Xiong, and William J. Knottenbelt. Blockchain transaction censorship:
(in)secure and (in)efficient? Cryptology ePrint Archive, Paper 2023/786, 2023. URL: https:
//eprint.iacr.org/2023/786.

41 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 2014. URL: https://ethereum.github.io/yellowpaper/paper.pdf.

42 Lei Wu, Yufeng Hu, Yajin Zhou, Haoyu Wang, Xiapu Luo, Zhi Wang, Fan Zhang, and Kui
Ren. Towards understanding and demystifying bitcoin mixing services. In Proceedings of the
Web Conference 2021, pages 33–44, 2021.

43 Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. Platypus: a central bank
digital currency with unlinkable transactions and privacy-preserving regulation. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
2947–2960, 2022.

44 Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing transactions across cryptocur-
rency ledgers. In 28th USENIX Security Symposium (USENIX Security 19), pages 837–850,
2019.

AFT 2023

https://eprint.iacr.org/2023/786
https://eprint.iacr.org/2023/786
https://ethereum.github.io/yellowpaper/paper.pdf




Non-Atomic Payment Splitting in Channel
Networks
Stefan Dziembowski #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Paweł Kędzior #

University of Warsaw, Poland

Abstract
Off-chain channel networks are one of the most promising technologies for dealing with blockchain
scalability and delayed finality issues. Parties connected within such networks can send coins to
each other without interacting with the blockchain. Moreover, these payments can be “routed” over
the network. Thanks to this, even the parties that do not have a channel in common can perform
payments between each other with the help of intermediaries.

In this paper, we introduce a new notion that we call Non-Atomic Payment Splitting (NAPS)
protocols that allow the intermediaries in the network to split the payments recursively into several
subpayments in such a way that the payment can be successful “partially” (i.e. not all the requested
amount may be transferred). This contrasts with the existing splitting techniques that are “atomic”
in that they did not allow such partial payments (we compare the “atomic” and “non-atomic”
approaches in the paper). We define NAPS formally and then present a protocol that we call
“EthNA”, that satisfies this definition. EthNA is based on very simple and efficient cryptographic
tools; in particular, it does not use expensive cryptographic primitives. We implement a simple
variant of EthNA in Solidity and provide some benchmarks. We also report on some experiments
with routing using EthNA.

2012 ACM Subject Classification Security and privacy → Systems security

Keywords and phrases Blockchain, Payment Channels Networks

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.17

Related Version Full Version: https://eprint.iacr.org/2020/166 [7]

Supplementary Material Software: https://github.com/Sam16450/NAPS-EthNA
archived at swh:1:dir:5336d35d6eae6b63827c47b1c3614ef501e5083e

Funding This result is part of a project that received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 innovation program (grant PROCONTRA-885666).
It was also party financed by the Foundation for Polish Science under grant TEAM/2016-1/4 founded
within the UE 2014–2020 Smart Growth Operational Program and by the Ethereum Foundation
grant FY18-0023.

1 Introduction

Blockchain technology allows a large group of parties to reach a consensus about the contents
of an (immutable) ledger, typically containing a list of transactions. In blockchain’s initial
applications, these transactions described transfers of coins between the parties. One of the
very promising extensions of the original Bitcoin ledger is blockchains that allow to register and
execute the so-called smart contracts (or simply “contracts”), i.e., formal agreements between
the parties, written down in a programming language and having financial consequences (for
more on this topic see, e.g., [12, 6]). Probably the best-known example of such a system
is Ethereum. Several blockchain-based systems’ main limitations are delayed finality, lack

© Stefan Dziembowski and Paweł Kędzior;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.dziembowski@crypto.edu.pl
https://orcid.org/0000-0002-6914-6425
mailto:Pawel.Kedzior@crypto.edu.pl
https://orcid.org/0000-0003-2270-8694
https://doi.org/10.4230/LIPIcs.AFT.2023.17
https://eprint.iacr.org/2020/166
https://github.com/Sam16450/NAPS-EthNA
https://archive.softwareheritage.org/swh:1:dir:5336d35d6eae6b63827c47b1c3614ef501e5083e;origin=https://github.com/Sam16450/NAPS-EthNA;visit=swh:1:snp:1bf7c6035582b8f6015b2ae7ecdb0646189d6ad1;anchor=swh:1:rev:dfedc5518ef39345a5570efa624ac00edd96de96
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Non-Atomic Payment Splitting in Channel Networks

of scalability, and non-trivial transaction fees. Off-chain channels [18, 3] are a powerful
approach for dealing with these issues. The simplest examples of this technology are the
so-called “payment channels”. Informally, such a channel between Alice and Bob is an object
in which both parties have some coins that they can freely transfer without interacting with
the blockchain (“off-chain”). We explain this in Sec. 1.1 below. Readers familiar with this
topic can go quickly over it, just paying attention to some terminology and notation that we
use

1.1 Background
Assume that the maximal blockchain reaction time is ∆. We model amounts of coins as
non-negative integers and write “n¢” to denote n coins. A payment channel is opened when
Alice and Bob deploy a smart contract on the ledger and deposit some number of coins (say:
x, and y, respectively) into it. The initial balance of this channel is: “x¢ in Alice’s account,
y¢ in Bob’s account” (or [Alice 7→ x,Bob 7→ y] for short). This balance can be updated (to
some new balance [Alice 7→ x′,Bob 7→ y′], such that x′ + y′ = x+ y) by exchanging messages
between the parties. The corresponding smart contract guarantees that each party can at
any time close the channel and get the money corresponding to her latest balance. Only the
opening and closing operations require interaction with the blockchain. Since updates do not
require blockchain participation, each update is immediate (the network speed determines
its time) and at essentially no cost.

Now, suppose we are given a set of parties P1, . . . , Pn and channels between some of them.
These channels naturally form an (undirected) channel graph, which is a tuple G = (P, E ,Γ)
with the set of vertices P equal to {P1, . . . , Pn} and set E of edges being a family of two-
element subsets of P . The elements of P will be typically denoted as “Pi � Pj” (instead of
{Pi, Pj}). Every Pi � Pj represents a channel between Pi and Pj , and the cash function Γ
determines the number of coins available for the parties in every channel. More precisely,
every Γ(Pi � Pj) is a function f of a type f : {Pi, Pj} → Z≥0. We will often write ΓPi�Pj

to denote this function. The value ΓPi�Pj (P ) denotes the amount of coins that P has in
her account in channel Pi � Pj . A path (in G) is a sequence Pi1 _ · · · _ Pit

such that for
every j we have Pij

� Pij+1 ∈ E . In the formal part of the paper (see Sec. 3.1), we will
also include “nonces” in the paths, but in this informal description, we ignore them. In this
paper, for the sake of simplicity, we assume that (a) the channel system is deployed with
some initial value of Γ, which evolves over time, (b) once a channel system is established, no
new channels are created, and no channels are closed (i.e., E remains fixed), and (c) no coins
are added to the existing channels, i.e., the total amount of coins available in every channel
e = Pi � Pj never exceeds the total amount available in it initially.

Channel graphs can serve for secure payment sending. Let us recall how this works in the
most popular payment channel networks, such as Lightning or Raiden. Our description is
very high-level (for the details, see, e.g., [18]). Consider the following example: we have three
parties: P1, P2, and P3 and two channels: P1 � P2 and P2 � P3 between them. Now,
suppose the sender P1 wants to send v¢ to the receiver P3 over the path P1 _ P2 _ P3, with
P2 being an intermediary that routes these coins. This is done as follows. First, party P1 asks
P2 to forward v¢ in the direction of P3 (we call such a request pushing coins from P1 to P2).
The receipt from P3 confirming that she received these coins has to be presented by P2 within
2∆ (denote this receipt with ρ). If P2 manages to do it by this deadline, she gets these coins
in her account in the channel P1 � P2. To guarantee this, P1 initially blocks these coins in
the channel P1 � P2. These coins can be claimed back by P1 if time 2∆ have passed, and
P2 did not claim them. In a similar way, P2 pushes these coins to P3, i.e., she offers P3 to



S. Dziembowski and P. Kędzior 17:3

claim (by providing proof ρ within ∆ time) v¢ in the channel P3 � P4. Now suppose that
party P3 claims her v¢ in channel P2 � P3. This can only be done by providing a receipt
ρ confirming that she received these coins. We call this process acknowledging payment.
Party P2 can now claim her coins in channel P1 � P2 by submitting an acknowledgment
containing the receipt ρ. In the above example, the number of coins that can be pushed via
a channel Pi � Pi+1 is upper-bounded by the number of coins that Pi has in this channel.
Therefore the maximal amount of coins that can be pushed over path P1 _ P2 _ P3 is equal
to the minimum of these values. We will call this value the capacity of a given path.

On the technical level, in the Lightning network, the receipt ρ is constructed using
so-called hash-locked transactions and “smart contracts” that guarantee that nobody loses
money. This is possible thanks to how the n∆ deadlines in the channels P1 � P2 and
P2 � P3 are chosen. An exciting feature of this protocol is that receipt ρ serves not only
for internal purposes of the routing algorithm but can also be viewed as the output of the
protocol, which can be used by P1 as a receipt that she transferred some coins to P4. In other
words: P1 can use ρ to resolve disputes with P4, either in some smart contract (deployed
earlier and using the given PCN for payments) or outside the blockchain. The notion of
payment channels can be generalized to “state channels”. Informally, such channels can serve
not only for payments between the parties but also for executing contracts within them. For
more on this, see, e.g., [6, 15, 2].

1.2 Our contribution and related work
One of the main problems with the existing PCNs is that sending a payment between
two parties requires a path from the sender to the receiver with sufficient capacity. This
problem is amplified by the fact that the capacity of potential paths can change dynamically
as several payments are executed in parallel. Although usually, the payments are swift,
in the worst case, they can be significantly delayed since each “hop” in the network can
take as long as the pessimistic blockchain reaction time. Therefore it is hard to predict
a given path’s capacity even in the very near future. This is especially a problem if the
capacity of a given channel is close to being completely exhausted (i.e. it is close to zero
because of several ongoing payments). A natural solution for solving this problem is to split
the payments into several subpayments. This was described in several recent papers (see,
e.g., [16, 17, 20, 8]). However, up to our knowledge, all these papers considered so-called
“atomic payment splitting”, meaning that either all the subpayments got through or none of
them. In this paper, we prove a new, alternative technique that we call “non-atomic payment
splitting” that does not have this feature and hence is more flexible. (We compare atomic
and non-atomic splitting in Sec. 2.1.2.) More concretely, our contribution can be summarized
as follows.

NAPS definition. We introduce the concept of non-atomic payment splitting by defining
formally a notion of Non-Atomic Payment Splitting (NAPS) protocols. In our definition, we
require that splitting is done ad-hoc by the intermediaries, possibly in reaction to dynamically
changing the capacity of the paths or fees. Perhaps the easiest way to describe NAPS is
to look at payment networks as tools for outsourcing payment delivery. For example, in
the scenario from Section 1.1 party P1 outsources to P2 the task of delivering v¢ to P4, and
gives P2 time 2∆ to complete it (then P2 outsources this task to P3 with a more restrictive
deadline). The sender might not be interested in how this money is transferred, and the only
thing that matters to her is that it is indeed delivered to the receiver and that she gets the
receipt. In particular, the sender may not care if the money gets split on the way to the

AFT 2023



17:4 Non-Atomic Payment Splitting in Channel Networks

receiver, i.e., if the coins that he sends are divided into smaller amounts that are transferred
independently over different paths. In many cases, the sender may also be ok with not all
money being transferred at once. NAPS protocol permits such recursive non-atomic payment
splitting into “subpayments” and partial transfers of coins. This splitting can be done in
an ad-hoc way. Moreover, the users can try to route the same payment over the same path
multiple times (hoping that some more capacity becomes available in the meantime). We
present a UC-like definition of NAPS. An additional advantage of our contribution is that our
definition can be easily adapted to cover the atomic payment splitting protocols [17, 1, 19, 8].

EthNA construction. We construct a protocol that we call EthNA that satisfies the NAPS
definition. We call our protocol EthNA, in reference to Etna, one of the highest active
volcanos in Europe. This is because the coin transfers in EthNA resemble a lava flood
(with large streams recursively bifurcating into small substreams). The letter “h” is added
so that the prefix “Eth-” is reminiscent of ETH, the symbol of Ether (the currency used in
Ethereum), and “NA” stands for “Non-Atomic”.

In EthNA the “subreceipts” for subpayments are aggregated by the intermediaries into
one short subreceipt so that their size does not grow with the number of aggregated subreceipts.
This is done efficiently, particularly by avoiding advanced and expensive techniques such
as noninteractive zero knowledge or homomorphic signature schemes and hash functions.
Instead, we rely on a technique called “fraud-proofs” in which an honest behavior of parties is
enforced by a punishing mechanism (this method was used before, e.g., in [21, 6]). We stress
that the amount of data that is passed between two consecutive parties on the path does
not depend on the number of subpayments in which the payment is later divided. The same
applies to the data these two parties send to the blockchain if they conflict. We summarize
the complexity of EthNA in Sec. 3.3.

Security analysis and implementation. We provide a formal security analysis of EthNA.
More precisely, we prove that EthNA satisfies the NAPS definition. We also analyze
EthNA’s complexity. We also implement EthNA contracts in Solidity (the standard
language for programming the smart contracts in Ethereum), and we provide some routing
experiments. We describe this implementation and provide some benchmarks. We stress,
however, that routing algorithms are not the main focus of this work and further research on
designing algorithms that exploit the non-atomicity of payment splitting.

Possible applications of NAPS. As mentioned above, one obvious application of NAPS is
to help efficiently send one big payment by dividing it into several ad-hoc installments: if it
is impossible to route the total amount u, then the client can accept the fact that v < u coins
were transferred (due to network capacity limitations), and try to transfer the remaining
u− v coins later (in another installment). The same applies to other situations, e.g., when
the user wants to exchange coins for another currency. Ideally, he would like to exchange the
entire amount u, but exchanging v < u is better than nothing. A related scenario is making
a partial “bank deposit” when the user wants to deposit as much money as possible but no
more than u.

Moreover, in many cases, the goods the seller delivers in exchange for the payment can
be divided into tiny units and sent to the buyer depending on how many coins have been
transferred. One example is battery charging, where charging, say 1/2 of the battery is much
better than having the battery dead. This applies both to mobile phones and to IoT devices
that can trade energy with each other. Let us also mention applications like file sharing,



S. Dziembowski and P. Kędzior 17:5

where the client typically connects to several servers and tries to download as much data as
possible from each. NAPS can be an attractive way to perform payments in this scenario.
Note also that NAPS can be combined with other means of payment. If a user manages to
send only u < v coins via NAPS, then she can decide to send the rest (v − u) in some more
expensive way (this makes sense, especially in systems where the fee depends on the amount
being transferred, e.g., in the credit card payments).

Related work. Some of the related work was mentioned already before. Off-chain channels
are a topic of intensive research, and there is no space here to describe all recent exciting
developments [9, 15, 13, 6, 4, 5, 11, 14, 2] in this area. The reader can also consult SoK
papers on off-chain techniques (e.g. [10]). Partial coin transfers were considered in [17], but
with no aggregation techniques and ad-hoc splitting. Atomic payment splitting has been
considered in [17, 1, 19, 8]. All of these papers focus on routing techniques, which is not the
main topic of this paper.

Organization and notation. Sec. 2 contains an informal description of our ideas. Then, in
Sec. 3, we provide the formal NAPS definition and the detailed description of EthNA and
its security properties. An overview of our implementation and simulations is presented in
Sec. 3.3. When we say that a message is “signed by some party”, we mean that it is signed
using some fixed signature scheme that is existentially unforgeable under a chosen-message
attack. Natural numbers are denoted with N. We will also use the notion of nonces. Their set
is denoted with N . We assume that N = N. We use some standard notations for functions,
string operations, and trees. By [ai 7→ x1, . . . , am 7→ xm] we mean a function f : {ai, . . . , am}
→ {x1, . . . , xm} such that for every i we have f(ai) := xi. Let A be some finite alphabet.
Strings δ ∈ A∗ are frequently denoted using angle brackets: δ = ⟨δ1, . . . , δm⟩. Let δ be a
string ⟨δ1, . . . , δn⟩. For i = 1, . . . , n let δ[i] denote δi. Let ε denote an empty string, and “||”
denote the concatenation of strings. We overload this symbol, and write δ||a and a||δ to
denote δ||⟨a⟩ and ⟨a⟩||δ, respectively (for δ ∈ A∗ and a ∈ A). For k ≤ n let δ|k denote δ’s
prefix of length k. A set of prefixes of δ is denoted prefix(δ) (note that it includes ε).

We define trees as prefix-closed sets of words over some alphabet A. Formally, a tree is
a subset T of A∗ such that for every δ ∈ T we have that any prefix of δ is also in T . Any
element of T is called a node of this tree. For two nodes δ, β ∈ T such that β = δ||a (for
some a) we say that δ is the parent of β, and β is a child of δ. A labeled tree over A is a pair
(T,L), where T is a tree over A, and L is a function from T to some set of labels. For δ ∈ T

we say that L(δ) is the label of δ.

2 Informal description

Below, in Sec. 2.1 we provide an overview of NAPS definition, and in Sec. 2.2 we informally
describe EthNA.

2.1 Overview of the NAPS definition
Let us now explain the NAPS protocol features informally (for a formal definition, see
Sec. 3.1). Throughout this paper, we use the following convention: our protocols are run
by a set of parties denoted P = {P1, . . . , Pn}, where P1 be the sender, P2, . . . , Pn−1 be the
intermediaries, and Pn is the receiver. A message m signed by a party Pi will be denoted
*m+Pi . Let v be the number of coins that P1 wants to send to Pn, and let t be the maximal
time until the transfer of coins should be completed. Since, in general, P1 can perform

AFT 2023



17:6 Non-Atomic Payment Splitting in Channel Networks

multiple payments to Pn, we assume that each payment comes with a nonce µ ∈ N that can
be later used to identify this payment. Sometimes we will simply call it “payment µ”. For
simplicity, we start with an informal description of how NAPS protocols operate when all
parties are honest. The security properties (taking into account the malicious behavior of
the parties) are described informally in Sec. 2.1.1, and formally defined in Sec. 3.1. Before
proceeding with the description of EthNA the reader may look at the example in Fig. 1.

To describe the protocol more generally, let us start by presenting it from the point of
view of the sender P1. Let Pi1 , . . . , Pit

be the neighbors of P1, i.e., parties with which P1 has
channels. Suppose the balance of each channel P1 � Pij is [P1 7→ xi, Pij 7→ yj ] (meaning
that P1 and Pij

have xi and yj coins in their respective accounts in this channel). Now,
P1 chooses to push some amount vj of coins to Pn via some Pij

, and set up a deadline
tj for this (we will also call vj a subpayment of payment µ). This results in: (a) balance
[P1 7→ xi, Pij

7→ yj ] changing to [P1 7→ xi − vj , Pij
7→ yj ], (b) the number of coins that P1

still wants to transfer to Pn is decreased as follows: v := v− vj , and (c) Pij holding “vj coins
that she should transfer to Pn within time tj .

It is also ok if Pij
transfers only some part v′

j < vj of this amount (this can happen, e.g.,
if the paths that lead to Pn via Pj do not have sufficient capacity). In this case, P1 has to be
given back the remaining (“non-transferred”) amount r = vj −v′

j . More precisely, before time
tj comes, party Pij

acknowledges the amount v′
j that she managed to transfer. This results

in (1) changing the balance of the channel P1 � Pij by crediting v′
j coins to Pij ’s account in

it, and (2) r coins to P1’s account. Moreover, (3) P1 adds back the non-transferred amount
r to v, by letting v := v + r. Above (1) corresponds to the fact that Pij has to be given the
coins that she transferred, and (2) comes from the fact that not all the coins were transferred
(if Pij managed to transfer all the coins, then, of course, r = 0). Finally, (3) is used for P1’s
“internal bookkeeping” purposes, i.e., P1 simply writes down that r coins “were returned”
and still need to be transferred. While the party P1 waits for Pij

to complete the transfer
that it requested, she can also contact some other neighbor Pik

asking her to transfer some
other amount vk to Pn. This is done in the same way as transferring coins via Pij

.
The intermediaries can repeat this process. Let P be a party that holds some coins that

were “pushed” to her by some P ′ (which originate from P1 and must be delivered to Pn).
Now, P can split them further, and moreover, she can decide on her own how this splitting
is done depending, e.g., on the current capacity of the possible paths leading to Pn. The
payment splitting can be done arbitrarily, except for the two following restrictions. First, we
do not allow “loops” (i.e. paths containing the same party more than once), as it is hard to
imagine any application of such a feature. In the basic version of the protocol, we assume
that the number of times a given payment subpayment is split by a single party P is bounded
by a parameter δ ∈ N, called arity (for example arity on Figs. 1 is at most 2). In the extended
version of this paper [7] we present an improved protocol where δ is unbounded (at the cost
of a mild increase of the pessimistic number of rounds of interaction). As mentioned, the
essential feature of NAPS is the non-atomicity of payments. We discuss it further below.

2.1.1 NAPS security properties

In the description in Sec. 2.1 we assumed that all parties behaved honestly. Like all other
PCNs, we require that NAPS protocols work if the parties are malicious. In particular, no
honest party P can lose money, even if all the other parties are not following the protocol and
are working against P . The corrupt parties can act in a coalition modeled by an adversary
A. Formal security definition appears in Sec. 3.1. Let us now informally list the security



S. Dziembowski and P. Kędzior 17:7

P1 P2

P3

P4

P5

P610 1
1

1

3
1

3 1 2 1

2

1

10

1

(a) The channel graph with the initial coin distribution.

(1)

(2) (3)

(4)

(5)

(6)

(7)
(8)

P1 P2

P3

P4

P5

P64 16¢, 3∆
0

1
1¢, 2∆

0

1
3¢, 2∆

0 13¢, 2∆

9

1

1¢, ∆

3 0 13¢, ∆

0

1

2¢, ∆

(b) The sender P1 wants to send 7¢ to the receiver P6. She splits these coins into two
amounts: 6¢ pushed to P2 and 1¢ pushed to P3. This is indicated with labels (1) and (2),
respectively. Then (3) party P3 simply pushes 1¢ further to P6. Party P2 splits 6¢ into
3¢ + 3¢, and pushes 3¢ to both P4 (4) and P5 (5). Path P4 _ P6 initially had capacity
2 only (see Fig. (a) above), but luckily in the meanwhile 1¢ got unlocked (6) for P4 in
channel P4 � P6, and hence (7) party P4 pushes all 3¢ to P6. Party P5 pushes only 2¢
to P6 (8). The channel balances correspond to the situation after the coins are pushed
(except of channel P4 � P6 where we also indicated the fact that 1¢ got unlocked (6)).
Each party P can also decide on her own about the timeout t of each subpayment she
pushes (this timeout is indicated with “x∆”). The only restriction is that t has to come
at least ∆ before the time she has to acknowledge that subpayment back. This is because
P needs this “safety margin” of ∆ in case P ′ is malicious, and the acknowledgment has
to be done “via the blockchain”.

P1 P2

P3

P4

P5

P65 6ack. 5¢
0

2
ack. 1¢

1

3
ack. 2¢

0 4ack. 3¢

9

2

ack. 1¢

0 4ack. 3¢

0

3
ack. 2¢

(c) Party P6 acknowledges subpayment of 1¢ to P3, which, in turn acknowledges it to P1.
Party P6 also acknowledges subpayment of 3¢ to P4 and 2¢ to P5, who later acknowledge
them to P2. Once P2 receives both acknowledgments, she “aggregates” them into a single
acknowledgment (for 5¢) and sends it to P1. As a result 5¢ + 1¢ = 6¢ are transferred
from P1 to P6. The channel balances correspond to the situation after the coins were
acknowledged.

Figure 1 An example of a NAPS protocol execution. An edge “ Pi Pjx y ” denotes the fact
that there exists a channel between Pi and Pj , and the parties have x and y¢ in it, respectively.

AFT 2023



17:8 Non-Atomic Payment Splitting in Channel Networks

requirements, which are pretty standard and hold for most PCNs (including Lightning).
Below, let u denote the total amount of coins P1 wants to transfer to Pn within some
payment µ.

The first property is called fairness for the sender. To define it, note that as a result of
payment µ (with timeout t), the total amount of coins that each party P has in the channels
with other parties typically changes. Let netµ(P ) denote the number of coins that P gained
in all channels. Of course netµ(P ) can be negative if P lost −netµ(P ) coins. We require
that by the time t an honest Pi holds a receipt of a form Receipt(µ, v) :=“an amount v of
coins has been transferred from P1 to Pn as a result of payment µ”. Moreover, under normal
circumstances, i.e. when everybody is honest, v is equal to −netµ(P1) (i.e. the sum of the
amounts that P1 lost in the channels). In case some parties (other than P1) are dishonest,
the only thing that they can do is to behave irrationally and let v ≥ −netµ(P1), in which
case P1 holds a receipt for transferring more coins than she actually lost in the channels.
A receipt can be later used in another smart contract (e.g., a contract that delivers some
digital goods whose amount depends on v). Fairness for the receiver is defined analogously,
i.e.: if P1 holds a receipt Receipt(µ, v) then typically v = net(Pn), and if some parties (other
than Pn) are dishonest, then they can make v ≤ netµ(Pn). In other words, P1 cannot get a
receipt for an amount higher than what Pn actually received in the channels. Finally, we
require that the following property called balance neutrality for the intermediaries holds: for
every honest P ∈ {P2, . . . , Pn−1} we have that netµ(P ) ≥ 0. Again: if everybody else is also
honest, then we have equality instead of inequality.

2.1.2 Atomic vs. non-atomic payment splitting
As already highlighted in Sec. 1.2, the previous protocols on payment splitting always required
payments to be atomic, meaning that for a payment to succeed, all the subpayments had to
reach the receiver. Technically, this means that to issue a receipt for any of the subpayments
(this receipt is typically a preimage of a hash function, see, e.g., [8]) all of them need to reach
the receiver. This has several disadvantages: (1) the coins remain blocked in every path at
least until the last subpayment arrives to the receiver, (2) the success of a given subpayment
depends not only on the subsequent intermediaries but also on the other “sibling” paths
(this problem was observed in [8] where it is argued that this risk may lead to intermediaries
rejecting subpayments that were split before, see Sec. 3.1 of [8]). Finally, atomic payments
may result in “deadlock” situations in the network where two competing payments can
prevent each other from being executed. We describe an example of such a situation in [7].

Let us also remark that “atomicity” and even “fine-grained atomicity” can also be obtained
in EthNA by a small protocol modification. We write more about it in the extended version
of this paper [7]. Let us also remark that atomic payment splitting, in general, seems to be
easier to achieve, which is probably the reason why there has been more focus on them in
the literature (with papers focusing more on other aspects of this problem, such as routing
algorithms, e.g. [8]). Finally, let us stress that we do not claim that non-atomicity is superior
to atomicity. We think both solutions have advantages and disadvantages, and there exist
applications where each is better than the other.

2.2 Overview of the EthNA protocol
After presenting the NAPS definition, let us now explain the main ideas behind the EthNA
protocol that realizes it. An essential feature of EthNA is that it permits “subreceipt
aggregation”, by which we mean the following. Consider some payment µ. Once Pn receives



S. Dziembowski and P. Kędzior 17:9

some subpayment v that reached it via some path π = P1 _ Pi1 _ · · ·Pik
_ Pn she issues

a subreceipt for this payment and sends it to Pik
. Each intermediary that receives more than

one subreceipt can aggregate them into one short subreceipt that she sends further in the
direction of P1. Finally, P1 also produces one short receipt for the entire payment. This
results in small communication complexity, and in particular, the pessimistic gas costs are
low (we discuss this in more detail in Sec. 4. One option would be to let the subreceipt
be signed using a homomorphic signature scheme and then exploit this homomorphism to
aggregate the subreceipts. This paper uses a simpler solution that can be efficiently and
easily implemented in the current smart contract platforms.

Very informally speaking, we ask Pn to perform the “subpayment aggregation herself”
(this is done when signing a subreceipt and does not require any further interaction with Pn).
Then, we let the other parties verify that this aggregation was performed correctly. If any
“cheating by Pn” is detected (i.e. some party discovers that Pn did not behave honestly),
then proof of this fact (called a “fraud-proof”) will count as a receipt that a total amount
has been transferred to Pn. From the security point of view, this is ok since an honest Pn

will never cheat (hence, no fraud-proof against him will ever be produced). Thanks to this
approach, we avoid entirely using any expensive advanced cryptographic techniques (such
as homomorphic signatures or noninteractive proofs). Below we explain the main idea of
EthNA by considering the example from Fig. 1. Again, we start by describing how the
protocol works when everybody is honest, and then (in Sec. 2.2) we show how the malicious
behavior is prevented.

Invoice sending. The protocol starts with the receiver Pn sending to P1 an “invoice” that
specifies (among other things) the identifier µ of the payment, and the maximal amount u
of coins that Pn is willing to accept. As we explain below, this invoice may be later used
together with fraud-proofs to produce proof that all u coins were transferred to Pn (if she
turns out to be malicious).

Pushing subpayments. Pushing subpayments is done by sending messages containing
information about the path that the subpayment “traveled” so far (together with the number
of coins to be pushed and timeout information) and simultaneously blocking coins in the
underlying channels. The messages sent between P1, P3 and P6 in Fig. 1 (a)) are presented
in the picture below.

P1 P3 P6
(push, P1 _ P3,

1¢, 2∆)
(push, P1 _ P3
_ P6, 1¢,∆)

Whenever a message (push, π, v, t) is sent from P to P ′, the party P blocks v coins in channel
P � P ′ for time t. These coins are claimed by P ′ if she provides a corresponding subreceipt
within time t. Otherwise, they are claimed back by P .

Acknowledging subpayments by the receiver. The receiver Pn acknowledges the subpay-
ments by replying with a signed subreceipt and claiming the coins blocked in the corresponding
channels. At the same time, the receiver Pn constructs a labeled graph called the “payment
tree” that is stored locally by Pn and grows with each acknowledged subpayment.

Let us now explain how the payment tree is constructed. Consider again Fig. 1 (c). As
explained before, the order of message acknowledgment can be arbitrary. In what follows, we
assume that the receiver P6 first acknowledges the subpayment that came along the path
P1 _ P3 _ P6. This means that P6 “accepts” that 1¢ will be transferred to her from P1 via

AFT 2023



17:10 Non-Atomic Payment Splitting in Channel Networks

path P1 _ P3 _ P6, or, in other words: 1¢ will be “passed” through each of P1, P3, and P6
(note that we included here the sender P1 and the receiver P6). This can be depicted as the
following graph that consists of a single path that we denote α:

P1 P3 P6 =: α1¢ 1¢ 1¢ (1)

To acknowledge the subpayment that was pushed along the path P1 _ P3 _ P6 party P6
signs α and sends it to P3. Such signed information will be called a “subreceipt” and denoted
*α+Pn

. By providing this subreceipt, party P6 also gets 1¢ in the P3 � P6 (these coins were
blocked by P3 in this channel when the “push” message was sent). The graph from Eq. (1) is
the first version of the payment tree that, as mentioned above, the receiver P6 stores locally.

Now, suppose the next subpayment that P6 wants to acknowledge is the one that came
along the path P1 _ P2 _ P4 _ P6, i.e., P6 accepts that 3¢ will be transferred to her from
P1 via path P1 _ P2 _ P4 _ P6. The receiver P6 now modifies the payment tree as follows:

P1 P34¢

P2 P4 P6

P61¢ 1¢

=: β3¢ 3¢ 3¢ (2)

Analogously to what we saw before, this tree represents the total amount of coins that will
be “passed” through different parties from P1 to P6 after acknowledging this subpayment is
completed. In Eq. (2) the thick line (denoted β) corresponds to the “new” path, and the
thin one is taken from Eq. (1), except that P1 is labeled with “4¢”. This is because the total
amount of coins that will be passed through P1 is equal to the sum of the coins passed before
(1¢) and now (3¢). Party P6 now signs path β to create a subreceipt that she sends to P4 to
claim 3¢ in the channel P4 � P6.

Finally, P6 acknowledges the subpayment along the path P1 _ P2 _ P5 _ P6. This is
done similarly to what we did before. The resulting tree is now as follows.

P1 P36¢

P2 P4 P6

P61¢ 1¢

3¢ 3¢

P5 P6

5¢

2¢ 2¢ =: γ

(3)

Note that we performed “summing” in two places on Eq. (3): at the node P1 (where we
computed 6¢ as 4¢ + 2¢) and an P2 (where 5¢ = 2¢ + 3¢). Labeled path γ is now signed by
P6 and sent to P5 as subreceipt in order to claim 2¢.

The payment trees whose examples we saw in Eqs. (1)–(3) are defined formally (in a
slightly more general version) in Sec. 3.2. Their main feature is that the value of coins in
the label of each node P is equal to the sum of the labels of the children of P . A recursive
application of this observation implies that the coin value of a label of P is equal to the sum
of labels in the leaves of the subtree rooted in P . In particular: the label on the root of the
entire tree equals the sum of the values in the leaves.

Acknowledging subpayments by the intermediaries. We now show how the intermediaries
P2, . . . , Pn−1 acknowledge the subpayments. On a high level, this is done by propagating the
subreceipts (issued by Pn) from right to left. Each party may receive several such subreceipts
(if she decides to split a given subpayment). Let W be the set of such subreceipts . When a
party P wants to acknowledge the subpayment, she chooses (in a way that we explain below)
one of the subreceipts ζ from her set W. She then forwards it back in the left direction to
the party P ′ that pushed the given subpayment to her. As a result P gets v¢ in the channel
P ′ � P . To determine the value of v¢ the following rule is used: it is defined as the label



S. Dziembowski and P. Kędzior 17:11

of P on the path ζ. Given this, the rule for choosing ζ ∈ W is pretty natural: P simply
chooses such the ζ that maximizes v. Such ζ will be called a “leader” of W (at node P ). To
illustrate it, let us look again at our example from Fig. 1.

First, observe that P3 holds only one subreceipt (i.e., the signed path α). She simply
forwards it to P1 and receives 1¢ in the channel P1 � P3. Note that this is exactly equal to
the value that she “lost” in the channel P3 � P6, and hence the balance neutrality property
holds. The situation is a bit more complicated for P2 since she holds two paths signed by
the receiver: β (defined on Eq. (2)) and γ (from Eq. (3)). By applying the rule described
above, P2 chooses the leader ζ at P2 to be equal to γ (since 5¢ > 3¢). This is depicted below
(the shaded area indicates the labels that are compared).

P14¢ P2 P4 P6β = 3¢ 3¢ 3¢

P16¢ P2 P5 P65¢ 2¢ 2¢γ = (4)

What remains is to argue about balance neutrality for P2, i.e., that number of coins received
by P2 in the channel P1 � P2 is equal to the sum of coins that she “lost on the right-hand
side”. In this particular example, it can be easily verified just by looking at Eq. (4) (5¢
are “gained”, and 2¢ + 3¢ are “lost”). In the general case, the formal proof is based on the
property that the value of coins in the label of each node P in a payment tree is equal to the
sum of the labels of the children of P .

Final receipt produced by P1. Once all subpayments are completed, P1 decides to conclude
the procedure and obtain the final receipt for the entire payment (see Sec. 2.1.1). Again, P1
holds a “payment report” W, i.e. a set of paths signed by P6. In the case of our example,
these paths are α (sent to P1 by P3) and γ (sent by P2). Party P1 chooses her “receipt”
similarly as the intermediaries choose which subreceipt to forward. More precisely, let ζ
be the path that is the leader of W at node P1. This path becomes the final receipt. The
amount of transferred coins equals the label of P1 in ζ. In our case, the leader ζ is clearly γ
(since its label at P is “6¢”, while the label of γ at P is “1¢”, cf. Eqs (1) and (3)). Hence, γ
becomes the final receipt for the payment of 6 coins.

“Fairness for the sender” follows the same argument as “balance neutrality for the
intermediaries”. For “fairness for the receiver,” observe that ζ is signed by the receiver and
is taken from the payment tree (created and maintained by the receiver). To finish the
argument, recall that: (a) as observed before, the label in the root of such a tree is always
equal to the sum of the labels in its leaves, and (b) this sum is exactly equal to the total
amount of coins that the receiver received from its neighbors during this payment procedure.

Dealing with malicious behavior. The primary type of malicious behavior that we have to
deal with is cheating by the receiver Pn, whose goal could be to get more coins than appears
on the final receipt held by the sender P1. This could potentially be done at the cost of
P1 or some of the intermediaries. So far, we have not described how to guarantee that Pn

produces the subreceipts correctly. As already highlighted, our trick is to let a malicious Pn

arbitrarily produce the subreceipts and later let other parties verify Pn’s operation. This
is based on the idea of fraud-proofs: if an intermediary P finds proof that Pn is cheating,
she can automatically claim all coins that were pushed to her by forwarding this proof “to
the left”. In this way, the cheating proof reaches the sender P1, who can now use it as the

AFT 2023



17:12 Non-Atomic Payment Splitting in Channel Networks

receipt for transferring the total amount that was requested (recall that P1 holds an “invoice”
from Pn). Suppose, e.g., that in our scenario P6 cheats by sending to P5, instead of γ (see
Eq. (3)), the following subreceipt:

P1γ̂ := 5¢ P2 P5 P64¢ 2¢ 2¢ (5)

The receiver does it to make P1 hold a receipt for 5¢, while in fact receiving 6¢. Party P5 has
no way to discover this fraud attempt (since from her local perspective everything looks ok),
so 2¢ get transferred to P6 in the channel P5 � P6. Party P5 forwards γ̂ to P2 and gets 2¢
in the channel P2 � P5 (hence the “balance neutrality” property for her holds). Now look
at this situation from the point of view of P2. In addition to γ̂ she got one more subreceipt,
namely β (see, e.g., Eq. (4)). Party P2 preforms a “consistency check” by combining γ̂ and β.
This is done by trying to locally reconstruct the part of the payment tree that concerns P2.
This is done as follows. First observe that the value on the label of P1 in β is 4¢, which is
smaller than the label of P1 in γ̂ (which is equal to 5¢). This means that β had to be signed
by P6 before she signed γ̂. Hence P2 first writes down β, and then on top of it she writes γ̂
(possibly overwriting some values). Normally (i.e. when P6 is honest), this should result in
a subtree of the tree from Eq. (3). However, since P6 was cheating the resulting graph is
different. Namely, P2 reconstructs the following:

P15¢ P2 P4 P63¢ 3¢

P5 P6

4¢

2¢
2¢

(6)

It is now obvious that P6 is cheating since the labels on the children of P2 sum up to 5¢,
which is larger than 4¢ (the label of P2). This “inconsistency” is marked as a shaded region
on Eq. (6). Hence the set {β, γ̂} is a fraud-proof against P6. As described above, once we get
such proof, we are “done”: each intermediary can claim all money that was blocked for her,
and the receiver can use it as a receipt that all the coins were transferred. Let us stress that,
of course, none of the parties assumes a priori that P6 is honest, and hence the “consistency
check” is always performed.

3 Technical details

We now proceed to the formal exposition of the ideas already presented informally in
Sec. 2. We start with defining a generalization of the term “paths” that were informally
introduced before. As already explained, to be as general as possible, the NAPS definition
permits that several subpayment of the same payment µ are routed via the same party
independently. Consider, e.g., the following scenario: 2¢ is sent from P1 to P4 via a path
P1 _ P2 _ P3 _ P4. This amount is first split by P2 as: 1¢ + 1¢, and each 1¢ coin
is pushed to P3, who, in turn, pushes each of them further to P4. Obviously, both 1¢
coins traveled along P1 _ P2 _ P3 _ P4, but nevertheless, they have to be considered as
separate subpayments. In order to uniquely identify each of them, we augment the definition
of “path” to include also “nonces” that will make them unique (in the abovementioned
situations). To distinguish such paths from those we used in the informal part we denoted
them as strings of pairs (party,nonce). A nonce is added in every hop. For example, in the
above scenario: the (augmented) paths are as follows ⟨(P1, µ1), (P2, µ2), (P3, µ3), (P4, µ4)⟩
and ⟨(P1, µ1), (P2, µ2), (P3, µ

′
3), (P4, µ

′
4)⟩ (where for both i = 3, 4 we have that µi and µ′

i are
distinct). Moreover, we assume that µ1 (“contributed” by the sender P1) is equal to the
nonce that identifies the entire payment.



S. Dziembowski and P. Kędzior 17:13

Formally, for a channel graph G = (P, E,Γ) a string π = ⟨(Pi1 , µ1), . . . , (Pi|π| , µ|π|)⟩ is a
path over G (for payment µ) if each µi ∈ N is a nonce, each Pij

� Pij+1 is an edge in G,
and Pi1 = P1. We also assume that a path corresponding to a payment µ always starts with
(P1, µ). We say that P appears on π (at position j) if we have that P = Pij . We assume
that every P appears at most once on π, or, in other words: the paths have no loops. In
the sequel, every party or functionality is modeled as poly-time interactive Turing machine.
Throughout this section, P denotes a party, u, v and w are non-negative integers denoting
the amounts of coins, µ is a nonce, π is a path over G, and t is time.

3.1 NAPS formal security definition

The protocol is parameterized with a security parameter 1κ known to all machines. The
protocol is executed by parties P1, . . . , Pn, who know each other’s public keys (this is easy
to achieve in real life using existing underlying blockchain infrastructure). The protocol
also comes with an incorruptible party RVM called receipt verification machine. The role
of this machine is to verify a receipt issued by Pn for payment µ. If this machine outputs
(i-sent, µ, w) to Z then we consider payment µ to be completed with the total amount of
w coins transferred from P1 to Pn. It models that the receipts produced by P1 need to be
publicly verifiable, so, e.g., they can be used later in another smart contract, see Sec. 2.1.1.
Following the tradition in formal cryptography, we first describe how network communication
is organized. Then we introduce the notions of “adversary” and “environment”. Afterward,
we specify the security requirements of the protocol by describing the “ideal” and “real”
models. Finally, we define security by comparing these two models. Both the ideal and the
real model come with a functionality AccountsG . This functionality (for the lack of space,
presented in detail in the extended version of this paper [7]) is used to model the amounts
of coins that the parties have in the channels. It is initialized with G and accepts messages
(trans, Pi, Pj , v) that are used to transfer v coins from Pi to Pj in channel Pi � Pj .

The network model. We assume a synchronous communication network, i.e., the execution
of the protocol happens in rounds. The notion of rounds is just an abstraction that simplifies
our model and has been used frequently in this area in the past (see, e.g., [5, 6]). Whenever
we say that some operation (e.g. sending a message or simply staying in idle state) takes
between τ and τ ′ rounds, we mean that it is up to the adversary to decide how long this
operation takes (as long as it takes between τ and τ ′ rounds). The same convention applies
to statements like “it takes at most/at least τ rounds”. We assume that every machine
is activated in each round. The communication between every two parties P and P ′ and
between a party and an ideal functionality takes 1 round. The adversary can delay messages
sent between other machines by at most ∆ rounds. This will always be stated explicitly. The
links between all the entities in the system are secure (encrypted and authenticated). To
avoid replay attacks, we assume that every party (both in the ideal and real scenario) rejects
a message m if she already received m before. Messages are tuples starting with keywords
written in sans-serif. We also use the following convention. When we say that a party waits
to receive a “message m of a form F”, we mean that all messages of a different form are
ignored. For example, if form F is (i-push, (π||⟨(P, µ), (P ′, µ′)⟩, v, t) this means that m has to
start with an “i-push” keyword, followed by a parameter denoting a path that ends with two
elements (denoted (P, µ) and (P ′, µ′) for future reference), parameter v denoting a number
of coins, and t denoting time.

AFT 2023



17:14 Non-Atomic Payment Splitting in Channel Networks

The adversary and the environment. The protocol is attacked by a poly-time rushing
adversary A who can corrupt some parties (when a party is corrupt A learns all its secrets
and takes complete control over it). A party that has not been corrupt is called honest. To
model that honest parties can make internal decisions about the protocol actions, we use
the concept of an environment. This notion is taken from the UC framework; however, to
keep things simple, we do not provide a complete UC-composable analysis of our protocol
(in particular: since we do not aim at proving composability, we do not have the “session
ids,” and we use a simplified modeling of time). The environment and the adversary take
as input G and the security parameter. The environment and the adversary can freely read
the state of the AccountsG functionality. Additionally, we allow the ideal-model adversary to
transfer coins from a dishonest party to an honest one. This corresponds to the fact that we
allow corrupt parties to behave irrationally and lose coins. A and Z can communicate. At
the end of its execution, Z produces an output.

The ideal model. Following the conventions of the UC framework, we assume that in the
ideal model, the parties simply forward to the ideal functionality the messages that they
receive from Z. For a NAPS protocol with arity δ executed over graph G the corresponding
ideal functionality is denoted NAPSδ

G and presented on Fig. 2.
The messages exchanged in the ideal model are indicated with a prefix “i-”. Let us now

discuss the messages exchanged between the parties and the ideal functionality parties .
Note that this functionality does not explicitly send any messages to the simulator. The
simulator interacts with the ideal functionality via the corrupt parties she controls. To
initiate a new payment µ parties P1 and Pn send respectively a message i-send(µ, v, t) to P1
and i-receive(µ, v, t) to Pn. We require that these messages have to be sent simultaneously
by P1 and Pn. This corresponds to an assumption that the parties P1 and Pn agreed on
transferring the coins beforehand. Once the transfer is finished, party RVM receives a
message i-acknowledged(⟨(P, µ)⟩, s) from the ideal functionality. The functionality NAPSδ

G
maintains a set Ψ that contains all the push requests that have not yet been acknowledged.
By push requests we mean tuples (π, v, t) such that some party sent (i-push, π, v, t) to the
functionality. If such a push request is in Ψ then we say it is open. This indicates that
the functionality is currently working on pushing v coins that already “traveled” along the
path π, and the deadline for this is t. The amount of coins still waiting to be delivered
is maintained using the function remaining. The push requests are created recursively.
Suppose there is an open push request (π||⟨(P, µ)⟩, v, t). To push it to a party P ′ party
P sends a message (i-push, (π||⟨(P, µ), (P ′, µ′)⟩), v′, t′) to NAPSδ

G . Once the transfer is
finished, party P is informed about how many coins were transferred within this push
request. This is done via a message i-acknowledged(⟨(P, µ), (P ′, µ′)⟩), v′′), where v′′ specifies
the amount of coins that were transferred. If there are no open push requests of a form
(π||⟨(P, µ), (P ′, µ′)⟩, v, t) then a party P can decide to close a given push request by sending
a message i-acknowledge((π||⟨(P, µ), (P ′, µ′)⟩, v, t) to NAPSδ

G . The function remaining and
the accounts in the P � P ′ channels are updated accordingly (by sending messages to the
AccountsG functionality). If P1 wants to finish processing given payment µ (this is possible only
if there are no open push requests corresponding to µ other than the request (⟨(P, µ)⟩, v, t))
then she sends an acknowledge message to NAPSδ

G . The “ideal model” adversary will also be
called the simulator and denoted S. We assume that S has access to the ideal functionality.
The output of the ideal execution of NAPSδ

G against S and Z with security parameter 1κ is a
random variable Ideal(NAPSδ

G ,S,Z, 1κ) denoting the output of Z In the extended version of
this paper [7] we argue why the informal properties from Sec. 2.1.1 are implied by this ideal
functionality.



S. Dziembowski and P. Kędzior 17:15

The ideal functionality NAPSδ
G is parametrized by a channel graph G = (P, E ,Γ) and an

arity parameter δ. It maintains a cash function Γ̂ initially equal to Γ and a set Ψ initially
equal to ∅. Function Γ̂ is used to denote the current amount of coins available in the
channels and set Ψ containing all open push requests. Moreover, the ideal functionality
maintains a function remaining : Ψ → Z≥0. It proceeds as follows.

Upon receiving a message of a form (i-send, µ, u, t) from P1 and (i-receive, µ, u, t) from Pn

(in the same round) – check if the following holds:
Correctness condition: (a) you have not received an “i-send” or an “i-receive” message
with this µ before and (b) the current time is greater than t− ∆.

If it does not hold, then ignore this message. Otherwise (a) add (⟨(P, µ)⟩, u, t) to Ψ and
(b) let remaining(⟨(P, µ)⟩, u, t) := v.

Upon receiving a message of a form (i-push, (π||⟨(P, µ), (P ′, µ′)⟩), v, t) from P – check if
the following holds:
Correctness condition: (a) you have not received an “i-pushed” message with this
⟨(P, µ), (P ′, µ′)⟩ before, (b) P ′ � P ∈ E , (c) v ≤ Γ̂P�P ′(P ), (d) the number of elements
(π||⟨(P, µ), (P ′, µ′), (P ′′, µ′′)⟩), v′, t′) in Ψ (for any P ′′, µ′′, v′, and t) is less than δ, (e) the
current time is greater than t − ∆, and (f) if P is honest then (π||⟨(P, µ)⟩) ∈ Ψ and
remaining(π||⟨(P, µ)⟩) ≥ v.

If it does not hold, then ignore this message. Otherwise: (a) add
(π||⟨(P, µ), (P ′, µ′)⟩), v, t) to Ψ, (b) decrement remaining(π||⟨(P, µ)⟩), v, t) by v, (c) let
remaining(π||⟨(P, µ), (P ′, µ′)⟩), v, t) := v, (d) decrement Γ̂P�P ′(P ) by v, and (e) in the
next round send a message (i-pushed, (π||⟨(P, µ), (P ′, µ′)⟩), v, t)) to P ′.
If time t + ∆ comes and ((π||⟨(P, µ), (P ′, µ′)⟩), v, t)) is still in Ψ then behave as if you
received a message (i-acknowledge, (π||⟨(P, µ), (P ′, µ)⟩)) from P ′ (see below).

Upon receiving a message of a form (i-acknowledge, (π||⟨(P, µ)⟩)) from P – check if the
following holds:
Correctness condition: (a) (π||⟨(P, µ)⟩, t, v) ∈ Ψ (for some v and t), and (b) there does
not exist a push request ((π||⟨(P, µ)⟩||⟨(P ′, µ′)⟩), v′, t′) in Ψ (for any P ′, µ′, v′, t′).

If it does not hold, then ignore this message. Otherwise let v be the value from the
“Correctness condition” and let s be the sum of the v′ values in all the messages i
-acknowledged((π||⟨(P, µ)⟩||⟨(P ′, µ′)⟩)), v′) (for any (P ′, µ′)) that were ever sent to P . If
Pn is corrupt, allow the simulator to increase the value of s to any amount at most v.
Consider the following cases:

P = P1 (note that in this case π is empty) – then in the next round send i-sent(⟨(P, µ)⟩, s)
to RVM .
P ∈ {P2, . . . , Pn−1} – then let (Pk, µk) be the last element of π and then within time
∆ (a) send a message (trans, Pk, P, s) to AccountsG , (b) increment Γ̂Pk�P (Pk) by v− s,
(c) increment Γ̂Pk�P (P ) by s, (d) increment remaining(π, v, t) by v − s, (e) remove
(π||⟨(P, µ)⟩) from Ψ, and (f) send i-acknowledged((π||⟨(P, µ)⟩), s) to Pk.
P = Pn – then let (Pk, µk) be the last element of π and then within time ∆ (a) send
a message (trans, Pk, P, v) to AccountsG , (b) increment Γ̂Pk�P (Pk) by v, (c) remove
(π||⟨(P, µ)⟩) from Ψ, and (d) send i-acknowledged((π||⟨(P, µ)⟩), s) to Pk.

Figure 2 The ideal functionality NAPSδ
G .

AFT 2023



17:16 Non-Atomic Payment Splitting in Channel Networks

The real model. In the real model, the parties communicate with the environment and inter-
act with each other directly. Before the protocol starts, we generate a (public key, secret key)
pair for each Pi and give to Pi its secret key as input. Moreover, all parties (including RVM
and A) get the public keys of the other parties. For each pair {Pi, Pj} such that Pi � Pj ∈ E
the parties Pi and Pj also have access to an uncorruptible state channel machine CPi�Pj ,
which in turn, has access to AccountsG (the parties do not have a direct access to AccountsG).
Sending messages to AccountsG takes time at most ∆. The state channel machines and the
parties know the public keys of all the parties. Altogether, a NAPS protocol for a channel
graph G with arity δ is a tuple of machines Πδ

G := (RVM , P1, . . . , Pn, {CPi�Pj }Pi�Pj∈E).
The output of the real execution of Π with security parameter 1κ is a random variable
Real(Πδ

G ,A,Z, 1κ) denoting the output of Z. We define security by requiring that no envir-
onment can distinguish between the ideal and the real model. In the definition, we use the
concept of computational indistinguishably. From the construction of the ideal functionality,
it is easy to see that all the informal security properties (fairness to the sender and the
receiver and the balance neutrality) hold for EthNA.

▶ Definition 1. A tuple Πδ
G is a secure Non-Atomic Payment Splitting (NAPS) protocol

for G and δ if for every adversary A there exists a simulator S such that and every Z
the families of random variables {Ideal(NAPSδ

G ,S,Z, 1κ)}κ and {Real(Πδ
G ,A,Z, 1κ)}κ are

computationally indistinguishable

3.2 Formal description of EthNA
Let us start by providing formal definitions of some of the terms already informally introduced
in Sec. 2.2. For a graph G and a nonce µ, a subreceipt (over G, for payment µ) is a pair
*π, λ+Pn

signed by Pn such that π is a path over G (for payment µ) with Pn appearing on the
last position of π, and λ is a non-increasing sequence of positive integers, such that |λ| = |π|.
A payment report for µ is a set W of subreceipts for µ such that π identifies a member of W
uniquely, i.e.: (*π, λ+Pn

∈ W and * π, λ′+Pn
∈ W) implies λ = λ′. For example, α, β, and γ

in Sec. 2.2 are subreceipts, and the set {β, γ} (see Eq. (4)) is a payment report (except that
in that informal description, we omitted the nonces). For a payment report W a subreceipt
*(π, λ+Pn

is a leader of W at node P if P appears on π at some position i, and for every
*π′, λ′+Pn

∈ W we have that λ[i] ≥ λ′[i]. This notion was already discussed in Sec. 2.2, where
in particular, we said that the leader of a payment report {α′, γ} (on Eq. (4)) is γ. In normal
cases (i.e. if Pn is honest), the leader is always unique and is equal to the last subreceipt
of a from *(π||σ′), λ′+Pn

signed by Pn, however in general this does not need to be the case.
When we talk about the leader of W at P we mean the leader that is the smallest according
to some fixed linear ordering.

As mentioned in Sec. 1.2, EthNA is constructed using fraud-proofs. Formally, a fraud-
proof (for µ) is a payment report Q for µ of a form Q = {*(σ||πi), λi+}m

i=1, where all the
πi[1]’s are pairwise distinct , such that the following condition holds: maxi:=1,...,m λi[|σ|] <∑m

i:=1 λi[|σ| + 1]. For an example of a fraud-proof (with nonce missing from the picture)
see Eq. (6). If EthNA has arity at most δ (see Sec. 2.1), then we require that m ≤ δ.
Informally speaking, these conditions mean simply that in Q the largest label of σ is smaller
than the sum of all labels of σ’s children. If none of the subsets of a payment report W is a
fraud-proof, then we say that W is consistent. As we show later, if Pn is honest, then W is
always consistent. Note that the description of set Q as defined above can be quite large (it
is of size O(δ · (ℓ+ κ)), where δ is EthNA’s arity, ℓ is the maximal length of paths, and κ is
the security parameter (we need this to account for the signature size). Luckily, there is a



S. Dziembowski and P. Kędzior 17:17

simple way to “compress” it to O(δ · κ) (where κ is the security parameter) by exploiting the
fact that the only values that are needed to prove cheating are the positions on the indices
|σ| and |σ| + 1 of the λ’s. We describe the compression ideas in the extended version of this
paper [7] .

The formal description of EthNA appears on Figs. 3, 4, and 5. It uses a subroutine
algorithm AddΦ that we describe in a moment. We outsource some of the protocol to a
procedure handle-path (depicted in the same figure) to avoid repeating the same instructions.
The receipt verification machine RVM is presented in Fig. 6

Party P1

Upon receiving an admissible message of a form (i-send, µ, u, t) from the environment Z
and in the next round a message (invoice, *µ, u, t+Pn) from Pn – store this message, and
execute the handle-path(P1, ⟨(P1, µ)⟩, v, t) procedure presented on Fig. 4. Let (R, v) be
the output of this procedure. Send (acknowledged, µ, (*u, µ, t+Pn , R)) to RVM .

Party Pi for i = 2, . . . , n− 1
Upon receiving a message of a form (push, (*(π||⟨(P, µ), (P ′, µ′)⟩), v, t+P ) from some
party P – ignore this message if at least one of the following happens: (a) P ′ ̸= Pi or
(b) t > τ + ∆ (where τ is the current time). Otherwise run the path handling procedure
handle-path(Pi, (π||⟨(P ′, µ′), (P, µ)⟩), v, t) presented on Fig. 4. Let (R, v′) be the output
of this procedure and send (acknowledge, *(π||⟨(P ′, µ′), (P, µ)⟩), v, t+Pj

, R) to CP�Pi .

Party Pn

Wait to receive admissible messages of a form (i-receive, µ, u, t) from the environment Z.
Handle each of them as follows.

Otherwise let βµ be an integer variable initially equal to u and send a message
(invoice, *µ, u, t+Pn

) to P1. Let Φµ be a variable containing a payment report that
is initially empty. Then wait (until time t comes) to receive messages of the following
form:

Message (push, *(π||⟨(P, µ), (Pn, µ
′)⟩), v, t′+P ) from some party P (with t′ ≤ t) – send a

message (pushed, (π||⟨(P, µ), (Pn, µ
′)⟩), v, t′) to Z.

If within time t you receive a message (i-acknowledge(π||⟨(P, µ), (Pn, µ
′)⟩) from Z and

v > βµ then execute AddΦµ((π||⟨(P, µ), (Pn, µ
′)⟩), v). Let λ be the output of this

procedure. Send a message (acknowledge, *(π||⟨(P, µ), (Pn, µ
′)⟩), v, t′+P , *(π||⟨(P, µ),

(Pn, µ
′)⟩), λ+Pn

) to RVM .

Figure 3 The EthNA protocol for the parties.

The parties receive the “ideal model” messages (starting with a prefix “i-”) from Z.
By saying that a message (received from Z) is admissible, we mean that it satisfies the
“correctness conditions” from Fig. 2. The push requests are executed by direct communication
between the parties, and the payment acknowledgment is done via the state channel machines.
Let us comment on the types of messages that are sent within the protocol (see also the
cheat sheet in [7]). The messages that are used are: “push” to push a subpayment (the
corresponding message sent by the channel to the other party is “pushed”), “acknowledge”
to acknowledge a subpayment (the corresponding message is “acknowledged”). The value R
contains either a subreceipt (this is the most common case), or a fraud-proof, or a message
“‘empty” denoting the fact that no subpayments have been acknowledged by Pn.

AFT 2023



17:18 Non-Atomic Payment Splitting in Channel Networks

Let Wπ be a variable containing a set of subreceipts that initially is empty and let ωπ := δ.
Send (i-pushed, π, v, t) to Z and wait for the following messages forms from Z:

Message (i-push, (π||⟨(P, µ), (P ′, µ′)⟩, v′, t′) (for some v′ ≤ απ and µ and µ′ and P ′ such
that P � P ′ ∈ E) – handle each such a message as follows. If ωπ = 0 then ignore
this message. Otherwise let απ := απ − v′ and decrease ωπ by 1. Then send a message
(push, *(π||⟨(P ′, µ′)⟩), v′, t′+P ) to P ′ and wait until round t to receive a message od one of
the following forms:

(acknowledged, (π||⟨(P ′, µ′)⟩), empty) from CPi�P ′ – then let απ := απ + v′ and send
a message (i-acknowledged, (π||⟨(P ′, µ′)⟩), 0) to Z,
(acknowledged, (π||⟨(P ′, µ′)⟩), *ψ, λ+Pn

), where ψ is such that (π||⟨(P ′, µ′)⟩) is a prefix
of ψ – then store *ψ, λ+Pn

in Wπ by letting Wπ := Wπ ∪ {*ψ, λ+Pn
}.

Let v̂ := λ[|π| + 1]. Let απ := απ + v′ − v̂ and send (i-acknowledged, (π||⟨(P ′, µ′))⟩, v̂) to
Z, or

(acknowledged, (π||⟨(P ′, µ′)⟩), (fraud-proof, w)) – then store (fraud-proof, w) and send a
message (i-acknowledged, (π||⟨(P ′, µ′)⟩), v′) to Z.

Message (i-acknowledge, π) (or time t comes) – if you are still waiting in the procedure of
handling some “i-push” message (see above), then ignore this message. Otherwise, do the
following

If you stored (fraud-proof, w) (for some (P ′, µ′)) or if Wπ is inconsistent and w is the
fraud-proof – then output ((fraud-proof, w), v).
Otherwise: if Wπ is empty then output empty.
Otherwise let *ψ, λ+Pn

be the leader of Wπ at P̃ , where P̃ is the last party on π. Output
(*ψ, λ+Pn , λ(|π|)).

Figure 4 Path handling procedure handle-path(P, π, v, t).

Recall that the values of registers ΓPi�Pj (Pi) and ΓPi�Pj (Pj) are pre-loaded before the
execution started. Wait for messages from Pi and Pj .

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, empty) from a party P (such

that {Pk, P} = {Pi, Pj}) – send (acknowledged, π, empty) to Pk.

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, *ψ, λ+Pn

) from a party P

where (a) current time is at most t, (b) π is a path with a suffix ⟨(Pk, µ), (P, µ′)⟩ (for
some µ and µ′), (c) π is a prefix of ψ, (d) λ[|π|] ≤ ΓPi�Pj (Pk), and (e) {Pk, P} =
{Pi, Pj} – then send a message of a form (trans, Pk, P, λ[|π|]) to AccountsG and a message
(acknowledged, π, *ψ, λ+Pn) to Pk.

Upon receiving a message of a form (acknowledge, *π, v, t+Pk
, (fraud-proof, w)) from a party

P where (a) current time is at most t, (b) π is a path with a suffix ⟨(Pk, µ), (P, µ′)⟩ (for
some µ, µ′ and Pk), (c) v ≤ ΓPi�Pj (Pk), and (d) w is a fraud-proof – then send a message
(trans, Pk, P, v) to AccountsG and send a message (acknowledged, π, (fraud-proof, w)) to Pk.

Figure 5 The EthNA state channel machine CPi�Pj .



S. Dziembowski and P. Kędzior 17:19

Upon receiving a message (acknowledged, µ, (*u, µ′, t+Pn , R)) from P1 (such that µ = µ′

and you have not received an “acknowledged” message with this µ from P1 before) – let

w :=


u if R = (fraud-proof, w),
0 if R = empty
λ[1] if R = *acknowledge, ψ, λ+Pn

,

where w is a fraud-proof. Send (i-sent, µ, w) to Z

Figure 6 Receipt Verification Machine RVM .

As described above, the main tasks of each party Pi (for i = 2, . . . , n− 1) are: (a) receive
push requests from some P , (b) forward corresponding push request in the direction of Pn,
(c) receive information about how many coins were transferred, and (d) once you are done
with handling all push requests: check if you received or you can find a fraud-proof – if yes,
then forward this information back to P (via the state channel), and if not, then choose the
leader of the set of receipts and forward it back to P (via the state channel). The procedure
for P1 is similar, except that P1 is activated by a “send” message from Z, and waits of the
invoice from Pn. It then communicates with the receipt verification machine defined on
Fig. 6 (see p. 19 in the appendix). Probably the most interesting part is the instructions
for Pn. First, Pn (upon receiving an i-receive(µ, u, t) message from Z) sends an invoice to
P1. For every payment, µ party Pn maintains a payment tree Φµ that is initially empty.
Payment trees were already discussed in Sec. 2.2. For a formal definition, consider some fixed
µ and G. During the execution of EthNA for G and µ, several subpayments are delivered
to Pn. Let π1, . . . , πt denote the consecutive paths over which these subpayments go (of
course, they need to be distinct), and let vi ∈ Z>0 be the number of coins transmitted with
each πi. Let W := {(πi, vi)}t

i=1. Formally, a payment tree tree(W) is a labeled tree (T,L),
where T is the set of all prefixes of the πi’s, i.e., T :=

⋃
i prefix(πi). . If EthNA has arity

δ then the arity of T in every node (π||⟨(P, µ)⟩) is at most δ. Then for every π ∈ T we
let L(π) :=

∑
i:π∈prefix(πi) v

i. In other words: every path π gets labeled by the arithmetic
sum of the value of the payments that were “passed through it”. Clearly, the label L(ε)
of the root node of tree(W) is equal to the sum of all vi’s, and hence it is equal to the
total number of coins transferred by the subpayments in W. We also have that for every
path σ L(σ) =

∑
π is a child of σ L(π). It is also easy to see that tree(W) can be constructed

“dynamically” by processing elements of W one after another. More precisely, this is done
as follows. We start with an empty tree Φ, and then iteratively apply the algorithm AddΦ
(see Alg. 1) for (π1, v1), (π2, v2), . . .. From the construction of the algorithm, it follows

Algorithm 1 AddΦ(π, v).

This algorithm operates on a global state Φ = (T, L). Its side effect is a change of the global
state. We assume that v ∈ Z>0 and π ̸∈ T .
for j = 1, . . . , |π| do

if π|j ∈ T then
let L(π|j) := L(π|j) + v

else
let T := T ∪ {π|j} let L(π|j) := v

output ⟨L(π[1]), . . . , L(π|π|)⟩ (the labels on path π)

AFT 2023



17:20 Non-Atomic Payment Splitting in Channel Networks

immediately that if Pn starts with Φ being an empty tree, and then iteratively applies AddΦ
to (πi, vi)’s for i = 1, . . . , t, then the final state of Φ is equal to tree(W). For example, if Pn

applies this procedure to the situation in Fig. 1 she obtains the trees depicted on Eqs. (1)–(3).
It is easy to see that if Pn applies the AddΦ algorithm correctly, then the resulting sets W are
never inconsistent (and hence no fraud-proof will ever be produced against an honest Pn).

The formal security analysis of this protocol is given in the following lemma, whose proof
appears in [7].

▶ Lemma 2. Assuming that the underlying signature scheme is existentially unforgeable
under a chosen-message attack, EthNA is a secure NAPS protocol for every G and δ.

3.3 Efficiency analysis

We consider separately the optimistic scenario (when the parties are cooperating) and the
pessimistic one when the malicious parties slow down the execution. In the optimistic case,
the payments are almost immediate. It takes 1 round for a payment to be pushed and 2
rounds to be acknowledged (due to the communication with the state channel machine).
Hence, in the most optimistic case, the time for executing a payment is 3 · ℓ (where ℓ is
the depth of the payment tree). During the acknowledgment, every malicious party can
delay the process by time at most ∆. Hence, the maximal pessimistic time is (1 + ∆) · ℓ.
The second important measure is the blockchain costs, i.e., the fees that the parties need
to pay. Below we provide a “theoretical” analysis of such costs. For the results of concrete
experiments, see . Note that in the optimistic case, the only costs are channel opening and
closing, and hence they are independent of the tree depth and of its arity. In the pessimistic
case, all messages in state channels must be sent “via the blockchain”. Let us consider two
cases. In the first case, there is no fraud-proof. Then, the only message that is sent via
the blockchain is acknowledge(*ϕ, λ+Pn

), which has size linear O(ℓ+ κ) (where ℓ is as above,
and κ is the security parameter and corresponds to space needed to store a signature). The
situation is a bit different if a fraud-proof appears. As remarked in Sec. 3.2 the size of a
fraud-proof is O(δ · (ℓ + κ)), where δ is EthNA’s arity, ℓ is the maximal length of paths,
and κ is the security parameter. Note that the fraud-proof is “propagated”, i.e., even if a
given intermediary decided to keep its arity small (i.e., not to split her subpayments into
too many subpayments), she might be forced to pay fees that depend on some (potentially
larger) arity. This could result in griefing attacks, which is why we introduced a global limit
on the arity. There are many ways around this. First, we could modify the protocol so that
the fraud-proofs by Pn are posted directly in a smart contract on a blockchain so that all
other parties do not need to re-post and can just refer to it. Moreover, the proof size can be
significantly reduced (see the extended version of this paper [7]).

4 Practical aspects

Let us now we provide information about practical experiments of EthNA implementation.
We implemented a simple version of EthNA in Solidity. The source code is available at
github.com/Sam16450/NAPS-EthNA. The table in Fig. 7 (a) summarizes the execution
costs in terms of thousands of gas, and depending on the arity δ and the maximal path
length. The constructor denotes the procedure for deploying a channel, close corresponds
to closing a channel without disagreement, addState is used to register the balance in case of
disagreement, addCheatingProof is used to add a fraud-proof, addCompletedTransaction
– to add a subreceipt when no cheating was discovered, and closeDisagreement – to finally
close a channel after disagreement.

https://github.com/Sam16450/NAPS-EthNA


S. Dziembowski and P. Kędzior 17:21

δ path
length

constructor close addState addChea-
tingProof

addComple-
tedTransa-
ction

close-
Disagree-
ment

5 10 2,391 14 93 1,053 155 14
5 5 2,249 14 94 871 145 14
2 5 2,088 14 93 779 145 14
2 3 2,191 14 93 590 140 14

(a)

(b) (c)

Figure 7 Experimental results.

Although routing algorithms are not the main topic of this work, we also performed
some experiments with a routing algorithm built on top of EthNA. We took the net-
work graph in our experiments from the Lightning network (from the website gitlab.tu-
berlin.de/rohrer/discharged-pc-data) with approx. 6K nodes and 30K channels. Channel’s
capacities are chosen according to the normal distribution N (200, 50). Each transaction
was split by applying the following rules. The sender and the intermediaries look at the
channel graph and search for the set X of shortest paths that lead to the receiver (and have
different first elements). Then they split the payment into values proportional to the capacity
of the first channel in the path. In our simulations, we performed 100K transaction. The
results appear in Fig. 7. The “success ratio” denotes the probability of complete success of
an average payment. Each transaction had to be completed in a maximum of 50 rounds.
“Lightning” refers to standard Lightning routing, and “Lightning+” refers to the Lightning
algorithm that attempts to push payments multiple times. Transaction values are chosen
uniformly from set (x0, x1), while in (b) we have (x0, x1) = (10, 500) and in (c) we have
x0 := 150, 200, 300, 400 and x1 := 500. Our experiments show that even this simple routing
algorithm for EthNA works much better than Lightning.

5 Conclusions and future work

We have introduced a Non-Atomic Payment Splitting (NAPS) technique for the payment
networks, constructed the EthNA protocol that uses it, and proven its security. Due to
the limited space, we focused only on introducing the payment-splitting technique. This
paper opens several exciting questions for future research. First, it would be interesting to
develop routing algorithms that use this feature. Secondly, we did not address privacy and
anonymity in this setting, and it would be interesting to explore this topic. Our solution
strongly relies on the Turing completeness of the underlying blockchain platform. It would
be interesting to examine if NAPS schemes can be implemented Non-Atomic also over legacy
blockchains such as Bitcoin.

AFT 2023

https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data


17:22 Non-Atomic Payment Splitting in Channel Networks

References
1 Vivek Kumar Bagaria, Joachim Neu, and David Tse. Boomerang: Redundancy improves latency

and throughput in payment-channel networks. In Joseph Bonneau and Nadia Heninger, editors,
Financial Cryptography and Data Security - 24th International Conference, FC 2020, Kota
Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture
Notes in Computer Science, pages 304–324. Springer, 2020. doi:10.1007/978-3-030-51280-4_
17.

2 Manuel M. T. Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant, Aggelos
Kiayias, and Alexander Russell. Fast isomorphic state channels. In Nikita Borisov and Claudia
Díaz, editors, Financial Cryptography and Data Security - 25th International Conference, FC
2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II, volume 12675 of Lecture
Notes in Computer Science, pages 339–358. Springer, 2021. doi:10.1007/978-3-662-64331-0_
18.

3 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Andrzej Pelc and Alexander A. Schwarzmann, editors,
Stabilization, Safety, and Security of Distributed Systems - 17th International Symposium,
SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings, volume 9212 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/978-3-319-21741-3_1.

4 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina Hostáková.
Multi-party virtual state channels. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 625–656. Springer, 2019.
doi:10.1007/978-3-030-17653-2_21.

5 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 106–123. IEEE, 2019. doi:
10.1109/SP.2019.00020.

6 Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel networks.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 949–966. ACM, 2018. doi:10.1145/
3243734.3243856.

7 Stefan Dziembowski and Pawel Kędzior. Non-atomic payment splitting in channel networks.
IACR Cryptol. ePrint Arch., 2020. URL: https://eprint.iacr.org/2020/166.

8 Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. Splitting payments
locally while routing interdimensionally. IACR Cryptol. ePrint Arch., 2020. URL: https:
//eprint.iacr.org/2020/555.

9 Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies.
In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 473–489. ACM, 2017.
doi:10.1145/3133956.3134093.

10 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Layer-two blockchain protocols. In Joseph Bonneau and Nadia Heninger, editors, Financial
Cryptography and Data Security - 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture Notes in
Computer Science, pages 201–226. Springer, 2020. doi:10.1007/978-3-030-51280-4_12.

11 Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. A composable security treatment of
the lightning network. In 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020, pages 334–349. IEEE, 2020. doi:10.1109/CSF49147.
2020.00031.

https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-030-51280-4_17
https://doi.org/10.1007/978-3-662-64331-0_18
https://doi.org/10.1007/978-3-662-64331-0_18
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://eprint.iacr.org/2020/166
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1109/CSF49147.2020.00031


S. Dziembowski and P. Kędzior 17:23

12 Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 839–858. IEEE Computer Society, 2016. doi:10.1109/SP.2016.55.

13 Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi.
Concurrency and privacy with payment-channel networks. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 455–471. ACM, 2017. doi:10.1145/3133956.3134096.

14 Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and in-
teroperability. In 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society, 2019. URL: https://www.ndss-symposium.org/ndss-paper/
anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/.

15 Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry. Sprites
and state channels: Payment networks that go faster than lightning. In Ian Goldberg
and Tyler Moore, editors, Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected
Papers, volume 11598 of Lecture Notes in Computer Science, pages 508–526. Springer, 2019.
doi:10.1007/978-3-030-32101-7_30.

16 Olaoluwa Osuntokun. [lightning-dev] amp: Atomic multi-path payments over lightning.
https://tinyurl.com/29m2d7wr, 2018.

17 Dmytro Piatkivskyi and Mariusz Nowostawski. Split payments in payment networks. In
Joaquín García-Alfaro, Jordi Herrera-Joancomartí, Giovanni Livraga, and Ruben Rios, editors,
Data Privacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018
International Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018,
Proceedings, volume 11025 of Lecture Notes in Computer Science, pages 67–75. Springer, 2018.
doi:10.1007/978-3-030-00305-0_5.

18 Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments, 2016.

19 Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan
Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput
cryptocurrency routing in payment channel networks. In Ranjita Bhagwan and George Porter,
editors, 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, pages 777–796. USENIX Association,
2020. URL: https://www.usenix.org/conference/nsdi20/presentation/sivaraman.

20 Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic locks for
scalability in payment channel hubs. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1834–1851. IEEE, 2021. doi:
10.1109/SP40001.2021.00111.

21 Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains.
CoRR, abs/1908.04756, 2019. arXiv:1908.04756.

AFT 2023

https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/3133956.3134096
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://doi.org/10.1007/978-3-030-32101-7_30
https://tinyurl.com/29m2d7wr
https://doi.org/10.1007/978-3-030-00305-0_5
https://www.usenix.org/conference/nsdi20/presentation/sivaraman
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://arxiv.org/abs/1908.04756




Revisiting the Nova Proof System on a Cycle of
Curves
Wilson D. Nguyen #

Stanford University, CA, USA

Dan Boneh #

Stanford University, CA, USA

Srinath Setty #

Microsoft Research, Redmond, WA, USA

Abstract
Nova is an efficient recursive proof system built from an elegant folding scheme for (relaxed) R1CS
statements. The original Nova paper (CRYPTO’22) presented Nova using a single elliptic curve
group of order p. However, for improved efficiency, the implementation of Nova alters the scheme to
use a 2-cycle of elliptic curves. This altered scheme is only described in the code and has not been
proven secure. In this work, we point out a soundness vulnerability in the original implementation of
the 2-cycle Nova system. To demonstrate this vulnerability, we construct a convincing Nova proof for
the correct evaluation of 275 rounds of the Minroot VDF in only 116 milliseconds. We then present
a modification of the 2-cycle Nova system and formally prove its security. The modified system
also happens to be more efficient than the original implementation. In particular, the modification
eliminates an R1CS instance-witness pair from the recursive proof. The implementation of Nova has
now been updated to use our optimized and secure system. In addition, we show that the folding
mechanism at the core of Nova is malleable: given a proof for some statement z, an adversary can
construct a proof for a related statement z′, at the same depth as z, without knowledge of the
witness for z′.

2012 ACM Subject Classification Security and privacy → Cryptanalysis and other attacks

Keywords and phrases Cryptographic Protocols, Recursive Proof Systems, Folding, Vulnerability

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.18

Related Version Full Version: https://eprint.iacr.org/2023/969

Supplementary Material Software (Demo Code): https://github.com/MercysJest/NovaBreaking
TheCycleAttack, archived at swh:1:dir:ca6b1263b64aa9e429f687369b2df7a68bdc4a7f

Funding This work was partially funded by NSF, DARPA, the Simons Foundation, and NTT
Research. Opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA.

1 Introduction

In a recent work, Kothapalli, Setty, and Tzialla introduced an elegant folding scheme for
relaxed R1CS statements [12]. The scheme leads to the Nova proof system: an efficient
and succinct proof system for incrementally verifiable computation, or IVC [21]. This proof
system has many applications in the blockchain space, such as verifiable delay functions [20],
a Nova-based ZK virtual machine [15], and outsourced computation.

The description and analysis of Nova in [12] restricts itself to a single chain of incremental
computation, namely a series of identical computation steps that produce an output which
is fed directly into the next step. At every step, a single application of some function F
is applied, and a statement about the validity of the prior step is folded into an ongoing
statement of validity. We refer to this as a single IVC chain.

© Wilson D. Nguyen, Dan Boneh, and Srinath Setty;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wdnguyen@cs.stanford.edu
mailto:dabo@cs.stanford.edu
mailto:srinath@microsoft.com
https://doi.org/10.4230/LIPIcs.AFT.2023.18
https://eprint.iacr.org/2023/969
https://github.com/MercysJest/NovaBreakingTheCycleAttack
https://github.com/MercysJest/NovaBreakingTheCycleAttack
https://archive.softwareheritage.org/swh:1:dir:ca6b1263b64aa9e429f687369b2df7a68bdc4a7f;origin=https://github.com/MercysJest/NovaBreakingTheCycleAttack;visit=swh:1:snp:281e1fc04989b6e48fa798b93f0b063fc2e47ab9;anchor=swh:1:rev:4c691527089bc680123f2360e5a75b954d656ac0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Revisiting the Nova Proof System on a Cycle of Curves

To improve efficiency, the implementation of Nova [14] uses a 2-cycle of elliptic curves.
This leads to a proof system that uses two parallel IVC chains that must be linked together.
Until this work, the 2-cycle Nova system was only described in the implementation code and
there was no public proof of security.

In this paper, we present two security concerns that affect the 2-cycle Nova system. First,
in Section 7 we describe a soundness issue that enables an attacker to produce proofs for false
statements. For example, we compute a convincing proof for an evaluation of 275 rounds
of the Minroot VDF [10] in only 116 milliseconds on a single laptop. The core issue that
this attack exploits is that the 2-cycle Nova system produces an IVC proof that contains an
additional R1CS instance-witness pair that is not sufficiently constrained by the verifier.

To fix this issue we first formally describe the two IVC chains approach used in the Nova
implementation. Instead of describing the original scheme, we present in Sections 4 and 5 a
modified version of the system that fixes the vulnerability and results in a shorter IVC proof.
We present the scheme as a compiler that compilers a Nova-like folding scheme into an IVC
proof using a cycle of curves. In Section 6 we prove knowledge soundness of this modified
system. We followed responsible disclosure best practice and coordinated patches with the
Nova authors. The Nova implementation has now been updated [19] to use this optimized
and secure system.

Second, in Section 8, we show that Nova’s IVC proofs are malleable, which can lead to a
security vulnerability in some applications. We also discuss strategies to mitigate this issue.

We begin by establishing in Sections 2 and 3 the terminology needed to describe the
2-cycle Nova system (i.e the 2-cycle Nova IVC Scheme).

2 Preliminaries

2.1 Incrementally Verifiable Computation (IVC)
Incrementally verifiable computation, or IVC, was introduced by Valiant [21]. For a function
F : {0, 1}a × {0, 1}b → {0, 1}a, and some public values z0, zi ∈ {0, 1}a, an IVC scheme lets
a prover generate a succinct proof that it knows auxiliary values aux0, . . . , auxi−1 ∈ {0, 1}b

such that

aux0 aux1 auxi−1
↓ ↓ ↓

z0 → F → F → · · · → F → zi

The following definition gives the syntax and security properties for an IVC scheme. The
prover P in this definition computes a proof for one step in the IVC chain. Iterating the
prover will produce a proof πi for the entire chain of length i.

▶ Definition 1 (IVC [21]). An IVC Scheme is a tuple of efficient algorithms (Setup,P,V)
with the following interface:

Setup(1λ, n) → pp: Given a security parameter 1λ, a poly-size bound n ∈ ℕ, outputs
public parameters pp.
P(pp, F, (i, z0, zi), auxi, πi)→ πi+1: Given public parameters pp, a function F : {0, 1}a ×
{0, 1}b → {0, 1}a computable by a circuit of size at most n, an index i ∈ ℕ, an initial
input z0 ∈ {0, 1}a, a claimed output zi ∈ {0, 1}a, advice auxi ∈ {0, 1}b, and an IVC proof
πi, outputs a new IVC proof πi+1.
V(pp, F, (i, z0, zi), πi) → 0/1: Given public parameters pp, a function F, an index i, an
initial input z0, a claimed output zi, and an IVC proof πi, outputs 0 (reject) or 1 (accept).



W. D. Nguyen, D. Boneh, and S. Setty 18:3

An IVC Scheme satisfies the following properties:

Completeness. For every poly-size bound n ∈ ℕ, for every pp in the output space of
Setup(1λ, n), for every function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within
the poly-size bound n, for every collection of elements (i ∈ ℕ, z0, zi ∈ {0, 1}a), auxi ∈ {0, 1}b,
and IVC proof πi,

Pr

 V(pp, F, (i, z0, zi), πi) = 1
⇓

V(pp, F, (i + 1, z0, zi+1), πi+1) = 1
: πi+1 ← P(pp, F, (i, z0, zi), auxi, πi),

zi+1 ← F (zi, auxi)

 = 1

Knowledge Soundness. Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the
security parameter. Let F be an efficient function sampling adversary that outputs a function
F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within the poly-size bound n. Then for
every efficient IVC prover P ∗, there exists an efficient extractor E such that the probability

Pr



V(pp, F, (i, z0, zi), πi) = 1ww�
zi = F(zi−1, auxi−1) ∧

(i = 1 ⇒ zi−1 = z0) ∧
(i > 1 ⇒ V(pp, F, (i− 1, z0, zi−1), πi−1) = 1)

:
pp← Setup(1λ, n),
ρ← {0, 1}ℓ(λ),

F← F(pp; ρ),
(i, z0, zi, πi)← P ∗(pp; ρ),
(zi−1, auxi−1), πi−1 ← E(pp; ρ)


is greater than or equal to 1− negl(λ).

▶ Remark 2 (Full Extraction). Our definition of knowledge soundness implies other notions
of IVC knowledge soundness, which require the extraction of all the auxiliary values in the
execution chain [12, 11, 1, 2]. Informally, consider some ρ and pp sampled at random, and
an adversary P ∗(pp; ρ) that outputs a proof for i iterations of the IVC. Then the knowledge
extractor E can be used to construct an IVC prover for a proof of i− 1 iterations. Applying
the definition again to the prover derived from E implies that there is a knowledge extractor
E ′ that outputs a valid (zi−2, auxi−2), πi−2 with all but negligible probability. We can repeat
this argument inductively to extract a vector of auxiliary values (auxi−1, . . . , aux0) that shows
that the zi output by P ∗ is computed correctly from z0. Note that if time(E) > c · time(P ∗)
for some constant c > 1, then this argument only works for O(log λ) steps before the running
time of the extractor becomes super-polynomial in λ. We use this sequential IVC model for
consistency with the original Nova [12, 14]. In certain applications, a tree-like IVC proof
system might be preferable.

▶ Remark 3 (Zero Knowledge). In some settings one also wants the IVC scheme to be zero
knowledge, but in this writeup we focus on knowledge soundness of the scheme.

2.2 Committed Relaxed R1CS over a Ring

The Nova Proof system over a cycle of curves (2-cycle Nova system) makes use of two finite
fields 𝔽1 and 𝔽2 simultaneously. As such, it is convenient to treat the primitives used in Nova
as operating on the finite commutative ring R := 𝔽1 × 𝔽2, where addition and multiplication
are defined component wise. That is, for a = (a1, a2) and b = (b1, b2) in R, we define
a + b = (a1 + a2, b1 + b2) and a · b = (a1b1, a2b2).

AFT 2023



18:4 Revisiting the Nova Proof System on a Cycle of Curves

▶ Definition 4 (Commitment Scheme). Let R be a finite commutative ring. A commitment
scheme for vectors over R is a pair of efficient algorithms (Setupcom, Commit) with the
following interface:

Setupcom(1λ, R, n)→ ppcom: Given a security parameter 1λ ∈ 1ℕ, a description of a ring
R, and a poly-size bound n ∈ ℕ, outputs public parameters ppcom.
Commit(ppcom, x) → c: Given public parameters ppcom and input x ∈ Rn, outputs a
commitment c.

These algorithms need to satisfy the following properties.
Binding: Let n ∈ ℕ be a poly-size bound. For every efficient adversary A and for every
finite commutative ring R whose size is at most exponential in λ,

Pr
[

Commit(ppcom, x0) = Commit(ppcom, x1) ∧
x0 ̸= x1

: ppcom ← Setupcom(1λ, R, n)
(x0, x1)← A(ppcom)

]
≤ negl(λ)

Additively Homomorphic: Given two commitments c← Commit(ppcom, x), c′ ← Commit(
ppcom, x′) to vectors x, x′ ∈ Rn (not necessarily distinct), there is an efficient homo-
morphism ⊕ on commitments such that c⊕ c′ = Commit(ppcom, x + x′).
Succinct: For any x ∈ Rn, the commitment c ← Commit(ppcom, x) must have size
|c| ≤ poly(λ, log(n)).

▶ Definition 5 (Committed Relaxed R1CS over a Ring). Consider m, n, ℓ ∈ ℕ where m > ℓ

and a finite commutative ring R. Further, consider a commitment scheme Commit for vectors
over R, where ppW and ppE are commitment parameters for vectors of size m− ℓ− 1 and n

respectively.
A committed relaxed R1CS instance is a tuple 𝕌 := (Ē, s, W̄ , x), where Ē and W̄

are commitments, s ∈ R, and x ∈ Rℓ.
A committed relaxed R1CS instance 𝕌 = (Ē, s, W̄ , x) is satisfiable with respect to an
R1CS constraint system R1CS := (A, B, C ∈ Rn×m) if there exist a relaxed witness
𝕎 := (E ∈ Rn, W ∈ Rm−ℓ−1) such that

Ē = Commit(ppE , E), W̄ = Commit(ppW , W ), and (A ·Z)◦(B ·Z) = s ·(C ·Z)+E

where Z = (W, x, s). We refer to E as the error vector and W as the extended
witness.
An instance-witness pair (𝕌,𝕎) satisfies a constraint system R1CS if 𝕎 is a satisfying
relaxed witness for 𝕌. An instance-witness pair (𝕦,𝕨) pair strictly satisfies an R1CS
constraint system R1CS if (1) the pair satisfies R1CS and (2) 𝕦.Ē = 0̄ is the commitment
to the zero vector and s = 1.

▶ Remark 6 (Trivially Satisfiable Instance-Witness Pairs). A committed instance-witness pair
(𝕌⊥,𝕎⊥) will denote a trivially satisfying pair for an R1CS constraint system R1CS over
R. In Nova [12], this pair is constructed by setting E, W, and x to appropriately sized zero
vectors, Ē, W̄ to be commitments to the zero vectors, and s equal to 0.

2.3 A Folding Scheme for Committed Relaxed R1CS over a Ring
Folding schemes give an efficient approach to IVC. In recent years, several works [2, 12, 11,
1, 13, 17] constructed efficient folding schemes for different problems. Nova [12] introduces
an elegant folding scheme, for folding two committed relaxed R1CS instances and their
witnesses. Nova’s folding scheme is a public-coin, one-round interactive protocol that is made
non-interactive in the random oracle model using the Fiat-Shamir transform. Additionally,



W. D. Nguyen, D. Boneh, and S. Setty 18:5

Nova heuristically instantiates the random oracle with a concrete hash function and assumes
that this heuristic produces a protocol that is knowledge sound. A similar assumption is
used in other recursive proof systems [2, 11, 1].

▶ Definition 7. A Non-Interactive Folding Scheme for Committed Relaxed R1CS
consists of an underlying commitment scheme (Setupcom, Commit) (Definition 4) for commit-
ted relaxed instances (Definition 5) and a tuple of efficient algorithms (FoldSetup, FoldK, FoldP ,

FoldV) with the following interface:
FoldSetup(1λ, n) → pp: Given a security parameter 1λ ∈ 1ℕ, a poly-size bound n ∈ ℕ,
outputs public parameters pp which contain the description of a finite commutative ring
R and commitment parameters ppcom for vectors over R within the size bound n.
FoldK(pp, R1CS)→ (pk, vk) Given public parameters pp, an R1CS constraint system R1CS
over R within the poly-size bound n, outputs proving key pk and verifier key vk.
FoldP (pk, (𝕦,𝕨), (𝕌,𝕎))→

(
T̄, (𝕌′,𝕎′)

)
: Given a proving key pk, two committed relaxed

R1CS instance-witness pairs (𝕦,𝕨), (𝕌,𝕎), outputs a folding proof T̄ in the commitment
space, and a new committed relaxed R1CS instance-witness pair (𝕌′,𝕎′).
FoldV

(
vk, 𝕦,𝕌, T̄

)
→ 𝕌′: Given a verification key vk, two committed relaxed R1CS

instances 𝕦,𝕌, and a folding proof T̄, outputs a new committed relaxed R1CS instance 𝕌′.

These algorithms need to satisfy the following properties:

Completeness. For every poly-size bound n′ ∈ ℕ, for every pp in the output space of
FoldSetup(1λ, n′), for every poly-size m, n, ℓ ∈ ℕ where m > ℓ, n′ > m − ℓ − 1, n′ > n, for
every R1CS constraint system R1CS := (A, B, C ∈ Rn×m), for every committed relaxed
instance-witness pair (𝕦,𝕨), (𝕌,𝕎) for R1CS,

Pr


𝕌′ = 𝕌′′

∧
(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS
=⇒ (𝕌′,𝕎′) satisfies R1CS

:
(pk, vk)← FoldK(pp, R1CS),(
T̄, (𝕌′,𝕎′)

)
← FoldP (pk, (𝕦,𝕨), (𝕌,𝕎)) ,

𝕌′′ ← FoldV
(
vk, 𝕦,𝕌, T̄

)
 = 1

Knowledge Soundness. Let n ∈ ℕ be a poly-size bound and ℓ(λ) be a polynomial in the
security parameter. For every efficient adversary P∗, there exist an efficient extractor E such
that the probability

Pr


𝕌′ = FoldV(vk, 𝕦,𝕌, T̄) ∧
(𝕌′,𝕎′) satisfies R1CSw�

(𝕦,𝕨), (𝕌,𝕎) satisfy R1CS

:

pp← FoldSetup(1λ, n),
ρ← {0, 1}ℓ(λ),(
R1CS, (𝕦,𝕌, T̄), (𝕌′,𝕎′)

)
← P∗(pp; ρ),

(pk, vk)← FoldK(pp, R1CS),
(𝕨,𝕎)← E(pp; ρ)


is ≥ 1− negl(λ). In words, the definition of knowledge soundness states that if an adversary
P∗ can create a folded statement 𝕌′ of two statements 𝕦 and 𝕌 and a satisfying witness 𝕎′

for 𝕌′, then an extractor E for P∗ can produce satisfying witnesses 𝕨 for 𝕦 and 𝕎 for 𝕌.

Collision resistance. The Nova construction also uses collision resistant hash functions. To
be comprehensive, we define these next.

AFT 2023



18:6 Revisiting the Nova Proof System on a Cycle of Curves

▶ Definition 8 (Collision Resistant Hash Functions). Let R be a finite commutative ring such
that |R| ≈ 2λ. A hash function for R is a pair of efficient algorithms (SetupH, H) with the
following interface:

SetupH(1λ, R)→ ppH: Given a security parameter 1λ ∈ 1ℕ and a description of R, outputs
public parameters ppH.
H(ppH, x)→ h: Given public parameters ppH and input x ∈ R∗, outputs a hash h ∈ R.

A hash function is collision resistant if for every efficient adversary A,

Pr
[

H(ppH, m0) = H(ppH, m1) ∧
m0 ̸= m1

: ppH ← SetupH(1λ, R)
(m0, m1)← A(ppH)

]
≤ negl(λ)

3 The Nova Proof System over a Cycle of Curves: Preliminary Details

In this section and the next, we describe details about the underlying primitives in the 2-cycle
Nova System [14]. Section 5 describes the explicit operation of the modified IVC verifier and
modified IVC prover.

Cycle of Elliptic Curves. To reduce the number of constraints related to group operations,
the implementation of Nova uses a cycle of elliptic curves for which the discrete log problem
is hard. Specifically, the Nova implementation is generic over any cycle of elliptic curves
that implements certain Rust traits (Nova implements those traits for the pasta cycle of two
curves [16]). We denote the elliptic curve groups as 𝔾1 and 𝔾2. We refer to the scalar field of
an elliptic curve group 𝔾 as the field 𝔽 whose order is |𝔾|, and the base field of 𝔾 as the field
𝔽 ′ over which the elliptic curve is defined (i.e. the points have the form (x, y) ∈ 𝔽 ′ × 𝔽 ′).

The group 𝔾1 has scalar field 𝔽1 and base field 𝔽2, while 𝔾2 has scalar field 𝔽2 and base
field 𝔽1. Group operations for 𝔾1 can be efficiently expressed as constraints over the base
field 𝔽2. Symmetrically, group operations for 𝔾2 can be efficiently expressed as constraints
over the base field 𝔽1. The groups 𝔾1 and 𝔾2 will be the commitment spaces for Pedersen
vector commitments for vectors over 𝔽1 and 𝔽2 respectively.

Groups and Rings. We define the ring R := 𝔽1 × 𝔽2 as the set of tuples with one element in
𝔽1 and another in 𝔽2. We can naturally define the ring operations as the component-wise
field operations. Similarly, define the group 𝔾 := 𝔾1 × 𝔾2 and it’s group operation as the
component-wise group operation.

Commitments. In Nova, the folding procedure requires additively homomorphic com-
mitments to vectors over a field 𝔽 . Their specific construction [12] uses Pedersen vector
commitments belonging to a group 𝔾 of order |𝔽 |, for which the discrete log problem is hard.
Nova’s implementation [14] is generic over the commitment scheme and one can supply a
different commitment scheme for vectors, but we restrict our attention to Pedersen vector
commitments in this paper.

We generalize the Pedersen vector commitment to the ring R := 𝔽1 × 𝔽2 by composing
a Pedersen vector commitment over 𝔽1 with commitment space 𝔾1 and a Pedersen vector
commitment over 𝔽2 with commitment space 𝔾2. We write x(1) ∈ 𝔽n

1 and x(2) ∈ 𝔽n
2 for

the left and right projections of a vector x ∈ Rn. Then, the commitment to x is a pair of
commitments: a commitment to x(1) ∈ 𝔽n

1 and a commitment to x(2) ∈ 𝔽n
2 . Concretely, this

commitment to the vector x ∈ Rn will be an element in 𝔾 := 𝔾1 × 𝔾2.



W. D. Nguyen, D. Boneh, and S. Setty 18:7

Committed relaxed instances. Consider two R1CS constraint systems

R1CS(1) := (A1, B1, C1 ∈ 𝔽n1×m1
1 ) and R1CS(2) := (A2, B2, C2 ∈ 𝔽n2×m2

2 )

defined over 𝔽1 and 𝔽2, respectively. A committed relaxed instance for R1CS(1) is a tuple

𝕌(1) :=
(
Ē(1), s(1), W(1), x(1)) where Ē(1), W(1) ∈ 𝔾1, s(1) ∈ 𝔽1, x(1) ∈ 𝔽 ℓ1

1 .

The corresponding relaxed witness 𝕎(1) = (E(1), W (1)) has an error vector E(1) ∈ 𝔽n1
1 and

extended witness W (1) ∈ 𝔽m1−ℓ1−1
1 . Symmetrically, a committed relaxed instance for R1CS(2)

is a tuple

𝕌(2) :=
(
Ē(2), s(2), W(2), x(2)) where Ē(2), W(2) ∈ 𝔾2, s(2) ∈ 𝔽2, x(2) ∈ 𝔽 ℓ2

2 .

The corresponding relaxed witness 𝕎(2) = (E(2), W (2)) has error vector E(2) ∈ 𝔽n2
2 and

W (2) ∈ 𝔽m2−ℓ2−1
2 .

The two constraint systems R1CS(1) over 𝔽1 and R1CS(2) over 𝔽2 can be treated as a
single constraint system R1CS := (A, B, C ∈ Rn×m) over R := 𝔽1 × 𝔽2. The constraint
systems R1CS(1) and R1CS(2) are simply the left and right projections of R1CS. A strict
projection of R1CS would require the dimensions of R1CS(1) and R1CS(2) to be identical to
the dimensions of R1CS. In practice, R1CS(1) and R1CS(2) can have different dimensions.
When abstractly combining the constraint systems to obtain R1CS, we can pad the systems
with dummy rows and columns so that R1CS(1) and R1CS(2) have the same dimension. In
particular, m = max(m1, m2), n = max(n1, n2), and l = max(l1, l2). Similarly, we can
treat instance-witness pairs (𝕌(1),𝕎(1)), (𝕌(2),𝕎(2)) as the left and right projection of an
instance-witness pair (𝕌,𝕎) for R1CS.

Hash Functions. Hash functions H1 : 𝔽 ∗
1 → 𝔽1 and H2 : 𝔽 ∗

2 → 𝔽2 are collision resistant hash
functions that take as input an arbitrary number of field elements and output a single field
element which encodes the hash. In Nova, this single field element can be represented as a
scalar whose bit representation is at most 250 bits long. Thus, the output hash has a unique
representation in both fields, whose elements are 256 bits.1

Concretely, define h1 := H1(. . . ) as the output of H1 for some arbitrary input elements
(. . . ) ∈ 𝔽 ∗

1 . The hash can be expressed as h1 =
∑

i≤250 b
(1)
i · (2(1))i where 2(1) ∈ 𝔽1 and for

all i ≤ 250, b
(1)
i ∈ 𝔽1 are bits in {0, 1}. The hash output h1 :=

∑
i≤250 b

(1)
i · (2(1))i in 𝔽1 can

be represented as an element h′
1 in 𝔽2. To do so, define h′

1 :=
∑

i≤250 b
(2)
i · (2(2))i where for

all i, the bit b
(2)
i ∈ 𝔽2 is the same the bit b

(1)
i ∈ 𝔽1 (i.e. if b

(1)
i = 1(1), we define b

(2)
i = 1(2)

otherwise b
(2)
i = 0(2)). Symmetrically, a hash output h2 :=

∑
i≤250 b

(2)
i · (2(2))i in 𝔽2 can be

represented as an element h′
2 in 𝔽1 in the same way.

Similarly, the hash function H : {0, 1}∗ → {0, 1}λ is a collision resistant hash function
whose outputs can be represented uniquely in both fields. We omit the hash parameters for
H for ease of presentation. The Nova implementation [14] uses the Poseidon hash function [8]
for H1 and H2 and SHA-3 [6] for H.

1 The size of a digest is configurable, but a digest length of 250 bits was chosen to support a variety of
popular curve cycles e.g., secp/secq, pallas/vesta (pasta curves), BN254/Grumpkin.

AFT 2023



18:8 Revisiting the Nova Proof System on a Cycle of Curves

3.1 Folding over a Cycle of Curves
In Nova [12], a non-interactive folding scheme in the random oracle model is constructed by
applying the Fiat-Shamir transform [7] to an interactive folding scheme. By instantiating the
random oracle with an appropriate cryptographic hash function, they heuristically obtain
a non-interactive folding scheme in the plain model. The construction described in [12]
is limited to an R1CS constraint system R1CS defined over a field 𝔽 with commitments
belonging to a group 𝔾 (with scalar field 𝔽 ).

We extend the construction to R1CS constraint systems R1CS defined over a ring R :=
𝔽1 × 𝔽2 by composing a folding scheme for R1CS constraint systems defined over 𝔽1 and
a folding scheme for R1CS constraint systems defined over 𝔽2. When we fold committed
relaxed instances for R1CS(1), we implicitly mean run the folding scheme for systems over 𝔽1.
Symmetrically, when we fold committed relaxed instances for R1CS(2), we implicitly mean
run the folding scheme for systems over 𝔽2. However, the random oracle calls used in both
folding scheme will need to take in an argument vk, which is derived from both systems. We
describe this in more detail in the description of FoldK.

3.1.1 Folding Setup
FoldSetup takes in as input:

A security parameter 1λ.
A poly-size bound n ∈ ℕ.

The algorithm performs the following steps:
1. Sample a cycle of elliptic curves (𝔾1, 𝔽1,𝔾2, 𝔽2)← SampleCycle(1λ).
2. Sample collision resistant hash parameters ppH1

← SetupH(1λ, 𝔽1), ppH2
← SetupH(1λ, 𝔽2).

3. Sample commit params ppcom1
← Setupcom(1λ, 𝔽1, n) and ppcom2

← Setupcom(1λ, 𝔽2, n). 2

4. Output pp :=
(
(𝔾1, 𝔽1,𝔾2, 𝔽2), ppH1 , ppH2 , ppH, ppcom1 , ppcom2

)
.

3.1.2 Folding Keygen
FoldK takes in as input:

Public parameters pp
An R1CS constraint system R1CS over R within the poly-size bound n.

The algorithm performs the following steps:
1. Assign the verification key vk to a hash digest of the public parameters and constraint

systems

vk← H
(
pp, R1CS := (R1CS(1), R1CS(2))

)
(1)

2. Assign the proving key pk← pp to be the public parameters.
3. Output (pk, vk).

The Verification Key. The Nova folding scheme is derived from an interactive protocol
via the Fiat-Shamir transform [7]. As such, queries to the random oracle must include a
description of the entire environment. Concretely, let H be an appropriate cryptographic hash
function that heuristically instantiates a random oracle and whose outputs can be represented
uniquely in both fields. The vk element (assigned in (1)) denotes a hash digest of the

2 The commitment parameters ppE , ppW will be prefixes of ppcom where the length is max
(
|E|, |W |

)
.



W. D. Nguyen, D. Boneh, and S. Setty 18:9

environment. FoldV incorporates the elements vk, 𝕦,𝕌, T̄ as arguments to its random oracle.
We stress that this is needed to preserve the soundness of the Fiat-Shamir transform [4], as
these digest elements represent inputs to the folding verifier when viewed as an interactive
protocol.

4 The Augmented Constraint Systems Used in Nova

The 2-cycle Nova IVC Scheme operates on a pair of functions F1 and F2, one for each
field. Abstractly, one can treat Nova as an IVC scheme for the combined function F :
(𝔽 a1

1 × 𝔽 a2
2 )× (𝔽 b1

1 × 𝔽 b2
2 )→ (𝔽 a1

1 × 𝔽 a2
2 ) of the form(

(z(1), z(2)), (aux(1), aux(2))
) F7−→

(
F1(z(1), aux(1)), F2(z(2), aux(2))

)
where F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 are poly-size arithmetic circuits over

𝔽1 and 𝔽2 respectively.

The 2-cycle Nova IVC scheme aims to prove that (z(1)
i , z

(2)
i ) is the result of iterating the

function F = (F1, F2) a total of i times starting from the input (z(1)
0 , z

(2)
0 ) and using some

auxiliary inputs. Every iteration of the IVC uses two R1CS constraint systems, one over
𝔽1 and one over 𝔽2, to verify that the functions F1 and F2 were evaluated correctly in that
iteration. However, Nova augments these core constraint systems with additional constraints
to verify that folding is done correctly at every iteration, and that the outputs of the previous
iteration are properly forward to the current iteration. In this section we describe the two
augmented constraint systems in detail.

The augmented constraint systems. The 2-cycle Nova IVC Scheme defines two augmented
R1CS constraint systems R1CS(1) and R1CS(2) over 𝔽1 and 𝔽2. As noted in Section 3, a
group operation for 𝔾1 can be efficiently expressed as constraints in the base field 𝔽2. Since
the folding operation requires group operations in 𝔾1, the Nova implementation does the
folding of the committed instances 𝕦(1) and 𝕌(1) for R1CS(1) in the constraints of R1CS(2).
Symmetrically, the Nova implementation does the folding of the committed instances 𝕦(2)

and 𝕌(2) for R1CS(2) in the constraints of R1CS(1).

The constraint systems R1CS(1) and R1CS(2) are defined as follows:
let R1CS(1) be the R1CS constraint system for the relation R1 defined in Figure 1a.
let R1CS(2) be the R1CS constraint system for the relation R2 defined in Figure 1b.

Intuitively, each constraint system applies one step of its function zi+1 := F(zi, auxi), folds a
prior committed instance 𝕦 into a running committed instance 𝕌 for the opposite constraint
system, maintains the original inputs z0, and updates the iteration index i. The public inputs
𝕦(1).x := (x0, x1) and 𝕦(2).x := (x0, x1) denote hashes that can be uniquely represented in
both fields. We will explain these constraint systems in more detail when we describe the
operation of the prover in Section 5.3.

Representation of Non-native Field elements and Arithmetic. Folding two committed
instances 𝕦(1) and 𝕌(1) requires not only group operations over 𝔾1, but also field operations
over 𝔽1. However, the R1CS constraint system R1CS(2) over 𝔽2 has to encode the folding
operation as constraints over 𝔽2. To account for this, 𝔽1 elements are encoded appropriately
as 𝔽2 elements such that non-native arithmetic can be expressed as 𝔽2 constraints. The same
strategy is symmetrically applied for folding constraints in R1CS(1).

AFT 2023



18:10 Revisiting the Nova Proof System on a Cycle of Curves

R1 :=




𝕦(1)

i+1.x := (x0, x1 ∈ 𝔽1) ;
ŵ

(1)
i+1 :=

(
vk ∈ 𝔽1, i(1) ∈ 𝔽1, z

(1)
0 , z

(1)
i ∈ 𝔽 a1

1 ,

aux(1)
i ∈ 𝔽 b1

1 , 𝕌(2)
i , 𝕦(2)

i ∈ U (2), T̄(2)
i ∈ 𝔾2

)
where U (2) := 𝔾2 × 𝔽2 × 𝔾2 × 𝔽 2

2

 :

If i(1) = 0(1) :
Then set 𝕌(2)

i+1 := 𝕌(2)
⊥

Else set 𝕌(2)
i+1 := FoldV

(
vk, 𝕦(2)

i ,𝕌(2)
i , T̄(2)

i

)
Accept if :

If i(1) = 0(1) then z
(1)
i = z

(1)
0

𝕦(2)
i .Ē = 0̄(2)

𝕦(2)
i .s = 1(2)

𝕦(2)
i .x0 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i , 𝕌(2)

i

)
x0 = 𝕦(2)

i .x1

x1 = H1
(
vk, (i + 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z(1)

i , aux(1)
i ), 𝕌(2)

i+1
)


(a) The relation R1 defining the R1CS constraint system R1CS(1) on instance-witness pairs

(
𝕦(1)

i+1.x ; ŵ
(1)
i+1

)
.

R2 :=




𝕦(2)

i+1.x := (x0, x1 ∈ 𝔽2) ;
ŵ

(2)
i+1 :=

(
vk ∈ 𝔽2, i(2) ∈ 𝔽2, z

(2)
0 , z

(2)
i ∈ 𝔽 a2

2 ,

aux(2)
i ∈ 𝔽 b2

2 , 𝕌(1)
i , 𝕦(1)

i+1 ∈ U (1), T̄(1)
i ∈ 𝔾1

)
where U (1) := 𝔾1 × 𝔽1 × 𝔾1 × 𝔽 2

1

 :

If i(2) = 0(2) :
Then set 𝕌(1)

i+1 := 𝕦(1)
i+1

Else set 𝕌(1)
i+1 := FoldV

(
vk, 𝕦(1)

i+1,𝕌(1)
i , T̄(1)

i

)
Accept if :

If i(2) = 0(2) then z
(2)
i = z

(2)
0

𝕦(1)
i+1.Ē = 0̄(1)

𝕦(1)
i+1.s = 1(1)

𝕦(1)
i+1.x0 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i , 𝕌(1)

i

)
x0 = 𝕦(1)

i+1.x1

x1 = H2
(
vk, (i + 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z(2)

i , aux(2)
i ), 𝕌(1)

i+1
)


(b) The relation R2 defining the R1CS constraint system R1CS(2) on instance-witness pairs

(
𝕦(2)

i+1.x ; ŵ
(2)
i+1

)
.



W. D. Nguyen, D. Boneh, and S. Setty 18:11

Hash parameters. The hash parameters ppH1 and ppH2 for H1 and H2 are hard-coded in
the respective constraint systems. We omit the hash parameters in our paper for ease of
notation, but implicitly call the hash function with their respective parameters generated in
the IVC Setup.

Symmetry. If we omit the base case constraints, R1CS(1) and R1CS(2) are essentially
symmetric constraint systems. The difference in indexing, 𝕦(2)

i versus 𝕦(1)
i+1, is a notional

choice that does not affect the symmetry. Additionally, we want to highlight that the only
constraint on 𝕦(1)

i+1.x0 and 𝕦(2)
i+1.x0 are that they equal 𝕦(2)

i .x1 and 𝕦(1)
i+1.x1 respectively. As

described in Section 3, hash values can be represented in both fields uniquely; thus, this
equality is well-defined. Essentially, these copy constraints pass along the hashes meant
for the public IO of the opposite instance. We will describe this strategy in more detail in
Section 5.3.

5 The Modified Nova IVC Scheme

This section describes a modification to the prior (vulnerable) 2-cycle Nova proof system.
In Section 6, we prove our modified system is knowledge sound (Definition 1).

5.1 Setup
The Nova Setup algorithm Setup takes in as input:

A security parameter 1λ.
A poly-size bound n ∈ ℕ.

The algorithm outputs pp← FoldSetup(1λ, n).

5.2 The Modified Nova Verifier
In this section, we describe a modified version of the 2-cycle Nova IVC verifier that patches
a vulnerability found in the prior implementation. The algorithm is similar to the prior
(vulnerable) 2-cycle Nova IVC verifier (Section 7.1), but the input IVC proof πi omits a
pair (𝕦(1)

i ,𝕨(1)
i ),which caused the original vulnerability. We provide a proof of knowledge

soundness of our modified scheme in Section 6.

The Nova Verifier V takes in as input:
IVC public parameters pp,
a description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 ,

an index i ∈ ℕ,
starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 ,
claimed evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 , and
an IVC Proof for iteration i, namely πi :=

(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The verifier first runs the following initial procedure, which can be treated as a preprocessing
phase:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b
2. Compute the folding verification key

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)
Then, the verifier accepts if the following six conditions are met:

AFT 2023



18:12 Revisiting the Nova Proof System on a Cycle of Curves

prover steps (1)+(2)

H1( …, )𝕌(2)
𝑖+1

 𝕦(1)
𝑖+1

 𝕦(2)
𝑖

 𝕌(2)
𝑖  𝕌(2)

𝑖+1
Fold(  , ) 𝕦(2)

𝑖 𝕌(2)
𝑖

prover steps (3)+(4)

H2( …, )𝕌(1)
𝑖+1

 𝕦(2)
𝑖+1

 𝕦(1)
𝑖+1

 𝕌(1)
𝑖

 𝕌(1)
𝑖+1Fold( , ) 𝕦(1)

𝑖+1 𝕌(1)
𝑖

prover steps (1)+(2)

H1( …, )𝕌(2)
𝑖+2

 𝕦(1)
𝑖+2

 𝕌(2)
𝑖+2

Fold( , ) 𝕦(2)
𝑖+1 𝕌(2)

𝑖+1 

prover steps (3)+(4)

H2( …, )𝕌(1)
𝑖+2

 𝕦(2)
𝑖+2

 𝕌(1)
𝑖+2Fold( , ) 𝕦(1)

𝑖+2 𝕌(1)
𝑖+1

 𝕦(1)
𝑖+2

 𝕦(2)
𝑖+1  𝕦(2)

𝑖+2

  𝕦(2)
𝑖

Figure 2 An illustration of the key parts of the prover’s operation in the non-base case.

1. The index i must be greater than 0.
2. 𝕦(2)

i .x0 = H1
(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)

i .x1 = H2
(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. The pair (𝕌(1)

i ,𝕎(1)
i ) satisfies R1CS(1).

5. The pair (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).
6. The pair (𝕦(2)

i ,𝕨(2)
i ) strictly satisfies R1CS(2).

5.3 The Modified Nova Prover
In this section, we describe a modified 2-cycle Nova IVC prover. The algorithm is similar to
the prior 2-cycle Nova IVC prover, but the generated IVC proof πi+1 omits a pair (𝕦(1)

i+1,𝕨(1)
i+1),

which caused the original vulnerability (Section 7.1). We first describe an initial procedure,
then the base case step of the Nova prover, and then the recursive step as illustrated
in Figure 2.

5.3.1 Initial Procedure
The prover performs an initial procedure identical to the initial procedure of the verifier:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2.
2. Compute the folding prover and verifier key

(pk, vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)

5.3.2 The Base Case
The Nova Prover P takes in as input:



W. D. Nguyen, D. Boneh, and S. Setty 18:13

IVC public parameters pp.
A description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 .

Starting values z
(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .
Auxiliary inputs aux(1)

0 ∈ 𝔽 b1
1 and aux(2)

0 ∈ 𝔽 b2
2 .

The prover proceeds as follows:

Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
1 ,𝕨(1)

1 ) for
R1CS(1) as follows:

Define an initial dummy instance as 𝕦(2)
0 :=

(
0̄(2), 1(2), 0̄(2), x := (x0, x1)

)
where

x0 := H1
(
vk, 0(1), z

(1)
0 , z

(1)
0 , 𝕌(2)

⊥
)

and x1 := H2
(
vk, 0(2), z

(2)
0 , z

(2)
0 , 𝕌(1)

⊥
)

This instance will not be folded into any running instance.
Define ŵ

(1)
1 := (vk, 0(1), z

(1)
0 , z

(1)
0 , aux(1)

0 ,𝕌(2)
⊥ , 𝕦(2)

0 , 0̄(2)) as the relation witness for R1.
Then, compute the extended witness w

(1)
1 by performing the computation on ŵ

(1)
1

required to satisfy the constraints expressed in R1CS(1).
Commit to the extended witness w̄(1)

1 ← Commit
(
pp(1)

W , w
(1)
1

)
.

Define 𝕌(2)
1 := 𝕌(2)

⊥ and 𝕎(2)
1 := 𝕎(2)

⊥ .
Define x0 := 𝕦(2)

0 .x1 and x1 := H1
(
vk, 1(1), z

(1)
0 , z

(1)
1 := F1(z(1)

0 , aux(1)
0 ),𝕌(2)

1
)
.

Assign 𝕦(1)
1 :=

(
0̄(1), 1(1), w̄(1)

1 , (x0, x1)
)

and 𝕨(1)
1 :=

(⃗
0(1), w

(1)
1

)
.

Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
1 ,𝕨(2)

1 ) for
R1CS(2) as follows:

Define ŵ
(2)
1 := (vk, 0(2), z

(2)
0 , z

(2)
0 , aux(2)

0 ,𝕌(1)
⊥ , 𝕦(1)

1 , 0̄(1)) as the relation witness for R2.
Then, compute the extended witness w

(2)
1 by performing the computation on ŵ

(2)
1

required to satisfy the constraints expressed in R1CS(2).
Commit to the extended witness w̄(2)

1 ← Commit(pp(2)
W , w

(2)
1 ).

Define 𝕌(1)
1 := 𝕦(1)

1 and 𝕎(1)
1 := 𝕨(1)

1 .
Define x0 := 𝕦(1)

1 .x1 and compute x1 := H2
(
vk, 1(2), z

(2)
0 , z

(2)
1 := F2(z(2)

0 , aux(2)
0 ),𝕌(1)

1
)
.

Assign 𝕦(2)
1 :=

(
0̄(2), 1(2), w̄(2)

1 , (x0, x1)
)

and 𝕨(2)
1 :=

(⃗
0(2), w

(2)
1

)
.

Output Prover State: Output IVC Proof for step 1

π1 :=
(
(𝕦(2)

1 ,𝕨(2)
1 ), (𝕌(1)

1 ,𝕎(1)
1 ), (𝕌(2)

1 ,𝕎(2)
1 )

)
along with new evaluations z

(1)
1 := F1(z(1)

0 , aux(1)
0 ) and z

(2)
1 := F2(z(2)

0 , aux(2)
0 ). These

outputs are sufficient to execute another step of the Nova prover for iteration 1.

5.3.3 The Non-Base Case
The Nova Prover P takes in as input:

IVC public parameters pp.
Constraint Systems R1CS(1) and R1CS(2).
An index i ∈ ℕ, where i ≥ 1.
Starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 .
Evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .
Auxiliary inputs aux(1)

i ∈ 𝔽 b1
1 and aux(2)

i ∈ 𝔽 b2
2 .

An IVC Proof for Iteration i πi :=
(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The prover proceeds as follows (see also Figure 2):

AFT 2023



18:14 Revisiting the Nova Proof System on a Cycle of Curves

1. Fold Prior Pairs for R1CS(2): Fold the committed pairs (𝕦(2)
i ,𝕨(2)

i ) and (𝕌(2)
i ,𝕎(2)

i )
for R1CS(2).

FoldP
(
pk, (𝕦(2)

i ,𝕨(2)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
→

(
T̄(2)

i , (𝕌(2)
i+1,𝕎(2)

i+1)
)

Obtain a folding proof T̄(2)
i and new committed relaxed instance-witness pair (𝕌(2)

i+1,𝕎(2)
i+1).

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
i+1,𝕨(1)

i+1) for
R1CS(1) as follows:

Define ŵ
(1)
i+1 := (vk, i(1), z

(1)
0 , z

(1)
i , aux(1)

i ,𝕌(2)
i , 𝕦(2)

i , T̄(2)
i ) as the relation witness for R1.

Then, compute the extended witness w
(1)
i+1 by performing the computation on ŵ

(1)
i+1

required to satisfy the constraints expressed in R1CS(1).
Commit to the extended witness w̄(1)

i+1 ← Commit(pp(1)
W , w

(1)
i+1).

Define x0 := 𝕦(2)
i .x1 and x1 := H1

(
vk, (i + 1)(1), z

(1)
0 , z

(1)
i+1 := F1(z(1)

i , aux(1)
i ),𝕌(2)

i+1
)
.

Assign 𝕦(1)
i+1 :=

(
0̄(1), 1(1), w̄(1)

i+1, (x0, x1)
)

and 𝕨(1)
i+1 :=

(⃗
0(1), w

(1)
i+1

)
.

3. Fold Pairs for R1CS(1): Fold the newly computed pair (𝕦(1)
i+1,𝕨(1)

i+1) with the committed
pair (𝕌(1)

i ,𝕎(1)
i ) for R1CS(1).

FoldP
(
pk, (𝕦(1)

i+1,𝕨(1)
i+1), (𝕌(1)

i ,𝕎(1)
i )

)
→

(
T̄(1)

i , (𝕌(1)
i+1,𝕎(1)

i+1)
)

Obtain a folding proof T̄(1)
i and new committed relaxed instance-witness pair (𝕌(1)

i+1,𝕎(1)
i+1).

4. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
i+1,𝕨(2)

i+1) for
R1CS(2) as follows:

Define ŵ
(2)
i+1 := (vk, i(2), z

(2)
0 , z

(2)
i , aux(2)

i ,𝕌(1)
i , 𝕦(1)

i+1, T̄(1)
i ) as the relation witness for R2.

Then, compute the extended witness w
(2)
i+1 by performing the computation on ŵ

(2)
i+1

required to satisfy the constraints expressed in R1CS(2).
Commit to the extended witness w̄(2)

i+1 ← Commit(pp(2)
W , w

(2)
i+1).

Define x0 := 𝕦(1)
i+1.x1 and x1 := H2

(
vk, (i + 1)(2), z

(2)
0 , z

(2)
i+1 := F2(z(2)

i , aux(2)
i ),𝕌(1)

i+1
)
.

Assign 𝕦(2)
i+1 :=

(
0̄(2), 1(2), w̄(2)

i+1, (x0, x1)
)

and 𝕨(2)
i+1 :=

(⃗
0(2), w

(2)
i+1

)
.

5. Output Prover State: Output IVC Proof for step i + 1

πi+1 :=
(
(𝕦(2)

i+1,𝕨(2)
i+1), (𝕌(1)

i+1,𝕎(1)
i+1), (𝕌(2)

i+1,𝕎(2)
i+1)

)
along with new evaluations z

(1)
i+1 := F1(z(1)

i , aux(1)
i ) and z

(2)
i+1 := F2(z(2)

i , aux(2)
i ). These

outputs are sufficient to execute another step of the Nova prover for iteration i + 1.

This completes our description of the prover.

6 Proof of security

▶ Theorem 9. If the non-interactive folding scheme is knowledge sound (Definition 7) and
the hash function is collision resistant (Definition 8), then our modified Nova IVC scheme is
knowledge sound (Definition 1).

The proof of Theorem 9 can be found in the full version of our paper (eprint.iacr.org/2023/969).

https://eprint.iacr.org/2023/969


W. D. Nguyen, D. Boneh, and S. Setty 18:15

7 The Original Nova Vulnerability

In this section, we describe the prior implementation of the Nova Verifier and the vulnerability
in detail. At the end, we provide a proof of concept attack against the Minroot VDF [10]
Nova verifier.

7.1 The Prior (Vulnerable) Nova Verifier
Before our patch added on 05/18/2023, the prior (vulnerable) 2-cycle Nova IVC Verifier V
took in as input:

Constraint Systems R1CS(1) and R1CS(2).
An index i ∈ ℕ.
Starting values z

(1)
0 ∈ 𝔽1, z

(2)
0 ∈ 𝔽2.

Claimed evaluations z
(1)
i ∈ 𝔽1, z

(2)
i ∈ 𝔽2

An IVC Proof for iteration i πi :=
(
(𝕦(1)

i ,𝕨(1)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕦(2)

i ,𝕨(2)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

▶ Remark 10. The prior IVC proof πi contained an additional instance-witness pair (𝕦(1)
i ,𝕨(1)

i ).
This pair is no longer included in our modified verifier Section 5.2. As we explain in Section 7.2,
the inclusion of these elements (along with misplaced checks) lead to the vulnerability.

The verifier performs an initial procedure:
1. Given functions F1 and F2, deterministically generate augmented R1CS constraint systems

R1CS(1) and R1CS(2) which implement relations R1 and R2 from Figures 1a and 1b
2. Compute the folding verification key

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2))

)
The verifier accepts if the following conditions are met:
1. The index i must be greater than 0.
2. 𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
3. 𝕦(2)

i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
4. Pair (𝕌(1)

i ,𝕎(1)
i ) satisfies R1CS(1).

5. Pairs (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).
6. Pair (𝕦(1)

i ,𝕨(1)
i ) strictly satisfies R1CS(1).

7. Pair (𝕦(2)
i ,𝕨(2)

i ) strictly satisfies R1CS(2).

7.2 The Vulnerability
In this section we first break down the implications of the verifier checks. Then, we explore
a vulnerability with the approach. Finally, we describe a process to forge convincing IVC
proofs in two stages.

Informally, for i > 2, the security argument for Nova IVC proceeds as follows:
The verifier checks that 𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. This ensures that 𝕦(1)

i .x1

is derived from the inputs z
(1)
i and 𝕌(2)

i that are provided to the verifier.
The verifier checks that the pair (𝕦(1)

i ,𝕨(1)
i ) satisfies R1CS(1) which implements the

relation R1. This implies two things:

AFT 2023



18:16 Revisiting the Nova Proof System on a Cycle of Curves

First, 𝕌(2)
i is the result of folding the instances 𝕦(2)

i−1 and 𝕌(2)
i−1 specified in 𝕨(1)

i ,
Second, 𝕦(2)

i−1.x0 = H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, 𝕌(2)

i−1

)
where z

(1)
i = F1(z(1)

i−1, aux(1)
i−1)

for some element aux(1)
i−1.

The verifier checks that (𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2), which implements the relation R2.
Then by knowledge soundness of the folding scheme, one can extract valid witnesses 𝕨(2)

i−1

for 𝕦(2)
i−1 and 𝕎(2)

i−1 for 𝕌(2)
i−1 with respect to R1CS(2).

Now, since 𝕨(2)
i−1 is a valid witness for 𝕦(2)

i−1, there are instances 𝕦(1)
i−1 and 𝕌(1)

i−2 specified
in 𝕨(2)

i−1. By definition of R2, the instance 𝕦(1)
i−1 must satisfy 𝕦(1)

i−1.x1 = 𝕦(2)
i−1.x0 =

H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

i−1

)
.

We would now like to conclude that both 𝕦(1)
i−1 and 𝕌(1)

i−2 are satisfiable for R1CS(1). However,
none of the verifier checks or invariants induced by the relations imply that either 𝕦(1)

i−1 or
𝕌(1)

i−2 are satisfiable with respect to R1CS(1). To see why, observe that R2 verifies that 𝕦(1)
i−1

and 𝕌(1)
i−2 fold into some 𝕌(1)

i−1. Then this 𝕌(1)
i−1 is hashed into 𝕦(2)

i−1.x1, which gets copied to
𝕦(1)

i .x0. The verifier is given an instance 𝕌(1)
i that it expects to be the result of folding 𝕦(1)

i

and 𝕌(1)
i−1, but this need not be the case. In fact, 𝕌(1)

i can be the result of folding entirely
different 𝕦(1) and 𝕌(1).

Our attack exploits this by running the honest Nova prover for two stages. The first
stage generates a satisfiable instance 𝕦(2)

i−1 with x0 containing our own adversarially chosen
values of (i− 1)(1) and z

(1)
i−1. Then, the second stage generates pairs (𝕦(1)

i ,𝕨(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

by running the honest prover again with 𝕌(2)
⊥ , 𝕦(2)

i−1 as relational witness inputs. The attack
proceeds symmetrically to generate pairs (𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ).

7.3 Attack Procedure
Our adversary A takes in as input:

Constraint Systems R1CS(1) and R1CS(2).
An attack index i > 2 ∈ ℕ.
Arbitrary starting values z

(1)
0 ∈ 𝔽1 and z

(2)
0 ∈ 𝔽2.

Arbitrary claimed evaluations z
(1)
i ∈ 𝔽1 and z

(2)
i ∈ 𝔽2.

Preimages (z(1)
i−1, aux(1)

i−1) ∈ 𝔽1 and (z(2)
i−1, aux(2)

i−1) ∈ 𝔽2 such that z
(1)
i = F1(z(1)

i−1, aux(1)
i−1)

and z
(2)
i = F2(z(2)

i−1, aux(2)
i−1).

A will produce a false but convincing IVC proof πi that the elements z
(1)
i = F (i)

1 (z(1)
0 , ·)

and z
(2)
i = F (i)

2 (z(2)
0 , ·) are produced by iteratively applying the non-deterministic functions

F1, F2 i-times on z
(1)
0 , z

(2)
0 for some collection of auxillary values {aux(1)

j , aux(2)
j }0≤j<i.

Stage One. A will imitate an honest Nova Prover to produce a satisfying pair (𝕦(2)
i−1,𝕨(2)

i−1)
for R1CS(2), but with adversarial inputs.

1. Produce Adversarial Instance: We will produce an adversarial 𝕦(1)
i−1 by performing

the following steps:
a. Compute x0 := H2

(
vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2,𝕌(1)

⊥

)
, where z

(2)
i−2 can be set to anything,

such as 0⃗(2).
b. Compute x1 := H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

⊥

)
.



W. D. Nguyen, D. Boneh, and S. Setty 18:17

c. Commit to the extended witness w̄(1)
i−1 ← Commit(pp(1)

W , w
(1)
i−1), where the extended

witness w
(1)
i−1 can be set to anything, such as 0⃗(2).

d. Assign 𝕦(1)
i−1 :=

(
0̄(1), 1(1), w̄(1)

i−1, (x0, x1)
)

and 𝕨(1)
i−1 :=

(
0⃗(1), w

(1)
i−1

)
.

2. Fold Pair for R1CS(1): Fold the newly computed pair (𝕦(1)
i−1,𝕨(1)

i−1) with the trivially
satisfiable pair (𝕌(1)

⊥ ,𝕎(1)
⊥ ) for R1CS(1).

FoldP

(
pk, (𝕦(1)

i−1,𝕨(1)
i−1), (𝕌(1)

⊥ ,𝕎(1)
⊥ )

)
→

(
T̄(1)

i−2, (𝕌(1)
i−1,𝕎(1)

i−1)
)

Obtain a folding proof T̄(1)
i−2 and new committed relaxed instance-witness pair (𝕌(1)

i−1,𝕎(1)
i−1).

3. Compute New Pair for R1CS(2): Compute the new committed pair (𝕦(2)
i−1,𝕨(2)

i−1) for
R1CS(2) as follows:

Define ŵ
(2)
i−1 := (vk, (i− 2)(2), z

(2)
0 , z

(2)
i−2, aux(2)

i−2,𝕌(1)
⊥ , 𝕦(1)

i−1, T̄(1)
i−2) as the relation witness

for R2, where aux(2)
i−2 can be set to anything, such as 0⃗(2). Then, compute the extended

witness w
(2)
i−1 by performing the computation on ŵ

(2)
i−1 required to satisfy the constraints

expressed in R1CS(2).
Commit to the extended witness w̄(2)

i−1 ← Commit(pp(2)
W , w

(2)
i−1).

Define x0 = 𝕦(1)
i−1.x1 and compute x1 = H2

(
vk, (i− 1)(2), z

(2)
0 , F(2)

2 (z(2)
i−2, aux(2)

i−2),𝕌(1)
i−1

)
.

Assign 𝕦(2)
i−1 :=

(
0̄(2), 1(2), w̄(2)

i−1, (x0, x1)
)

and 𝕨(2)
i−1 :=

(
0⃗(2), w

(2)
i−1

)
.

This new committed instance-witness pair (𝕦(2)
i−1,𝕨(2)

i−1) is valid, because the computation
performed above explicitly satisfies the constraints of R1CS(2). Furthermore, 𝕦(2)

i−1.x0 =
𝕦(1)

i−1.x1, which is maliciously set to H1

(
vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1,𝕌(2)

⊥

)
.

Stage Two. A will imitate an honest Nova Prover for R1CS(1), but with witness input
derived in stage one.

1. Fold Pair for R1CS(2): Fold the newly computed pair (𝕦(2)
i−1,𝕨(2)

i−1) with the trivially
satisfiable pair (𝕌(2)

⊥ ,𝕎(2)
⊥ ) for R1CS(2).

FoldP

(
pk, (𝕦(2)

i−1,𝕨(2)
i−1), (𝕌(2)

⊥ ,𝕎(2)
⊥ )

)
→

(
T̄(2)

i−1, (𝕌(2)
i ,𝕎(2)

i )
)

Obtain a folding proof T̄(2)
i−1 and new committed relaxed instance-witness pair (𝕌(2)

i ,𝕎(2)
i ).

Note that since both pairs are satisfiable, this new pair (𝕌(2)
i ,𝕎(2)

i ) is also satisfiable.

2. Compute New Pair for R1CS(1): Compute the new committed pair (𝕦(1)
i ,𝕨(1)

i ) for
R1CS(1) as follows:

Define ŵ
(1)
i := (vk, (i− 1)(1), z

(1)
0 , z

(1)
i−1, aux(1)

i−1,𝕌(2)
⊥ , 𝕦(2)

i−1, T̄(2)
i−1) as the relation witness

for R1. Then, compute the extended witness w
(1)
i by performing the computation on

ŵ
(1)
i required to satisfy the constraints expressed in R1CS(1).

Commit to the extended witness w̄(1)
i ← Commit(pp(1)

W , w
(1)
i ).

Define x0 = 𝕦(2)
i−1.x1 and compute x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i := F1(z(1)

i−1, aux(1)
i−1),𝕌(2)

i

)
.

Assign 𝕦(1)
i :=

(
0̄(1), 1(1), w̄(1)

i , (x0, x1)
)

and 𝕨(1)
i :=

(
0⃗(1), w

(1)
i

)
.

AFT 2023



18:18 Revisiting the Nova Proof System on a Cycle of Curves

This new committed instance-witness pair (𝕦(1)
i ,𝕨(1)

i ) is satisfiable, because the computation
performed above explicitly satisfies the constraints of R1CS(1). Furthermore, 𝕦(1)

i .x1 =
H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
. To recap, after these two stages we obtained pairs (𝕦(1)

i ,𝕨(1)
i )

and (𝕌(2)
i ,𝕎(2)

i ) such that the following hold:
𝕦(1)

i .x1 = H1

(
vk, i(1), z

(1)
0 , z

(1)
i ,𝕌(2)

i

)
(𝕦(1)

i ,𝕨(1)
i ) satisfies R1CS(1).

(𝕌(2)
i ,𝕎(2)

i ) satisfies R1CS(2).

Symmetry. Since the relations expressed by the augmented constraint systems R1CS(1)

and R1CS(2) are symmetric (Section 4) when i > 2. We can repeat both stages above
symmetrically to produce pairs (𝕦(2)

i ,𝕨(2)
i ) and (𝕌(1)

i ,𝕎(1)
i ) such that the following hold:

𝕦(2)
i .x1 = H2

(
vk, i(2), z

(2)
0 , z

(2)
i ,𝕌(1)

i

)
(𝕦(2)

i ,𝕨(2)
i ) satisfies R1CS(2).

(𝕌(1)
i ,𝕎(1)

i ) satisfies R1CS(1).

Finally, adversary A outputs an IVC proof πi :=
(
(𝕦(1)

i ,𝕨(1)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕦(2)

i ,𝕨(2)
i ),

(𝕌(2)
i ,𝕎(2)

i )
)
. By construction, πi is a convincing IVC proof (i.e. all the verifier checks pass).

7.3.1 Proof of Concept Attack Against the Minroot Verifier
We implement our attack against the prior 2-cycle Nova Proof System generically for any
choice of F1 and F2 and parameters specified in Section 7.3. Our implementation can be
found in our repo MercysJest/NovaBreakingTheCycleAttack, which is a direct fork of the
original microsoft/Nova repo. To demonstrate the attack, we can compute a convincing Nova
proof for the correct evaluation of 275 rounds of the Minroot VDF in only 116 milliseconds
on a Macbook. The demonstration code can be found in examples/vuln.rs.

========================================================================
Demonstrating exploit against Nova-based VDF with MinRoot delay function
========================================================================
Producing public parameters...
PublicParams::setup, took 2.9136875s
...
Each IVC Step Performs 4096 iterations of Minroot.
Generating fake proof of 9223372036854775808 IVC Steps.
In total, faking 37778931862957161709568 Minroot iterations.
Generating fake proof took 115.872416ms
Verifying a RecursiveSNARK...
RecursiveSNARK::verify: true, took 27.8225ms
Generating a CompressedSNARK using Spartan with IPA-PC...
CompressedSNARK::prove: true, took 1.5859465s
CompressedSNARK::len 9713 bytes
Verifying a CompressedSNARK...
CompressedSNARK::verify: true, took 55.04425ms

8 Malleability of Nova’s IVC proofs

In this section, we show that the 2-cycle Nova IVC proofs, described in Section 5 are malleable.
This attack readily generalizes to the original (single chain) Nova construction [12]. We later
discuss how to prevent this malleability attack by making use of either an additional ctx
element in the verification key vk or use of a simulation-extractable zkSNARK (e.g., Spartan)
for IVC proof compression.

https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/src/lib.rs#L186
https://github.com/microsoft/Nova
https://github.com/MercysJest/NovaBreakingTheCycleAttack/blob/4c691527089bc680123f2360e5a75b954d656ac0/examples/vuln.rs#L145


W. D. Nguyen, D. Boneh, and S. Setty 18:19

Suppose an adversary is given a valid Nova IVC proof πi with respect to the following
parameters

IVC public parameters pp,
a description of functions F1 : 𝔽 a1

1 × 𝔽 b1
1 → 𝔽 a1

1 and F2 : 𝔽 a2
2 × 𝔽 b2

2 → 𝔽 a2
2 ,

an index i ∈ ℕ,
starting values z

(1)
0 ∈ 𝔽 a1

1 and z
(2)
0 ∈ 𝔽 a2

2 , and
claimed evaluations z

(1)
i ∈ 𝔽 a1

1 and z
(2)
i ∈ 𝔽 a2

2 .

We show in Section 8.1 that the adversary can construct a proof πprime for the same iteration i,
but for some z

(2)
prime different from z

(2)
i . In particular, running the IVC verifier with arguments(

pp, (F1, F2), i, (z(1)
0 , z

(2)
0 ), (z(1)

i , z
(2)
prime), πprime

)
causes the verifier to accept. We stress that our adversary does not need to know the
auxiliary values (aux(2)

0 , aux(2)
1 , . . . , aux(2)

i−1) used to compute z
(2)
i . By choosing an alternate

final auxiliary value aux(2)
prime ̸= aux(2)

i−1, our adversary can construct a proof πprime for an
alternate value z

(2)
prime for i iterations, without knowledge of the first i− 1 auxiliary values.

We discuss two ways to mitigate this issue in Section 8.2 below.

Why does this matter? A malleable proof system [5] can lead to a real world security
vulnerability. Suppose Alice uses her secret auxiliary values to compute z

(2)
i and this z

(2)
i

encodes her payment address. She sends the z
(2)
i and the proof to a payment contract. An

attacker could intercept her message and maul z
(2)
i to a z

(2)
prime which encodes the attackers

payment address instead, along with a valid proof πprime. The payment contract will then
send the funds to the attacker instead of Alice. Concretely, if Tornado Cash had used a proof
system that were malleable on statements, it would have been possible to steal funds.

8.1 The Malleability Attack
We present a malleability attack on the last step of the IVC chain. Recall that the Nova
IVC proof πi contains the following elements

πi :=
(
(𝕦(2)

i ,𝕨(2)
i ), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

The malleability attack proceeds as follows:

1. Parse witness: In Section 6, we argued that we can parse the witness 𝕨(2)
i to obtain

relational witness

ŵ
(2)
i =

(
vk, (i− 1)(2), z

(2)
0 , z

(2)
i−1, aux(2)

i−1, 𝕌(1)
i−1, 𝕦(1)

i , T̄(1)
i−1

)
for which we know

z
(2)
i = F2

(
z

(2)
i−1, aux(2)

i−1
)

𝕌(1)
i = FoldV

(
vk, 𝕌(1)

i−1, 𝕦(1)
i , T̄(1)

i−1
)

Thus, we parse 𝕨(2)
i to obtain ŵ

(2)
i

2. Find a different auxiliary value: Using z
(2)
i−1, choose some aux(2)

prime such that

z
(2)
prime := F2

(
z

(2)
i−1, aux(2)

prime
)
̸= F2

(
z

(2)
i−1, aux(2)

i−1
)

= z
(2)
i

We assume that finding such an aux(2)
prime is efficient for F2.

AFT 2023



18:20 Revisiting the Nova Proof System on a Cycle of Curves

3. Compute a new pair for R1CS(2): Compute the pair (𝕦(2)
prime,𝕨

(2)
prime) for R1CS(2) as

follows:
Define ŵ

(2)
prime := (vk, (i−1)(2), z

(2)
0 , z

(2)
i−1, aux(2)

prime,𝕌
(1)
i−1, 𝕦(1)

i , T̄(1)
i−i) as the relation witness

for R2. Then, compute the extended witness w
(2)
prime by performing the computation on

ŵ
(2)
prime required to satisfy the constraints expressed in R1CS(2).

Commit to the extended witness w̄(2)
prime ← Commit(pp(2)

W , w
(2)
prime).

Define x0 := 𝕦(1)
i .x1 and x1 := H2

(
vk, i(2), z

(2)
0 , z

(2)
prime := F2(z(2)

i−1, aux(2)
prime),𝕌

(1)
i

)
.

Assign 𝕦(2)
prime :=

(
0̄(2), 1(2), w̄(2)

prime, (x0, x1)
)

and 𝕨(2)
prime :=

(⃗
0(2), w

(2)
prime

)
.

4. Output mauled proof: Output πprime :=
(
(𝕦(2)

prime,𝕨
(2)
prime), (𝕌(1)

i ,𝕎(1)
i ), (𝕌(2)

i ,𝕎(2)
i )

)
.

By construction, the proof πprime is convincing.

▶ Remark 11 (Generalizing the Malleability Attack). In more general terms, given an IVC
proof that contains information about a valid pre-image zi−1 to zi Our malleability attack
re-executes the last step of the IVC prover with a different choice of the final auxiliary value
auxi−1. In particular, our attack readily generalizes to the original Nova construction [12].

8.2 Preventing This Malleability Attack
There are several strategies that defeat this specific malleability attack.

Incorporating Context Elements. The first approach is to expand the verification key vk
to include a context string ctx which includes the IVC verifier context

( · , vk)← FoldK
(
pp, R1CS := (R1CS(1), R1CS(2)), ctx := (i, z

(1)
i , z

(2)
i )

)
This inductively binds the proof to a particular choice of (i, z

(1)
i , z

(2)
i ). However, this breaks

the incremental property (namely, completeness after iteration i as described in Definition 1)
of the proof since the prover cannot use this proof to produce another valid proof for an
iteration j > i. Additionally, the IVC prover must compute the evaluations (z(1)

i , z
(2)
i ) before

generating the IVC proof.

Compression. A different defense is to use a compressed IVC proof π′
i, namely

π′
i :=

(
𝕦(2)

i , 𝕌(2)
i , 𝕌(1)

i , T̄(2)
i , πsat

)
(2)

where πsat is a SNARK proof for the relation

Rsat :=
{(

𝕌(2)
i+1, 𝕌(1)

i ; 𝕎(2)
i+1, 𝕎(1)

i

)
:

(𝕌(1)
i ,𝕎(1)

i ) satisfies R1CS(1)

∧ (𝕌(2)
i+1,𝕎(2)

i+1) satisfies R1CS(2)

}
(3)

Here the SNARK must be zero knowledge so that πsat contains no information about the
underlying witnesses. Similarly, the witness commitment w̄(2)

i in 𝕦(2)
i must be a hiding

commitment. Furthermore, the SNARK may also need to be simulation extractable [9]. The
Spartan SNARK [18] is simulation-extractable [3]. Unfortunately, applying the SNARK
compression step would remove the efficient incremental property of the IVC since we can no
longer run the native Nova IVC prover for subsequent iterations. Nova [12, 14] uses Spartan
produce compressed IVC proofs π′

i (2).



W. D. Nguyen, D. Boneh, and S. Setty 18:21

References
1 Benedikt Bünz and Binyi Chen. ProtoStar: Generic efficient accumulation/folding for special

sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023. URL: https://eprint.
iacr.org/2023/620.

2 Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner.
Proof-carrying data without succinct arguments. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer
Science, pages 681–710, Virtual Event, August 16–20 2021. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-84242-0_24.

3 Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for free!).
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part II, volume 14005 of Lecture Notes in Computer Science, pages 531–562, Lyon, France,
April 23–27 2023. Springer, Heidelberg, Germany. doi:10.1007/978-3-031-30617-4_18.

4 Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-shamir attacks on
modern proof systems. Cryptology ePrint Archive, Paper 2023/691, 2023. URL: https:
//eprint.iacr.org/2023/691.

5 Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 566–598, Santa
Barbara, CA, USA, August 19–23 2001. Springer, Heidelberg, Germany. doi:10.1007/
3-540-44647-8_33.

6 Morris Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions,
2015-08-04 2015. doi:10.6028/NIST.FIPS.202.

7 Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. doi:10.1007/3-540-47721-7_12.

8 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for zero-knowledge proof systems. In Michael Bailey and
Rachel Greenstadt, editors, USENIX Security 2021: 30th USENIX Security Symposium, pages
519–535. USENIX Association, August 11–13 2021.

9 Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 444–459, Shanghai, China, Decem-
ber 3–7 2006. Springer, Heidelberg, Germany. doi:10.1007/11935230_29.

10 Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. MinRoot: Candidate
sequential function for Ethereum VDF. Cryptology ePrint Archive, Paper 2022/1626, 2022.
URL: https://eprint.iacr.org/2022/1626.

11 Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive arguments for customizable
constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. URL: https://eprint.
iacr.org/2023/573.

12 Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology – CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Computer Science,
pages 359–388, Santa Barbara, CA, USA, August 15–18 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15985-5_13.

13 Nicholas Mohnblatt. Sangria: A folding scheme for PLONK, 2023. link.
14 Nova Contributors. Nova implementation, 2022. URL: https://github.com/Microsoft/Nova.
15 oskarth. Towards a nova-based ZK virtual machine. https://zkresear.ch/t/

towards-a-nova-based-zk-vm/105, 2023.
16 Pasta Contributors. Pasta curves, 2020. URL: https://github.com/zcash/pasta_curves.

AFT 2023

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-031-30617-4_18
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2023/691
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11935230_29
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://doi.org/10.1007/978-3-031-15985-5_13
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/Microsoft/Nova
https://zkresear.ch/t/towards-a-nova-based-zk-vm/105
https://zkresear.ch/t/towards-a-nova-based-zk-vm/105
https://github.com/zcash/pasta_curves


18:22 Revisiting the Nova Proof System on a Cycle of Curves

17 Carla Ràfols and Alexandros Zacharakis. Folding schemes with selective verification. Cryptology
ePrint Archive, Report 2022/1576, 2022. URL: https://eprint.iacr.org/2022/1576.

18 Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 704–737, Santa
Barbara, CA, USA, August 17–21 2020. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-56877-1_25.

19 Srinath Setty. Nova pull request 167, 2023. URL: https://github.com/Microsoft/Nova/
pull/167.

20 Supernational. Open VDF: Accelerating the nova snark-based vdf. https://medium.
com/supranational/open-vdf-accelerating-the-nova-snark-based-vdf-2d00737029bd,
2023.

21 Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume
4948 of Lecture Notes in Computer Science, pages 1–18, San Francisco, CA, USA, March 19–21
2008. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-78524-8_1.

https://eprint.iacr.org/2022/1576
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://github.com/Microsoft/Nova/pull/167
https://github.com/Microsoft/Nova/pull/167
https://medium.com/supranational/open-vdf-accelerating-the-nova-snark-based-vdf-2d00737029bd
https://medium.com/supranational/open-vdf-accelerating-the-nova-snark-based-vdf-2d00737029bd
https://doi.org/10.1007/978-3-540-78524-8_1


Censorship Resistance in On-Chain Auctions
Elijah Fox #

Duality Labs, New York, NY, USA, USA

Mallesh M. Pai # Ñ

Department of Economics, Rice University, Houston, TX, USA
Special Mechanisms Group

Max Resnick #

Special Mechanisms Group

Abstract
Modern blockchains guarantee that submitted transactions will be included eventually; a property
formally known as liveness. But financial activity requires transactions to be included in a timely
manner. Classical liveness does not guarantee this, particularly in the presence of a motivated
adversary who benefits from censoring transactions. We define censorship resistance as the amount
it would cost the adversary to censor a transaction for a fixed interval of time as a function of the
associated tip. This definition has two advantages, first it captures the fact that transactions with a
higher miner tip can be more costly to censor, and therefore are more likely to swiftly make their
way onto the chain. Second, it applies to a finite time window, so it can be used to assess whether a
blockchain is capable of hosting financial activity that relies on timely inclusion.

We apply this definition in the context of auctions. Auctions are a building block for many
financial applications, and censoring competing bids offers an easy-to-model motivation for our
adversary. Traditional proof-of-stake blockchains have poor enough censorship resistance that it is
difficult to retain the integrity of an auction when bids can only be submitted in a single block. As
the number of bidders n in a single block auction increases, the probability that the winner is not
the adversary, and the economic efficiency of the auction, both decrease faster than 1/n. Running
the auction over multiple blocks, each with a different proposer, alleviates the problem only if the
number of blocks grows faster than the number of bidders. We argue that blockchains with more
than one concurrent proposer can have strong censorship resistance. We achieve this by setting up a
prisoner’s dilemma among the proposers using conditional tips.

2012 ACM Subject Classification Applied computing → Online auctions

Keywords and phrases Censorship Resistance, Auctions, Blockchain, MEV

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.19

Related Version A full version of this paper including omitted proofs is available on ArXiv.
Full Version: https://arxiv.org/abs/2301.13321

1 Introduction

Blockchain consensus algorithms typically guarantee liveness, meaning valid transactions
will be included on chain eventually. But financial applications, are time sensitive. For these
to function as intended, valid transactions must be included on the blockchain in a timely
manner. This requires something stronger than liveness: censorship resistance. To quote
[5], censorship resistance is “ensuring that transactions that people want to put into the
blockchain will actually get in in a timely fashion, even if “the powers that be”, at least on
that particular blockchain, would prefer otherwise.”

In this paper, we propose a formal definition that quantifies censorship resistance in the
sense of [5] above. We abstract away from the details of the chain and view it as a public
bulletin board with two operations: a read operation, which always succeeds, and a write

© Elijah Fox, Mallesh M. Pai, and Max Resnick;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elijah@duality.xyz
mailto:mallesh.pai@gmail.com
http://www.malleshmpai.com
https://orcid.org/0000-0001-9989-6676
mailto:max.resnick@mechanism.org
https://orcid.org/0009-0000-6174-0254
https://doi.org/10.4230/LIPIcs.AFT.2023.19
https://arxiv.org/abs/2301.13321
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Censorship Resistance in On-Chain Auctions

operation. The write operation succeeds when the transaction with an associated tip is added
to the bulletin board and fails otherwise. We then define the censorship resistance of this
public bulletin board as the amount it would cost a motivated adversary to cause a write
operation to fail, as a function of the associated tip.

This definition has two advantages that are useful in applications. The first stems from the
fact that we define censorship resistance as a function of the underlying tip: this captures how
transactions with a higher tip can be more expensive to censor, and therefore are more likely
to successfully make it on chain. The second is that by capturing the censorship resistance
of a specific public bulletin board, with an associated length of time for a transaction to
be added, we can capture the trade-off between censorship resistance and speed for specific
blockchain designs.

Having presented this definition, we apply it to tackle whether a given public bulletin
board is sufficiently censorship resistant to host a given mechanism. This is tricky because it
depends on both the tips of the underlying transaction(s) and the motivation of the adversary,
both of which are potentially endogenously determined by the mechanism.

This paper considers whether existing proof-of-stake blockchains are sufficiently censorship
resistant to host time-sensitive auctions. We consider auctions for two reasons. First, the
cost of being censored and the benefits of censoring competing bids are easy to quantify in
an auction. Therefore, for a given public bulletin board with fixed censorship resistance,
we can determine whether the auction will actually function as intended. Second, auctions
are already a popular mechanism on-chain: for example, Maker DAO, the entity behind
popular stablecoin DAI, uses Dutch clock auctions to sell the right to liquidate collateral
for distressed loans, and additionally digital goods such as NFTs may also be auctioned off
on-chain. Also, several important future developments will require auctions on-chain, from
the very organization of Ethereum ([22]), to proposals by other large organizations to move
current off-chain auctions on-chain ([12]).

Formally, we consider a seller of a single unit of an indivisible good who runs a second-price
auction on-chain. The seller encodes the rules of the second-price auction in a smart contract.
The contract selects the bidder who submitted the highest bid over a predefined period and
sets the payment to the second-highest bid. But since all of this takes place on a blockchain,
before a bid can be submitted to the auction, it must be included in a transaction on-chain.
Valid transactions are submitted to a mempool. Each slot, the proposer gathers transactions
from the mempool into a block that will eventually be added to the chain. Proposers have
complete autonomy over which transactions to include.

The power of the proposer to determine the contents of the block and, therefore, the
outcome of the auction sets up a competition for inclusion. Bidders include tips for the
proposer along with their bids. The proposer receives these tips if and only if the corresponding
transactions are included in his block. We suppose that there is a single colluding bidder
who may offer a bribe to the proposer in exchange for omitting certain transactions. In
distributed systems terminology, this single colluding bidder who may bribe the proposer if
they believe it profitable for them to do so is our threat model.

We show that in the auction setting, tips for inclusion are a public good since they
provide security to other transactions and only benefit the bidder who pays the tip if they
win the auction. In contrast, bribes for omission are purely for private benefit and make
other bidders worse off in equilibrium. Consequently, our results suggest that the colluding
bidder is highly advantaged in this game. In particular, we show that as the number of
honest bidders increases, the colluding bidder wins the auction increasingly often and collects
an increasingly large share of the surplus created by the auction.



E. Fox, M. M. Pai, and M. Resnick 19:3

Notably, we assume that bids are sealed, that is, that the colluding bidder must choose
which transactions to try and omit based solely on the associated tip. We show that the
colluding bidder can back out the private bids (and therefore whether it is profitable to
attempt to censor these bids) based on these public tips. This suggests that cryptographic
approaches (e.g. commit-reveal schemes, encrypted mempools) are not a silver bullet for
resolving censorship concerns in such settings.

We then consider two alternate designs that improve censorship resistance. The first
is to run the auction over multiple slots with a different proposer for each. We find that
this achieves sufficient censorship resistance only if the number of blocks grows faster than
the number of bidders. This is undesirable for reasons external to our model; for example,
executing the auction in a short window is important for financial applications. MEV auctions
in particular are concerned about speed, since they need to clear at least once every slot –
once every 12 seconds on Ethereum.

The second is to have blockchains with multiple concurrent block proposers, k > 1, and
allow bidder tips to be conditioned not only on inclusion, but also on the number of proposers
who include the bid within a slot. This allows bidders to set up a sort of “prisoner’s dilemma”
among the proposers by offering to pay a large tip T when only one proposer includes, and a
small tip t≪ T if multiple proposers include. Each proposer is incentivized to include since
if they are alone in including the transaction, there is a high tip attached. Therefore, all
proposers include the bid in equilibrium. However, censoring is expensive, since censoring
requires that each proposer be bribed T for a total cost of kT. This leads to a low expected
tip of kt but an asymmetrically expensive censorship cost of kT ≫ kt. This asymmetry
allows for a pooling equilibrium in which the probability of censorship is 0, the tips no longer
reveal the bids, and the expected total tips are low.

2 Related Literature

Censorship resistance, for various definitions of the term, is a key desideratum motivating
the adoption of blockchains. This property appeared in some of the earliest writings on the
subject, e.g., [5]. More recently, this property has come under additional scrutiny due to two
major developments. The first, Proposer Builder Separation (PBS) in Ethereum, explicitly
establishes an auction for the right to build the next block. Block builders who win this
auction decide which transactions make it onto the chain and, more importantly for our
purpose, which transactions do not. PBS therefore enables a motivated adversary to censor
specific transaction(s) by purchasing the right to build the next block and intentionally
omitting those transactions ([6]). The second relates to US OFAC sanctions on certain
Ethereum addresses, and the subsequent decision by certain block builders to exclude
transactions including those addresses from blocks that they build. Effects of this (and a
related definition of censorship resistance) are studied in [26].

The literature on auctions, even restricting to papers that explicitly think about auctions
in the context of blockchains, is much larger. In such auctions, bids are rarely announced
simultaneously, and maintaining the seal on bids transmitted through public channels requires
cryptography. For example, a simple cryptographic second-price sealed-bid auction involves
bidders submitting the hash of their bids rather than the bids themselves and then revealing
the hash after all bids have been submitted. [11] showed that, using a cryptographically
secure commitment scheme, it is possible to design an auction that is optimal, strategy
proof and credible (in the sense of [1, 2]). More complicated cryptographic approaches can
eliminate the need to reveal any information beyond the results of the auction and can also
accommodate combinatorial auctions ([20, 9, 24]).

AFT 2023



19:4 Censorship Resistance in On-Chain Auctions

Auctions are commonly cited as use cases for the verifiable computation that smart
contracts provide. This was originally envisaged in [25], who noted that “. . . a blockchain
with a built-in fully fledged Turing-complete programming language that can be used to
create “contracts” . . . simply by writing up the logic in a few lines of code”, see also [14, 3].
Auctions have also been suggested as a desirable mechanism to decide the order and inclusion
of transactions to mitigate MEV ([18]). Historically, these were decided by a combination
of auction and speed-based mechanisms, leading [8] to compare MEV with high-frequency
trading as described in [4]. Initially, inclusion and priority within the block were decided by
priority gas auctions (PGAs), since most validators gathered transactions directly from the
mempool and ordered them according to their miner tips, breaking ties using a first come first
serve rule ([8]). But recently, a super-majority of validators have switched their execution
clients to MEV-boost compatible versions, meaning the right to decide inclusion and ordering
for most blocks is sold to the highest bidder. These bidders are typically established builders
who specialize in extracting the maximum value from each block. The leading advocate for
this approach has been Flashbots, the company behind the initial open source MEV client.
Their next product SUAVE, aims to move these auctions on-chain [12].

Previous MEV mitigation research has focused on fairness rather than censorship ([17, 16]).
But [10] showed that for every sequencing rule of trades through a liquidity pool, there exists
a way for the proposer to obtain non-zero risk-free profits suggesting that ordering based
MEV is inevitable with current on chain financial application design. In response to this,
researchers have suggested that frequent batch auctions or other order-agnostic mechanisms
might alleviate the MEV that arises from transaction ordering power ([15]).

On-chain auctions have also been studied as a mechanism for the sale of non-fungible
tokens (NFTs) [21]. Gradual dutch auctions (GDAs) [13], are a dynamic mechanism for
selling multiple NFTs. [19] explores the credibility of GDAs and finds that an auctioneer can
bid to artificially raise the sale price and create the appearance of demand.

3 Formalizing Censorship Resistance

As we described above, we abstract away from the details of the blockchain and instead
consider solely the functionality as a public bulletin board. The public bulletin board can
be written to, which is how bids may be submitted, and can be read from, which is how
the auction can then be executed. For simplicity, we assume that once a message has been
successfully written to the bulletin board, it can be read without friction. For example, any
transaction included in an Ethereum block can be read by any full node.

▶ Definition 1 (Public Bulletin Board). A Public Bulletin Board has two public functions:
1. write(m, t) takes as input a message m and an inclusion tip t and returns 1 if the message

is successfully written to the bulletin board and 0 otherwise.
2. read() returns a list of all messages that have been written to the bulletin board over the

period.

Some subtlety must be observed in the definition of a public bulletin board. First, the
write function takes as input not only a message m but also a tip t. Here our definition
departs from [7]. This models proposer tips and other forms of validator bribes. To motivate
this, consider that the write function on Ethereum is unlikely to succeed without a sufficient
tip, and so the behavior of write is very different depending on the size of the associated tip.



E. Fox, M. M. Pai, and M. Resnick 19:5

▶ Example 2 (Single Block). In the case of a single block, the write(m, t) operation consists
of submitting a transaction m with associated tip t. write(m, t) succeeds if the transaction
is included in that block on the canonical chain.

▶ Example 3 (Multiple Blocks). In the case of k blocks with rotating proposers, the write(m, t)
operation consists of submitting a transaction m with associated tip t during the period
before the first block is formed. write(m, t) succeeds if the transaction is included in any of
the k blocks.

We can now model the relationship between the tip t and the success of the write operation
as a function. This function provides a flexible definition of the bulletin board’s censorship
resistance.

▶ Definition 4 (Censorship Resistance of a Public Bulletin Board). The censorship resistance of
a public bulletin board D is a mapping ϕ : R+ → R+ that takes as input the tip t corresponding
to the tip in the write operation write(·, t) and outputs the minimum cost that a motivated
adversary would have to pay to make the write fail.

This definition allows us to compare the censorship resistance of two bulletin boards even
when the inner machinations of those mechanisms are profoundly different. This definition
also easily extends to cases where tips are multi-dimensional. i.e. t ∈ Rn

+ by substituting
ϕ : R+ → R+ to ϕ : Rn

+ → R+.

▶ Example 2 (continued). The cost to censor this transaction would simply be t in the
uncongested case because the motivated adversary has to compensate the proposer at least
as much as the proposer would be losing from the tip. So:

ϕ(t) = t (1)

As a variant, suppose that the transaction fee mechanism involves burning some portion
of the tip as is the case on Ethereum today after the EIP 1559 upgrade [23]. Suppose further
that the current burn is b, i.e., with a tip of t only t− b is paid to the proposer upon inclusion
and the rest is burned. In this case, the proposer would be willing to censor upon a bribe of
at least t− b, so:

ϕ(t) = max(t− b, 0) (2)

▶ Example 3 (continued). In the case of k blocks with rotating proposers, the write(m, t)
operation consists of submitting a transaction m with associated tip t during the period
before the first block is formed. write(m, t) succeeds if the transaction is included in any of
the k blocks. The cost to censor this transaction would be kt since each of the k proposers
must be bribed at least t to compensate them for the forgone tip on the transaction that
they each had the opportunity to include. So:

ϕ(t) = kt. (3)

4 Modelling the Auction

We are now in a position to use our definitions to understand the censorship resistance of a
sealed-bid auction, for various design parameters.

We consider a traditional independent private values setting. There is a single seller with
a single unit of an indivisible good for sale. There are n + 1 buyers for the good, n ≥ 1 –
we denote the set of bidders by N = {0, 1, . . . , n}. Each of these buyers i ∈ N has a private

AFT 2023



19:6 Censorship Resistance in On-Chain Auctions

value for the good, vi . We suppose buyer 0’s value v0 is drawn from a distribution with
CDF F0 and density f0, and the other buyers’ values are are drawn i.i.d. from a distribution
with CDF F and density f . Both distributions have bounded support, we normalize these
to be equal to the unit interval [0, 1]. Several of our results will be for the special case
F = F0 = U [0, 1]. Bidders know their own vi; and n, F, and F0 are common knowledge
among all bidders and the seller.

The seller wants to conduct a sealed bid second-price auction with reserve price r. As
described in this introduction, the point of departure of our model is that this auction runs
on a blockchain. Initially, we consider an auction that accepts bids in a single designated
block. Below, we formally define this game and our solution concept.

In an idealized world with honest/ non-strategic proposers, the auction would run as
follows:
1. The seller announces the auction.
2. All buyers privately commit their bids to the auction as transactions.
3. Proposer(s) include these transactions on relevant block(s).1

4. The second-price auction is computed based on the included bids, i.e., the highest bid is
selected to win if this bid ≥ r, in this case paying a price of max{r, other bids}.

In particular, we assume that the idealized sealed-bid nature of off-chain auctions can be
achieved on-chain via cryptographic methods2. We also assume that the set of bids submitted
for the auction is public (the bid itself may be private, but the fact that it exists as a bid is
public).

Our main concern is that bids submitted for this auction may be censored, that is, omitted
from a block. More specifically, we suppose that after all other bids are submitted, but
before they are revealed, a designated bidder, bidder 0, can pay the proposer of the block to
censor bids. These censored bids are then excluded from the block and have no impact on
the auction. We assume that the proposer is purely profit focused and that bidder’s utilities
are quasilinear.

Formally, we consider the following game:
1. The seller announces second-price sealed-bid auction with reserve price r to be conducted

over a single block.
2. Buyers learn their values vi ← F .
3. Buyers 1, . . . , n each simultaneously submit a private bid bi and a public tip ti.
4. Buyer 0 observes all the other tips ti and can offer the proposer of the block a take-it-or-

leave-it-offer of a subset S ⊆ {1, . . . , n} of bidders and a bribe p to exclude that subset’s
bids. Bidder 0 also submits his own bid b0.

5. The proposer accepts or rejects bidder 0’s bribe and constructs the block accordingly,
either including N \ S if he accepts or N otherwise.

6. The auction is computed based on the bids included in the block.
In the next section, we consider the case of auctions over multiple sequential blocks with
independent proposers and the case of simultaneous proposers. Those games are variants of
the game above. We describe them in-line.

Formally, pure strategies in this game are:

1 We abstract away from issues such as block size constraints/ congestion.
2 This can be practically achieved by submitting the hash of the bid and revealing it later.



E. Fox, M. M. Pai, and M. Resnick 19:7

For players i ∈ {1, . . . , n}: A tuple of bidding and tipping strategies βi : [0, 1] → R+,
τi : [0, 1] → R+ for players i ∈ {1, . . . n}, that is, player i with value vi bids βi(vi) and
tips τi(vi).
For player 0: an offer to the proposer θ0 : Rn

+ × [0, 1] → 2N × R+, and a bid function
β0 : Rn

+× [0, 1]→ R+, i.e. as a function of tips t = (τ1(v1), . . . , τn(vn)) and his own value
v0, an offer θ0(t, v0) and a bid β0(t, v0).
For the proposer, given the tips t and an offer from player 0, θ0(t, v0), a choice of which
bids to include.

Since our game is an extensive-form game of incomplete information, our solution concept
is the Perfect Bayes-Nash Equilibrium (PBE). This requires strategies to be mutual best-
responses, as is standard in most equilibria. Additionally, for each player, it requires the
player to have beliefs about unknowns at every information set (on-, and off-, path) at which
they are called upon to play such that their strategy maximizes their expected utility given
the beliefs and others’ strategies. Beliefs are correct on path (i.e., derived from the prior,
and Bayesian updating given agents’ strategies), and unrestricted off path.

Note that the proposer has multiple potential indifferences: e.g., should they include a
bid with 0 tip? Should they censor a set of bids if bidder 0’s offered bribe exactly equals the
total tip from that set? We assume that given tips t from bidders {1, . . . , n} and an offer
from bidder 0 to censor subset S for a bribe of p, the proposer includes the bids of N − S

if and only if p ≥
∑

i∈S ti, and includes bids from all N otherwise (i.e., we break proposer
indifferences in favor of bidder 0 so that best responses are well defined).

There are multiple PBEs of the game, driven in part by the fact that there are multiple
equilibria in a second price auction (for instance, there is an equilibrium in the second price
auction for one player to bid a high value and all others to bid 0). However, most of these
equilibria are in weakly dominated strategies. We therefore focus on the following class of
equilibria:
1. Bidders {1, . . . n} submit a truthful bid, i.e. βi(vi) = vi. Note that this is a weakly

dominant strategy for them. In addition, these bidders use a symmetric tipping function
τ , that is, τi(·) = τ(·).

2. Bidder 0 bids equal to his value if he believes, given the tips of {1, . . . n}, that there is a
nonzero probability that he could win the auction, otherwise he bids 0 or does not bid.

In what follows, we simply refer to a PBE that satisfies this refinement as an equilibrium of
the game (with no qualifier). We reiterate that there are multiple PBEs of the original game;
we are simply restricting attention to these “reasonable” equilibria for tractability.

5 Results

Our results are easiest for the case with 2 bidders. We present this as an illustration before
considering the general case.

5.1 Two Bidder Case
Suppose there are only two bidders, one “honest” bidder 1 with value drawn according to
distribution F , and one “colluding” bidder who has the opportunity to collude with the
proposer, bidder 0, with value drawn independently from distribution F0. We assume that
F0 satisfies a regularity condition, that is, that F0(t)/f0(t) is non-decreasing in t.

The equilibrium in this case is easy to describe:

AFT 2023



19:8 Censorship Resistance in On-Chain Auctions

▶ Proposition 5. The following constitutes an equilibrium of the game with 2 bidders, i.e.
N = {0, 1}, when the seller announces a second-price auction with a reserve price r = 0:

Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is
given by t1(v1) solves (v1 − t)− F0(t)

f0(t) = 0.
Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by

σ0(t1, v0) =
{

bribe t1 ≤ v0,

don’t bribe t1 > v0.

where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder 1’s
transaction. Further bidder 0 submits a nonzero bid in the auction if and only if he bribes
the proposer.
The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid,
otherwise the proposer includes both bids.

Before providing a proof of this result, the following corollary summarizes the outcome
that results in this equilibrium when F = F0 = Uniform[0, 1]. For comparison, recall that
in the (standard) second price auction when both buyers have values drawn i.i.d. from
Uniform[0, 1], the expected revenue is 1/3 and each bidder has an ex ante expected surplus
of 1/6.

▶ Corollary 6. Bidder 0 wins the object with probability 3
4 , and has an expected surplus of

13
48 , while bidder 1 wins the auction with probability 1

4 and has an expected surplus of 1
12 .

Revenue for the seller in this auction is 0, and the expected tip revenue for the proposer is 1
4 .

In short, the proposer collects all the revenue from this auction, while the seller collects
none. Bidder 0 is substantially advantaged by his ability to see bidder 1’s tip and then decide
whether to bribe the proposer or not (wins the auction with higher probability, collects
more of the surplus). Our results for n > 1 are similarly stark except for the fact that the
auctioneer collects some positive revenue when n > 1, although this revenue rapidly decreases
as n increases.

Proof. The proof of the proposition is straightforward so we describe it briefly in line. First
to see that bidder 1 should bid his value (our refinement restricts attention to these) note that
bidder 1 has two actions, he privately submits a bid b1 and publicly submits a tip t. Since
bids only matter after inclusion has been decided, which is also after tips have been paid,
tips are a sunk cost and what remains is simply a second price auction, in which truthful
bidding is a weakly dominant strategy. Therefore it is (part of) an equilibrium for bidder 1
to bid his value.

Notice that bidder 1 does not benefit from submitting a tip t > v1 since even if he wins,
he will end up paying more in tips (in addition to possible fees from the auction) than he
values the item. Knowing this, it is always weakly better for player 0 to pay t to omit player
1’s bid when v0 ≥ t. Thus player 0 bribes the proposer if and only if v0 ≥ t. In that case
player 1’s expected utility as a function of his tip is:

E[U1(v1, t)] = F0(t) (v1 − t) .

Taking the derivative with respect to t, and setting it equal to 0, we get, as desired, that

t1(v1) solves (v1 − t)− F0(t)
f0(t) = 0.



E. Fox, M. M. Pai, and M. Resnick 19:9

Now that we have found a candidate equilibrium, we have some more work to do to verify
that it is in fact a PBE. Formally, bidder 1’s beliefs at his only information set are that
v0 ∼ Uniform[0, 1]. By our regularity condition, t1(·) is strictly increasing. Bidder 0’s beliefs,
conditional on bidder 1’s tip being t1 are given by

v1 =
{

t−1
1 (t1) t1 ≤ t1(1),

1 otherwise.

Notice that the case of t1 > t1(1) is off the equilibrium path. Finally note that Bidder 0’s
strategy to bribe whenever his value exceeds bidder 1’s tip, and to bid only if he is willing to
bribe, constitutes a best response. This concludes the proof. ◀

Notice that even though bids are completely private in this model, because of the
transaction inclusion micro-structure, bids are effectively revealed by the tips attached to
them. This calls into question whether we can conduct sealed bid auctions of any type on
chain.

We can also describe the equilibrium for the case where the seller chooses an auction
with a reserve price r > 0. For brevity we describe this informally:

t1(v1) solves (v1 − r − t)f0(r + t)− F0(r + t) = 0 if solution exists,
t1(v1) = 0 otherwise.

Our regularity condition implies that there exists v = r + F0(r)
f0(r) > r such that t1(v1) = 0 for

v ≤ v and strictly increasing for v > v. Bidder 0’s strategy is to bribe and submit a bid only
if his value v0 > t1 + r where t1 is the observed tip.

▶ Proposition 7. The following constitutes an equilibrium of the game with 2 bidders, i.e.,
N = {0, 1}, when the seller announces a second-price auction with a reserve price r > 0:

Bidder 1 submits a truthful bid, and his tipping strategy as function of his value v1 is
given by t1(v1) = v1/2− r whenever v1 > 2r and 0 otherwise.
Bidder 0’s strategy as function of the observed tip t1 and his value v0 is given by

σ0(t1, v0) =
{

bribe t1 + r ≤ v0

don’t bribe o.w.

where bribe is shorthand for paying t1 to the proposer in exchange for omitting bidder
1’s transaction. Further bidder 0 submits a non-zero bid in the auction if and only if he
bribes the proposer.
The proposer accepts bidder 0’s bribe whenever it is offered and omits bidder 1’s bid,
otherwise the proposer includes both bids.

Note that while the seller does receive positive revenue in this case, they do not realize
any “benefit” from running an auction relative to posting a “buy it now” price of r. We
formalize this in the following corollary:

▶ Corollary 8. Suppose buyer values are i.i.d. Uniform[0, 1]. Assuming r ≤ 1
2 , Bidder 0 wins

the object with ex-ante probability (1− r)(1− ( 1
2 − r)2), while bidder 1 wins the object with

ex-ante probability (1 − 2r)( r
2 + 1

4 ). The expected revenue of the seller is r(1 − r2), which
is the same as the revenue for posting a “buy it now” price of r. The proposer makes an
expected revenue of 1

4 (1− 2r)2.

Again bidder 0 has a strong advantage in this auction. Tips are no longer perfectly
revealing, since a non-empty interval of bidder values tip 0, but remain weakly monotone in
bid and perfectly revealing when strictly positive.

AFT 2023



19:10 Censorship Resistance in On-Chain Auctions

0 25 50 75 100
Number of Honest Bidders

0.0

0.2

0.4

0.6

Expected Total Tip

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125

Figure 1 Expected Total Tips and Tipping functions for F = F0 ∼ Uniform[0, 1].

5.2 Three or more bidders
We now turn to the case where n ≥ 2, i.e., N = {0, 1, . . . , n}.

At first the problem of finding an equilibrium may appear intractable since bidder 0’s
best-response problem is itself complicated: there are 2n possible subsets of {1, . . . , n} and the
problem of finding the best subset to buy out is therefore non-trivial. The tipping function
of bidders {1, . . . , n} needs to be a best response to this (accounting for how changing
their tip changes the probability that they are censored given a distribution of other tips).
Nevertheless, there is an easy to describe equilibrium. To construct it, the following lemma
is useful:

▶ Lemma 9. Suppose that the tipping strategy of buyers 1 . . . n is such that t(v) ≤ v/n. Then
we have that the best response for bidder 0, as a function of his own value v0 and observed
vector of tips t = (t1 . . . tn) can be described as:

σ0(v0, t1, . . . , tn) =
{

bribe,
∑n

i=1 ti ≤ v0

don’t bribe,
∑n

i=1 ti > v0

where bribe is shorthand for paying the proposer
∑

i ti in exchange for omitting all of bidder 1
through n’s transactions.

Proof. To see this note that:
n∑

i=1
t(θi) ≤

n∑
i=1

θi

n
≤

n∑
i=1

max(θ1, θ2, . . . , θn)
n

= max(θ1, θ2, . . . , θn).

and therefore bribing the proposer and buying out all the bids (and therefore winning the
object for free in the auction) is more profitable than buying out any subset of the bids and
possibly losing the auction or having to pay more than the bribes for that subset would have
cost. ◀

This lemma is useful because, in equilibrium, the tipping strategy of bidders 1 through n

will satisfy this property. Bidder 0’s strategy is therefore straightforward (analogous to the
case N = {0, 1}). We are now in a position to describe the equilibrium in this game.3

3 Proofs of this and subsequent propositions are omitted for brevity due to the page limits. They are
available from the full version of the paper available on ArXiv, linked on the front page.



E. Fox, M. M. Pai, and M. Resnick 19:11

▶ Proposition 10. The following constitutes an equilibrium of the game with n + 1 bidders,
N = {0, 1, . . . , n}, and buyer values drawn i.i.d. from Uniform[0, 1] when the seller announces
a second-price auction with a reserve price r = 0:

Bidders 1 through n submit truthful bids, and their tipping strategy as function of their
value vi is given by:

t(v) =
{

0 v < v,
1

2n (vn − vn) o.w.
(4)

where v solves

(n + 1) vn

n(n− 1) −
vn+1

(n + 1) −
1

n(n + 1) = 0. (5)

Bidder 0’s strategy as function of the observed tips t1, . . . , tn and their value v0 is given
by

σ0(v0, t1, . . . , tn) =
{

bribe,
∑n

i=1 ti ≤ v0

don’t bribe,
∑n

i=1 ti > v0

where bribe is shorthand for paying
∑

i ti to the proposer in exchange for omitting bidder 1
through n’s transactions. Further bidder 0 submits a truthful nonzero bid in the auction
if and only if he bribes the proposer.
The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids,
otherwise the proposer includes all bids.

It is easy to see that (5) has exactly 1 root in [0, 1] by observing that the left hand side is
increasing in v on [0, 1], and evaluates to a negative number at v = 0 and a positive number
for θ = 1. Unfortunately, we cannot analytically derive these roots for arbitrary n since
polynomials of order ≥ 5 do not have explicit roots (and even for n = 2, 3 these are not
particularly nice); however, we can use a zero finding algorithm to compute these numerically.
The results for the uniform case are presented in Figure 1.

Analytically, we can bound how this root varies with n. Note that the expected total tip
is nE[t(v)] and substituting in (4) and simplifying via (5), we have that the expected total
tip = vn

n−1 . The following proposition describes the asymptotic behavior of the expected
total tip:

▶ Proposition 11. Let v(n) describe the solution to (5) as a function of n. There exists n

large enough such that for n > n, we have 1
n ≤ v(n)n ≤ 1√

n
.

Proposition 11 is particularly useful when you consider the fact that for large n, by the
law of large numbers, the total tip concentrates around the expected tip with high probability
(buyer values are i.i.d. bounded random variables). Furthermore, by Proposition 11, this is
decreasing at a rate at least 1/n

√
n : as n grows, and individual bidders are willing to tip

less. To see why tipping is only profitable when it leads to the bid not being censored and
winning the auction, but increasing the tip increases the probability that all bids are not
censored. In short, tips have public goods type properties. Indeed, the rate of tipping shrinks
fast enough so that the total tip is also decreasing. Therefore bidder 0 wins the auction with
increasing probability in n, asymptotically tending to 1. Note that the seller only receives
revenue when there is more than one bidder in the auction (or more generally, in the auction
with a reserve price r, makes revenue larger than the reserve price) – and this happens with
vanishing probability as n grows large.

AFT 2023



19:12 Censorship Resistance in On-Chain Auctions

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Beta Distribution PDFs

0 20 40 60 80 100
Number of Bidders

0.00

0.05

0.10

0.15

Expected Total Tip

Figure 2 Expected Total Tips for F0 ∼ Uniform[0, 1], F ∼ Beta(α, β).

▶ Proposition 12. As n grows large, the expected revenue of the auction with reserve price r

reduces asymptotically to the expected revenue of a published price of r.

5.3 General Distributions
It is straightforward to generalize our results to the case where bidders {1, . . . , n} are
distributed according to some general distribution with density f and CDF F on [0, 1].

▶ Assumption 13. We assume throughout that F satisfies
∫ v

0 F n−1(θ)dθ ≤ v
n for all v ∈ [0, 1].

Formally, we have the following proposition:

▶ Proposition 14. The following constitutes an equilibrium of the game with n + 1 bidders,
i.e. N = {0, 1, . . . , n}, when the seller announces a second-price auction with a reserve price
r = 0, bidder 0 has a value Uniform[0, 1] and bidders 1 through n have values distributed
i.i.d. according to a distribution with density f and CDF F satisfying Assumption 13:

Bidders 1 through n submit truthful bids, and their tipping strategy as function of their
value vi is given by:

t(v) =
{

0 v < v,
1
2

∫ v

v
F n−1(θ)dθ o.w.

(6)

where v solves∫ 1

0
F n−1(θ)dθ −

∫ 1

v

F n(θ)dθ = n + 1
n− 1

∫ v

0
F n−1(θ)dθ. (7)

Bidder 0’s strategy as function of the observed tips t1, . . . , tn and their value v0 is given
by

σ0(v0, t1, . . . , tn) =
{

bribe,
∑n

i=1 ti ≤ v0

don’t bribe,
∑n

i=1 ti > v0

where bribe is shorthand for paying
∑

i ti to the proposer in exchange for omitting bidder 1
through n’s transactions. Further bidder 0 submits a true nonzero bid in the auction if
and only if he bribes the proposer.
The proposer accepts bidder 0’s bribe whenever it is offered and omits the other bids,
otherwise the proposer includes all bids.



E. Fox, M. M. Pai, and M. Resnick 19:13

This proposition allows us to numerically solve for tipping behavior in this auction. Using
the flexible Beta distribution for a range of parameters, we compute nE[t] as a function of n

in Figure 2.
Analytical results for the case where bidder 0’s value is distributed non-uniformly appear

out of reach. To see why – for bidders 1 through n, part of the payoff of increasing their tip is
increasing the probability that bidder 0 chooses not to buy them out. When bidder 0’s value
is distributed uniformly, the increase in probability is constant and independent of others’
tips (which from the perspective of the bidder is a random variable). This simplifies the
optimality condition and makes it analytically tractable. Nevertheless, the intuition above
suggests that our qualitative results (seller expected revenue drops to close to the posted
price, tips do not offer much “protection” due to the public goods nature of tips suggests,
bidder 0 has a strong advantage in the auction) carry over to this case as well.

6 Restoring Censorship Resistance

We now discuss possible design choices to provide additional censorship resistance, so that
an auction can be run on chain with the desired results.

6.1 Auction over Multiple Blocks
We now investigate whether running the auction over multiple blocks restores the desired
behavior. Formally, recall that using multiple blocks as the underlying public bulletin board
had a higher censorship resistance (Example 3) than in the case of a single block (Example 2).

Formally we consider the following dynamic game corresponding to an auction being
run over m blocks. We assume that each of these blocks is produced by an independent
proposer.4

1. Period 0: Bidders learn their values vi. Bidders 1, . . . , n each submit simultaneously a
private bid bi and a public tip ti.

2. Period j for j in 1 to k: Bidder 0 observes which bids from 1, . . . n have not been included
in a block in periods 1 to j − 1. They offer Proposer j a take-it-or-leave-it-offer of a
subset Sj of the unincluded bids and a payment pj to exclude that subset. The proposer
j observes the tips and the offer from Bidder 0 and decides which bids if any to include.

3. Period m + 1: The seller’s auction is run on blocks produced in periods 1 to m.
If a transaction is included in period j, it is removed from the set of bids in the mempool,
its tip is attributed to proposer j where j is the block it was included in, it is included in the
auction, and it cannot be included in subsequent blocks.

Note that the game we describe is a natural extension of the previous game to the case
of an auction over m > 1 blocks. In particular, it reduces to the original game for the case of
m = 1. We consider the same refinement as before, which applies to this game in a similar
fashion.

Note that there are two possible sources of additional security in this auction. The first is
mechanical: in order to censor a transaction, intuitively, bidder 0 has to bribe m proposers,
which is more expensive for a given tip. The second is that the marginal returns to a tip
have increased (increasing a tip by q increases the cost to censor for bidder 0 by mq, and
decreases the probability they can afford it correspondingly).

4 In practice, an majority of blocks on major blockchains is produced by one of a small oligopoly of
proposers. We discuss the implications of this in the sequel.

AFT 2023



19:14 Censorship Resistance in On-Chain Auctions

In our results, we show that the latter effect is null. In particular, we show that for
m < n, the tipping behavior of bidders 1, . . . n stays unaffected.

Formally, we have the following result:

▶ Proposition 15. Suppose buyers 1 to n have values drawn i.i.d. U [0, 1] and buyer 0 has
value drawn i.i.d. U [0, κ] for κ > m. The following constitutes an equilibrium of the game
with n + 1 bidders, i.e. N = {0, 1, . . . , n}, when the seller announces a second-price auction
with a reserve price r = 0 to be run over m blocks for m < n: Bidders 1 through n and the
proposers have the same strategy as in Proposition 10.

Bidder 0’s strategy as function of the observed tips t1, . . . , tn and his value v0 is given by

σ0(v0, t1, . . . , tn) =
{

bribe, m
∑n

i=1 ti ≤ v0,

don’t bribe, otherwise,

Before we proceed, we comment on the assumption that bidder 0’s value is distributed
U [0, κ]. Suppose bidder 0 is distributed U [0, 1], but bidders 1 to n tip as in Proposition 10.
Note that with positive probability the total tip could exceed 1 when m > 1. Therefore, given
bidders 2 to n follow the tipping strategy of Proposition 10, bidder 1 will have incentives to
shade their tip relative to t(·). After all, the marginal value of tips depends on how much
they increase the probability of not being censored. From the Proof of 10, in the case of
m = 1, increasing one’s tip on the margin always increases the probability that the bids
are not censored, because the total tip is strictly smaller than 1 with probability 1 on path.
Intuitively, therefore if bidder 0 is distributed U [0, 1], and the auction is conducted over
m > 1 blocks, the equilibrium tipping strategy for bidders 1 to n is weakly lower than the
corresponding tipping strategy for m = 1 (Proposition 10). This can be shown numerically,
but is out of reach analytically.

Note that we had already shown that expected total tip of n bidders was smaller than
1/n3/2. Therefore, the probability that bidder 0 does not censor the remaining bids collapses
to 0 as n grows large, as long as m grows sublinearly with n. To see that we had already
shown that expected total tip of n bidders was smaller than 1/n3/2. Therefore m times this
for m < n still grows smaller than 1/

√
n.

Put differently, guaranteeing the auction outcome is “as desired” requires m > n. This
comes with its own costs: for example, the auction would have to remain open for a relatively
long time which may be undesirable, particularly for financial applications.

6.2 Multiple Concurrent Block Proposers
Depending on the number of bidders and the time constraints inherent to the specific auction
application, it may not be feasible to hold the auction for long enough to achieve the desired
censorship resistance level.

A different solution we now consider would be to allow more than one proposer within
a single slot. Formally, we now consider k concurrent block proposers (by analogy to our
previous section where we considered k sequential block producers). The seller announces an
auction which will execute within the single slot, i.e. the bids included on at least one of the
k concurrent produced blocks will be included in the auction.

In view of the concurrency, we allow bidders to submit conditional tips, which depend on
the number of proposers who include the transaction. For simplicity, we consider a twin tip,
i.e., each bidder submits a conditional tip of the form (t, T ), where T is paid if only a single
proposer includes bidder 1’s transaction and t is paid if more than one proposer includes the
transaction.



E. Fox, M. M. Pai, and M. Resnick 19:15

▶ Observation 16. With k concurrent proposers and conditional tipping, the censorship
resistance of a conditional tip (t, T ) is straightforwardly verified as:

φ(t, T ) = kT. (8)

It is important to note that the conditional tip disentangles the cost of inclusion (for the
transacting party) from the cost of censoring, i.e. if T ≫ t, then the censorship resistance is
kT which is much larger than the cost of inclusion, kt.

After the honest bidder observes v1 and submits his private bid b1 and public tip (t, T ),
the bribing bidder submits a bribe to each proposer. Formally, we first consider the following
game:
1. Seller announces second-price sealed-bid auction with reserve price r to be conducted

over a single slot.
2. Buyers learn their values vi ∼ F .
3. Buyers 1, . . . , n each submit simultaneously a private bid bi and a public tip ti, Ti.
4. Buyer 0 observes all the other tips ti, Ti and simultaneously offers each proposer a take-

it-or-leave-it-offer of a subset S ⊆ {1, . . . , n} of bidders and a payment p to exclude that
subset’s bids. Bidder 0 also submits his own bid b0.

5. Each Proposer simultaneously accepts or rejects bidder 0’s offer and constructs the block
accordingly i.e., either containing bids of set N \ S or N .

6. The auction is computed based on the union of the bids included in all blocks, tips are
paid based on the inclusion behavior.

As before we focus our attention on equilibria where Bidders {1, . . . , n} bid truthfully in
the auction. Note that each proposer, in choosing whether to censor a transaction, needs to
reason about the behavior of other proposers since that potentially affects their tip if they
include the transaction.

▶ Proposition 17. Consider the Multiple Concurrent Block Proposer game, with m proposers
and n = 1 honest bidder, i.e., N = {0, 1}, with bidder i’s value drawn from a distribution
with CDF Fi and PDF fi.

This game has an equilibrium where the outcome of the auction is the same as a standard
second price auction without a censorship step and where the expected tip by each bidder to
each proposer is t.

In particular, bidders 1’s tipping strategy in equilibrium is given by:

t1(v1) = 0, T1(v1) = 1 (9)

Bidder 0’s offer strategy to the proposer based on their own value v0 and the observed tips
(t, T ) is

z0(t, T, v0) =
{

0 C(v0) < mT

T C(v0) ≥ mT.
(10)

Here C(v0) is buyer 0’s net value to censoring bidder 1’s bid (i.e., the difference their profit
from censoring the competing bid and winning in the auction for free (v0); and their expected
surplus from competing with bidder 1 in the auction). Finally, the proposer’s strategies are
to censor transactions with the following probabilities:

p(z, t, T ) =


0 z < t(

z−t
T −t

) 1
m−1

t ≤ z < T

1 z ≥ T

(11)

AFT 2023



19:16 Censorship Resistance in On-Chain Auctions

The above proposition may admittedly appear a little dense. We provide the following
corollary regarding (on-path) equilibrium behavior.

▶ Corollary 18. Consider the equilibrium proposed in Proposition 17 for any m ≥ 2. On
path, bidder 0 does not bribe the proposers and instead competes in the second-price auction.
All bidders pay 0 in tips on path. Equilibrium tips do not reveal bids.

Further, a careful study of the proof of Proposition 17 shows that the Corollary continues
to hold even when n > 1. Therefore even 2 concurrent block proposers restore the “desired”
outcome relative to a single block proposer system. This is partly driven by concurrency of
block proposers which removes the “monopoly” that they have over transaction inclusion,
and partly by the conditional tip. The conditional tip allows bidder 1 to get security via a
high-tip offer conditional on inclusion by only a single proposer. This high tip offer makes it
very expensive for bidder 0 to attempt censor bidder 1’s bid since they would need to pay
m times the high tip to censor the bid by all m producers. Therefore, no bribe is offered.
Further, this tip never needs to be paid, since both proposers find it weakly dominant to
include the bid and pick up the low tip.5 As an aside, note that this also restores equilibrium
bid privacy, since tips no longer reveal bids.

Finally, we should note that the conditional tipping logic we identify could also be applied
to an auction over multiple blocks, achieving more censorship resistance than previously.

7 Discussion

Our results suggest that single proposer blockchains are not ideal for holding time sensitive
auctions when the number of potential bidders is large. In our results, collusion arrangements
are extremely profitable for the colluding bidder but only marginally profitable for the
proposer. However, this is because we restrict the model to have one potential colluding
bidder who can bribe the proposer. In reality, there are many possible colluding bidders,
and only one proposer in each slot, the proposer could end up charging for the right to
collude and extract a significant portion of the value that the colluding bidder gains from the
arrangement. In fact, the predominant block building system, MEV-boost, can be thought
of as a direct channel through which the proposer can sell the right to censor transactions to
the highest bidder. This suggests that one driver of MEV is the proposer’s right to determine
inclusion. Previous work has focused on a different source: the proposer’s right to order
transactions within a block. From the position that proposer ordering power is the source,
order agnostic mechanisms should solve MEV. But if censorship power is the source, these
order agnostic mechanisms, including the second price auction we study here, could be just
as susceptible to value extraction.

Another proposed source for MEV is the public nature of transactions in the mempool.
The argument is, transactions in the mempool are sitting ducks, waiting to be front-ran. It
follows that, if transactions are encrypted while in the mempool, they will be less susceptible
to MEV. But our results demonstrate that even when the body of transactions are encrypted,
public tips may reveal substantial information them.

5 Note that t = 0 supports alternative asymmetric equilibria in the inclusion subgame where only a single
proposer includes the transaction. In the broader game, these would correspond to the equilibria in
the single proposer cases where T substitutes for the old single dimensional tip. However, when t is
bounded away from 0, these equilibria disappear, since it is now strictly dominant for the proposer to
include the bid in the inclusion subgame.



E. Fox, M. M. Pai, and M. Resnick 19:17

As the previous paragraph suggests, cryptographic solutions do not immediately solve the
censorship problem unless they also appropriately modify consensus to bind the proposer (cf
our multiple concurrent proposer suggestion): for example consider an MPC based approach.
One way to implement it would be to use an integer comparison MPC protocol to compare
the private tips and choose the top k. Then, if the proposer chose not to include those top k,
they could be penalized, or the block could be considered invalid by consensus. Note that
this requires changing consensus as well as the mempool, and it requires multiple validators
to participate in MPC, each of whom can add transactions to the process. In that way it is
similar to the multiple concurrent block proposer proposer scheme we describe. However, in
this scheme, the proposer also retains the option to accept a bribe rather than use the MPC
protocol, i.e., they may accept a bribe that exceeds the expected value of the top k tips.

Implemented purely as a private mempool solution without changing consensus, the main
impediment is enforcing the proposer’s commitment to this block inclusion strategy: i.e.,
MPC allows us to compute the k transactions with the highest tips in a private fashion, but
does not bind the proposer to include these. The proposer remains free to censor any subset
of these transactions if it is profitable for them to do so.

7.1 Multiple Concurrent Proposers in the Real world

There are projects trying to implement multiple concurrent proposers by appropriately
modifying the Tendermint protocol.6 Representatives from at least one major chain, have
also mentioned concurrency as a goal going forward, in order to scale throughput and
decrease latency from the user to the nearest proposer within a given slot.7 The co-founder,
and CEO of Solana even mentioned MEV resistance as a motivation for the desirability of
multiple concurrent block proposers.8 Our results suggest that proposer rents arising from
the proposer’s temporary monopoly on inclusion shrink sharply under multiple concurrent
proposers using our conditional tip logic. To see the order of magnitude, note that total
payments by MEV-boost to proposers on Ethereum totaled $400 million since Sept 2022
(the merge), see https://dune.com/arcana/mev-boost). This is quite large in comparison
to the total value created by MEV and contributes to high transaction fees for users. That
said multiple proposer protocols are not a panacea. Beyond the engineering difficulties
themselves, we see a few other impediments. Firstly, ordering – with a single proposer,
a canonical ordering of transactions within the block is simply the order that the leader
put them in. Once we add multiple proposers, the ordering becomes less clear. Secondly,
multiple proposers may be more susceptible to Distributed Denial of Service (DDOS) attacks:
allowing every validator to submit transactions opens the network up to a DDOS attack
where adversaries include many transactions to slow down the chain. Finally there are
issues of redundancy and state bloat: the multiple proposer approach potentially leads to
considerable redundancy within the slot (the same transaction may be included by many
different proposers).

6 See, e.g., https://blog.duality.xyz/introducing-multiplicity/.
7 See, e.g., https://blog.chain.link/execution-and-parallelism-for-dag-based-bft-consensus/.
8 See https://twitter.com/aeyakovenko/status/1584676110948012032.

AFT 2023

https://dune.com/arcana/mev-boost
https://blog.duality.xyz/introducing-multiplicity/
https://blog.chain.link/execution-and-parallelism-for-dag-based-bft-consensus/
https://twitter.com/aeyakovenko/status/1584676110948012032


19:18 Censorship Resistance in On-Chain Auctions

7.2 Future Directions

From a theoretical perspective, this work leaves open questions of how censorship in on
chain auctions might effect the equilibria of auctions with different assumptions about bidder
valuations. For example a natural extension to our results would be to consider honest
bidders with interdependent or common values. This may be a better model for on chain
order flow auctions and collateral liquidation auctions.

Our results are based on the assumption that a single bidder has been selected as the
colluding bidder in advance, but a better assumption would be to have the right to collude
be auctioned off after bids have been submitted. If the right to collude is auctioned off before
the bids are submitted, then our results would still hold, since our result would simply be a
subgame of the larger game being considered, and the result would be that proposers end up
with a larger share of their monopoly rents; however, when the right to collude is auctioned
off after transactions have been submitted, and therefore after bidders discover their types,
the players who are willing to pay to collude are more often those who value the item more.
This could warp the equilibrium slightly.

Outside of mechanism design, this work provides a strong theoretical justification for
investigating multiple concurrent block proposer based consensus frameworks as a tool for
MEV mitigation. Specifically, we identify conditional tipping as a powerful tool to combat
censorship in situations where there are more than one block proposer.

Indeed, strong censorship-resistance is beneficial to other systemically important smart
contracts. Oracle feeds require timely inclusion guarantees to be useful, and censorship in
order to manipulate on-chain financial markets is a serious concern. Hedging contracts such
as options need to be censorship resistant so that they can be exercised, and conversely,
the underwriter has an incentive to censor. Similarly, optimistic rollups rely on censorship
resistance for their security, an attacker who wishes to manipulate an optimistic rollup only
needs to censor the fraud proofs for a period of time. To combat this, optimistic rollups
currently leave a long window for fraud proof submission before finalizing (e.g. 7 days).
Stronger censorship resistance could allow them to achieve finality faster with the same
security.

Another advantage is that proposer rents arising from the proposer’s temporary monopoly
on inclusion shrink sharply under multiple concurrent proposers using our conditional
tip logic. To see the order of magnitude, note that total payments by MEV-boost to
proposers on Ethereum totaled $445 million since Sept 2022 (the merge), see https://dune.
com/ChainsightAnalytics/mev-after-ethereum-merge). This is arguably quite large in
comparison to the total value created by MEV and contributes to high transaction fees for
users.

Another potential tool for combating censorship on-chain, that we have not discussed, is
a data availability layer. Instead of being submitted to a blockchain directly, bids could be
submitted to a data availability layer, nodes could then compute the results of the auction
based on whichever transactions were included on the data availability layer. This is similar
to holding the auction directly on chain except that the nodes tasked with curating a data
availability layer do not necessarily need to participate in consensus. The requirements for a
data availability layer are weaker than those required for a full blockchain so it may be easier
to integrate multiple proposer architecture on data availability layers than on blockchains
themselves.

https://dune.com/ChainsightAnalytics/mev-after-ethereum-merge
https://dune.com/ChainsightAnalytics/mev-after-ethereum-merge


E. Fox, M. M. Pai, and M. Resnick 19:19

References
1 Mohammad Akbarpour and Shengwu Li. Credible mechanisms. In EC, page 371, 2018.
2 Mohammad Akbarpour and Shengwu Li. Credible auctions: A trilemma. Econometrica,

88(2):425–467, 2020.
3 Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for blockchains. In

European Symposium on Research in Computer Security, pages 87–110. Springer, 2018.
4 Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms race: Frequent

batch auctions as a market design response. The Quarterly Journal of Economics, 130(4):1547–
1621, 2015.

5 Vitalik Buterin. The problem of censorship. https://blog.ethereum.org/2015/06/06/
the-problem-of-censorship, June 2015.

6 Vitalik Buterin. State of research: increasing censorship resistance of transactions under pro-
poser/builder separation (pbs). https://notes.ethereum.org/@vbuterin/pbs_censorship_
resistance, June 2021.

7 Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 719–728, 2017.

8 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 910–927. IEEE, 2020.

9 Edith Elkind and Helger Lipmaa. Interleaving cryptography and mechanism design: The case
of online auctions. In Financial Cryptography: 8th International Conference, FC 2004, Key
West, FL, USA, February 9-12, 2004. Revised Papers 8, pages 117–131. Springer, 2004.

10 Matheus VX Ferreira and David C Parkes. Credible decentralized exchange design via verifiable
sequencing rules. arXiv preprint arXiv:2209.15569, 2022.

11 Matheus VX Ferreira and S Matthew Weinberg. Credible, truthful, and two-round (optimal)
auctions via cryptographic commitments. In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 683–712, 2020.

12 Flashbots. The future of mev is suave: Flashbots, November 2022. URL: https://writings.
flashbots.net/the-future-of-mev-is-suave/#iii-the-future-of-mev.

13 Frankie, Dan Robinson, Dave White, and andy8052. Gradual dutch auctions, April 2022.
URL: https://www.paradigm.xyz/2022/04/gda.

14 Hisham S Galal and Amr M Youssef. Verifiable sealed-bid auction on the ethereum blockchain.
In Financial Cryptography and Data Security: FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers 22, pages
265–278. Springer, 2019.

15 Nicholas A. G. Johnson, Theo Diamandis, Alex Evans, Henry de Valence, and Guillermo
Angeris. Concave pro-rata games, 2023. arXiv:2302.02126.

16 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. Cryptology ePrint Archive, 2021.

17 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Annual International Cryptology Conference, pages 451–480. Springer, 2020.

18 Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. Towards a theory of maximal extractable
value i: Constant function market makers. arXiv preprint arXiv:2207.11835, 2022.

19 Kshitij Kulkarni, Matheus VX Ferreira, and Tarun Chitra. Credibility and incentives in
gradual dutch auctions. arXiv, 2023.

20 Byoungcheon Lee, Kwangjo Kim, and Joongsoo Ma. Efficient public auction with one-time
registration and public verifiability. In Progress in Cryptology—INDOCRYPT 2001: Second
International Conference on Cryptology in India Chennai, India, December 16–20, 2001
Proceedings 2, pages 162–174. Springer, 2001.

AFT 2023

https://blog.ethereum.org/2015/06/06/the-problem-of-censorship
https://blog.ethereum.org/2015/06/06/the-problem-of-censorship
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://writings.flashbots.net/the-future-of-mev-is-suave/#iii-the-future-of-mev
https://writings.flashbots.net/the-future-of-mev-is-suave/#iii-the-future-of-mev
https://www.paradigm.xyz/2022/04/gda
https://arxiv.org/abs/2302.02126


19:20 Censorship Resistance in On-Chain Auctions

21 Jason Milionis, Dean Hirsch, Andy Arditi, and Pranav Garimidi. A framework for single-
item nft auction mechanism design. In Proceedings of the 2022 ACM CCS Workshop on
Decentralized Finance and Security, pages 31–38, 2022.

22 Barnabe Monnot. Unbundling pbs: Towards protocol-
enforced proposer commitments (pepc). https://ethresear.ch/t/
unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=
barnabe, October 2022.

23 Tim Roughgarden. Transaction fee mechanism design. CoRR, abs/2106.01340, 2021. arXiv:
2106.01340.

24 Koutarou Suzuki and Makoto Yokoo. Secure generalized vickrey auction using homomorphic
encryption. In Financial Cryptography: 7th International Conference, FC 2003, Guadeloupe,
French West Indies, January 27-30, 2003. Revised Papers 7, pages 239–249. Springer, 2003.

25 Nick Szabo. Formalizing and securing relationships on public networks. First monday, 1997.
26 Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro Tsuchiya, Se-

bastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Barczentewicz, et al. Blockchain
censorship. arXiv preprint arXiv:2305.18545, 2023.

https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=barnabe
https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=barnabe
https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=barnabe
https://arxiv.org/abs/2106.01340
https://arxiv.org/abs/2106.01340


The Centralizing Effects of Private Order Flow on
Proposer-Builder Separation
Tivas Gupta #

Special Mechanisms Group, USA

Mallesh M. Pai # Ñ

Department of Economics, Rice University, Houston, TX, USA
Special Mechanisms Group, USA

Max Resnick #

Special Mechanisms Group, USA

Abstract
The current Proposer-Builder Separation (PBS) equilibrium has several builders with different
backgrounds winning blocks consistently. This paper considers how that equilibrium will shift when
transactions are sold privately via order flow auctions (OFAs) rather than forwarded directly to the
public mempool. We discuss a novel model that highlights the augmented value of private order flow
for integrated builder searchers. We show that private order flow is complementary to top-of-block
opportunities, and therefore integrated builder-searchers are more likely to participate in OFAs
and outbid non integrated builders. They will then parlay access to these private transactions into
an advantage in the PBS auction, winning blocks more often and extracting higher profits than
non-integrated builders. To validate our main assumptions, we construct a novel dataset pairing
post-merge PBS outcomes with realized 12-second volatility on a leading CEX (Binance). Our results
show that integrated builder-searchers are more likely to win in the PBS auction when realized
volatility is high, suggesting that indeed such builders have an advantage in extracting top-of-block
opportunities. Our findings suggest that modifying PBS to disentangle the intertwined dynamics
between top-of-block extraction and private order flow would pave the way for a fairer and more
decentralized Ethereum.

2012 ACM Subject Classification Applied computing → Online auctions

Keywords and phrases Private Order Flow, PBS, OFAs, decentralization

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.20

Related Version Full Version: https://arxiv.org/abs/2305.19150

1 Introduction

Most Ethereum blocks today are built by specialized builders rather than validators. In
every slot, builders gather transactions and assemble them into blocks. They then compete
against each other in an ascending price (English) auction for the right to have the block
they assembled proposed by the proposer. Whichever builder bids the highest wins the
Proposer-Builder Separation (PBS) auction, and pays their bid to the proposer.

The right to build a block is valuable for several reasons, most obviously because users
pay tips for inclusion. Presently these tips make up only a small portion of the total value
from building a block. A majority of the value from building a block comes from the builder
exploiting MEV opportunities. MEV (Maximal Extractable Value) refers to additional value
that can be exploited from strategically reordering or including specific transactions.

Current MEV opportunities on Ethereum can be broadly segmented into two categories:
top-of-block and block body. Let us describe each in turn. Top-of-block opportunities are
primarily CEX/DEX arbitrage: exploiting price divergences of a token between a centralized

© Tivas Gupta, Mallesh M. Pai, and Max Resnick;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tivas.gupta@mechanism.org
mailto:mallesh.pai@gmail.com
http://www.malleshmpai.com
https://orcid.org/0000-0001-9989-6676
mailto:max.resnick@mechanism.org
https://orcid.org/0009-0000-6174-0254
https://doi.org/10.4230/LIPIcs.AFT.2023.20
https://arxiv.org/abs/2305.19150
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Centralizing Effects of Private Order Flow

exchange (CEX) and some on-chain Decentralized Exchange (DEX) operated by a smart
contract, e.g., Uniswap. Intuitively, successfully exploiting such a price divergence requires
both priority access to the first few transactions in the block on-chain, and also high quality
execution on the centralized exchange. The latter requires high-frequency trading (HFT)
strategies and low CEX transaction fees.

Block-body opportunities are typically frontrunning attacks that involve sandwiching user
transactions or executing user orders against each other to cut out the liquidity providers.
The value of the Block-body is primarily dictated by access to transactions. Historically,
most transactions have been forwarded to the public mempool, meaning all block builders
have access to the same transactions; however, some builders have access to private order
flow which is not available in the public mempool. The availability of private order flow is
likely to be further supplemented in the near future by the advent of order flow auctions
(OFAs), venues where order flow providers (wallets) sell the exclusive right to execute their
users’ transactions.

This paper focuses on the complementarity between top-of-block and block body op-
portunities. In particular, the PBS auction makes no distinction between top-of-block and
block body, instead, the right to build the entire block is sold wholesale. This means that an
advantage in top-of-block extraction capability can help secure value from the body of the
block and vice versa.

This paper makes two contributions. First, we demonstrate empirically that builders oper-
ated by high-frequency trading firms are superior at capturing the top of block opportunities.
Second, we construct a simple model of proposer-builder separation and demonstrate that,
in this model, private order flow is more valuable to vertically integrated builder searchers
than non-integrated builders. Our theoretical results therefore imply that private order flow
markets are likely to be dominated by these firms.

Let us now describe our analysis and results in a little more detail. The main assumption
in our subsequent theoretical analysis is that some bidders are stochastically advantaged at
extracting top-of-block opportunities. We validate this assumption empirically. In particular,
we construct a unique dataset that combines roughly a month PBS auction outcome data, i.e.,
which builder won which blocks over the course of a month; paired with detailed price data
on a major CEX, namely, Binance. Our empirical strategy posits that the realized 12-second
volatility of ETH on Binance is plausibly exogenous. Therefore the realized volatility will
generate blocks that have varying top of block value. A block in which the price on Binance
is flat over the previous 12 seconds will have almost no top of block value, meaning any
advantage that builder searchers have at extracting from the top of the block will be irrelevant.
In contrast, if the price shift is large in that period, winning the block becomes should be far
more valuable to builders who excel at top-of-block extraction. Our results show that when
absolute log price change on Binance in a 12 second period is large, builder-searchers operated
by HFTs are far more likely to win. These results are statisitcally significant, invalidating
the null hypothesis that all builders are roughly equivalent in their top-of-block extraction
capability.

Having demonstrated this, we turn to a theoretical model which explores the centralizing
effects of this top-of-block advantage on the equilibrium of the PBS auction. Our model
considers a simple abstraction where a block can contain at most two transactions.

In the first stage of our model, the builders gather block body opportunities. We consider
two scenarios. In the first, this transaction is sourced from the public mempool, i.e. all
builders have (free) access to the block-body transactions. This models relatively well the
current state of affairs. The second scenario envisages builders purchasing transactions in



T. Gupta, M. M. Pai, and M. Resnick 20:3

an OFA, which models the plausible scenario we are moving towards. In the second stage
of our model, the builders combine their block body transactions with their top-of-block
transactions to form a block and then compete with each other in an English (i.e., ascending)
auction for the right to append their block onto the chain.

Our results show that advantages in top of block extraction capabilities are magnified
when private order flow is available, in comparison with the current scenario where block
body opportunities are available in the public mempool or otherwise shared with all builders.
In particular, a builder with an advantage, be it deterministic or stochastic, at extracting
top-of-block opportunities, will win the OFA. With access to the private transactions, it will
then win the PBS auction more often, and have higher profits, than it would have in the
counterfactual world without OFAs/ private transactions.

Our results suggest a troubling centralizing tendency of PBS when private order flow
is available via an Order Flow Auction, a setting we are moving towards. In particular, a
small number of integrated builder-searchers who have top-of-block extraction capabilities
will dominate both the OFAs and the downstream PBS auction. This contrasts with the
popular idea that the OFAs and the PBS auction will squeeze proposer profits between the
validators (who earn the PBS auction revenue) and the order flow providers (who earn the
OFA revenue). This also contrasts with the original goal of PBS which was to keep block
building decentralized.

Our results therefore provide a further impetus for various initiatives to “unbundle” PBS
– unbundling PBS in some form is necessary to prevent concentration into a few integrated
builder-searchers. Previous work has focused on limiting the power of builders to build blocks
by imposing certain constraints on them: see e.g. the recent works of [1], [11]. There have
also been studies on the possibility of implementing blockspace futures (see, e.g., [7]), which
would effectively partially disintermediate the builder by guaranteeing inclusion for some
transactions.

2 Related Literature

Although Proposer Builder Separation has only recently become the dominant method of
building blocks on Ethereum, research into PBS dynamics is active with several recent
developments. [4] discusses the potential for exclusive order flow to centralize the builder
market. [5] surmised that order flow auctions could potentially alleviate the centralizing
effects of private order flow by providing a level playing field for all builders to bid in; however,
as we discuss later, our results suggest that order-flow auctions may still have a centralizing
effect on PBS because builders with advantages in top of block extraction may come to
dominate the auction, resulting in equilibria that look similar to those where private order
flow is purchased by a single entity. [2] catalogued several competing order-flow auction
designs and outlined their respective advantages and disadvantages.

A series of articles have provided visibility into the current status of the MEV supply
chain. [3] discussed to what degree relays (which forward PBS bids to the proposer) have
lived up to their promises about which types of transactions and MEV strategies are allowed
in their blocks. [15] catalogues the current state of the PBS market, noting which builders
submit to which relays, and providing insight into the total revenue from the PBS system so
far. [13] discusses how proposers who participate in MEV boost could raise their revenue
by delaying block proposal, allowing more bids to come in before choosing a winner. [14]
uses proprietary data provided by Titan builder to demonstrate that top builders have more
order flow than other builders and that this is a large factor contributing to their dominance
in the PBS auctions.

AFT 2023



20:4 Centralizing Effects of Private Order Flow

Recent developments have increased our understanding of CEX/DEX arbitrage also
known as loss-versus-rebalancing (LVR) or stale order sniping. [10] proposed the definition
for LVR as the loss that the pool incurred relative to a perfect re-balancing portfolio. This
quantity can also be thought of as the expected profit of top of block CEX/DEX arbitrage
bots. [9] extended this analysis from continuous time with no fees to discrete time with fees,
a much more realistic model. A core finding of this paper was the result that LVR grows
cubically in blocktime, with smaller blocktimes leading to lower LVR.

3 Background

The easiest way to understand the top-of-block, block-body distinction is to look at the
blocks themselves. CEX/DEX arb transactions are easily identifiable since they are large
directional trades, typically in the first few slots of the block.

These CEX/DEX arb transactions are usually executed by an MEV bot contract that
disproportionately lands transactions in blocks associated with the corresponding builder. For
example, block 17195495,1, contains 182 transactions. The first 37 appear to be CEX/DEX
arb transactions from an MEV bot with the address 0xA69b. . . e78C.2 These are subjectively
large swaps on major pools (Uniswap, Sushiswap etc). For example, the first transaction
swaps 4.265 Million USDC for 2168 wETH 3 on the Uniswap v3 0.05% fee pool.4 The
subsequent 36 are also similarly large swaps, each of the order of several hundred wETH.

Note that these CEX/DEX arbitrage transactions are not found on all blocks – for
example, the preceding block, 17195494, does not contain such transactions. They typically
only appear when there is high volatility in the preceding 12 seconds, and even then, the
sizes tend to be much smaller than this selected block in most cases. For example, in the
next block 17195496, there is only 1 CEX/DEX arb transaction from the same bot and the
volume traded is only 1.2 Million USDC for 600 WETH.5

In the block after that, block 17195497, the same bot has a single CEX/DEX arb
transaction, swapping 272k USDT for 138 ETH.6 After this transaction, the rest of the block
is filled with block-body opportunities. Transactions at indexes 1–4 and 11–14 are sandwich
attacks.7

Block 17195497 in particular shows that builders can exploit both top-of-block and
block-body opportunities in the same block. This is an important aspect of our model, and
drives our results.

1 See, e.g., https://etherscan.io/block/17195495.
2 0xA69babEF1cA67A37Ffaf7a485DfFF3382056e78C
3 https://eigenphi.io/mev/eigentx/0xca8ec486cb46066b464104c1b91b3e253218dac6e9570408b6696

2883dcb0f28
4 https://info.uniswap.org/#/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
5 https://eigenphi.io/mev/eigentx/0x1e82ed1b04d0a0df667f64c7f341a9924c79465e84d9c10d265e9

88d0818e9c5
6 https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691

e88dfcd8fec
7 https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691

e88dfcd8fec?tab=block

https://etherscan.io/block/17195495
https://eigenphi.io/mev/eigentx/0xca8ec486cb46066b464104c1b91b3e253218dac6e9570408b66962883dcb0f28
https://eigenphi.io/mev/eigentx/0xca8ec486cb46066b464104c1b91b3e253218dac6e9570408b66962883dcb0f28
https://info.uniswap.org/##/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
https://eigenphi.io/mev/eigentx/0x1e82ed1b04d0a0df667f64c7f341a9924c79465e84d9c10d265e988d0818e9c5
https://eigenphi.io/mev/eigentx/0x1e82ed1b04d0a0df667f64c7f341a9924c79465e84d9c10d265e988d0818e9c5
https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691e88dfcd8fec
https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691e88dfcd8fec
https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691e88dfcd8fec?tab=block
https://eigenphi.io/mev/eigentx/0x95b1e7dc5f54a5f6ca02be2e17e26e2c73eccac374f88e7451691e88dfcd8fec?tab=block


T. Gupta, M. M. Pai, and M. Resnick 20:5

4 Data and Empirical Analysis

The driving assumption in the theoretical analysis in Section 5 is that some builders are
superior at extracting value from the top-of-block opportunities. In this section, we provide
empirical evidence for this assumption. We use realized price-volatility on the CEX as a
plausibly exogenous instrument that affects top-of-block but not block body opportunities.
In particular, price movements on the CEX create arbitage opportunities since DEX prices
are by design static until the next block. Large price movements create large arbitrage
opportunities, small price movements create small arbitrage opportunities.

We obtained block-level data from Etherscan for a period corresponding to roughly a
month from April 1st, 2023 to May 1st, 2023 (ETH blocks 16950609 to 17150609). We
combined this data with detailed price data of ETHUSD from a leading centralized exchange
(Binance) in the 12 seconds before each block was built. Price movement in this window
gives us a rough estimate of the amount that can be earned through arbitrage with central
exchanges for that block.

The merged data surfaces some clear patterns in builder-volatility relationships. Three
builders – Manta, Rsync Builder, and Beaver Build – were identified before the analysis as
likely to be better at extracting top of block MEV due to rumored connections with High
Frequency Trading Firms. We show how realized volatility is related to whether or not one
of these three builders constructed the block in Figure 1.

Figure 1 Blocks sorted by block time (x-axis) vs. pre-block volatility measured by log price
change (y-axis).

When analyzing the most volatile blocks from each of the HFT traders, there are many
large trades with Uniswap v3 pools at the top of each block (as we showed in Section 3). In
general, the larger the realized volatility in the preceding 12 seconds, the larger these trades
were. In some cases, when the realized volatility was most extreme, blocks included more
than 30 CEX/DEX arbitrage transactions, with many consisting of notional sizes of millions
of USD. We document blocks of several notable builders and their respective volatilities in
Figure 2.

AFT 2023



20:6 Centralizing Effects of Private Order Flow

Figure 2 Selected builders’ blocks sorted by block time (x-axis) vs. pre-block volatility measured
by log price change (y-axis).

To formalize these findings, we model the relationship between CEX volatility and HFT
builders winning the PBS auction. First, we grouped builders into HFT builders (Beaver,
Manta, and Rsync) and non-HFT builders (everyone else). We regressed realized volatility
on an indicator for whether or not one of these HFT builders won the block using a logistic
regression:

P (HFT Builder = 1|Log Price Change) = 1
1 + e−(β0+β1·Log Price Change)

Table 1 Logistic Regression Results.

Coeff Std Err z P > |z| [0.025 0.975]

Log10 Price Change 2055.151∗∗∗ (47.584) 43.190 0.000 1961.888 2148.414
const -0.821∗∗∗ (0.006) -133.054 0.000 -0.833 -0.809

We find that the coefficient for the log price change predictor variable is 2055.151, with a
standard error of 47.584. The significant positive relationship indicates that as the log price
change increases, the odds of HFT builders winning the block also increases. Interpreting
the model, when the Log10 Price Change is equal to 0 (i.e., no change) in the period before
the block, the log odds of an HFT builder winning the block are -0.821. This corresponds
to a probability of 0.306. If the realized volatility was 1% The probability that an HFT
builder won the block was 0.775. When the realized volatility was 2% the probability that
an HFT builder won the block was 0.964. Our analysis therefore comprehensively shows that
the likelihood of the builders we preidentified as HFT builders winning the block grows as
realized volatility increases. This suggests that these builders are much better than the rest
of the field at extracting top-of-block value.

To identify differences between these HFT builder’s capabilities, we construct a multino-
mial logistic regression:

log
(

P (Builderi)
P (Builderref)

)
= β0i + β1i(Log Price Change)



T. Gupta, M. M. Pai, and M. Resnick 20:7

We restrict analysis to six builders: BeaverBuild, Blocknative, Builder 69, Flashbots,
Manta, and Rsync Builder. Three of these (Beaver, Manta and Rsync) are our aforementioned
HFT builders, the remaining three (Blocknative, Builder69 and Flashbots) are high-volume
builders that construct a high percentage of the remaining blocks. This model analyzes
how the CEX price volatility between blocks impacts the probability of one of these entities
becoming the block winner. The resulting model coefficients for each builder in Table 2
estimate how a unit increase in Log Price Change before a block will impact the log ratio of the
probability of that block being won by that particular builder vs. the probability of it being
won by a builder in the reference class. While these coefficients are more difficult to interpret
than simple logistic model with HFT builders, our findings show significant relationships
between increased volatility before a block and that block being won by a particular builder:
the coefficients are positive and significant for our preidentified HFT builders (Beaver, Manta
and Rsync) , as one might have expected given our previous results. Conversely, they are
significant and negative for the high-volume, non HFT builders (Builder69 and Flashbots).8

This suggests that these high-volume builders either do not compete in top-of-block
extraction activity or at least are substantially less skilled relative to the HFT builders.

Table 2 MNLogit Regression Results.

coef std err z P > |z| [0.025 0.975]

Beaver Build
const -0.4144 0.009 -45.929 0.000 -0.432 -0.397
Log10 Price Change 1386.2014 71.403 19.414 0.000 1246.254 1526.149

Blocknative
const -2.4772 0.020 -126.577 0.000 -2.516 -2.439
Log10 Price Change 1629.2443 138.304 11.780 0.000 1358.174 1900.315

Builder 69
const 0.0152 0.008 1.799 0.072 -0.001 0.032
Log10 Price Change -527.4993 75.762 -6.963 0.000 -675.991 -379.008

Flashbots
const -0.4522 0.010 -46.985 0.000 -0.471 -0.433
Log10 Price Change -458.7271 86.446 -5.306 0.000 -628.159 -289.295

Manta
const -3.2312 0.023 -137.575 0.000 -3.277 -3.185
Log10 Price Change 3824.6414 104.548 36.583 0.000 3619.731 4029.551

Rsync Builder
const -0.6812 0.010 -71.400 0.000 -0.700 -0.662
Log10 Price Change 2093.8362 71.075 29.459 0.000 1954.532 2233.141

8 We note that the coefficient is positive and significant for Blocknative even though Blocknative claims
(and industry participants agree) that it is not an HFT builder. A possible reason for this is that
Blocknative runs their own relay and presumably collocates their builder with their relay. This could
give them a latency advantage which could be influential in winning high volatility blocks. Firms using
HFT-type strategies searching for a latency edge may therefore use Blocknative, resulting in the strongly
positive coefficient.

AFT 2023



20:8 Centralizing Effects of Private Order Flow

5 Model and Theoretical Analysis

Having demonstrated the core assumption (that some builders are better than others at
extracting value from the top of the block), we turn to a theoretical model of what the
downstream effects of this advantage might be as the prevalence of private order flow increases.

We construct and study a simple static model for a single slot. In our model, a block
consists of at most 2 transactions. There is a single available block body transaction which
can generate MEV (for example a swap transaction that can be sandwiched). Further, there
is a single top-of-block CEX/DEX arbitrage opportunity. There are two builders, A and B.
Each of these builders competes in the PBS auction to have their block included. In practice,
the PBS auction is an English auction – we will simply consider the standard dominant
strategy equilibrium of this auction, i.e., each agent stays in until their value, resulting in
the highest value buyer winning at the second highest value.

We consider two scenarios. Scenario 1 models the current situation with little/ no private
order flow, while scenario 2 models a setting with private order flow.

Scenario 1. In this setting the block body transaction is available to both builders, for
example as a bundle from a third (unmodeled) searcher. Both builders therefore have the
same value for this transaction, equaling the searcher’s tip which is paid to the including
builder – we will denote this value as vT . At the time of the PBS auction, each builder
x ∈ {A, B} also sees their value vx for the CEX/DEX arb. They then bid in the PBS auction,
with the winning bidder’s block being included.

Scenario 2. In this setting the block body transaction is available for sale at an OFA
that runs prior to the PBS auction. The value of the transaction for sale is vT , commonly
known among the two bidders. For simplicity we will first assume that this auction runs
as a second-price auction, i.e. builders submit bids and the winner (highest bid) pays the
second-highest bid. In this setting, the loser of the auction does not have access to the block
body transaction. At the time of the PBS auction, each builder x ∈ {A, B} also sees their
value vx for the CEX/DEX arb. They then bid in the PBS transaction, with the winning
bidder in this auction having their block included.

▶ Assumption 1. We will assume that for each x ∈ {A, B}, vx ∼ Fx where Fx is a CDF on
[0, 1], and that vA ⊥ vB , i.e. A and B are independently drawn.

Further we assume that FA ≻FOSD FB, i.e., builder A is stochastically better at CEX/
DEX arb than builder B.

Our results in this section show that the outcomes in Scenario 2, i.e., the scenario with
OFAs and private order flow, overly advantage builder A over builder B relative to scenario 1.

5.1 Baseline Results
The basic idea is straightforward and can be easily described in a setting where vA and vB

are deterministic (or equivalently, FA and FB are degenerate distributions). Without loss of
generality, assume that vA > vB .

▶ Theorem 2. In Scenario 1, suppose that vx for each of x ∈ A, B is common knowledge
among the builders before bidding in the PBS auction. Then the equilibrium of the PBS
auction is that A wins the PBS auction at price vT + vB. Their total profit is therefore
vA − vB.



T. Gupta, M. M. Pai, and M. Resnick 20:9

In short, the Theorem asserts that the outcome in Scenario 1 allocates blockspace
efficiently.

Proof. To see why, note that the block body transaction is available to both builders and
has the same value, so the sole differentiation is in terms of their value for the top-of-block
(CEX/DEX arb). The value of each bidder x for winning the auction is therefore vT + vx.
In the standard equilibrium of an English auction with complete information, the outcome
is efficient with the high value bidder winning at the second highest price. The theorem
follows. ◀

As a first benchmark to compare this against, suppose in Scenario 2 the builders know
their value for the CEX/DEX opportunity before the OFA begins.

▶ Theorem 3. In Scenario 1, suppose that the value vx for each builder x ∈ A, B for top of
block is common knowledge among them before bidding in the OFA. Then the overall outcome
of OFA followed by PBS auction is that A wins both auctions at total price max(vT + 2vB −
vA, vB). Their total surplus is therefore min(2(vA − vB), vA + vT − vB).

Proof. The proof follows straightforwardly from backward induction. We can work out the
willingness to pay of each party for the transaction in the OFA based on the difference
in profit in the PBS auction conditional on who wins the OFA. There are two mutually
exclusive, totally exhaustive cases:

Case 1. vA > vB + vT . In this case, note that the winner of the PBS auction is A regardless
of who wins the OFA (since we already have that vA > vB). Therefore B gets a 0 surplus
regardless. As a result, we have that B bids 0 in the OFA and therefore A wins the transaction.
Then, the PBS auction clears at a price of vB with A winning the block, and the total surplus
of A is vA + vT − vB .

Case 2. vA ≤ vB + vT . In this case, the winner of the OFA will go ahead and win the PBS
(since the value of the transaction vT plus their own value for the top-of-block opportunity
combines will be larger than the competitor’s value for the top-of-block opportunity). Note
that if A wins the OFA, then they will therefore win the PBS at a price of vB for a net
surplus of vA + vT − vB (and B will make a total surplus of 0). Conversely, if B wins the
OFA, they will win the PBS for a price of vA, with a net surplus of vB + vT − vA (and A

will make a total surplus of 0).
Therefore, A’s willingness to pay for the transaction in the OFA is vA + vT − vB , whereas

B is willing to pay vB + vT − vA < vA + vT − vB (since vA > vB by assumption). As a result
the OFA will see A winning for a price of vB + vT − vA. Combining these (the outcomes of
the PBA above and the OFA here) we have the desired result. ◀

These results already exhibit the “centralization effects” of private order flow on proposer
builder separation: every additional dollar of advantage a builder has in top of block extraction
translates into more than a dollars of surplus (for a small advantage, up to two dollars). In
short, a builder who is already advantaged has a steeper incentive to invest in improving
their advantage.

AFT 2023



20:10 Centralizing Effects of Private Order Flow

5.2 Stochastic Top-of-Block Opportunities
Our results carry through, mutatis mutandis, for a more realistic model where at the time
of bidding in the OFA, builders do not know the value of the top of block opportunity. Of
course this applies solely to Scenario 2. In this case, builder x at the stage of the OFA bids on
the understanding that their top-of-block opportunity will be revealed to them later, and is
distributed as vx ∼ Fx. At the conclusion of the OFA, the realized top-of-block opportunity
for each builder is revealed to them, and is modeled as a private value.9

Suppose builder A wins the OFA. In this case, their value for the block is vT + vA, while
builder B’s value for the block is vB . Conversely, if builder A loses the OFA, their value for
the block is vA while builder B’s value for the block is VB + vT .

▶ Theorem 4. Builder A’s value for the transaction in the OFA, vT,A, can be written as:

vT,A =
∫ ∞

0

∫ vA

0
FB(v + vT ) − FB(v − vT )dvdFA(vA),

with vT,B defined analogously.

Proof. Note that conditional on builder A’s value for top of block slot being vA, their interim
probability of winning the block is

xwin
A (vA) = FB(vA + vT ),

and analogously their probability of winning the block from losing the OFA is

xlose
A (vA) = FB(vA − vT ).

Therefore, by the revenue equivalence theorem (see e.g., Proposition 3.1 of [6]), the expected
surplus of builder A in the PBS auction, conditional on the outcome of the OFA with a value
of VA for the top of the block can be written as

swin
A (vA) =

∫ vA

0
xwin

A (v)dv =
∫ vA

0
FB(v + vT )dv,

slose
A (vA) =

∫ vA

0
xlose

A (v)dv =
∫ vA

0
FB(v − vT )dv

Finally, the ex-ante expected surplus from winning can be written as:

Swin
A =

∫ ∞

0
swin

A (vA)dFA(vA) =
∫ ∞

0

∫ vA

0
FB(v + vT )dvdFA(vA),

and expected surplus from losing as,

Slose
A =

∫ ∞

0
slose

A (vA)dFA(vA) =
∫ ∞

0

∫ vA

0
FB(v − vT )dvdFA(vA).

Therefore the effective valuation of builder A to win the the transaction in the OFA, vT,A

equals Swin
A − Slose

A . Analogously, the valuation of builder B in the transaction in the OFA
equals Swin

B − Slose
B .

9 It maybe interesting to consider the case where this value is a signal of expected top-of-block value. In
this case, we may be in a setting of interdependent values as in [8]. We leave that study to future work.



T. Gupta, M. M. Pai, and M. Resnick 20:11

Note that

vT,A = Swin
A − Slose

A ,

=
∫ ∞

0

∫ vA

0
FB(v + vT ) − FB(v − vT )dvdFA(vA),

and, analogously,

vT,B = Swin
B − Slose

B ,

=
∫ ∞

0

∫ vB

0
FA(v + vT ) − FA(v − vT )dvdFB(vA),

as desired. ◀

Finally, note that under various assumptions, it can be shown that vT,A > vT,B . For
example:

▶ Corollary 5. Suppose vT is small enough so that a Taylor series approximation is appro-
priate. Then vT,A ≥ vTB

.

Proof. To see this note that

vT,A =
∫ ∞

0

∫ vA

0
FB(v + vT ) − FB(v − vT )dvdFA(vA),

≈
∫ ∞

0

∫ vA

0
2vT fB(v)dvdFA(vA)

= 2vT

∫ ∞

0
FB(vA)fA(vA)dvA.

By an analogous argument,

vT,B ≈ 2vT

∫ ∞

0
FA(vB)fB(vB)dvB .

Since FA ≻FOSD FB , we have that for all v, FA(v) ≤ FB(v). Therefore we have that,

vT,A ≈ 2vT

∫ ∞

0
FB(vA)fA(vA)dvA

≥
∫ ∞

0
FA(vA)fA(vA)dvA (since FA ≻FOSD FB),

≥
∫ ∞

0
FA(vA)fB(vA)dvA (since FA ≻FOSD FB),

≈ vT,B . ◀

Note that this corollary already implies that even though the top of block opportunities are
vA and vB are stochastic, builder A always wins the OFA, since it expects better (stochastic)
top of block opportunities.

Using this, we can compare winning probabilities and builder profit across the two
scenarios. We summarize our results with the following theorem:

▶ Theorem 6. Under Scenario 1, builder A wins the block with ex-ante probability∫ ∞
0 FB(vA)fA(vA)dvA; whereas under OFAs with private transactions, builder A’s winning

probability increases to
∫ ∞

0 FB(vA + vT )fA(vA)dvA.

AFT 2023



20:12 Centralizing Effects of Private Order Flow

Under Scenario 1, the total expected profit of builder A is∫ ∞

0

∫ vA

0
FB(v)dvdFA(vA).

Under Scenario 2, the total expected profit of builder A is

(vT,A − vT,B) +
∫ ∞

0

∫ vA

0
FB(v + vT )dvdFA(vA).

Proof. To see the first part, note that under scenario 1, builder A wins the block whenever
their realized value for the transaction (vA) exceeds builder B’s.

Under scenario 2, note that by the previous result, builder A always wins the block-body
transaction in the OFA. It then therefore wins the PBS auction whenever builder B’s value
for the top-of-block transaction is at most vT larger than builder A’s value for the same. The
formulae listed straightforwardly represent the probability of the events described above.

The total expected profits then follow from revenue equivalence (see e.g. Proposition 3.1
of [6]). In particular, recall that if a buyer of value wins the object with probability x(v),
their expected profit in this auction must be S(v) =

∫ v

0 x(v′)dv′ + S(0). The expected profits
listed above then follow straightforwardly. ◀

By observation, the profits of builder 1 have gone up: firstly, they make positive profit in
the OFA since they are more aggressive in the OFA. Secondly, having won the OFA, they
are advantaged in the PBS auction (since they have access to the private transaction to
increase their value for the block, and builder B does not). Further results require us to
make a functional form assumption on FA and FB , which we do in the next section.

5.3 An Analytic Example
To better understand the effect on surplus etc, we can use the formulas above in an analytic
example so that we can do some simple comparative statics. To that end suppose both vA

and vB are exponentially distributed, with parameter λA and λB respectively. By assumption
that A is the stronger builder in terms of first order stochastic dominance of top-of-block
opportunities, we must have that λA < λB .

Note that, for each x ∈ {A, B}

Fx(v) = 1 − exp{−λxv},

fx(v) = λx exp{−λxv}.

Therefore, substituting in, we have that:

vT,A =
∫ ∞

0

∫ vA

0
FB(v + vT ) − FB(v − vT )dvdFA(vA),

=
∫ ∞

0
HB(vA)dFA(vA),

where

HB(vA) =
{∫ vA

vT
FB(v + vT ) − FB(v − vT )dv +

∫ vT

0 FB(v + vT )dv if vA > vT∫ vA

0 FB(v + vT )dv o.w.



T. Gupta, M. M. Pai, and M. Resnick 20:13

A mechanical but involved calculation delivers that:

vT,A = λA(1 − exp(−vT λB)) + λB(1 − exp(−vT λA))
(λ2

A + λAλB)

And analogously vT,B . Further it is straightforward to verify that vT,A > vT,B (since λA < λB

by assumption) as desired.
Substituting in to the formulas in Theorem 6, we have that the probability of A winning

rises to

1 − exp{−vT λB}λA

λA + λB
>

λB

λA + λB

where the right hand side is the probability of A winning in Scenario 1.
Finally, note that under scenario 1, the total expected profit of Builder A is∫ ∞

0

∫ vA

0
FB(v)dvdFA(vA) = λB

λA(λA + λB) .

By comparison, under scenario 2, the total expected profit of Builder A is:

(vT,A − vT,B) +
∫ ∞

0

∫ vA

0
FB(v + vT )dvdFA(vA),

=(λB − λA)(λA(1 − exp(−vT λB)) + λB(1 − exp(−vT λA)))
λAλB(λA + λB) + λB + λA(1 − exp(−vT λB))

λA(λA + λB) .

Therefore the difference in profit between the two scenarios is:

(λB − λA)(λA(1 − exp(−vT λB)) + λB(1 − exp(−vT λA)))
λAλB(λA + λB) + (1 − exp(−vT λB))

(λA + λB)

Note that since each of the terms is positive, so is the sum, i.e. builder A’s total profit
increases in Scenario 2 relative to scenario 1.

These comparative statics are illustrated in Figure 3. We normalize vT to 1, and capture
the advantage of builder A by varying λA

λA+λB
holding λA + λB fixed. The smaller the

former, the larger is builder A’s advantage in top of block extraction. The figure threfore
demonstrates how even small advantages can be discontinuously magnified by private OFAs:
it is instructive to note that even if the advantaged builder has a small advantage in top-
of-block extraction, e.g., λB = λA + ϵ for ϵ small, they have a discontinuous jump in their
probability of winning the PBS auction in scenario 2 relative to scenario 1. This is because
even a small advantage in top-of-block extraction leads to the advantaged builder always
winning the OFA in Scenario 2, which in turn gives them a discontinuous advantage in the
PBS auction.

▶ Remark 7 (Bundle Sharing). The results of this model apply in a world where builders do
not share opportunities with other builders. This practice, known as bundle sharing, is rather
common [14]. When a bundle is shared, the bundle tip sets how much of the opportunity’s
value is shared with the builder and how much is retained for the bundle originator. In
a world with low bundle sharing friction, the centralizing effects of private order flow are
diminished because the value of running a builder is low (searchers can get almost the same
execution without a builder as they can if they do run a builder).

In practice there are several frictions that make bundle sharing less desirable. First, a
builder sharing a bundle with another searcher can cause the competing builder to elevate
their bid in this PBS auction, making it more likely that the originating builder loses the

AFT 2023



20:14 Centralizing Effects of Private Order Flow

0.1 0.2 0.3 0.4 0.5
λA

λA+λB

0.70

0.75

0.80

0.85

0.90

0.95

W
in

ni
ng

Pr
ob

ab
ili

ty
of

bu
ild

er
A

Winning Probability of builder A as a function of λA
λA+λB

Winning Probability of builder A (Scenario 1)
Winning Probability of builder A (Scenario 2)

0.1 0.2 0.3 0.4 0.5
λA

λA+λB

2

4

6

8

10

12

Pr
ofi

to
fb

ui
ld

er
A

Profit of builder A as a function of λA
λA+λB

Profit of builder A (Scenario 1)
Profit of builder A (Scenario 2)

Figure 3 How winning probability (left) and expected profit (right) vary across scenarios 1 and 2
as the relative advantage of Builder A varies.

PBS auction or pays a higher price when he wins. Second, bundles submitted to other
builders have higher latency, meaning decisions have to be made earlier in the slot with
less information about how the prices of underlying assets will evolve. This latency effect is
particularly relevant for top of block arbitrage opportunities which is why most successful
top of block searchers also run their own builder.

6 Discussion

Our empirical results show that a small group of integrated builder-searchers have a demon-
strable advantage in top-of-block extraction capability.

Our theoretical model then shows that builders with superior top-of-block capabilities are
likely to dominate OFAs and subsequently use the private order flow obtained in these OFAs
to dominate the PBS auction. Put simply, top-of-block and block-body opportunities are
complementary because the block is sold wholesale. Therefore, builders who earn more from
the top of the block, will be willing to pay more for private order flow, since they need to win
the whole block in order to exercise their top-of-block advantage. This complementarity is a
strong centralizing force that threatens to suffocate small builders and upset the currently
somewhat pluralistic builder equilibrium.

Asking order flow originators not to participate in OFAs is futile because it is in their
own best interest to do so. Similarly, builders cannot be barred from participating in OFAs.
The only solution then is to modify PBS itself.

Our results suggest that unbundling the PBS auction would be a step in the right direction.
By this we mean selling the top of the block and the block-body separately. Implementing
such a mechanism would reduce HFT advantage and allow alternative strategies to integrated
builder searchers to compete for the right to build blocks. A more fleshed-out proposal in this
direction was recently proposed in [12] in the form of PEPC-Boost, a specific instantiation of
a protocol enforced proposer commitment (PEPC) in which the block is split into designated
top-of-block and blockbody and these are auctioned separately.



T. Gupta, M. M. Pai, and M. Resnick 20:15

References
1 Vitalik Buterin. How much can we constrain builders without bringing back heavy burdens

to proposers? https://ethresear.ch/t/how-much-can-we-constrain-builders-without-
bringing-back-heavy-burdens-to-proposers/13808, October 2022.

2 Stephane Gosselin, Ankit Chiplunkar, and ConsenSys Research. The orderflow auction
design space. Frontier Research, 6:83, 2023. URL: https://frontier.tech/the-orderflow-
auction-design-space/.

3 Lioba Heimbach, Lucianna Kiffer, Christof Ferreira Torres, and Roger Wattenhofer. Ethereum’s
proposer-builder separation: Promises and realities, 2023. arXiv:2305.19037.

4 Quintus Kilbourn. Order flow, auctions, and centralization. The Flashbots Collective, 2022.
URL: https://writings.flashbots.net/order-flow-auctions-and-centralisation.

5 Quintus Kilbourn. Order flow, auctions, and centralization ii. Flashbots, 2022. URL: https:
//writings.flashbots.net/order-flow-auctions-and-centralisation-II.

6 Vijay Krishna. Auction theory. Academic press, 2009.
7 Julian Ma. Structuring blockspace derivatives. https:

//mirror.xyz/0x03c29504CEcCa30B93FF5774183a1358D41fbeB1/
WKa3GFC03uY34d2MufTyD0c595xVRUEZi9RNG-dHNKs, October 2022.

8 Paul R Milgrom and Robert J Weber. A theory of auctions and competitive bidding. Econo-
metrica: Journal of the Econometric Society, pages 1089–1122, 1982.

9 Jason Milionis, Ciamac C. Moallemi, and Tim Roughgarden. Automated market making and
arbitrage profits in the presence of fees, 2023. arXiv:2305.14604.

10 Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing, 2022. arXiv:2208.06046.

11 Barnabe Monnot. Unbundling pbs: Towards protocol-enforced proposer commit-
ments (pepc). https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-
proposer-commitments-pepc/13879?u=barnabe, October 2022.

12 Barnabé Monnot. Pepc faq. https://efdn.notion.site/PEPC-FAQ-
0787ba2f77e14efba771ff2d903d67e4, July 2023.

13 Caspar Schwarz-Schilling, Fahad Saleh, Thomas Thiery, Jennifer Pan, Nihar Shah, and
Barnabé Monnot. Time is money: Strategic timing games in proof-of-stake protocols, 2023.
arXiv:2305.09032.

14 Titan. Builder dominance and searcher dependence. Frontier Tech, 2023. URL: https:
//frontier.tech/builder-dominance-and-searcher-dependence.

15 Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to
bribe: Measuring block construction market, 2023. arXiv:2305.16468.

AFT 2023

https://ethresear.ch/t/how-much-can-we-constrain-builders-without-bringing-back-heavy-burdens-to-proposers/13808
https://ethresear.ch/t/how-much-can-we-constrain-builders-without-bringing-back-heavy-burdens-to-proposers/13808
https://frontier.tech/the-orderflow-auction-design-space/
https://frontier.tech/the-orderflow-auction-design-space/
https://arxiv.org/abs/2305.19037
https://writings.flashbots.net/order-flow-auctions-and-centralisation
https://writings.flashbots.net/order-flow-auctions-and-centralisation-II
https://writings.flashbots.net/order-flow-auctions-and-centralisation-II
https://mirror.xyz/0x03c29504CEcCa30B93FF5774183a1358D41fbeB1/WKa3GFC03uY34d2MufTyD0c595xVRUEZi9RNG-dHNKs
https://mirror.xyz/0x03c29504CEcCa30B93FF5774183a1358D41fbeB1/WKa3GFC03uY34d2MufTyD0c595xVRUEZi9RNG-dHNKs
https://mirror.xyz/0x03c29504CEcCa30B93FF5774183a1358D41fbeB1/WKa3GFC03uY34d2MufTyD0c595xVRUEZi9RNG-dHNKs
https://arxiv.org/abs/2305.14604
https://arxiv.org/abs/2208.06046
https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=barnabe
https://ethresear.ch/t/unbundling-pbs-towards-protocol-enforced-proposer-commitments-pepc/13879?u=barnabe
https://efdn.notion.site/PEPC-FAQ-0787ba2f77e14efba771ff2d903d67e4
https://efdn.notion.site/PEPC-FAQ-0787ba2f77e14efba771ff2d903d67e4
https://arxiv.org/abs/2305.09032
https://frontier.tech/builder-dominance-and-searcher-dependence
https://frontier.tech/builder-dominance-and-searcher-dependence
https://arxiv.org/abs/2305.16468




When Bidders Are DAOs
Maryam Bahrani #

a16z Crypto, New York, NY, USA

Pranav Garimidi #

a16z Crypto, New York, NY, USA

Tim Roughgarden #

a16z Crypto , New York, NY, USA
Columbia University, New York, NY, USA

Abstract
In a typical decentralized autonomous organization (DAO), people organize themselves into a group
that is programmatically managed. DAOs can act as bidders in auctions (with ConstitutionDAO
being one notable example), with a DAO’s bid typically treated by the auctioneer as if it had been
submitted by an individual, without regard to any details of the internal DAO dynamics.

The goal of this paper is to study auctions in which the bidders are DAOs. More precisely, we
consider the design of two-level auctions in which the “participants” are groups of bidders rather
than individuals. Bidders form DAOs to pool resources, but must then also negotiate the terms by
which the DAO’s winnings are shared. We model the outcome of a DAO’s negotiations through
an aggregation function (which aggregates DAO members’ bids into a single group bid) and a
budget-balanced cost-sharing mechanism (that determines DAO members’ access to the DAO’s
allocation and distributes the aggregate payment demanded from the DAO to its members). DAOs’
bids are processed by a direct-revelation mechanism that has no knowledge of the DAO structure
(and thus treats each DAO as an individual). Within this framework, we pursue two-level mechanisms
that are incentive-compatible (with truthful bidding a dominant strategy for each member of each
DAO) and approximately welfare-optimal.

We prove that, even in the case of a single-item auction, the DAO dynamics hidden from the
outer mechanism preclude incentive-compatible welfare maximization: No matter what the outer
mechanism and the cost-sharing mechanisms used by DAOs, the welfare of the resulting two-level
mechanism can be a ≈ ln n factor less than the optimal welfare (in the worst case over DAOs and
valuation profiles). We complement this lower bound with a natural two-level mechanism that
achieves a matching approximate welfare guarantee. This upper bound also extends to multi-item
auctions in which individuals have additive valuations. Finally, we show that our positive results
cannot be extended much further: Even in multi-item settings in which bidders have unit-demand
valuations, truthful two-level mechanisms form a highly restricted class and as a consequence cannot
guarantee any non-trivial approximation of the maximum social welfare.

2012 ACM Subject Classification Applied computing → Online auctions

Keywords and phrases Auctions, DAOs

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.21

Funding Tim Roughgarden: Research at Columbia University supported in part by NSF awards
CCF-2006737 and CNS-2212745.

Acknowledgements We thank Dan Boneh for helpful discussions and the reviewers for comments on
future directions.

1 Introduction

In November 2021, one of the 13 extant original copies of the U.S. Constitution was put
up for sale by Sotheby’s auction house. Within days, a DAO (“decentralized autonomous
organization”) with over 17000 members formed to crowdsource funds to participate in the

© Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbahrani@a16z.com
mailto:pgarimidi@a16z.com
mailto:troughgarden@a16z.com
https://doi.org/10.4230/LIPIcs.AFT.2023.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 When Bidders Are DAOs

auction. This DAO – called ConstitutionDAO, naturally – believed that physical copies of
the Constitution should be controlled “by the people,” rather than stuck in private collections.
Members of this DAO valued belonging to the collective that wins this auction, and from
their perspective the good for sale is therefore non-rivalrous among them, with a member’s
value for winning unharmed by the fact that other members (of the same DAO) win as well.
The members of the DAO were generally anonymous; committed funds were publicly visible
and held in escrow in a smart contract deployed to the Ethereum blockchain. All told, the
DAO raised roughly $47 million leading up to the auction. Sotheby’s sold the copy of the
Constitution using (of course) an ascending auction, with a designated DAO representative
relaying the bids implied by the DAO’s reserves. Thus, from Sotheby’s perspective, Consti-
tutionDAO was just like any other bidder, even though in reality it represented the outcome
of coordination of thousands of individuals. (In the end, ConstitutionDAO lost the auction
to Ken Griffin, CEO of the hedge fund Citadel, and the escrowed funds were returned to the
DAO’s participants.)

More generally, the point of a DAO is for people to organize themselves into groups
that are programmatically managed. Usually these DAOs are centered around some kind
of common cause, for example, forming a social club, collecting art, or funding projects.
The key innovation that DAOs bring over traditional collectives is that the behavior of the
DAO is programmatically enforced via blockchain-secured smart contracts, allowing DAOs
to use more complex mechanisms than would traditionally be possible. These DAOs may
find themselves competing in auctions on behalf of their members. In a typical such auction,
bids by DAOs might be treated by the seller as individual bids in (say) a first-price auction,
without regard to any details of the internal group dynamics.

Lest ConstitutionDAO seem like an isolated example, we stress that as blockchains
and DAOs become mainstream, this same pattern will likely recur. For example, a DAO
concerned with environmental activism could compete in an auction to buy the right to
preserve a certain area of land. A DAO of musicians could compete for the long-term use of
a particular performance venue. In many of these settings, as long as you are part of the
winning DAO, you have a value for the good that is independent of how many other people
are part of the DAO. Depending on the application, the good may or may not be excludable
(i.e., with the option of excluding select DAO members from access); as our results show, the
degree to which the good for sale is excludable will have a first-order effect on whether there
are mechanisms with good incentive and welfare guarantees.

The goal of this paper is to study auctions in which the bidders are DAOs. Obvious
questions then include: How should DAO dynamics and internal negotiations be modeled?
Which key lessons of classical auction theory hold also when bids represent DAOs, and which
ones must be revisited? Do the mechanism design problems at the “upper level” (the choice
of auction) and the “lower level” (the aggregation of preferences of members of a DAO)
compose nicely (e.g., preserving incentive-compatibility), or are there intricate interactions
between them? Does the aggregation of multiple individual preferences into a single DAO
preference interfere with natural mechanism design objectives like welfare-maximization, and
if so, by how much? This paper initiates the study of these questions.

1.1 Informal Description of Our Model
Section 2 details our model; here, we provide an informal description that is sufficient to
understand the overview of results in the next section.

First, there is an auctioneer that runs an upper-level mechanism, which takes as input
bids from groups (representing DAOs), and outputs an allocation of items to groups along
with group payments. This mechanism has no knowledge of (or is deliberately designed to



M. Bahrani, P. Garimidi, and T. Roughgarden 21:3

ignore) the process by which groups’ bids were produced; for all the mechanism knows, each
bid was submitted by an individual bidder. First- and second-price single-item auctions are
canonical examples of such mechanisms.

Given the output of the upper-level mechanism, each group must determine each member’s
access to then group’s winnings, and what to charge each member to cover the overall payment
demanded by the auctioneer. In the spirit of the Revelation Principle, we model the result
of these determinations as a choice of a (direct-revelation) budget-balanced cost-sharing
mechanism, where the cost to be shared is the payment demanded by the auctioneer. In
addition to choosing this lower-level mechanism, a group must decide what to bid (in the
upper-level mechanism), as a function of its members’ bids. We refer to this mapping (from
members’ bids to a single group bid) as an aggregation function.

Summarizing, given a choice of upper-level and lower-level mechanisms (including the
aggregation functions), the overall sequence of events unfolds as follows: (i) each member of
each group submits an individual bid to that group’s lower-level mechanism; (ii) each group
maps its members’ bids to a group bid via its aggregation function, which is then submitted
to the upper-level mechanism; (iii) the upper-level mechanism chooses, as a function of the
submitted group bids, an allocation of its items to groups and payments by the groups in
exchange for the allocated items; (iv) each group, having received its items and a payment
request from the upper-level mechanism, uses its lower-level mechanism to give its members
access to the items won and to share the payment among its members.

Within this framework, we pursue two goals: (i) dominant-strategy incentive-compatibility
(DSIC); and (ii) (approximate) social welfare maximization. By DSIC, we mean a two-level
mechanism in which every member of every group has a dominant strategy, and that strategy
is to bid its true valuation. For welfare, we consider the valuation of each group member for
the subset of items (its group won and) to which it has access. The social welfare is the sum
of these quantities over all members of all groups.

The core difficulty of this mechanism design problem is aggregating the preferences of a
group and charging payments in an incentive-compatible way. For example, if a group always
grants all its members access to all its items and shares the cost evenly, budget-balanced
incentive-compatibility is impossible (due to free riders underbidding in the hopes that other
group members will shoulder the cost of acquiring a valuable item). For this reason, two-level
mechanisms with non-trivial guarantees must use lower-level mechanisms that can exclude
group members – presumably the lower-bidding ones – from accessing some of the items
allocated to the group. For instance, if a DAO of musicians wins access to a performance
venue, it may designate a subset of DAO members – intuitively, the members whose bids
were actually used to cover the cost of winning the auction – as the only ones eligible to
book concerts at the venue.

A second challenge is that distributing payments within a group in an incentive-compatible
way generally precludes the group from covering payments that match the full welfare of its
members.

We prove that this challenge necessarily causes information to be lost in the aggregation
process, which leads to an unavoidable indistinguishability problem for the upper-level
mechanism and a consequent loss in social welfare.

1.2 Summary of Results
We begin with the canonical setting of a single-item auction, and identify a natural incentive-
compatible two-level mechanism that guarantees an Hℓ-approximation to the social welfare,
where ℓ denotes the maximum number of bidders in any group and Hℓ =

∑ℓ
i=1

1
i ≈ ln ℓ the

AFT 2023



21:4 When Bidders Are DAOs

ℓth Harmonic number. The rough idea is that each group bids the maximum amount that
can be shared equally among a subset of its members (subject to individual rationality),
with a Vickrey (i.e., second-price) auction serving as the upper mechanism. We complement
this upper bound with a matching negative result, assuming only a weak “equal treatment”
property.1 Precisely, every incentive-compatible and individually rational two-level mechanism
that satisfies this property cannot guarantee a worst-case approximation factor smaller
than Hℓ. This lower bound arises from the inability of truthful mechanisms to elicit payments
from groups that match the groups’ true welfare when members of a group have very unequal
values.

We then proceed to the multi-item setting. The mechanism of our positive result for the
single-item case extends easily and without degradation to the setting in which each member
of each group has an additive valuation over items. However, the story changes dramatically
when we consider the other canonical “easy case” for multi-item settings, namely bidders
with unit-demand valuations. Here, we show that no incentive-compatible and individually
rational two-level mechanism can achieve a better-than-n approximation of the optimal
social welfare (where n denotes the total number of participants). The high-level idea of
our proof is to show that incentive-compatibility is possible in this setting only if there
are instances that require the mechanism to allocate all the items to a single group. We
then prove that, because the upper mechanism is oblivious to the group structure (e.g.,
whether a group represents a single bidder or many), there will be instances in which such
allocations lead to extremely poor welfare. This negative result shows that, in particular,
the composition of an incentive-compatible and approximately welfare-maximizing upper
level mechanism (such as the VCG mechanism) with incentive-compatible and approximately
welfare-maximizing lower mechanisms (such as maximum equal-split cost-sharing) need
not lead to a two-level mechanism with those same properties. The design of two-level
mechanisms with good provable guarantees thus requires careful coordination between the
upper and lower mechanisms, along with strong restrictions on the set of feasible allocations
or the structure of bidders’ preferences.

1.3 Related Work
This paper follows in the tradition of a long line of works, beginning with [14] and [8], that
study the problem of incentive-compatible approximate welfare-maximization under side
constraints. (Without side constraints, exact incentive-compatible welfare-maximization can
be achieved using the VCG mechanism.) Like most of these works, we focus on a prior-free
setting, worst-case (over valuation profiles) relative approximation of the optimal welfare,
and dominant-strategy incentive-compatibility.

Many of the papers in this line belong to the field of algorithmic mechanism design, in
which the side constraints impose bounds on the amount of computation or communication
used by a mechanism (see e.g. [19]). For example, in multi-item (combinatorial) auctions,
the size of a bidder’s valuation (and hence the communication used by a direct-revelation
mechanism) is generally exponential in the number of items m. If a mechanism uses an amount
of communication that is bounded by a polynomial function of m, bidders will be unable to
report fully their valuations and the mechanism must ultimately make its allocation (and

1 This property states that if two members of a group submit identical bids, they should also receive
identical allocations (with either both or neither granted access to the item) and make identical payments.
This is effectively a symmetry condition on how a mechanism breaks ties, and it is relevant only for a
measure-zero set of valuation profiles (those in which some valuation is repeated).



M. Bahrani, P. Garimidi, and T. Roughgarden 21:5

payment) decisions with incomplete information. Unsurprisingly, full welfare-maximization
is generally impossible in such settings, even after setting aside any incentive-compatibility
constraints.

Somewhat similarly, in the two-level mechanism framework studied in this paper, one
of the side constraints requires the upper mechanism to base its allocation (and payment)
decisions on incomplete information (group bids, rather than the individual member bids
that led to those group bids), again precluding any direct-revelation solution. Here, however,
it is the combination of limited information and the incentive-compatibility constraint that
rules out exact welfare-maximization.2 Accordingly, the crux of our lower bound proofs is
to delineate the limitations of incentive-compatible (two-level) mechanisms, not to identify
any intrinsic difficulty of the underlying optimization problem. Several papers in algorithmic
mechanism design, such as [15] and [4], face similar challenges when proving that there
are welfare-maximization problems for which incentive-compatibility constraints degrade
the best-possible approximation factor achievable by a polynomial-time algorithm. Results
in the spirit of Roberts’s Theorem [17], which characterize the set of incentive-compatible
mechanisms for a given setting, can also have a similar flavor.

Our model is similar to the one in [16], although that paper has very different goals
than the present work. Rather than considering the space of dominant-strategy incentive-
compatible mechanisms, as we do here, the paper [16] fixes specific (non-incentive-compatible)
auctions for the upper mechanism and aggregation rules and cost-sharing rules in the lower
mechanism before characterizing (prior-dependent) equilibrium strategies for the participants.
The analysis in [16] is also restricted to the specific setting in which a single group of bidders
competes with a single individual bidder.

The lower mechanisms in our two-level framework are required to be budget-balanced
cost-sharing mechanisms, and there is a large literature on such mechanisms. Naturally,
some ideas in our proofs also have precursors in that literature; a few other papers that bear
resemblance to the present work are [5], [13], [18], and [3]. There are two major differences,
however, between the use of cost-sharing mechanisms in our framework and the settings in
which they are traditionally studied. First, in the standard setup, a cost-sharing mechanism
chooses an outcome that incurs a cost (e.g., the cost of building a bridge) and the goal is
to maximize the social welfare (the total value of the winning participants for the chosen
outcome, minus the cost of that outcome) or minimize the social cost (the cost of the
chosen outcome, plus the total value of the losing participants). The cost of an outcome
in this setup is exogenously specified, independent of participants’ bids. In our two-level
framework, the “cost” to be shared is an endogenously specified transfer (from a group to the
auctioneer, as a function of other groups’ bids) that does not detract from the social welfare.
In the traditional setup, incentive-compatible budget-balanced cost-sharing mechanisms
cannot guarantee any approximation of the optimal social welfare for even the simplest of
problems, and for this reason the social cost objective is usually considered instead [18].
Here, with costs internal rather than external to the system, a non-trivial approximation to
the social welfare objective is possible (e.g., for single-item settings). Second, cost-sharing
mechanisms are traditionally studied as stand-alone direct-revelation mechanisms, whereas
here they constitute one component of a more complex mechanism. Our results show that

2 E.g., in a single-item setting, exact welfare maximization (without incentive-compatibility) is easy to
achieve: bidders bid truthfully, each group reports the sum of its members’ bids, the upper mechanism
chooses the highest group bid and charges that group its bid, and the winning group then charges all its
members their bids.

AFT 2023



21:6 When Bidders Are DAOs

plugging incentive-compatible cost-sharing mechanisms into a two-level mechanism with an
incentive-compatible upper mechanism does not generally preserve incentive-compatibility
(see Appendix A). This lack of modularity between the upper and lower mechanisms suggests
that the power and limitations of two-level mechanisms must be studied from first principles.

Resembling our two-level framework is a sequence of papers on bidding rings and collusion
in auctions, namely [7], [11], [9], [10], and [12]. In this line of work, a group of bidders
participates in a first- or second-price single-item auction by coordinating among themselves
in a bidding ring to increase their expected utility. Unlike in our model, in which individuals
value belonging to the winning group (and hence many can “win”), in these papers there is
only one winning individual. As a result, these works require transfers within the bidding
ring to incentivize agents to join. They also require individuals to have a common prior and
compute (non-dominant) equilibrium strategies. Finally, these works do not consider the
welfare loss due to collusion, as we do here.

Also reminiscent of our two-level framework but more distantly related are works that
consider various mechanism design setups with intermediaries. For example, [2] consider
facility location problems on trees and assume that strategic agents report to mediators that
then act on their behalf. In addition to studying a very different underlying optimization
problem, a key aspect of this paper is that mediators are assumed to be strategic (whereas
the analog in our framework, the lower mechanisms, have no agency). A related line of
research, motivated by online advertisement exchange systems, considers auctions in which
bidders report bids to intermediaries who in turn submit bids to a seller (e.g., [6] and [1]).
In addition to focusing on strategic intermediaries, these works are primarily concerned with
approximate revenue-maximization (as opposed to approximate welfare-maximization).

2 Preliminaries

We consider a setting where an auctioneer is selling a set of items, [m] = {1, ..., m} to k

distinct groups. We denote group j by Gj and let Gj have nj bidders, with a total of n

bidders across all of the groups. We only allow bidders to be part of a single group and
assume that the auctioneer only interacts with a group as a whole, with no insight into the
inner group structure. We further assume the auctioneer is a trusted party who will follow
the mechanism as specified.3

Each item l is constrained to being allocated to a single group but there are no constraints
on how many bidders within that group can have access to the item. In other words, given
that the auctioneer allocates l to Gj , Gj has full autonomy on deciding what subset of
its members get allocated (i.e., granted access to) item l. In this sense, a group treats an
allocated item as a public excludable good.

We will refer to the ith bidder in group j as bidder ij . Each bidder has a valuation function
for the items they receive vj

i : P([m])→ R+. We assume bidders have quasi-linear utilities
where if bidder ij is allocated a set of items Sj

i and pays pj
i then uj

i (Sj
i , pj

i ) = vj
i (Sj

i )−pj
i . Let

B denote the bidding language for bidders. B will always be expressive enough for bidders to
express their true valuation function. Each bidder acts strategically to submit a bid bj

i ∈ B
to their group seeking to maximize their utility.

We consider two main classes of valuation functions for bidders in this work:

3 In the context of DAOs, the lower-level mechanism and aggregation functions can be run programmatic-
ally on a smart contract, eliminating the need to actually appoint a trusted auctioneer.



M. Bahrani, P. Garimidi, and T. Roughgarden 21:7

Additive. Additive bidders have a value for each item and their value for a set of items is
the sum of their values for the individual items in that set. Formally, for each of the items
l ∈ [m] each bidder ij has some value vj

i (l) ∈ R+. Then bidder ij ’s value for a set S ⊆ [m] of
items is vj

i (S) =
∑

l∈S vj
i (l).

Unit-Demand. Unit-demand bidders will have a value for each item but their value for a
set of items will only be the highest value they have for any item in that set. Formally, for
each of the items l ∈ [m] each bidder ij has some value vj

i (l) ∈ R+. Then ij ’s value for a set
S ⊆ [m] of items is vj

i (S) = maxl∈S vj
i (l).

In both cases of valuation functions, the bidding language B consists of vectors bj
i ∈ Rm

+
where bj

i (l) specifies bidder ij ’s bid for item l.
We define a two-level mechanism as consisting of two parts, a lower and upper mechanism.

The upper mechanism is run by the auctioneer and takes as input bids from each of the
groups. The auctioneer then decides which items should be allocated to which groups and
how much those groups should pay. The upper mechanism falls into the typical mechanism
design framework. The lower mechanism is run by each group and dictates how the group
should aggregate bids from its members into a group bid. Then, given an allocation of items
and a payment request from the auctioneer, the lower mechanism specifies how a group
should assign items to bidders in the group and how much each bidder should pay to cover
the group’s payment to the auctioneer. In this work we will only consider deterministic
mechanisms of this form.

Formally, a lower mechanism Ml = (a, xl, c) for a group with n bidders consists of:
An aggregation rule a : Bn → B mapping a vector of member bids into a single bid for
the group.
We insist that a is the identity function when n = 1; Intuitively, if the upper mechanism
and lower mechanisms are truthful, there is no reason for the aggregation function to
distort the bid of a bidder in a group of size one.
A (lower) allocation rule xl : Bn×P([m])×R+ → Al. Each element of Al specifies which
items each bidder has access to based on which items the group is allocated and how
much the group has to pay. We will sometimes refer to a specific lower allocation by
xl = (xl

1, ..., xl
nj

) where each xl
i returns which set of items ij is allocated.

A cost-sharing rule c : Bn × P([m]) × R+ → Rn
+ that specifies how much each bidder

in the group has to pay based of which items they are given access to and how much
the overall group has to pay. cj

i will be the function that specifically denotes how much
bidder ij has to pay.

An upper mechanism Mu = (xu, p) with k distinct groups consists of:
An (upper) allocation rule xu : Bk → Au where each element of Au specifies which
items each group is allocated. We constrain the allocation rule such that the mechanism
can allocate each item to at most 1 group. We will sometimes refer to a specific upper
allocation by xu = (xu

1 , ..., xu
k) where each xu

j returns which set of items group Gj is
allocated.
A payment rule p : Bk → Rk

+ specifying how much the upper mechanism charges each
group. pj will be the function that specifically denotes how much group Gj has to pay.
We sometimes abuse notation and use pj to also refer to the specific amount group j has
to pay in a particular instance.

We can now formally define a two-level mechanism.

AFT 2023



21:8 When Bidders Are DAOs

▶ Definition 1. A two-level mechanism M = (Mu,Ml) is defined by a pair of lower and
upper mechanisms.

An allocation of items to bidders is {Sj
i }i,j . This implies an allocation of Sj = ∪nj

i=1Sj
i to

each group. We say an allocation is feasible if Sj1 ∩ Sj2 = ∅ for all j1, j2 ∈ [k] where j1 ̸= j2.
This implies that an allocation is feasible as long as no item is allocated to more than one
group.

The social welfare of an allocation is given by
∑k

j=1
∑nj

i=1 vj
i (Sj

i ). The optimal social
welfare for an instance I, OPT(I) is the maximum social welfare obtainable over feasible
allocations given the valuation functions specified by I.4 We refer to the social welfare a
mechanismM achieves in some instance I by SW (M(I)). We say that a mechanism achieves
an α approximation to optimal welfare if for every instances I, we have that α ≥ OPT(I)

SW (M(I)) .
Given this setup we seek the following properties from any two-level mechanism:

Incentive-Compatibility. A mechanism M is incentive compatible if for all instances, each
bidder has a dominant strategy to report their true valuation as their bid. More formally,
if vj

−i denote the values of all bidders apart from ij , then uj
i (vj

i , vj
−i) ≥ uj

i (ṽj
i , vj

−i) for any
ṽj

i ∈ V, vj
−i ∈ V n−1 where V is the set of possible valuations for any bidder.

Budget-Balance. A mechanismM is budget balanced if for every group, the payment by a
group’s members exactly covers the cost charged by the auctioneer,

∑nj

i=1 pj
i = pj ∀j ∈ [k].

Individual Rationality. A mechanismM is individually rational if bidders that bid truthfully
always have non-negative utility. That is, for any bidder ij that bids truthfully, ifM outputs
an allocation {Sj

i }i,j and prices {pj
i}i,j , then vj

i (Sj
i ) ≥ pj

i .

The following properties (of a two-level mechanism) will also be important for some of
our lower bound proofs:

Equal Treatment. A mechanismM satisfies equal treatment if any two bidders in the same
group ij

1, ij
2 that make the same bids also receive the same allocation and the same payment.

That is, if bj
i1

= bj
i2

, then the allocation {Sj
i }i,j and prices {pj

i}i,j output by M must satisfy
Sj

i1
= Sj

i2
and pj

i1
= pj

i2
.

Consumer Sovereignty. A mechanism M satisfies consumer sovereignty if a bidder can
force the mechanism to allocate it a specific bundle by bidding sufficiently high. Formally,
for any bidder ij , given bids by all other bidders b−i, there exists some bid bj

i such that M
outputs an allocation {Sj

i }i,j where vj
i (Sj

i ) = maxS⊆[m] vj
i (S).

Upper Semi-Continuity. A mechanism M satisfies upper semi-continuity if for any bidder
ij , given bids b−i by the outputs an allocation where vj

i (Sj
i ) = maxS⊆[m] vj

i (S) other bidders,
if ij is allocated Sj

i for all bids b̃j
i ̸= bj

i with b̃j
i ≥ bj

i (component-wise over items), then i is
allocated Sj

i by bidding bj
i as well.

4 In any optimal allocation, every group might as well give all of its allocated items to all of its members.



M. Bahrani, P. Garimidi, and T. Roughgarden 21:9

3 Single-Item Mechanisms

We begin our investigation of two-level mechanisms in the canonical setting of single-item
auctions. The item can be allocated to one group and that group can grant access to the
item to any subset of its members. Even in this simple setting, we prove that no incentive-
compatible mechanism can achieve a constant-factor approximation of the optimal social
welfare. Instead, we provide a mechanism that achieves a Hn ≈ ln n approximation and show
that this is the best any truthful mechanism can do.

Denote the single item by g. Then every bidder ij has a value vj
i ∈ R+ if they are

allocated the item and value 0 otherwise. The bidding language is B = R+.

3.1 Truthful Mechanism
We propose a two-level mechanism that is truthful, budget-balanced, individually rational,
and satisfies equal treatment while obtaining a Hℓ-approximation of the optimal social welfare
(where ℓ denotes the largest number of members of any group and Hℓ =

∑ℓ
i=1 1/i the ℓth

Harmonic number).
Since bj

i ∈ R+, assume without loss of generality that for each group Gj , bj
1 ≥ bj

2 ≥ . . . ≥
bj

nj
. The upper allocation is represented by a vector xu ∈ {0, 1}k where xu

j = 1 if group Gj is
allocated the item by Mu and xu

j = 0 otherwise. Similarly, the lower allocation for group Gj

is a vector xl ∈ {0, 1}nj where xl
i = 1 if bidder ij is allocated the item and xl

i = 0 otherwise.
The lower mechanism aggregates bids by calculating each group’s willingness to pay. We

define a group Gj ’s willingness to pay WTPj = WTP(bj
1, . . . , bj

nj
) as the maximum amount

the group can pay assuming that everyone who gets the item will pay the same amount (and
no bidder pays more than its bid).5 That is, the aggregation rule is given by

a(bj
1, . . . , bj

nj
) = WTP(bj

1, . . . , bj
nj

) = max
i=1,...,nj

{ibj
i}.

Let tj(p) = maxi=1,...,nj{i | ibj
i ≥ p}. In words, tj(p) is the largest number of bidders

in group j that could be allocated the item and pay equally for it (without any bidder
paying larger than its bid) assuming the group is charged p by the auctioneer. Note that,
if p ≤ WTPj , then tj(p) is well defined. If group j is allocated the item by the upper
mechanism and charged pj by the auctioneer, we define the lower allocation and cost sharing
rules as follows for all i = 1, . . . , nj :

xl
i(b

j
1, . . . , bj

nj
, Sj , pj) =

{
1 if i ≤ tj(pj)
0 else

ci(bj
1, . . . , bj

nj
, Sj , pj) =

{
pj

tj(pj) if i ≤ tj(pj)
0 else

Otherwise, if group j is not allocated the item, we simply have xl
i = 0 and ci = 0 for all

i ∈ [nj ].
The upper mechanism is a Vickrey auction. It takes all the group bids and allocates

the item to the group with the highest bid and charges them the second highest group’s

5 We will see in Lemma 6 that this equal payment condition is necessary for incentive-compatibility
(modulo some degenerate cases).

AFT 2023



21:10 When Bidders Are DAOs

bid. Formalizing this, given group bids b1, . . . , bk and letting j∗ denote the index of the
highest-bidding group:

xu
j (b1, . . . , bk) =

{
1 if j = j∗

0 else
pj(b1, . . . , bk) =

{
maxj ̸=j∗{bj} if j = j∗

0 else

with ties broken arbitrarily.
Informally our mechanism works by having each group calculate their willingness to pay

and bid that amount. Then the upper mechanism runs a standard second price auction.
The winning group then splits the cost it is charged equally amongst the largest subset of
its agents that it is able to. This subset of agents that are able to equally split the cost
are exactly the agents the group gives access of the item to. Formally, the lower and upper
mechanisms can be implemented together as follows. For the ease of exposition, any bidders
whose allocations/payments aren’t explicitly listed are implied to not be allocated any items
and to have zero payment.

Algorithm 1 Single-Item Two-level Mechanism.

Input : Bids bj = (bj
1, . . . , bj

nj
) with bj

i ≥ bj
i+1 for j ∈ [k], i ∈ [nj − 1]

1 for j=1,. . . ,k do
2 WTPj ← maxi∈[nj ]{ibj

i}
3 j∗ ← argmaxj∈[k]{WTPj}
4 pj∗ ← maxj ̸=j∗{WTPj}
5 i∗ ← maxi∈[nj∗ ]{i|ibj∗

i ≥ pj∗}
6 for i = 1, . . . , i∗ do
7 xj∗

i ← 1
8 pj∗

i ←
pj∗

i∗

9 return Allocation x, payments p

▶ Theorem 2. Mechanism 1 is truthful, budget-balanced, and individually rational.

Proof. We first show that the mechanism is truthful. Since this is a single parameter setting,
it suffices to show that the allocation rule is monotone and that each winning bidder pays
their critical bid.

We first show that the allocation rule is monotone. Assume bidder ij∗ is allocated the
item by bidding bj∗

i . Then if they increase their bid to b̃j∗

i ≥ bj∗

i , we have that WTPj∗

weakly increases (that is, willingness-to-pay is weakly monotone in any coordinate). Thus, if
group Gj∗ wins when bidder ij∗ bids bj∗

i , then group Gj∗ will still win when bidder ij∗ bids
b̃j∗

i with all other bidders’ bids kept fixed. Furthermore, pj∗ would stay constant since the
other bidders’ bids stayed constant, and thus bj∗

i ≥
pj∗

i∗ would imply b̃j∗

i ≥
pj∗

i∗ . Therefore,
bidder ij∗ would still be allocated the item after increasing their bid, showing the allocation
rule is monotone.

We now show that each winning bidder pays their critical bid, by showing that pj∗

i∗ is
the lowest that bidder ij∗ could drop their bid to while still winning (that is, bidder ij∗ ’s
payment is equal to its critical bid). Assume that bidder ij∗ drops their bid from bj∗

i to
b̃j∗

i = pj∗

i∗ . By the definition of i∗ there are still at least i∗ − 1 other bidders in Gj∗ with bids
at least pj∗

i∗ . Thus Gj∗ ’s WTP remains at least pj∗ implying that Gj∗ still wins the upper
auction. Furthermore, bidder ij∗ would still have at least the i∗th highest bid in Gj∗ . Thus
we would still have i∗b̃j∗

i ≥ pj∗ implying that bidder ij∗ would remain part of the winning
subset of Gj∗ .



M. Bahrani, P. Garimidi, and T. Roughgarden 21:11

If bidder ij∗ drops their bid to bj∗

i below pj∗

i∗ then bidder ij∗ becomes at best the i∗th
highest bidder in Gj∗ . Even if Gj∗ is still the winning group, Gj∗ still has to pay the same
payment pj∗ . This implies that maxi=1,...,nj∗ {i|ibj∗

i ≥ pj∗} weakly decreases by bidder ij∗

decreasing their bid. Thus if bidder ij∗ falls below the i∗th bid in Gj then they will no longer
be part of the winning set. And, even if bidder ij∗ does become the i∗th highest bidder in
Gj , then we would have i∗b̃j∗

i < i∗ pj∗

i∗ = pj∗ implying that bidder ij∗ would no longer be
part of the winning set. Thus bidder ij∗ would never be part of the winning set by dropping
their bid below pj∗

i∗ . This shows that pj∗

i = pj∗

i∗ is bidder ij∗ ’s critical bid for all winning
bidders ij∗ .

Budget-balance is trivial for every losing group since every losing group is charged 0 by
the auctioneer and doesn’t have any of its members make payments. When the winning
group is charged pj , it chooses i∗ bidders to pay pj

i∗ , showing that budget-balance holds there
as well. Individual rationality follows since the only bidders that make payments are chosen
such that (assuming truthful bids) vj

i ≥
pj

i∗ and so uj
i = vj

i −
pj

i∗ ≥ 0. ◀

▶ Theorem 3. Assuming truthful bidding, Mechanism 1 achieves an Hℓ-approximation to
the optimal social welfare, where ℓ is the maximum size of a group.

Proof. We start with the following lemma giving a lower bound for the WTP of a group
compared to the total value that group would get if every member was allocated the item.

▶ Lemma 4. WTPj ≥ W j

Hnj
where W j =

∑nj

i=1 vj
i and Hi is the ith harmonic number.

Proof. Note that WTPj = maxi=1,...,nj{iv
j
i }. Thus we have,

WTPj ·Hnj
= max

i=1,...,nj

{ivj
i }

nj∑
i=1

1
i
≥

nj∑
i=1

1
i
ivj

i = W j . ◀

Returning to the proof of Theorem 3. Note that if Gj is the group that wins the
upper mechanism, then they obtain value at least WTPj amongst their group members by
allocating the item within their group. This is because if Gj wins, we have WTPj ≥ pj and
so i∗ = max{i|ivj

i ≥ pj} ≥ argmaxi=1,...,nj
{ivj

i }. Thus, WTPj is a lower bound of the value
of the i∗ bidders with the highest values in Gj being allocated the item.

Note that the optimal social welfare is achieved by the the group with the highest W j

to receive the item and for every member of that group to be allocated that item. Assume
WLOG that this is G1 and some group Gj wins the upper auction. Then we have that the
mechanism achieves welfare at least WTPj . If Gj = G1 then we are done by Lemma 4;
otherwise the fact that Gj won over G1 in the upper auction implies WTPj ≥WTP1 ≥ W 1

Hn1
.

Since Hnj
≤ Hℓ, we have that the mechanism always achieves a Hℓ fraction of the optimal

social welfare. ◀

In general, the approximation factor achieved by Mechanism 1 is governed by the ratio of
W j and WTPj . If this ratio is known to be smaller than Hℓ – for example, because members
of a common group tend to have similar valuations – then the guarantee of Theorem 3
improves accordingly.

3.2 Lower Bounds
We now show that the Hℓ-approximation to welfare achieved by Mechanism 1 is in fact
the best we can hope for from any truthful, budget-balanced mechanism satisfying equal
treatment. We begin by bounding the maximum amount a group can be induced to pay

AFT 2023



21:12 When Bidders Are DAOs

compared to their true value for an item while maintaining incentive compatibility. Then
we give a specific instance in which this occurs and show that any truthful budget balanced
mechanism necessarily has to sometimes allocate items to lower-valued groups.

▶ Theorem 5. There is no truthful, budget-balanced, individually rational two-level mechanism
that satisfies equal treatment and guarantees more than an Hℓ fraction of the optimal social
welfare (where ℓ is the maximum group size).

Proof. First, we can restrict attention to mechanisms that satisfy consumer sovereignty. If a
mechanism doesn’t satisfy consumer sovereignty, there exists an instance in which there is a
bidder in some group that will never be allocated the item regardless of what they bid. Since
the threshold price that a bidder needs to pay to be allocated the item is not a function of
their bid for truthful mechanisms, this must hold regardless of the bidder’s valuation. Letting
that bidder’s valuation tend to infinity then shows that worst-case welfare approximation of
the mechanism is arbitrarily bad.

Next, note that because of the restriction that the aggregation function must be the
identity function in the case in which a group only has 1 bidder (see Section 2), for the
mechanism to be truthful, we must have that the upper mechanism is truthful with respect
to group bids to be truthful with respect to individual bidders. Given this, we show the
following result constraining the cost-sharing rule within the winning group.

▶ Lemma 6. In single-item settings, except possibly on a set of valuation profiles with Lebesgue
measure zero, a truthful and budget-balanced mechanism that satisfies equal treatment and
consumer sovereignty must always charge all winning bidders the same payment.

Proof. Note that winning bidders must all come from the same group. Then, because the
upper mechanism is a truthful single-item auction, conditioned on Gj winning the item,
the payment pj that Gj has to make is independent of their bid bj and hence (bj

1, . . . , bj
nj

).
Thus in a truthful, budget-balanced mechanism, Gj wins if and only if Ml is such that the
payments its cost-sharing rule charges to winning bidders can cover the group’s threshold
payment tj(b−j). This makes Ml a truthful, budget-balanced cost sharing mechanism where
M being truthful and budget-balanced implies that Ml will always be able to cover the cost
it is asked to.

Next, we invoke a characterization result from [3, Theorem 3.4] that implies that, except
possibly on a set of valuation profiles with Lebesgue measure zero, Ml must be the same
lower mechanism as in Mechanism 1, meaning that it identifies the maximal subset of bidders
S ⊂ Gj such that each bidder ij ∈ S has bj

i ≥
pj

|S| and charges them all pj

|S| . (Note that S is
uniquely defined, as the union of two sets satisfying this property also satisfies that property.)
In particular, every winning bidder makes the same payment. ◀

Returning to the proof of Theorem 5. Consider now an incentive-compatible two-level
mechanism in which the lower mechanisms satisfy equal treatment. Recall that WTPj as the
largest amount that Gj can pay assuming all the winning bidders pay the same amount. By
Lemma 6, the lower mechanisms must charge winning bidders a common amount (subject to
individual rationality), so WTPj is the maximum payment that could possibly be made by
group Gj (except possibly on a measure-zero set of valuation profiles).

With this fact in hand, we consider two different instances, both with two groups. We
assume that these instances do not fall into the measure-zero set of valuation profiles mentioned
above; this assumption can always be enforced through arbitrarily small perturbations to
the valuations, if needed.



M. Bahrani, P. Garimidi, and T. Roughgarden 21:13

Instance 1. G1 has n − 1 bidders with v1
i = 1

i − δ for some δ > 0 and G2 has one bidder
with v2

1 = 1.

Instance 2. G1 has one bidder with v1
1 = 1 and G2 has n− 1 bidders with v2

i = 1
i − δ for

some δ > 0.

We refer to Instance 1 by I1 and Instance 2 by I2. Note that the optimal welfare in both
instances is Hn−1 where all the bidders in G1 win in I1 and all the bidders in G2 win in I2. If
G2 wins in I1 or G1 wins in I2 then the mechanism will only achieve a welfare of 1. Assume
there is a truthful, budget-balanced two-level mechanism M that achieves an approximation
factor better than Hn−1. Then, assuming that δ is sufficiently close to 0, M must have Mu

choose G1 in I1 and G2 in I2.
SinceMu must be truthful with respect to group bids, it can be characterized by threshold

payments t1(b2) and t2(b1) where G1 winning implies b1 ≥ t1(b2) and b2 ≤ t2(b1) and G2

winning implies the opposite. Since a is the identity function for groups with a single member,
we have in I1 that b2 = 1 and in I2 that b1 = 1. We claim that G1 winning in I1 and G2
winning in I2 imply max{t1(1), t2(1)} ≥ 1.

Assume otherwise, and let max{t1(1), t2(1)} = y with y < 1. Then letting ϵ > 0 such
that y + ϵ < 1, it follows that if b1 = y + ϵ in I1 and b2 = y + ϵ in I2 then we would still have
G1 win in I1 and G2 win in I2. However this would imply t1(y + ϵ) ≥ 1 =⇒ t1(1) < t1(y + ϵ)
contradicting the monotonicity and hence truthfulness of Mu.

Hence max{t1(1), t2(1)} ≥ 1 implies that either G1 pays at least 1 in I1 or G2 pays at
least 1 in I2. However in I1, we have WTP(G1) = 1− δ and in I2, we have WTP(G2) = 1− δ.
Thus by the above lemma, there is no truthful budget-balanced mechanism satisfying equal
treatment that will choose both G1 to win in I1 and G2 to win in I2 implying that no
truthful, budget-balanced mechanism satisfying equal treatment can do better than a Hn−1
approximation factor. ◀

This lower bound shows that the Hℓ-approximation of Mechanism 1 is in fact tight and
the best any incentive-compatible two-level mechanism could hope to do in this setting.

4 Multi-Unit Mechanisms

In this section, we move beyond the single-item setting and consider the case where the
auctioneer is selling multiple items. Bidders can now have combinatorial valuations over the
different items. In the case where bidders have additive valuations across the different items
we show that our positive result for the single-item settings (Theorem 3) extends naturally.

The main result of this section shows that in general – and even with unit-demand
valuations – we can’t hope for any non-trivial approximation to optimal social welfare.
In particular, we show that no truthful budget-balanced mechanism can do better than
an n-approximation to social welfare in this setting, under very weak assumptions on the
aggregation function.

4.1 Additive Valuations
For each of the items l ∈ [m], each bidder ij has some value vj

i (l) ∈ R+. Then ij ’s value for
a set S ⊂ [m] of items is vj

i (S) =
∑

l∈S vj
i (l). The bidding language B consists of vectors

bj
i ∈ Rm

+ where bj
i (l) specifies bidder ij ’s value for item l. We will use bj(l) to refer to the

vector of values all the bidders in Gj have for item l.

AFT 2023



21:14 When Bidders Are DAOs

To extend our upper bound for single-item settings (Theorem 5) to the setting of additive
valuations, it is sufficient to run an independent copy of Mechanism 1 for each of the items:

Algorithm 2 Additive Item Two-level Mechanism.

Input : Bids bj = (bj
1, ..., bj

nj
) for j = 1, ..., k;

Single-Item Mechanism M (Mechanism 1)
1 for l=1,...,m do
2 (x̃, p̃)←M(b1(l), ..., bk(l))
3 for j = 1, ..., k do
4 for i = 1, ..., nj do
5 pj

i ← pj
i + p̃j

i

6 xj
i (l)← x̃j

i

7 return Allocation x, payments p

▶ Theorem 7. Mechanism 2 is truthful, budget-balanced, individually rational and achieves
a Hℓ approximation to the optimal social welfare for bidders with additive valuations.

Proof. Because a bidder’s bid on one item has no affect on the allocation of or payments for
any other item, truthfulness of Mechanism 2 follows straightforwardly from the truthfulness
of Mechanism 1. Similarly, the budget-balance and individual rationality properties of
Mechanism 2 follow easily from those of Mechanism 1 (and, in fact, hold on an item-by-item
basis).

In the welfare-maximizing allocation, each item goes to the group that has the highest
total value for that item and has all of its members allocated that item. From the analysis
of Mechanism 1, we have that it allocates a given item to a set of bidders that have total
value at least a 1/Hℓ fraction of the value any group has for that item. Because bidders
have valuations that are additive across items, this implies that the welfare achieved by
Mechanism 2 is within an Hℓ factor of the optimal welfare. ◀

4.2 Unit-demand Valuations
We now consider bidders with unit-demand valuations. For each of the items l ∈ [m],
each bidder ij has some value vj

i (l) ∈ R+. Then ij ’s value for a set S ⊂ [m] of items
is vj

i (S) = maxl∈S vj
i (l). The bidding language B consists of vectors bj

i ∈ Rm
+ where ij

specifies their bid for each item. In line with the auctioneer (of the upper mechanism)
choosing a mechanism that is agnostic to group-specific idiosyncrasies, we require some kind
of assumption that precludes a group from using its bid to signal information about its inner
structure as opposed to a reasonable aggregation of its members’ preferences. Many different
such assumptions would be sufficient for our purposes; for concreteness, assume from now
that the output of an aggregation function on a specific item must be bounded by a fixed but
arbitrary function of the its inputs for that item. That is, there must exist some function
f : Rn

+ → R+ such that for any item l and group Gj , a(bj
1, ..., bj

nj
)(l) ≤ f(bj

1(l), ..., bj
nj

(l)).
Within this setting we show that no truthful two-level mechanism can do better than a n

approximation to the optimal welfare. The issue mechanisms in this setting face is not being
able to distinguish whether a group bid representing a high value for many different items
comes from that group having many bidders with disparate preferences or from a single unit
demand bidder who is agnostic to which item they receive. In the interest of maintaining
truthfulness, the mechanism is often forced to assume the group is composed of multiple
disparate members and allocate to that group all the items they have high value for. However



M. Bahrani, P. Garimidi, and T. Roughgarden 21:15

to remain truthful in the case where this valuation actually came from a single bidder with
high value, the auctioneer can’t charge more for a large bundle than it would charge for its
individual components. In cases where different groups have similar preferences over the
same items, this can cause only one of the groups being allocated the entire set of items
hence harming the welfare in the case where these actually were just individual unit-demand
bidders. We now proceed to making these ideas precise.

▶ Theorem 8. No truthful two-level mechanism can achieve better than a n fraction of the
optimal welfare.

Proof. We can assume any mechanism that achieves at least a n-approximation to the optimal
welfare satisfies consumer sovereignty. Since, if M does not satisfy consumer sovereignty,
there must exist an instance where there is some item l that bidder ij can’t receive regardless
of how high they bid. In this case let vj

i (l) → ∞. Then M will have an arbitrarily bad
approximation factor to optimal welfare.

Throughout this proof we will use Aj
u to refer to the set of possible sets of items the

upper mechanism can allocate to Gj . We start by showing that any truthful mechanism
satisfying consumer sovereignty must have an upper mechanism that is able to allocate the
set of all items to any group.

▶ Lemma 9. Any truthful two-level mechanism that satisfies consumer sovereignty must
satisfy [m] ∈ Aj

u for all j.

Proof. Let Gj have m unit-demand bidders, with bidder ij ’s valuation function vj
i (l) = x

if i = l and otherwise vj
i (l) = 0 where x is an arbitrary constant. Now fix the bids by the

other groups. Since Mu must be truthful with respect to group bids, conditioned on Mu

allocating a set S ∈ Aj
u of items to Gj , Gj pays the same amount pj(S) regardless of its bid

bj . Using this along with consumer sovereignty, we claim there exists a value of x such that
Mu must allocate [m] to Gj to be truthful.

Assume that Mu does not allocate [m] to Gj . It follows that there is some item l not
allocated to Gj which further implies that lj will have 0 utility in this allocation. However
by consumer sovereignty, there exists a bid bj

l that bidder lj can make such that Mu will
allocate some set S to Gj where l ∈ S and furthermore lj will be allocated l by Gj in Ml.
As we noted before the price Mu can charge to Gj for S is some fixed price pj(S), not a
function of bj . Thus consider the case where x = maxS∈Aj

u
{pj(S)}+ 1. By budget-balance,

Ml can charge bidder lj at most pj(S) given that Gj is charged pj(S) by Mu. Thus bidder
lj can misreport their bid to be allocated l by Ml, and as a result get a utility at least
maxS∈Aj

u
{pj(S)}+ 1− pj(S) > 0. This shows a profitable non-truthful deviation for bidder

lj . This implies that when x = maxS∈Aj
u
{pj(S)}+ 1, Gj must be allocated [m]. Since we

arbitrarily fixed the bids by the other groups, it follows that we must always have [m] ∈ Aj
u

for all j when M is truthful and satisfies consumer sovereignty. ◀

Lemma 9 shows that for a truthful mechanism M there must always be some bid bj that
Gj can make to be allocated all of [m]. We build upon this to show that in fact, for M to
be truthful, for any arbitrary choice of bids b−j , for every item l there exists some bid bj

where l is the highest value item in bj and Gj is still allocated all of [m]. This shows that in
such an instance, if Gj is actually comprised of a single bidder with valuation function bj ,
they will still be allocated all of [m] even though they are perfectly happy just receiving l.
This will be used to cap the amount the mechanism can charge a group for the entirety of
[m] compared to any single item to remain truthful.

AFT 2023



21:16 When Bidders Are DAOs

▶ Lemma 10. For any truthful two-level mechanism M that achieves at least a n-
approximation to welfare, for all items l = 1, ..., m, there always exists a bj such that
xu

j (b1, ..., bk) = [m] and l = argmaxl∈[m] bj(l).

Proof. Following closely to the previous lemma, consider the following class of groups,
parameterized by j. Let group G̃j be defined by having m bidders where each bidder prefers
distinct items but the jth bidder in G̃j has a much larger value for their item compared
to the other bidders in the group. Formally, for j = 1, ..., m let group G̃j have m bidders
where the unit demand valuation of bidder ij is vj

i (l) = y if i = j = l, vj
i (l) = x if i ≠ j and

i = l, and otherwise vj
i (l) = 0 with y to later be defined as a function of x. Then fix the bids

by other groups and let x = maxS∈Aj
u
{pj(S)}+ 1. Let the group bid for G̃j be b̃j and let

zi ∈ Rm
+ be vectors parameterized by i = 1, ..., m where zi(l) = x for l = i and otherwise

zi(l) = 0. By our assumption that the group bid for an item is bounded by some function of
the individual bidders bids for an item, we have that there exists some function f such that
b̃j(l) ≤ f(zl) for l ≠ j. Now let g(x) = maxl ̸=j{f(zl)} and set y = n2(g(x) + x). Notably
this means that the jth bidder in G̃j has much higher value for their item than the other
bidders. We claim this implies that b̃j(j) ≥ g(x).

Assume otherwise that b̃j(j) < g(x). Then define G′ to be a group consisting of a single
unit demand bidder. Let this bidder have a valuation of v′(l) = ng(x) if l = j and otherwise
v′(l) = 0.

Now consider two instances both with two groups and m items.

Instance 1. G1 is defined as G̃j above, and G2 is defined as G′

Instance 2. G1 is a single unit demand bidder with valuation b̃j , and G2 is defined as G′

We will refer to Instance 1 as I1 and Instance 2 as I2. In I1 the optimal allocation is
to give all the items to G1 for a welfare of n2(g(x) + x) + (m− 1)x, and in I2 the optimal
allocation is to give item j to G2 and everything else to G1 for a welfare of at least ng(x).

Thus, if Mu allocates item j to G1 then in I2 the welfare is less than g(x) implying
an approximation factor strictly greater than ng(x)

g(x) = n. If Mu allocates item j to G2
then in I1 the welfare is at most ng(x) + (m − 1)x giving an approximation factor of
n2(g(x)+x)+(m−1)x

ng(x)+(m−1)x > n, since here n > m. However, because the aggregation function is
the identity for single bidder groups, I1 and I2 are indistinguishable to Mu and Mu being
deterministic implies it must allocate item j to the same group in both instances. Thus if
b̃j(j) < g(x) then M must have a worst case approximation factor worse than n.

Note that b̃j(j) ≥ g(x) implies that j ∈ argmaxl∈[m](bj(l)). Furthermore from how we
defined x and y, we must have that Mu allocates all of [m] to G̃j following the proof from
the previous lemma. Thus taking any fixed group bids b−j . We can chose Gj to be defined
as any of G̃i for i = 1, .., m such that for all items l = 1, .., m there exists a group bid bj

causing Gj to be allocated all of [m] while having l = argmaxl′∈[m]{bj(l)}. ◀

Note thatMu can’t distinguish between the case when Gj consists of a single unit demand
bidder and when Gj consists of multiple unit demand bidders. We show that this restrains
the payments Mu can charge for allocating sets of items to groups by considering the case
where every group is a single unit demand bidder. In characterizing the amount Mu can
charge Gj for allocating Gj a set S of items, let the bids by all other groups be fixed. Then
as before we denote the amount Mu charges Gj for S as pj(S). We start by showing that
any truthful Mu can’t charge less for a superset of another set of items. In the following
lemmas we will refer to the unit demand valuations of the single bidder in Gj by vj .



M. Bahrani, P. Garimidi, and T. Roughgarden 21:17

▶ Lemma 11. For any truthful, two-level mechanism M, let S, T ∈ Aj
u. Then S ⊂ T implies

that pj(S) ≤ pj(T ).

Proof. pj(S) and pj(T ) must remain constant regardless of the inner structure of Gj , thus
without loss of generality assume Gj consists of one bidder. Then for the sake of contradiction,
assume that pj(S) > pj(T ). S ∈ Aj

u implies that there exists some valuation vj such that
Gj is allocated S and charged pj(S). However T ∈ Aj

u implies there is also an alternative
bid vj′ that Gj could make to be allocated T instead. Since vj is a unit demand valuation,
we have that vj(T ) ≥ vj(S). Thus pj(S) > pj(T ) would imply that Gj profits by reporting
vj′ over vj making M not truthful. ◀

We now show the more surprising statement that any truthful Mu can’t charge more for
[m] than it would charge for any set S of items. This result stems from the fact that at times
Mu has to allocate multiple items to a group that could be a unit demand bidder. Thus to
maintain truthfulness, if Gj ’s favorite item is in S then Gj can’t be charged more for [m]
than it would have been for S since it has the same value for both sets.

▶ Lemma 12. For any truthful two-level mechanism M and set S ∈ Aj
u where S ̸= ∅, we

have pj(S) ≥ pj([m])

Proof. As in the previous lemma, we can assume without loss of generality that Gj consists
of 1 bidder. We have shown that [m] ∈ Aj

u for any truthful mechanism. Thus there exists
some valuation vj such thatMu allocates [m] to Gj . Let l∗ = argmaxl∈[m]{vj(l)}. It follows
that for any set S ∈ Aj

u such that l∗ ∈ S that vj(S) = vj([m]). S ∈ Aj
u also implies there

exists some bid vj′
Gj could make to be allocated S. Thus if pj(S) < pj([m]) we would have

that when Gj ’s value is vj , Gj has a profitable deviation by bidding vj′ instead making M
not truthful. By lemma 10 we have that there exist valuations vj such thatMu allocates [m]
to Gj where l∗ = l for any l ∈ [m]. Thus as long as S ̸= ∅, we have that pj(S) ≥ pj([m]). ◀

▶ Corollary 13. In any truthful mechanism M, for any 2 sets S, T ∈ Aj
u we have pj(S) =

pj(T ) ∀j = 1, ..., k.

This follows from the fact that for any set S ∈ Aj
u, pj(S) ≤ pj([m]), pj(S) ≥ pj([m]) =⇒

pj(S) = pj([m]). Finally we provide an instance that shows that no Mu that charges the
same amount for all sets can do better than a n approximation of the optimal welfare.

▶ Lemma 14. If M is truthful and Mu has pj(S) = pj(T ) ∀S, T ∈ Aj
u, j = 1, ..., k then M

can not achieve a welfare approximation better than n.

Proof. Mu being truthful with respect to group bids implies that the allocation Aj it gives to
group Gj must satisfy Aj = argmaxA∈Aj

u
{vj(A)− pj(A)}. We have that pj(A) is a constant

for all A ∈ Aj
u, unless A = ∅ where pj(A) = 0 by individual rationality, so let pj(A) = pj .

However this implies that if vj(A) > pj for any set A then Aj = argmaxA∈Aj
u
{vj(A)}. Let

A∗j ∈ argmaxA∈Aj
u
{vj(A)}. Then if Gj is not allocated a set S where vj(S) = vj(A∗j), we

have that vj(A∗j) ≤ pj . This implies if v(A) < v(A∗j) then v(A) < pj . Thus if Mu does not
give Gj a set S where vj(S) = vj(A∗j), Mu must give Gj no items at all.

Given this consider the following instance with n identical groups where every group
consists of a single unit demand bidder. There are n total items with each bidder in each
group having an identical valuation vector of vj

1 = (1 + ϵ, 1, ..., 1, 1). Call the first item that
every bidder has value 1 + ϵ for l1. Here we have that v(S) = v(A∗j) if and only if l1 ∈ S.
However note thatMu can only allocate l1 to one of the groups. Let this group be Gj′ . Then
by the observation above we have that any groups Gj where j ̸= j′ must not be allocated

AFT 2023



21:18 When Bidders Are DAOs

any items at all. Thus the maximum welfare any truthful Mu can achieve in this scenario is
to allocate every item to Gj′ for a welfare of 1 + ϵ. However, since every group is a single
unit demand bidder, the optimal allocation is to give every group a unique item for a welfare
of n + ϵ. Thus as ϵ→ 0 we get that no M where Mu charges equal prices for every set of
goods can achieve better than a n approximation of the optimal welfare. ◀

Thus since every truthful upper mechanism must charge the same prices for every subset of
items in its range, we have that no truthful mechanism can achieve an approximation factor
better than n. ◀

5 Conclusion

Our work can be extended in a number of ways; we list some of these below. Some of these
directions strive to capture additional practical scenarios; others aim to enrich the model in
hopes of bypassing the lower bounds proved in this paper.

Fractional allocations

In the present work, bidders either have full or no access to an item. An alternative model
would allow bidders to be allocated a fraction of an item. One way to do this is to depart
from the public excludable goods setting and to instead split an item fractionally among the
bidders in the winning group (like time-sharing a performance venue). One practical example
of this in the context of DAOs is distributing voting rights: once a DAO wins an item in
an auction it can then allocate more voting power over how the item is used to bidders
who bid higher and correspondingly charge them more as well. It would be interesting to
obtain positive results in this model, possibly under relaxed notions of budget-balance or
incentive-compatibility.

An alternative way to introduce fractional allocations is to remain in the public excludable
goods framework of allowing the lower mechanism to choose any allocation it likes amongst its
members, but giving it the additional power of allocating fractional items (i.e., “partial access”
to the item) to players at a lower cost . It is an open question whether, in the single-item
setting, this extra power can be used to design a two-level mechanism that is truthful,
budget-balanced, individually rational, and achieves a better-than-Hℓ-approximation of the
optimal social welfare.

Randomized mechanisms

One natural extension of this work is to consider randomized mechanisms. We note that the
lower bounds for truthful budget-balanced cost-sharing mechanisms in [3] (for the social cost
minimization objective) do not immediately carry over to our model (and the social welfare
maximization objective). For example, a randomized mechanism that outputs an optimal
solution (with high social welfare and social cost near 0) with 50% probability and a terrible
solution (with zero social welfare and high social cost) with 50% probability would achieve a
good approximation of the social welfare objective but not the social cost objective. It is an
open question whether, in the single-item setting, there is a randomized two-level mechanism
that is truthful, budget-balanced, individually rational, and achieves an o(Hℓ)-approximation
of the optimal social welfare.



M. Bahrani, P. Garimidi, and T. Roughgarden 21:19

Bayes-Nash equilibria

If the compromises required by truthfulness are too much to bear, non-truthful mechanisms
can be considered instead. Could there be a simple two-level mechanism such that, under
suitable assumptions about the distribution over bidders’ valuations, guarnatees near-optimal
social welfare at Bayes-Nash equilibrium?

Communication vs. welfare tradeoffs

The lower bounds in this paper show that the compression required from aggregation functions
(from a set of member valuations to a summary group valuation) leads to groups incompletely
representing the preferences of their members, which in turn results in a loss of social welfare.
At the other extreme, if groups can simply pass on the collection of their members’ valuations
to the top-level mechanism (with no aggregation), optimal social welfare can be achieved by
a truthful two-level mechanism that essentially implements the VCG mechanism. It would
be interesting to explore the seemingly inherent tradeoff between the bound on the output
complexity of an aggregation functions and the best-possible social welfare approximation
achievable by a truthful two-level mechanism.

Disclosures

The authors are researchers at a16z Crypto, a venture capital firm with investments in
a broad range of web3 projects (for general a16z disclosures, see https://www.a16z.com/
disclosures/).

A Truthful Mechanisms Don’t Compose

We give here an explicit example showing that a two-level mechanism M in which Mu

implements a truthful auction mechanism and Ml implements a truthful cost sharing
mechanism doesn’t necessarily imply that M itself is truthful two-level mechanism. To see
this, we will consider a simple instance with unit-demand bidders and consider the two-level
mechanism M where Mu implements VCG and Ml implements the “maximum equal-split”
cost shares used in Mechanism 1 (see Section 3), which are arguably the most canonical
choices for the upper and lower mechanisms. We show that, no matter what aggregation
function is used, this two-level mechanism cannot be truthful.

Consider the following instance with 2 groups G1 and G2 competing for 2 items r and s

where G1 has 2 agents and G2 has 1 agent. Let the agents’ valuations be v1
1 = (10+2ϵ, 0), v1

2 =
(5− ϵ, ϵ), v2

1 = (10, ϵ) with the first indices and second indices referring to agents’ values for r

and s respectively. Then let M be a two-level mechanism where Mu implements VCG and
Ml implements maximum equal-split cost shares. Then since we would have b2 = (10, ϵ),
regardless of the aggregation function used to create b1, Mu will always give at least one of
the items to G2 as the welfare maximizing outcome according to group bids. Then by the
VCG payment rule, in the case that G1 wins r p1 = 10− ϵ, and in the case that G2 wins s,
p1 = 0.

With our choice of cost-sharing, all winning agents in a group pay the same amount. Thus,
since agent 21’s value for r is only 5− ϵ, Ml will only allocate r to agent 21 if p1 ≤ 10− 2ϵ.
Thus p1 > 10 − 2ϵ implies that agent 21 is not allocated r and has 0 utility in this case.
However, by consumer sovereignty, there exists some bid agent 21 can make that causes G1

to be allocated item s instead. Then p1 = 0 so both agents in G1 will be allocated s making

AFT 2023

https://www.a16z.com/disclosures/
https://www.a16z.com/disclosures/


21:20 When Bidders Are DAOs

u1
2 = ϵ > 0. Thus no truthful mechanism can give G1 only item r. However, ifMu only gives

G1 item s, then agent 11 is guaranteed to have 0 utility. Thus again by consumer sovereignty,
there exists some bid b1

1 agent 11 can make such that G1 is allocated r instead. In this case
agent 11 has to pay at most 10− ϵ by budget balance making u1

1 ≥ 10 + 2ϵ− 10 + ϵ = 3ϵ > 0.
Thus regardless of whether the aggregation function causes Mu running VCG to give G1

either r or s, there always exists a profitable non-truthful deviation by either agent 11 or
agent 21 showing that M is never truthful in this setting.

References
1 Gagan Aggarwal, Kshipra Bhawalkar, Guru Guruganesh, and Andrés Perlroth. Maximizing

revenue in the presence of intermediaries. In Mark Braverman, editor, 13th Innovations
in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022,
Berkeley, CA, USA, volume 215 of LIPIcs, pages 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

2 Moshe Babaioff, Moran Feldman, and Moshe Tennenholtz. Mechanism design with strategic
mediators. ACM Transactions on Economics and Computation (TEAC), 4(2):1–48, 2016.

3 Shahar Dobzinski, Aranyak Mehta, Tim Roughgarden, and Mukund Sundararajan. Is shapley
cost sharing optimal? Games Econ. Behav., 108:130–138, 2018.

4 Shahar Dobzinski and Jan Vondrák. The computational complexity of truthfulness in combin-
atorial auctions. In Proceedings of the 13th ACM Conference on Electronic Commerce, pages
405–422, 2012.

5 Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the cost of muliticast
transmissions (preliminary version). In Proceedings of the thirty-second annual ACM symposium
on Theory of computing, pages 218–227, 2000.

6 Jon Feldman, Vahab Mirrokni, S. Muthukrishnan, and Mallesh M. Pai. Auctions with
intermediaries: Extended abstract. In Proceedings of the 11th ACM Conference on Electronic
Commerce, EC ’10, pages 23–32, New York, NY, USA, 2010. Association for Computing
Machinery.

7 Daniel A Graham and Robert C Marshall. Collusive bidder behavior at single-object second-
price and english auctions. Journal of Political economy, 95(6):1217–1239, 1987.

8 Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM (JACM), 49(5):577–602, 2002.

9 Kevin Leyton-Brown, Yoav Shoham, and Moshe Tennenholtz. Bidding clubs: institutionalized
collusion in auctions. In Proceedings of the 2nd ACM Conference on Electronic Commerce,
pages 253–259, 2000.

10 Kevin Leyton-Brown, Yoav Shoham, and Moshe Tennenholtz. Bidding clubs in first-price
auctions. In AAAI/IAAI, pages 373–378, 2002.

11 Robert C Marshall and Leslie M Marx. Bidder collusion. Journal of Economic Theory,
133(1):374–402, 2007.

12 R Preston McAfee and John McMillan. Bidding rings. The American Economic Review, pages
579–599, 1992.

13 Hervé Moulin and Scott Shenker. Strategyproof sharing of submodular costs: budget balance
versus efficiency. Economic Theory, pages 511–533, 2001.

14 Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the thirty-first
annual ACM symposium on Theory of computing, pages 129–140, 1999.

15 Christos Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truthful.
In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 250–259.
IEEE, 2008.

16 Shiran Rachmilevitch. Auctions with multi-member bidders. working paper, 2022.
17 Kevin Roberts. The characterization of implementable choice rules. Aggregation and revelation

of preferences, 12(2):321–348, 1979.



M. Bahrani, P. Garimidi, and T. Roughgarden 21:21

18 Tim Roughgarden and Mukund Sundararajan. Quantifying inefficiency in cost-sharing mech-
anisms. J. ACM, 56(4):23:1–23:33, 2009.

19 Tim Roughgarden and Inbal Talgam-Cohen. Approximately optimal mechanism design. Annual
Review of Economics, 11:355–381, 2019.

AFT 2023





Fast and Furious Withdrawals from Optimistic
Rollups
Mahsa Moosavi # Ñ

Concordia University, Montreal, Canada
OffchainLabs, Princeton, NJ, USA

Mehdi Salehi #

OffchainLabs, Princeton, NJ, USA

Daniel Goldman #

OffchainLabs, Princeton, NJ, USA

Jeremy Clark # Ñ

Concordia University, Montreal, Canada

Abstract
Optimistic rollups are in wide use today as an opt-in scalability layer for blockchains like Ethereum.
In such systems, Ethereum is referred to as L1 (Layer 1) and the rollup provides an environment
called L2, which reduces fees and latency but cannot instantly and trustlessly interact with L1. One
practical issue for optimistic rollups is that trustless transfers of tokens and ETH, as well as general
messaging, from L2 to L1 is not finalized on L1 until the passing of a dispute period (aka withdrawal
window) which is currently 7 days in the two leading optimistic rollups: Arbitrum and Optimism.
In this paper, we explore methods for sidestepping the dispute period when withdrawing ETH from
L2 (called an exit), even in the case when it is not possible to directly validate L2. We fork the
most-used rollup, Arbitrum Nitro, to enable exits to be traded on L1 before they are finalized.
We also study the combination of tradeable exits and prediction markets to enable insurance for
withdrawals that do not finalize. As a result, anyone (including contracts) on L1 can safely accept
withdrawn tokens while the dispute period is open despite having no knowledge of what is happening
on L2. Our scheme also allows users to opt-into a fast withdrawal at any time. All fees are set by
open market operations.

2012 ACM Subject Classification Security and privacy; Security and privacy → Cryptography

Keywords and phrases Ethereum, layer 2, rollups, bridges, prediction markets

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.22

Supplementary Material Software (Source Code): https://github.com/MadibaGroup/nitro/tree/
fast-withdrawals archived at swh:1:dir:5e160d45808e5387baa1e65eff88f6eed0e37c97

Funding Jeremy Clark: acknowledges support for this research project from (i) the National Sciences
and Engineering Research Council (NSERC), Raymond Chabot Grant Thornton, and Catallaxy
Industrial Research Chair in Blockchain Technologies (IRCPJ/545498-2018), (ii) the Autorité des
Marchés Financiers, and (iii) a NSERC Discovery Grant (RGPIN/04019-2021).

Acknowledgements This paper includes useful comments from the reviewers, discussions with
Edward W. Felten and Rachel Bousfield, and feedback from presentations at Devcon 6 and a16z
crypto research.

1 Introductory Remarks

Ethereum-compatible blockchain environments, called Layer 2s (or L2s) [5], have demonstrated
an ability to reduce transaction fees by 99–99.9% while preserving the strong guarantees of
integrity and availability in the underlying Layer 1 (or L1) blockchain. The subject of this

© Mahsa Moosavi, Mehdi Salehi, Daniel Goldman, and Jeremy Clark;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmoosavi@offchainlabs.com
https://mahsamoosavi.com
mailto:msalehi@offchainlabs.com
mailto:dgoldman@offchainlabs.com
mailto:j.clark@concordia.ca
https://www.pulpspy.com
https://orcid.org/0000-0002-3533-5965
https://doi.org/10.4230/LIPIcs.AFT.2023.22
https://github.com/MadibaGroup/nitro/tree/fast-withdrawals
https://github.com/MadibaGroup/nitro/tree/fast-withdrawals
https://archive.softwareheritage.org/swh:1:dir:5e160d45808e5387baa1e65eff88f6eed0e37c97;origin=https://github.com/MadibaGroup/nitro;visit=swh:1:snp:27f059ef7c5363bd511353309bb43173d7ed7833;anchor=swh:1:rev:d843c2b5754f441500cb172a9398cbf2a719e7c6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Fast and Furious Withdrawals from Optimistic Rollups

paper concerns one subcategory of L2 technology called an optimistic rollup. The website L2
Beat attempts to capitalize all tokens of known value across the top 25 L2 projects. It finds
that the top two L2s are both optimistic rollups, Arbitrum and Optimism, which respectively
account for 50% and 30% of all L2 value – $4B USD at the time of writing. 1

We will describe the working details of optimistic rollups later in this paper but here are
the main takeaways: currently, rollups are faster and cheaper than Ethereum itself. However,
each L2 is essentially an isolated environment that cannot instantly and trustlessly interact
with accounts and contracts that are running on either L1 or other L2s. An optimistic
rollup project will typically provide a smart contract, called a validating bridge [9], that can
trustlessly move ETH (and other tokens and even arbitrary messages) between L1 and its
own L2. It implements a transfer by locking the ETH in an L1 contract and minting the
equivalent ETH on L2 and assigning it to the user’s L2 address. More precisely, L2 ETH is a
transferrable claim for L1 ETH from the L1 bridge at the request of the current owner of
the L2 claim. Later when the user requests a withdrawal, the ETH will be destroyed on L2
and released by the bridge back onto L1 according to whom its new owner is on L2 at the
time of the request. This requires the rollup to convince the L1 bridge contract of whom the
current owner of withdrawn ETH is on L2. We provide details later but this process takes
time: the bridge has to wait for a period of time called the dispute window. The current
default is 7 days in Arbitrum and Optimism, however the filing of new disputes can extend
the window. The bottom line is that users have to wait at least 7 days to draw down ETH
from an optimistic rollup.

Contributions

In this paper, we compare several methods – atomic swaps and tradeable exits – for working
around this limitation. While we argue workarounds cannot be done generally (e.g., for
NFTs, function outputs, or arbitrary messages), some circumstances allow it: namely, when
the withdrawn token is liquid, fungible, and available on L1 and the withdrawer is willing to
pay a fee to speed up the withdrawal. While these techniques work easily between human
participants that have off-chain knowledge, such as the valid state of the L2, it is harder to
make them compatible with L1 smart contracts that have no ability to validate the state
of L2. We propose a solution using tradeable exits and prediction markets to enable an
L1 smart contract to safely accept withdrawn tokens before the dispute period is over. We
fork the current version, Nitro, of the most used optimistic rollup, Arbitrum, maintained as
open source software2 by Offchain Labs. Arbitrum is a commercial product with academic
origins [8]. We implement our solution and provide measurements. We also provide an
analysis of how to price exits and prediction market shares.

2 Background

While we describe optimistic rollups as generally as possible, some details and terms are
specific to Arbitrum.

2.1 Inbox
Rollups have emerged as a workable approach to reduce fees and latency for Ethereum-based
decentralized applications. In a rollup, transactions to be executed on L2 are recorded in
an L1 smart contract called the inbox. Depending on the system, users might submit to

1 L2 Beat: https://l2beat.com/scaling/tvl/, accessed Oct. 2022.
2 GitHub: Nitro https://github.com/OffchainLabs/nitro

https://l2beat.com/scaling/tvl/
https://github.com/OffchainLabs/nitro


M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:3

the inbox directly, or they might submit to an offchain service, called a sequencer, that will
batch together transactions from many users and pay the L1 fees for posting them into the
inbox. Transactions recorded in the inbox (as calldata) are not executed on Ethereum,
instead, they are executed in a separate environment off the Ethereum chain, called L2. This
external environment is designed to reduce fees, increase throughput, and decrease latency.

2.2 Outbox
Occasionally (e.g., every 30–60 minutes), validators on L2 will produce a checkpoint of the
state of all contracts and accounts in the complete L2 according to the latest transactions
and will place this asserted state (called an RBlock) in a contract on L1 called the outbox.
Note that anyone with a view of L1 can validate that the sequence of transactions recorded
in the inbox produces the asserted RBlock in the outbox. This includes Ethereum itself, but
asking it to validate this be equivalent to running the transactions on Ethereum. The key
breakthrough is that the assertion will be posted with evidence that the RBlock is correct so
Ethereum does not have to check completely.

2.3 Optimistic vs. zk-rollups
In practice, two main types of evidence are used. In zk-rollups,3 a succinct computational
argument that the assertion is correct is posted and can be checked by Ethereum for far
less cost than running all of the transactions. However the proof is expensive to produce.
In optimistic rollups, the assertions are backed by a large amount of cryptocurrency acting
as a fidelity bond. The correctness of an RBlock can be challenged by anyone on Ethereum
and Ethereum itself can decide between two (or more) RBlocks for far less cost than running
all of the transactions (by having the challengers isolate the exact point in the execution
trace where the RBlocks differ). It will then reallocate the fidelity bonds to whoever made
the correct RBlock. If an RBlock is undisputed for a window of time (e.g., 7 days), it is
considered final.

2.4 Bridge
A final piece of the L2 infrastructure is a bridge, which can move ETH, tokens, NFTs, and
even arbitrary messages, between L1 and L2. Our fast withdrawals is limited to ETH and
fungible tokens. If Alice has ETH on Ethereum, she can submit her ETH to a bridge smart
contract on Ethereum which will lock the ETH inside of it, while generating the same amount
of ETH in Alice’s account inside the L2 environment. The bridge does not need to be trusted
because every bridge operation is already fully determined by the contents of the inbox. Say
that Alice transfers this ETH to Bob’s address on L2. Bob is now entitled to draw down the
ETH from L2 to L1 by submitting a withdrawal request using the same process as any other
L2 transaction – i.e., placing the transaction in the inbox on L1, having it executed on L2,
and seeing it finalized in an RBlock on L1. Optimistically, the RBlock is undisputed for 7
days and is finalized. Bob can now ask the bridge on L1 to release the ETH to his address
by demonstrating his withdrawal (called an exit) is included in the finalized RBlock (e.g.,
with a Merkle-proof).

3 zk stands for zero-knowledge, a slight misnomer: succinct arguments of knowledge that only need to be
complete and sound, not zero-knowledge, are used [10].

AFT 2023



22:4 Fast and Furious Withdrawals from Optimistic Rollups

2.5 Related Work
Arbitrum is first described at USENIX Security [8]. Gudgeon et al. provide a systemization
of knowledge (SoK) of Layer 2 technology (that largely predates rollups) [5]. McCorry
et al. provide an SoK that covers rollups and validating bridges [9], while Thibault et al.
provide a survey specifically about rollups [13]. Some papers implement research solutions
on Arbitrum for improved performance: decentralized order books [11] and secure multiparty
computation [2]. The idea of tradeable exits predates our work but is hard to pinpoint a
source (our contribution is implementation and adding hedges). Further academic work on
optimistic rollups and bridges is nascent – we anticipate it will become an important research
area.

Other related topics are atomic swaps and prediction markets. Too many papers propose
atomic swap protocols to list here but see Zamyatin et al. for an SoK of the area (and a
new theoretical result) [14]. Decentralized prediction markets proposals predate Ethereum
and include Clark et al. [1] and Truthcoin [12]. Early Ethereum projects Augur and Gnosis
began as prediction markets.

3 Proposed Solution

For simplicity, we will describe a fast exit system for withdrawing ETH from L2, however it
works for any L1 native fungible token (e.g., ERC20) that is available for exchange on L1. We
discuss challenges of fast exits for non-liquid/non-fungible tokens in Section 6.4. Consider an
amount of 100 ETH. When this amount is in the user’s account on L1, we use the notation
100 ETHL1. When it is in the bridge on L1 and in the user’s account on L2, we denote it 100
ETHL2. When the ETH has been withdrawn on L2 and the withdrawal has been asserted
in the L1 outbox, but the dispute window is still open, we refer to it as 100 ETHXX. Other
transitionary states are possible but not needed for our purposes.

3.1 Design Landscape
In Table 1, we compare our solution to alternatives in industry and the blockchain (academic
and grey) literature that could be used for fast withdrawals.

3.1.1 Properties
We are interested in solutions that do not require a trusted third party. If trust is acceptable,
a centralized exchange that has custody of its users funds is a fast and user-friendly solution.
We consider anything faster than the 7-day dispute period as “fast” but take measurements
of solutions that can settle within a fully confirmed “L1 transaction” (e.g., minutes) and
within a unconfirmed L2 RBlock (e.g., hours). This assumes that all counterparties perform
instantly upon request. Settlement is from the perspective of the withdrawer, Alice, only
and does not necessarily mean other counterparties will complete within the same timeframe.
For example, in many solutions, Alice will have her withdrawn ETH quickly at the expense
of a counterparty waiting out the dispute period.

Some solutions require one party to act, followed by an action of the counterparty in a
follow-up transaction. This creates the risk that the counterparty aborts the protocol before
taking their action. Since it is unknown if the counterparty will act or not, these protocols
establish a window of time for the counterparty to act and if the window passes without action,
the initial party has to begin the protocol again with a new counterparty. The protocols
ensure that funds are never at risk of being lost, stolen, or locked up forever, however the



M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:5

Table 1 Comparing alternatives for fast withdrawals from optimistic rollups for liquid and
fungible tokens where • satisfies the property fully, ◦ partially satisfies the property, and no dot
means the property is not satisfied. ⊥ was not measured. For our work, ∼ means we propose how
to fully achieve the property but do not by default (see caveats in Section 6.1).

Type Example No tru
ste

d thi
rd

pa
rty

W
ith

in
an

L1
tra

ns
act

ion

W
ith

in
an

L2
rol

lup

No gri
efi

ng

No fre
e op

tio
n

Opt-
in

an
yti

me

Cros
sch

ain
or

L2
-to

-L2

L1 ga
sU

sed

L2 ga
sU

sed

Othe
r Fe

es

Normal Exit (baseline) Arbitrum • • • 200K 80K –

Centralized Binance • • • • • 400K 21K Operator

HTLC Swaps Celer • ◦ • • 625K 92K

Conditional Transfers StarkEx • • • ⊥ ⊥ Operator

Bridge Tokens Hop ◦ • • • • 1.8M 300K Operator

Tradeable Exits This Work • ∼ • • • • 200K 80K Discount

Hedged Tradeable Exits This Work • ∼ • • • • 265K 80K FAILPM

protocols admit two smaller issues. The first issue is that a malicious counterparty could
accept to participate with no intention of completing the protocol just to “grief” the party
taking the action – wasting their time and possibly gas fees for setting up and tearing down
the conditions of the trade. The second issue is that a strategic counterparty can accept to
participate and then selectively choose to complete or abort, as well as timing exactly when
they choose to complete (within the window), based on price movements or other market
information. This is called (somewhat cryptically) a “free option;” finance people might
recognize it as akin to being given an American call option for free.

A solution is “opt-in anytime” if the user can withdraw normally and then (say upon
realizing for the first time that there is a 7 day dispute window) decide to speed up their
transaction. While it is not a design goal of our paper, many of these solutions are generic
cross-chain transactions (including L2-to-L2 swaps). A drawback of our solution is that it is
narrowly scoped to L2-to-L1 withdrawals on rollups. Therefore our solution is not intended
as a complete replacement of atomic swaps or the other solutions in Table 1. It is designed
to be best-in-class only for slow rollup withdraws.

Finally we estimate the costs involved for the seller of ETHL2. For some protocols, the
gas cost of the buyer might differ from the seller depending if its actions are symmetric or
not – we comment on this but did not find it interesting enough to put in the table. The
more interesting aspect is that many alternatives do require a third party to be involved
(we generically call them “operators”) and they must be compensated for their actions. In
some alternatives, the operators might be not be inherently necessary (e.g., an HTLC swap)
but are used in practice (e.g., Celer) to ease friction (e.g., users finding other users to swap
with): in this case, we are charitable and do not mark the fee. So the fees are for things
fundamental to how the alternative works. We expand more within the discussion of each
alternative below.

AFT 2023



22:6 Fast and Furious Withdrawals from Optimistic Rollups

3.1.2 Alternatives

Centralized

Consider Alice who has 100 ETHL2 and wants 100 ETHL1 for it. A centralized exchange (e.g.,
Coinbase, Binance) can open a market for ETHL2/ETHL1. Alternatively, a bridge might rely
on an established set of trustees to relay L2 actions to L1. This is called proof of authority;
it is distributed but not decentralized (i.e., not an open set of participants). The gas costs
consists of Alice transferring her ETHL2 onto the exchange (withdraw to L1 is paid for by the
exchange). An exchange will not be profitable if it offers this for free, therefore it captures a
operator fee for the service.

Hash Time Locked Contracts (HTLCs)

Assume Bob has 100 ETHL1 and is willing to swap with Alice. An atomic swap binds together
(i) an L2 transaction moving 100 ETHL2 from Alice to Bob and (ii) an L1 transaction moving
100 ETHL1 from Bob to Alice. Either both execute or both fail. HTLC is a blockchain-friendly
atomic swap protocol. Its main drawback is that it also has a time window where Alice
(assuming she is the first mover in the protocol) must wait on Bob, who might abort causing
Alice’s ETHL2 to be locked up while waiting (called the griefing problem), or might watch
price movements before deciding to act (called free option problem). Bob needs to monitor
both chains so he cannot be an autonomous smart contract. HTLCs can work generically
between any two chains capable of hash- and time-locking transaction outputs; this includes
between two L2s.

The transaction (containing a hashlock and timeout) is slightly more complicated than
a standard ETH transfer, requiring smart contract logic on both layers. The measurement
based on Celer is not a pure HTLC and uses operators as well for liquidity and staking, but
we omit these fees from the table because theoretically Alice and Bob could find each other
and perform a pure HTLC with no added infrastructure.

Conditional Transfers

The intuition behind a conditional transfer (CT) is that L1-to-L2 messaging (or bridging)
is fast even if L2-to-L1 messaging is slow. CT exploits this to build an HTLC-esque swap
specifically for withdrawing from rollups (while HTLCs are designed generically for cross-
chain swaps). Alice beings by registering her intent to trade 100 ETHL2 for 100 ETHL1 in
a special registry contract on L1, and she locks (e.g., for an hour) 100 ETHL2 in escrow
on L2. If Bob agrees to the swap, Alice provides him (off-chain) with a signed transaction
(called the conditional transfer) that transfers the escrowed 100 ETHL2 to Bob, conditioned
on Alice having receiving 100 ETHL1 in the registry contract on L1. After Bob transfers the
ETHL1 on L1, this fact can be bridged to the L2 escrow contract (with customization of the
rollup’s inbox) quickly (recall that L1-to-L2 messaging is fast). The L2 escrow contract will
flag that the L1 transaction has paid by Bob, and Bob can broadcast his signed (by Alice)
L2 transaction to recover 100 ETHL2 from escrow (if Bob broadcasts it before the flag is set,
it simply reverts).

In terms of existing implementations, we could not adequately isolate the conditional
transfer component from the rest of the bridge to measure gas costs (denoted in the table
using a ⊥ symbol) however it should be slight more expensive than an HTLC as the logic of
the transaction is more complex.



M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:7

Also note that Bob must be a validator on L2 to confirm that the state of the escrow and
conditional transfer on L2 will result in him being paid – this is where the speedup really
comes from, if he waits for L1 to finalize this, then the transfer happens after the dispute
period and it is no different than a normal exit. Consequently, Bob cannot be an autonomous
L1 smart contract unable to validate L2 state until it is finalized on L1 (which is the design
goal of our alternative: hedged tradeable exits).

Bridge Token

A bridge token is not a novel technical innovation but it is a practical market design for
supplying bridges with liquidity. Bridges between L1 and L2 can technically be implemented
by anyone. It is natural for the inbox/outbox provider to provide a bridge but it is not
strictly necessary.

Assume a third party creates a contract on L1 that accepts ETHL1 and releases a
transferable claim for ETHL1; it creates the same contract on L2. Assume enough of these
claims come into circulation that a liquid market for them emerges on both layers. To move
ETHL2 to ETHL1, Alice starts by trading her ETHL2 for a claim to the same amount on
L2. She then asks the L2 contract to transfer the claim which it does by burning them and
firing an event. An authorized party, called a bonder, notices the event on L2, goes to the L1
contract and mints the same number of claims on L1 for ETHL1 and transfers them to Alice’s
address. Technically the L1 contract is insolvent as more claims exist than actual ETHL1 in
the contract, but the L2 contract is oversolvent by the same amount. The contracts can be
rebalanced (1) through movements in the opposite direction; (2) through a bulk withdrawal
after the normal 7-day dispute period; or (3) by incentivize bonders to purposefully rebalance
the contracts by burning claims on L1 and minting on L2. To prevent the bonder from
maliciously minting tokens on L1 that were not burned on L2, it must post a fidelity bond of
equal or greater value. (Alternatively, the bonder can be a trusted party which makes it the
same in analysis as a centralized exchange). After the 7-day dispute period, the L1 contract
can verify the bonder’s actions are consistent with the burns on L2 and release its fidelity
bond.

Note that when you collapse this functionality, it is equivalent to the bonder buying
ETHXX from Alice for ETHL1 and receiving their ETHL1 back 7 days later. The extra
infrastructure is necessary because today native bridges do not support transferring ETHXX.
As in atomic swaps, the bonder can fail to act (griefing) which is worst in this case if Alice
cannot “unburn” her tokens, but there is no free option because Bob is a relay and not
a recipient of the tokens. The gas fee measurement is based on Hop and standard token
transfers on L1 and L2. The main cost of bridge tokens is paying the bonder (called an
operator in the table) who are providing a for-profit service.

3.2 Tradeable Exits
Alice wants to withdraw 100 ETHL2. Unlike the other solutions, Bob takes the risk that
the exit never finalized and therefore will offer less than 100 ETHL1 (say 99.95 ETHL1) for
it (this is denoted “discount” in Table 1). Assume Bob has 99.95 ETHL1 that will not use
until after the dispute window. Bob also runs an L2 validator so he is assured that if Alice
withdraws, it is valid and will eventually finalize. With a tradeable exit, the outbox allows
Alice to change the recipient of her withdraw from herself to Bob. Thus Alice swaps her
pending exit of 100 ETHL1 (which we call 100 ETHXX) for Bob’s 99.95 ETHL1 on L1 (note
we discuss the actual difference in price in Section 5). Since ETHL1 and ETHXX are both on

AFT 2023



22:8 Fast and Furious Withdrawals from Optimistic Rollups

L1, Alice can place an ask price for her ETHXX and the first trader willing to swap can do
so atomicly, with no ability to grief or capitalize on a free option. After 7 days, Bob can
ask the bridge to transfer the ETHL1 to his address, and the bridge checks the outbox to
validate that Bob’s address is the current owner of the exit.

In our forked bridge, Alice can transfer any of her exits that are in an RBlock (i.e., an
asserted L2 state update registered in the outbox). Technically, Bob can check the validity
of the withdrawal as soon as it is in the inbox, and not wait 30-60 minutes for an RBlock.
However for implementation reasons, it is easier to track an exit based on its place (i.e.,
Merkle path) in an RBlock, rather than its place in the inbox. When we say a withdrawal is
“fast,” we mean 30-60 minutes (i.e., one L2 rollup).

Tradeable exits can be approximated by a third party L1 contract that does not modify
the rollup. In this scenario, a L1 contract would act like a proxy for the exit. Alice would
specify that she is exiting 100 ETHL2 to the proxy contract address (instead of to her address)
and set the proxy contract to forward it to her address (if/when it comes through after 7
days). Before the dispute window closes, she can sign a transaction instructing the proxy
contract to forward the exit to Bob instead of to her (while giving Bob signing authority
over it). In this way, the exit becomes tradeable. After 7 days, the current owner can ask
the proxy to fetch the actual transfer from the bridge and forward it to them. If the exit
fails, the bridge will refuse the exit.

Given this option, why modify the bridge/outbox of the rollup? This paper is not
intended as a strong endorsement of either approach – the reader can decide between the two
approaches. Our intention with this research is to discuss, design, implement, and measure
the actual functionality of what is needed. This will be largely the same whether it is placed
inside or outside the bridge/outbox. The main advantage of modifying the bridge/outbox
is that is backward compatible with existing web3 bridge interfaces and with current user
behaviour – if web3 interfaces or users do a slow withdraw, our solution can “bail them
out” after the fact. Placing the functionality inside the bridge/outbox is more challenging in
some regards (e.g., existing code is complex to understand) but also easier in other regards
(e.g., our code has direct access to state variables). An outside contract might require minor
changes to the bridge anyways, such as creating public interfaces to state variables or other
data (e.g., as one example, we later discuss how a prediction market must be able to query
the outbox to know if an RBlock is pending, finalized, or failed, which is not a current
feature). By contrast, the main advantage of an outside contract is modularity and reducing
complexity (and thus risk) within the bridge.

3.3 Hedged Tradeable Exits
One remaining issue with tradeable exits is how specialized Bob is: he must have liquidity in
ETHL1 (or worst, every token being withdrawn from L2), be online and active, know how to
price derivatives, and be a L2 validator. While we can expect blockchain participants with
each specialization, it is a lot to assume of a single entity. The goal of this subsection is to
split Bob into two distinct participants: Carol and David. Our goal is to allow Carol who
does not (or functionally cannot) know anything about L2’s current state to safely accept a
tradeable exit as if it were equivalent to finalized ETHL1 (or L1 tokens). Carol could be a
L1 contract that accepts the withdrawn tokens for a service or enables exchange. In order
to make Carol agnostic of L2, we need David to be aware of L2: David is a L2 validator
who understands the risks of an RBlock failing and is willing to bet against it happening.
Therefore David needs to also have some liquidity to bet with however it could be ETHL1 or
a stablecoin, while Alice and Carol can interact with all sorts of tokens that David need not
heard of or even ones David would not want to hold himself.



M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:9

Recall that Alice wants ETHL1 quickly in order to do something on L1 with it; Carol
can be that destination contract. The primary risk for Carol accepting ETHXX as if it were
ETHL1 is that the RBlock containing the ETHXX withdrawal fails and the exit is worthless.
If Alice can obtain insurance for the ETHXX that can be verified via L1, then Carol’s risk
is hedged and she could accept ETHXX. The insurance could take different forms but we
propose using a prediction market.

Prediction markets

A decentralized prediction market is an autonomous (e.g., vending machine-esque) third
party contract. Since we are insuring L1 ETHXX, we need to run the market on L1 (despite
the fact that it would be cheaper and faster on L2). Consider a simple market structure
based on [1]. A user can request that a new market is created for a given RBlock. The market
checks the outbox for the RBlock and its current status (which must be pending). Once
opened, any user can submit 1 ETHL1 (for example, the actual amount would be smaller
but harder to read) and receive two “shares”: one that is a bet that the RBlock will finalize,
called FINALPM, and one that is a bet that the RBlock will fail, called FAILPM. These shares
can be traded on any platform. At any time while the prediction market is open, any user
can redeem 1 FINALPM and 1 FAILPM for 1 ETHL1. Once the dispute period is over, any
user can request that the market close. The market checks the rollup’s outbox for the status
of the RBlock– since both contacts are on L1, this can be done directly without oracles or
governance. If the RBlock finalizes, it offers 1 ETHL1 for any 1 FINALPM (and conversely if
it fails). The market always has enough ETHL1 to fully settle all outstanding shares.

It is argued in the prediction market literature [1] that (i) the price of one share matches
the probability (according to the collective wisdom of the market) that its winning condition
will occur, and (ii) the price of 1 FINALPM and 1 FAILPM will sum up to 1 ETHL1. For
example, if FAILPM trades for 0.001 ETHL1, then (i) the market believes the RBlock will fail
with probability of 0.1% and (ii) FINALPM will trade for 0.999 ETHL1. These arguments
do not assume market friction: if the gas cost for redeeming shares is D (for delivery cost),
both share prices will incorporate D (see Section 5). Lastly, prediction markets are flexible
and traders can enter and exit positions at any time – profiting when they correctly identify
over- or under-valued forecasts. This is in contrast to an insurance-esque arrangement where
the insurer is committed to hold their position until completion of the arrangement.

Hedging exits

Given a prediction market, Alice can hedge 100 ETHXX by obtaining 100 FAILPM as insurance.
Any autonomous L1 contract (Carol) should be willing to accept a portfolio of 100 ETHXX
and 100 FAILPM as a guaranteed delivery of 100 ETHL1 after the dispute period, even if
Carol cannot validate the state of L2.

Perhaps surprisingly, this result collapses when withdrawing ETHL2– consider Path 1
through the protocol. Alice withdraws 100 ETHL2 from L2 and obtains 100 ETHXX. Bob
creates 100 FAILPM and 100 FINALPM for a cost of 100 ETHL1. Alice buys 100 FAILPM from
Bob for a small fee. Alice gives Carol 100 ETHXX and 100 FAILPM and is credited as if she
deposited 100 ETHL1. In seven days, Bob gets 100 ETHL1 for his 100 FINALPM and Carol
gets 100 ETHL1 for her 100 ETHXX. If the RBlock fails, Bob has 0 ETHL1 and Carol has 100
ETHL1 from the 100 FAILPM. In both cases, Alice has a balance of 100 ETHL1 with Carol.

AFT 2023



22:10 Fast and Furious Withdrawals from Optimistic Rollups

In path 2, Alice withdraws 100 ETHL2 from L2 and obtains 100 ETHXX. Alice sells 100
ETHXX to Bob for 100 ETHL1. Alice gives Carol 100 ETHL1 and is credited with a balance
of 100 ETHL1. In 7 days, Bob gets 100 ETHL1 for his 100 ETHXX and Carol has 100 ETHL1.
If the RBlock fails, Bob has 0 ETHL1, Carol has 100 ETHL1, and Alice has a balance of 100
ETHL1 with Carol.

Modulo differing gas costs and market transaction fees, paths 1 and 2 are equivalent.
Path 2 does not use a prediction market at all, it only uses basic tradeable exits. Given this,
do prediction markets add nothing to tradeable exits? We argue prediction markets still
have value for a few reasons. (1) Speculators will also participate in the prediction market
which gives Alice a chance for a fast exit even without Bob (an L2 validator). (2) If Alice
withdraws a token other than ETH, the prediction market should still be set up to payout in
ETH (otherwise you end up with 50 separate prediction markets for the 50 different kinds
of tokens in any given RBlock). In this case, Alice can obtain FAILPM when Bob has no
liquidity or interest in the token she is withdrawing (however Carol needs to incorporate an
exchange rate risk when accepting an exit in one token and the insurance in ETH). (3) The
PM can also help with NFTs and other non-liquid tokens (see Section 6.4).

Three of the most common types of traders are utility traders, speculators, and dealers [6].
With a prediction market, Alice is a utility trader and Bob is a dealer. However, there might
exist speculators who want to participate in the market because they have forecasts about
rollup technology, a given RBlock, the potential for software errors in the rollup or in the
validator software, etc. Executives of rollup companies could receive bonuses in FINALPM.
Quick validators might profit from noticing an invalid RBlock with FAILPM or they might
be betting on an implementation bug or weeklong censorship of the network. Speculators
add liquidity to the prediction market which reduces transactional fees for Alice. However,
speculation also brings externalities to the rollup system where the side-bets on an RBlock
could exceed the staking requirements for posting an RBlock, breaking the crypo-economic
arguments for the rollup. In reality, these externalities can never be prevented in any
decentralized incentive-based system [3].

4 Implementation and Performance Measurements

We run Arbitrum Nitro test-net locally and use Hardhat [4] for our experiments. We obtain
our performance metrics using TypeScripts scripts.

4.1 Tradeable Exits
Trading the exit directly through the bridge/outbox

We fork the Arbitrum Nitro outbox to add native support for tradeable exits. The modified
outbox is open source, written in 294 lines (SLOC) of Solidity, and a bytecode of 6,212 bytes
(increased by 1,197 bytes). The solidity code and Hardhat scripts are available in a GitHub
repository.4 Our modifications include:

Adding the transferSpender() function which allows the exit owner to transfer the exit
to any L1 address even though the dispute period is not passed.
Adding the isTransferred() mapping which stores key-value pairs efficiently. The key
of the mapping is the exit number and the value is a boolean.

4 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals

https://github.com/MadibaGroup/nitro/tree/fast-withdrawals


M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:11

Adding the transferredToAddress mapping which stores key-value pairs efficiently. The
key of the mapping is the exit number and the value is the current owner of the exit.
Modifying the executeTransactionImpl() function. Once the dispute period is passed
and the withdrawal transaction is confirmed, anyone can call the executeTransaction()
function from the outbox (which internally calls the executeTransactionImpl()) and
release the funds to the account that was specified by the user 7 days earlier in the L2
withdrawal request. With our modifications, this function is now enabled to release the
requested funds to the current owner of the exit.

To execute the transferSpender() function; Alice (who has initiated a withdrawal for
100 ETHL2) has to provide variables related to her exit (e.g., exit number), which she can
query using the Arbitrum SDK5, as well as the L1 address she wants to transfer her exit
to. The transferSpender() function then checks (1) if the exit is already spent, (2) it is
already transferred, and (3) the exit is actually a leaf in any unconfirmed RBlock. If the
exit has been transferred, the msg.sender is cross-checked against the current owner of the
exit (recall exit owners are tracked in the transferredToAddress mapping added to the
outbox). Once these tests are successfully passed, the transferSpender() function updates
the exit owner by changing the address in the transferredToAddress mapping. This costs
85,945 units of L1 gas. Note that the first transfer always costs more as the user has to
pay for initializing the transferredToAddress mapping. transferSpender() costs 48,810
and 48,798 units of L1 gas for the second and third transfer respectively. The gasUed for
executing the new executeTransactionImpl() function is 91,418 units of L1 gas.

Trading the exit through an L1 market

We also implement and deploy an L1 market that allows users to trade their exits on L1 even
though the dispute window is not passed (see Section 6.3 for why Uniswap is not appropriate).
In addition, we add a new function to the Arbitrum Nitro outbox, the checkExitOwner(),
which returns the current owner of the exit. Figure 1 illustrates an overview of participant
interactions and related gas costs. To start trading, Alice needs to lock her exit up in the
market by calling the transferSpender() function from the outbox. Next, she can open a
market on this exit by calling the openMarket() from the market contract and providing the
ask price. The market checks if Alice has locked her exit (by calling the checkExitOwner()
from the outbox) and only in that case a listing is created on this exit. The market would be
open until a trade occurs or Alice calls the closeMarket() on her exit. Bob, who is willing
to buy Alice’s exit, calls the payable submitBid() function from the market contract. If the
msg.value is equal or greater than Alice’s ask price, the trade occurs; (1) the market calls
the transferSpender() from the outbox providing Bob’s address. Note that market can
only do that since it is the current owner of the exit being traded, and (2) the msg.value is
transferred to Alice.

The market and modified outbox are open source and written in 125 and 294 lines (SLOC)
of Solidity respectively. The solidity code for these contracts in addition to the Hardhat
scripts are available in a GitHub repository.6 Once deployed, the bytecode of the market
and outbox is 5,772 and 6,264 bytes respectively.

5 A typescript library for client-side interactions with Arbitrum.
6 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals

AFT 2023

https://github.com/MadibaGroup/nitro/tree/fast-withdrawals


22:12 Fast and Furious Withdrawals from Optimistic Rollups

Alice Bob Outbox Bridge Market

Alice Bob Outbox Bridge Market

transferSpender(exit #10, Market Address)
gasUsed: 87,075

gasUsed: 328,029

openMarket(exit #10, Ask Price 99)

submitBid(Bid Price 99.1)

transferSpender(exit #10, Bob Address)

Transfer 99.1 ETH

Execute exit #10

Release funds

2

1

3

3

3

4

4

gasUsed: 101,176

[A#er 7 days]

gasUsed: 92,522

Figure 1 Overview of trading the exit through an L1 market.

4.2 Prediction Market
As described in Section 3.3, a prediction market can be used to hedge the exit. We do not
implement this as one can use an existing decentralized prediction market (e.g., Augur or
Gnosis). However, we further modify Arbitrum Nitro to make it friendly to a prediction
market that wants to learn the status of an RBlock (pending, confirmed). More specifically,
we modify the Arbitrum Nitro outbox and RollupCore smart contracts, modifications include:

Adding the assertionAtState mapping to the outbox which stores key-value pairs
efficiently. The key of the mapping is the exit number and the value is the user-
defined data type state that restricts the variable to have only one of the pending and
confirmed predefined values.
Adding the markAsPending function to the outbox which accepts an RBlock and marks
it as pending in the assertionAtState mapping.
Adding the markAsConfirmed function to the outbox which accepts an RBlock and marks
it as confirmed in the assertionAtState mapping.
Modifying the createNewNode() function in the RollupCore contract. To propose an
RBlock, the validator acts through the RollupCore contract by calling a createNewNode()
function. We modify this function to call the markAsPending() from the outbox which
marks the RBlock as pending.
Modifying the confirmNode() function in the RollupCore contract. Once an RBlock
is confirmed, the validator acts through the RollupCore contract via confirmNode to
move the now confirmed RBlock to the outbox. We modify this function to call the
markAsConfirmed() from the outbox which marks the RBlock as confirmed.

The modified outbox and RollupCore are open source and written in 297 and 560 lines
(SLOC) of Solidity respectively. The solidity code for these contracts in addition to the
Hardhat scripts are available in a GitHub repository.7 Once deployed, the bytecode of the
outbox and RollupCore is 6,434 and 3,099 bytes respectively.

7 GitHub:Nitro, Fast-Withdrawals: https://github.com/MadibaGroup/nitro/tree/fast-withdrawals

https://github.com/MadibaGroup/nitro/tree/fast-withdrawals


M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:13

5 Pricing

Pricing ETHXX

Consider how much you would pay for 100 ETHXX (finalized in 7 days = 168 hours) in
ETHL1 today. Since ETHXX is less flexible than ETHL1, it is likely that you do not prefer it
to ETHL1, so our intuition is that it should be priced less (e.g., 100 ETHXX = 99 ETHL1).
However, our solution works for any pricing and we can even contrive corner cases where
ETHXX might be worth more than ETHL1 by understanding the factors underlying the price.

In traditional finance [7], forward contracts (and futures, which are standardized, exchange
traded forwards) are very similar to ETHXX in that they price today the delivery of an asset
or commodity at some future date. One key difference is that with a forward contract, the
price is decided today but the actual money is exchanged for the asset at delivery time.
When ETHXX is sold for ETHL1, both price determination and the exchange happen today,
while the delivery of ETHL1 for ETHXX happens in the future. The consequence is that we
can adapt pricing equations for forwards/futures, however, the signs (positive/negative) of
certain terms need to be inverted.

We review the factors [7] that determine the price of a forward contract (F0) and translate
what they mean for ETHXX:

Spot price of ETHL1 (S0): the price today of what will be delivered in the future. ETHXX
is the future delivery of ETHL1, which is by definition worth 100 ETHL1 today.
Settlement time (∆t): the time until the exit can be traded for ETHL1. In Arbitrum,
the time depends on whether disputes happen. We simplify by assuming ∆t is always 7
days (168 hours) from the assertion time. A known fact about forwards is that F0 and
S0 converge as ∆t approaches 0.
Storage cost (U): most relevant for commodities, receiving delivery of a commodity at a
future date relieves the buyer of paying to store it in the short-term. Securing ETHXX
and securing ETHL1 is identical in normal circumstances, so not having to take possession
of ETHL1 for ∆t time does not reduce costs for a ETHXX holder.
Delivery cost (D): the cost of delivery of the asset, which in our case will encompass gas
costs. Exchanging ETHL1 for ETHXX requires a transaction fee and also creates a future
transaction fee to process the exit (comparable in cost to purchasing a token from an
automated market maker). An ETHL1 seller should be compensated for these costs in
the price of ETHXX.
Exchange rate risk: a relevant factor when the asset being delivered is different than the
asset paying for the forward. In our case, we are determining the price in ETHL1 for
future delivery of ETHL1, thus, there is no exchange risk at this level of the transaction.
However, the price of gas (in the term D) is subject to ETH/gas exchange rates. For
simplicity, we assume this is built into D.
Interest / Yield (−r + y): both ETHL1 and ETHXX have the potential to earn interest
or yield (compounding over ∆t), while for other tokens, there might be an opportunity
to earn new tokens simply by holding the token. Let r be the (risk-free) interest (yield)
rate for ETHL1 that cannot be earned by ETHXX, while y is the opposite: yield earned
from ETHXX and not ETHL1. Initially y > 1 and r = 0, however, with ETHXX becoming
mainstream, it is possible r = y (especially hedged ETHXX).
Settlement risk (R): the probability that ETHL1 will fail to be delivered for ETHXX
discounts the price of ETHXX. We will deal with this separately.

AFT 2023



22:14 Fast and Furious Withdrawals from Optimistic Rollups

0.992 0.994 0.996 0.998 1.000
Pr[fail|valid]

98.8

99.0

99.2

99.4

99.6

Price of 100 ETHxx

Figure 2 Price of 100 ETHXX (in ETH) as the probability an RBlock actually finalizes (given the
validator checks it with software validation) varies from 99% to 100%, which is denoted by R. Note
that 99% is an extraordinarily low probability for this event (considering an RBlock has never failed
at the time of writing). The take-away is that the price is not very sensitive to how precisely we
estimate R.

0.010 0.100 1 10 100 1000
S0 (ETH)

-0.5

0.0

0.5

1.0

Fraction Received

Figure 3 This chart shows the percentage of ETH recovered (F0/S0) as the amount withdrawn
(S0) increases (log scale), demonstrating it is only economical for withdrawing larger amounts of
ETHL2. At low values, the gas costs of a withdrawal dominate. At very low values, the gas costs
exceed the price of ETHXX causing the curve to go negative.

Put together, the price of ETHXX (F0) is:

F0 = (S0 + U − D) · e(−r+y)·∆t · R

This value, F0, is an expected value – the product of the value and the probability that
the RBlock fails to finalize. However, the trader is informed because they have run verification
software and checked that the RBlock validates.

R = (1 − Pr[rblock fails to finalize|rblock passes software verification])

Working Example

We start with R. For an RBlock to be up for consideration, it must be submitted to the
outbox as a potential solution and for it to fail, a dispute must be filed with an alternative
RBlock that the L1 outbox deems to be correct. In our case, the buyer of ETHXX actually
runs a L2 validator and thus performs software validation on the RBlock, and will not accept



M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:15

it if the software does not validate it. For an RBlock to fail given the software validation,
it software must have an error that causes a discrepancy between it and the L1 outbox.
Furthermore, at least one other validator would need to have different, correct software, and
this validator would need to be paying attention to this specific RBlock and independently
check it. This should be a rare event and assume R = (1 − 10−15) for this example. Figure 2
shows a range of R values.

Next, consider the resulting price of F0. Alice starts with 100 ETHXX and Bob purchases
it from her. Bob can hold ETHXX with no cost (U = 0). Alice pays the transaction fee
for the deposit, however the cost for the contract for exiting ETHXX into ETHL1 after the
dispute period is expected to be D = 0.008 ETH (D). Assume a safe-ish annual percent yield
(APY) on ETH deposits is 0.2%. Assume ETHXX expires in 6 days (0.0164 years). ETHXX
earns no yield (y = 0). Plugging this into the equation, F0 = 99.665 ETH.

As a second example, consider a smaller amount like 0.05 ETHXX (less than $100 USD at
time of writing). Now the gas costs are more dominating. F0 = 0.04186 ETHL1 which is only
83.7%. This demonstrates that fast exits are expensive for withdrawals of amounts in the
hundreds of dollars. Figure 3 shows a range of withdraw amounts.

Lastly, could ETHXX ever be worth more than ETHL1? The equation says yes: with
a sufficiently high U or y. A contrived example would be some time-deferral reason (e.g.,
tax avoidance) to prefer receiving ETHL1 in 7 days instead of today. However, in order to
purchase ETHXX at a premium to ETHL1, it would have to be cheaper to trade for it than to
simply manufacture it. Someone holding ETHL1 and wanting ETHXX could simply move it
to L2 and then immediately withdraw it to create ETHXX. The gas cost of this path will be
one upper bound on how much ETHXX could exceed ETHL1 in value.

Pricing FINALPM and FAILPM

It might appear surprising at first, but one of the main results of this paper is that the price
of 100 ETHXX and the of price 100 FINALPM are essentially the same. Both are instruments
that are redeemable at the same future time for the same amount of ETHL1 (either 100 if
the RBlock finalizes and 0 if the RBlock fails) with the same probability of failure (that the
RBlock fails). The carrying costs of both are identical. There may be slight differences in the
gas costs of redeeming ETHL1 once the dispute period is over. However, the operation (at
a computational level) is largely the same process. This is actually a natural result: if 100
FAILPM perfectly hedges (reduces the risk to zero) the failure of 100 ETHXX to finalize, then
the compliment to FAILPM, FINALPM, should be priced the same as ETHXX.

6 Discussion

6.1 Prediction Market Fidelity
A prediction market that covers a larger event should attract more interest and liquidity. For
example, betting on an entire RBlock will have more market interest than betting on Alice’s
specific exit. On the other hand, if markets are exit-specific, the market can be established
immediately after Alice’s withdrawal hits the inbox instead of waiting for an RBlock (hence
∼ in Table 1 to indicate it could be done within one L1 transaction). Another consideration
arrises when tokens other than ETH are being withdrawn – if the payout of the market
matches the withdrawn token, FAILPM will perfectly hedge the exit. Otherwise the hedge
is in the equivalent amount of ETH which could change over 7 days. Our suggestion is to
promote the most traders in a single market and avoid fragmentation – so we suggest one
market in one payout currency (ETH) for one entire RBlock.

AFT 2023



22:16 Fast and Furious Withdrawals from Optimistic Rollups

6.2 Withdrawal Format
As implemented, transferable exits can only be transferred in their entirety. If Alice wants
to withdraw 100 ETHL2 and give 50 ETHXX to one person and 50 ETHXX to another, she
cannot change this once she has initiated the withdraw (if she anticipates it, she can request
two separate withdrawals for the smaller amounts). We could implement divisible exits and
for ETH; there are no foreseen challenges since the semantics of ETHL1 are specified at the
protocol-level of Ethereum. However for custom tokens, the bridge would need to know
how divisible (if at all) a token is. In fact, a bridge should ensure that the L2 behavior of
the tokens is the same as L1 (or that any inconsistencies are not meaningful). Even if a
token implementation is standard, such as ERC20, this only ensures it realizes a certain
interface (function names and parameters) and does not mean the functions themselves are
implemented as expected (parasitic ERC20 contracts are sometimes used to trick automated
trading bots.8 The end result is that bridges today do not allow arbitrary tokens; they
are built with allowlists of tokens that are human-reviewed and added by an authorized
developer. In this case, ensuring divisible exits are not more divisible than the underlying
token should be feasible, but we have not implemented it.

6.3 Markets
At the time of writing, the most common way of exchanging tokens on-chain is with an
automated market maker (AMM) (e.g., Uniswap). If Alice withdraws ETHXX and Bob is a
willing buyer with ETHL1, an AMM is not the best market type for them to arrange a trade.
AMMs use liquidity providers (LPs) who provide both token types: Alice has ETHXX but no
ETHL1 that she is willing to lock up (hence why she is trying to fast exit). Bob has ETHL1
but to be an LP, he would also need to have ETHXX from another user. However, this only
pushes the problem to how Bob got ETHXX from that user. The first user to sell ETHXX
cannot use an AMM without locking up ETHL1, which is equivalent to selling ETHXX to
herself for ETHL1. The second challenge of an AMM is the unlikely case that an RBlock fails
and ETHXX is worthless – then the LPs have to race to withdraw their collateral before other
users extract it with worthless ETHXX. It is better to use a traditional order-based market;
however, these are expensive to run on L1 [11]. One could do the matchmaking on L2 and
then have the buyer and seller execute on L1, but this reintroduces the griefing attacks we
have tried to avoid. For now, we implement a very simple one-sided market where Alice can
deposit her ETHXX and an offer price, and Bob can later execute the trade against. If Alice
is unsure how to price ETHXX, an auction mechanism could be used instead.

6.4 Low Liquidity or Non-Fungible Tokens
For tokens that have low liquidity on L1, or in the extreme case, are unique (e.g., an NFT),
fast exits do not seem feasible. All the fast exit methods we examined do not actually
withdraw the original tokens faster; they substitute a functionally equivalent token that is
already on L1. However, we can still help out with low-liquidity withdrawals. We should
consider why the user wants a fast exit. If it is to sell the token, they can sell the exit instead
of the token to any buyer that is L2-aware and willing to wait 7 days to take actual possession.
To sell to an L2-agnostic buyer, the seller can insure the exit with enough FAILPM to cover
the purchase price. In this case, the buyer does not get the NFT if the RBlock fails but they
get their money back.

8 “Bad Sandwich: DeFi Trader ’Poisons’ Front-Running Miners for $250K Profit.” Coindesk, Mar 2021.



M. Moosavi, M. Salehi, D. Goldman, and J. Clark 22:17

7 Concluding Remarks

This paper addresses a common “pain point” for users of L2 optimistic rollups on Ethereum.
The 7-day dispute period prevents users from withdrawing ETH, tokens, and data quickly.
Tradeable exits provide users with flexibility after they request a withdrawal. If they decide
7 days is too long, they can seek to trade their exit for ETHL1 or they can ask a contract to
accept their ETHXX by bundling it with insurance against the failure of the RBlock– this way
the contract does not have to be L2-aware. While some users might still prefer the features of
other withdrawal methods (centralized exchanges or solution like Hop), it is useful to make
the native rollup functionality as flexible as possible, especially for users who do not realize
that a withdrawal induces a 7-day waiting period until it is too late.

References
1 Jeremy Clark, Joseph Bonneau, Edward W Felten, Joshua A Kroll, Andrew Miller, and Arvind

Narayanan. On decentralizing prediction markets and order books. In Workshop on the
Economics of Information Security (WEIS), volume 188, 2014.

2 Didem Demirag and Jeremy Clark. Absentia: Secure multiparty computation on ethereum.
In Workshop on Trusted Smart Contracts (WTSC), pages 381–396. Springer, 2021.

3 Bryan Ford and Rainer Böhme. Rationality is self-defeating in permissionless systems. Technical
Report cs.CR 1910.08820, arXiv, 2019.

4 Nomic Foundation. Hardhat. https://hardhat.org, October 2022. (Accessed on 10/18/2022).
5 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur

Gervais. Sok: Layer-two blockchain protocols. In Financial Cryptography, 2020. doi:
10.1007/978-3-030-51280-4_12.

6 Larry Harris. Trading and exchanges: market microstructure for practitioners. Oxford, 2003.
7 John Hull, Sirimon Treepongkaruna, David Colwell, Richard Heaney, and David Pitt. Funda-

mentals of futures and options markets. Pearson Higher Education AU, 2013.
8 Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W

Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security Symposium, pages
1353–1370, 2018.

9 Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. Sok: Validating bridges as a
scaling solution for blockchains. Technical report, Cryptology ePrint Archive, 2021.

10 Sarah Meiklejohn. An evolution of models for zero-knowledge proofs. In EUROCRYPT
(invited talk), 2021.

11 Mahsa Moosavi and Jeremy Clark. Lissy: Experimenting with on-chain order books. In
Workshop on Trusted Smart Contracts (WTSC), 2021.

12 Paul Sztorc. Truthcoin. Technical report, Online, 2015.
13 Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain scaling using

rollups: A comprehensive survey. IEEE Access, 10:93039–93054, 2022.
14 Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro

Moreno-Sanchez, Aggelos Kiayias, and William J Knottenbelt. Sok: Communication across
distributed ledgers. In Financial Cryptography, 2021.

AFT 2023

https://hardhat.org
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12




Buying Time: Latency Racing vs. Bidding for
Transaction Ordering
Akaki Mamageishvili #

Offchain Labs, Zürich, Switzerland

Mahimna Kelkar1 #

Cornell University, New York, NY, USA

Jan Christoph Schlegel #

City, University of London, UK

Edward W. Felten #

Offchain Labs, Washington, D.C., USA

Abstract
We design TimeBoost: a practical transaction ordering policy for rollup sequencers that takes into
account both transaction timestamps and bids; it works by creating a score from timestamps and
bids, and orders transactions based on this score.

TimeBoost is transaction-data-independent (i.e., can work with encrypted transactions) and
supports low transaction finalization times similar to a first-come first-serve (FCFS or pure-latency)
ordering policy. At the same time, it avoids the inefficient latency competition created by an
FCFS policy. It further satisfies useful economic properties of first-price auctions that come with a
pure-bidding policy. We show through rigorous economic analyses how TimeBoost allows players to
compete on arbitrage opportunities in a way that results in better guarantees compared to both
pure-latency and pure-bidding approaches.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Transaction ordering, First-come-first-serve, First-price auctions

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.23

Related Version Full Version: https://arxiv.org/abs/2306.02179

Acknowledgements We are grateful to Lee Bousfield, Chris Buckland, Potuz Heluani, Raul Jordan,
Mallesh Pai, Ron Siegel, Terence Tsao as well as participants at the Swiss National Bank Technology
and Finance Seminar for interesting discussions and valuable feedback.

1 Introduction

Transaction ordering is critically important for financial systems – the order in which user
transactions are executed can directly impact the profits made by users. This motivates the
study of designing transaction ordering policies with useful properties.

In this work, we focus on ordering policies for centralized sequencers – meaning that a
single sequencer receives transactions from users and publishes an ordered sequence to be
used for execution. A transaction ordering policy here specifies how the resulting output
sequence depends on the contents and arrival times of transactions at the sequencer. Our
work provides rigorous economic analyses to justify the utility of our proposed policy.

1 This work was completed in the author’s role at Offchain Labs.

© Akaki Mamageishvili, Mahimna Kelkar, Jan Christoph Schlegel, and Edward W. Felten;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amamageishvili@offchainlabs.com
mailto:mahimna@cs.cornell.edu
mailto:jchschlegel@gmail.com
mailto:ed@offchainlabs.com
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://arxiv.org/abs/2306.02179
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Why consider a centralized sequencer? In addition to the centralized sequencer setting
being a potentially simpler model to study as a first step, there are two other main reasons
why we choose to do so in this work:

1. Existing use-cases are already centralized. Decentralized blockchains such as Ethereum
are still ephemerally centralized with respect to ordering – for a given block, similar
to a centralized sequencer, only a single miner/validator is in complete control of the
inclusion and ordering of transactions within the block. Similarly, current layer-2 “rollup”
protocols (such as Arbitrum and Optimism) also employ a centralized sequencer to order
transactions in a batch posted to the underlying Ethereum base-chain.

2. Ordering policies are mostly orthogonal to the problem of sequencer decentralization.
While decentralizing the sequencer is an important active research direction, we note
that a suitable transaction ordering policy can be chosen orthogonally to the method of
sequencer decentralization. In particular, the decentralized protocol can first be used to
agree on single pre-ordering or scoring of transactions, following which a specific ordering
policy can be applied. In other words, the output of the decentralized protocol can be
thought of simulating the input of a virtual centralized sequencer on which the ordering
policy gets applied.
An example of this is seen in the recent line of works on fair-ordering [3,8,9,11,20] – they
can be thought of as a decentralized implementation of a first-come-first-serve ordering
policy which combines local transaction orderings from many nodes.

Furthermore, while current centralized sequencer implementations are semi-trusted in
that they receive transactions in plaintext and are expected not to deviate from the specified
ordering policy or insert transactions of their own, we note that transaction data can be
hidden from the sequencer by using threshold decryption by a committee (i.e., the sequencer
only sees encrypted transactions and orders them, only after which a committee decrypts the
plaintext) or trusted hardware (such as Intel SGX). Through these techniques, the adversarial
behavior of the sequencer can be substantially restricted.

The study of ordering policies is important even when the sequencer is trusted (or is
suitably constrained as mentioned above) due to the presence of other profit-seeking entities
in the system. For instance, after the sequencer publishes state after execution of previous
transaction(s), arbitrage opportunities can be created; players in the system will compete
with each other to take advantage of these opportunities. Similar situations can also arise
due to state updates from external systems.

1.1 Existing Ordering Policies
Ordering policies used on blockchains today fall roughly into three categories described below.

First-come first-serve (FCFS). One natural ordering policy is the first-come, first-serve
(FCFS) rule. Here, transactions are sequenced in the same order that they were received
from users. There are several advantages to FCFS: to begin, it is simple to implement and
seems intuitively fair – after all, it is a commonly used policy even for real-world interactions.
FCFS also minimizes transaction latency: transactions can be continuously sequenced as
they arrive, and do not need to conform to the discrete granularity of blocks. The sequencer
in the layer-2 rollup Arbitrum employs an FCFS policy.

One major disadvantage of FCFS however, is that creates latency competition in the sense
that entities are incentivized to position themselves as close to the sequencer as possible in
order to be the first to react to any new market information. This is a well known and studied



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:3

problem within traditional financial systems. Indeed, high frequency trading (HFT) firms
invest millions of dollars into low-latency infrastructure that can operate sub-microsecond
or even finer scales; their trading accounts for roughly half of all trading volume [13]. This
inclination to latency investment is highly inefficient since the investment happens externally
to the system (as opposed to bidding; see below) and therefore cannot be used beneficially
within the system. Recent works [1, 17] have also shown the potential for similar strategic
manipulation within a pure FCFS protocol in the decentralized setting.

One crucial point to emphasize here is that this latency competition in FCFS does not
disappear even if transaction data is hidden (e.g., transactions are encrypted). This is because
any state changes (from the sequencer or even from external systems) can trigger a profit
opportunity wherein it is beneficial to have the quickest access to the sequencer. As a specific
example, an update on the trading price of a token can create an arbitrage opportunity
whose profit will go only to the player who can submit its transaction to the sequencer first2.
This kind of latency-based arbitrage has already been seen in Arbitrum, which implements a
centralized FCFS sequencer.

Per-block transaction bidding. A second natural policy is to group transactions into blocks,
then order transactions within a block based on their bid. Specifically, each transaction is
submitted along with a fee or bid; the sequencer now collects all transactions submitted
within some time interval and sequences them by the descending order of their bids. This
essentially simulates a first-price all-pay auction [10] (i.e., players bid independently; the
highest bid wins but all players need to pay their bid amount) to take advantage of a
particular arbitrage opportunity. Since players submit their bids independently, the bidding
policy can work as expected even when transactions are encrypted (since state or market
updates create arbitrage opportunities).

One advantage of a bidding policy (compared to FCFS) is that the payment is internal to
the system and therefore can be utilized within it to e.g., subsidize protocol operation costs.

When the block-time is large (e.g., 12s as in Ethereum), it is expected that for almost all
arbitrage opportunities, all interested players can post their bid within the time interval in
an attempt to take advantage of the opportunity. However, when the block-time is small
(this is typically the case in layer-2 protocols to increase scalability), perhaps surprisingly,
having a connection with lower latency can provide a substantial advantage. This is because
when the market update happens close to end of the block time, only players with a faster
connection will be able get their transaction included in the block; consequently, they may
be able to take advantage of the arbitrage opportunity with a smaller (or even a zero) bid.

Looking ahead, our TimeBoost policy (which combines both arrival times and bidding)
will enable arbitrageurs to prefer bidding even when block times are small, thereby allowing
the protocol to capture this value rather than it being lost to external latency infrastructure.

Block or MEV auctions. A third widely-used policy auctions off the complete rights to
choose and order transactions within a block. Here, the sequencer does not order transactions
itself but rather accepts block proposals from external players (often called block builders)
and chooses the proposal from the builder who pays the most. These auctions initially arose
from the realization that significant profit (often referred to as maximal (previously miner)
extractable value or MEV [2, 6]) can be extracted by manipulating the ordering of user

2 Another approach if the sequencer broadcasts state information in a random order to clients is to create
many dummy client copies, thereby increasing the chances that some copy gets the feed faster.

AFT 2023



23:4 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

transactions. In the past two years, through companies such as Flashbots and Bloxroute,
an MEV marketplace has been created on Ethereum outside of the protocol to connect
block proposers (entities in charge of proposing or sequencing a block) to block builders
(players who find MEV opportunities and order user transactions to take advantage of them)
– the result has been the extraction of hundreds of millions of dollars in profit from user
transactions [15,18].

While some MEV (such as arbitrage, which provides incentives for price discovery) is
benign and can be done without the knowledge of user transactions, other forms of MEV
extraction crucially rely on the transaction data. Recent works [18, 19] have shown such
MEV to be significantly detrimental to users. The emergence of such MEV extraction has
largely been attributed to the rationality of block proposers as well as the lack of regulation.
For example, in traditional financial systems, it is often illegal or at the very least heavily
constrained to profit from the knowledge of user transactions (for instance, payment-for-
order-flow (PFOF): the selling of user transaction data is illegal in the UK, and, while legal
in the US, still requires users to be provided with guarantees of “best execution”).

A design goal for our work is therefore to design ordering policies that are data-independent,
i.e., they do not use transaction data for ordering. This will allow them to be used even
when transactions are encrypted at the time of sequencing.

1.2 Our contributions
TimeBoost: An ordering policy that combines FCFS and bidding. We propose TimeBoost,
an ordering policy that combines both FCFS-style timestamps and first-price auction style
bids. Below, we describe several natural goals that went into our design.

1. Data independence. The policy should not utilize the transaction data for ordering.
This is a natural goal in order to support encrypted transactions and prevent data-
dependent MEV attacks on transaction ordering.

2. Low finalization time. The policy should be able to sequence transactions within
a short time g (the specific parameter can be set according to the application). This
is important to improve the user experience with the system since transactions will be
sequenced within time g after they are received.

3. Independence of irrelevant transactions. The ordering between two given transac-
tions should not depend on the presence of other transactions. This is useful to prevent
an adversary from inserting irrelevant transactions that results in flipping the ordering
between two target transactions. Importantly, this property also ensures that a transac-
tion submitter’s strategy need only consider transactions that are relevant to the party’s
goals – for example if Alice is trying to capture a particular arbitrage opportunity, she
need only worry about other transactions affecting that opportunity.

4. Inclination to spending via bids instead of latency infrastructure. As mentioned
before, investments into latency infrastructure are highly inefficient from the system
standpoint since the value spent cannot be utilized effectively by the system. Therefore,
a natural goal is to disincentivize latency investment and instead incentivize players to
bid for their transactions. Looking ahead, perhaps surprisingly, we find that the pure
bidding policy results in a larger latency competition than our TimeBoost policy which
combines bidding with FCFS style timestamps.

TimeBoost details. Intuitively, TimeBoost works by assigning scores to transactions based
on both their arrival times and their bid. The final ordering is taken to be descending in
the transaction scores. More specifically, for a transaction with arrival time t and bid b,



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:5

TimeBoost assigns it the score S(tx) = π(b) − t where intuitively π represents a function for
“buying time” – by increasing the transaction bid, users can reduce their effective timestamp
(or equivalently, increase their score). Section 3 describes how to choose the function π.

Importantly, there is a limit to how much time can be “bought” through the bid – in
particular, no transaction can outbid a transaction received some g time earlier. Such
a property is required to ensure the quick finalization of user transactions. At the same
time, transactions received less than g time before can always be outbid; this means that
arbitrageurs always have g time to compete for any arbitrage opportunity as opposed to a
pure bidding policy and will therefore prefer bidding over latency infrastructure investments.

We also show that TimeBoost satisfies all the useful economic properties of first-price
all-pay auctions. Further, we show that players spend exactly the same amount in total with
TimeBoost, as they would spend if only latency investment was allowed, except that most of
the investment is done through bidding and therefore can be captured within the protocol
for e.g., lowering user fees or for protocol development.

2 Ordering Policies

2.1 Preliminaries
A transaction tx that arrives at the sequencer can be characterized by a tuple (data, t, b)
where data represents the transaction data, t denotes the arrival time, and b denotes the
transaction bid (note that when transactions are of different sizes, b can be instead be
considered to be a bid per unit size). Let T denote the set of all possible transactions; in
principle this can be infinite or even uncountable (e.g., if arrival times are in R+) and our
results do hold for these cases. For practical use-cases, typically, arrival times can be assumed
to be in Q+ and bids can be assumed to be in N≥0.

An ordering policy now defines how a sequencer orders a finite set T ′ of transactions that
it has received. A formal definition is given below:

▶ Definition 1 ((Data-Independent) Ordering Policy). An ordering policy (or algorithm) P
takes as input a finite subset T ′ ⊆ T of transactions and outputs a linear ordering P(T ′).
For tx ∈ T ′, let P(T ′, tx) denote the position of transaction tx in the ordering P(T ′). In
other words, given T ′ and txa, txb ∈ T ′, P outputs txa before txb if P(T ′, txa) < P(T ′, txb).

A policy is further called data-independent if it does not make use of the transaction data
(i.e., it only uses the arrival time and the bid).

Since we want our ordering policies to not be based on the transaction content, we only
consider data-independent policies for the rest of the paper. For simplicity, we can therefore
represent a transaction tx simply by the tuple (tx.t, tx.b). Furthermore, since ties can be
broken by some chosen technique, without loss of generality, we can also assume (tx.t, tx.b)
tuples are unique. While the tie-breaking can be dependent on e.g., transaction ciphertext
or metadata, this does not affect our analysis and therefore can be safely ignored for the
purpose of our paper.

2.2 Independence of Irrelevant Transactions (IIT)
A useful property for our ordering policy to have is to prevent the ordering decision between
transactions txa and txb to change depending on what other transactions are being ordered;
in other words, the ordering decision should not depend on irrelevant transactions. Intuitively,
this is done to ensure that an adversary cannot create dummy transactions in order to flip

AFT 2023



23:6 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

the ordering decision between two transactions, and so that a party’s bidding strategy can
ignore transactions irrelevant to that party. We define this property of independence of
irrelevant transactions (IIT) below.

▶ Definition 2 (Independence of Irrelevant Transactions). We say that a policy P satisfies
independence of irrelevant transactions (IIT) if for any pair of transactions txa, txb and any
pair of finite subsets T1, T2 ⊂ T , the following holds:

P({txa, txb} ∪ T1, txa) < P({txa, txb} ∪ T1, txb)
⇔ P({txa, txb} ∪ T2, txa) < P({txa, txb} ∪ T2, txb).

2.3 IIT Implies a Score-Based Policy
We now show that the IIT property implies that a score-based policy needs to be used – that
is, also needs to be independent of the set T ′ being ordered.

Intuitively, a score-based policy works as follows: for transaction tx, it assigns a score
S(tx) based only on the arrival time tx.t and the bid tx.b. Here too, scoring ties can be
broken in a pre-specified manner. The output sequence is then taken to the descending order
of transaction scores. Score-based policies are formally defined below:

▶ Definition 3 (Score-based policy). A score is a function S : T → R that assigns to each
possible transaction tx ∈ T a score S(tx). An ordering policy P is called score-based if there
exists a score function S such that P sorts transactions according to S. In other words, there
exists S such that for any T ′ ⊆ T and txa, txb ∈ T ′, it holds that P(T ′, txa) < P(T ′, txb) if
and only if S(txa) > S(txb).

For finite T , we can directly show that IIT implies score-based policies. To show the
result for infinite sets, we need to employ the following set-theoretic axiom (defined below)
by Cantor [4]. Similar definitions have also been used in in the context of utility theory [7]

▶ Property 4 (Cantor’s Axiom [4]). We say that a pair (P, T ) satisfies Cantor’s axiom if
there exists a countable set T ′ ⊆ T such that for any pair of transactions txa, txb ∈ T there
exists an instance of P in which some transaction in T ′ is ordered between txa and txb.

Formally there is a finite set T ′′ ⊂ T with txa, txb ∈ T ′′ and a txc ∈ T ′ ∩ T ′′ (possibly
txc = txa or txc = txb) such that

P(T ′′, txa) ≤ P(T ′′, txc) ≤ P(T ′′, txb),

or

P(T ′′, txb) ≤ P(T ′′, txc) ≤ P(T ′′, txa).

We can now establish the following correspondence between IIT and score-based policies.

▶ Theorem 5 (IIT ⇔ Score-Based). Let T denote the set of all transactions. The following
hold for any ordering policy P:
1. If T is countable, then P satisfies IIT if and only if it is score-based.
2. If T is uncountable and (P, T ) satisfies Cantor’s axiom, then P satisfies IIT if and only

if it is score-based.

Proof. It is straightforward to see that a score-based algorithm satisfies the independence of
irrelevant transactions (since the score of a transaction depends only on itself and not other
transactions).



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:7

For the opposite direction, we first prove the second part of the theorem (the uncountable
case). We define an order ≺ over T where

txa ≺ txb :⇔ P({txa, txb}, txa) < P({txa, txb}, txb).

Since P({txa, txb}) is a well-defined for any two transactions txa, txb ∈ T , the order ≺ is
complete and anti-symmetric. By independence and since P({txa, txb, txc}) is a well-defined
order for any three transactions txa, txb, txc ∈ T we have

txa ≺ txb ≺ txc

⇒(P({txa, txb}, txa) < P({txa, txb}, txb) and P({txb, txc}, txb) < P({txb, txc}, txc))
⇒P({txa, txb, txc}, txa) < P({txa, txb, txc}, txb) < P({txa, txb, txc}, txc)
⇒P({txa, txc}, txa) < P({txa, txc}, txc)
⇒txa ≺ txc

Therefore, ≺ is transitive. We let txa ⪯ txb iff txa ≺ txb or txa = txb.
The Cantor axiom and independence imply that there is a countable T ′ ⊂ T so that the

order ≺ satisfies that for any txa, txb ∈ T there is a txc ∈ T ′ such that

txa ≺ txb ⇒ txa ⪯ txc ⪯ txb

By Theorem 1.1 in [5], this, in turn, implies that there is a numerical representation of
the order ≺ which is a score S : T → R such that for any two transactions txa, txb ∈ T we
have txa ≺ txb if and only if S(txa) > S(txb).

For the first part of the theorem, note that the previous argument also works for a
countable T and in that case we can choose T ′ = T where the Cantor axiom is now trivially
satisfied. ◀

▶ Remark 6. The above result extends to the case where the policy creates a weak ordering
(which can be made strict through a tie-breaking procedure) rather than a strict ordering
of transactions. In that case, Definitions 2 and 3 are adapted to weak orders, and we get a
score that might assign the same value to two different transactions. The relaxation to weak
orders is useful for the case that the set of transactions is uncountable and not a subset of
the real numbers (e.g. if T = R2

+). In that case, the Cantor axiom is impossible to satisfy for
strict orders but satisfiable for weak orders.

Discussion. We note that in our context, assuming T is countable or even finite is safe, as
there is a finite smallest time increment for timestamps and a finite smallest bid increment.
Moreover, the ordering policy deals with ordering transactions in a finite time interval and
bids will be upper-bounded by the maximum value in the system (e.g., the maximum number
of tokens). However, for the subsequent economic analysis, it will be more convenient to
work with the continuum where differences in time stamps and bids can be arbitrarily small.

Having proven that score-based algorithms are essentially the only ones satisfying the
independence of irrelevant transactions property, we turn to selecting the most natural one
among them. Note that FCFS is the scoring function that corresponds to scoring transactions
by their timestamp only while scoring transactions only by bids corresponds to the first-price
auction solution. In the next section, we show how our scoring policy TimeBoost corresponds
to a simple mixture of these two strategies.

AFT 2023



23:8 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

3 TimeBoost Description

We now formally define the TimeBoost ordering policy in this section. As mentioned before,
we want TimeBoost to satisfy the independence of irrelevant transactions property (i.e., it
needs to be a scoring function based on Theorem 5) and also provide low confirmation-latency
for transactions. Therefore, we will only allow TimeBoost to consider transactions within a
time g interval; this granularity g can be set suitably based on the particular usecase.

Basic model. Suppose there are n transactions in the g time interval, labeled with
tx1, tx2, · · · txn, and sorted by increasing arrival time. Each transaction txi is character-
ized by a pair of a timestamp or arrival time, denoted by ti, and a bid, denoted by bi ≥ 0.
Formally, we view a transaction as a tuple of non-negative reals, txi = (ti, bi) ∈ R+ × R≥0.

TimeBoost scoring function. Intuitively, for the TimeBoost scoring function, we propose
to allow users to “buy time” using their transaction bid; in other words, transactions will be
sorted by increasing timestamps (as in FCFS) but now users are allowed to decrease their
effective timestamp (i.e., increase their score) through bids.

Formally, the score of a transaction txi = (ti, bi) is computed as follows:

S(ti, bi) = π(bi) − ti. (1)

where π(bi) denotes the priority or advantage gained by bidding bi. Transactions are now
chosen in descending order of their scores.

Choosing a bidding function π. To choose the bidding function π for TimeBoost, we start
by defining several natural properties that should be satisfied.
1. π(0) = 0. This normalization implies that paying 0 bid gives no additional advantage.
2. π′(b) > 0 for all b ∈ R+ where π′ denotes the first derivative of π with respect to the bid.

This implies that the priority increases with the bid, which gives incentive to bid more
for a higher priority.

3. limb→∞ π(b) = g. This implies that no transaction can outbid a transaction which arrived
g time earlier (but any time advantage of less than g can be outbid). Through this, we
can guarantee that the transaction ordering can be finalized within time g.

4. π′′(b) < 0 for all b ∈ R+ where π′′ denotes the second derivative of π with respect to
the bid. This means that priority is concave, or equivalently, the cost of producing the
(bidding) signal is convex. This is generally necessary to obtain the interior solution of
the equilibrium condition.

The simplest bidding function satisfying the above constraints is the function:

π(bi) := gbi

bi + c
(2)

where c is some constant. We will use this as the bidding function for TimeBoost. In the next
section, we provide an economic analysis for TimeBoost. For this, we will assume that c = 1.

Complexity. For any incoming transaction tx = (t, b), the sequencer can finalize tx after a
delay of g − π(bi). This is because after this point, no later transaction can outbid tx. If
transactions arrive at rate r, the space complexity of the sequencing algorithm is Θ(r) and
the computational cost per transaction is Θ(log r), assuming pending transactions are stored
in a priority queue, ranked by score.



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:9

3.1 TimeBoost Economic Analysis Overview
We now describe the model for analyzing the economics for our TimeBoost ordering policy.
The next two sections will describe this analysis in detail.

Basic model. Consider an arbitrage opportunity that occurs at some time (w.l.g., this can
be taken as time 0). Users (from now on referred to as players) need to now take a decision
on (1) how to send their transaction to the sequencer; this corresponds to the investment in
latency; and (2) how much extra to bid for their transaction to get higher priority. We will
analyze a simple economic model of this decision problem.

Assume that it costs user i the amount ci(t) to get its transaction received by the
sequencer t time after the arbitrage opportunity arises. The only requirement on ci(t), for
now, is that it is decreasing in increasing t. When the arbitrage opportunity arises, a player
i has a valuation vi to have its transaction included for execution the earliest, among those
transactions contending for the same opportunity.

Analysis organization. We begin with an analysis with two players in Section 4. Within
this, we consider different models based on when the latency investment needs to occur.
Broadly, we consider two models for latency investment: ex-ante (Section 4.1) and ex-post
(Section 4.2). Ex-ante means that the latency investment needs to happen before learning
the arbitrage opportunity while ex-post means that the latency investment can occur after
learning about the arbitrage opportunity.

In Section 5, we generalize our results to many competing players.

4 Analysis of TimeBoost with 2 Players

As a starting point, assume that there are two players with valuations v1 and v2, distributed
as per the cumulative distribution functions (CDFs) F1 and F2. That is, the probability that
the valuation of player i is less or equal to x is equal to Fi(x).

For each valuation v, the player may choose their specific latency investment. We can
model this as a function ti : V → R, such that, ti(v) is the latency / time chosen by a player
i with valuation v. For simplicity, assume that the cost functions and value distributions are
the same: ci(t) = c(t) and Fi = F . Throughout the paper, we assume that F : [0, 1] → [0, 1]
is a uniform distribution with Fi(x) = x iff x ∈ [0, 1], for i ∈ {1, 2}, when final numerical
values are derived. Obtaining numerical values for different distribution functions is very
similar to that of uniform distribution, but we choose a uniform for simplicity of exposition.
However, most of the computations are done for general distribution functions.

We now consider two different assumptions regarding the investment in latency improve-
ment. In the first model (ex-ante), we assume that the players need to invest in their latency
infrastructure in advance: they acquire or rent servers close to the sequencer prior to knowing
the value of the arbitrage opportunities they are competing for. In the second (ex-post)
model, we assume that the players are able to invest in the latency after they learn about
their valuation of the arbitrage. This corresponds to the case where the arbitrage opportunity
itself takes some time to be realized3. In this case, the transaction sender can schedule its
transaction through the third-party service, which guarantees the delivery of the transaction

3 Example of such an opportunity is a 12-second delay on the Ethereum network for a transaction to be
scheduled.

AFT 2023



23:10 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

within some time interval, once the arbitrage opportunity is realized. In both cases, bidding
is naturally assumed to be an interim decision, and in fact, one of the biggest advantages, as
the valuation is already learned.

4.1 Ex-Ante Latency Investment
In this model, players learn their valuations only after they have already invested in latency
infrastructure. If players can only compete through latency, the interaction between them
becomes a static game. We study equilibria solutions of these games. A similar setting is
considered in [16]. The results obtained in the following two subsections are concrete cases of
folk results in the microeconomic theory; however, we include their proofs for completeness.

4.1.1 Only latency investment
As a simple first step, we start by analyzing the game where only latency investment is
allowed. Let xi be the amount invested in latency by player i (so that he obtains a delay
of ti(xi)). Let Vi denote the valuation random variable of player i. Then, player i has the
following ex-ante payoff:

Payoffi =


E[Vi] − xi if player invests strictly more than the other player
1
2 E[Vi] − xi if he invests an equal amount (assuming random tie-breaking)
−xi otherwise

First, we note that there is no pure strategy Nash equilibrium solution of the game,
in which player strategy sets consist of R+. It is easy to show this by case distinction on
valuations: there are simple deviating strategies in each case. Next, we focus on the mixed
equilibrium solution and obtain the following result.

▶ Proposition 7. There is a symmetric equilibrium in mixed strategies where each player i

chooses xi uniformly at random on the interval (0, E[Vi]).

Proof. By construction, the payoff of player j of playing xj ≤ E[Vj ] against the uniform
strategy on (0, E[Vi]) is

F (xj)E[Vj ] − xj = xj

E[Vi]
E[Vj ] − xj = 0.

Choosing a strategy xj > E[Vj ] gives a negative pay-off. Therefore, each 0 ≤ xj ≤ E[Vj ] is
the best response of player j, and mixing uniformly among them is also the best response. ◀

The above-described equilibrium is unique up to a change of strategy on a null set and in
any mixed equilibrium, both players obtain the same payoffs as in this equilibrium. Note
that the result is independent of the latency cost function. The only property used is that
if a player invests more than the other player in the latency technology, its transaction is
scheduled earlier.

4.1.2 Budget constraints
We now model the fact that players may not have access to an arbitrary amount of money
they need to invest to improve their latency, but are instead are constrained by a budget.
Let Bi denote the budget of player i, meaning that player i cannot spend more than Bi. We
consider an asymmetric case where one (weak) player has a budget B1 < E[Vi] and the other



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:11

(strong) player has a larger budget with B2 > B1. First, note that similar to the previous
section with unlimited access to money, there is no pure strategy Nash equilibrium. Therefore,
we switch to mixed strategy equilibrium. Let Fi denote the probability distribution of playing
different strategies.

▶ Proposition 8. There exists a mixed Nash equilibrium solution in the game in which the
weak player receives a payoff of 0 and the strong player receives a payoff of E[Vi] − B1.

Proof. The following strategy profile in which the first player plays according to the following
(mixed) strategy:

F1(x) =


x

E[Vi] + E[Vi]−B1
E[Vi] , x ∈ (0, B1],

E[Vi]−B1
E[Vi] , x = 0,

1, x > B1,

the second player plays according to

F2(x) =
{

x
E[Vi] , x ∈ [0, B1),
1, x ≥ B1,

is a mixed strategy equilibrium. The first, weak player obtains an expected payoff 0 for any
choice of 0 ≤ x1 < B1. The second, strong player obtains an expected payoff of E[Vi] − B1
for any choice 0 < x2 ≤ B1. Choosing x2 > B1 is wasteful for the second player and will
not occur in equilibrium. Thus, both players are indifferent between all pure strategies in
support of F1 resp. F2 and for player 2 choosing an action outside of the support of F2 is
dominated. The mixed strategies form a Nash equilibrium. ◀

Similarly to the unconstrained case, the above-described equilibrium is unique up to a
change of strategy on a null set and in any mixed equilibrium, both players obtain the same
payoffs as in this equilibrium. Also similarly to the previous section, the result is independent
of the latency cost function. The only property to derive this result is that if a player invests
more than the other player in the latency technology, its transaction is faster (has a lower
timestamp).

4.1.3 Ex-ante Latency with Interim Bidding
We now analyze the model where both latency and bidding are allowed but the latency is
ex-ante. That is, investment in latency happens before players learn their valuations but
after learning their valuation players can use bidding to improve the transaction score.

We consider a version where players learn the other players’ latency investment decisions
before bidding. This models the fact that players will typically play the game repeatedly
and can therefore observe latency levels of each other.

In the following let x = (x1, x2) be the latency investment levels chosen by the two bidders
and let ∆ := t2(x2) − t1(x1) be the corresponding difference in latency. W.l.o.g. assume
∆ ≥ 0. First, we consider the case that ∆ = 0:

▶ Proposition 9. There is a completely separating equilibrium of the bidding game when both
bidders have made the same ex-ante investment.

Proof. Given in Section 4.1.4 ◀

AFT 2023



23:12 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.2

0.3

0.4

0.5

Figure 1 Example of equilibrium signaling functions for g = 10 and ∆ = 0.1. Timestamps are
normalized so that t2 = 0. The blue function is the equilibrium signal π1(v) − t1 for bidder 1 as a
function of the valuation. The red function is the equilibrium signal π2(v) − t2 for bidder 2 as a
function of the valuation.

Next, we consider the case that ∆ ̸= 0. For the case of different ex-ante investment we
get partially separating equilibria where bidders do not bid for low valuations and bid for
high valuations. The bidding strategies are asymmetric in general. However, for sufficiently
large g the equilibrium becomes approximately symmetric and approximately efficient. See
Figure 1 for a graphical illustration.

▶ Proposition 10. There is an equilibrium of the bidding game which is separating conditional
on bidding: There is a threshold

√
∆

g−∆ , such that a bidder does not bid if his valuation is
below the threshold and bids if his valuation is above the threshold. Conditional on bidding,
the high latency bidder i produces a higher signal than the low latency bidder j for equal
valuations: πi(v) − ti > πj(v) − tj , for v >

√
∆

g−∆ .

Proof. Given in Section 4.1.4 ◀

The equilibrium analysis in Propositions 9 and 10 indicates how efficient our transaction
ordering policy is as a function of the latency investment of bidders. If bidders have the same
latency we have a standard all pay auction which yields a fully efficient outcome. If there is
a difference in latency we have no bidding for low valuation bidders and approximately equal
signals produced for equal valuations for high valuation bidders. Conditional on entry, low
latency bidders underbid and high latency bidders overbid relative to the standard all pay
strategies. Efficiency depends on the latency difference and the g parameter. If g is chosen
sufficiently large the auction is approximately efficient. A too low g can be detected by low
bidding activity. Hence our transaction policy can strike a balance between fairness, low
latency and efficiency if properly parameterized.

4.1.4 Proofs
Proof of Proposition 9. We want to determine bidding signals π1(v1, ∆) and π2(v2, ∆),
which are functions of valuations and the difference in latency. For a given ∆ denote the
inverse of π1(·, ∆) and π2(·, ∆) by ṽ1(·, ∆) and ṽ2(·, ∆). Then bidder 1 solves at the interim
stage

max
π≥0

Pr[π − t1(x1) ≥ π2(v2, x) − t2(x2)]v1 − π

g − π
= F (ṽ2(π + ∆, ∆))v1 − π

g − π
,



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:13

We obtain the first order condition:

f(ṽ2(π + ∆, ∆))v1
∂ṽ2(π + ∆, ∆)

∂π
= g

(g − π)2

For the uniform distribution, this simplifies to:

v1
∂ṽ2(π + ∆, ∆)

∂π
= g

(g − π)2 .

Similarly, for bidder 2 we obtain

v2
∂ṽ1(π − ∆, ∆)

∂π
= g

(g − π)2 .

The two equations give a system of differential equations that need to be solved for π1 and
π2 or alternatively for ṽ1 and ṽ2. Alternatively, we can write the system as:

ṽ1(π, ∆)∂ṽ2(π + ∆, ∆)
∂π

= g

(g − π)2 . (3)

ṽ2(π, ∆)∂ṽ1(π − ∆, ∆)
∂π

= g

(g − π)2 . (4)

The solution to (3) and (4) in case of equal investment (so that ∆ = 0) and a symmetric
equilibrium is given by the following formula:

ṽ1(π, 0) = ṽ2(π, 0) =

√
2
∫ π

0

g

(g − π)2 dπ =
√

2π

g − π
. (5)

We solve for the signal as a function of the valuation:

v2 = 2π

g − π
⇔ π = gv2

2 + v2 . ◀

Proof of Proposition 10. When x1 ̸= x2, we can first sum up (3) and (4) to obtain a
differential equation for the expected payoff v1v2:

d(v1(π)v2(π + ∆))
dπ

= g

(g − π)2 + g

(g − π − ∆)2 . (6)

Integrating both sides of the differential equation above gives the solution:

v1(π)v2(π + ∆) = π

(g − π) + π + ∆
g − π − ∆ + K. (7)

To determine the constant we need to determine boundary conditions. For bidder 1, at the
threshold where he is indifferent between bidding and not bidding, we have π1 = 0 and for
bidder 2, at the threshold where he is indifferent between bidding and not bidding, he needs
to overcome the handicap, we have π2 = ∆. At the threshold bidder 2 should make the same
profit as from pooling,

v1(0)v2(∆) = ∆
g − ∆ ⇒ K = 0.

AFT 2023



23:14 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Combining (7) and (4) we obtain a separable differential equation:

dv1(π, ∆)
v1(π, ∆) = dπ

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
. (8)

Combining (7) and (3) we obtain another separable differential equation:

dv2(π + ∆, ∆)
v2(π + ∆, ∆) = dπ

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
. (9)

Integrating both parts of the equation (8) solves the (logarithm of) the value as a function
of the bid:

ln(v1(π)) − ln(v1(0)) =
∫ π

0

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ.

Similarly, integrating both parts of the equation (9) solves the (logarithm of) the value
as a function of the bid:

ln(v2(π + ∆)) − ln(v2(∆)) =
∫ π

0

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ.

To determine the marginal valuations v1(0) and v2(∆) at which the two bidders start
bidding, note that the support of πi − ti and that of πj − tj need to coincide for valuations
where we have separation of types. Therefore, v1(0) = v2(∆). Since v1(0)v2(∆) = ∆

g−∆ it

follows that v1(0) = v2(∆) =
√

∆
g−∆ . This is the threshold where bidders start bidding. It

follows that for ∆ ̸= 0

v1(π) =

√
∆

g − ∆ exp
(∫ π

0

g

(g − π − ∆)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ

)

and

v2(π) =

√
∆

g − ∆ exp
(∫ π−∆

0

g

(g − π)2

(
π

g − π
+ π + ∆

g − π − ∆

)−1
dπ

)
.

To compare the equilibrium signals π1(v) − t1 and π2(v) − t2 for v >
√

∆
g−∆ , we need to

compare π1(v) + ∆ to π2(v).
From the expressions for the valuations as a function of the bid, we can observe (observe

that g
(g−π−∆)2 ≥ g

(g−∆)2 ) that

v1(π) > v2(π + ∆),

for π > 0. It follows that

π1(v) ≤ π2(v) − ∆,

for v ≥
√

∆
g−∆ . ◀



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:15

4.2 Ex-Post Latency with Bidding
We now analyze the ex-post model with bidding; here both the latency investment, and
the bid can be made after the valuation is observed. First, we start with only the latency
investment decision. The expected utility of player i is equal to:

Pr[t(vi) < t(vj)]vi − c(t(vi)),

where j ∈ {1, 2} \ i.
We can look at this from a dual perspective: by v(t) we define the inverse of t(v). This is

the so-called Revelation Principle. Instead of some function of the type, we report our type
directly. Then, the optimization problem becomes:

max
v

Pr[v ≥ v2]v1 − c(t(v)). (10)

By replacing the probability with F (v), we get that it is equivalent to

max
v

F (v)v1 − c(t(v)).

By the first order condition, we get:

v1f(v) − c′(t(v))t′(v)|v=v1 = 0,

where f is a density function of the valuation distribution F . By plugging in v = v1, it is
equal to:

v1f(v1) − c′(t(v1))t′(v1). (11)

For the uniform distribution and cost function c = 1
t , first order condition gives the

following differential equation:

v1 + t′(v1)
t2(v1) = 0. (12)

Solving this equation gives t(v) = 2
c1+v2 . By the boundary condition that 0 valuation

type should wait infinitely (or equivalently pay 0 in the latency), we obtain the value of the
constant in the solution: c1 = 0. Therefore, cost incurred is equal to 1

t = v2

2 . On average
each player pays:∫ 1

0

v2

2 f(v)dv|10 = 1
6 ,

for better latency, before learning their types. The cost of producing score s = gm
m+1 − t is:

c(s) := m + 1
t
. (13)

We decompose total expenditure into 2 parts, for bidding and for time, by representing
m and c(t(v)) as functions of v and taking integrals:

b(g) :=
∫ 1

0
m(v)f(v)dv and

∫ 1

0

1
t(v)f(v)dv.

▶ Proposition 11. The limit of b(g) when g tends to infinity is equal to 1
6 . b(g) is an

increasing function in g, for g large enough.

AFT 2023



23:16 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Proof. Given in Section 4.2.1 ◀

The proposition implies that by taking large enough g, the system extracts almost all
value invested in the latency through bidding. Starting from some threshold value on g,
extraction increases with increasing g.

We can verify whether the constructed equilibrium is unique by checking the conditions
given in [12].

▶ Example 12. We can calculate a few values of b(g). In particular, b(1000) ≈ 0.1294, meaning
a player pays approximately 77% of the total expenditure in bids, and b(10000) ≈ 0.1537,
meaning a player pays approximately 92% of the total expenditure in bids.

Note that in the proof of the proposition 11, the total investment in both latency and
bidding, c(v), is the same value v2

2 , as in the case of only investing in the latency. We
show that this is not a coincidence. In general, assume that there is an arbitrary signaling
technology described by an increasing, differentiable cost function C(s). The following result
shows the revenue equivalence of ex-post bidding:

▶ Proposition 13. Both players spend the same amount on average for any cost function C.

Proof. Given in Section 4.2.1 ◀

The amount spent depends only on the value belief distribution function.

4.2.1 Proofs
Proof of Proposition 11. The optimization problem of the player in the equilibrium is to
minimize cost, subject to the score equation constraint. By plugging in t = gm

m+1 − s, we
obtain the minimization problem:

min
m

(
m + m + 1

gm − s(m + 1) =: x(m)
)

.

The first order condition on x(m) gives:

dx(m)
dm

= 1 + gm − s(m + 1) − (m + 1)(g − s)
(gm − s(m + 1))2 = 1 − g

(gm − s(m + 1))2 = 0, (14)

gives that the value of m that minimizes the cost function. The solutions of the last equation
are gm − sm − s = √

g equivalent to m = s+√
g

g−s and gm − sm − s = −√
g equivalent to

m = s−√
g

g−s , or the boundary condition m = 0. For m = 0, the value x(0) = − 1
s , while for

m = s+√
g

g−s , the value

x

(
s + √

g

g − s

)
=

s + √
g

g − s
+

s+√
g

g−s + 1

g
s+√

g

g−s − s( s+√
g

g−s + 1)
=

1 + 2√
g + s

g − s
.

Accordingly, the marginal cost of producing signal s is:

c′(s) =
{ (1+√

g)2

(g−s)2 , if s > −√
g,

1
s2 , if s ≤ −√

g.



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:17

We solve a similar differential equation as (11), just with different marginal cost function
c′, and instead of time function t, we have a score function s of valuation v. The differential
equation becomes:

vf(v) − c′(s)s′(v) = 0. (15)

We need to solve for the s(v) function. For types v with 2
v2 ≥ √

g who only use latency
we have the same solution as before

s(v) = − 2
v2 .

The marginal type who is indifferent between using only latency and using a combination
of the two technologies is given by

u =
√

2
√

g
.

which gives the boundary condition s(u) = −√
g for the differential equation describing the

behavior of types who choose a signal s ≥ −√
g:

v =
(1 + √

g)2

(g − s)2 s′(v).

We obtain the solution

s(v) = (4c1g3/2 + 2c1g2 + 2c1g + g(v2 − 2) − 4√
g − 2)/(2c1g + 4c1

√
g + 2c1 + v2). (16)

The value of the constant c is obtained from the boundary condition that a zero-value
player does not invest and it is equal to

c1 = 1
(1 + √

g)2 .

Therefore, plugging in the constant value in the solution (16) and simplifying it gives:

s(v) =
gv2 − 4√

g − 2
v2 + 2 .

Plugging this into the formula of c(s), gives the cost value as a function of valuation v:

c(v) =
1 + 2√

g + gv2−4√
g−2

v2+2

g − gv2−4√
g−2

v2+2

= v2

2 .

Separate expenditure in the bidding is calculated by the following formula:

b(g) =
∫ 1

u

m(v)f(v)dv =
∫ 1√

2√
g

gv2−4√
g−2

v2+2 + √
g

g − gv2−4√
g−2

v2+2

dv =

∫ 1√
2√
g

v2(g + √
g) − 4√

g − 2
2g − 4√

g − 2 dv =

1
2g + 4√

g + 2

(
g + √

g

3 (1 − 2
√

g

√
2

√
g

) − (4√
g + 2)(1 −

√
2

√
g

)
)

.

The dominant term in the nominator above is g and also in the denominator, it is 6g.
Therefore, limg→∞ b(g) = 1

6 . ◀

AFT 2023



23:18 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Proof of Proposition 13. We are interested in the equilibrium signaling strategy s(v). Sup-
pose that this strategy is increasing (so no pooling of types) and differentiable. Then, we
can define a differentiable function

C̃(v) := C(s(v)).

To figure out what C̃(v) is, we have to consider an optimization problem with the first player:

max
v

Pr[v ≥ v2]v1 − C(s(v)) = Pr[v ≥ v2]v1 − C̃(v).

Taking first order conditions with respect to v gives:

v1f(v) − C̃ ′(v)|v=v1 = 0,

that is,

v1f(v1) = C̃ ′(v1).

For the uniform distribution:

v1 = C̃ ′(v1).

Using the boundary condition C̃(0) = 0 and integrating we get

C̃(v1) = v2
1/2.

More generally:

C̃(v1) =
∫ v1

−∞
vf(v)dv. ◀

5 Analysis of TimeBoost with n players

In this section, we consider n players with the same valuation distribution as in the 2 players
case. The optimization problem is now the following:

max
v

Pr[v ≥ max{v2, · · · , vn}]v1 − c(t(v)),

similarly to (10). By replacing the probability with cumulative distribution, this is equivalent
to:

max
v

Fn−1(v)v1 − c(t(v)),

where Fn−1(x) is a cumulative distribution function of the random variable X :=
max{X1, · · · , Xn−1}. By independence we have

Fn−1(x) = F (x)n−1.

The first-order condition and plugging in v = v1 gives the following differential equation,
similar to (11):

fn−1(v1)v1 − c′(t(v1))t′(v1) = 0,



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:19

where fn−1(v1) = (n − 1)vn−2
1 is a density function of maximum among n − 1 uniformly

distributed random variables. The differential equation w.r.t. t(v) becomes:

(n − 1)vn−1
1 + t′(v1)

t2(v1) = 0.

Solving the equation gives t(v) = n
c+(n−1)vn . The same boundary condition ensures that

c = 0, that is, t(v) = n
(n−1)vn . Each player pays:

n − 1
n

∫ 1

0
vndv = n − 1

n

vn+1

n + 1 |10 = n − 1
n(n + 1) .

Together, the players pay n−1
n+1 , that converges to 1 as n converges to infinity. Note that

the first place in the transaction order is given to the maximum-value player. The average
valuation of the maximum value player is n

n+1 , order statistics. This value also converges to
1 as n tends to infinity.

The analysis is the same as in the case of 2 players, until the differential equation that
solves score function s. Instead of (15), for n players we solve:

(n − 1)vvn−1 − c′(s)s′(v) = 0. (17)

For types v with n
(n−1)v2 ≥ √

g, who only use latency, we have the same solution as before

s(v) = − n

(n − 1)v2 .

Marginal type investing in bidding is:

u =
√

n

(n − 1)
√

v
.

Plugging in functional forms of c and s in (17) gives the same limit results as in Pro-
position 11. Next, we show a revenue equivalence for n players. The argument is similar
to 2 players’ case. Assume that there is an arbitrary signaling technology described by an
increasing, differentiable cost function C(s).

▶ Proposition 14. All n players spend the same amount on average for any cost function C.

Proof. We are interested in the equilibrium signaling strategy s(v). Suppose that this
strategy is increasing (so no pooling of types) and differentiable. Then, we can define a
differentiable function

C̃(v) := C(s(v)).

To figure out what C̃(v) is, we have to consider an optimization problem of the first player:

max
v

Pr[v ≥ max{v2, · · · , vn}]v1 − C̃(v) = F (v)n−1v1 − C̃(v).

Taking first order conditions with respect to v:[
(n − 1)v1f(v)F (v)n−2 − C̃ ′(v)

] ∣∣
v=v1

= 0,

For the uniform distribution, we get:

(n − 1)vn−1
1 = C̃ ′(v1).

AFT 2023



23:20 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

Using the boundary condition C̃(0) = 0 and integrating we get

C̃(v1) = (n − 1)vn
1

n
.

More generally:

C̃(v1) =
∫ v1

−∞
(n − 1)vf(v)F (v)n−2dv. ◀

6 Comparison of TimeBoost with a Pure Bidding Policy

We now compare TimeBoost to what to a pure bidding policy. Recall that for the bidding
policy, all transactions sent in fixed time intervals of length g are collected, and sorted in
decreasing order of their bids. This effectively simulates a first-price all-pay auction for each
interval. We note this can be thought of as a quantized version of TimeBoost, because it
produces the same sequence that would be produced by first rounding off each transaction’s
arrival timestamp to the nearest multiple of g and then applying TimeBoost.

Generically speaking, a first-price auction where only the winning bidder pays and first-
price all-pay auctions are both payoff equivalent for Bayesian-Nash incentive compatible
mechanisms, (see e.g., [14]). In our setting, the following result holds for each individual
arbitrage opportunity.

▶ Proposition 15 (see [14]). The expected payoff of the bidding game where the only the
highest bidder pays their bid is equal to the expected payoff in the bidding game where the
highest bidder wins but all players pay their bids, independently of valuation distributions.

For simplicity, to compare TimeBoost with a pure bidding policy, we consider two players.
It is straightforward to generalize to more parties. For a given arbitrage opportunity, two
cases arise as described below depending on whether transactions can be submitted within
the same g-time interval as the arbitrage opportunity or not:
1. Both players can submit their transactions within the same g interval. For the pure bid-

ding policy, if both players can get their transaction submitted inside the same g-time
interval as the arbitrage opportunity, then they will both compete for it. It is easy to see
that when the valuations of the two parties are the same, the bidding strategy for the
pure-bidding policy vs the ex-ante latency with bidding policy will be the same. In other
words, in this scenario, TimeBoost maintains the economic properties of the first-price
auction pure-bidding policy.

2. Only one player can get its transaction within the same g interval. If only one player can
get its transaction inside the same g-time interval as the arbitrage opportunity, then in
the pure-bidding policy, that player can pay a 0 bid and still take advantage of it. In
contrast, since TimeBoost does not require discrete boundaries, both players will always
have g time to submit their transactions (recall that bidding can be used to get priority
over any transaction received up to g time earlier). This means that even for a reasonably
small g (say 0.5 sec), both parties will always be able to compete for the opportunity. In
equilibrium, this results in bids equal to value of the arbitrage.

Analysis for the second case. Suppose the first party (denoted by A) can reach the
sequencer in s1 time, and the second party (denoted by B) can reach in s2 time, with s1 < s2.
Then, with the pure-bidding policy, A can wait until g − s1 seconds pass since the beginning
of a new block creation, and send its transaction to the sequencer at exactly g − s1, while B
has to send its transaction by time g − s2 in order to be included in the same block.



A. Mamageishvili, M. Kelkar, J. C. Schlegel, and E. W. Felten 23:21

Assuming that arbitrage opportunities are uniformly distributed over the g-interval, this
means that, with probability g−s1−(g−s2)

g = s2−s1
g , B has no chance to win the race against

A, even if it values the arbitrage opportunity much more than A. When g is large (e.g., on
Ethereum with 12 sec block times), this latency advantage is not a big issue, as A would only
have an advantage with probability (s2 −s1)/12. In contrast, for faster blockchains, or layer-2
rollups which have shorter block-times to achieve scalability, this latency advantage can be
significantly more important in the pure-bidding policy vs in TimeBoost. For instance, when
g = 0.5sec, A’s latency advantage is 24 times greater than what it was in Ethereum. This
means that compared to TimeBoost, a pure-bidding strategy will either result in substantial
latency competition (when g is small) or will not be able to provide low transaction finalization
time (since g will be large).

7 Discussion on Sequencer Decentralization

We now briefly discuss how TimeBoost can be supported by a decentralized sequencer – i.e.,
a committee of ℓ sequencers (of which at most some f can be dishonest). We only provide
possible implementations here; a formal rigorous analysis is outside the scope of this paper.

In the decentralized setting, transactions to be sequenced are now submitted by users to
all sequencers instead of just one. Note that as before, threshold decryption techniques can
be used for transaction privacy before ordering.

The most natural way to support TimeBoost in a decentralized setting is to have a protocol
for sequencers to agree on both the timestamp and the bid of transactions. After this is done,
the TimeBoost policy can simply be applied on the consensus output of the decentralized
committee to obtain the final ordering. Agreeing on the bid is easy since we can have the
same bid be submitted to all sequencers for a given transaction. Agreeing on the timestamp is
a more challenging problem since the same transaction can arrive at different nodes. While it
adds significant complexity, one potential technique here is to employ a fair-ordering protocol
(this can be as a simple as e.g., computing the median timestamp [11,20] or support more
complicated techniques as in [3,8, 9]). We leave the formal analysis of such a decentralized
TimeBoost implementation to future work.

8 Conclusion

We designed TimeBoost: a policy for transaction ordering that takes into account both
transaction arrival times and bids. We showed that any ordering scheme that guarantees the
independence of different latency races is a generalized scoring rule. By choosing a suitably
designed mixture of timestamps and bids, we showed the economic efficiency of the system:
transaction senders spend most of their resources on bidding instead of latency improvement,
which can later be used by the protocol for improvement and development.

References
1 Kushal Babel and Lucas Baker. Strategic peer selection using transaction value and latency.

In DeFi @ CCS, pages 9–14, 2022.
2 Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari Juels. Clockwork finance: Automated

analysis of economic security in smart contracts. In IEEE S&P, pages 2499–2516, 2023.
3 Christian Cachin, Jovana Micic, and Nathalie Steinhauer. Quick order fairness. In FC, 2022.
4 Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Mathematische Annalen,

pages 481–512, 1895.

AFT 2023



23:22 Buying Time: Latency Racing vs. Bidding for Transaction Ordering

5 Christopher P Chambers and Federico Echenique. Revealed preference theory, volume 56.
Cambridge University Press, 2016.

6 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In IEEE S&P, pages 585–602, 2020.

7 Gerard Debreu. Representation of a preference ordering by a numerical function. Decision
processes, 3:159–165, 1954.

8 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. IACR Cryptol. ePrint Arch., page 1465, 2021.
URL: https://eprint.iacr.org/2021/1465.

9 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for Byzantine
consensus. In CRYPTO, pages 451–480, 2020.

10 Vijay Krishna. Auction Theory. Academic Press, 2002.
11 Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains.

In ACM AFT, pages 25–36, 2020.
12 Eric Maskin and John Riley. Uniqueness of equilibrium in sealed high-bid auctions. Games

and Economic Behavior, 45(2):395–409, 2003.
13 Ciamac C. Moallemi and Mehmet Saglam. OR forum - the cost of latency in high-frequency

trading. Oper. Res., 61(5):1070–1086, 2013.
14 Roger B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58–73, 1981.
15 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How

dark is the forest? In IEEE S&P, pages 198–214, 2022.
16 Ron Siegel. All-pay contests. Econometrica, 77:71–92, 2009.
17 Weizhao Tang, Lucianna Kiffer, Giulia Fanti, and Ari Juels. Strategic latency reduction in

blockchain peer-to-peer networks. Proc. ACM Meas. Anal. Comput. Syst., 7(2):32:1–32:33,
2023.

18 Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to
bribe: Measuring block construction market, 2023. arXiv:2305.16468.

19 Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. Sok: Mev
countermeasures: Theory and practice, 2022. arXiv:2212.05111.

20 Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without Byzantine oligarchy. In OSDI, pages 633–649, 2020.

https://eprint.iacr.org/2021/1465
https://arxiv.org/abs/2305.16468
https://arxiv.org/abs/2212.05111


Batching Trades on Automated Market Makers
Andrea Canidio1 # Ñ

CoW Protocol, Lisbon, Portugal

Robin Fritsch #

Cow Protocol, Lisbon, Portugal
ETH Zürich, Switzerland

Abstract
We consider an automated market maker (AMM) in which all trades are batched and executed at a
price equal to the marginal price (i.e., the price of an arbitrarily small trade) after the batch trades.
We show that such an AMM is a function maximizing AMM (or FM-AMM): for given prices, it
trades to reach the highest possible value of a given function. Competition between arbitrageurs
guarantees that an FM-AMM always trades at a fair, equilibrium price, and arbitrage profits (also
known as LVR) are eliminated. Sandwich attacks are also eliminated because all trades occur at the
exogenously-determined equilibrium price. Finally, we show that our results are robust to the case
where the batch has exclusive access to the FM-AMM, but can also trade on a traditional constant
function AMM.

2012 ACM Subject Classification Applied computing → Economics

Keywords and phrases Arbitrage profits, Loss-vs-Rebalancing (LVR), MEV, Sandwich attacks,
AMM, Mechanism design, Batch trading

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.24

Related Version Details missing from the text are available in the full version of the paper.
Full Version: https://arxiv.org/abs/2307.02074 [5]

Acknowledgements We are grateful to Felix Leupold and Martin Köppelmann for initial discussions
on batch trading on AMM that led to the writing of this paper. We also thank Haris Angelidakis,
Eric Budish, Agostino Capponi, Felix Henneke, Fernando Martinelli, Ciamac Moallemi, Andreas
Park, and Anthony Lee Zhang for numerous comments and suggestions.

1 Introduction

This design of Constant Function Automated Market Makers (CFAMMs) has two well-
recognized flaws. First, liquidity providers (LPs) trade at a loss whenever there is a rebalancing
event. More precisely, when the underlying value of the assets changes, the first informed
arbitrageur who trades with the CFAMM earns a profit by aligning the CFAMM price
with the new equilibrium price. These profits are at the expense of LPs, who suffer a
“loss-vs-rebalancing” (LVR) [16]. Second, traders are routinely exploited by attackers, most
commonly via sandwich attacks in which an attacker front-runs a victim’s swap with the
same swap and then back-runs it with the opposite swap. Doing so allows the attacker to
“buy cheap” and “sell expensive” while forcing the victim to trade at less favorable terms.

This paper proposes a novel AMM design that avoids both problems. In our design, all
trades that reach the AMM during a period are batched together and executed at a price
equal to the new marginal price on the AMM – that is, the price of executing an arbitrarily
small trade after the batch trades. We derive the trading function of such an AMM and show
two interesting equivalences. First, this AMM is function maximizing because, for given

1 corresponding author

© Andrea Canidio and Robin Fritsch;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrea@cow.fi
www.andreacanidio.com
https://orcid.org/0000-0002-8482-8782
mailto:rfritsch@ethz.ch
https://doi.org/10.4230/LIPIcs.AFT.2023.24
https://arxiv.org/abs/2307.02074
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Batching Trades on Automated Market Makers

prices, it maximizes the value of a given function subject to a budget constraint. For this
reason, we call our design a function-maximizing AMM, or FM-AMM. Also, if the function
is a standard Cobb-Duglas objective function (i.e., the weighted sum of two natural logs),
then for given prices, the FM-AMM LPs run a passive investment strategy: absent trading
fees, the total value of the two reserve assets is shared between the two assets according
to some pre-specified weights. Finally, we show that an FM-AMM does not satisfy path
independence: traders can obtain a better price by splitting their trades into smaller orders,
which is why batching is required.

Our main contribution is to consider the behavior of such an AMM in the presence of
arbitrageurs, who have private information relative to the equilibrium prices (determined,
for example, on some very liquid off-chain location). Competition between arbitrageurs
guarantees that the batch always trades at the equilibrium price, and arbitrage profits are
eliminated. Intuitively, if this were not the case, some arbitrageurs would want to trade with
the batch and, by doing so, would push the price on the batch in line with the equilibrium.
This also eliminates all forms of MEV extraction, such as, for example, sandwich attacks:
arbitrageurs will always act so to remove deviations from the equilibrium price, therefore
making it impossible to manipulate the FM-AMM price. The benefit of contributing liquidity
to an FM-AMM relative to a traditional CFAMM is that FM-AMM LPs earn the arbitrage
profits generated by rebalancing the CFAMMs. Because these arbitrage profits are larger for
more volatile prices (as they lead to more frequent and larger rebalancing, see [16] and [15]),
holding everything else equal, the benefit of providing liquidity to an FM-AMM relative to a
CFAMM increases with the price volatility.

We extend the theoretical analysis to include a traditional CFAMM, which is important
because trading on an FM-AMM may be more expensive than trading on a traditional
CFAMM. We introduce the role of the batch operator, who acts in the traders’ interest by
splitting the batch between the FM-AMM and the traditional CPAMM. We consider the case
in which there is a liquid, external trading venue where the equilibrium price is determined
and the case in which the entire market is composed of the FM-AMM and the traditional
CFAMM. Our results are robust to this extension: we show that arbitrageurs will trade with
the batch and on the regular AMM to keep their prices in line with each other (and with
the externally-defined equilibrium price, if it exists). The only difference is that the optimal
strategy for arbitrageurs may be to trade with the batch and then back-run the batch on the
CFAMM. Doing so guarantees that the prices are in equilibrium, and also generates strictly
positive profits for the arbitrageur who can successfully back-run the batch.

The remainder of the paper is organized as follows. We now discuss the relevant literature.
In Section 2, we introduce the FM-AMM. In Section 3 we consider the behavior of FM-AMM
in the equilibrium of a game with informed arbitrageurs and noise traders. Section 4 presents
the extension with multiple trading venues. Section 5 discusses the empirical estimation of
the returns of providing liquidity to a zero-fee FM-AMM contained in the full version of the
paper [5]. The last section concludes. All proofs and mathematical derivations missing from
the text are in the appendix.

Relevant literature
The intuition for our main result is closely related to Budish et al. [3], who study the batching
of trades in the context of traditional finance as a way to mitigate the high-frequency-trading
(HFT) arms race and protect regular (or slow) traders. The main result is that batching
trades force informed arbitrageurs to compete in prices instead of speed because the priority
of execution within the batch is given based on price. The intuition in our model is similar,



A. Canidio and R. Fritsch 24:3

although we assume that arbitrageurs compete in quantities rather than in prices: if the
price on an FM-AMM differs from the equilibrium price, competing arbitrageurs will submit
additional trades to exploit the available arbitrage opportunity, but by doing so, they push
the price on the FM-AMM in line with the equilibrium.

Several authors argued that AMM’s design allows arbitrageurs to profit at the expense of
LPs. Aoyagi [1], Capponi and Jia [6], and Milionis et al. [16] provide theoretical models that
illustrate this possibility. In particular, they consider a continuous time model with zero fees
and derive a closed-form formula to measure LPs returns and the cost they face when trading
with informed arbitrageurs (which they call loss-vs-rebalancing or LVR). Milionis et al. [15]
extend this analysis to the case of discrete-time and strictly positive trading fees. They use
the term arbitrageur profits to indicate LPs losses, a term we adopt because both our model
and our empirical analysis are in discrete time and have fees. Aoyagi [1] and Capponi and
Jia [6] draw the implication of this cost for liquidity provision.

A second important limitation of CFAMMs is that they enable sandwich attacks (see
[17]). These attacks are quantitatively relevant. For example, Torres et al. [21] collected
on-chain data from the inception of Ethereum (July 30, 2015) until November 21, 2020 and
estimated that sandwich attacks generated 13.9M USD in profits. Qin et al. [18] consider
a later period (from the 1st of December 2018 to the 5th of August 2021) and find that
sandwich attacks generated 174.34M USD in profits. Our design eliminates these attacks.
We are therefore related to the growing literature proposing mechanisms to prevent malicious
re-ordering of transactions (of which sandwich attacks are an example), especially those that
can be implemented at the smart-contract level [2, 10, 4, 9]2.

Several initial discussions on designing “surplus maximizing” or “surplus capturing”
AMMs occurred informally on blog and forum posts (see Leupold [14], Josojo [12], and Della
Penna [8]). Goyal et al. [19] provide an axiomatic derivation of the surplus-maximizing AMM.
Relative to their work, our contribution is to place this new type of AMM in a context with
arbitrageurs and other trading venues. Schlegel and Mamageishvili [20] also study AMM from
an axiomatic viewpoint. In particular, they discuss path independence, which FM-AMMs
violate.

We conclude by noting that an FM-AMM is also an oracle: it exploits competition
between arbitrageurs to reveal on-chain the price at which these arbitrageurs can trade
off-chain. It is, therefore, related to the problem of Oracle design (as discussed, for example,
by Chainlink [7]).

2 The function-maximizing AMM

In this section, we introduce the main concepts of interest using a simple constant-product
function (both for the CFAMM and the FM-AMM), no fees, and keeping formalities to the
minimum. The definitions are generalized at the end of the section. We refer the reader to
the paper’s conclusions for a discussion of additional design choices, and to the main version
of the paper [5] for a generalization of our results.

As a preliminary step, we derive the trading function of a constant product AMM, the
simplest and most common type of CFAMM. Suppose that there are only two tokens, ETH
and DAI. A constant-product AMM (CPAMM) is willing to trade as long as the product of

2 Another strand of the literature studies how to prevent malicious re-ordering of transactions by modifying
the infrastructure that underpins how transactions are sent. See, for example, [13] and the literature
review in [11].

AFT 2023



24:4 Batching Trades on Automated Market Makers

QE

Q$

QE − x

Q$

QE

−p̂ −p(x)

Figure 1 Initially, the liquidity reserves of the CPAMM are Q$ and QE . A trader then purchases
x ETH at an average price p(x). Note that, after the trade, the marginal price on the CPAMM
(that is, the price for an arbitrarily small trade) is p̂ ̸= p(x).

its liquidity reserves remains constant (see Figure 1 for an illustration). Call Q$ and QE its
initial liquidity reserves in DAI and ETH, respectively, and pCP AMM (x) the average price at
which the CPAMM is willing to trade x ETH, where x > 0 means that CPAMM is selling
ETH while x < 0 means that the CPAMM is buying ETH. For the product of the liquidity
reserves to be constant, it must be that

Q$ · QE = (Q$ + pCP AMM (x)x)(QE − x)

or

pCP AMM (x) = Q$

QE − x
.

Note that the marginal price of a CPAMM (i.e., the price to trade an arbitrarily small
amount) is given by the ratio of the two liquidity reserves. The key observation is that,
in a CPAMM, a trader willing to trade x pays a price that is different from the marginal
price after the trade. This is precisely the reason why arbitrageurs can exploit a CPAMM:
an arbitrageur who trades with the CPAMM to bring its marginal price in line with some
exogenously-determined equilibrium price does so at an advantageous price (and hence makes
a profit at the expense of the CPAMM).

Instead, in the introduction, we defined an FM-AMM as an AMM in which, for every
trade, the average price equals the marginal price after the trade (we may call this a clearing-
price-consistent AMM ). For ease of comparison with the CPAMM described earlier, suppose
that the FM-AMM function is the product of the two liquidity reserves, and hence, that its
marginal price is the ratio of its liquidity reserves. The price function p(x) for buying x ETH
on the FM-AMM is implicitly defined as

p(x) = Q$ + x · p(x)
QE − x

,



A. Canidio and R. Fritsch 24:5

where the RHS of the above expression is the ratio of the two liquidity reserves after the
trade. Solving for p(x) yields:

pF M−AMM (x) ≡ p(x) = Q$

QE − 2x
,

which implies that the FM-AMM marginal price is, indeed, the ratio of the liquidity reserves.
Hence, a given trade on the FM-AMM generates twice the price impact than the same trade
on the traditional CPAMM (cf. the expression for pCP AMM (x)).

Interestingly, an FM-AMM can also be seen as a price-taking agent maximizing an
objective function. If its objective function is the product of the two liquidity reserves, then
for a given price p the FM-AMM supplies x ETH by solving the following problem:

xF M−AMM (p) = argmaxx

{
(QE − x)(Q$ + p · x)

}
.

It is easy to check that the FM-AMM supply function is:

xF M−AMM (p) = 1
2

(
QE − Q$

p

)
.

Hence, to purchase x ETH on the FM-AMM, the price needs to be, again:

pF M−AMM (x) = Q$

QE − 2x
.

It follows that, whereas a traditional CPAMM always trades along the same curve given by
Q$QE , the FM-AMM trades as to be on the highest possible curve. With some approximation,
we can therefore see an FM-AMM as a traditional CPAMM in which additional liquidity is
added with each trade. See Figure 2 for an illustration.

A final observation is that the FM-AMM’s trading function is equivalent to

p · (QE − xF M−AMM (p)) = Q$ + p · xF M−AMM (p).

In other words, for a given p, the values of the two liquidity reserves are equal after the
trade. Therefore, the FM-AMM is trading to implement a passive investment strategy, in
which the total value of the two reserves is equally split between the two assets (that is, a
passive investment strategy with weights 1/2, 1/2). It is easy to check that the FM-AMM
can implement any passive investment strategy with fixed weights (α, 1 − α) by specifying
the objective function as (QE)α(Q$)1−α for an appropriate α ∈ (0, 1).

2.1 Path-dependence (or why batching trades is necessary)
CFAMMs (without fees) are path-independent: splitting a trade into multiple parts and
executing them sequentially does not change the average price of the trade. This property
does not hold for an FM-AMM because traders can get better prices by splitting their trade.
In fact, they can get approximately the same price as on the corresponding CFAMM by
splitting their trade into arbitrarily small parts. This is why an FM-AMM’s trading function
can be implemented only if trades are batched.

To see this, note that a trade on the FM-AMM with product function changes the reserves
as follows:(

Q$, QE
)

→
(

Q$
(

QE − x

QE − 2x

)
, QE − x

)

AFT 2023



24:6 Batching Trades on Automated Market Makers

QE

Q$

Q$

QE

−p(x)

Figure 2 On an FM-AMM, the price at which a given trade x is executed equals the marginal
price after the trade is executed. This implies that an FM-AMM “moves up” the curve with each
trade.

By instead splitting the trade into smaller parts
∑n

i=1 xi = x and executing them sequentially,
the reserves of the FM-AMM will change to(

Q$
n∏

i=1

(QE −
∑i−1

j=1 xj) − xi

(QE −
∑i−1

j=1 xj) − 2xi

, QE −
n∑

i=1
xi

)
.

Setting xi = 1
n x and letting n → ∞ leads to the DAI reserves after the trade being

lim
n→∞

Q$ QE − 1
n x

QE − n+1
n x

= Q$ QE

QE − x

since the product becomes a telescoping product and collapses. This term exactly equals the
DAI reserve of a CPAMM after these trades. Hence, to have an FM-AMM, it is necessary to
prevent splitting orders by imposing the batching of trades.

2.2 Generalization of definitions
We now generalize our definitions. First of all, an CFAMM is an entity that accepts or rejects
trades based on a pre-set rule. Such rule can be derived from the CFAMMs liquidity reserves
(Q$, QE) ∈ R2

+ and the CFAMM function Ψ : R2
+ → R. We assume that the CFAMM

function is continuous, it is such that Ψ(Q$, 0) = Ψ(0, QE) = Ψ(0, 0) for all Q$ QE , that it is
strictly increasing in both its arguments whenever Q$ > 0 and QE > 0, and that it is strictly
quasiconcave. The difference between different types of CFAMMs is how the function Ψ(., .)
and the liquidity reserves (Q$, QE) determine what trades will be accepted and rejected by
the CFAMM.



A. Canidio and R. Fritsch 24:7

▶ Definition 1 (Constant Function Automated Market Maker). For given liquidity reserves
(Q$, QE) and function Ψ : R2

+ → R, a constant function automated market maker (CFAMM)
is willing to trade x for y = p(x)x if and only if

Ψ(Q$ + p(x)x, QE − x) = Ψ(Q$, QE).

Our first goal is to define an AMM that is clearing-price-consistent in the sense that, for
every trade, the average price of the trade equals the marginal price after the trade. This
requirement, together with the specification of a marginal price, already fully defines the
AMM. In particular, a clearing-price-consistent AMM can be defined to match the marginal
price for an arbitrary CFAMM function Ψ.

▶ Definition 2 (Clearing-Price Consistent AMM). For given liquidity reserves (Q$, QE) and
function Ψ : R2

+ → R, let

pmargin
Ψ (Q$, QE) =

∂Ψ(Q$,QE)
∂QE

∂Ψ(Q$,QE)
∂Q$

be the marginal price of the AMM for reserves Q$, QE. A clearing-price consistent AMM is
willing to trade x for y = p(x)x if and only if

p(x) = pmargin
Ψ

(
Q$ + p(x)x, QE − x

)
. (1)

Note that, given our assumptions on Ψ(., .), whenever Q$ > 0 and QE > 0, the marginal
price is strictly increasing in the first argument and strictly decreasing in the second argument,
converges to zero as QE → ∞ or Q$ → 0, and to infinity as QE → 0 or Q$ → ∞.

Second, we define a function-maximizing AMM (FM-AMM) that maximizes the objective
function Ψ instead of keeping it constant:

▶ Definition 3 (Function-Maximizing AMM). For given liquidity reserves (Q$, QE) and
function Ψ : R2

+ → R, a function-maximizing AMM is willing to trade x for y = p(x) · x if
and only if p(x) = x−1(p), where

x(p) := argmaxx

{
Ψ
(

Q$ + p · x, QE − x
)}

. (2)

The next proposition establishes the equivalence between clearing-price-consistent and
function-maximizing AMMs.

▶ Proposition 4. For given liquidity reserves (Q$, QE) and function Ψ : R2
+ → R, an AMM

is function maximizing if and only if it is clearing-price consistent.

Proof. Under our assumptions, solving (2) is equivalent to satisfying the first-order condition,
which is equivalent to (1). ◀

3 The model

Equipped with the full description of an FM-AMM, we can now study its behavior in an
environment with traders and arbitrageurs. We limit our analysis to the product function.

The game comprises n noise traders, each wanting to trade ai units of ETH. We adopt
the convention that if ai > 0 trader i wants to buy ETH, while if ai < 0 trader i wants to
sell ETH. Call A =

∑
i ai the aggregate demand for ETH from noise traders, assumed small

AFT 2023



24:8 Batching Trades on Automated Market Makers

relative to the FM-AMM liquidity reserves QE and Q$.3 Next to traders, a large number of
cash-abundant, competing arbitrageurs, who can trade as part of the batch and on some
external trading venue, assumed much larger and more liquid than the combination of our n

traders and the FM-AMM. The equilibrium price for ETH on this external trading venue
is p∗ and is unaffected by trades on the FM-AMM. Arbitrageurs aim to profit from price
differences between the FM-AMM and the external trading venues. Arbitrage opportunities
will be intertemporal (over short intervals). Hence, for ease of derivations, we assume that
arbitrageurs do not discount the future.

The timing of the game is discrete. Even periods are when on-chain transactions occur.
Even periods are, therefore, better interpreted as different blocks. Odd periods are when
off-chain events occur. In these periods, first, the equilibrium price p∗ may change, and then
traders/arbitrageurs can submit trades for inclusion in the batch.

We are now ready to derive our main proposition.

▶ Proposition 5. Suppose that, at the end of an even period, the reserves of the FM-AMM
are QE and Q$. In the equilibrium of the subsequent odd period, after p∗ is realized, noise
traders will collectively submit trade A to the batch, and arbitrageurs will collectively submit
trade y(p∗) such that pF M−AMM (A + y(p∗)) = p∗. Hence, in equilibrium, the FM-AMM
price is always equal to p∗.

The key intuition is that all arbitrageurs can submit trades on the batch. Hence, there
is no equilibrium in which there is an exploitable arbitrage opportunity; otherwise, some
arbitrageurs will want to submit additional trades on the batch. Arbitrage opportunities
are absent whenever pF M−AMM (A + y(p∗)) = p∗, which is the unique equilibrium. Hence,
competition between arbitrageurs guarantees that the price at which the AMM trades is
always correct, even if the AMM has no way of directly observing such price. Unlike a
traditional CPAMM, arbitrageurs earn zero by rebalancing an FM-AMM.

4 Extension: multiple trading venues

We modify our theoretical model by introducing a traditional CPAMM. This is a relevant
extension because, as already discussed, trading on FM-AMM may be more expensive than
trading on a traditional CPAMM, in the sense that for given liquidity pools, a given trade
on a CF-AMM has twice the price impact than the same trade on a CPAMM. Naive noise
traders may therefore ignore the equilibrium effects and prefer to trade on the CPAMM.

To address this concern, we introduce the figure of the batch operator as the sole agent
who can access the FM-AMM. The batch operator has two roles:4

It enforces the batching of trades, including uniform prices for all trades on the batch.
Conditional on batching trades, the batch operator acts in the traders’ interest. In
particular, the batch operator will optimally split a trade between the FM-AMM and the
traditional CPAMM to obtain the best possible price for the traders in the batch

3 In practice, we assume that trading A on the FM-AMM has a negligible price impact. Else, we should
treat orders from noise traders as limit orders. In this case, all our results continue to hold at the cost
of additional notation.

4 The batch operator is modeled around CoW Protocol (www.cow.fi). CoW Protocol collects intentions
to trade off-chain, which are executed as a batch by accessing multiple trading venues. Cow Protocol
enforces uniform clearing prices so that all traders in the same batch face the same prices.

www.cow.fi


A. Canidio and R. Fritsch 24:9

The rest of the game is similar to the one discussed earlier, except that the large trading
venue in which the equilibrium price is determined may or may not exist. If it exists, we say
that the market is deep. Else, the only trading venues are the FM-AMM and the CPAMM,
and we say that the market is shallow.5

Again, there are noise traders and arbitrageurs. Arbitrageurs trade so to exploit price
differences between the trading venues that they can access. Even periods of the game are
when on-chain transactions occur and are better interpreted as different blocks. Odd periods
are when off-chain events occur. In these periods, traders/arbitrageurs can submit trades
for inclusion in a batch. Other events may also happen, depending on whether the market
for trading ETH against DAI is deep or shallow. For simplicity, both FM-AMM and the
CPAMM charge zero fees.

We start by deriving the optimal behavior of the batch operators

4.1 The batch operator optimal behavior

The first step is to derive the optimal behavior of the batch operator, who can trade both
on an FM-AMM (with reserves Q$,F M−AMM and QE,F M−AMM ) and on a CPAMM (with
reserves Q$,CP AMM and QE,CP AMM ). If the batch needs to purchase X, it will split the trade
between xCP AMM and xF M−AMM = X − xCP AMM so as to minimize the total expenditure,
that is

min
xCP AMM

{
xCP AMM Q$,CP AMM

QE,CP AMM − xCP AMM
+ xF M−AMM Q$,F M−AMM

QE,F M−AMM − 2xF M−AMM

}
There is a special case in which the math simplifies: that of equal reserves in the two AMMs.
In this case, the solution to the above minimization problem is xCP AMM = 2

3 X; because
the price impact on the FM-AMM is twice that of the traditional CPAMM, the batch will
optimally route a given trade 1/3 on the FM-AMM and 2/3 on the standard CPAMM. As a
result, the (average) price that the batch pays on the CPAMM equals the price the batch
pays on the FM-AMM. We illustrate this case in Figure 3.

To simplify the analysis, we, therefore, assume that, initially, Q$,CP AMM = Q$,F M−AMM

and QE,CP AMM = QE,F M−AMM .

4.2 Deep market

We say that the market is deep whenever there is an exogenously-determined equilibrium price
for ETH, which we call p∗. In this case, during odd periods (off-chain), first, the equilibrium
price p∗ may change, and then traders/arbitrageurs can submit trades for inclusion in the
batch.

Suppose that, initially, the equilibrium price is p∗
0, and both AMMs are in equilibrium so

that p∗
0 = Q$

QE . In a given odd period, the equilibrium price then jumps to p∗
1 ̸= p∗

0, and stays
constant afterward. We study the adjustment to the new equilibrium depending on whether
the batch or an arbitrageur is first in the block.6

5 Of course, the ETH/DAI market is deep. The point is to generalize the example to token pairs that
may not be.

6 In deriving the equilibrium, we assume that a player observes on-chain transactions included earlier in a
block and can use this observation to craft their transaction. This is a shorthand for a transaction that
specifies a strategy to follow as a function of the possible on-chain behavior of the preceding players.

AFT 2023



24:10 Batching Trades on Automated Market Makers

traditional CPAMM

QE

Q$

QE − 2x
3

Q$

QE

FM-AMM

QE

Q$

Q$

QEQE − x
3

Figure 3 Starting from the initial reserves (assumed equal in the two AMMs) the batch trades so
that the new marginal price on the FM-AMM equals the average price on the traditional CPAMM
(represented by the two solid black lines). Note that the marginal price on the traditional CPAMM
(dashed line) differs from the average price at which the batch trades.

The batch is at the top of the block

In this case, upon observing the new price, arbitrageurs submit trades for inclusion in the
batch. Competition among arbitrageurs guarantees that their total trade on the batch is
such that the price on the batch is p∗

1. This implies that the price on the FM-AMM is exactly
p∗

1. However, if the batch traded on the traditional CPAMM at an average price of p∗
1, then

the new marginal price on the traditional CPAMM will be different from p∗
1. More precisely,

call xCP AMM,∗ the amount of ETH exchanged by the batch on the traditional CPAMM,
defined as

xCP AMM,∗ : p∗
1 = Q$

QE − xCP AMM,∗

After such trade, the marginal price on the traditional CPAMM is given by:

Q$ + p∗
1xCP AMM,∗

QE − xCP AMM,∗ = p∗
1QE

Q$

p∗
1

= (p∗
1)2

p∗
0

̸= p∗
1

where Q$ + p∗
1xCP AMM,∗ = p∗

1QE and QE − xCP AMM,∗ = Q$

p∗
1

are, respectively, the DAI
and ETH reserves on the CPAMM after the batch settles its trade. Hence, if p∗

1 > p∗
0, then

the marginal price on the traditional CPAMM will be greater than p∗
1; if instead p∗

1 < p∗
0,

then the marginal price on the traditional CPAMM will be smaller than p∗
1. The arbitrageur

trading after the batch will then perform a trade y given by:7

max
y

y

p∗
1 − p∗

1QE

Q$

p∗
1

− y


7 Note that if y > 0, then the arbitrageur buys from the CPAMM to sell at the equilibrium price p∗

1. If
instead y < 0, then the arbitrageur buys at the equilibrium price p∗

1 to sell to the CPAMM.



A. Canidio and R. Fritsch 24:11

with first-order conditions

p∗
1 +

(
p∗

1QE

Q$
p∗

1
−y

)
y

Q$

p∗
1

− y
= p∗

1

It is easy to check that the numerator of the above expression is the DAI reserves after the
batch settles and after the arbitrageur trades y. Similarly, the denominator is the ETH
reserves after the trades from the batch and the arbitrageurs. Therefore, the arbitrageur’s
optimal trade re-aligns the marginal price on the CPAMM with the equilibrium price p∗

1.

An arbitrageur is at the top of a block

To start, note that, independently of what trades were submitted to the batch, the arbitrageur
at the top of the block will exploit the arbitrage opportunity available on the traditional
CPAMM, and trade on the CPAMM until its marginal price equals p∗

1. Hence, when
arbitrageurs submit trades on the batch, they anticipate that the CPAMM price will be p∗

1
by the time the batch trades. Competition guarantees that these arbitrageurs submit trades
y to the batch until its price is also p∗

1, that is:

y : p∗
1 = Q$

QE − 2(A + y)

In this case, therefore, the batch does not trade on the traditional CPAMM, but only on the
FM-AMM.

4.3 Shallow market
The market is shallow whenever the only venues to trade ETH against DAI are the FM-AMM
and the traditional CPAMM. Hence, there is no externally-determined equilibrium price.
The only arbitrage possibility is to exploit price differences between the FM-AMM and the
traditional CPAMM.

Again, suppose that the two AMMs have equal reserves and, therefore, equal marginal
prices. The source of the exogenous variation is the arrival of an aggregate trade A on the
batch. After observing A, arbitrageurs can submit their trades to the batch. Again, there
are two cases to consider, depending on who trades first.

The batch is at the top of the block

To start, note that if arbitrageurs were absent, then after the batch settles A (1/3 on the
FM-AMM, the rest on the traditional CPAMM) the marginal prices of the two exchanges
would be misaligned. There is therefore an arbitrage opportunity that the first arbitrageur
can exploit, as the next proposition shows.

▶ Proposition 6. In equilibrium, the first arbitrageur trading after the batch purchases

y∗ = 3
√

2QE(2QE − A) − 2(3QE − A) (3)

with the batch and then sells the same amount on the CPAMM. The other arbitrageurs do
not trade.

AFT 2023



24:12 Batching Trades on Automated Market Makers

The proof of the proposition shows that y∗ has the same sign as A. Hence, the first
arbitrageur trades in the same direction as noise traders to move the price on the CPAMM
even more, and then performs the opposite trade on the CPAMM. Furthermore, he can
preempt the other arbitrageurs from exploiting the arbitrage opportunity. By doing so, he
earns strictly positive profits.

The arbitrageur is at the top of the block

Also here, competition among arbitrageurs guarantees that, collectively, they trade to align
the price of ETH on the batch with the marginal price of ETH on the CPAMM. However,
unlike the previous case, here, both the first arbitrageur in the block and the first arbitrageur
after the batch trade.

▶ Proposition 7. In equilibrium, the first arbitrageur after the batch buys with the batch and
then sells on the CPAMM. Again, his optimal trade is y∗ given by (3). Furthermore, the first
arbitrageur purchases√

(QE)2 − QE
2
3(A + y∗) − QE

on the CPAMM and then sells the same amount on the batch. The other arbitrageurs do not
trade.

We previously discussed that y∗ and A have the same sign. Hence, if for example A > 0,
then the first arbitrageur purchases on the CPAMM (cheaply) and then sells on the batch
(more expensive) to bring the CPAMM price in line with the price on the FM-AMM. If
instead A < 0, the first arbitrageur sells on the CPAMM and then buys on the FM-AMM.
The batch then trades both on the FM-AMM and the CPAMM, therefore moving the price
on the CPAMM. Finally, similarly to the previous case, the first arbitrageur after the batch
exploits the arbitrage opportunity by back-running the batch: he purchases with the batch
and immediately sells on the CPAMM so to align the price on the FM-AMM with the
marginal price on the CPAMM.

5 Discussion of empirical results

In the full version of the paper [5], we perform an empirical analysis to quantify the return
of providing liquidity to a zero-fee FM-AMM, and compare them with the empirical returns
of providing liquidity on Uniswap V3. We now briefly describe our method and report our
main results.8

To simulate FM-AMM returns, we consider a counterfactual in which an FM-AMM
existed from October 2022 to March 2023. We retrieve price data from Binance for several
trading pairs and use the Proposition 5 to simulate an FM-AMM pool rebalanced to the
Binance price in regular intervals (12 seconds, or 1 block). These rebalancing trades determine
the evolution of the FM-AMM reserves and thereby the returns of its liquidity providers.
Importantly, because we consider a zero-fee FM-AMM, its LPs earn no fees from noise
traders. Equivalently, we could also assume that the FM-AMM does not receive any noise

8 Note that in the full version of the paper, we consider how the return of providing liquidity of an
FM-AMM changes with the fees charged by FM-AMM and with the frequency of rebalancing of the
FM-AMM. Here we only report the results for a zero-fee FM-AMM that rebalances every block.



A. Canidio and R. Fritsch 24:13

trading volume and is only rebalanced by arbitrageurs. Hence, the estimated LP returns
should be considered a lower bound to the possible returns generated by an FM-AMM that
also earns revenues from noise traders.

We then compare the returns of providing liquidity to our simulated FM-AMM to the
empirical returns of providing liquidity to the corresponding Uniswap v3 pool. To calculate
the return on a liquidity position in a Uniswap v3 pool, we consider three pools for which
we also have Binance price data: WETH-USDT (with fee 0.05%), WBTC-USDT (with fee
0.3%), and WBTC-WETH (with fee 0.05%).9 In each case, we simulate the return of a small
full-range position. We then query the amount of fees the pool earned in a given block and
the amount of liquidity that is “in range” at the end of the same block. 10 We then use the
size of the simulated liquidity position in range to calculate the fees it earns.

Our method is based on two assumptions. First, we assume that the simulated liquidity
position is too small to affect price slippage, the volume of trades, and the incentive to
provide liquidity by other LPs. We also implicitly assume that the liquidity in the range is
constant during a block. This last assumption introduces some non-systematic inaccuracies
in our estimation. For example, if within a block, first some fees are collected and then
some additional liquidity is introduced, our method attributes a fraction of these fees to the
new liquidity even if, in reality, it did not earn any. If, instead, first some fees are collected
and then some liquidity is withdrawn, our method does not attribute any of the fees to the
liquidity that was withdrawn, while in reality, it did earn some fees. Similarly, if a price
changes tick, our method shares all fees collected in a block among the liquidity available in
the last tick, whereas, in reality, some of the fees are shared among the liquidity available at
the initial tick.11

Note that our results do not depend on the size of the initial liquidity position. On
Uniswap v3, a larger initial position earns proportionally more fees, but its ROI is the same.
Similarly, on an FM-AMM, the size of the rebalancing trade scales proportionally with the
available liquidity so that, again, its ROI is independent of its initial size. Also, for both
Uniswap v3 and the FM-AMM, we consider a liquidity position that is non-concentrated
(i.e. , a position over the entire price range [0, ∞]). If both positions are concentrated in the
same (symmetrical) way, both Uniswap v3 fees and FM-AMM returns increase by the same
factor as long as the price does not go out of range. So the comparison does not change, and
the full-range comparison already constitutes a general comparison.

Our results are mixed: whether providing liquidity to our simulated FM-AMM generates
higher returns than providing the same liquidity to Uniswap v3 depends on the token pair
and the period we consider. However, these returns are similar: at the end of the 6-months
period we consider, the differences in returns between an FM-AMM and Uniswap v3 across
the three pools we study are -0.25% (for the ETH-USDT pool), 0.03% (for the BTC-USDT
pool) and 0.11% (for the ETH-BTC pool). Also, during the period we consider, the maximum
difference in value between the two liquidity positions (relative to their initial values) is
0.33% (for the ETH-USDT pool), 0.15% (for the BTC-USDT pool), and 0.12% (for the
ETH-BTC pool). We conclude that the lowest bound on the return to providing liquidity to
an FM-AMM is similar to the empirical return to providing liquidity to Uniswap v3.

9 Note that, whereas most Binance prices are expressed in USDT , this stablecoin is not widely used
in Uniswap v3: at the time of writing, if we exclude stablecoin-to-stablecoin pairs, the two pools we
consider are the only pools with USDT in the top 30 Uniswap v3 pools.

10We use the Uniswap v3 subgraph to query the data. https://thegraph.com/hosted-service/
subgraph/uniswap/uniswap-v3

11 Besides being non-systematic, the inaccuracies introduced are likely to be extremely small. For the
ETH-USDT pool, we calculate that the difference between assuming liquidity to be constant over two
blocks instead of over one block is 0.0002% over 6 months. We expect the inaccuracies from assuming
the liquidity to be constant over one block to be the same magnitude.

AFT 2023

https://thegraph.com/hosted-service/subgraph/uniswap/uniswap-v3
https://thegraph.com/hosted-service/subgraph/uniswap/uniswap-v3


24:14 Batching Trades on Automated Market Makers

6 Conclusion

We conclude by discussing several design choices that are relevant to the implementation of
an FM-AMM.

The first design choice is how to enforce the batching of trades. In the model, we
assumed that the FM-AMM enforces batching by collecting intentions to trade off-chain
and settling them on-chain at regular intervals, with all trades settled simultaneously facing
the same prices. However, there could be other ways to enforce batching, for example, by
leveraging proposer-builder separation (or PBS)12. In PBS, block builders (entities that
assemble transactions in a block that are then forwarded to a proposer for inclusion in the
blockchain) could compute the net trades that will reach the FM-AMM during that block.
Builders will then include a message announcing this value at the beginning of the block,
which the FM-AMM uses to compute the price at which all trades will be executed. If the
proposer’s announcement turns out to be correct at the end of the block, the FM-AMM
will reward the builder (punishments can also be introduced if the block builder report is
incorrect, see [14]).

A second design choice is the fee structure. An FM-AMM can charge fees in at least two
ways: a fee could be charged for including a trade on the batch, and a separate one could be
charged on the net trade that the batch settles on FM-AMM. The difference between the
two fees is that some of the trades may be netted already on the batch without ever reaching
the FM-AMM. See the full version [5] for an in-depth analysis of this problem.

Another important design choice for any AMM, that is omitted in this work, is what
function to use, particularly its curvature: the degree to which the price changes with a given
trade. Capponi and Jia [6] show that, in a traditional CPAMM, the choice of curvature is
determined by a tradeoff. When the equilibrium price changes and the curvature is high, the
CPAMM adjusts its price more rapidly, and LVR is low. At the same time, the amount LPs
earn as trading fees is also low. On the other hand, if the curvature is low and the equilibrium
price changes, then LVR is high. But because the CPAMM trades more, the amount earned
by LPs as fees is also high. The optimal curvature balances these two elements and depends
on the trade volume from noise traders vs. arbitrageurs. The fact that the FM-AMM always
trades at the equilibrium price suggests that it should encourage trading by adopting a flatter
curve relative to a traditional CPAMM. Formalizing this intuition is left for future work.

A final observation is that an FM-AMM eliminates adverse selection by creating competi-
tion among multiple informed arbitrageurs. However, if there is a single, informed trader,
then this trader can still enjoy information rents and trade at an advantage against FM-AMM
LPs.

References
1 Jun Aoyagi. Liquidity provision by automated market makers. working paper, 2020. URL:

https://dx.doi.org/10.2139/ssrn.3674178.
2 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards

principled bug bounties and {Exploit-Resistant} smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

3 Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms race: Frequent
batch auctions as a market design response. The Quarterly Journal of Economics, 130(4):1547–
1621, 2015.

12 https://ethereum.org/en/roadmap/pbs/

https://dx.doi.org/10.2139/ssrn.3674178
https://ethereum.org/en/roadmap/pbs/


A. Canidio and R. Fritsch 24:15

4 Andrea Canidio and Vincent Danos. Commitment against front running attacks, 2023.
arXiv:2301.13785.

5 Andrea Canidio and Robin Fritsch. Arbitrageurs’ profits, lvr, and sandwich attacks: batch
trading as an amm design response, 2023. arXiv:2307.02074.

6 Agostino Capponi and Ruizhe Jia. The adoption of blockchain-based decentralized exchanges,
2021. arXiv:2103.08842.

7 Chainlink. What is the blockchain oracle problem? Retrieved from https://chain.link/
education-hub/oracle-problem on May 24, 2023, 2020. Online forum post.

8 Nicolás Della Penna. Mev minimizing amm (minmev amm). Retrieved from https://
ethresear.ch/t/mev-minimizing-amm-minmev-amm/13775 on May 24, 2023, september 1
2022. Online forum post.

9 Matheus V. X. Ferreira and David C. Parkes. Credible decentralized exchange design via
verifiable sequencing rules, 2023. arXiv:2209.15569.

10 Joshua S Gans and Richard T Holden. A solomonic solution to ownership disputes: An
application to blockchain front-running. Technical report, National Bureau of Economic
Research, 2022.

11 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, AFT ’22, pages 47–60, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3558535.3559784.

12 Josojo. Mev capturing amm (mcamm). Retrieved from https://ethresear.ch/t/
mev-capturing-amm-mcamm/13336 on May 24, 2023, august 4 2022. Online forum post.

13 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. Cryptology ePrint Archive, Paper 2020/269, 2020. URL: https://eprint.iacr.
org/2020/269.

14 F. Leupold. Cow native amms (aka surplus capturing amms with
single price clearing). Retrieved from https://forum.cow.fi/t/
cow-native-amms-aka-surplus-capturing-amms-with-single-price-clearing/1219/1
on May 24, 2023, november 1 2022. Online forum post.

15 Jason Milionis, Ciamac C. Moallemi, and Tim Roughgarden. Automated market making and
arbitrage profits in the presence of fees, 2023. arXiv:2305.14604.

16 Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing, 2023. arXiv:2208.06046.

17 Andreas Park. Conceptual flaws of decentralized automated market making. Technical report,
Working paper, University of Toronto, 2022.

18 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198–214.
IEEE, 2022.

19 Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and David Mazières. Augmenting batch
exchanges with constant function market makers, 2023. arXiv:2210.04929.

20 Jan Christoph Schlegel, Mateusz Kwaśnicki, and Akaki Mamageishvili. Axioms for constant
function market makers, 2023. arXiv:2210.00048.

21 Christof Ferreira Torres, Ramiro Camino, et al. Frontrunner jones and the raiders of the dark
forest: An empirical study of frontrunning on the ethereum blockchain. In 30th USENIX
Security Symposium (USENIX Security 21), pages 1343–1359, 2021.

A Mathematical derivations

Proof of Proposition 5. The fact that y(p∗) is the unique equilibrium is easily established by
contradiction: suppose the equilibrium is y′ ≠ y(p∗), which implies pF M−AMM (A + y′) ̸= p∗.
Then by the fact that pF M−AMM (A + y′) is locally continuous, an arbitrageur could submit

AFT 2023

https://arxiv.org/abs/2301.13785
https://arxiv.org/abs/2307.02074
https://arxiv.org/abs/2103.08842
https://chain.link/education-hub/oracle-problem
https://chain.link/education-hub/oracle-problem
https://ethresear.ch/t/mev-minimizing-amm-minmev-amm/13775
https://ethresear.ch/t/mev-minimizing-amm-minmev-amm/13775
https://arxiv.org/abs/2209.15569
https://doi.org/10.1145/3558535.3559784
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://eprint.iacr.org/2020/269
https://eprint.iacr.org/2020/269
https://forum.cow.fi/t/cow-native-amms-aka-surplus-capturing-amms-with-single-price-clearing/1219/1
https://forum.cow.fi/t/cow-native-amms-aka-surplus-capturing-amms-with-single-price-clearing/1219/1
https://arxiv.org/abs/2305.14604
https://arxiv.org/abs/2208.06046
https://arxiv.org/abs/2210.04929
https://arxiv.org/abs/2210.00048


24:16 Batching Trades on Automated Market Makers

an additional trade z such that pF M−AMM (A + y′ + z) ̸= p∗ and earn strictly positive profits,
which implies that y′ is not an equilibrium. It is also easy to establish that y(p∗) is an
equilibrium, as no arbitrageur has any incentive to deviate. ◀

Proof of Proposition 6. Suppose that arbitrageurs submit an aggregate trade y on the batch
and later −y on the traditional CPAMM. The price on the batch is:

Q$

QE − 2
3 (A + y)

and the price on the reverse trade is

Q$QE

(QE − 2
3 (A + y))(QE − 2

3 (A + y) + y)
.

Competition between arbitrageurs guarantees that the marginal arbitrageur earns zero profits.
This, in turn, implies that the price on the FM-AMM equals the marginal price on the
CPAMM, that is

Q$

QE − 2
3 (A + y)

= Q$QE

(QE − 2
3 (A + y) + y)2

with a unique solution in the range [2A − 3QE , 3
2 QE − A] (so that both prices are strictly

positive and well-defined), given by

y∗ = 3
√

2QE(2QE − A) − 2(3QE − A).

Note that y∗ is strictly increasing in A and is equal to zero whenever A = 0. This can be
seen by verifying that the derivative with respect to A is positive for A < 7

8 QE (which is
true when the demand from the batch is somewhat smaller than the size of the pools, in
particular in all realistic cases we are interested in). Hence, arbitrageurs trade on the batch
in the same direction as noise traders.

We established that the arbitrageurs collectively purchase y∗ ETH with the batch to sell
these ETH on the CPAMM. We now complete the characterization of the equilibrium by
showing that the first arbitrageur after the batch purchases the full amount.

Suppose not: there is an equilibrium in which n arbitrageurs collectively purchase
y∗ =

∑n
i=1 y∗

i ETH, and the first arbitrageur after the batch purchases y∗
1 ̸= y∗ ETH. In this

case, the first arbitrageur’s profits are

y∗
1 · Q$

QE − 2
3 (A + y∗)

− y∗
1 · Q$QE

(QE − 2
3 (A + y∗))(QE − 2

3 (A + y∗) + y∗
1)

but because y∗
1 ̸= y∗, then

Q$

QE − 2
3 (A + y)

̸= Q$QE

(QE − 2
3 (A + y) + y)2

which implies that y∗
1 ≠ y∗ does not maximize the first arbitrageur’s profits, who therefore

wants to deviate. ◀



A. Canidio and R. Fritsch 24:17

Proof of Proposition 7. Call y1 the amount purchased on the batch by the first arbitrageur,
y2 the amount purchased on the batch by all other arbitrageurs who trade before the batch,
y3 the amount purchased on the batch by the arbitrageur who trades immediately after the
batch.

As a first step, we derive how the batch will trade A + y1 + y2 + y3. Suppose the batch
purchases x1 on the traditional CPAMM and x2 on the FM-AMM, with A + y1 + y2 + y3 =
x1 + x2. Total expenditure is

Q$QEx1

(QE + y1 + y2)(QE + y1 + y2 − x1) + Q$x2

QE − 2x2
.

Which is minimized by trading

x1 = 2
3(A + y3) + y1 + y2,

on the CPAMM and

x2 = 1
3(A + y3),

on the FM-AMM. Intuitively, the batch operator first restores on the CPAMM the liquidity
taken by the earlier arbitrageurs and then trades the rest of the batch 1/3 on the FM-AMM
and the rest on the CPAMM.

Note that, to have an equilibrium, the sum of all trades must re-align the marginal price
on the CPAMM with the price on the FM-AMM, which implies

Q$

QE − 2
3 (A + y3)

= Q$QE

(QE − 1
3 (A − y3))2 .

The problem of the first arbitrageur after the batch is identical to that of the earlier case,
because the batch has brought back the CPAMM to its initial state. He will perform the
trade that re-aligns the FM-AMM price with that of the CPAMM, and is y3 = y∗ as in
Equation (3).

Consider then the problem from the point of view of the first arbitrageur. Because of the
behavior of the first arbitrageur after the batch, the first arbitrageur in the block anticipates
that the price on the FM-AMM does not depend on his trade. He therefore maximizes
profits by buying tokens on the CPAMM until its marginal price is equal to the price on the
FM-AMM (and on the batch), which is given by

Q$

QE − 2
3 (A + y∗)

= Q$QE

(QE + y∗
1)2

or

y∗
1 =

√
(QE)2 − QE

2
3(A + y∗) − QE

which is negative if A > 0 (i.e., the arbitrageur buys on the CPAMM and sells on the batch)
and positive if A < 0 (i.e., the arbitrageur sells on the CPAMM and buys on the batch). ◀

AFT 2023





Strategic Liquidity Provision in Uniswap V3
Zhou Fan #

Harvard University, Cambridge, MA, USA

Francisco Marmolejo-Cossio #

Harvard University, Cambridge, MA, USA
IOG, USA

Daniel Moroz #

Harvard University, Cambridge, MA, USA

Michael Neuder #

Harvard University, Cambridge, MA, USA

Rithvik Rao #

Harvard University, Cambridge, MA, USA

David C. Parkes #

Harvard University, Cambridge, MA, USA

Abstract
Uniswap v3 is the largest decentralized exchange for digital currencies. A novelty of its design is
that it allows a liquidity provider (LP) to allocate liquidity to one or more closed intervals of the
price of an asset instead of the full range of possible prices. An LP earns fee rewards proportional to
the amount of its liquidity allocation when prices move in this interval. This induces the problem
of strategic liquidity provision: smaller intervals result in higher concentration of liquidity and
correspondingly larger fees when the price remains in the interval, but with higher risk as prices
may exit the interval leaving the LP with no fee rewards. Although reallocating liquidity to new
intervals can mitigate this loss, it comes at a cost, as LPs must expend gas fees to do so. We
formalize the dynamic liquidity provision problem and focus on a general class of strategies for
which we provide a neural network-based optimization framework for maximizing LP earnings. We
model a single LP that faces an exogenous sequence of price changes that arise from arbitrage and
non-arbitrage trades in the decentralized exchange. We present experimental results informed by
historical price data that demonstrate large improvements in LP earnings over existing allocation
strategy baselines. Moreover we provide insight into qualitative differences in optimal LP behaviour
in different economic environments.

2012 ACM Subject Classification Computing methodologies → Modeling methodologies; Computing
methodologies → Neural networks

Keywords and phrases blockchain, decentralized finance, Uniswap v3, liquidity provision, stochastic
gradient descent

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.25

Related Version Full Version: https://arxiv.org/abs/2106.12033

Funding This work is supported in part by two generous gifts to the Center for Research on
Computation and Society at Harvard University, both to support research on applied cryptography
and society.

1 Introduction

Decentralized finance (DeFi) is a large and rapidly growing collection of projects in the
cryptocurrency and blockchain ecosystem. From May 2019 to May 2023, the TVL (total
value locked, meaning the sum of all liquidity provided to the protocol) into DeFi protocols

© Zhou Fan, Francisco Marmolejo-Cossio, Daniel Moroz, Michael Neuder, Rithvik Rao, and
David C. Parkes;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zfan@g.harvard.edu
mailto:fjmarmol@seas.harvard.edu
mailto:dmoroz@g.harvard.edu
mailto:michael.neuder@gmail.com
mailto:rithvik321@gmail.com
mailto:parkes@eecs.harvard.edu
https://doi.org/10.4230/LIPIcs.AFT.2023.25
https://arxiv.org/abs/2106.12033
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Strategic Liquidity Provision in Uniswap V3

(x, y)

(x′, y′)

∆x

∆y

Token A reserves (x)
To

ke
n

B
re

se
rv

es
(y

)

Figure 1 The reserve curve for Uniswap v2. If the pool has reserves (x, y) where x and y represent
units of token A and B respectively, then the contract price of token A is P = y/x. A trader can
send ∆x units of token A to receive ∆y units of token B, such that x′y′ = L2, where x′ = x + ∆x

and y′ = y − ∆y. The contract price of token A after the trade is P ′ = y′/x′.

has increased 100x from 500 million USD to 50 billion USD. During this time period, TVL
rapidly increased in 2021, reaching a peak of roughly 176 billion USD in November 2021, but
it also suffered large drops in 2022 leading to current TVL levels.1

DeFi aims to provide the function of financial intermediaries and instruments through
smart contracts executed on blockchains (typically Ethereum). The importance of decentral-
ized exchanges (DEXes) is that traders can swap tokens of different types without a trusted
intermediary. Most DEXes, including Uniswap, fall into the category of constant function
market makers (CFMMs). Instead of using an order book as is done in traditional exchanges,
CFMMs are smart contracts that use an automated market maker (AMM) to determine the
price of a trade.

In Uniswap v2, token pairs can be swapped for each other using liquidity pools, which
contain quantities of each of the pair of tokens (say, token A and token B). Permitted trades
are determined by the reserve curve, xy = L2, where x and y denote the the number of tokens
of type A and B respectively in the liquidity pool, and the value of L must be maintained
across a trade. Liquidity providers (LPs) add tokens to liquidity pools for the traders to
swap against, and are rewarded through the fees traders pay. An illustrative reserve curve
is shown in Figure 1. Assuming that the v2 contract holds x units of token A and y units
of token B with xy = L2, then in order to sell some quantity ∆x > 0 of token A for some
quantity ∆y > 0 of token B, the trader must keep the product of reserves constant, with
∆y such that (x − ∆x)(y + ∆y) = L2. This defines an effective contract price for token
A in units of token B, i.e., P = −dy/dx. In the context of the xy = L2 curve, we have
y = L2/x =⇒ P = L2/x2 = y/x. By convention, we take the contract price to be the price
of token A, which we may assume is volatile relative to token B. In Uniswap v2, traders
pay LPs a fee of 0.3% of the transaction amount in return for using the liquidity to execute
a swap [2]. In v2, the liquidity of every LP can be used for swaps at every possible price
P ∈ (0,∞), and an LP earns fees based on their fraction of the total liquidity in the pool.

Uniswap v3 launched on Ethereum on May 3, 2021 and introduced concentrated liquid-
ity [3], where an LP can provide liquidity to each of any number of price intervals, these called
positions. In particular, liquidity allocated by an LP to position [Pa, Pb] earns fees when the

1 https://defillama.com/

https://defillama.com/


Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:3

Pb

Pa
b

a

Token A reserves (x)

To
ke

n
B

re
se

rv
es

(y
)

v2
v3

Figure 2 The reserve curve of Uniswap v2 over all prices, and of Uniswap v3 over the price
interval [Pa, Pb]. When trades give rise to contract prices in this interval, LP assets are swapped
according to the v3 curve, which is an affine transformation of the v2 curve and defined to respect
the price limits of interval [Pa, Pb].

contract price is in that interval. If multiple LPs allocate liquidity over an interval containing
the current price, each is rewarded proportionally to the fraction of the liquidity they own
at that price. Figure 2 visualizes the functional invariant respected by the overall assets
provided by LPs to support trades over [Pa, Pb]. For trades in this interval, a v3 contract
effectively shifts the reserve curve of Uniswap v2 via an affine transformation to intercept
the axes at a and b, which depend on the end points of interval [Pa, Pb]. This shifted curve
is governed by the equation:

(
x + L/

√
Pb

) (
y + L

√
Pa

)
= L2, and the intercepts, a and b,

can be calculated by letting x or y equal zero respectively [3] . This description of Uniswap
v3 is inherently local, as it describes trade dynamics for a specific price interval. Gluing the
local dynamics together for all prices gives rise to an aggregate reserve curve that governs
arbitrary trades across all possible prices. This global reserve curve is in turn a function of
the aggregate distribution of liquidity provided by all LPs. From the perspective of traders,
when more liquidity is allocated to a given price interval, there is less trade slippage for
prices in that interval. This reduced slippage corresponds to a flatter section of the aggregate
reserve curve, as visualized in Figure 3.

Uniswap v3 supports a diversity of LP strategies in regard to the allocation of liquidity,
as an LP can mint multiple positions, each on a different interval. Each LP is presented
with a tradeoff between choosing large positions that cover many possible prices but earn
less fees and smaller more concentrated positions that are more risky (since they cover fewer
prices). Additionally, an LP can reallocate its liquidity as prices change, but this comes at
two costs. First, an LP may need to trade between assets to mint new liquidity positions in a
reallocation, potentially suffering losses from slippage in such trades. Second, since liquidity
allocations are transactions that must be written as updates to the contract and included in
a block, they also incur gas fees. Both of these costs must be incorporated in more complex
LP strategies that make use of liquidity reallocation. Given the increased complexity in LP
actions from v2 to v3, it is important to understand potential ways LPs can benefit from
strategically allocating liquidity as prices change, as this ultimately impacts the performance
of v3 contracts as DEXs.

In this regard, much relevant work has studied ways in which LPs in Uniswap v3 can
optimize their earnings when faced with uncertain beliefs over how trades will evolve over
time. Most relevant to our work are two papers, [11, 14], the first of which provides insight

AFT 2023



25:4 Strategic Liquidity Provision in Uniswap V3

Price

A
gg

re
ga

te
Li

qu
id

ity

0 1 ∞
Token A reserves (x)

To
ke

n
B

re
se

rv
es

( y
)

v2
v3

Figure 3 An aggregate distribution of liquidity for a Uniswap v3 contract (left plot), with most
liquidity allocated close to unit price P = 1. This results in an aggregate reserve curve (right, red
line), which is flatter than the corresponding v2 curve (dotted blue) at prices close to P = 1 and
supports a larger volume of trades at these prices with less slippage.

into how LPs can profit from liquidity reallocations with simple positions, and the second
of which focuses on how LPs can profit from complicated static liquidity positions over a
given time horizon.2 In more detail, the authors of [11] provide a closed form solution for
computing optimal LP allocations that dynamically readjust positions to different intervals
as prices evolve over time. Though these strategies make use of dynamic reallocation of
liquidity, the only allocations explored in the optimization are individual v3 positions over
a single price range (which forcibly change at each reallocation) instead of the full class of
potential allocations available to an LP in Uniswap v3. The authors of [14] compute optimal
arbitrary v3 positions for small LPs who seek to maximize profit and loss over a fixed time
horizon, but only consider static LP strategies which do not make use of reallocations as
prices change.

Our work addresses the gaps from these papers by exploring optimal liquidity provision
strategies that simultaneously make use of liquidity reallocations and the full complexity
of v3 positions. As in [14], we adopt the perspective of an LP with stochastic beliefs over
how market prices evolve over a given time horizon, and how contract prices may change
along with market prices via arbitrage and non-arbitrage trades. In addition, we also make
the assumption that the LP is small enough that these beliefs are independent of capital
allocated by the LP. We provide an optimization framework for computing optimal dynamic
liquidity provision strategies over a given time horizon, and we show that such strategies
can provide large gains to LPs over strategies that are static or strategies that make use of
simple liquidity positions.

We define dynamic liquidity provision strategies as a means by which LPs can mitigate
potential losses by using earned capital to reallocate liquidity to different price intervals
in a given time horizon. In particular, we focus on the family of τ -reset strategies, which
allocate over an interval of prices centered on the current price and whose width is controlled
by τ (including the possibility of declining to allocate liquidity) and reallocate whenever
the price moves outside this interval. Moreover, within the space of potential dynamic
liquidity provision strategies, we distinguish between those that are context-aware and
context-independent depending on whether they incorporate historical price and contract
information in their decision-making. We develop methods of stochastic optimization for
optimizing over τ -reset strategies when an LP has stochastic beliefs on market and contract

2 Both of these papers were written after the first version of the present paper [21]



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:5

prices, and with different levels of risk-aversion. We give empirical results based on historical
Ethereum price data to show that incorporating both of these aspects into LP allocation
strategies gives rise to large gains in performance for LPs of various levels of risk-aversion,
especially for context-aware reallocation strategies, which we optimize for with a neural
network. In addition, our results provide insight into how optimal LP behaviour varies
depending on relevant aspects of their economic environment. In particular, we find that
more risk-averse LPs spread their liquidity over larger price ranges, especially when faced
with a larger volume of non-arbitrage trades. In addition we also find that, as expected,
optimal reset frequencies are sensitive to the reallocation costs.

1.1 Related work

The Uniswap v1 protocol was defined by [1], followed up with v2 by [2], and most recently
amended in v3 by [3]. There has been a growing body of work studying LP incentives in
Uniswap v2. [6] present an analysis of Uniswap, and more broadly of constant-product
AMMs, and demonstrate conditions for which the markets closely track the price on an
external reference market. [4] extend this line of research by demonstrating that the more
general class of CFMMs incentivize participants to report the true price of an asset on an
external market, demonstrating their value as price oracles.

[7] study the equilibrium liquidity provision of constant product AMMs, and show that
strategic LPs in the Uniswap v2 environment may have a non-monotonic best response when
parameterized with the opponents’ liquidity provision. [5] extend this line of work to CFMMs
and calculate bounds on the LP rewards based on the curve that defines the CFMM. [10]
studies the adopation of decentralized exchanges more generally, using a sequential game
framework to model interactions between LPs and traders. In addition, [23] and [15] provide
an axiomatic framework for general CFMMs similar in nature to Uniswap v2, with the
latter focusing on connections with CFMMs in the prediction market setting. [12] consider
geometric mean market makers (G3Ms), and show that passive liquidity provision can be
used to replicate payoffs of financial derivatives and more active trading strategies. [24] and
[25] analyze the growth in wealth of an LP in CFMM for a geometric Brownian motion price
process. [13] extend this to more general LP objectives and diffusion processes.

All above work applies to Uniswap v2 and similarly structured CFMMs but not to v3.
An early blog post by [18] describes a “passive rebalancing” strategy for v3, which aims at
maintaining a 50-50 ratio of value for the assets of the LP. In addition to [14] and [11], further
related work on v3 includes [20], who decompose divergence/impermanent loss into hedgeable
market risk and profit made by arbitrage traders at a loss to the exchange. (This is related
to [11], who decompose divergence/impermanent loss into two components: the loss due to
arbitrage (convexity cost) and the cost of locking capital). [9] uses regret-minimization from
online learning to provide liquidity provision strategies under adversarial trading. [19] and
[16] study the construction of optimal CFMMs from the perspective of LP beliefs, with the
latter providing a Myersonian framework for creating incentive compatible AMMs, and the
former employing techniques from convex optimization to determine optimal trading functions
based on LP beliefs on future trades. [17] study the risks inherent to LP returns for multiple
fixed strategies in different economic environments, concluding that liquidity provision in
v3 is a sophisticated game where uninformed retail traders can suffer large disadvantages
relative to more informed agents. In addition to studying optimal static liquidity provision,
[14] provide insights on how aspects of a v3 contract, notably the partition of price space,
have implications on LP profit as well as gas fees incurred by traders.

AFT 2023



25:6 Strategic Liquidity Provision in Uniswap V3

1.2 Outline
Section 2 introduces the Uniswap v3 protocol. Section 3 formalizes the earnings to an LP
from a dynamic liquidity provision strategy and introduces the family of τ -reset strategies.
Section 4 introduces the computational methods for optimizing over τ -reset strategies and
specifically defines the context-aware/independent dynamic liquidity strategies we empirically
study as well as simple baselines to which we compare performance. Section 5 provides
details regarding the economic environments we modulate to study optimal LP behaviour,
and Section 6 presents empirical results. Section 7 gives open problems for future research
and concludes.

2 The Mechanics of Uniswap

In this section, we provide a brief overview of Uniswap v3 contracts. In all that follows, we
consider a v3 contract that enables trades between two types of tokens that we designate
token A and token B. Furthermore, without loss of generality, we assume token B is the
numeraire, hence when we refer to the price in the contract, we refer to the price of a unit
of A in terms of B. As mentioned in the introduction, liquidity providers (LPs) provide
bundles of A and B tokens to the contract as liquidity to be traded against. The following
sections largely follow the mathematical formalism of [14].

2.1 v3 Contracts
Partitioned Price Space

A Uniswap contract maintains the contract price of token A given by P ∈ (0,∞). This
is the infinitesimal price that traders obtain for trading with the contract. In Uniswap
v2 contracts, the liquidity that LPs provide is used to support every trade, whatever the
trade price. Uniswap v3 contracts provide a richer set of actions for an LP, where they
can specify a price range where liquidity is to be used for trading. In order to enable
this functionality, a v3 contract partitions token A prices into a finite set of price buckets:
µ = {B−m, . . . , B0, . . . , Bn} with buckets Bi = [ai, bi]. We also require a0 < 1 < b0, so that
the parity price lies in the 0-th bucket, and that bi = ai+1 for i ∈ {−m, . . . , n− 1}.

Minting and Burning Liquidity

LPs provide (or mint) liquidity in a particular bucket, Bi = [ai, bi], referred to as Bi-liquidity,
by sending a bundle of A and B tokens to the contract. The token bundle required to mint L

units of Bi-liquidity is given by the liquidity value function [14], and is tuple V(3)(L, P, Bi),
where the first component is the quantity in token A and the second is the quantity in token
B. For a < b, let ∆x

b,a = 1√
a
− 1√

b
and ∆y

a,b =
√

b−
√

a.

▶ Definition 1 (Bi-Liquidity Value [14]). For contract price P , bucket Bi = [ai, bi], and
number of units L > 0, the bundle liquidity value V(3)(L, P, Bi) ∈ R+ × R+ is defined as

V(3)(L, P, Bi) =


(L∆x

bi,ai
, 0) if P < ai,

(0, L∆y
ai,bi

) if P > bi, or
(L∆x

bi,P , L∆y
ai,P ) if P ∈ Bi,

(1)

and specifies the bundle of A and B tokens, respectively, to mint L units of Bi-liquidity.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:7

LPs can also remove liquidity they have a claim to from the contract by means of the value
function. When this happens, we say that an LP burns L units of Bi liquidity, and the LP
receives token bundle V(3)(L, P, Bi) if the contract price is P . Since V(3) is linear in L, we
also adopt shorthand V(3)(P, Bi) = V(3)(1, P, Bi) for the token bundle value of a single unit
of liquidity, with V(3)(L, P, Bi) = L · V(3)(P, Bi).

Trading and Fees

When the contract price is in a given bucket, the trade dynamics respect the shifted reserve
curve of Figure 2. Fees are governed by a fee rate, γ ∈ (0, 1), such that if a given trader sends
∆x units of token A to the contract, γ∆x is first skimmed as fees to be shared proportionally
amongst LPs who have allocated liquidity to the bucket containing the current price. The
remaining (1− γ)∆x units of token A are used for trading via the v3 reserve curve. We refer
the reader to the full version of the paper for a detailed discussion on trading and fees in
Uniswap v3.

3 Liquidity Allocation Strategies and LP Earnings

In this section, we describe a rich set of strategies that LPs can use to maximize their earnings
over a given time horizon. As token B is the numeraire, we measure all earnings in terms of
units of token B and we assume that the LP begins with a fixed budget consisting of W > 0
units of token B. We model price discovery between A and B tokens as occurring outside
of Uniswap contracts, and in addition to the contract price there is a market price that is
determined by external markets. We denote the market price by Pm and contract price
by Pc, and we extend price P so that P = (Pm, Pc) denotes a contract-market price pair.
Furthermore, we assume that arbitrage trade can be performed by traders at price Pm which
in turn brings Pc close to Pm (see Section 5.1). In what follows, we consider time horizons
that are characterized by a single sequence of T > 0 contract-market prices, denoted by
P = (P0, . . . , PT ), where Pt = (Pc,t, Pm,t) is the t-th contract-market price in the sequence
(time steps are indexed t).

3.1 Static Liquidity Provision Strategies
We begin by using a similar mathematical formalism and notation from [14] to express an
LP’s earnings over price sequence P for a simple family of liquidity allocation strategies.

▶ Definition 2 (Static liquidity provision strategy). An LP with an initial budget of W > 0
units of token B uses a static liquidity provision strategy when they
1. mint an initial liquidity allocation at P0,
2. accrue token fees over the course of P as prices change, and
3. burn the existing liquidity allocation at PT , the end of the time horizon, to recover invested

capital from the contract.

We focus on a single LP, and suppose they mint liquidity positions at the beginning of
P, when contract-market prices are given by P0 = (Pc,0, Pm,0), with their initial budget of
W > 0 units of token B. For this, let x = (x−m, . . . , xn) denote a proportional liquidity
allocation, where for i ∈ {−m, . . . , n}, xi ≥ 0 represents the proportion of capital used to
mint Bi-liquidity (with

∑n
i=−m xi ≤ 1 so that x ∈ ∆m+n+2, the (m + n + 2)-dimensional

simplex). The LP uses Wxi units of token B to mint Bi-liquidity for each of i ∈ {−m, . . . , n}.
Let xn+1 = 1 −

∑n
i=−m xi ∈ [0, 1] denote the proportion of capital that the LP does not

invest and keeps as units of token B.

AFT 2023



25:8 Strategic Liquidity Provision in Uniswap V3

Let B : (R+)2 × R+ → R+, defined as B((z1, z2), Pm) = Pm · z1 + z2, return the token
B market worth of a bundle of A and B tokens when token A has market price Pm. For a
given contract-market price sequence, P, let wi = B(V(3)(Pc,0, Bi), Pm,0) denote the amount
of B tokens required to mint one unit of Bi-liquidity at the initial contract-market price
of P0 = (Pc,0, Pm,0). With this in hand, let vector ℓ = (ℓ−m, . . . , ℓn) denote the absolute
liquidity allocation induced by initial budget (W ), proportional liquidity allocation (x) and
initial contract-market price (P0). It follows that ℓi = W xi

wi
units of Bi-liquidity for each

i ∈ {−m, . . . , n}. This implies that ℓ is linear as a function of each of x and W .

3.1.1 Linearity of Fee Rewards in x
We are ultimately interested in expressing an LP’s token B value of earnings as a function of
their liquidity allocation over the contract-market price sequence. We begin by determining
the amount of trading fees earned by an LP. Interestingly, these earnings are not only
independent of other LP allocations, but also linear in ℓ (and consequently x).

▶ Theorem 3 (Section 3.1 [26]). For a fixed contract-market price sequence P, the amount
of A tokens and B tokens accrued from fees is linear in ℓ and independent of the liquidity of
other LPs in the contract.

That the fees that a single LP earns are independent of other LPs’ liquidity allocations
follows from the assumption that contract-market prices are independent of the liquidity
allocation of this LP. Indeed, for a fixed price sequence, allocating liquidity by an LP has two
effects. First, increasing the liquidity means that a larger volume of trade needs to happen to
effect the same price change, resulting in more fees to be paid out to LPs. Second, the same
LP has a proportionally larger amount of liquidity across the relevant price interval. The
net effect is that fees are only a function of a single LP’s proportional (or absolute) liquidity
allocation. Theorem 3 justifies the following definition of a trading fee function for a single
LP and a given contract-market price sequence.

▶ Definition 4 (Trading Fee Functions). Suppose that P is a fixed contract-market price
sequence and W > 0 an initial token B budget. For a proportional (or absolute) liquidity
allocation given by x (or ℓ), we let F A(x, W, P) (or F A(ℓ, P)) denote the units of A tokens
earned from fees over P from downward price movements. Similarly, we let F B(x, W, P)
(or F B(ℓ, P)) denote the units of B tokens earned from fees over P from upward price
movements.

When the resulting absolute liquidity allocation ℓ is treated as a function of x and W , it
is linear in x and W , and it follows that both F A(x, W, P) and F B(x, W, P) are linear in x
and W . For this reason, we let F A(x, P) = F A(x, 1, P) and F B(x, P) = F B(x, 1, P). This
in turn implies that F A(x, W, P) = W ·F A(x, P), and similarly F B(x, W, P) = W ·F B(x, P)
for arbitrary x, W, and P.

3.1.2 Burning Liquidity Allocations at PT

All that remains to fully quantify the earnings of an LP over P is to take into account
the capital they obtain by burning their liquidity positions at time T under contract-
market price PT = (Pc,T , PT,m), obtaining a final quantity of token B. For this, let w′

i =
B(V(3)(Pc,T , Bi), Pm,T ) be the token B worth of the capital obtained from burning 1 unit
of Bi-liquidity at the final contract-market price of PT = (Pc,T , Pm,T ). Given absolute
liquidity position ℓ, the overall token B value of capital obtained from burning is C(ℓ, P) =



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:9

∑n
i=−m w′

iℓi, and linear in ℓ. Let C(x, W, P) denote the final token B worth (at PT ) of
a liquidity position minted at P0 with x and budget W . Since proportional allocations
also allow an LP to maintain funds in terms of token B (i.e., when xn+1 > 0), we obtain
the expression C(x, W, P) = C(ℓ, P) + Wxn+1, where ℓ is the absolute liquidity allocation
corresponding to x. Once more, since ℓ is in turn linear in x and W , it follows that C is linear
in ℓ and W . For this reason, we let C(x, P) = C(x, 1, P), so that C(x, W, P) = W · C(x, P)
for arbitrary x, W , and P.

3.1.3 Linearity of Overall Earnings in x
We now define an LP’s earnings over a contract-market price sequence.

▶ Definition 5. Suppose that P = (P0, . . . , PT ) is a contract-market price sequence and that
x ∈ ∆m+n+2 is a proportional liquidity allocation. An LP’s earnings (in units of token B)
under P with an initial budget of W > 0 is,

V (x, W, P) = Pm,T · F A(x, W, P) + F B(x, W, P) + C(x, W, P).

From this definition, we conclude that an LP’s earnings from a fixed contract-market
price sequence and with a static liquidity provision strategy are linear in x and W .3

▶ Theorem 6. V is linear in both W and x for any contract-market price sequence, P.

Proof. This is an immediate corollary of the fact that F A, F B and C are each linear in x
and W for any contract-market price sequence P. ◀

Similar to before, we use the shorthand V (x, P) = V (x, 1, P) such that V (x, W, P) =
W · V (x, P) for arbitrary x, W , and P.

3.2 Dynamic Liquidity Provision Strategies
In this section, we introduce the notion of dynamic liquidity provision strategies, where an
LP can reallocate their liquidity at any time step of the contract-market price sequence, P.

At a high level, if an LP chooses to reallocate liquidity at time t, they burn their existing
liquidity position and use their overall earnings at time t, denoted by Wt, to mint a new
proportional allocation, x, given the contract-market price Pt. Reallocation comes at a cost
however, which represents the fact that burning and minting positions on a Uniswap contract
requires paying gas fees, and that minting new positions may require the LP to trade between
A and B tokens. We model reallocation costs as proportional to overall earnings used to mint
the position x (i.e. the funds corresponding to capital kept token B outside the contract
(xn+1) do not incur a cost). Cost is specified by a single parameter, η ∈ [0, 1], such that the
LP retains ηWt(1− xn+1) of the funds they intend to use for minting a new position after
paying reallocation costs at time t (i.e., by paying (1− η)Wt(1− xn+1) in reallocation cost).

We partition price sequence P into epochs, which are sequences of contract-market prices
from P uninterrupted by liquidity reallocations. For an LP that burns and reallocates
liquidity positions at time steps t = (t0, . . . tk), where t0 = 0 and tk = T , there are k ≥ 1
epochs, where the j-th epoch is Ej = (Ptj , . . . , Ptj+1). When indexing over epochs we use
superscripts, and when indexing over time-steps in P we use subscripts.

3 As a side note, with the definition of LP’s earnings here we are modeling the profit and loss (PnL)
of an LP who holds their Uniswap v3 liquidity position without hedging. The strategy optimization
approach in this paper can be naturally extended for maximizing the PnL of a delta-hedged LP as well
by incorporating Loss versus Rebalancing (LVR) from [20] since LVR is also linear in x and W .

AFT 2023



25:10 Strategic Liquidity Provision in Uniswap V3

Each epoch, Ej , is associated with the total earnings, W j , the LP has accrued at
the beginning of the epoch, and the proportional liquidity allocation, xj , the LP uses to
mint positions with W j over Ej . From the static liquidity allocation analysis, it follows
that the LP’s earnings over the epoch are given by W j · V (xj , Ej). After incorporating
the proportional reallocation cost, the earnings available for the LP to use for Ej+1 are
W j+1 = ηW j · V (xj , Ej)(1− xj+1

n+1). We encode the collection of all proportional allocations
as a (k × (m + n + 1)) matrix X, such that the j-th row of X corresponds to xj .

▶ Definition 7 (Dynamic liquidity provision strategy). We say that Λ is a dynamic liquidity
provision strategy if it takes as input a contract-market price sequence, P = (P1, . . . , PT ),
and defines:

t = (t0, . . . , tk), with k ≥ 1, t0 = 0, and tk = T . These are time-steps where a reallocation
occurs.
X ∈ mat (k × (m + n + 1)) such that the j-th row of X encodes xj, the proportional
liquidity allocation profile to be used at Ej.

We write Λ(P) = (t, X) and say that this is the realized dynamic liquidity provision strategy
of an LP under Λ for contract-market price sequence P.

For an initial budget W (= W0 = W 0), we let V (Λ, W, P) denote the overall earnings an
LP obtains over P by employing strategy Λ, which can be computed recursively over the
epochs of P. As in previous sections, we let V (Λ, P) = V (Λ, 1, P).

3.2.1 Reset Liquidity Strategies
In practice, a strategy Λ may not be implementable, for example requiring an LP to know
the full contract-market price sequence, P, before it is realized. In this section, we focus on
a specific family of implementable dynamic liquidity provision strategies, the reset liquidity
strategies. For this, an LP at time-step t with accumulated earnings Wt may choose to trigger
a liquidity reallocation based on the contract-market price sequence up to time t, denoted P≤t.
For reset liquidity strategies, the LP maintains a reference bucket index Zt ∈ {−m, . . . , n}
(correspondingly a reference bucket BZt

∈ µ). We let St = (Z, Wt, P≤t) denote the system
state, and we let S denote the space of all possible system states. A liquidity reset consists
in updating the reference bucket index and using the Wt units of B tokens at their disposal
to mint a liquidity position relative to the reference bucket index Zt.

▶ Definition 8 (Reset liquidity provision strategy). A reset liquidity provision strategy (reset-LP
strategy) is composed of:
1. A reference bucket update function, g, which takes as input an arbitrary system state

S ∈ S and updates the reference bucket index to Z ← Z ′ where Z ′ = g(S).
2. An allocation function, A : S × Z→ [0, 1], which specifies the fraction of budget an LP

allocates to mint liquidity in each bucket relative to Z after a liquidity reset is triggered.
More specifically, A gives rise to the proportional allocation x such that xi = A(S, i− Z).

3. A reset condition, h(S) ∈ {0, 1}, which is an indicator function for whether a reset is
triggered in system state S ∈ S and specifies which contract-market prices, relative to the
reference bucket, will trigger a liquidity reset. In the event of a trigger, a new reference
bucket is computed via update function g.

We denote a reset-LP strategy by tuple (g, h, A).

Of particular interest is the family of τ -reset strategies. These strategies have LPs reset
liquidity when the index of the bucket containing the contract price is more than τ away
from the reference index, Z. In the case of a reset, the reference bucket changes to the bucket
containing the current contract price.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:11

Figure 4 An illustration of how a τ -reset strategy with τ = 1 can play out. Buckets are represented
by circles, and for simplicity we assume that market and contract prices move together at each time
step. The shaded circle represents the bucket that contract/market prices are in, and the dynamics
of price movements are expressed by the smaller arrows between buckets. Colored buckets represent
the contiguous 2τ + 1 buckets centered around an epoch’s reference bucket. For this sequence, we
see that price movements at t1 = 2 and t2 = 4 trigger resets, as the shaded bucket escapes the
contiguous 2τ + 1 colored buckets. The specific reallocation after each trigger is specified by the
allocation function A in the τ -reset strategy.

▶ Definition 9 (τ -reset Strategy). Suppose that τ is a non-negative integer. We let hτ :
S → {0, 1} and gτ : S → {−m, . . . , n} denote trigger and reference bucket update functions,
defined for system state St = (Zt, Wt, P≤t) ∈ S as

hτ (Zt, Wt, P≤t) = 1 if and only if Pc,t ∈ Bi and |Zt − i| > τ , and
gτ (Zt, Wt, P≤t) = Pc,t.

We say that (gτ , hτ , A) is a τ -reset strategy, for any allocation function, A : S × Z→ [0, 1].

We illustrate the versatility of τ -reset strategies through some examples:
1. (Static Strategies): For τ > T , i.e., the time horizon of P, we recover static strategies.
2. (Uniform τ -Reset Strategies): Allocating liquidity uniformly on a range of contiguous

buckets centered around the current reference bucket BZt
and resetting when prices move

outside of this range.
3. (Context-Independent Allocation Strategies): Setting A(S, i) = Ai ∈ R for all S ∈ S; i.e.,

the proportional allocations relative to baseline bucket index are always the same at the
time of a reset trigger.

4 Optimizing Earnings

In this section, we formulate the earnings optimization problem faced by an LP with belief,
P, defining a distribution on contract-market price sequences in a given time horizon. In
the most general case, belief P would depend on the liquidity allocation strategy used
by an LP. For example, if the LP provides a large amount of liquidity for a given price
interval, this would in turn reduce the slippage of trades at those prices, which may in turn
increase the volume of trades facilitated by the contract, and hence change P. As in [14],
we make the simplifying assumption, reasonable for a small LP, that their belief P is a
liquidity-independent distribution, and independent of the strategic liquidity strategy used by
the LP. Going forward, we limit our attention to liquidity-independent beliefs. In particular,
we will model non-arbitrage traders who trade to a particular buy or sell contract price
whose value is unaffected by this LP’s liquidity allocation, along with arbitrage traders whose
trades are triggered by considerations of market price vs contract price.

AFT 2023



25:12 Strategic Liquidity Provision in Uniswap V3

4.1 Optimal τ -reset Strategies
We’ve seen that τ -reset strategies are a versatile framework for dynamic liquidity provision.
For a given value of τ , the only choice in defining a τ -reset strategy is the allocation function
A, and we let Λτ (A) = (gτ , hτ , A) denote the resulting τ -reset strategy.

In this section, we provide a means of optimizing expected earnings for a given τ . For
this, we assume that A ∈ A, where A is a family of allocation functions. The space of all
allocation functions is large, with an allocation function potentially depending on the entire
history of contract-market price sequences and LP actions up to the point when a liquidity
reset is triggered.

In defining an LP’s optimization problem, we consider LPs with different levels of risk-
aversion, encoded by a utility function, u : R→ R (we provide example utility functions below),
and we assume that an LP wants to select an allocation function to maximize V u

τ,P(A) =
EP∼P [u(V (Λτ (A), P)]. With this in hand, we let OPT (τ,P, u,A) = maxA∈A V u

τ,P(A), and
denote an allocation function in family A that achieves optimal earnings by A∗.

In general, convex u and concave u correspond to risk-seeking and risk-averse LPs,
respectively, and linear u corresponds to a risk-neutral LPs (where we can adopt u(x) = x

without loss of generality). Going forward, we adopt as the utility function that with constant
Arrow-Pratt measures of absolute risk-aversion [8, 22].

▶ Definition 10 (Constant Absolute Risk Aversion Utility). For a given a ∈ R, the constant
absolute risk aversion utility function, ua : R→ R, is given by:

ua(x) =
{

(1− e−ax) /a if a ̸= 0, and
x otherwise.

(2)

For a < 0, a = 0, and a > 0, utility function ua models a risk-averse, risk-neutral, and
risk-seeking agent, respectively.

4.2 Sampling to Approximate OP T

In order to optimize V u
τ,P(A), we approximate the objective by taking a discrete sample of

paths from P. As such, suppose that P1, . . . , PN ∼ P. We define the empirical average
earnings of an LP given the sample paths as V̂ u

τ (A | P1, . . . , PN ) = 1
N

∑N
q=1 u(V (Λτ (A), Pq).

Going forward, we approximate OPT (τ,P, u,A) by taking sufficiently many samples from P
and optimizing V̂ u

τ .

4.3 Computing Optimal τ -reset Strategies with Neural Networks
We compute optimal τ -reset strategies by letting the allocation function, A, be parametrized
by a feedforward neural network (NN) with parameters given by θ ∈ θ. We let Aθ denote
the specific allocation function for a given parameter choice θ ∈ θ and we let Aθ denote
the space of all possible parametric settings of the NN. Our objective is to maximize
V̂ u

τ (Aθ | P1, . . . , PN ) for a given sample of contract/market price paths P1, . . . , PN ∼ P .
When a reallocation is triggered at the beginning of epoch j(j = 1, 2, . . . , k), the NN takes

as input a set of features Cj that contains context information. The set of context features
includes the current time step, the current wealth, the current pool price, the current bucket
that the pool price lies in, and an exponentially-weighted moving average (the smoothing
parameter value is 0.1) of non-arbitrage trade volume that a hypothetical 1 unit of liquidity
over the entire price range would have achieved given the price trajectory.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:13

We use a fully connected neural network architecture with 5 hidden layers, and the size
of each hidden layer is m = 16. The size of the input layer is n = 5 (the number of context
features), and the output layer is of size s = 2τ + 2 (the first 2τ + 1 dimensions are the
proportional capital to be allocated into the corresponding buckets, and there is also a
special dimension for not allocating some of the wealth if needed). All the hidden layers are
associated with the ReLU activation function. In addition, a soft-max function is added for
the final output in order to produce a vector of sum 1. The architecture we use is visualized
in the right image of Figure 5.

Unpacking the objective, V̂ u
τ (Aθ | P1, . . . , PN ) shows a fundamental recurrence in the

given allocation function Aθ. This is because an allocation produced by Aθ is deployed into
the pool and affects the value of wealth when the next reallocation is triggered, and wealth
is used as part of the input to Aθ for the new reallocation as visualized in the left diagram
of Figure 5. However, the NN representation of A allows gradients to be pushed through
the recurrence with standard back propagation methods used for recurrent neural networks.
Given this, we find optimal θ ∈ θ via standard gradient descent methods.

In more detail, for optimization of the NN (ODRA) and the constant allocation (OIRA)4,
we use stochastic gradient descent based on sampled price trajectories. The number of
training steps is 10000 for both optimize methods. The learning rate for the NN is 10−3

while the learning rate for the constant allocation is 10−2. In addition, the Adam optimizer
is used for both methods.5

As risk aversion parameter a increases, the relative difference between the utility values of
two wealth values (ua(x1)− ua(x2))/ua(x1) becomes smaller and this could pose a challenge
to the optimization of ODRA and OIRA when the improvement of utility value is numerically
very small. To resolve this issue, we apply a positive affine transformation to the utility values
as u∗

a(x) = (ua(x)− ua(1))/(ua(1.1)− ua(1)) for all x and use the transformed utility values
u∗

a(x) in the loss function during training of ODRA and OIRA. This helps the optimization
process and at the same time does not alter the problem formulation of the optimization as
utility functions ua and u∗

a represent the same set of underlying preferences.

4.4 Liquidity Provision Strategies

Below we outline the main strategies we compare in different regimes:
1. Optimal static allocation (OSA): This strategy computes x that optimizes the value of

ua(V (x | P1, . . . , PN )) from Section 3.1. This is the only strategy that does not explicitly
use liquidity reallocations (though it can be seen as a τ -reset strategy with τ > T ), and
it coincides with the work of [14].

2. Uniform liquidity τ -reset allocation (ULRA): For a fixed τ , this strategy mints an equal
µ units of liquidity for each of the 2τ + 1 contiguous buckets considered in a reallocation.
τ is chosen to be as large as possible so the LP makes use of the entire wealth at their
disposal at a reset to reallocate liquidity.

4 In the appendix of the full version of the paper we also provide a natural variant of OIRA for LPs
exhibiting risk-aversion via logarithmic utilities as in [11]. For this model we provide convex optimization
methods to solve for optimal allocations.

5 The codebase we use to run experiments is available open-source at https://github.com/Evensgn/
uniswap-active-lp.

AFT 2023

https://github.com/Evensgn/uniswap-active-lp
https://github.com/Evensgn/uniswap-active-lp


25:14 Strategic Liquidity Provision in Uniswap V3

C

Aθ

x

W W 0

C0

Aθ

x0

W 1

C1

Aθ

x1

W 2

C2

Aθ

x2

W 3

Ck

Aθ

xk

W k+1

= . . .

c1

c2

c3

cn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
m

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
m

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
m

...

a
(4)
1

a
(4)
2

a
(4)
3

a
(4)
4

a
(4)
m

...

a
(5)
1

a
(5)
2

a
(5)
3

a
(5)
4

a
(5)
m

...

x1

x2

xs

...

input
layer

hidden layers

output
layer

Figure 5 The top image provides a visualization of the recurrence in Aθ for the overall objective
V̂ u

τ (Aθ | P1, . . . , PN ) which we exploit to compute gradients in a similar fashion to recurrent neural
networks. In this image, C denotes the context that is fed to the neural network Aθ as features. A
relevant feature at each epoch is the wealth that the LP has accumulated at the beginning of the
epoch W i, which is exemplified via an arrow in the figure. The overall objective is the given utility
function applied to the wealth at the end of the final epoch W k+1. The bottom image provides a
visualization of the neural network architecture we use for Aθ. There is a soft-max function applied
to the output layer. The recurrent structure of the objective’s dependence with respect to the NN
parameters, θ ∈ θ allow us to use techniques from recurrent neural networks to compute the gradient
of the objective u(W k+1) with respect to θ.

3. Uniform proportional τ -reset allocation (UPRA): For a fixed τ , this allocates wealth in
equal proportions to each of the 2τ + 1 buckets after a reset (in general this does not
result in a uniform liquidity allocation as the cost per unit of liquidity in each bucket
may be different).

4. Optimal context-independent τ -reset allocation (OIRA): For a fixed τ , this computes
the optimal single allocation vector to be used at every reset. In other words, the LP
computes an optimal (A−τ , . . . , Aτ ), to be used to allocate liquidity around the reference
bucket at each reallocation.

5. Optimal context-dependent τ -reset allocation (ODRA): For fixed τ , this is solved with
the Neural Network formulation of Section 4.3.

5 Experimental Setup: Contract-Market Prices

In this section, we describe a family of empirically-informed contact-market price sequences
against which we will optimize τ -reset strategies and we use historical data to inform this
stochastic price model.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:15

5.1 Modeling Contract-Market Prices
For this, we use a similar approach to [14], which is in turn inspired by [10], to provide a
family of liquidity-independent contract-market price distributions. This makes use of an
external stochastic process to define a sequence of market prices, together with non-arbitrage
trades that affect the contract price and arbitrage trades that act to bring contract prices
closer to market prices.

We assume that contract-market prices are generated over each of R > 0 rounds. At the
beginning of each round, market prices change randomly according to a stochastic process
PM . During the r-th round, after the contract-market price update, there are some number,
kr ≥ 0, of non-arbitrage trades which impact contract price, Pc, only. Each non-arbitrage
trade is either a purchase or a sale, this determined uniformly at random with probability 1/2.
The effect of such a trade is that the contract price changes to (1 + λr)Pc or (1 + λr)−1Pc

respectively, where λr > 0, depending on whether a purchase or sale occured. Crucially,
trades are price-based in our model rather than volume based, which in turn ensures that
contract-market prices evolve independent of liquidity provided by an LP. It is precisely this
exogenous uncertainty to LP actions that will allows us to compute optimal τ -reset strategies
via the methods of Section 4, as this allows us to sample price paths first and then optimize
LP allocation functions.

We also model arbitrage trades whose role is to bring contract prices close to market
prices. For this, we follow [14], and with a Uniswap contract fee rate, γ ∈ (0, 1), we let
Iγ(Pm) = [(1− γ)Pm, (1− γ)−1Pm] be the no-arbitrage interval around the market price Pm.
If the contract price exits this no-arbitrage interval, we assume a arbitrage trade brings the
contract price to the closest price in the interval. That is, if Pc < (1− γ)Pm we assume that
arbitrage trade moves the contract price to (1− γ)Pm, and if Pc > (1− γ)−1Pm we assume
that arbitrage trade moves the contract price to (1− γ)−1Pm.

▶ Definition 11 (Round-Based Liquidity-Independent Price Distribution). We say that P
is a round-based liquidity-independent price distribution when it is a distribution that is
parameterized by:

R > 0: the number of rounds,
γ ∈ (0, 1): the fee rate of the Uniswap contract,
PM : the stochastic process governing market price updates at the beginning of each round,
k = (kr)R

r=1 with kr > 0: the number of non-arbitrage trades in each round r ∈ {1, . . . , R},
and
λ = (λr)R

r=1 with λr > 0: the multiplicative impact of a non-arbitrage trade on contract
price for each round r ∈ {1, . . . , R}.

When we wish to specify the resulting round-based price distribution, we write this as
P(R, γ,PM , k, λ).

We model PM as a geometric Brownian motion with parameters estimated from historical
price data between token pairs. We also explore multiple regimes of time-varying non-
arbitrage trade by varying λ (the framework is flexible enough to permit arbitrary values of
λr for each round).

5.2 Market Prices as a Geometric Brownian Motion
We model the stochastic nature of market prices, PM , as a Geometric Brownian Motion
(GBM). If the time series is given by X1, . . . , XT , then the successive multiplicative increments
of the time series are i.i.d lognormally distributed. If we let Zi = log

(
Xi

Xi−1

)
, then Z2, . . . ZT ∼

AFT 2023



25:16 Strategic Liquidity Provision in Uniswap V3

iid N (µ, σ2) with drift, µ, and diffusion, σ. We estimate these parameters on per-minute
time series data for ETH/BTC prices (the low volatility regime) and ETH/USDT (the
high volatility regime) from March 2022 through February 2023. For each time series, we
estimate the drift and diffusion via standard MLE methods. The estimates obtained were
(µ̂, σ̂2) = (4.835× 10−8, 1.946× 10−7) and (µ̂, σ̂2) = (−1.140× 10−6, 8.329× 10−7) for the
low and high volatility regimes respectively.

5.3 Contract Price Updates
Whereas arbitrage trades are specified by the fee rate of the contract, non-arbitrage trades are
parametrized by k = (kr)R

r=1 and λ = (λr)R
r=1, which specify the number and multiplicative

magnitude of price change updates arising from non-arbitrage trades in a given round. In
our experiments, we fix kr = 10 for each round and introduce time-varying non-arbitrage
price flow by explicitly modulating λ before sampling from P. In particular we explore λ

such that λr = λ̄ + α · tanh(10(t/T − 0.5)), where λ̄ > 0 is the average λr value over the time
horizon and α > 0 is the variation exhibited in λr around the mean.

6 Experimental Results

In this section, we explore the increase in earnings that LPs can gain through the use
of dynamic allocation strategies, studying the performance of various liquidity provision
strategies in a multitude of economic environments modulated by contract/market price
volatility, LP risk-aversion, and reallocation costs. Most importantly, we find many set-
tings in which optimal τ -reset strategies outperform simpler liquidity provision strategies.
In all the experiments that follow, we assume a default setting of (W, γ, R, kr, λ̄, α, η) =
(1, 0.003, 1000, 10, 0.00005, 0.00005, 0.01). When deviating from the default setting we clarify
which parameters are changed. In addition, we assume that the buckets of the v3 contract
µ = {B−m, .., Bn} are given by Bi = [ai, bi] = [ϕi, ϕi+1] for ϕ = 1.000110.

6.1 The Impact of Price Volatility
In Figures 6 and 7 we plot the performance of all LP strategies as we modulate PM from low
to high volatility as well as the risk-aversion of the LP. Figure 6 focuses on only comparing
OIRA, ODRA and OSA to tease out the relative performance of ODRA vs. OIRA. Figure 7
incorporates UPRA and ULRA, from where we can see that their performance is almost
identical. The NN-based ODRA outperforms all strategies, especially OSA which does not
make use of reallocations. As risk-aversion increases, we see that the distinction between
ODRA and OIRA becomes more clear in the plots, however, this does not imply a greater
magnitude of performance due to the fact that different risk-aversion values give rise to
different scales. In addition, we see that OIRA generally exhibits optimal performance with
τ > 1 whereas all other τ -reset strategies in this setting perform better with τ = 1.

We see that for lower τ values, higher PM leads to a greater separation between ODRA
and OIRA in performance. Moreover, Figure 8 plots allocation profiles for ODRA and OIRA
as we modulate risk-aversion and PM . As expected, with higher risk-aversion we see a larger
spread in allocations, as LPs may seek to decrease the variance in their earnings with wider
positions. On the other hand, as PM increases in volatility, we see that LP positions for both
ODRA and OIRA become narrower. This is likely due to the fact that the expected number
of reallocations is higher in the high volatility setting than in the low volatility setting for
the same τ . For a lower frequency of reallocations, the allocated liquidity is used for longer
time periods, hence an LP may wish to spread liquidity over various buckets.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:17

5 10 15 20

1.1

1.2

1.3

1.4

1.5

1.6

Ex
pe

ct
ed

 U
til

ity

Low Price Volatility, a = 0.0

5 10 15 20

7

8

9

10

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Price Volatility, a = 10.0

5 10 15 20
4

6

8

10

Ex
pe

ct
ed

 U
til

ity

1e 11+4.99999999e 2
Low Price Volatility, a = 20.0

5 10 15 201.0

1.1

1.2

1.3

Ex
pe

ct
ed

 U
til

ity

High Price Volatility, a = 0.0

5 10 15 20
6

7

8

9
Ex

pe
ct

ed
 U

til
ity

1e 6+9.999e 2
High Price Volatility, a = 10.0

5 10 15 20

0.8

0.6

0.4

0.2

0.0

Ex
pe

ct
ed

 U
til

ity

1e 10+5e 2
High Price Volatility, a = 20.0

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

OIRA ODRA OSA ( = ) Expected Number of Re-allocations

Figure 6 The performance of OIRA, ODRA and OSA strategies as we modulate both risk-aversion
and PM . For each strategy, we plot the expected utility it achieves as a function of τ , and we also
plot the expected number of reallocations that occur as a function of τ . The top row corresponds to
a low volatility PM , empirically informed from ETH/BTC prices, and the bottom row corresponds
to high volatility PM , empirically informed from ETH/USDC prices. The columns correspond to
risk-aversion values a = 0, 10, and 20, respectively from left to right. When scientific notation is
used for the y-axis values in certain subplots, it is denoted by a number above the respective y-axis.

10 201.0

1.2

1.4

1.6

Ex
pe

ct
ed

 U
til

ity

Low Price Volatility, a = 0.0

10 20

7

8

9

10

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Price Volatility, a = 10.0

10 20

4

6

8

10

Ex
pe

ct
ed

 U
til

ity

1e 11+4.99999999e 2
Low Price Volatility, a = 20.0

10 20

0.9

1.0

1.1

1.2

1.3

Ex
pe

ct
ed

 U
til

ity

High Price Volatility, a = 0.0

10 20
0.09997

0.09998

0.09999

0.10000

Ex
pe

ct
ed

 U
til

ity

High Price Volatility, a = 10.0

10 20

8

6

4

2

0

Ex
pe

ct
ed

 U
til

ity

1e 9+5e 2
High Price Volatility, a = 20.0

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30
Nu

m
be

r o
f R

e-
al

lo
ca

tio
ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

OIRA ODRA OSA ( = ) UPRA ULRA Expected Number of Re-allocations

Figure 7 The performance of all strategies as we modulate both risk-aversion and PM . For each
strategy we plot the expected utility it achieves as a function of τ , and we also plot the expected
number of reallocations that occur as a function of τ . The top row corresponds to a low volatility
PM , empirically informed from ETH/BTC prices, and the bottom row corresponds to high volatility
PM , empirically informed from ETH/USDC prices. The columns correspond to risk-aversion values
a = 0, 10, and 20, respectively from left to right. When scientific notation is used for the y-axis
values in certain subplots, it is denoted by a number above the respective y-axis.

AFT 2023



25:18 Strategic Liquidity Provision in Uniswap V3

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
na

l C
ap

ita
l

Low Price Volatility, a = 0.0

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

na
l C

ap
ita

l

Low Price Volatility, a = 10.0

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

na
l C

ap
ita

l

Low Price Volatility, a = 20.0

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

na
l C

ap
ita

l

High Price Volatility, a = 0.0

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

na
l C

ap
ita

l

High Price Volatility, a = 10.0

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

na
l C

ap
ita

l

High Price Volatility, a = 20.0

Proportional Capital Allocation, = 20
OIRA ODRA (Mean Allocation)

Figure 8 OIRA allocation and ODRA average allocations for τ = 20 as we modulate both
risk-aversion and PM . The top row corresponds to a low volatility PM , empirically informed from
ETH/BTC prices, and the bottom row corresponds to high volatility PM , empirically informed from
ETH/USDC prices. The columns correspond to risk-aversion values a = 0, 10, and 20, respectively
from left to right.

6.2 Varying Non-arbitrage Flow

In Figure 9 we modulate the volatility of PM and the magnitude of non-arbitrage flow in
λ by modulating α, the amplitude of change in λ while keeping mean λ the same. The
most salient observation is that as λ becomes more time-varying, the NN-based approach of
ODRA increases its performance relative to OIRA. This is to be expected due to the fact
that ODRA can incorporate temporal context in deciding an allocation after a reset, and
the non-arbitrage flow inherently has the temporal context of increased importance as α

increases.
In Figure 10 and 11 we also modulate λ albeit by jointly modulating amplitude(α) and

mean of λr values, λ̄. Once more we see that the NN-based ODRA strategy outperforms
all strategies, and we see that the optimal τ values for ODRA drastically differ in the high
volatility PM over those of Figure 9. Moreover in Figure 11 we see that both increased
non-arbitrage flow and PM volatility contribute to more spread allocations. LPs make profits
from non-arbitrage trades, hence they stand to obtain more fees with wider positions for
larger flows of non-arbitrage trade.

6.3 The Impact of Risk-aversion

As mentioned in the previous sections, risk-aversion mostly impacts the allocations used
in ODRA and OIRA LP strategies. In Figure 12 we make fine-grained modulations of
risk-aversion and see that indeed LPs spread their liquidity more as they become more
risk-averse. A larger spread of liquidity allocation typically implies lower expected earnings
for an LP as they have less proportional liquidity at prices that are traded at, but at the
same time, there is less risk of missing out on fees due to prices escaping their position or
suffering impermanent loss due to price deviating from the initial price.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:19

5 10 15 20
8.0

8.5

9.0

9.5

10.0

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, Constant 

5 10 15 20
7.5

8.0

8.5

9.0

9.5

10.0

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, Time-varying 

5 10 15 20
7

8

9

10

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, More Time-varying 

5 10 15 20
7.25

7.50

7.75

8.00

8.25

8.50

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
High Volatility, Constant 

5 10 15 20
7.0

7.5

8.0

8.5

9.0
Ex

pe
ct

ed
 U

til
ity

1e 6+9.999e 2
High Volatility, Time-varying 

5 10 15 20

7

8

9

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
High Volatility, More Time-varying 

5

10

15

20

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

5

10

15

20

25

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

OIRA ODRA Expected Number of Re-allocations

Figure 9 The performance of OIRA and ODRA strategies as we modulate PM and λ. For all plots,
we use a = 10 for risk aversion and λ̄ = 0.00005 and we modulate the α in {0.0, 0.00003, 0.00005}
in columns from left to right. The top row plots low volatility PM and the bottom row plots high
volatility PM . When scientific notation is used for the y-axis values in certain subplots, it is denoted
by a number above the respective y-axis.

5 10 15 20
6

7

8

9

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, Low Volume

5 10 15 20
7

8

9

10

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, Medium Volume

5 10 15 20

8.0

8.5

9.0

9.5

10.0

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
Low Volatility, High Volume

5 10 15 20
5.50

5.75

6.00

6.25

6.50

6.75

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
High Volatility, Low Volume

5 10 15 20

7

8

9

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
High Volatility, Medium Volume

5 10 15 20
7.5

8.0

8.5

9.0

9.5

10.0

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
High Volatility, High Volume

5

10

15

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

10

20

30

40

50
Nu

m
be

r o
f R

e-
al

lo
ca

tio
ns

0

10

20

30

40

50

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

0

20

40

60

80

Nu
m

be
r o

f R
e-

al
lo

ca
tio

ns

OIRA ODRA Expected Number of Re-allocations

Figure 10 The performance of OIRA and ODRA strategies as we modulate PM and
λ. For all plots, we use a = 10 for risk aversion and we modulate the (λ̄, α) ∈
{(0.000025, 0.000025), (0.00005, 0.00005), (0.000075, 0.000075)} in columns from left to right. The
top row plots low volatility PM and the bottom row plots high volatility PM . When scientific
notation is used for the y-axis values in certain subplots, it is denoted by a number above the
respective y-axis.

AFT 2023



25:20 Strategic Liquidity Provision in Uniswap V3

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ap

ita
l A

llo
ca

te
d Low Volatility, Low Volume

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ap

ita
l A

llo
ca

te
d Low Volatility, Medium Volume

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ap

ita
l A

llo
ca

te
d Low Volatility, High Volume

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ap

ita
l A

llo
ca

te
d High Volatility, Low Volume

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 C

ap
ita

l A
llo

ca
te

d High Volatility, Medium Volume

20 10 0 10 20
Bucket Index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ap

ita
l A

llo
ca

te
d High Volatility, High Volume

Proportional Capital Allocation, = 20
OIRA ODRA (Mean Allocation)

Figure 11 OIRA allocation and ODRA average allocation as we modulate PM and
λ. For all plots, we use a = 10 for risk aversion and we modulate the (λ̄, α) ∈
{(0.000025, 0.000025), (0.00005, 0.00005), (0.000075, 0.000075)} in columns from left to right. The
top row plots low volatility PM and the bottom row plots high volatility PM .

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 0.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 2.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 4.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 6.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 8.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 10.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 12.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 14.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 16.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 18.0

20 0 20
Bucket Index

0.0

0.5

1.0

Pr
op

or
tio

na
l C

ap
ita

l

a = 20.0

Proportional Capital Allocation, = 20
OIRA ODRA (Mean Allocation)

Figure 12 OIRA allocation and ODRA average allocation for τ = 20 for low volatility PM as we
modulate risk-aversion from a = 0 to a = 20.



Z. Fan, F. Marmolejo-Cossio, D. Moroz, M. Neuder, R. Rao, and D. C. Parkes 25:21

5 10 15 20

1.25

1.50

Ex
pe

ct
ed

 U
til

ity
= 0.005, a = 0.0

5 10 15 20

8

10

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
= 0.005, a = 10.0

5 10 15 20

6

8

10

Ex
pe

ct
ed

 U
til

ity

1e 11+4.99999999e 2
= 0.005, a = 20.0

5 10 15 20

1.1

1.2

1.3

Ex
pe

ct
ed

 U
til

ity

= 0.01, a = 0.0

5 10 15 20

7
8
9

Ex
pe

ct
ed

 U
til

ity

1e 6+9.999e 2
= 0.01, a = 10.0

5 10 15 20

5

0

Ex
pe

ct
ed

 U
til

ity

1e 11+5e 2
= 0.01, a = 20.0

5 10 15 20
1.0

1.1

Ex
pe

ct
ed

 U
til

ity

= 0.015, a = 0.0

5 10 15 20

6

8

Ex
pe

ct
ed

 U
til

ity
1e 6+9.999e 2

= 0.015, a = 10.0

5 10 15 20
90

95

Ex
pe

ct
ed

 U
til

ity

1e 11+4.9999999e 2
= 0.015, a = 20.0

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

0

25

50

Re
-a

llo
ca

tio
ns

OIRA ODRA Expected Number of Re-allocations

Figure 13 The performance of OIRA and ODRA strategies as we modulate η and risk-aversion.
For all plots, we use high volatility PM . We modulate a in {0, 10, 20} in columns from left to right
and η ∈ {0.005, 0.01, 0.015} in rows from top to bottom. When scientific notation is used for the
y-axis values in certain subplots, it is denoted by a number above the respective y-axis.

6.4 The Impact of Reallocation Costs
In Figure 13 we modulate the cost of reallocation, η. We see that higher η values lead to
higher optimal τ values for both OIRA and ODRA strategies. This is to be expected, for
although low τ values might lead to higher gains in fees, this also leads to more frequent
resets which in turn come with a higher cost.

7 Conclusion

This paper fills existing gaps in the literature regarding strategic liquidity provision strategies
for LPs in Uniswap v3. Whereas earlier important work has either optimized for complex
liquidity positions in static environments, or simple positions with dynamic reallocations,
our work simultaneously provides complex, context-dependent liquidity allocations that
dynamically reallocate as prices evolve in v3 contracts. Our results show that such liquidity
provision strategies provide large gains for LPs in multiple economic environments for
decentralized exchanges. Natural directions of future work include: incorporating LVR [20]
into the objective definition to optimize the strategy of a delta-hedged LP, incorporating
a game-theoretic framework to liquidity provision which is more apt for large LPs and
modelling competition between different pools such as v2 and v3 pools for same token pairs.

References
1 Hayden Adams. Uniswap whitepaper, 2018. URL: https://hackmd.io/@HaydenAdams/

HJ9jLsfTz.
2 Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core, 2020. URL:

https://uniswap.org/whitepaper.pdf.
3 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap

v3 core, 2021. URL: https://uniswap.org/whitepaper-v3.pdf.

AFT 2023

https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://uniswap.org/whitepaper. pdf
https://uniswap.org/whitepaper-v3.pdf


25:22 Strategic Liquidity Provision in Uniswap V3

4 Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market
makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 80–91, 2020.

5 Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the dog? Curvature
and market making. arXiv preprint arXiv:2012.08040, 2020.

6 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of Uniswap markets. arXiv preprint arXiv:1911.03380, 2019.

7 Jun Aoyagi. Lazy liquidity in automated market making. Available at SSRN 3674178, 2020.
8 Kenneth Joseph Arrow. Aspects of the theory of risk-bearing. Helsinki, 1965.
9 Yogev Bar-On and Yishay Mansour. Uniswap liquidity provision: An online learning approach.

arXiv preprint arXiv:2302.00610, 2023.
10 Agostino Capponi and Ruizhe Jia. The adoption of blockchain-based decentralized exchanges.

arXiv preprint arXiv:2103.08842, 2021.
11 Álvaro Cartea, Fayçal Drissi, and Marcello Monga. Decentralised finance and automated

market making: Predictable loss and optimal liquidity provision. Available at SSRN 4273989,
2022.

12 Alex Evans. Liquidity provider returns in geometric mean markets. arXiv preprint
arXiv:2006.08806, 2020.

13 Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal fees for geometric mean market
makers. arXiv preprint arXiv:2104.00446, 2021.

14 Zhou Fan, Francisco J. Marmolejo Cossío, Ben Altschuler, He Sun, Xintong Wang, and David C.
Parkes. Differential liquidity provision in Uniswap v3 and implications for contract design. In
3rd ACM International Conference on AI in Finance, ICAIF, pages 9–17, 2022.

15 Rafael Frongillo, Maneesha Papireddygari, and Bo Waggoner. An axiomatic characterization
of CFMMs and equivalence to prediction markets. arXiv preprint arXiv:2302.00196, 2023.

16 Mohak Goyal, Geoffrey Ramseyer, Ashish Goel, and David Mazières. Finding the right curve:
Optimal design of constant function market makers. arXiv preprint arXiv:2212.03340, 2022.

17 Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. Risks and returns of Uniswap v3
liquidity providers. arXiv preprint arXiv:2205.08904, 2022.

18 Max. Introducing Alpha Vaults–an LP strategy for
Uniswap V3, 2021. URL: https://medium.com/charmfinance/
introducing-alpha-vaults-an-lp-strategy-for-uniswap-v3-ebf500b67796.

19 Jason Milionis, Ciamac C Moallemi, and Tim Roughgarden. A Myersonian framework for
optimal liquidity provision in automated market makers. arXiv preprint arXiv:2303.00208,
2023.

20 Jason Milionis, Ciamac C Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing. arXiv preprint arXiv:2208.06046, 2022.

21 Michael Neuder, Rithvik Rao, Daniel J Moroz, and David C Parkes. Strategic liquidity
provision in uniswap v3. arXiv preprint arXiv:2106.12033, 2021.

22 John W Pratt. Risk aversion in the small and in the large. Econometrica, 32:122–136, 1964.
23 Jan Christoph Schlegel, Mateusz Kwaśnicki, and Akaki Mamageishvili. Axioms for constant

function market makers. Available at SSRN, 2022.
24 Martin Tassy and David White. Growth rate of a liquidity provider’s wealth in xy = c

automated market makers, 2020.
25 Dave White, Martin Tassy, Charlie Noyes, and Dan Robinson. Uniswap’s financial alchemy,

2020. URL: https://research.paradigm.xyz/uniswaps-alchemy.
26 Wenqi Zhao, Hui Li, and Yuming Yuan. Understand volatility of Algorithmic Stablecoin:

Modeling, verification and empirical analysis. In Financial Cryptography and Data Security,
volume 12676 of Lecture Notes in Computer Science, pages 97–108. Springer, 2021.

https://medium.com/charmfinance/introducing-alpha-vaults-an-lp-strategy-for-uniswap-v3-ebf500b67796
https://medium.com/charmfinance/introducing-alpha-vaults-an-lp-strategy-for-uniswap-v3-ebf500b67796
https://research.paradigm.xyz/uniswaps-alchemy


Post-Quantum Single Secret Leader Election
(SSLE) from Publicly Re-Randomizable
Commitments
Dan Boneh #

Stanford University, CA, USA

Aditi Partap #

Stanford University, CA, USA

Lior Rotem #

Stanford University, CA, USA

Abstract
A Single Secret Leader Election (SSLE) enables a group of parties to randomly choose exactly one
leader from the group with the restriction that the identity of the leader will be known to the chosen
leader and nobody else. At a later time, the elected leader should be able to publicly reveal her
identity and prove that she is the elected leader. The election process itself should work properly
even if many registered users are passive and do not send any messages. SSLE is used to strengthen
the security of proof-of-stake consensus protocols by ensuring that the identity of the block proposer
remains unknown until the proposer publishes a block. Boneh, Eskandarian, Hanzlik, and Greco
(AFT’20) defined the concept of an SSLE and gave several constructions. Their most efficient
construction is based on the difficulty of the Decision Diffie-Hellman problem in a cyclic group.

In this work we construct the first efficient SSLE protocols based on the standard Learning With
Errors (LWE) problem on integer lattices, as well as the Ring-LWE problem. Both are believed to
be post-quantum secure. Our constructions generalize the paradigm of Boneh et al. by introducing
the concept of a re-randomizable commitment (RRC). We then construct several post-quantum RRC
schemes from lattice assumptions and prove the security of the derived SSLE protocols. Constructing
a lattice-based RRC scheme is non-trivial, and may be of independent interest.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Consensus, Leader Election, Post-Quantum, Lattice Cryptography, Block-
chain

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.26

Related Version Full Version: https://eprint.iacr.org/2023/1241.pdf

Funding This work was funded by NSF, DARPA, the Simons Foundation, UBRI, and NTT Research.
Opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

1 Introduction

Leader election is a core component of many consensus protocols used in practice. In proof-
of-work systems such as [34], the identity of the leader remains hidden until the moment
that the leader publishes a proposed block. In contrast, in many proof-of-stake systems, the
identity of the leader is known in advance, long before the leader publishes a proposed block.
This opens up the leader to certain attacks, including denial of service, that may prevent the
chosen leader from publishing the newly created block. This in turn, can lead to a liveness
failure for the chain.

In response, several works have studied secret leader election, where the identity of a
randomly chosen leader remains secret until she publishes the new block and reveals herself
as the leader [25, 31, 27, 8]. The added secrecy protects the leader from attacks that may

© Dan Boneh, Aditi Partap, and Lior Rotem;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 26; pp. 26:1–26:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dabo@cs.stanford.edu
mailto:aditi712@cs.stanford.edu
mailto:lrotem@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.AFT.2023.26
https://eprint.iacr.org/2023/1241.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Post-Quantum Single Secret Leader Election (SSLE)

prevent her from publishing the new block. However, existing proposals for secret leader
election work by electing a few potential leaders in expectation, and describing a run-off
procedure so that exactly one of the potential leaders is recognized as the final leader once
all potential leaders have revealed themselves. The possibility of several potential leaders,
however, can lead to wasted effort and may even cause a safety violation in case of an attack
on the run-off procedure.

This issue motivates the need for a different type of leader election protocol, called a
Single Secret Leader Election, or SSLE [16] (see also [21]). An SSLE protocol is comprised of
two phases.

In the first phase, parties may register to participate in leader elections. This step involves
publishing some public information on a public bulletin board, while keeping some secret
information associated with it private.
In the second phase, elections are held using a protocol that is executed by the participating
parties. The election protocol uses a randomness beacon and the public information on
the bulletin to choose a leader among the parties. At a later time, the leader can declare
themselves as such by providing a proof that they were selected as the leader.

Informally, an SSLE protocol needs to satisfy three security properties. Uniqueness asserts
that at most a single party can prove they were elected as leader. Fairness requires that all
participating parties have the same probability of being elected as leader, even if some parties
are malicious. Unpredictability means that until the leader reveals itself, its identity should
remain essentially hidden from the other parties, even if a subset of them colludes. It was
recently shown that relying on SSLE leads to more efficient consensus protocols than relying
on a secret leader election protocol that elects few leaders in expectation [7].

The concept of SSLE was formalized by Boneh, Eskandarian, Hanzlik, and Greco [16]
who also presented a number of constructions. Their most efficient construction is based
on the Decision Diffie-Hellman problem (DDH) in cyclic groups. We refer to this SSLE
protocol as the BEHG protocol. The Ethereum Foundation optimized BEHG to obtain
Whisk [30], which is the current proposal for SSLE to be used in Ethereum consensus. Since
then, additional works have suggested alternative SSLE constructions with various security
and efficiency tradeoffs (see, for example, [23, 40, 18, 9, 19, 24]).

Due to the potential long-term risk of a large scale quantum computer [41] there is a
desire to also develop a post-quantum secure SSLE. One approach, already in [16], is an SSLE
protocol based on fully homomorphic encryption (FHE). A further optimized FHE-based
construction was recently proposed by Freitas et al. [24]. However, the complexity of these
proposals is far greater than the simple DDH-based scheme. Another elegant approach
to post-quantum SSLE was proposed by Sanso [40], who showed how to adapt Whisk to
use an isogeny-based assumption, which is believed to be post-quantum secure. Finally,
Drake [23] proposed an SSLE protocol that can be made post-quantum secure, but the
proposal inherently relies on the availability of an anonymous broadcast channel (e.g., ToR).

Our results. In this paper we construct the first practical post-quantum SSLE protocols
based on the Learning With Errors (LWE) problem [38] and Ring-LWE problem [33]. We
do so by generalizing the BEHG protocol using a new concept we call a re-randomizable
commitment (RRC). We show that an RRC together with a shuffle protocol gives an SSLE.
We then construct a number of RRC schemes from lattices. The next section gives a detailed
overview of the construction and explains the technical challenges in building an RRC
from lattices.



D. Boneh, A. Partap, and L. Rotem 26:3

1.1 Technical Overview
We briefly sketch the main ideas behind our construction. We begin with an abstract view of
the BEHG protocol. Then, we present the notion of re-randomizable commitments (RRC)
used by this protocol. Finally, we present our new lattice-based post-quantum RRCs for
instantiating the abstract BEHG protocol.

The BEHG approach. The BEHG protocol employs a commit-and-shuffle approach. The
following is a generalized and abstract view of the protocol.

When party i registers for elections, it chooses some secret key ki, computes a commitment
ci to ki, and publishes ci. We will define what is needed of this commitment in a minute.
To avoid duplicity of secrets, each party also publishes a deterministic hash of ki.
At election time, participating parties run a protocol to shuffle and rerandomize the
commitments. For simplicity of presentation in this overview, let us assume that the
shuffle protocol works as follows: in each round, one of the parties locally permutes the
entire list of commitments and then rerandomizes each of the commitments. It then
publishes the new list of commitments, and proves in zero-knowledge that this new list is
well-formed (i.e., it is obtained from the previous list by permuting and rerandomizing the
commitments). Once the shuffle protocol is done, the parties obtain a list of commitments
c̃1, . . . , c̃n, where each c̃i is a rerandomization of cπ(i) for some unknown permutation π on
{1, . . . , n}. They then let the randomness beacon choose an index i∗ ←$ {1, . . . , n}, and
party j∗ = π(i∗) is the chosen leader. In due time, party j∗ can prove that it was elected
by publishing kj∗ and the other parties can check this value against the commitment c̃i∗ .

Re-randomizable commitments. We identify several properties that the commitment
scheme being used must satisfy for the resulting SSLE protocol to be correct and secure.
First, the commitments have to be re-randomizable in a very specific sense. Given a
commitment c to some value k, one should be able to re-randomize c without knowledge of
k or the randomness used to generate c. Moreover, given a value k and a (potentially re-
randomized) commitment c̃, one should be able to efficiently test whether c̃ is a commitment
to k. In particular, this test should not require the randomness used for re-randomization.
In the BEHG protocol, this means that the original committer to c̃i∗ can: (i) recognize itself
as the winner of the elections (by checking if c̃i∗ is a commitment to kj∗); and (ii) prove that
it won by publishing kj∗ .

The commitment scheme should also satisfy the standard notion of binding. This means
that it should be infeasible to produce a commitment c alongside two distinct values k and
k′, such that c passes both as a commitment to k and as a commitment to k′. In the context
of the BEHG protocol, this means that there is only a single party that can prove ownership
of the chosen commitment c̃i∗ by publishing kj∗ .

Finally, commitments should also be unlinkable. This means that given two commitments
c0 and c1 to two random values, and a re-randomization c̃ for one of them, it should be
infeasible to determine if c̃ is a re-randomization of c0 or of c1. This is essential for the BEHG
protocol to achieve unpredictability: an adversary should not be able to link the chosen
commitment c̃i∗ to the original commitment cj∗ and therefore identify party j∗ as the leader.
Looking ahead, the use of re-randomizable commitments in the generalized BEHG SSLE
protocol actually requires a stronger notion of unlinkability. We postpone the discussion on
this matter and will revisit it shortly.

The DDH-based construction of re-randomizable commitments (RRCs) suggested by
BEHG is as follows. Let G be a cyclic group of order p generated by g ∈ G. A commitment
c to a random value k ←$ Zp is a pair (gr, grk) where r ←$ Zp. To check if a commitment

AFT 2023



26:4 Post-Quantum Single Secret Leader Election (SSLE)

c = (c1, c2) is a consistent with a value k, once can simply check if c2 = ck
1 . To re-randomize,

one chooses a random r′ ←$ Zp and outputs c̃ = (cr′

1 , cr′

2 ). The scheme is perfectly binding,
and unlinkability easily follows from the DDH assumption.

It should be noted that previous works also considered other variants of re-randomizable
commitments (see, for example, [5, 20]). However, in these works, opening a re-randomized
commitment requires knowledge of the randomness used for re-randomization (or a function
thereof). Such commitments are much simpler to construct, and indeed, many long-standing
algebraic and lattice-based constructions can be easily re-randomized according to this
weaker definition. Unfortunately, as discussed above, such commitments are insufficient for
instantiating the BEHG protocol.

RRCs from LWE: A first attempt. Consider the following (flawed) RRC scheme. The
secret key space is Zn

q , where q is a prime and n ≈ λ is the LWE hardness parameter. To
commit to a random k ∈ Zn

q the Commit algorithm samples a uniformly random A←$ Zm×n
q

and outputs (A, u) = (A, A · k + e), where e is an LWE noise vector and m > n. To test
whether a key k is tied to a commitment c = (A, u), we can check whether A · k is close
(say, in Euclidean distance) to u. We accept k if this is the case and reject otherwise. If A is
chosen randomly and m ≈ n log n (A is a “tall” matrix), a standard argument shows that
with high probability over the choice of A, there are no k, k′ and u such that A · k ≈ u and
A · k′ ≈ u.

To re-randomize, the rerandomization algorithm samples a low-norm m-by-m matrix R

and computes c′ = (A′, u′) = (R ·A, R ·u). Since R is of low norm Re may only be slightly
longer than e. Hence, Re is also short and we have

A′ · k = R ·A · k ≈ R ·A · k + R · e ≈ R · u = u′.

The noise does grow a bit with each re-randomization, which is why the scheme only supports
a bounded number of re-randomizations (the LWE parameters can be chosen according to the
number of re-randomizations required by the SSLE shuffle protocol). In terms of unlinkability,
note that assuming LWE is hard, a fresh commitment c = (A, u) is just a pseudorandom
matrix-vector pair. Moreover, if m is sufficiently greater than n and each row of R has high
min-entropy, the leftover hash lemma [26, 29] shows that c′ is also pseudorandom, which
implies that the scheme is unlinkable.

The problem. Unfortunately, the above analysis is flawed. It is true that the scheme is
binding when the matrix A is chosen uniformly at random from Zm×n

q . But since A is part
of the commitment c, the adversary may choose it from some other skewed distribution,
thus breaking the binding argument. This is not just an issue of reworking the proof. The
scheme is in fact insecure: fix any k and k′ and it is easy to come up with a matrix A for
which A · k ≈ A · k′. To fix this issue, one might be tempted to choose the matrix A as
part of the public parameters, or to force committers to choose A as the output of a hash
function modeled as a random oracle. Indeed, this would make the scheme binding, but then
it becomes unclear how to re-randomize the commitments.

The key observation. Let us revisit the naive “proof” of binding for the above construction.
If A is indeed chosen uniformly at random, then with overwhelming probability there are
no k and k′ such that A · k ≈ A · k′. In particular, this would suggest that for random A,
k and k′ it holds that A · k and A · k′ are almost surely far apart. Put differently, for a
uniform k and k′, there are very few matrices A for which Ak ≈ Ak′. So what if instead



D. Boneh, A. Partap, and L. Rotem 26:5

of choosing a single k, we make the Commit algorithm sample the commitment key k as a
pair (k1, k2) of independent and uniformly-random vectors? One could expect that for two
such random pairs (k1, k2) and (k′1, k′2), the set of matrices A for which A · k1 ≈ A · k′1 and
A · k2 ≈ A · k′2 is even smaller. Indeed, we show that for ℓ ≈ n, if one samples two ℓ-tuples
(k1, . . . , kℓ) and (k′1, . . . , k′ℓ) of vectors uniformly at random, then with very high probability
a matrix A for which A · ki ≈ A · k′i for every i simply does not exist.

Alas, the proposed commitment scheme is binding for keys that are random tuples of
vectors, but the binding security game allows the adversary to choose the “colliding” keys
(k1, . . . , kℓ) and (k′1, . . . , k′ℓ) as it pleases – they need not be uniformly random. On the face
of it, it might seem that we are back to square one. Fortunately, this is not the case. The
final observation is that for this construction, we can make the commitment algorithm choose
the vectors k1, . . . , kℓ as the output of a cryptographic hash function H, without hampering
re-randomization. That is, to commit, one samples a matrix A and a key k ←$ {0, 1}λ,
computes k1, . . . , kℓ ← H(k) and outputs the commitment c ← (A, {A · ki + ei}i) where
all the eis are independent LWE noise vectors. To test a key k against a commitment
c = (A, {ui}i), the Test algorithm simply recomputes k1, . . . , kℓ from k and checks that
A · ki ≈ ui for every i = 1, . . . , ℓ.

Adversarial re-randomizations. The construction that we just saw indeed satisfies the
notion of unlinkability sketched above. Unfortunately, as we already mentioned, this notion
is insufficient for the resulting SSLE protocol to achieve unpredictability. This reason is this:
unlinkability only guarantees that if honestly-generated commitments c1, . . . , cn are honestly
re-randomized and shuffled, an adversary cannot trace the re-randomized commitments to
the original ones. In the SSLE protocol above, an honest re-randomization might follow an
adversarial one. So we need to require unlinkability of commitments even after adversarial
re-randomizations. We call this strong unlinkability.

In the DDH-based construction of BEHG strong unlinkability comes “for free”. Unfor-
tunately, this is not the case with our LWE-based RRC scheme. For example, consider
an adversary that given a commitment c = (A, {A · ki + ei}i), finds a matrix R such
that R · A has short columns. The adversary then uses this R to re-randomize c into
c̃ ← (R ·A, {R ·A · ki + ei}i). Now, even if we honestly re-randomize c̃, we will almost
surely end up with a commitment ĉ whose first coordinate is still a short-columns matrix.
Hence, the adversary can easily trace ĉ back to c.

We present several methods to thwart such attacks. In this overview, we focus on
what we view as the simplest and most practical one. Ahead of time, all parties commit
to the matrices R1, R2, . . . they are going to use for re-randomization using a standard
additively homomorphic commitment scheme. When a party now has to carry out its ith
re-randomization, it does so using the matrix Ri + R′i, where R′i is a low norm matrix
outputted by a public randomness beacon. Such a beacon can be external or implemented
in various standard ways. Using the homomorphic properties of the commitment scheme,
everyone can now compute a commitment to Ri + R′i. The re-randomizer can hence prove
that this is the matrix it used. Informally, since Ri was committed to ahead of time, it
is independent of R′i. Hence, the re-randomizer is forced to use a high-entropy matrix
for re-randomization, which guarantees the resulting commitment is from the appropriate
distribution. Since Ri is always hidden, Ri + R′i has high min-entropy even given R′i, and we
can still rely on the leftover hash lemma to argue that subsequent honest re-randomizations
provide unlinkability.

AFT 2023



26:6 Post-Quantum Single Secret Leader Election (SSLE)

Extending the scheme to Ring LWE. We extend our LWE-based RRC scheme to the ring
setting, relying on the Ring Learning with Errors (Ring-LWE) assumption. As we discuss in
Section 5 in detail, moving to the ring setting offers several gains in efficiency. Specifically,
we work in a polynomial ring R modulo a cyclotomic polynomial f , which factors into a
constant number of irreducible polynomials over Zq. Concretely, we choose q = 3 mod 8 so
that f has exactly two irreducible factors f1, f2 over Zq (but other choices are possible).

The construction follows the same template as our LWE-based construction, but the
matrix A is now replaced with a vector of ring elements. To commit, one samples a←$ Rm

q ,
and a key k ←$ {0, 1}λ, computes ℓ ring elements as k1, . . . , kℓ ← H(k) and the commitment
is given by c ← (a, {a · ki + ei}i) where all eis are independent RLWE noise vectors in
Rm

q . Re-randomization is done by sampling a low-norm matrix R←$ Rm×m, and computing
c′ = (R · a, {R · ui}i). To test a commitment c = (a, u) against a key k, one computes
k1, . . . , kℓ ← H(k) and check that a · ki ≈ ui for all i. Correctness and unlinkability are
proven similarly to the integer case, with one exception: instead of relying on the leftover
hash lemma, we rely on the regularity lemma of [42].

Two main observations make our ring-based scheme more efficient than our integer-
based one:

We can choose ℓ to be smaller than in the integer case, and still make the binding argument
go through. Intuitively, the reason is that each entry of a · ki is now a polynomial in
the ring R and not an integer. Thus, we may hope that it has more than log q bits of
min-entropy (roughly the entropy of a random integer in Zq). If this is indeed the case,
then the probability that a · k ≈ a · k′, over the choice of random a, k, k′, is much smaller
than the probability that aT · k ≈ aT · k′ in the integer case for random a, k, k′ ←$ Zn

q .
This would imply that we can choose ℓ to be smaller, resulting in smaller commitments.
To argue that a · ki indeed has high min-entropy, we rely on the particular structure
of the ring R. If k ̸= k′, it means that the polynomials must be distinct modulo f1 or
modulo f2. Assume with loss of generality that they are distinct modulo f1. Since f1 is
irreducible mod q, a · (k − k′) is uniformly random in Zq[x]/f1, and hence it has at least
≈ deg(f1) · log q bits of min entropy. This analysis is inspired by the statistically-binding
commitments of Benhamouda, Krenn, Lyubashevsky, and Pietrzak [14].
The second observation is that our use of the leftover hash lemma in the LWE setting
incurred an overhead that can be avoided in the Ring LWE setting. To explain this
point, we need to revisit our LWE unlinkability argument in more detail. Recall that we
wanted to argue that if we have a commitment c = (A, U) and we re-randomize it to
c′ = (R ·A, R ·U), then the commitment c′ we end up with is pseudorandom. The first
step was to argue that c is pseudorandom, thanks to the LWE assumption. This step
remains essentially unchanged here, relying on the Ring-LWE assumption instead. The
second step was to rely on the leftover has lemma; this step required each row of R to
have more than Ω((n + ℓ) · log q) bits of min-entropy. This implied that m had to be set
to be at least (n + ℓ) · log q. In the ring setting, however, since each coordinate of R can
have Ω(n) bits of min-entropy, m can be reduced to roughly log q. This results in much
“shorter” matrices A, U making up the commitment.

Reducing communication. Catalano, Fiore, and Giuta [19] observed that when instantiating
the BEHG protocol with a DDH-based RRC of the form c = (gr, grk), the commitments
of all parties can share the same first coordinate h = gr, which is part of the public
parameters. Then, to re-randomize N commitments (hr, grk1 , . . . , grkN ), a shuffler can
sample a single r′ ←$ Zq and raise all the elements to the r′. This optimization cuts storage



D. Boneh, A. Partap, and L. Rotem 26:7

and communication by about half. It is tempting to implement this optimization using our
lattice-based commitments; have all commitments share the first coordinate A (or a in the
ring setting) and use a single re-randomization matrix R to re-randomize all commitments.
The problem is that to retain unlinkability, the dimensions of R need to grow as a function
of the number of commitments N , which may eliminate the gains of sharing A across all
commitments. We discuss this further in the full version where we consider settings where
this can still lead to some savings.

Post-quantum proof of shuffle. Recall that in the BEHG protocol, after each shuffle,
the shuffling party has to prove that it indeed performed a valid shuffle; that is, it applied
the Randomize algorithm of the RRC scheme to each commitment and then permuted the
resulting commitments. This can be done by using any general-purpose non-interactive
argument of knowledge, proving that the shuffler knows random coins for Randomize and a
permutation that together yield the resulting list of re-randomized commitments (for such
argument systems based on post-quantum secure assumptions, see for example [13, 11, 12, 4,
15, 28, 10, 6, 32, 2, 35] and the references therein).

When using our RLWE-based RRC commitments, we also show how we can change the
recent lattice-based proof-of-shuffle protocol of [22] to work with our commitments. This is a
simple protocol that may provide better concrete efficiency.

1.2 Paper Organization
The remainder of the paper is organized as follows. In Section 2 we present basic notation
and computational assumptions used in the paper. In section 3, we define RRC schemes, and
in Sections 4 and 5, we present our constructions from LWE and Ring-LWE, respectively.
In section 6 we strengthen our security notion and constructions for RRC schemes. In the
full version of this paper, we present the generalized BEHG protocol, discuss and construct
proofs of shuffle for our RRC schemes, and present additional ways to obtain our stronger
security notion. The full version also contains proofs that are omitted from this version.

2 Preliminaries

In this section, we present the basic notions and cryptographic primitives that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote
by x←$ X the process of sampling a value x from the distribution X. Similarly, for a set X ,
we denote by x←$ X the process of sampling a value x from the uniform distribution over X .
For a pair X, Y of distributions defined over the same domain Ω, we denote by SD(X, Y ) the
statistical distance between them, defined as SD(X, Y ) = 1

2
∑

ω∈Ω |Pr [X = ω]− Pr [Y = ω]|.
We denote matrices by boldface capital letters, e.g. A, and vectors in boldface lower-case

letters, e.g. v. We may use a non-bold capital letter, e.g. A or V , to describe a matrix or a
vector, when we wish to emphasize that this matrix or vector is being treated as a random
variable. As standard, we identify Zq for a prime q with the set (−q/2, . . . , q/2], and we
define the absolute value of an element x ∈ Zq as |x| = {min |y| : y ∈ Z, y = x (mod q)}.

For n, p ∈ N where p is prime, we define the rings R = Z[x]/f(x) and Rp = R/⟨p⟩, where
f(x) is monic and of degree n. That is, Rp is the ring of polynomials modulo f(x) with
integer coefficients in Zp. We define the norm of elements in these rings to be the norm
of their coefficient vector in Zn, which is also called the coefficient embedding. For any
g(x) =

∑
i∈0∪[n−1] αix

i ∈ R, we use coeff(g) to denote the vector {α0, . . . , αn−1}, i.e. the
coefficient embedding of g(x), and the norm is defined as follows:

AFT 2023



26:8 Post-Quantum Single Secret Leader Election (SSLE)

||g||1 =
∑

αi ||g||2 = (
∑

α2
i )1/2 ||g||∞ = max|αi|

For a vector v over R, we define ||v|| = (
∑

i ||vi||2)1/2.

2.1 Lattice Assumption

The paper makes use of two basic and standard lattice-based assumptions, the learning with
errors (LWE) assumption and the short integer solution (SIS) assumption, both of which
over integer lattices. We briefly recall these assumptions here. For a more detailed survey of
these assumptions and their hardness, see, for example, [36] and the many references therein.

The LWE assumption. We rely on the following formulation of the learning with errors
(LWE) problem, introduced by Regev [39]. The problem is parameterized by a prime modulus
q, a vector length n which typically corresponds to the security parameter λ, and a noise
distribution χ. For our needs, the important thing is that χ is highly concentrated on
low-norm vectors such that with overwhelming probability ∥x∥2 ≤ δ for x ←$ χ for some
δ = δ(λ) (one typically takes χ to be a discrete Gaussian with appropriate parameters)

▶ Definition 1. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a
distribution over Zq, all public functions of the security parameter λ ∈ N. The (q, n, χ)-
LWE assumption states that for every probabilistic polynomial time algorithm A and for all
polynomially-bounded functions m = m(λ) there exists a negligible function ν(·) such that

Advlwe
A (λ) := |Pr [A(A, A · s + e) = 1]− Pr [A(A, v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where A←$ Zm×n
q , s←$ Zn

q , e←$ χm, and v ←$ Zm
q .

2.2 Ring Lattice Assumption

We will also use the ring-based variant of the LWE assumption, introduced by [33].

The RLWE assumption. This problem is also parameterized by the prime modulus q,
degree of the modulus polynomial n, and a noise distribution χ. We focus on a special case
of the Ring-LWE problem where f(x) = xn + 1, and n is a power of two. Similar to LWE, χ

is highly concentrated on low-norm polynomials such that with overwhelming probability
||x||2 ≤ δ for x←$ χ for some δ = δ(λ). χ is usually taken to be a discrete gaussian in the
coefficient embedding of R.

▶ Definition 2. Let q = q(λ) be a prime, n = n(λ) be an integer, and χ = χ(λ) be a
distribution over R, all public functions of the security parameter λ ∈ N. The (q, n, χ)-
RLWE assumption states that for every probabilistic polynomial time algorithm A and for all
polynomially-bounded functions m = m(λ), there exists a negligible function ν(·) such that

Advrlwe
A (λ) := |Pr [A(a, b) = 1]− Pr [A(a, v) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where a ←$ Rm
q , s ←$ Rq, e ←$ χm, bi = ai · s + ei ∀ i ∈ [m],

and v ←$ Rm
q .



D. Boneh, A. Partap, and L. Rotem 26:9

2.3 Randomness Extraction
We will use the following lemma from the work of Gentry, Peikert, and Vaikuntanathan [26].
The lemma follows from the leftover hash lemma [29].

▶ Lemma 3 ([26, 29]). Let q be a prime and let m, n be integers. Let R, A and B be random
variables distributed uniformly in {−1, 1}m×m, Zm×n

q , and Zm×n
q , respectively. Then, it holds

that

SD ((A, R ·A) , (A, B)) ≤ m

2 ·
√

2−m+n log q.

When working over polynomial rings, we will not be able to use the leftover hash lemma.
Instead, we will use the regularity lemma defined over rings [42].

▶ Lemma 4 (Generalization of Theorem 3.2, [42]). Let F be a finite field and f ∈ F[x] be
monic and of degree n > 0. Let R be the ring F[x]/f and m > 0. For every i, j ∈ [m] and
k ∈ [n], let Di,j,k ⊆ F, with |Di,j,k| = d. Let A, B be random variables distributed uniformly
in Rm×ℓ. Let R ∈ Rm×m be a matrix of polynomials, wherein the kth coefficient of Ri,j

is chosen uniformly randomly and independently from Di,j,k, for all i, j ∈ [m] and k ∈ [n].
Then, it holds that,

SD ((A, RA) , (A, B)) ≤ m

2

√√√√√∏
i∈[t]

(
1 +

(
|F|
dm

)deg(fi)
)ℓ

− 1

where f =
∏

i∈[t] fi is the factorization of f over F[x], and deg(fi) is the degree of the
polynomial fi.

Specifically, we will choose F = Zq and Di,j,k = {−1, 1} ∀ i, j ∈ [m], k ∈ [n].
We will also rely on the following definition for the norm of a matrix and a related lemma

from Agrawal, Boneh, and Boyen [1] (a similar lemma appears in [3]), which states that a
random Bernoulli matrix has low norm with overwhelming probability.

▶ Definition 5. Let R be an m×m matrix over Z. Let Bm := {x ∈ Rm : ∥x∥2 = 1} be the
unit ball in Rm. Define the norm of the matrix R ∈ Zm×m as

∥R∥ := max
x∈Bm

∥R · x∥2 .

The norm for a matrix in Rm×m
q is defined similarly. The following two lemmas bound the

norm of random matrices where all entries are sampled i.i.d. from a distribution concentrated
around 0.

▶ Lemma 6 ([1, 3]). Let q be a prime and let m be an integer. Let R be a random variable
uniformly sampled from {−1, 1}m×m. Then, there is a universal constant C > 0 such that

Pr
[
∥R∥ ≥ C ·

√
m
]

< e−2m.

A proof for the following lemma can be found in the full version.

▶ Lemma 7. Let q be a prime and let m, n be integers. Let R ∈ Rm×m
q be a random variable,

such that for all i, j ∈ [m], the coefficient vector of Ri,j is sampled uniformly at random from
{−1, 1}n. Then,

Pr
[
∥R∥ ≥ m

√
mn · ω(

√
logn)

]
< negl(n)

AFT 2023



26:10 Post-Quantum Single Secret Leader Election (SSLE)

3 Re-randomizable Commitments

Informally, a re-randomizable commitment (RRC, for short) is a scheme that allows one
to commit to random keys.1 Moreover, an RRC scheme supports re-randomizations of
commitments: given a commitment c to a key k, one should be able to re-randomize to
commitment to produce a new commitment c′ for k. Importantly, knowledge of c suffices for
such re-randomization, and no additional secrets are needed. In particular, the re-randomizing
entity is not required to know the key k nor the randomness used to create c.

We first present the syntax for RRC schemes and the associated correctness requirement.
Then, we discuss two security notions that such schemes should satisfy.

3.1 Syntax & Correctness

An RRC scheme R is a tuple of four algorithms:
Setup(1λ)→ pp: outputs public parameters pp,
Commit(pp)→ (c, k): outputs a commitment string c and a key k,
Randomize(pp, c)→ c′: randomize the commitment,
Test(pp, c, k)→ {0, 1}: outputs 1 if k is a valid key for c.

The first three are probabilistic polynomial time (PPT) and the fourth is deterministic
polynomial time.

In terms of correctness, we require that Test(pp, c, k) outputs 1 for (c, k) output by
Commit(pp). Moreover, Test(pp, c′, k) should output 1 if c′ was obtained from c via at
most B consecutive re-randomizations, where B is a parameter. We call this correctness
requirement B-randomizability. If a scheme is B-randomizable for all B, we call it fully-
randomizable.

▶ Definition 8. An RRC scheme is B-randomizable if there exists a negligible function
ν(·) such that the following holds for every λ ∈ N:
let pp←$ Setup(1λ), (c0, k)←$ Commit(pp), and ci ←$ Randomize(pp, ci−1) for i = 1, . . ., then

Pr
[
Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable. ⌟

For the notion of RRC schemes to be non-trivial, we require that the key k generated by
Commit to have high min-entropy.

▶ Definition 9. An RRC scheme is B-randomizable is non-trivial if there exists a
negligible function ν(·) such that the following holds for every λ ∈ N: let pp←$ Setup(1λ),
(c0, k0)←$ Commit(pp) and (c1, k1)←$ Commit(pp), then Pr [k0 = k1] ≤ ν(λ). ⌟

3.2 Notions of Security

An RRC scheme should satisfy two security properties: Binding and Unlinkability.

1 Committing to random keys is sufficient for the main application we consider, which is SSLE protocols.
Observe, however, that such a scheme can be easily converted into a scheme that allows one to commit
to arbitrary messages via a one-time pad.



D. Boneh, A. Partap, and L. Rotem 26:11

Game GA,R(λ, B)
1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)
3 : (c0, k0)←$ R.Commit(pp), (c1, k1)←$ R.Commit(pp)
4 : (state, i0, i1)←$ A(pp, c0, c1)
5 : if (i0 > B) OR (i1 > B) : abort
6 : if (i0 = 0) OR (i1 = 0) : abort
7 : c← cb

8 : for t in {1, . . . , ib} : c←$ R.Randomize(pp, c)
9 : b′ ←$ A(c, state)

10 : return b = b′

Figure 1 The security game for an adversary A attacking the unlinkability of an RRC scheme R.

Binding. Similarly to standard commitment schemes, we require that a commitment can
be tied to at most one key.

▶ Definition 10. An RRC scheme is perfectly binding if for every λ ∈ N and for all
c, k, k′ we have

Prpp←$ Setup(1λ)[k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1] = 0. (1)

⌟

Condition (1) ensures that a commitment c will never be accepted by two distinct keys.
As we will later discuss, this is satisfied by the previous DDH-based construction of Boneh et
al. [16]. For our lattice-based construction, we need to weaken this condition a bit and only
require that (1) holds computationally. This leads to the following definition.

▶ Definition 11. We say that an RRC scheme is computationally binding if for all
PPTadversaries A the following function is negligible.

Pr
[
k ̸= k′ AND Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
(2)

⌟

Unlinkability. An RRC scheme R is unlinkable if a PPT adversary is unable to distinguish
the i-th re-randomization of a commitment c0 from the j-th re-randomization of another
commitment c1. This is captured in the security game in Figure 1. As usual, we define the
adversary’s advantage as

Advrrc
A,R,B(λ) :=

∣∣2 Pr[GA,R(λ, B) = 1]− 1
∣∣.

▶ Definition 12. A B-randomizable RRC scheme is unlinkable if for all PPTadversaries
A the function Advrrc

A,R,B(λ) is negligible.

We make two remarks on the unlinkability definition:

AFT 2023



26:12 Post-Quantum Single Secret Leader Election (SSLE)

Looking ahead, for some applications, we might want the scheme to remain unlinkable
even if adversarial re-randomizations were applied to it at some point. We present such
a definition in Section 6. We also discuss ways to augment our basic LWE-based and
Ring-LWE-based constructions to accommodate this stronger security definition. Since
the stronger unlinkability definition is much more complicated than the one in Fig. 1, we
first focus on this weaker notion.
An unlinkable RRC scheme is, in particular, hiding. Meaning, that a commitment c leaks
no information (in a computational sense) regarding the committed key k. Intuitively, an
adversary that can distinguish between a commitment to a key k and a commitment to a
different key k′ can trivially link a commitment c to either a commitment c0 to k0 or to
a commitment c1 to k1 by outputting the bit b such that c is a commitment to kb.

3.3 An RRC scheme based on DDH
Equipped with the above definitions, we can briefly recall the DDH-based RRC scheme used
in [16]. The scheme, called Rddh, is defined by:

Setup(1λ): choose a finite cyclic group G with generator g ∈ G and output pp := (G, g).
Commit(pp): choose random u←$ G and k ←$ Zq, set c← (u, uk), and output (c, k).
Randomize(pp, c): parse c = (u, v), choose a random ρ←$ Zq, and output c′ := (uρ, vρ).
Test(pp, c, k): parse c = (u, v) and output 1 iff uk = v, otherwise output 0.

▶ Theorem 13 ([16]). If the DDH assumption holds in G then Rddh is a perfectly-binding,
unlinkable, and fully randomizable RRC.

The fact that the scheme is full-randomizable and perfectly binding is easy to observe.
The proof of unlinkability is a direct application of DDH. In the next section, we construct
an RRC scheme that is post-quantum secure based on the LWE assumption.

4 A Construction from Learning with Errors

In this section, we present a construction of an RRC scheme from the LWE assumption [39]
(see Section 2). An informal overview of the construction is presented in Section 1.1.

4.1 The Construction
Our construction of an RRC scheme from LWE, denoted Rlwe is presented in Fig. 2. The
construction is parameterized by an integer B, which serves as a bound on the number of
re-randomizations that can be applied to a commitment. In the construction, we use ∆ to
denote (C ·

√
m)B · δ, where m is a parameter of the scheme determined by the analysis

(think of m = O(λ)), C is the universal constant from Lemma 6 and δ is a bound on the ℓ2
norm of the LWE noise vectors used in the construction.

Correctness. First, note that prior to any randomization being preformed, for an honestly-
generated commitment c = (A, U ) it holds that A ·H(k)−U is equal to the noise matrix E

sampled according to χm×ℓ during the generation of the commitment. Hence, the matrix
computed by the Test algorithm is simply E, and each of its columns has norm at most δ.
Now, after t ≤ B applications of Randomize to c using matrices R1, . . . , Rt, the commitment
we get is of the form

(Rt · · ·R1 ·A, Rt · · ·R1 ·U) = (Rt · · ·R1 ·A, Rt · · ·R1 ·A · H(k) + Rt · · ·R1 ·E).



D. Boneh, A. Partap, and L. Rotem 26:13

Setup(1λ):
1 : Let n := λ, choose a prime q, and choose m = m(n, q) and ℓ = ℓ(n, q).

// we will explain how to choose m and ℓ in the analysis

2 : Let χ be the LWE noise distribution over Zq.
// if e←$ χm, and we lift e to Zm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

3 : return pp← (λ, q, n, m, ℓ, χ)
Commit(pp):
1 : A←$ Zm×n

q // choose a random matrix A

2 : k ←$ {0, 1}1λ

// choose a random λ-bit string

3 : V ← H(k) ∈ Zn×ℓ
q // hash k to an n-by-ℓ matrix

4 : sample E ∈ Zm×ℓ
q from the LWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p when e is lifted to Zm

5 : U ← A · V + E ∈ Zm×ℓ
q

6 : c← (A, U)
7 : return (c, k)

Randomize(pp, c): parse c = (A, U) and do
1 : sample a random matrix R←$ {−1, 1}m×m // R is a low-norm matrix

2 : c′ ← (R ·A, R ·U) ∈ Zm×n
q × Zm×ℓ

q

3 : return c′

Test(pp, c, k): parse c = (A, U) and do
1 : V ← A · H(k)−U ∈ Zm×ℓ

q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆ when v is lifted to Zm

Otherwise, return 0

Figure 2 Rlwe – A B-randomizable RRC scheme based on the learning with errors (LWE) problem.

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 ·E. Since R1, . . . , Rt

are sampled independently from {−1, 1}m×m, Lemma 6 guarantees that with overwhelming
probability, each column of E′ has norm at most (C ·

√
m)t · δ ≤ (C ·

√
m)B · δ = ∆.

4.2 Binding
▶ Theorem 14. The above scheme is computationally binding when H is modeled as a random
oracle. Concretely, for every adversary A making at most Q queries to H it holds that

Pr
[

k ̸= k′ AND
Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
≤ Q2 · qn ·

(
4∆ + 1

q

)ℓ

The proof of Theorem 14 can be found in the full version.

4.3 Unlinkability
▶ Theorem 15. The above construction is unlinkable. In particular, for every PPT adversary
A making at most Q = Q(λ) queries to H, there exists a PPT adversary B such that for all
λ ∈ N it holds that:

AFT 2023



26:14 Post-Quantum Single Secret Leader Election (SSLE)

Advrrc
A,RLWE,B(λ) ≤ 2Q

2λ −Q
+ 2ℓ · Advlwe

B (λ) + B ·m
2 ·

√
2−m+(n+ℓ)·log q.

The proof of the theorem is in the full version.

5 A Construction from Ring LWE

In this section we present our RRC construction from the Ring LWE assumption [33] (see
Section 2). Our construction, denoted Rrlwe is presented in Fig. 3. The construction works
in a polynomial ring R modulo a cyclotomic polynomial f that has exactly two irreducible
factors f1, f2 over Zq.

Improvements over RLWE. Compared to the integer-based scheme, the ring-based scheme
accommodates more efficient parameter choices. For concreteness, the ensuing discussion
focuses on the regime in which q = Ω(∆2). In this regime, for the ring-based scheme to
be binding, we only need ℓ to be Ω(log(q) + λ/n), where λ is the security parameter. This
is a factor of Ω(n) smaller than the LWE case. Secondly, m only needs to be of order
Ω(log(q) + (ℓ + κ)/n) where κ is a statistical security parameter (we want the re-randomized
commitments to be distributed 1/2κ close to a uniform distribution). This also turns out to
be a factor of Ω(n) smaller than the integer case. Combining these together, each ring-based
RRC commitment and each re-randomization matrix is Ω(n)-times smaller than the integer-
based commitment and matrix, respectively (this already takes into account the fact that
representing each ring element takes n-times the representation length of a Zq element).

Additionally, if we are re-randomizing a list of t commitments, then we consider the
possibility of using a single, larger matrix to re-randomize all the commitments. In the
ring case, we would only need to scale m by a factor of t/n, but in the integer case, m

grows by a factor of t. In particular, for t = Ω(n), the ring-based RRC commitments and
the re-randomization matrix only grow by a constant factor, while in the integer case, the
commitments and the re-randomization matrix still grow linearly in t (making it essentially
infeasible to use a single re-randomization matrix in this setting)2.

We now prove the correctness, binding, and unlinkability for our ring-based RRC scheme.

Correctness. We first note that, prior to any rerandomization, for an honestly generated
commitment c = (a, U ), it holds that U − a · H(k)T is equal to the noise matrix E sampled
at the generation of the commitments. Hence, the matrix V computed by the Test algorithm
is just E, and each of its columns has norm at most δ, since E was sampled according to
χm×ℓ. Now, after t ≤ B applications of Randomize to the commitment c using matrices
R1, . . . , Rt, the commitment we get is of the form

(Rt · · ·R1 · a, Rt · · ·R1 ·U) = (Rt · · ·R1 · a, Rt · · ·R1 · a · H(k)T + Rt · · ·R1 ·E).

Hence, the matrix computed by the Test algorithm is E′ = Rt · · ·R1 ·E. Lemma 7 guarantees
that with a high probability, each column of E′ has norm at most

(m
√

mn · ω(
√

log n))t · δ ≤ (m
√

mn · ω(
√

log n))B · δ = ∆

where ∆ is an upper bound on the expression δ · (m
√

mn · ω(
√

log n))B .

2 While the re-randomization matrix would typically not be transmitted in the clear, its size does affect
the complexity of the proof of shuffle (recall our discussion in the introduction).



D. Boneh, A. Partap, and L. Rotem 26:15

Setup(1λ):
1 : Let n := 2r where r = r(λ), and let f(x) = xn + 1 and R = Z[x]/f(x).

Choose a prime q and let Rq = Zq[x]/f(x).
// r, q are chosen such that f factors into two irreducible polynomials over Zq

2 : Let m = m(n, q) and ℓ = ℓ(n, q).
// we will explain how to choose m and ℓ in the analysis

3 : Let χ be the RLWE noise distribution over Rq.
// if we sample a vector e←$ χm, then with high probability, ∥e∥2 ≤ δ for some δ ≪ q

4 : return pp← (λ, q, n, m, ℓ, χ)
Commit(pp):
1 : a←$ Rm

q // choose a random vector a

2 : k ←$ {0, 1}λ // choose a random 1λ-bit string

3 : v ← H(k) ∈ Rℓ
q // hash k to a vector of length ℓ

4 : Sample E ∈ Rm×ℓ
q from the RLWE noise distribution χm×ℓ

// then for each column e of E, ∥e∥2 ≤ δ w.h.p

5 : U ← a · vT + E ∈ Rm×ℓ
q

6 : c← (a, U)
7 : return (c, k)

Randomize(pp, c): parse c = (a, U) and do
1 : Sample R ∈ Rm×m:
∀i, j ∈ [m], sample the coefficients of Ri,j uniformly and independently from {−1, 1}

// R is a low-norm matrix

2 : c′ ← (R · a, R ·U) ∈ Rm
q ×Rm×ℓ

q

3 : return c′

Test(pp, c, k): parse c = (a, U) and do
1 : V ← U − a · H(k)T ∈ Rm×ℓ

q

2 : return 1 iff for each column v of V , ∥v∥2 ≤ ∆, and return 0 otherwise

Figure 3 Rrlwe – A B-randomizable RRC scheme based on the learning with errors over rings
(RLWE) problem.

5.1 Binding
▶ Theorem 16. The above scheme is computationally binding when H is modeled as a random
oracle. Concretely, for every adversary A making at most Q queries to H it holds that

Pr
[

k ̸= k′ AND
Test(pp, c, k) = Test(pp, c, k′) = 1 : pp←$ Setup(1λ)

(c, k, k′)←$ A(pp)

]
≤ Q2 ·qn ·

(
4∆ + 1
√

q

)nℓ

The proof of Theorem 16 is in the full version.

5.2 Unlinkability
▶ Theorem 17. The above construction is unlinkable. In particular, for every PPT adversary
A making at most Q = Q(λ) queries to H, there exists a PPT adversary B such that for all
λ ∈ N it holds that:

AFT 2023



26:16 Post-Quantum Single Secret Leader Election (SSLE)

Advrrc
A,RRLWE,B(λ) ≤ 2Q

2λ −Q
+ (2ℓ) · Advrlwe

B (λ) + B · m

2

√(
1 +

( q

2m

)n/2
)2(ℓ+1)

− 1.

The proof of Theorem 17 can be found in the full version.

6 Handling Adversarially-Randomized Commitments

In this section, we present a stronger notion of unlinkability, called strong unlinkability for
RRC schemes, and then present different approaches to augment our basic schemes from
Sections 4 and 5 to satisfy this definition.

Loosely speaking, strong unlinkability requires that re-randomization should result in
unlinkable commitments, even if they were previously re-randomized by the adversary. This
trivially holds for the DDH-based construction of Boneh et al. [16] thanks to two properties
of the scheme:

Suppose the adversary receives a commitment c for which k is a valid key, and outputs a
randomized commitment c′. As long as Test(pp, c′, k) = 1, there exists some randomness
r such that c′ = Randomize(pp, c; r).
Re-randomization using Randomize is a commutative operation. Hence, in conjunction
with the observation above, any knowledge the adversary could gain by re-randomizing a
commitment before an honest re-randomization, it could also gain by re-randomizing it
afterwards (which the adversary can already do in the security game from Fig. 1).

Alas, this is not the case for our lattice-based constructions. The main issue is that matrix
multiplication is not commutative. Hence a “bad” re-randomization (even one that does
not invalidate the honest commitment key) can have a long lasting effect on a commitment
even after many subsequent honest re-randomizations have taken place. Concretely, on
input c = (A, U), the adversary may output c′ = (A′, U ′), such that A′ is “bad” in the
sense that the distribution R · A′ for a random R ←$ {−1, 1, }m×m is very far from the
uniform distribution over Zm×n

q . As a hypothetical example, suppose that the adversary
can find a matrix R ∈ {−1, 1, }m×m such that A′ = R ·A is a low-norm matrix. Then, the
distribution R ·A′ will be concentrated on low-norm matrices as well, enabling the adversary
to distinguish between this distribution and the uniform distribution over Zm×n

q , which is
concentrated on high-norm matrices.

6.1 A Stronger Unlinkability Definition
We first need to define what it means for an RRC scheme to be unlinkable in the face of
adversarial re-randomizations. To do this, we augment the security game of RRC schemes
by letting the adversary re-randomize the commitments at points in time of its choosing.
To avoid trivial attacks, we require that the adversary justifies its outputs by providing the
randomness it used for re-randomization.

To this end, and to facilitate our constructions, we introduce several new notions for
RRC schemes:

We augment an RRC scheme with a corresponding beacon distribution D. This distribution
is used to model a randomness beacon, and will be used by one of our constructions of a
strongly-unlinkable RRC scheme. In practice, the beacon may be assumed as an outside
resource or implemented in various ways using known techniques [37].
We introduce two new algorithms R.Precommit and R.Extract to an RRC scheme R.
R.Precommit is a randomized algorithm that takes in the public parameters pp an outputs
some “precommitment” pcom, whose role will become apparent in a minute. R.Extract



D. Boneh, A. Partap, and L. Rotem 26:17

is a (potentially randomized) algorithm that takes in pp, the randomness r ∈ {0, 1}∗
used by R.Precommit to generate pcom, and a sample rand from D, and outputs some
randomness r′ to be used by R.Randomize. Throughout this section, we will denote the
number of random coins used by R.Precommit by ρ = ρ(λ).
An RRC scheme R is now also parameterized by a class G of admissible random strings ,
and only members of G can be used as randomness for R.Randomize. This is checked by
the security game for randomness used by the adversary. A natural selection for G is the
entire support of the randomness used by the honest Randomize algorithm; for example,
in our (integer) LWE-based construction, this corresponds to G = {−1, 1}m×m, but one
might also consider strict supersets or subsets of this set.
We allow G to depend on a precommitment pcom, the randomness r ∈ {0, 1}∗ used
by R.Precommit to generate pcom, and a sample rand from D. We denote this by
A(pcom, r, rand). The set G may also depend on the public parameters pp, but we do not
note this explicitly, since the public parameters typically remain fixed.

To recap, an RRC scheme R now consists of six algorithms (R.Setup, R.Commit,
R.Randomize, R.Test, and now also R.Precommit and R.Extract), a distribution D, and
a set G = G(pcom, r, rand).

Correctness and unlinkability. For correctness, we now require that the scheme is B-
rerandomizable (Definition 8), where the randomness for rerandomization is generated by
Precommit, D, and Extract. We additionally require that honestly generated randomness for
Randomize is indeed admissible.

▶ Definition 18. Let R be an RRC scheme such that R.Precommit takes ρ = ρ(λ) random
coins. We say Ris B-randomizable if there exists a negligible function ν(·) such that the
following conditions hold for every λ ∈ N:
1. Let pp ←$ R.Setup(1λ), (c0, k) ←$ R.Commit(pp), ri ←$ {0, 1}ρ, randi ←$ D, r′i ←$

R.Extract(pp, ri, randi), ci ←$ R.Randomize(pp, ci−1; r′i) for i ∈ [B], then

Pr
[
R.Test(pp, ci, k) = 1 for i = 0, 1, 2, . . . , B

]
≥ 1− ν(λ).

2. Let pp ←$ R.Setup(1λ), r ←$ {0, 1}ρ, pcom ← R.Precommit(pp; r), rand ←$ D, and r′ ←$

R.Extract(pp, r, rand), then

Pr [r′ ∈ G(pcom, r, rand)] ≥ 1− ν(λ).

An RRC scheme that is B-randomizable for all B ∈ N is said to be fully randomizable. ⌟

The new strong-unlinkability game is defined in Figure 4. It uses the following abbreviated
writing: we write (rand, c′) ←$ R.Randomize(pp, r, c) as a shorthand for the process of
(1) sampling rand ←$ D, (3) sampling r′ ←$ R.Extract(pp, r, rand), (4) computing c′ ←
R.Randomize(pp, c; r′), and (5) outputting (rand, c′). The new game is obtained from the old
unlinkability security game (Figure 1) by the following modifications:
1. At the onset of the game, the challenger samples precommitments {pcom} to be used for

the honest re-randomizations it performs. The adversary then also outputs a precommit-
ment {pcom} for its own future re-randomizations. For each re-randomization, the set
G will depend on the corresponding precommitment. Looking ahead, in a couple of our
constructions, the precommitments will serve as commitments for randomness to be used
in the future re-randomizations.

AFT 2023



26:18 Post-Quantum Single Secret Leader Election (SSLE)

2. The challenger samples {rand} values from the beacon distribution D. These serve as the
beacon values for each re-randomization (adversarial or honest). The adversary receives
the corresponding rand value before each adversarial re-randomization, and together with
each honest re-randomization.

3. Each time the adversary A outputs re-randomized commitments, it also outputs the asso-
ciated randomness used to generate the associated precommitment and the randomness
used for re-randomization. The challenger then checks that this randomness is indeed
admissible.

As before, we define the adversary’s advantage as

Advstrong-rrc
A,R (λ) :=

∣∣2 Pr[Gstrong
A,R (λ) = 1]− 1

∣∣.

Game Gstrong
A,R (λ)

1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)

3 : (T, i
(1)
0 , i

(1)
1 . . . , i

(T )
0 , i

(T )
1 , state)←$ A(pp)

4 : −−−→pcom← () // initialize an empty vector
5 : for t in {1, . . . , T} :

6 : for j in {1, . . . , i
(t)
0 } : rt,0,j ←$ {0, 1}ρ

, pcomt,0,j ← R.Precommit(pp; rt,0,j), −−−→pcom← −−−→pcom∥pcomt,0,j

7 : for j in {1, . . . , i
(t)
1 } : rt,1,j ←$ {0, 1}ρ

, pcomt,1,j ← R.Precommit(pp; rt,1,j), −−−→pcom← −−−→pcom∥pcomt,1,j

8 : // ρ denotes the number of random coins used by R.Precommit

9 : (pcom′
1,0, pcom′

1,1, . . . , pcom′
T,0, pcom′

T,1, state)←$ A(state,−−−→pcom)

10 : rand1,0, rand1,1 . . . , randT,0, randT,1 ←$ D

11 : (c
(0)
0 , k0)←$ R.Commit(pp), (c

(0)
1 , k1)←$ R.Commit(pp)

12 : aux0 ← c
(0)
0 ∥c

(0)
1

13 : for t in {1, . . . , T} :

14 : (state, c
(t)
0 , c

(t)
1 , r0, r1, r

′
0, r

′
1)←$ A(state, auxt−1, randt,1, randt,0)

15 : // r0 and r1 are the random coins A claims to have used to generate pcomt,0 and pcomt,1

16 : // r
′
0 and r

′
1 are the random coins A claims to have used for re-randomization

17 : if (c
(t)
0 ̸= R.Randomize(pp, c

(t−1)
0 ; r

′
0)) OR (c

(t)
1 ̸= R.Randomize(pp, c

(t−1)
1 ; r

′
1)) : abort

18 : // check that r
′
0 and r

′
1 were used by A for re-randomization

19 : for d in {0, 1} : Gd ← G(pcom′
t,d, rd, randt,d)

20 : auxt ← () // initialize an empty vector

21 : for j in {1, . . . , i
(t)
0 } : (randt

0,j , c
(t)
0 )←$ R.Randomize(pp, rt,0,j , c

(t)
0 ), auxt ← auxt∥(randt

0,j , c
(t)
0 )

22 : for j in {1, . . . , i
(t)
1 } : (randt

1,j , c
(t)
1 )←$ R.Randomize(pp, rt,1,j , c

(t)
1 ), auxt ← auxt∥(randt

1,j , c
(t)
1 )

23 : // the notation (rand, c
′)←$ R.Randomize(pp, r, c) is defined above

24 : if r
′
0 ̸∈ G0 OR r

′
1 ̸∈ G1 : c

(t)
0 ← c

(t−1)
0 , c

(t)
1 ← c

(t−1)
1

25 : (rand0, c0)←$ R.Randomize(pp, c
(T )
0 ), (rand1, c1)←$ R.Randomize(pp, c

(T )
1 )

26 : b
′ ←$ A(cb, c1−b, rand0, rand1, state)

27 : return b = b
′

Figure 4 The strong unlinkability security game for an adversary A and an RRC scheme R.

▶ Definition 19. An RRC scheme R is strongly-unlinkable if for all PPTadversaries A
the function Advstrong-rrc

A,R (λ) is negligible.



D. Boneh, A. Partap, and L. Rotem 26:19

Game Gpr
A,R(λ)

1 : b←$ {0, 1}

2 : pp←$ R.Setup(1λ)
3 : r ←$ {0, 1}ρ, pcom← R.Precommit(pp; r)
4 : (pcom′, state)←$ A(pp, pcom)
5 : rand←$ D

6 : (c, k)←$ R.Commit(pp), (c′
0, k′)←$ R.Commit(pp)

7 : (c′′, r′, r′′, state)←$ A(state, c, rand)
8 : if c′′ ̸= R.Randomize(pp, c; r′′) : abort
9 : if r′′ ̸∈ G(pcom′, r′, rand) : abort

10 : (rand′, c0)←$ R.Randomize(pp, r, c′′)
11 : c1, c′

1 ←$ Cλ

12 : b′ ←$ A(cb, c′
b, rand′, state)

13 : return b = b′

Figure 5 The security game for an adversary A attacking the strong pseudorandomness of R.

How to put the strong unlinkability definition to use. In the strengthened security game
from Fig. 4, whenever the adversary re-randomizes, it also sends to the challenger the
randomness that went into this re-randomization process (that is, the randomness that went
into Precommit and into Randomize). This means that whenever using a strongly-unlinkable
RRC scheme within a larger protocol, one should require that re-randomizers provide a
argument of knowledge for such randomness (and potentially of additional secrets that are
related to the larger super-protocol). Then, a security reduction that tries to break the
security of the RRC scheme can use the knowledge extractor of the proof system to extract
the randomness and output it in the RRC security game. Our SSLE protocol, detailed in the
full version, provides an example of how to use RRC schemes within a larger protocol. In
the full version, we discuss specific ways to construct the necessary arguments of knowledge
for our lattice-based RRC schemes.

Strongly-pseudorandom RRC schemes. We present the notion of strong pseudorandomness
for RRC schemes. Roughly speaking, an RRC scheme enjoys strong pseudorandomness, if
honestly re-randomized commitments are pseudorandom. That is, it is indistinguishable
from a uniformly-random member of the domain C = {Cλ}λ of commitments. Moreover,
honest re-randomization should output pseudorandom commitments even on commitments
that were previously re-randomized by the adversary (using admissible randomness). This is
captured by the security game in Fig. 5.

As before, we define the adversary’s advantage as

Advpr-rrc
A,R (λ) :=

∣∣2 Pr[Gpr
A,R(λ) = 1]− 1

∣∣.
▶ Definition 20. A B-randomizable R scheme is strongly-pseudorandom if for all PPT
adversaries A the function Advpr-rrc

A,R (λ) is negligible.

A simple hybrid argument shows that an RRC scheme that is strongly-pseudorandom is
also strongly-unlinkable.

AFT 2023



26:20 Post-Quantum Single Secret Leader Election (SSLE)

▶ Proposition 21. If an RRC scheme R is strongly-pseudorandom then it is also strongly-
unlinkable.

We now turn to present several ways to augment our basic RRC schemes so that they
achieve strong-pseudorandomness, and hence strong unlinkability.

6.2 Constructing Strongly-Pseudorandom RRCs
We now present a way to turn our lattice-based constructions of RRC schemes to ones that
provide strong pseudorandomness, and hence strong unlinkability. We start by describing
such a mechanism for our LWE-based scheme, and then discuss how the same ideas can also
be applied to our Ring-LWE-based scheme.

Immunizing our LWE-based RRC scheme RLWE against adversarial re-randomizations
per the Definition 19 amounts to defining the beacon distribution D, the algorithms
RLWE.Precommit and RLWE.Extract, and the set G of admissible random strings. We do
so as follows:

D is the uniform distribution over {−1, 1}m×m.
RLWE.Precommit(pp; r): the randomness r to the algorithm is parsed as a tuple (R, r′)
of a uniformly-random matrix R in {−1, 1}m×m and randomness r′ to a stand-
ard (not re-randomizable) statistically-binding non-interactive commitment scheme
C = (C.Setup, C.Commit) (for definitions of standard commitment schemes, see for
example [17]). The algorithm then commits to R using C: it computes pcom ←
C.Commit(ppC, R; r′) and outputs pcom (the public parameters ppC for C are sampled
by the C.Setup algorithm during the operation of RLWE.Setup and are included as part of
the public parameters of RLWE).
RLWE.Extract(pp, r, rand) parses r as (R, r′) and treats rand as a matrix R′ in {−1, 1}m×m.
It outputs R′′ ← R + R′ ∈ Zm×m

q .
The set G = G(pcom, r = (R, r′), rand = R′) is then the singleton set {R + R′} if
pcom = C.Commit(ppC, R; r′). Otherwise, if pcom ̸= C.Commit(ppC, R; r′) then G = ∅
and there is no admissible randomness. That is, G “checks” if pcom is a valid commitment
to R given the randomness used to generate it, and if so, the only admissible randomness
for RLWE.Randomize is the sum of R + R′.

We denote the RRC scheme obtained by these augmentations by R+
LWE. We first argue that

the scheme is correct per Definition 18. Condition 2 of the definition holds trivially. To see
why Condition 1 holds, observe that honest ris used for re-randomization are now m-by-m
matrices, whose coordinates are independently sampled from a distribution which attains 0
with probability 1/2, and −2 or 2 with probability 1/4 each. A straightforward adaptation
of the proof of Lemma 6 shows that it still applies (with a slightly worse constant C) and
hence the previous proof of correctness still goes through.

As for security, the following theorem, proved in the full version, proves that R+
LWE satisfies

strong pseudorandomness. In conjunction with Proposition 21, this implies that it is also
strongly-unlinkable.

▶ Theorem 22. The scheme R+
LWE is a strongly-pseudorandom RRC scheme.

Strong unlinkability from the Ring LWE assumption. We can use a similar technique in
order to augment our Ring-LWE-based RRC scheme with strong unlinkability. The only
difference is that now R and R′ are sampled as matrices of “short” polynomials. That is, the
distribution D samples a matrix R′ as follows: Each coordinate is an independent polynomial,
whose coefficients are sampled independently and uniformly from {−1, 1}. Precommit samples



D. Boneh, A. Partap, and L. Rotem 26:21

a commitment to a matrix R sampled from the same distribution, and Extract outputs
R + R′. Finally, the set G(pcom, r, rand) = {R + R′} as before if the precommitment pcom is
consistent with r and ∅ otherwise. Correctness follows similarly as in the LWE case, replacing
the use of Lemma 6 with Lemma 7. For strong pseudorandomness, we replace the use of the
leftover hash lemma [29] with Lemma 4.3

6.3 Strong Pseudorandomness without A Randomness Beacon
The above approach requires a randomness beacon, which is a very reasonable assumption
in the context of SSLE protocols. However, there might be other scenarios in which one
might want to use RRCs without assuming the availability of such a beacon. This is formally
captured by the above definitions by fixing D to be the constant distribution outputting ⊥
with probability 1. In the full version, we present three different approaches to augment our
schemes to provide strong unlinkability without assuming a randomness beacon.

References
1 Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard model.

In Advances in Cryptology – EUROCRYPT 2010, pages 553–572, 2010.
2 Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri AravindaKrish-

nan Thyagarajan. Lattice-based snarks: Publicly verifiable, preprocessing, and recursively
composable. In Advances in Cryptology – CRYPTO 2022, pages 102–132, 2022.

3 Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of
Computing Systems, 48:535–553, 2011.

4 Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104, Dallas,
TX, USA, October 31 – November 2 2017. ACM Press. doi:10.1145/3133956.3134104.

5 Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai, and Anna Lysyanskaya. Fully
homomorphic NIZK and NIWI proofs. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 356–385, Nuremberg, Germany, December 1–5 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-36033-7_14.

6 Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices.
In Advances in Cryptology – CRYPTO 2021, pages 549–579, 2021.

7 Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain proof-of-stake protocols
with single secret leader elections. In Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies, AFT ’21, pages 170–182, 2021. doi:10.1145/3479722.3480996.

8 Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on blockchain consensus with
fantomette, 2018. arXiv:1805.06786.

9 Michael Backes, Pascal Berrang, Lucjan Hanzlik, and Ivan Pryvalov. A framework for
constructing single secret leader election from MPC. In Vijayalakshmi Atluri, Roberto Di
Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ESORICS 2022, Part II,
volume 13555 of LNCS, pages 672–691, Copenhagen, Denmark, September 26–30 2022. Springer,
Heidelberg, Germany. doi:10.1007/978-3-031-17146-8_33.

10 Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth, and Vadim
Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In
Advances in Cryptology – CRYPTO 2018, pages 669–699, 2018.

3 Technically speaking, we require a generalization of Lemma 7, in which the coefficients of each entry of
R may be chosen from different (but small) sets. Fortunately, the proof of 7 readily extends to this
setting.

AFT 2023

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-36033-7_14
https://doi.org/10.1145/3479722.3480996
https://arxiv.org/abs/1805.06786
https://doi.org/10.1007/978-3-031-17146-8_33


26:22 Post-Quantum Single Secret Leader Election (SSLE)

11 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, , and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046,
2018. URL: https://eprint.iacr.org/2018/046.

12 Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in
Cryptology – EUROCRYPT 2019, pages 103–128, 2019.

13 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Theory
of Cryptography, pages 31–60, 2016.

14 Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof Pietrzak. Efficient
zero-knowledge proofs for commitments from learning with errors over rings. Cryptology
ePrint Archive, Report 2014/889, 2014. URL: https://eprint.iacr.org/2014/889.

15 Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 2025–2038,
Virtual Event, USA, November 9–13 2020. ACM Press. doi:10.1145/3372297.3417893.

16 Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election.
In AFT ’20, pages 12–24. ACM, 2020. Available online at eprint/2020/025.

17 Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography, Draft 0.6.
Cambridge University Press, 2023.

18 Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable
single secret leader election from pairings. Cryptology ePrint Archive, Report 2021/344, 2021.
URL: https://eprint.iacr.org/2021/344.

19 Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure single secret leader
election from ddh. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, PODC’22, pages 430–439, 2022. doi:10.1145/3519270.3538424.

20 Rutchathon Chairattana-Apirom and Anna Lysyanskaya. Compact cut-and-choose: Boosting
the security of blind signature schemes, compactly. Cryptology ePrint Archive, Paper 2022/003,
2022. URL: https://eprint.iacr.org/2022/003.

21 Miranda Christ, Valeria Nikolaenko, and Joseph Bonneau. Leader election from random-
ness beacons and other strategies, 2022. URL: https://a16zcrypto.com/posts/article/
leader-election-from-randomness-beacons-and-other-strategies.

22 Nuria Costa, Ramiro Martínez, and Paz Morillo. Lattice-based proof of a shuffle. In FC 2019:
Financial Cryptography and Data Security, pages 330–346, 2019.

23 Justin Drake. Low-overhead secret single-leader election, 2019. URL: https://ethresear.
ch/t/low-overhead-secret-single-leader-election/5994.

24 Luciano Freitas, Andrei Tonkikh, Adda-Akram Bendoukha, Sara Tucci-Piergiovanni, Renaud
Sirdey, Oana Stan, and Petr Kuznetsov. Homomorphic sortition – single secret leader
election for pos blockchains. Cryptology ePrint Archive, Paper 2023/113, 2023. URL:
https://eprint.iacr.org/2023/113.

25 Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake protocols for privacy-aware
blockchains. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 690–719, Darmstadt, Germany, May 19–23 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-17653-2_23.

26 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, STOC ’08, pages 197–206, 2008. doi:10.1145/1374376.1374407.

27 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algor-
and: Scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report
2017/454, 2017. URL: https://eprint.iacr.org/2017/454.

28 Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, , and Riad S. Wahby.
Brakedown: Linear-time and post-quantum snarks for R1CS. Cryptology ePrint Archive,
Paper 2021/1043, 2021. URL: https://eprint.iacr.org/2021/1043.

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2014/889
https://doi.org/10.1145/3372297.3417893
https://eprint.iacr.org/2020/025
https://eprint.iacr.org/2021/344
https://doi.org/10.1145/3519270.3538424
https://eprint.iacr.org/2022/003
https://a16zcrypto.com/posts/article/leader-election-from-randomness-beacons-and-other-strategies
https://a16zcrypto.com/posts/article/leader-election-from-randomness-beacons-and-other-strategies
https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://eprint.iacr.org/2023/113
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1145/1374376.1374407
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2021/1043


D. Boneh, A. Partap, and L. Rotem 26:23

29 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

30 George Kadianakis. Whisk: A practical shuffle-based ssle protocol for ethereum, 2022. X.
31 Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous:

Privacy-preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy, pages
157–174, San Francisco, CA, USA, May 19–23 2019. IEEE Computer Society Press. doi:
10.1109/SP.2019.00063.

32 Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-based zero-
knowledge proofs and applications: Shorter, simpler, and more general. In Advances in
Cryptology – CRYPTO 2022, pages 71–101, 2022.

33 Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23, French Riviera, May 30 – June 3 2010. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-13190-5_1.

34 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: http:
//bitcoin.org/bitcoin.pdf.

35 Ngoc Khanh Nguyen and Gregor Seiler. Practical sublinear proofs for r1cs from lattices. In
Advances in Cryptology – CRYPTO 2022, pages 133–162, 2022.

36 Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016. Available online at eprint/2015/939.

37 Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness beacon protocols. In
Australasian Conference on Information Security and Privacy, pages 420–446. Springer, 2022.
available here.

38 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93, Baltimore, MA,
USA, May 22–24 2005. ACM Press. doi:10.1145/1060590.1060603.

39 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009. Available online here.

40 Antonio Sanso. Towards practical post quantum single secret leader election (ssle) - part 1,
2022. X.

41 Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In 35th FOCS, pages 124–134, Santa Fe, NM, USA, November 20–22 1994. IEEE Computer
Society Press. doi:10.1109/SFCS.1994.365700.

42 Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 617–635, Tokyo, Japan, December 6–10 2009. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-10366-7_36.

AFT 2023

https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/939.pdf
https://arxiv.org/abs/2205.13333
https://doi.org/10.1145/1060590.1060603
https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://crypto.ethereum.org/blog/pq-ssle
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-642-10366-7_36




Liquidity Management Attacks on Lending Markets
Alireza Arjmand #

University of Alberta, Edmonton, Canada

Majid Khabbazian #

University of Alberta, Edmonton, Canada

Abstract
Decentralized Finance (DeFi) continues to open up promising opportunities for a broad spectrum of
users, with lending pools emerging as a cornerstone of its applications. While prominent platforms
like Compound and Aave maintain a large share of the funds in lending pools, numerous other
smaller pools also exist. Many of these smaller entities draw heavily from the design principles of
their larger counterparts due to the complex nature of lending pool design.

This paper asserts that the design approaches that serve larger pools effectively may not
necessarily be the most beneficial for smaller lending pools. We identify and elaborate on two
liquidity management attacks, which can allow well-funded attackers to exploit specific circumstances
within lending pools for personal gain. Although large lending pools, due to their vast and diverse
liquidity and high user engagement, are generally less vulnerable to these attacks, smaller lending
protocols may need to employ specialized defensive strategies, particularly during periods of low
liquidity. We also show that beyond the six leading lending protocols, there exists a market value
exceeding $1.75 billion. This considerable sum is dispersed among over 200 liquidity pools, posing a
potentially attractive target for bad actors.

Furthermore, we evaluate existing designs of lending pools and suggest a novel architecture
that distinctly separates the liquidity and logic layers. This unique setup gives smaller pools the
adaptability they need to link with larger, well-established pools. Despite encountering certain
constraints, these emerging pools can leverage the considerable liquidity from larger pools until
they generate sufficient funds to form their own standalone liquidity pools. This design cultivates a
setting where multiple lending pools can integrate their liquidity components, thus encouraging a
more diverse and robust liquidity environment.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Lending Pools, DeFi, Interest Rate, Liquidity Management Attack

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.27

1 Introduction

Decentralized Finance (DeFi) protocols offer a solid foundation for financial investors seeking
to earn returns on their assets in a decentralized manner. Lending and borrowing, one of
the oldest financial applications, is transformed by blockchains, enabling the creation of
liquidity pools that consolidate lender funds and facilitate borrowing. This arrangement
presents an appealing opportunity for both parties; lenders earn interest from the moment
they contribute their funds to the liquidity pools, while borrowers are assured of paying a
fair interest rate for their borrowed amount.

This paper primarily focuses on over-collateralized lending pools [4], where, after liquidity
providers contribute their funds to the pool, borrowers can access these funds by offering
collateral in other assets. The collateral amount must exceed the borrowed sum to allow
the lending protocol to guarantee a return of funds to the liquidity providers. Should the
collateral amount drop below a certain threshold, the collateral can be converted into the
borrowed asset, incentivizing third parties to repay the liquidity providers in a process known
as liquidation [24].

© Alireza Arjmand and Majid Khabbazian;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 27; pp. 27:1–27:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arjmands@ualberta.ca
https://orcid.org/0009-0007-2871-3888
mailto:mkhabbazian@ualberta.ca
https://orcid.org/0000-0002-6338-2945
https://doi.org/10.4230/LIPIcs.AFT.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Liquidity Management Attacks on Lending Markets

Despite experiencing a decline in 2022 [26], the lending markets continue to expand,
amassing a Total Value Locked (TVL) in excess of $13.2b across a multitude of blockchains [10].
While dominant lending markets such as Compound [7, 18] and Aave [1, 2] maintain the
bulk of this value, new lending protocols inspired by these major lending pools are constantly
emerging, contributing novel capabilities to the application layer for users. To gain traction,
these newer lending protocols need to incentivize users to entrust their funds to their platforms.
This often requires competition with larger lending pools through attractive incentives such
as higher interest rates and novel application layer opportunities.

A key part of any lending pool is its interest rate formula, which determines how much
borrowers have to pay back based on what they borrow. The importance of this formula
lies in its potential to encourage certain behaviors: (i) It should incentivize borrowing by
decreasing interest rates when ample liquidity is available; (ii) It should attract external
liquidity providers to participate in the protocol by elevating interest rates when a significant
portion of the liquidity is borrowed; (iii) It should stimulate the retention of some liquidity in
the pool, enabling providers to withdraw at any time. To encourage these behaviors, several
recognized formulas/models are frequently used by lending protocols [15].

In the widely adopted model, lending pools implement high interest rates on borrowed
funds when usage approaches 100%. Consequently, if this level of usage persists for an
extended duration, borrowers will be subject to significantly increased fees compared to the
norm. To address this issue, these lending protocols depend on diligent users who actively
monitor the situation. These users are incentivized to inject funds into the pool when interest
rates are high. However, if these users lack sufficient funds to effectively reduce the usage
or if there is a delay in their actions, borrowers in the lending pools may suffer substantial
losses due to the elevated interest rates.

In this paper, we focus on small lending pools that adopt similar models. We postulate
that a malicious liquidity provider, owning a significant share of a liquidity pool’s reserves,
can manipulate other actors to align with certain conditions for their benefit, potentially
causing harm to others. We demonstrate that the relative lack of substantial liquidity funds
and centralized liquidity providers in these smaller pools can expose them to various threats.
In particular, we make the contributions:

Liquidity Management Attacks: To highlight the vulnerability of small lending pools,
we present two different liquidity management attacks on these pools. Furthermore, we
delve into a general strategy that could be implemented by an attacker with sufficient
funds, highlighting the incentives for users and a long-term approach that could prove
profitable for the attacker but detrimental to the ecosystem. We also evaluate potential
mitigation as well as risks involved in launching the proposed attacks.
Liquidity Aggregator: We present a model in which lending pools separate their
liquidity layer from their logic layer. By this means, smaller lending pools can integrate
their applications with larger lending pools, thereby enhancing their liquidity safeguards.
In this model, lending pools can coexist in dependent or standalone modes, allowing the
community to avoid scattering liquidity across numerous platforms.
Lending Protocol Data Extraction: We gathered data from the six biggest lending
pools. Even though they hold most of the TVL, it’s important to note that there is still
a considerable amount of value in the remaining lending pools. This could potentially
make them targets for malicious users.

The rest of this paper is organized as follows, Section 2 provides necessary background
information. Section 3 introduces the mathematical model that forms the basis for our
discussions throughout the paper. Section 4 outlines the logic behind two types of liquidity



A. Arjmand and M. Khabbazian 27:3

management attacks we investigate and illustrates how malicious actors can manipulate
economic principles to meet their goals. Section 5 presents a design proposal to bolster the
security of emerging lending pools, especially those with limited overall liquidity. In Section
6, we analyze the total value locked in on-chain lending pools, focusing on the six largest
protocols from various perspectives. Section 7 surveys related work in this field. Finally, in
Section 8, we wrap up our discussions and suggest potential avenues for future research.

2 Background

In this section, we present the fundamental concepts necessary to comprehend the subsequent
content of the paper.

2.1 Blockchains
Blockchains comprise numerous underlying nodes that disseminate transactions throughout
the system using a Peer-to-Peer (P2P) network [20, 6]. Each transaction typically aims to
uniquely alter the global state. Transactions are appended to the blockchain within blocks
in each round, following a consensus algorithm that determines the transactions’ inclusion
and sequence.

2.2 Decentralized Finance (DeFi)
Ethereum [32] employs a Turing-complete language named Solidity, enabling users to deploy
smart contracts. These contracts broaden user capabilities by facilitating the creation of
decentralized applications, giving rise to DeFi applications [31]. At present, Ethereum
employs the Proof of Stake (PoS) consensus algorithm, which designates a block builder
each round to select the transactions’ order, which is then subjected to voting by other block
builders. Once a block is produced in each round, all users can sequentially execute each
transaction within the Ethereum Virtual Environment (EVM) to ascertain the current global
state. One distinctive feature of the EVM is that its operations are deterministic and atomic,
altering the state only upon success. Therefore, given any pre-state and specific inputs,
each node would produce identical outputs. These attributes, coupled with Ethereum’s
high throughput, have led to novel, transparent DeFi applications not traditionally found
in Centralized Finance (CeFi) [23]. Furthermore, Ethereum’s allowance for smart contract
composability has resulted in the establishment of complex ecosystems.

DeFi has continued to thrive over the past year, attracting numerous users and boasting
more than $41.5b in TVL. The absence of third parties and the transparency offered by DeFi
applications make them an attractive prospect for many. Popular applications of DeFi include
lending pools [4], Decentralized Exchanges [33], Yield aggregators [8], and stablecoins [19].

2.3 Attacks on DeFi
While code transparency is beneficial, it can also simplify the task of spotting faulty code. If
such vulnerabilities are detected by attackers, they could lead to massive security breaches. In
some of the most significant hacks, such as [22, 5], attackers exploited application layer bugs
to siphon user funds. The classification of attack strategies has been thoroughly documented
in the literature [35, 3, 14, 11], which is essential in assisting the community in identifying
and avoiding patterns that could lead to undesirable consequences. Concurrently, there exist
open-source libraries [21] that strive to provide secure building blocks for contracts. This
enables protocol developers to ensure the safety of their code’s foundational elements.

AFT 2023



27:4 Liquidity Management Attacks on Lending Markets

2.4 High frequency trading
Decentralized markets have given rise to on-chain high-frequency trading [9, 34]. This
environment, while presenting many opportunities, also attracts malicious users aiming
to seize on-chain opportunities by tampering with transaction ordering. Tactics such as
front-running and sandwich attacks are used to drain funds or steal opportunities away from
unsuspecting users. To mitigate this, private relayers such as Flashbots [12] have emerged.
These entities promise users certain assurances about their transaction inclusion, thereby
safeguarding them from generalized front-runners.

3 System model

In this section, we aim to formalize the actions of users who can impact a lending protocol.
To simplify the analysis, we focus on a specific subset of actions in lending pools and disregard
other activities such as liquidations and absorptions. We assume the presence of numerous
users in the system. A user u in our system model is a tuple u = (S, B, C), where S is the
amount of fund the user has supplied to the protocol, B is the amount of funds borrowed by
the user, and C is the total collateral the user provided to the protocol. For simplicity, in
our model, we convert the values of S, B, and C to a common base value (e.g. USD).

The balance of a user ui = (Si, Bi, Ci) is defined as Si − Bi. If a user’s balance is greater
than zero, the user is considered a liquidity provider ; otherwise, if its balance is less than
zero, the user is identified as a borrower. A borrower must have adequate collateral in the
system for the borrowed balance. Since liquidations are not factored into our model, the
following condition should be true for each user ui:

Si + ECi > Bi,

where ECi is the effective collateral for each user, that is

ECi = Σjcij × fj × rateUSD/j

Here, fj represents the collateral factor for each asset. We denote the total amount of each
variable in the entire protocol using the “total” subscript, such as Stotal.

In our system, the borrowers in the system are subject to an interest R calculated using
the kinked interest rate model as follows:

R =
{

R0 + Rlow × U if U ≤ kink

R0 + Rlow + Rhigh × (U − kink) if U > kink
(1)

Table 1 Terminology used in system model.

Character Meaning

L Supplied liquidity
B Borrowed amount
R Interest rate
U Utilization
α Attacker liquidity percentage
EC Effective collateral
kink Optimal utilization



A. Arjmand and M. Khabbazian 27:5

In this formulation, U denotes the protocol’s utilization, calculated as Btotal

Stotal
, where kink

represents the optimal utilization rate, often referred to as the ’kink rate’. The terms R0,
Rlow, and Rhigh signify the base interest rate, the lower slope for utilization, and the sharp
increase in interest rates when utilization surpasses the kink rate, respectively. Borrowers are
assumed to accrue interest with each passing block, adhering to this interest rate model:

Feei = RU × Bi × t (2)

We also assume that the protocol reserve doesn’t accumulate any yields and all borrower
fees are shared among the liquidity providers. To model the reserve, we can consider the
reserve amount as one of the liquidity providers.

Collusion model. In the context of lending protocols, it is conceivable that a group of users
may collude to achieve a common objective. Thus, we consider an adversary A who can
compromise multiple accounts with cumulative supply of up to fraction α, such as:

α ≥ ΣeSe

Stotal
(3)

Where α is the maximum fraction of overall funds that an attacker can control.

4 Attacks on lending markets

In this section, we examine the overarching structure of lending pools and present two forms
of attacks that enable an adversary to impose specific conditions on the liquidity pool by
employing economic strategies to secure a desired outcome. These outcomes could be:

More income: An attacker can augment the fees extracted from other participants
within the pool over a specific time frame.
Denial of Service: An attacker can obstruct access to the rest of the participants,
effectively preventing them from either borrowing or withdrawing their liquidity from the
pool.

While these attacks pose potential complications for other users, they necessitate a substantial
amount of liquidity from the attacker to fulfill the preconditions of launching the attack.
Consequently, the attacker’s risk level escalates in correlation with the growth of this
prerequisite amount. The Compound and Aave protocol models are currently the most
influential among the lending pools, widely implemented by smaller lending pools and
occasionally forked from the main projects. Given the vast liquidity diversity and substantial
user base of the top protocols with the highest TVL, an adversary would face a formidable
task executing these attacks. However, the situation is different for smaller pools. Here, an
attacker could instigate these attacks with a lower risk and initial capital, thereby realizing a
profit. Thus, we demonstrate that smaller pools cannot merely replicate the strategies of
larger entities. They must devise additional defence mechanisms against such attacks while
their liquidity pool is relatively small, thereby safeguarding their liquidity providers and
borrowers.

In the remainder of this section, we commence by elucidating the potential attacks and
demonstrating how an attacker with sufficient liquidity can enforce other actors to comply
with specific conditions. We then proceed with an analysis of the attacker’s risk before
deliberating on some design decisions that new lending pools should avoid.

AFT 2023



27:6 Liquidity Management Attacks on Lending Markets

4.1 Utilization kink attack

While borrowers secure funds by depositing an overcollateralized quantity of tokens in the
protocol, they pay ongoing fees determined by the length of their loan. These fees fluctuate
based on the degree of liquidity utilization, with adjustments made following each transaction
processed by the protocol. Generally, it is anticipated that the borrowing rate maintains
proportionality with the borrowed amount and the Rlow delineated in the interest rate
formula. However, when the utilization quantity exceeds a predetermined threshold or “
kink”, all borrowers become liable to pay supplemental fees to the liquidity providers. The
objective of this kink value is to motivate all participants to act, thereby releasing liquidity
within the protocol: (1) as a liquidity provider, the increased fees offer an incentive to
contribute more liquidity from out of the protocol, and (2) as a borrower, the prospect of
evading excessive fees incentivizes the repayment of the borrowed amount. Both actions lead
to a decrease in total utilization and consequently a reduction in fees. By comparing the
fees at maximum lending protocol utilization and at the kink value, we notice that in some
protocols the fees can unexpectedly jump to more than ten times. This indicates that if an
attacker were to elevate these values by either borrowing the rest of the remaining liquidity,
or pulling out his own liquidity out of the protocol, they could compel borrowers to bear
extensive fees. In such scenarios, smaller pools face two significant threats compared to their
larger counterparts:

Lesser liquidity required: Attackers need a smaller volume of liquidity to drive up
fees, consequently exposing themselves to lower risks.

Smaller group of active users: In such circumstances, the lending pool requires either
active external liquidity providers or borrowers to regulate utilization. A smaller lending
pool implies a lower number of participants monitoring such activities in the system,
hence increasing the likelihood of such attacks.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Utilization

In
te

re
st

R
at

e

Rlow

Rhigh

Figure 1 The kinked rate model can be exploited by an attacker through either increasing the
utilization of the protocol by borrowing more or withdrawing funds.



A. Arjmand and M. Khabbazian 27:7

4.1.1 Simplified attack
In order to exemplify this attack, we explore a hypothetical scenario involving a single liquidity
provider, Alice, and a borrower, Bob. This analysis demonstrates how Alice can increase the
utilization potentially to secure additional fees from Bob. Subsequently, real-world protocol
figures are utilized to replace the formulas and estimate the possible damage an attacker can
cause borrowers to pay.

Scenario Setup. Consider a lending platform characterized by parameters Rlow, Rhigh, and
kink, which are used to compute the interest rate. Initially, Alice contributes S initial funds
to the protocol. Subsequently, Bob borrows an amount B, setting the protocol’s utilization
at the kink amount by offering C in collateral value with collateral factor f .

Attack Execution. Alice currently receives fees from Bob proportionate to kink ∗ Rlow.
Nonetheless, Alice can elevate the utilization by opting for one of the following strategies to
increase the protocol’s utilization:

She may withdraw (1 − kink) ∗ S liquidity from the protocol.
She might borrow the remaining amount of (1 − kink) ∗ S and pay those fees to herself,
since she is the sole liquidity provider. In this case, Alice needs more funds comparing to
the previous method to borrow and execute the attack.

Any of these actions would surge the protocol utilization to 100%, thereby significantly
escalating Bob’s fee. We can calculate the Bob’s new fee, which is proportionate to kink ∗
Rlow + (1 − kink) ∗ Rhigh. We can see that Bob needs to pay 1 + (1−kink)∗Rhigh

kink∗Rlow
times more

fees.

Aftermath. Although Bob retains the option to stop this attack at any point by repaying
his borrowed positions, he remains accountable for fees corresponding to the duration he
borrowed the funds from the protocol. Nevertheless, Bob’s response may be hindered for
various reasons:

He may not have enough liquidity to repay the borrowed sum, especially if these funds
have been invested and locked elsewhere.
He may be offline or negligent in monitoring the protocol’s fees.

Furthermore, many protocols accumulate fees for borrowers in a manner that escalates their
borrowing position over time. This means that by exploiting these circumstances, Alice not
only forces Bob to endure higher fees but could also cause the liquidation of his position if
the accumulated fees surpass Bob’s initial estimations. Bob’s position can even get liquidated
if the following formula becomes true:

ECBob < B + fee (4)

While Bob may have provided ample collateral to cover the protocol’s standard fees, Alice
could potentially elevate Bob’s fees, leading to the liquidation of his position and opening up
another potential profit source.

Numerical example. As a straightforward example, consider a lending pool emulating the
interest rate parameters of Compound V2’s cETH contract. As of this writing, this contract
has an Rhigh/Rlow ratio of 217.78 and a kink value of 0.8. Consequently, for utilization rates
exceeding 80 percent, we observe a significant increase in the fees taken from borrowers. Yet,
Compound V2 is a well-known contract, frequently monitored by numerous users. In contrast,

AFT 2023



27:8 Liquidity Management Attacks on Lending Markets

for newly generated contracts which are copying these values, the utilization kink attack can
present a genuine threat. An attacker could amplify fees by escalating utilization from 80 to
100 percent, by ((1 − 0.8)/0.8) × 217.78 = 54.445 times. Thus, if Alice successfully executes
this attack against Bob for merely a single day, the profits generated would approximate
those accrued from nearly two months of honest investment.

4.1.2 Utilization kink attack in general setting
While the prior example was a basic version of the attack with just two actors in the system,
it served to illustrate that such attacks are indeed possible. However, in real-world situations,
the number of actors, including both honest users and adversaries, is typically greater than
one. In this section, we aim to shape a scenario involving multiple actors, where adversaries
might work together to conduct the explained attack on a specific lending pool.

Collusion among liquidity providers. In order to examine the attack in a broader context,
we need to account for realistic interactions among actors. In this section, we concentrate on a
specific scenario where attackers could potentially enhance the utilization rate by withdrawing
their available liquidity. To simplify this without compromising the mathematical validity of
our analysis, we assume that a fraction, represented as α, of all liquidity provided to the
pool is controlled by colluding adversaries. In this system, where 1 − α represents honest
participants, the adversaries decrease their shares by withdrawing their funds. Interestingly,
under certain conditions met by the interest rate formula, attackers could increase their fees
even after reducing their shares. One approach for adversaries to collude atomically, would
be through a smart contract. The progression of steps is outlined below:
1. Any adversary could deploy an attack smart contract, equipped with three key func-

tionalities: (1) obtaining permission from users to manage their liquidity tokens, (2)
withdrawing funds from each adversary’s account to increase the utilization while reducing
their respective shares, and (3) returning funds to the liquidity pool if the liquidity kink
attack ceases to be profitable.

2. Each adversary could then grant a certain amount of liquidity provider tokens to the
deployed contract using the pool’s functions, permitting the contract to manage liquidity
on behalf of each adversary.

3. Once all permissions are received, a specific threshold of signatures from adversaries could
initiate the event of pulling liquidity from the protocol to boost utilization.

4. At this point, adversaries can monitor on-chain events to assess the profitability of the
lending pool.

5. Should a new honest liquidity provider join the lending pool, or borrowers repay their
borrowed amounts to an extent that it no longer remains profitable for attackers to
withhold their funds, they can refund all the liquidity and revert to the initial state.

This strategy enables adversaries to minimize liquidity management risks and, in the worst-
case scenario, return to the starting state. By providing adequate permissions, adversaries
can utilize the attack contract to impose higher fees when feasible.

Scenario Setup. In this particular situation, we presume that attackers are already in
possession of α percent of the total liquidity pool, denoted as L. The borrowed amount is
represented by B. The kinked model, which we discussed earlier, guides the calculation of
the interest rate. Moreover, we operate under the assumption that the attackers have already
initiated the attack contract and have authorized it to either deposit or withdraw funds as



A. Arjmand and M. Khabbazian 27:9

necessary. We assume that prior to the attack, the utilization U is less than the kink value.
We also assume that attackers possess sufficient liquidity to elevate the protocol’s utilization
above the kink value. If they lack this amount, the attack would be ineffective and they
would merely diminish their own shares. Finally, we operate under the assumption that all
fees derived from borrowers are directed to the liquidity providers, with none retained by
the protocol itself. This simplifying assumption aids in streamlining the model, though in
real-world applications, a portion of the fees is typically allocated to a community wallet
managed by a DAO or an admin. Should the attackers choose to retain all their funds
within the liquidity pool, behaving honestly, the fees they would receive would equate to the
following amount:

feehonest ∝ (R0 + B

L
∗ Rlow) ∗ α (5)

Attack Execution. For attackers to boost the utilization, they initially need to calculate
the exact amount of funds, termed as x, to withdraw from the protocol to yield higher fees.
We assume that when attackers extract this x amount from the protocol’s reserves, it drives
the utilization beyond the kink value. As a consequence, the fees that would then accrue to
the attackers can be computed as follows:

feeattack ∝ (R0 + Rlow × kink + (( B

L − x
) − kink) × Rhigh)(α − x

L
) (6)

In the preceding equation, the attackers’ shares drop from α to α − x/L. Simultaneously, the
total amount of funds in the protocol diminishes by x, though the borrowed amount remains
unchanged.

Our objective is to pinpoint the ideal amount that adversaries should extract from
the protocol to maximize feeattack. We attain this by identifying the global maximum
obtained from the function’s derivative. The solution to this is realized when the condition
dfeeattack/dx = 0 is fulfilled, the optimal amount can be determined by solving the following
equation:

B × Rhigh × (a − x
L )

(L − x)2 =
Rhigh × ( B

L−x − U) + Rlow × U + R0

L
(7)

This, naturally, would be the ideal value according to the condition if it lies within the range
x < L − B, and x > kink ∗ L − B.

Risks. Even though attackers stand to profit while the utilization remains high, they are
simultaneously accepting certain risks. We explore these primary risks in this section.

Borrower Attrition: By initiating the utilization kink attack, attackers risk comprom-
ising their long-term income. Specifically, they may incentivize borrowers to withdraw
their money, potentially redirecting it to other protocols. Consequently, a lending pool
subject to such attacks may fail to instill trust in new borrowers. Nonetheless, an attacker
could easily shift their funds to other protocols, given there are multiple that offer such
services.
Monitoring Challenges: The preceding section demonstrated that certain conditions
need to be met for a profitable scenario. Given these conditions may change as new actors
join and leave the system, attackers can respond quickly when the situation ceases to be
profitable. Failure to do so could result in a loss of potential fees that could have been
earned through honest investing.

AFT 2023



27:10 Liquidity Management Attacks on Lending Markets

Security Considerations: Participating in a protocol implies that users, both honest
and dishonest, trust the protocol to be secure. However, there’s always a risk that a
protocol may contain a bug leading to a loss of all funds. When an attacker moves
between protocols to execute liquidity management attacks, they are inherently trusting
these protocols not to be compromised. If a breach does occur, they might lose all their
funds.

Mitigation recommendations. The potential threat of liquidity kink attacks can be partially
mitigated at the protocol’s design phase, offering some level of protection to borrowers. One
potential remedy involves demanding a commitment of liquidity from providers. The majority
of honest liquidity providers aim to keep their resources in the market for an extended duration.
In defense of borrowers, the protocol could stipulate a minimum time commitment from these
providers, thereby inhibiting attackers from removing their funds and artificially increasing
the protocol’s utilization. An alternative could be the establishment of “ fee tiers”, whereby
the protocol rewards providers who have pledged their resources over a longer time frame
with higher fees. However, this strategy only stops attackers from withdrawing their funds,
while the possibility of borrowing the remaining amount to amplify utilization still exists.

4.2 DoS attack on liquidators
When liquidity providers contribute funds to a protocol, it is generally assumed that sufficient
funds will be available for regular withdrawals when needed. The portion of funds supplied
to the protocol but not borrowed is typically eligible for withdrawal. However, it is crucial
to acknowledge that this mechanism does not guarantee withdrawals, as it is incentivized by
imposing fees on borrowers when the total protocol utilization exceeds the specified threshold
(kink). Additionally, the fee mechanism is often time-based, considering the duration between
borrow and repayment transactions to calculate the final fee. Consequently, if liquidity is
borrowed and repaid within the same block, the borrower only needs to cover the gas fee
and is not subject to additional fees from the protocol.

An adversary could exploit (1) the absence of guaranteed withdrawals and (2) borrow
fees based on time, to launch a DoS attack. This attack could impact liquidity providers
who are trying to withdraw their funds from many lending protocols, as well as borrowers
attempting to secure a loan after providing sufficient collateral.

4.2.1 Simplified Attack
Here, we discuss a simple attack scenario, Suppose Alice is a liquidity provider in a lending
protocol, supplying $300,000 out of a $1 million pool. The utilization level is currently
at 70%, meaning $300,000 of the pool remains available for both borrowers and liquidity
providers to utilize. Alice urgently needs to withdraw the entire $300,000 from the protocol.
Bob, observing this, aims to prevent Alice’s withdrawal opportunity. He already has sufficient
collateral provided to the protocol and initiates two transactions: (1) a transaction with
a higher gas fee than Alice’s to front-run her transaction and borrow the entire $300,000,
resulting in 100% utilization, and (2) a transaction with a lower gas fee than Alice’s to back-
run her transaction and push the borrowed amount back into the protocol. By sandwiching
Alice in this manner, Bob effectively denies her the withdrawal by causing her transaction to
fail since there are no available free funds in the pool.

It is worth noting that in the above example, any other withdrawal requests from third
parties would also fail since Bob has drained the protocol of funds. Furthermore, during this
process, Bob would only pay the gas fees for the two transactions, which is a relatively small
amount compared to the disruptive impact inflicted upon Alice within the system.



A. Arjmand and M. Khabbazian 27:11

In addition to targeting specific users, an attacker can also attempt a generalized DoS
attack against the entire network. In this scenario, the attacker aims to include one transaction
at the beginning of a block and another transaction at the end of the same block. If successful,
this strategy can effectively prevent anyone within the system from withdrawing funds from
the protocol.

4.2.2 DoS attacks in general setting
In order for an adversary to launch DoS attacks on real-world systems, they require access to
an amount of funds denoted as x. They can cause any withdrawal to fail if its size surpasses
this threshold:

Withdrawal > L − B − x (8)

Assuming that liquidity pools typically maintain utilization up to their optimal utilization,
an attacker could disrupt any withdrawal provided they have access to L∗ (1−kink) funds. If
the attacker’s funds are already in the protocol as liquidity, they could withdraw their funds.
Alternatively, if their funds are outside of the protocol, they could borrow the necessary
amount temporarily for just one block. Given they can perform both these actions within a
single block, they neither forfeit any income nor incur any fees. This is because the duration
of the liquidity withdrawal or borrowing within the same block is effectively zero.

Risks. To execute a Denial of Service attack on users submitting transactions to a public
mempool, an attacker can attempt to accomplish this objective by sending one transaction
with a higher gas price and another transaction with a lower gas price. However, there is a
risk involved as these transactions may not be included in the desired block. To mitigate
this risk, an attacker can minimize the issue by bribing block builders within the blockchain
network, requesting them to include all the target transactions in their subsequent block. By
doing so, the attacker’s risk exposure would be reduced. Alternatively, the attacker can opt
to send transactions to a private relayer, such as flashbots, which ensures the “ next-block-
or-never” attribute. This approach allows the attacker to bundle the user’s transactions into
a meticulously constructed bundle and transmit it to the private relayer. In cases where an
attacker is unable to successfully execute sandwich attacks on their target, their transactions
remain valid and can be processed on the network. Hence, they might incur borrowing
fees over several blocks, which could be a considerable amount given that the utilization is
boosted to 100 percent, and the borrowed sum is substantial.

Mitigation recommendations. To effectively mitigate such attacks, implementing protocol-
level measures is crucial. It is important to acknowledge that the DoS attack described does
not incur a protocol-level fee, making it relatively inexpensive for an attacker to execute.
One effective mitigation strategy is to introduce a percentage-based fee within the borrowing
process. This means that when a user borrows a certain amount, they would be required to
pay a fee calculated as follows:

Feei = RU × Bi × t + Bi × proportionalFee (9)

By implementing this approach, the cost for an attacker to execute a DoS attack would
increase proportionally with the size of the borrowed amount. As the attacker needs to
deplete the remaining funds in the pool, the associated cost becomes significant, acting
as a deterrent for such attacks. Furthermore, users can proactively protect themselves

AFT 2023



27:12 Liquidity Management Attacks on Lending Markets

against these attacks by opting to send their transactions through a private relayer. This
approach helps safeguard users from becoming targets of DoS attacks orchestrated by the
attacker. However, it is important to note that these solutions may not be effective against
the generalized DoS attacks previously discussed.

4.3 Economical games by adversary
In the present analysis, an attempt is made to envision the potential tactics of an adversary
within the domain of lending pools to gain profits over an extended period. There are several
incentives that may prompt adversaries to initiate such maneuvers, which are discussed in
the ensuing sections:

Profit Realization: The most straightforward objective for an adversary could be to
accumulate profits. In the event an adversary consistently executes a kink utilization
attack, they could potentially accrue multiple rounds of rewards. However, repeated
instances of such attacks may compel borrowers to discontinue using the protocol.
Control over Access: By leveraging a DoS attack, adversaries could exercise control
over the liquidity providers’ access to their funds. In theory, adversaries may be able
to immobilize users’ funds. However, in practice, it is more possible to cause delays in
withdrawals from the protocol resulting in weak censorship [29]. Such delays can prove
critical, particularly during periods of financial instability [30].
Attrition of Protocol Users: A possible adversary objective could be to deter users
from engaging with a specific protocol. If the adversary’s liquidity is sizable in comparison
to the entire pool, by performing such attacks, they could result in actors blacklisting the
protocol. This is feasible through two mechanisms, for liquidity providers, they may join
the protocol when they observe a spike in utilization but as the attacker re-infuses funds,
utilization and consequently fees drop. Borrowers, on the other hand, may be subjected
to substantially higher fees frequently, making the protocol a less attractive option.

An attacker can meticulously plan and execute such attacks over an extended duration
following several steps:
1. Firstly, the attacker must amass significant funds, either through their own capital or via

colluding with other adversaries.
2. Subsequently, they must identify vulnerable protocols with a small liquidity pool, relative

to their initial funds.
3. Initial investment in the protocol may be conventional, followed by an inflow of investment

which reduces the overall fees paid by borrowers. This leads to a situation where other
liquidity providers exit the protocol in pursuit of higher returns elsewhere, or more
borrowers enter the pool. The attacker must wait until their share is significantly higher
than the remaining liquidity to borrow in the protocol, a stage that may occur over an
extended period, such as a week. During this time, adversaries earn interest at a standard
rate.

4. Once utilization has risen and remaining liquidity is considerably lower than the adversar-
ies’ shares, attacks can be launched to achieve their objectives. This stage should ideally
be of a short duration since the execution of a utilization kink attack incentivizes other
actors to balance utilization. Attackers can respond by further reducing their position
upon other actors’ actions, thereby continuing to accrue interest. If a large liquidity
provider enters the system, attackers can reinfuse all withdrawn funds back into the
protocol to sustain fee earnings. However, honest liquidity providers might have no
incentive to aid a pool under attack if they anticipate temporary high utilization, making
it unadvisable for them to move large volumes of liquidity to help the pool.



A. Arjmand and M. Khabbazian 27:13

5. Continued attacks may lead to general actors in the network blacklisting the attacked
protocol, in such situations attackers can easily migrate to a new vulnerable protocol.

In this economic game, attackers stand to profit over the long term. Two primary issues
arise:

Low-Risk, High-Reward Game for Attackers: Attackers stand to gain exponentially
from 5 to 50 times more fees during the attack period without facing any substantial
risks unless the protocol experiences a major hack. This allows them to perpetuate such
activities over a long duration.
No Financial Incentives for Honest Players: Existing pools incentivize players by
raising interest rates; however, if attackers respond swiftly to honest actors joining the
pool, there would be no financial incentive for honest players to rescue minor protocols.

Hence, protocols need to address these attacks at the design level to foster growth and
safeguard their users against malicious activities.

While it is feasible for an attacker to simultaneously execute the mentioned attacks by
elevating the utilization to its maximum, the objectives for conducting each attack differ.
Here, we discuss some of these variations:

Utilization Kink Attack: To execute this attack, malicious liquidity providers need
to initially supply liquidity to a specific pool and wait until a part of their liquidity
is borrowed. Only then can they employ the remainder of their funds to increase the
utilization. In such attacks, all borrowers within the pool are targeted, and the attacker’s
profit accumulates over time.
DoS Attack: In order to carry out a DoS attack, attackers can retain their funds outside
the protocols, monitor multiple systems, and potentially target specific actors if their
funding is sufficient. A DoS attack is intended to transpire swiftly within a specific block
and is not a continuous action. This approach aims to avoid associated fees.

5 Liquidity aggregation

In previous discussions, we explored the issue of liquidity attacks. We proposed some tactical
solutions, like extending liquidity commitments and setting base fees, to deal with such issues.
But in this segment, our aim is to get to the core of the problem and offer a comprehensive
solution. Our solution could safeguard new lending pools from potential attacks while
facilitating their rapid growth.

Often, smaller lending pools try to emulate the larger ones such as Compound and Aave.
This leads many protocols to design their logic layer centered around their liquidity pool. In
this setup, the logic and liquidity components become inseparable parts of a single, large
project. Consequently, each pool has to grow independently. Our proposition is to separate
the liquidity and logic layers in the design of such protocols. This separation could let
several protocols combine their liquidity layers, possibly strengthening the weaker pools. We
recommend the following three-step launch for every new liquidity pool:
1. Design the pool such that the logic and liquidity layers are separate. The logic layer

should only interact with the liquidity layer when necessary. This arrangement could
allow the liquidity layer to be shared among many protocols.

2. Initially, smaller liquidity pools can connect themselves to larger pools such as Compound.
This connection means that they only run out of liquidity when Compound does, protecting
them from most liquidity management attacks. This method enforces some limitations
on the smaller pool, as it has to conform to the larger pool’s constraints.

3. Once the connected pool has sufficient funds, it can operate independently and set its
own rules.

AFT 2023



27:14 Liquidity Management Attacks on Lending Markets

Logic Layer

Liquidity Layer

Small Pool A

Logic Layer

Liquidity Layer

Small Pool B

Logic Layer

Liquidity Layer

Small Pool C

Logic Layer Liquidity Layer

Bigger Liquidity Pool

Logic A Logic B Logic C

Logic Layer Liquidity Layer

Figure 2 Liquidity aggregation process, how smaller pools can piggyback off larger pools.

By following these steps (as shown in Figure 2), an ecosystem of lending pools can reap
mutual benefits. These benefits include:

Attack Resilience: Smaller pools protect their users from attacks. It becomes more
difficult for an attacker to raise borrowers’ fees. Also, liquidity providers have the freedom
to withdraw their funds at any time since the larger underlying pool provides more
liquidity.
Larger Shared Pool: The larger pools also benefit from this arrangement. They now
have a larger pool of liquidity providers. Many protocols can use their liquidity for
security, while merging their pools to enhance the overall security of the ecosystem.

In the following parts of this section, we aim to explain the complexity in the process of
implementing such systems.

5.1 Designing Logic and Liquidity Layers
The goal of this section is to propose a design that separates the logic and liquidity layers of
a lending pool. However, we still need these layers to merge together and form a complete
lending system. This design expands upon the traditional lending pools’ design of one-to-one
logic and liquidity layers. It also potentially allows for the integration of multiple logic layers
without the need to change the implementation of the liquidity layer.

The logic layer of the lending protocol is deployed via a smart contract, which should be
the point of interaction for all users of the protocol. This means the logic layer must handle
all bookkeeping and monitor each participant’s activity, and it is not designed to hold any
funds. When users interact with the protocol via the logic layer, it facilitates the transfer
of funds between users and the liquidity pool after conducting necessary checks. On the
other side, the liquidity layer, which holds all funds, should only respond to the logic layer
contract.



A. Arjmand and M. Khabbazian 27:15

A design layer should have the capability to (1) interface with another logic layer, thereby
piggybacking on the infrastructure of another protocol, or (2) function as a standalone
liquidity layer, in which it independently manages all of its funds.

5.1.1 Piggybacking Liquidity Pool
When a design layer is in piggybacking mode, it is connected to another design layer. This
allows us to establish a system like D1, D2, . . . , DN , LLN , where Dis are design layers and
LLN is the liquidity layer that only responds to DN . Here, D1, D2, . . . , DN−1 are all in
piggybacking mode, and DN operates in standalone mode. While users can interact with any
of the Di to use their services, their liquidity will be forwarded through Di + 1, DN and must
comply with all their logic. In this setup, each of Di has its own users, but all that Di+1
sees from the previous logic layer is the entry of Di, which is using the system just like other
users. The simplest version of the use case that interests us is where N = 2. Here, D1 is a
small lending pool, and D2 is one of the largest existing lending pools, such as Compound.
In this setting, while users interact with the D1, their funds are getting accumulated in D2’s
pool LL2. The significant benefit here is that if D1 runs out of funds, it is backed up by the
bigger lending pool’s funds and can support its users. We delve deeper into how each basic
functionality changes when the design layer is piggybacking off other design layer when a
user interacts with D1:

Supply: Whenever a user supplies amount X to the D1, then supply of the system
changes as:

SD1,user += X

∀1<i≤N SDi,Di−1 += X

L += X (10)

This means that each logic layer supplies funds to the next one, and the final pool supplies
it to the pool.
Collateral: when users supply collateral to the protocol, the state changes are similar to
the supply:

CD1,user += X

∀1<i≤N CDi,Di−1 += X

C += X (11)

Borrow and liquidation: For a borrow of amount X to happen, the borrow process is
happening in every single layer. Therefore, the collateral that user has provided, should
follow the equation below:

X > maxi(Σc(Cuser,c,i × fc,i)) (12)

This implies that the collateral tokens submitted should exceed the borrowing amount in
each logic layer. If the aforementioned condition is not met, the funds could potentially
face liquidation in one of the layers. For protocols to ensure that the equation above is
never broken, they need to limit their collateral factors, so that fc,i < fc,i+1. in such
cases the collateral equation gets reduced to a limit against the effective collateral of the
user at layer 1:

X > Σc(Cuser,c,1 × fc,1) = ECuser,1 (13)

AFT 2023



27:16 Liquidity Management Attacks on Lending Markets

The state changes for borrow are:

BD1,user += X

∀1<i≤N BDi,Di−1 += X

B += X (14)

When a user seeks to borrow from the protocol and a layer runs out of liquidity, the
protocol can borrow from the layer beneath it. This mechanism increases the confidence
in liquidity availability.
Interest Rate Calculation: Should there be no borrow at layer i, the total liquidity
supplied to this layer, denoted as Stotal,i, earns interest at the rate of the succeeding
layer, or i + 1. This follows the formula:

Ri+1 × Stotal,i (15)

Now, if any borrowing occurs from the protocol at layer i, the interest rate from the
underlying protocol is given by:

Ri+1 × (Stotal,i − Btotali
) + Ri × Btotali

(16)

Which depends on the interest rate of Di. In order to incentivize more liquidity providers
to join the protocol with an increase in borrowing, it is necessary that the condition
Ri ≥ Ri+1 be met. This requirement ensures that the previously mentioned formula
progressively increases with the growth in borrowing positions. It indicates that the
interest rate for layer i should surpass that of layer i + 1. The proposed interest rate for
level i extends from the kinked interest rate algorithm, following the subsequent equation:

∀1≤i<N , Ri =
{

Ri+1 + Rlow,i × Ui if U ≤ kink

Ri+1 + Rlow,i × kink + Rhigh,i × (Ui − kink) if U > kink
(17)

The interest rate at each level is influenced by Ui. A significant difference in this model
is that Ui can exceed the value of one. This is because each layer can lean on the next
one for support, and therefore the borrowed amount within a specific protocol can go
beyond the supplied amount. However, this also leads to a rise in the interest rate. To
stop the growth of the interest rate at max utilization, protocol designers that are using
this model could replace the Ui value with Min(1, Ui).

In this setup, the outermost design layers can make use of the liquidity from all underlying
protocols. However, this comes at the cost of stricter restrictions on their protocol variables.
This implies that for an attacker to carry out a DoS attack on layer i, they now need to
have enough funds to exhaust all layers from i + 1 to N . On the other hand, if a lending
protocol wants to connect to another protocol’s logic layer, they don’t need to set a steep
Rhigh,i fee beyond their optimal utilization. Instead, they can rely on the liquidity from the
underlying layer. As such, this system is more resistant to utilization kink attacks due to a
smaller Rhigh,i/Rlow,i ratio, compared to standalone pools.

5.1.2 Standalone liquidity pool
Once a protocol has matured and expanded its TVL by piggybacking off another lending
pool, it may be time for the protocol owners to consider transitioning into standalone mode.
This transition involves the protocol creating its own liquidity pool and transferring its assets



A. Arjmand and M. Khabbazian 27:17

below 1 million (1.4% or $25.6 million)
1-10 million (12.1% or $214.8 million)
10-25 million (20.1% or $357.7 million)
25-50 million (25.6% or $455.4 million)
50-75 million (7.1% or $126.3 million)
75-100 million (5.4% or $95.5 million)
above 100 million (28.4% or $505.2 million)

Figure 3 asset distribution beyond the top 6 protocols, totaling $1.75b.

into this new pool. It’s crucial to note here that when a protocol detaches from the next
one, it also severs connections with all its preceding protocols and transfers them as well. In
essence, if in the chain D1, D2, ..., Di, Di+1, ..., DN , LLN , layer i decides to detach, it would
result in two separate chains: D1, D2, ..., Di, LLi, and Di, Di+1, ..., DN , LLN .

Protocols should only transition to standalone mode when they have accumulated enough
liquidity to fend off liquidity management attacks independently. Furthermore, during this
transition, it would be advantageous for the ecosystem if the funds weren’t withdrawn all at
once. As these lending pools possess large liquidity pools, withdrawing all the funds abruptly
could potentially trigger a spike in the underlying pools’ utilization. We recommend that, at
this stage, lending pools transition to a new pool by gradually vesting all the liquidity over a
certain time period. For instance, a protocol could gradually withdraw all funds over the
course of a day, after duly notifying the community.

6 Analyzing on-chain lending protocols

In this section, we dive into the lending pools deployed across multiple blockchain networks.
Our data collection efforts aim to understand their design, TVL, and potential susceptibilities
to liquidity management attacks. Our study includes two types of pools. Initially, we analyze
the six most prominent lending pools in the space, and then we shift our focus to scrutinize
the rest of the lending pools. Although the larger lending pools are typically secure from
liquidity management attacks due to their significant liquidity base, analyzing them remains
crucial as they significantly influence numerous emerging lending protocols.

According to reports [10], lending pools on the chain hold over $13.2b in TVL. Of this
amount, 86.6% resides within the top six lending pools. We examine each of these influential
pools, recognizing their role as templates and foundations for subsequent projects, which
may adapt and develop their logic.

We also analyze smaller pools to determine their potential vulnerability to liquidity
management attacks. These pools hold over $1.75b across 240 protocols on various chains,
posing a tempting target for potential attackers. As shown in Figure 4 our investigation
reveals that 32.5% of all 240 smaller lending pools are officially forks of Compound, while over
10% have branched off from Aave. Among the remaining 132 pools, many draw inspiration
from the design choices of more established protocols, including aspects such as interest
rate determination, supply, borrowing, and liquidation mechanisms. Figure 3 illustrates the
distribution of funds across these protocols. When comparing the liquidity distribution of

AFT 2023



27:18 Liquidity Management Attacks on Lending Markets

Table 2 Data describing the six largest lending pools.

Protocol TVL Amount Number of Markets Interest rate model Liquidity Management attacks

Aave $5.46b 13 Aave Model Vulnerable
JustLend $3.78b 1 Aave Model Vulnerable

Compound $1.92b 4 Compound Model Vulnerable
Venus $804.55m 1 Compound Model Vulnerable

Morpho $341.38m 3 P2P/Compound Model Possible
Radiant $260.09m 3 Aave Model Vulnerable

smaller pools with the daily trading volume of Aave, which has consistently exceeded $30
million since the start of 2023, it becomes plausible that such amount of funds is not out
of reach for users in the network. Given this amount of funds, attackers could potentially
execute the mentioned attacks on these pools.

Our analysis comprises a selection of noteworthy protocols, including Aave, Compound,
JustLend [17], Venus [28], Morpho [13], and Radiant [25]. You can find the detailed informa-
tion in Table 2. In the subsequent part of this section, we will delve into each aspect and
investigate whether any of the protocols employ innovative approaches:

TVL: We examine the amount of TVL each market holds and the degree of liquidity
concentration which is shown by the number of markets. It’s common for protocols to be
deployed on multiple chains for user accessibility. Additionally, protocols often release
new versions over time. While users typically prefer the latest versions, older versions can
coexist and continue to serve users. For example, despite the launch of Compound V3 in
August 2022, a substantial sum, exceeding $1.32 billion, is still locked in Compound V2.
Supply and Borrow Mechanism: Most lending pools utilize a similar supply and
borrow mechanism, consistent with the one we outlined in our model. However, some
protocols incorporate different logic, like P2P lending, and impose additional restrictions.
Morpho, for instance, uses a P2P system to pair borrowers with lenders, transferring
the borrower to the backup protocol, Compound, if the lender needs to withdraw their
funding at any point. This mechanism makes Morpho somewhat resistant to liquidity
management attacks, as borrowers borrowing from honest liquidity providers remain
secure.
Interest Rate Model: The interest rate model we presented in this paper generalizes
those used in the mentioned protocols. Typically, smaller pools widely adopt two main
models, those being Compound and Aave, due to their proven efficacy and popularity.
The Compound model aligns with the model we utilized in this paper, while Aave’s model,
though similar, employs different variables:

R =
{

R′
0 + R′

low × U
kink if U ≤ kink

R′
0 + R′

low + R′
high × U−kink

1−kink if U > kink
(18)

Even though the formulas bear strong resemblances, they are provided to allow readers
to reason with numerical examples. Aave also offers users a choice between stable and
variable rates. In this paper, we presumed that protocols only offer variable rates for
simplicity. Although stable rates do not alter the assumptions and results of our analysis,
we direct the reader to the Aave white paper for more information on stable rates [2].
Attack Vulnerability: We assess whether the pool is generally susceptible to liquidity
management attacks. In each case, we assume the attacker possesses ample funds and is
pursuing a specific objective. This section highlights the importance of design choices for



A. Arjmand and M. Khabbazian 27:19

Com
po

un
d

Aave

Alpa
ca

Fina
nc

e

Im
pe

rm
ax

Fina
nc

e

Rari
Cap

ita
l

Unis
wap

Taro
t

Liqu
ity

0

20

40

60

80 78

24

1 1 1 1 1 1

Protocol Names

Fr
eq

ue
nc

y

Figure 4 Frequency of protocols forked by newer projects.

new protocols adopting each of these larger protocols’ designs during their initial public
usage, a phase when they may have limited overall liquidity and thus be vulnerable to
potential exploitation by an attacker.

7 Related work

Gudgeon et al.[15] use the term Protocols for Loanable Funds (PLF) to denote markets
for loanable funds. Their work classifies various interest rate models utilized by leading
lending protocols, including the “ kinked rates” model, which is widely used by the protocols
examined in our study. Bartoletti et al.[4] conceptualize the overall structure of lending
pools as a state machine, analyzing different state transitions and potential threats. They
introduced concepts such as over-utilization and under-utilization attacks, where attackers
drive the utilization to its maximum or minimum. Sun et al.[27] explore various liquidity risks,
using Aave as a case study to emphasize the significance of the issue. Hafner et al.[16] assess
the degree of centralization among liquidity providers in a pool, identifying scenarios where
low initial centralization could lead to liquidity shortages following substantial withdrawals.
Our work extends these studies by defining liquidity management attacks and examining the
motivations of a potential attacker.

8 Conclusion and future work

In this paper, we have introduced and formalized two liquidity management attacks, where
an attacker with sufficient resources can exploit specific conditions within lending pools.
We have demonstrated that such attacks are not only feasible but also incentivized, given
the considerable amount of liquidity dispersed across numerous small liquidity pools. We
further explored possible mitigation strategies and risks at the application layer that could
aid upcoming lending protocols.

We additionally analyzed a specific design, wherein the design and application layer are
structured as separate systems that can interact with each other. This structure enhances the
flexibility of options available to liquidity pools and allows for the combination of multiple

AFT 2023



27:20 Liquidity Management Attacks on Lending Markets

design layers that can utilize the same liquidity pool. While we scrutinized the overarching
design of such systems, there remain considerable complexities to be addressed in their
implementation. It is our hope that new lending pools will adopt this design and potentially
establish a standard set of defensive mechanisms against liquidity management attacks.

References
1 Aave protocol website, 2023. URL: https://aave.com/.
2 Aave protocol whitepaper v1.0, 2020. URL: https://github.com/aave/aave-protocol/blob/

master/docs/Aave_Protocol_Whitepaper_v1_0.pdf.
3 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum smart

contracts. Cryptology ePrint Archive, Paper 2016/1007, 2016. URL: https://eprint.iacr.
org/2016/1007.

4 Massimo Bartoletti, James Hsin yu Chiang, and Alberto Lluch-Lafuente. Sok: Lending pools
in decentralized finance, 2020. arXiv:2012.13230.

5 Bnb bridge - rekt, 2022. URL: https://rekt.news/bnb-bridge-rekt/.
6 Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and

Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In 2015 IEEE Symposium on Security and Privacy, pages 104–121, 2015. doi:10.1109/SP.
2015.14.

7 Compound protocol website, 2023. URL: https://compound.finance/.
8 Simon Cousaert, Jiahua Xu, and Toshiko Matsui. SoK: Yield aggregators in DeFi. In 2022

IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, May 2022.
doi:10.1109/icbc54727.2022.9805523.

9 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges, 2019. arXiv:1904.05234.

10 Defillama, 2023. URL: https://defillama.com/.
11 Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty:

front-running attacks on blockchain, 2019. arXiv:1902.05164.
12 Flashbots documentation, 2023. URL: https://docs.flashbots.net/.
13 Mathis Gontier Delaunay, Quentin Garchery, Paul Frambot, Merlin Égalité, Julien Thomas,

and Katia Babbar. Morpho V1 Yellow Paper. working paper or preprint, May 2023. URL:
https://hal.science/hal-04087388.

14 Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais. The
decentralized financial crisis, 2020. arXiv:2002.08099.

15 Lewis Gudgeon, Sam M. Werner, Daniel Perez, and William J. Knottenbelt. Defi protocols
for loanable funds: Interest rates, liquidity and market efficiency, 2020. arXiv:2006.13922.

16 Matthias Hafner, Romain de Luze, Nicolas Greber, Juan Beccuti, Benedetto Biondi, Gidon
Katten, Michelangelo Riccobene, and Alberto Arrigoni. Defi lending platform liquidity risk:
The example of folks finance: Published in the journal of the british blockchain associ-
ation, April 2023. URL: https://jbba.scholasticahq.com/article/74150-defi-lending-
platform-liquidity-risk-the-example-of-folks-finance.

17 Justlend dao money market protocol v1.0, December 2020. URL: https://portal.justlend.
org/docs/justlend_whitepaper_en.pdf.

18 Robert Leshner and Geoffrey Hayes, February 2019. URL: https://compound.finance/
documents/Compound.Whitepaper.pdf.

19 Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. Sok: A classification framework for
stablecoin designs. In Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography
and Data Security, pages 174–197, Cham, 2020. Springer International Publishing.

20 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009. URL: http:
//www.bitcoin.org/bitcoin.pdf.

https://aave.com/
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://arxiv.org/abs/2012.13230
https://rekt.news/bnb-bridge-rekt/
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://compound.finance/
https://doi.org/10.1109/icbc54727.2022.9805523
https://arxiv.org/abs/1904.05234
https://defillama.com/
https://arxiv.org/abs/1902.05164
https://docs.flashbots.net/
https://hal.science/hal-04087388
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/2006.13922
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf


A. Arjmand and M. Khabbazian 27:21

21 OpenZeppelin. Openzeppelin/openzeppelin-contracts: Openzeppelin contracts is a lib-
rary for secure smart contract development. URL: https://github.com/OpenZeppelin/
openzeppelin-contracts.

22 Poly network - rekt, 2021. URL: https://rekt.news/polynetwork-rekt/.
23 Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and Arthur Gervais. Cefi vs.

defi – comparing centralized to decentralized finance, 2021. arXiv:2106.08157.
24 Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais. An empirical

study of DeFi liquidations. In Proceedings of the 21st ACM Internet Measurement Conference.
ACM, November 2021. doi:10.1145/3487552.3487811.

25 Radiant documentation, 2023. URL: https://docs.radiant.capital/radiant/.
26 Huobi Research. Global crypto industry overview and trends[2022–2023 annual report](first

part), December 2022. URL: https://medium.com/huobi-research/global-crypto-
industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c.

27 Xiaotong Sun, Charalampos Stasinakis, and Georgios Sermpinis. Liquidity risks in lending
protocols: Evidence from aave protocol, 2023. arXiv:2206.11973.

28 Venus protocol documentation, 2023. URL: https://docs.venus.io/docs/getstarted.
29 Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro Tsuchiya,

Sebastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Barczentewicz, and Arthur
Gervais. Blockchain censorship, 2023. arXiv:2305.18545.

30 Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to
bribe: Measuring block construction market, 2023. arXiv:2305.16468.

31 Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
William J. Knottenbelt. Sok: Decentralized finance (defi), 2022. arXiv:2101.08778.

32 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

33 Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK: Decentralized exchanges
(DEX) with automated market maker (AMM) protocols. ACM Computing Surveys, 55(11):1–50,
February 2023. doi:10.1145/3570639.

34 Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. High-frequency
trading on decentralized on-chain exchanges, 2020. arXiv:2009.14021.

35 Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang,
Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. Sok: Decentralized finance
(defi) attacks, 2023. arXiv:2208.13035.

AFT 2023

https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://rekt.news/polynetwork-rekt/
https://arxiv.org/abs/2106.08157
https://doi.org/10.1145/3487552.3487811
https://docs.radiant.capital/radiant/
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://arxiv.org/abs/2206.11973
https://docs.venus.io/docs/getstarted
https://arxiv.org/abs/2305.18545
https://arxiv.org/abs/2305.16468
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/3570639
https://arxiv.org/abs/2009.14021
https://arxiv.org/abs/2208.13035




Analysis of CryptoNote Transaction Graphs Using
the Dulmage-Mendelsohn Decomposition
Saravanan Vijayakumaran # Ñ

Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India

Abstract
CryptoNote blockchains like Monero represent the largest public deployments of linkable ring
signatures. Beginning with the work of Kumar et al. (ESORICS 2017) and Möser et al. (PoPETs
2018), several techniques have been proposed to trace CryptoNote transactions, i.e. identify the actual
signing key, by using the transaction history. Yu et al. (FC 2019) introduced the closed set attack for
undeniable traceability and proved that it is optimal by showing that it has the same performance
as the brute-force attack. However, they could only implement an approximation of the closed set
attack due to its exponential time complexity. In this paper, we show that the Dulmage-Mendelsohn
(DM) decomposition of bipartite graphs gives a polynomial-time implementation of the closed set
attack. Our contribution includes open source implementations of the DM decomposition and the
clustering algorithm (the approximation to the closed set attack proposed by Yu et al). Using these
implementations, we evaluate the empirical performance of these methods on the Monero dataset in
two ways – firstly using data only from the main Monero chain and secondly using data from four
hard forks of Monero in addition to the main Monero chain. We have released the scripts used to
perform the empirical analysis along with step-by-step instructions.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Cryptocurrency, CryptoNote, Monero, Traceability

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.28

Supplementary Material Software: https://github.com/avras/cryptonote-analysis
archived at swh:1:dir:1cdef0560817a968586847a625465093dec593c4

Other (Documentation): https://www.respectedsir.com/cna

Acknowledgements We thank Justin Ehrenhofer for sharing the blockchain databases of the (no
longer operational) Monero Original, MoneroV, Monero v7, and Monero v9 forks [12]. We also thank
him for his feedback on an earlier version of this paper, which helped improve the presentation of the
empirical results. We thank Zuoxia Yu for sharing the full version of their FC 2019 paper. Finally,
we thank the anonymous reviewers of PoPETs 2022 (where an earlier version of this paper was
eventually rejected) and of the current conference for their comments. We prepared the instructions
for reproducing our empirical results on the suggestion of a PoPETs 2022 reviewer.

1 Introduction

1.1 CryptoNote Transactions
Coins in CryptoNote blockchains are associated with stealth addresses, which are also called
one-time addresses or transaction outputs [21]. We will use the term output for brevity. Each
output is uniquely identified by a public key, which is a point on an elliptic curve. To spend
from an output, the spender needs to know the corresponding secret key.

In a transaction, the spender creates a ring of outputs which is a set containing the
output being spent and some other outputs sampled from the CryptoNote blockchain (these
are called decoy outputs or mixins). The spender generates a linkable ring signature [9]

© Saravanan Vijayakumaran;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 28; pp. 28:1–28:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarva@ee.iitb.ac.in
https://www.ee.iitb.ac.in/~sarva/
https://orcid.org/0000-0002-0203-0276
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://github.com/avras/cryptonote-analysis
https://archive.softwareheritage.org/swh:1:dir:1cdef0560817a968586847a625465093dec593c4;origin=https://github.com/avras/cryptonote-analysis;visit=swh:1:snp:8fc5a17eec0bc0a8bd1c8d3c356ee23316816687;anchor=swh:1:rev:9db7de929d262764a135a9e22f498ac45ad03ee8
https://www.respectedsir.com/cna
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

over the ring of outputs using the secret key of the output being spent. This signature only
reveals that the signer knows the secret key corresponding to one of the ring outputs, without
revealing the identity of the actual output being spent.

To prevent double spending from an output, the linkable ring signature reveals the key
image of the output being spent. The key image of an output is a collision-resistant one-way
function of the secret key. For example, in Monero the public key associated with an output
is given by P = xG where G is the base point of an elliptic curve group and x is the secret
key. The key image I of the output associated with P is given by xHp(P ), where Hp(·) is
a cryptographic hash function that maps its input to a point on the elliptic curve. In the
rest of this paper, when we speak of the key image of an output we mean the result of the
one-way function applied to the secret key associated with the output.

If the owner of the output corresponding to P tries to spend the coins associated with
it more than once, then the key image I would appear again in the second transaction,
identifying it as a double spending transaction. Such transactions will be rejected by miners,
as blocks including them would be considered invalid by the network. In this sense, the key
image acts as a nullifier of an output, ensuring that it is spent only once.

1.2 CryptoNote Transaction Graphs
Consider a CryptoNote transaction which spends from two existing outputs and creates three
new outputs as illustrated in Figure 1. The new outputs are denoted by T1, T2, T3. The
transaction has two rings of outputs of size five each, (P1, P2, . . . , P5) and (Q1, Q2, . . . , Q5).
Exactly one output from each ring is being spent in the transaction. The key images I1 and
I2 of the outputs being spent are revealed in the transaction. Note that the two rings can
have common outputs.

For the purpose of illustration, suppose that the two rings have two outputs in common.
Let Q1 = P4 and Q2 = P5. The relationship between the ring outputs and the key images
in this transaction can be represented by the bipartite graph in Figure 2. The union of the
two ring output sets forms one vertex class and the two key images form the other vertex
class. An edge between an output and a key image indicates that the latter could be the
true key image of that output. Note that the new outputs T1, T2, T3 play no role in the
construction of the bipartite graph. We will refer to such output/key image bipartite graphs
as transaction graphs.

As each key image must have been generated from a unique output, any pair of edges
(Pi, I1) and (Qj , I2) such that Pi ̸= Qj is a plausible candidate for the true relationship
between the outputs and key images. A matching on a graph is a subset of the edges such

P1 P2 P3 P4 P5

Ring for first spending output

I1

Key image of first
spending output

Q1 Q2 Q3 Q4 Q5

Ring for second spending output

I2

Key image of second
spending output

T1

First newoutput

T2

Second newoutput

T3

Third newoutput

Figure 1 A CryptoNote transaction with two inputs and three outputs.



S. Vijayakumaran 28:3

P1

P2

P3

Q1 = P4

Q2 = P5

Q3

Q4

Q5

I1

I2

Figure 2 Transaction graph corresponding to the transaction in Figure 1.

that no two edges in the subset share a vertex (see Section 5.2 for a precise definition). The
pair of edges (Pi, I1) and (Qj , I2) with Pi ≠ Qj is a matching on the graph in Figure 2. In
fact, it is a matching of maximum size as any three edges in this graph would have two which
meet in either I1 or I2.

Let us now consider a similar bipartite graph induced by the set of all transactions which
have appeared up to the block having height h. The key image vertex class Kh in this graph
is the set of all key images which have appeared on the blockchain up to block height h.
The output vertex class Oh is the set of all outputs which have appeared in at least one
transaction ring in the blocks up to height h. Note that Oh is not the set of all outputs
which have appeared on the blockchain in blocks up to height h. We represent the edge
set of the transaction graph induced by the CryptoNote transaction rings as a subset E of
Oh ×Kh. For P ∈ Oh and I ∈ Kh, the edge (P, I) belongs to E if the output P appeared in
the transaction ring used to create I (via the linkable ring signature).

Since each key image I ∈ Kh is generated from a unique output P ∈ Oh, we have
|Kh| ≤ |Oh|. In a bipartite graph with vertex classes of cardinality m and n, the size of
a maximum matching can be at most min(m, n). Since the edges corresponding to the
true association between outputs and key images form a matching of size |Kh|, the induced
bipartite graph always has a maximum matching. In fact, we have the following principle
which has been discussed by Monero Research Lab researchers [6] and others [25, 26].

▶ Observation 1. Any maximum matching on a CryptoNote transaction graph is a plausible
candidate for the ground truth, i.e. the true association between outputs and key images.

1.3 Tracing CryptoNote Transactions
While a single linkable ring signature over a ring of public keys guarantees signer anonymity
against computationally bounded adversaries [9], CryptoNote blockchains typically have
signatures created using overlapping rings which can reveal the identity of the signing key.
In this context, the signing key is the public key corresponding to the secret key which was
used to generate the linkable ring signature.

▶ Definition 2. A CryptoNote transaction ring is said to be traceable if the true signing
key is correctly identified.

To illustrate how CryptoNote transaction rings can be traced, consider three CryptoNote
transaction rings having ring members {P1}, {P1, P2}, and {P1, P2, P3, P4} respectively.
Let I1, I2, I3 be the distinct key images created from these three transaction rings. The
corresponding CryptoNote transaction graph is shown in Figure 3.

AFT 2023



28:4 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

P1

P2

P3

P4

I1

I2

I3

Figure 3 Transaction graph corresponding to three CryptoNote transactions.

(a) The first transaction ring has only one member and is therefore trivially traceable. The
key P1 must be the signing key. Such transactions are called zero-mixin transactions.

(b) In isolation, either P1 or P2 could have been the signing key in the second transaction
ring. But once P1 has been identified as the signing key in the first transaction, we
know that I1 is the key image corresponding to P1. Since the signing key in the second
transaction ring has key image I2 ̸= I1, it must be equal to P2.

(c) Similarly, we can eliminate P1 and P2 from the set of possible signing keys of the third
transaction ring. Any one of the remaining two ring members, P3 and P4, can the true
signing key of this ring. There is not enough information to conclusively identify one of
them as the true signing key.

In this example, the first two transaction rings are traceable and the third one is not. But
the effective mixin size of the third transaction ring was reduced from 3 to 1. So the presence
of traceable rings can affect the privacy of other untraceable rings.

1.4 Paper Organization
We present related work in Section 2 followed by a summary of our contributions in Section 3.
The closed set attack and the clustering algorithm for approximating it are described in
Section 4. In Section 5, we describe the Dulmage-Mendelsohn (DM) decomposition. In
Section 6, we show that the DM decomposition finds all possible closed sets in a CryptoNote
transaction graph. In Section 7, we describe the empirical results obtained by applying the
DM decomposition to the Monero transaction graph with and without information from
hard forks. Section 8 concludes the paper.

2 Related Work

The first traceability analyses on CryptoNote blockchains were performed by Kumar et
al. [8] and Möser et al. [17]. They both studied the Monero blockchain history and found
that zero-mixin transactions have a cascade effect of rendering other transactions traceable.
This technique for achieving undeniable traceability is called the cascade attack.1 They also
considered heuristics for tracing transactions like the guess-newest heuristic and the output
merging heuristic. But these methods only achieve plausible traceability and can lead to
false positives.

In our survey of related work, we restrict our attention to methods for undeniable
traceability. Readers interested in methods for plausible traceability can refer to [8, 17, 23,
18, 1]. A line of work describing the design of better ring samplers and sustainable ring-based
anonymous systems can be found in [20, 5, 2].

1 The second transaction ring in the example of Section 1.3 was traced using the cascade attack.



S. Vijayakumaran 28:5

The cascade attack proceeds in an iterative manner. First, it marks the outputs in zero-
mixin transactions as spent. Then it marks these outputs as mixins in other (non-zero-mixin)
transactions. If all outputs except one in a transaction ring are marked as mixins, then
the remaining output is identified as the output being spent (and the transaction becomes
undeniably traceable). The outputs which have been newly marked as spent in a ring are
marked as mixins in other rings. The process continues until no new outputs can be marked
as spent.

The initial implementation of Monero did not hide the transaction amounts. In January
2017, Monero introduced a new transaction type called ring confidential transaction (RingCT),
where transaction output amounts are hidden in Pedersen commitments. RingCT became
mandatory in September 2017 [15].

While the cascade attack was able to trace a significant percentage of non-RingCT
transactions, RingCT transactions remain immune to it. In our empirical evaluation, we
found that the cascade attack could not trace any RingCT transactions up to block height
2,530,000. This was primarily because RingCT transactions did not allow zero-mixin rings.

Wijaya et al. [22] observed that a zero-mixin effect could be created in RingCT transactions
by spending n times from a ring of size n. The n outputs in the ring can then be marked
as mixins in other transaction rings. They name this type of spending behavior the ring
attack. As a proof of concept, they created five outputs in Monero block 1,468,425 and then
spent all of them using the other four as mixins in five transaction rings in block 1,468,439.
This behavior does not arise naturally due to the mixin sampling strategy in Monero. Up to
Monero block 2,530,000 (January 4, 2022), the ring of size 5 created by Wijaya et al. is the
only RingCT ring which exhibits this behavior.

Yu et al. [26] defined a closed set to be a set of n outputs which can be represented as
a union of n transaction rings. As each transaction ring must spend a unique output, the
outputs in a closed set can be marked spent. They proved that the closed set attack (which
finds all closed sets) is optimal by showing that its output is equivalent to the output of a
brute-force attack. However, they observed that the naive method of finding closed sets by
testing all subsets of the outputs has exponential time complexity.

As a workaround, they proposed an approximate algorithm to identify closed sets called
the clustering algorithm. After executing the cascade attack [8, 17] on the transaction rings,
the clustering algorithm attempts to find closed sets by combining transaction rings which
are close to each other (see Section 4 for a more detailed description). They proved that the
clustering algorithm can identify all closed sets up to size 5. While the performance of closed
set attack is better than the cascade attack, they reported that no RingCT transactions were
traced by their algorithm.

Several projects have forked the Monero blockchain resulting in multiple blockchains
with large numbers of common outputs. When a common output is spent in two different
forks, the same key image appears in both spending transactions. The real output is then
contained in the intersection of the transaction rings of such transactions. Wijaya et al. [24]
and Hinteregger et al. [7] used repeated key images which appeared in Monero and two
hard forks, Monero Original [14] and MoneroV [16], to trace transactions in all three chains.
While their methods were the first ones which successfully traced RingCT transactions in
Monero, they reported that the overall impact of their techniques was small. Only a small
percentage of the total set of transactions were rendered traceable. Wijaya et al. [24] also
discuss strategies for mitigating the loss of anonymity due to key reuse in hard forks.

The Monero reference implementation includes a tool for identifying spent outputs using
the techniques described above [13]. It implements the cascade attack, finds transactions
which cause the ring attack characterized by Wijaya et al. [22], attempts to identify closed

AFT 2023



28:6 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

sets, and performs the cross-chain analysis proposed by Wijaya et al. [24] and Hinteregger
et al. [7]. It is included in every Monero release as an executable with the name monero-
blockchain-mark-spent-outputs. It is informally called the “blackball tool” in the Monero
community as the set of spent outputs represent a blacklist which should be avoided when
sampling mixins. To perform cross-chain analysis, the tool takes the LMDB database files of
all chains as input.

We noticed two issues with the Monero blackball tool with regard to cross-chain analysis.
Firstly, the tool is not able to read the LMDB database of MoneroV [16] due to a discrepancy
in the transaction formats in the main Monero code and the MoneroV code. This discrepancy
did not affect our analysis as we used the JSON-RPC interface of the MoneroV client [16]
to extract the transaction data. Secondly, and more seriously, the tool only uses an integer
index to uniquely identify an output across chains and not the output public key.

Outputs in a single Monero chain are partitioned by their amounts (with RingCT outputs
having dummy amount zero) and are assigned increasing indices in the order of their
appearance on the chain. This means that outputs which appear in two different chains after
a fork can have the same index even though they have different public keys. Consequently,
the cross-chain analysis performed by the blackball tool has errors. To be fair, the tool
outputs error messages during its execution when it encounters disjoint transaction rings
for the same key image. The presence of code for generating these error messages suggests
that the blackball tool developers are aware of this issue. To avoid such errors, we used the
public keys of the outputs as their unique identifier in our cross-chain analysis.

3 Our Contributions

Our contributions are as follows.
1. Our main contribution is to show that the Dulmage-Mendelsohn (DM) decomposition

of bipartite graphs gives an efficient implementation of the closed set attack, which is
the optimal method for undeniable traceability in CryptoNote blockchains. Computing
the DM decomposition involves finding a maximum matching, a depth-first search from
all unmatched vertices, and a computation of strongly connected components, all on the
CryptoNote transaction graph. All three algorithms have polynomial time complexity in
the number of nodes and edges of the graph.

2. We implemented the DM decomposition, the cascade attack, and the closed set attack
in Rust. The code is available at https://github.com/avras/cryptonote-analysis
under an MIT license. While an open source implementation of the DM decomposition
already existed in CSparse [3], it was much slower than the proprietary implementation in
Matlab [11]. Our implementation of the DM decomposition has performance comparable
to the Matlab implementation.

3. We compute the empirical performance of the DM decomposition method on Monero and
show that it outperforms the clustering algorithm approximation to the closed set attack
proposed by Yu et al. [26].

4. While previous traceability attacks have been effective against non-RingCT transactions
in Monero, RingCT transactions have been mostly immune. Only cross-chain analysis
which uses information from hard forks has been able to trace Monero RingCT transac-
tions [7]. We compute the empirical performance of the DM decomposition method using
information from four different hard forks: Monero Original, MoneroV, Monero v7, and
Monero v9. Our results show that, even with hard fork information, Monero RingCT
transactions are mostly immune to undeniable traceability via the DM decomposition
method.

https://github.com/avras/cryptonote-analysis


S. Vijayakumaran 28:7

5. We released the scripts used to generate our empirical results in the code repository at
https://github.com/avras/cryptonote-analysis. We prepared detailed instructions
on how to reproduce our results and made them available at https://www.respectedsir.
com/cna.

4 The Closed Set Attack and Clustering Algorithm

In a CryptoNote blockchain, let Ri = {Pi,1, Pi,2, . . . , Pi,ni} be the ring of public keys in the
ith transaction. Let Rh = {R1, R2, . . . , Rn} be the multiset2 of all transaction rings which
have appeared on the blockchain up to height h. Since each ring has a unique key image
associated with it, the set of key images Kh has size n.

As per the notation introduced in Section 1.2, the set of outputs that have appeared in
at least one transaction ring is given by Oh = ∪n

i=1Ri. Let m = |Oh|. As the number of key
images cannot exceed the number of public keys, we have m ≥ n.

4.1 Brute-Force Attack
Yu et al. [26] proposed the closed set attack and argued that it is optimal because of having
identical traceability performance to the brute-force attack. We will use the notion of a
system of distinct representatives [10] to describe the brute-force attack.

▶ Definition 3. Let S = {S1, S2, . . . , Sn} be a multiset of subsets of a finite set S. A set of
n distinct elements {s1, s2, . . . , sn} which satisfies si ∈ Si is called a system of distinct
representatives (SDR) for S.

In the context of CryptoNote blockchains, an SDR {P1, P2, . . . , Pn} for the multiset
Rh = {R1, R2, . . . , Rn} corresponds to a possible candidate for the sequence of signing keys
for the rings in Rh. This is because for each i the key Pi belongs to Ri and all the Pi’s are
distinct.

The brute-force attack for tracing CryptoNote transactions is shown in Algorithm 1. This
attack prunes the rings in Rh to generate the multiset R′

h = {R′
1, R′

2, . . . , R′
n} where each

R′
i is a subset of Ri. It includes only those keys in R′

i which are potential signing keys for
the ring Ri.

The time complexity of the brute-force attack is O (
∏n

i=1 |Ri|) as each Pi can be inde-
pendently chosen in |Ri| ways. If the number of rings Ri in Rh with at least two keys is n2,
then

∏n
i=1 |Ri| ≥ 2n2 . Thus the brute-force attack becomes infeasible as the number of rings

with at least one mixin increases.

4.2 Closed Set Attack
Yu et al. [26] define a closed set as follows.

▶ Definition 4. Let Rh = {R1, R2, . . . , Rn} be a multiset of CryptoNote transaction rings
and Oh = ∪n

i=1Ri. A subset C of Oh having cardinality k is called a closed set of Rh if
there exist k transaction rings Ri1 , Ri2 , . . . , Rik

in Rh such that C = ∪k
j=1Rij

.

2 In a multiset, elements can occur more than once.

AFT 2023

https://github.com/avras/cryptonote-analysis
https://www.respectedsir.com/cna
https://www.respectedsir.com/cna


28:8 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

Algorithm 1 The brute-force attack for tracing CryptoNote transactions.

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ̸= R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Initialize the rings in R′
h to the empty set;

for i← 1 to n do
R′

i ← ∅
end
// Iterate over elements of R1 ×R2 × · · · ×Rn to find SDRs;
foreach (P1, P2, . . . , Pn) in R1 ×R2 × · · · ×Rn do

if {P1, P2, . . . , Pn} is an SDR then
for i← 1 to n do

// Add Pi to R′
i;

R′
i ← R′

i ∪ {Pi}
end

end
end

▶ Example 5. To illustrate the definition and significance of a closed set, suppose that Rh

contains four transaction rings of the following form.

R1 = {P1, P2, P3} ,

R2 = {P2, P3} ,

R3 = {P1, P3} ,

R4 = {P1, P2, P3, P4} .

Exactly one public key from each ring is used to generate the linkable ring signature. If a public
key was used twice, the key image would repeat and the later of the two transactions would
be rejected by the miners. Since the union of the first three rings R1∪R2∪R3 = {P1, P2, P3}
has cardinality 3, the set {P1, P2, P3} is a closed set. Each of the keys P1, P2, P3 must be
the signing key in exactly one of the first three rings. This implies that none of them can be
the signing key in the fourth ring R4. So we deduce that P4 must be the signing key of ring
R4, rendering the latter traceable. ⌟

The closed set attack for tracing CryptoNote transactions is shown in Algorithm 2. Yu et
al. [26] proved that it is is optimal for undeniable traceability by showing that its output
is identical to the output of the brute-force attack. We rephrase their Theorem 1 in our
notation as follows.

▶ Theorem 6 (Yu et al. [26]). Given a multiset Rh = {R1, R2, . . . , Rn} of CryptoNote
transaction rings, let the multiset Rclosed

h be the output of the closed set attack and the
multiset Rbrute

h be the output of the brute-force attack. Then Rclosed
h = Rbrute

h .

The running time of the closed set attack is dominated by the time required to find all
the closed sets in R′

h. Note that R′
h is initially equal to Rh. After a closed set is found,

some of its rings may be pruned. This may cause new closed sets to become available. Hence
the search needs to be performed again.



S. Vijayakumaran 28:9

Algorithm 2 The closed set attack for tracing CryptoNote transactions.

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ̸= R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Initialize the rings in R′
h to the rings in Rh;

for i← 1 to n do
R′

i ← Ri

end
// Iterate over all the closed sets;
foreach closed set C = ∪k

j=1R′
ij

do
for i← 1 to n do

// Check that the ring does not generate the closed set;
if i ̸∈ {i1, i2, . . . , ik} then

// Remove elements of C from R′
i;

R′
i ← R′

i ∩ Cc

end
end

end

The naive algorithm [26, Appendix A] for finding closed sets by considering all subsets
of R′

h becomes infeasible as the size of |Rh| increases. Instead, Yu et al. [26] proposed the
clustering algorithm as an approximation to the naive algorithm.

4.3 Clustering Algorithm
▶ Definition 7. A subset of Rh is called a cluster.

A cluster consists of a set of rings from Rh. The distance of a ring R from a cluster is
defined as follows.

▶ Definition 8. Let C = {Ri1 , Ri2 , . . .} be a cluster and let pk(C) = ∪R′∈CR′ be the set of
keys in it. The distance of a ring R ∈ Rh from a cluster C is defined as

d(R, C) = |R| − |pk(C) ∩R|.

▶ Example 9. Consider the rings R1, . . . , R4 from Example 5. Suppose we consider the
cluster C = {R1, R2}. Then we have pk(C) = {P1, P2, P3}, d(R3, C) = 0, and d(R4, C) = 1. ⌟

Yu et al. [26] use a cluster formation algorithm as a subroutine in their clustering algorithm.
This algorithm forms a cluster by starting from any transaction ring in Rh and adding other
rings which are at a distance of at most 1 from the running cluster (see Algorithm 3).

The clustering algorithm for finding closed sets is shown in Algorithm 4 where Cascade-
Attack is a procedure that implements the cascade attack of [8, 17]. CascadeAttack takes a
multiset of transactions rings as input and outputs a pruned multiset after removing keys
from each ring that have been identified as mixins by the cascade attack.

The clustering algorithm may fail to find certain closed sets because a ring that is
needed to form a closed set may be at a distance of 2 or more from the current cluster in
Algorithm 3. We observed this in our empirical analysis of the Monero transaction graph
where the clustering algorithm failed to find some closed sets that were found by the DM
decomposition.

AFT 2023



28:10 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

Algorithm 3 ClusterForm: An algorithm for constructing a cluster.

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn} and a specific ring
R ∈ Rh

Output : A cluster C containing R

// Initialize C to the set containing R;
C ← {R}

// Iterate over all the rings in Rh not equal to R;
foreach R′ ∈ Rh \R do

// Check if R′ is within a distance of 1 from C;
if d(R′, C) ≤ 1 then

// Add R′ to C;
C ← C ∪R′

end
end

5 The Dulmage-Mendelsohn Decomposition

Consistent with notation used by Dulmage and Mendelsohn [4], we define an undirected
bipartite graph K as a triple (S, T, E) where S and T are non-empty sets representing vertex
classes and E ⊆ S × T represents the edge set. So an edge in K is given by an ordered
pair (s, t) where s ∈ S and t ∈ T . The ordering of the vertices in the edge (s, t) is simply a
consequence of putting S before T in the triple (S, T, E), and does not imply directivity. We
say that an edge (s, t) belongs to the graph K, written as (s, t) ∈ K, to mean that (s, t) ∈ E.
We only consider bipartite graphs K where both S and T are finite sets.

5.1 Minimum Covers of Bipartite Graphs
▶ Definition 10. Let K = (S, T, E) be a bipartite graph. Let A and B be subsets of S and T

respectively. A pair of such sets (A, B) is called a vertex cover for a bipartite graph K if
for each edge (s, t) ∈ K, either s ∈ A or t ∈ B (both conditions can also hold).

▶ Definition 11. The size of a vertex cover (A, B) is defined as |A|+ |B| where |X| denotes
the cardinality of a set X.

Since S and T are assumed to be finite sets, every vertex cover of K will have a finite size.

▶ Definition 12. The cover number of a bipartite graph K is the minimum of |A|+ |B|
over all vertex covers (A, B) of K.

▶ Definition 13. A vertex cover (A, B) of a bipartite graph K whose size equals the cover
number of K is called a minimum cover.

The following two results were proved by Dulmage and Mendelsohn [4].

▶ Lemma 14. If (A1, B1) and (A2, B2) are minimum covers of a bipartite graph K having
finite cover number, then (A1 ∩ A2, B1 ∪ B2) and (A1 ∪ A2, B1 ∩ B2) are both minimum
covers of K.

▶ Lemma 15. Let (A1, B1) and (A2, B2) be minimum covers of a bipartite graph K having
finite cover number. If A1 ⊆ A2, then B1 ⊇ B2.



S. Vijayakumaran 28:11

Algorithm 4 The clustering algorithm.

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ̸= R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Run the cascade attack on Rh;
R′

h ← CascadeAttack(Rh);
// Set flag to true;
flag ← true;

while flag is true do
flag ← false;
// Iterate over all the rings in R′

h;
foreach R′ ∈ R′

h do
// Form a cluster starting from R′ using Algorithm 3;
C′ = {R′

i1
, R′

i2
, . . . , R′

ik
} ← ClusterForm(R′);

if C = ∪k
j=1R′

ij
is a closed set then

for i← 1 to n do
// Check that the ring does not generate the closed set C;
if i ̸∈ {i1, i2, . . . , ik} then

// Check if C and R′
i have elements in common;

if C ∩R′
i ̸= ∅ then

// Remove elements of C from R′
i;

R′
i ← R′

i ∩ Cc;
// Set the flag to indicate modification of transaction rings;
flag ← true;

end
end

end
if flag is true then

// Run the cascade attack on R′
h;

R′
h ← CascadeAttack(R′

h);
// Run the cascade attack on the cluster C′;
C′′ = {R′′

i1
, R′′

i2
, . . . , R′′

ik
} ← CascadeAttack(R′

h);
// Replace the rings in R′

h with intra-cluster cascade attack results;
for j ← 1 to k do

R′
ij
← R′′

ij
;

end
end

end
end

end

Setting A1 = A2 in the above lemma gives us the following corollary.

▶ Corollary 16. If (A, B1) and (A, B2) are both minimum covers of a bipartite graph K

having finite cover number, then B1 = B2.

AFT 2023



28:12 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

For a bipartite graph K, let C be the set of all minimum covers. Let us define the following
sets obtained by taking intersections and unions of the components of the minimum covers.

A∗ =
⋂

(A,B)∈C

A, A∗ =
⋃

(A,B)∈C

A, (1)

B∗ =
⋂

(A,B)∈C

B, B∗ =
⋃

(A,B)∈C

B. (2)

By Lemma 14, if K has a finite cover number then the pairs (A∗, B∗) and (A∗, B∗) are both
minimum covers of K.

▶ Example 17. Reconsider the bipartite graph shown in Figure 3 with vertex classes
S = {P1, P2, P3, P4} and T = {I1, I2, I3}. Since (∅, T ) is a minimum cover the graph, A∗ = ∅
and B∗ = T . As ({P1}, {I2, I3}) and ({P1, P2}, {I3}) are the only other minimum covers,
A∗ = {P1, P2} and B∗ = {I3}.

5.2 Maximum Matchings on Bipartite Graphs
In a graph, we say that edges (s, t) and (s′, t′) share a vertex if either s = s′ or t = t′.

▶ Definition 18. A matching on a bipartite graph K = (S, T, E) is a subset M of the edge
set E such that no two edges in M share a vertex. The cardinality |M | is called the order
of the matching M .

▶ Definition 19. A maximum matching on a bipartite graph K is a matching on K of
maximum order.

The following definition classifies edges according to their membership in maximum
matchings on K.

▶ Definition 20. An edge (s, t) of a bipartite graph K is said to be admissible if there exists
a maximum matching M on K such that (s, t) ∈M . An edge which is not admissible is said
to be inadmissible.

The following result by König [10] says that maximum matchings have the same size as
minimum covers in bipartite graphs. We will need it in the proof of Theorem 26.

▶ Proposition 21. The cover number of a finite bipartite graph equals the order of maximum
matchings on the graph.

5.3 Definition of the DM Decomposition
With the above definitions in place, we are ready to describe the DM decomposition.

▶ Definition 22. Let K = (S, T, E) be a bipartite graph having a finite cover number. The
Dulmage-Mendelsohn decomposition of K is a partition of S × T into three disjoint
sets R1, R2, R3 which satisfy the following properties:
1. The set of admissible edges in K equals E ∩R1.
2. The set of inadmissible edges in K equals E ∩R2.
3. E ∩R3 = ∅.

The fine structure of the sets R1, R2, R3 depends on the minimum covers of K. Let us
consider two cases.



S. Vijayakumaran 28:13

5.3.1 Case 1: A∗ = A∗

If A∗ = A∗, then the graph K has only one minimum cover given by (A∗, B∗) = (A∗, B∗).
In this case, the following result holds.

▶ Proposition 23. Let K = (S, T, E) be a bipartite graph having a finite cover number. If K

has only one minimum cover given by (A∗, B∗), then the Dulmage-Mendelsohn decomposition
of K is the partition of S × T into the sets R1, R2, R3 given by

R1 = (A∗ × (B∗)c)
⋃

((A∗)c ×B∗) ,

R2 = A∗ ×B∗, (3)
R3 = (A∗)c × (B∗)c.

5.3.2 Case 2: A∗ ̸= A∗

Now suppose A∗ ̸= A∗. By definition, A∗ ⊆ A∗. So A∗ must be a proper subset of A∗. Then
there exists at least one non-empty set X ⊂ S such that A∗ ∩ X = ∅ and (A∗ ∪ X, Y ) is
a minimum cover of K for some Y ⊂ T . The existence of such a set follows from the fact
A∗ \A∗ is a candidate for X. Let S1 be a set of smallest cardinality among all candidates
for X. There may be many possibilities for S1, all having the same smallest cardinality. We
can pick any one of them.

Let (A1, B1) be a minimum cover with A1 = A∗ ∪ S1. By Corollary 16, B1 is uniquely
determined by A1. As A∗ ⊆ A1, Theorem 15 tells us that B1 ⊆ B∗. As all minimum covers of
K have the same size, we have |A∗|+|B∗| = |A1|+|B1|. Since |A1| > |A∗|, we have |B1| < |B∗|.
Thus B1 is a proper subset of B∗. Let T1 = B∗ \ B1. Since |A1| − |A∗| = |B∗| − |B1|, we
have |S1| = |T1|.

If A1 = A∗, the process stops. Otherwise, there exists at least one non-empty set X ⊂ S

such that A1 ∩X = ∅ and A1 ∪X is the first component of a minimum cover of K. Let S2
be a set of smallest cardinality among all candidates for X. Let (A2, B2) be a minimum
cover with A2 = A1 ∪ S2 = A∗ ∪ S1 ∪ S2. As before, B2 is uniquely determined by A2 and
B2 ⊂ B1. Let T2 = B1 \ B2. Since |A2| − |A1| = |B1| − |B2|, we have |S2| = |T2|. Since
B∗ = T1 ∪B1 and T2 = B1 \B2, we have B∗ = T1 ∪ T2 ∪B2.

If we proceed in this manner, the process will stop for some k where

A∗ ∪ S1 ∪ S2 . . . ∪ Sk = A∗. (4)

At this point, (A∗, B∗) will be the resulting minimum cover. Furthermore, the Ti’s satisfy

B∗ = T1 ∪ T2 ∪ . . . Tk ∪B∗. (5)

In the intermediate stages of this process, (Ai, Bi) is a minimum cover for K for each
i ∈ {1, 2, . . . , k} where

Ai = A∗ ∪ S1 ∪ S2 ∪ . . . ∪ Si, (6)
Bi = Ti+1 ∪ Ti+2 ∪ . . . ∪ Tk ∪B∗. (7)

Equations (4) and (5) give the following decompositions of the vertex classes S and T .

S = A∗
⋃

(A∗)c = A∗ ∪ S1 ∪ S2 . . . ∪ Sk

⋃
(A∗)c, (8)

T = (B∗)c
⋃

B∗ = (B∗)c
⋃

T1 ∪ T2 . . . ∪ Tk ∪B∗. (9)

AFT 2023



28:14 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

The k +2 sets in the unions on the extreme right of both the above equations form a partition
of S and T respectively. These partitions are unique except for a permutation of the Si’s
having same cardinality, with the Ti’s appropriately permuted.

With these definitions in place, we have the following result from [4].

▶ Proposition 24. Let K = (S, T, E) be a bipartite graph having a finite cover number. Then
the Dulmage-Mendelsohn decomposition of K is given by the partition of S × T into the sets
R1, R2, R3 given by

R1 = (A∗ × (B∗)c)
⋃

(S1 × T1)
⋃

. . .
⋃

(Sk × Tk)
⋃

((A∗)c ×B∗) , (10)

R2 = (A∗ ×B∗)
⋃

(A∗ ×B∗)
⋃
i<j

(Si × Tj) , (11)

R3 = ((A∗)c × (B∗)c)
⋃

((A∗)c × (B∗)c)
⋃
i>j

(Si × Tj) . (12)

▶ Example 25. Consider the bipartite graph in Figure 3. It has vertex classes S =
{P1, P2, P3, P4} and T = {I1, I2, I3}.

(i) As we noted in Example 17, A∗ = ∅, B∗ = T and A∗ = {P1, P2}, B∗ = {I3}.
(ii) As ({P1}, {I2, I3}) is the only candidate for (A1, B1), we have S1 = {P1} and T1 = {I1}.
(iii) As ({P1, P2}, {I3}) is the only candidate for (A2, B2), we have S2 = {P2} and T2 = {I2}.

The DM decomposition is given by

R1 = {(P1, I1), (P2, I2), (P3, I3), (P4, I3)} ,

R2 = {(P1, I3), (P2, I3), (P1, I2)} ,

R3 = {(P3, I1), (P3, I2), (P4, I1), (P4, I2), (P2, I1)}

The graph has no edges in R3. The edges in R2 cannot appear in any maximum matching,
as P1 must be matched to I1 and P2 must be matched to I2. The edges in R1 appear in at
least one maximum matching on the graph. ⌟

To visualize the DM decomposition, suppose that the vertices in S are ordered according
to the partition in Equation (8), i.e. the vertices in A∗ appear first, followed by vertices in
S1, S2, . . . , Sk, and (A∗)c. Similarly, suppose that the vertices in T are ordered according to
the partition in Equation (9). Then the DM decomposition can be represented by Figure 4,
where the rows correspond to vertices in T and the columns correspond to vertices in S.
The admissible edges lie in blocks along the diagonal, the inadmissible edges lie above these
blocks, and there are no edges below these blocks.

5.4 Computing the DM Decomposition
The DM decomposition of a bipartite graph K can be computed by finding a maximum
matching M on K, then finding subsets of vertex classes unreachable from M via alternating
paths, and finally by finding strongly connected components of the subgraph induced by the
unreachable vertices (see [19] for details). Surprisingly, the DM decomposition is independent
of the particular maximum matching chosen in the first step [19]. The component algorithms
of the DM decomposition computation have worst-case running times which are polynomial
in the number of graph vertices and edges.

We implemented the DM decomposition in Rust. Our code is available at https:
//github.com/avras/cryptonote-analysis under an MIT license. While an open source
implementation of the DM decomposition already existed in CSparse [3], it was much

https://github.com/avras/cryptonote-analysis
https://github.com/avras/cryptonote-analysis


S. Vijayakumaran 28:15

S

T

A∗ S1 S2 · · · Sk (A∗)c

(B∗)c

T1

T2

...

Tk

B∗

A∗ ×
(

B∗
)c

S1 × T1

S2 × T2

Sk × Tk

(
A∗
)c

× B∗

R2

R3

Figure 4 Visualization of the DM decomposition of a bipartite graph.

slower than the proprietary implementation in Matlab [11]. Our implementation of the DM
decomposition has performance comparable to the Matlab implementation. Instructions on
preparing the input data for our implementation are available at https://www.respectedsir.
com/cna.

6 The DM Decomposition Finds All Closed Sets

By Theorem 6, the closed set attack is an optimal method for performing undeniable
traceability analysis on CryptoNote transaction graphs. However, the naive method of
finding closed sets by checking all subsets of the transaction rings [26, Appendix A] is not
computationally feasible. The clustering algorithm for finding closed sets is guaranteed to
find all closed sets of size 5 or less [26, Theorem 2]. While it does find closed sets with size
more than 5, it is not guaranteed to find all closed sets.

In this section, we show that the DM decomposition finds all the closed sets in a
CryptoNote transaction graph. As the DM decomposition can be computed in polynomial
time, we obtain an efficient method to achieve the best possible undeniable traceability
performance.

Let us establish/recall the following notation.
(i) Let Rh = {R1, R2, . . . , Rn} be the multiset of all transaction rings which have appeared

on the blockchain up to height h.
(ii) Let Ii be the key image corresponding to ring Ri.
(iii) Let Kh = {I1, I2, . . . , In} be the set of all key images that have appeared on the

blockchain up to height h.
(iv) Let Oh = ∪n

i=1Ri = {P1, P2, . . . , Pm} be the set of all keys (outputs) that have appeared
in at least one transaction ring.

AFT 2023

https://www.respectedsir.com/cna
https://www.respectedsir.com/cna


28:16 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

...

...

P1

P2

Pk

Pk+1

Pk+2

Pk+3

Pm

...

...

I1

I2

Ik

Ik+1

Ik+2

In

Figure 5 Transaction graph used in the proof of Theorem 26.

(v) Let E ⊆ Oh ×Kh be the edge set of the transaction graph induced by the rings in Rh.
For P ∈ Oh and I ∈ Kh, the edge (P, I) belongs to E if the output P appeared in the
transaction ring used to create I.

(vi) Let C be a closed set of Rh having cardinality k. By Definition 4, there exist k

transaction rings Ri1 , Ri2 , . . . , Rik
in Rh such that C = ∪k

j=1Rij
. To describe this

scenario briefly, we will say that the rings Ri1 , Ri2 , . . . , Rik
constitute the closed set C.

Furthermore, there exist k keys Pi1 , . . . , Pik
in Oh such that C = {Pi1 , Pi2 , . . . , Pik

}.
(vii) Let IC = {Ii1 , Ii2 , . . . , Iik

} be the set of key images corresponding to the rings
Ri1 , Ri2 , . . . , Rik

that constitute C.

▶ Theorem 26. Let Gh = (Oh,Kh, E) be the CryptoNote transaction graph induced by the
rings in Rh and their corresponding key images. Let C be a closed set of Rh and let IC be
the set of key images corresponding to the rings that constitute C. Then (C,Kh \ IC) is a
minimum cover of Gh. Conversely, if (A, B) is a minimum cover of Gh where A ̸= ∅, then A

is a closed set.

Proof. Without loss of generality, we can assume that R1, R2, . . . , Rk are the rings that
constitute C and I1, I2, . . . , Ik are the key images corresponding to these rings. Furthermore,
let C = ∪k

i=1Ri = {P1, P2, . . . , Pk}.3 By definition, IC = {I1, I2, . . . , Ik}.
Suppose we draw the bipartite graph induced by the blockchain history by listing

P1, . . . , Pk and I1, . . . , Ik before the other vertices on each side. Let Pk+1, . . . , Pm be the
other outputs in Oh. Let Ik+1, . . . , In be the other key images in Kh. Figure 5 illustrates
this bipartite graph.

Since each key image in I1, I2, . . . , In corresponds to a unique true output on the left
hand side, there exists a maximum matching of order n on this graph. By Proposition 21,
minimum covers of this graph will also have size n. Note that every edge in the graph is
incident on some element in {I1, I2, . . . , In}. Thus (∅,Kh) = (∅, {I1, . . . , In}) is a minimum
cover of the graph.

3 In general, the rings that constitute C and the corresponding keys and key images may not have indices
1, 2, . . . , k. But we can always relabel the elements in these sets to satisfy our assumption.



S. Vijayakumaran 28:17

We claim that there are no edges between the key images I1, . . . , Ik and the outputs
Pk+1, Pk+2, . . . , Pm. To see this, suppose there is an edge from Ij to Pl for some j ∈
{1, 2, . . . , k} and l ∈ {k + 1, . . . , m}. Then Pl must belong to the ring Rj as it is the only
ring which contributes edges incident on Ij . This would mean Pl belongs to ∪k

i=1Ri =
{P1, P2, . . . , Pk}, which is a contradiction as l ≥ k + 1. So all the edges incident on I1, . . . , Ik

must have an output from P1, . . . , Pk on the other end.
The above argument shows that (C,Kh \ IC) = ({P1, . . . , Pk}, {Ik+1, . . . , In}) is a min-

imum cover of the graph. Thus every closed set of Rh is the first member of a minimum
cover of the transaction graph.

To prove the other direction, suppose that (A, B) is a minimum cover of the transaction
graph where A ̸= ∅. Let Bc = Kh \ B be the set of key images not in B. Suppose
Bc = {Ii1 , Ii2 , . . . , Iil

}.
Since (∅,Kh) is a minimum cover of the graph, every minimum cover must have size n.

This implies that |A|+ |B| = n. As l = |Bc| = n− |B|, the set A must have l outputs.
Since (A, B) is a cover of the transaction graph, every edge incident on key images in Bc

must be covered by an output in A (as B can only cover edges incident on the key images in
it). Each key image Iij

in Bc is associated with a unique transaction ring Rij
which contains

the true output corresponding to it. The ring Rij
is the set of outputs adjacent to Iij

in the
graph. We claim that Rij

is a subset of A.
We prove our claim by contradiction. If there is a key P in Rij that is not contained in

A, then the edge (P, Iij
) exists but P ̸∈ A and Iij

̸∈ B. This contradicts our assumption
that (A, B) is a vertex cover.

Since the transaction ring Rij
is a subset of A for every Iij

∈ Bc, we have ∪l
j=1Rij

⊆ A.
Furthermore,

∣∣∪l
j=1Rij

∣∣ ≥ l because each of the l key images Ii1 , Ii2 , . . . , Iil
has a unique

true output in ∪l
j=1Rij

. Putting all this together, we have

l ≤

∣∣∣∣∣∣
l⋃

j=1
Rij

∣∣∣∣∣∣ ≤ |A| = l. (13)

We conclude that A = ∪l
j=1Rij

and that
∣∣∪l

j=1Rij

∣∣ = l, which proves that A is a closed set
of Rh. ◀

The above theorem says that finding all closed sets of a CryptoNote transaction graph
is equivalent to finding all minimum covers of it. When the graph has only one minimum
cover (i.e. when A∗ = A∗), there is only one possible closed set. For the case when A∗ ̸= A∗,
Dulmage and Mendelsohn proved the following theorem [4, Theorem 10] which shows
that all the possible minimum covers of a bipartite graph can be calculated from the DM
decomposition.

▶ Theorem 27. Let K = (S, T, E) be a bipartite graph having a finite cover number and
more than one minimum cover. Let A∗, B∗, S1, S2, . . . , Sk, T1, T2, . . . , Tk be as defined in
Section 5.3.2. Let (A, B) be a minimum cover of K. Then exists a subset Λ of the index set
{1, 2, . . . , k} such that

A =
(⋃

i∈Λ

Si

)
∪A∗, B =

( ⋃
i∈Λc

Ti

)
∪B∗.

This theorem implies that every minimum cover of the transaction graph can be recovered
from the DM decomposition of the graph. This in turn implies that every closed set in the
transaction graph can be found from the DM decomposition.

AFT 2023



28:18 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

Table 1 Monero traceability of pre-RingCT rings by the clustering algorithm vs DM decomposition
(up to block 1,541,236).

No. of mixins No. of pre-RingCT Traced by clustering Traced by DM
rings algorithm decomposition

0 12,209,675 12,209,675 12,209,675
1 707,786 625,641 625,641
2 2,941,525 1,779,134 1,779,446
3 1,345,574 952,855 952,862
4 972,457 451,959 451,981
5 143,793 74,186 74,186
6 366,894 202,360 202,360
7 12,361 4,296 4,296
8 9,148 3,506 3,506
9 6,396 2,178 2,178
≥ 10 118,902 29,177 29,177
Total 18,834,511 16,334,967 16,335,308

7 DM Decomposition of the Monero Transaction Graph

We implemented the DM decomposition, the cascade attack, and the closed set attack in
Rust. Our code is available at https://github.com/avras/cryptonote-analysis under
an MIT license.

7.1 Empirical Analysis without Hard Fork Information
To evaluate the effectiveness of the DM decomposition in tracing transaction rings, we used
the results obtained by the clustering algorithm of Yu et al. [26] on Monero as the benchmark.
The latter results are the best results on Monero undeniable traceability which do not use
information from hard forks.

Yu et al. considered Monero transactions contained in blocks with height up to 1,541,236
(March 30, 2018). This data set contains 23,164,745 transaction rings (each one contributing
a key image) and 25,126,033 outputs. The corresponding bipartite graph has 58,791,856
edges. Out of the 23,164,745 transaction rings in the data set, 4,330,234 were RingCT rings
and the remaining 18,834,511 were pre-RingCT rings.

Previous work [8], [17], [26], on Monero traceability has shown that RingCT transactions
in Monero are immune to undeniable traceability attacks. The same observation holds for
the DM decomposition approach. None of the 4,330,234 RingCT rings could be traced by
the DM decomposition (when information from hard forks is not used). Table 1 compares
the number of pre-RingCT transaction rings traced by the clustering algorithm and the DM
decomposition. Each row in the table gives results for transaction rings which have a certain
number of mixin outputs. The results for all transaction rings with 10 or more mixin outputs
are combined in the row with label “≥ 10”.

All the 16,335,308 rings traced by the DM decomposition are associated with a set Si

with |Si| = 1. The singleton set Ti corresponding to Si has the key image of the output in
Si. As seen from the last row, the DM decomposition identifies 341 more traceable rings
than the clustering algorithm. These new rings are only among the transaction rings having
2, 3, or 4 mixins.

https://github.com/avras/cryptonote-analysis


S. Vijayakumaran 28:19

Yu et al. report finding 3017 closed sets with sizes in the range 2 to 55. The DM
decomposition is able to find 3045 closed sets with 3041 of them having sizes in the range 2
to 55. The remaining four closed sets have sizes 103, 106, 119, and 122. This discrepancy is
due to the approximate nature of the clustering algorithm used by Yu et al. to find closed
sets.

To check if the transactions which have appeared after block 1,541,236 have affected the
traceability of RingCT rings, we computed the DM decomposition of the subgraph induced
exclusively by RingCT transaction rings in all blocks up to height 2,530,000 (January 4, 2022).4
This subgraph has 40,351,733 key images and 45,805,726 outputs with 409,626,277 edges
between them. Let K be the set of all the key images in this subgraph. Its DM decomposition
revealed only two minimum covers, (∅,K) and (S1,K \ T1) where |S1| = |T1| = 5. The set S1
consists of RingCT outputs with indices 3890287, 3890288, 3890289, 3890290, and 3890291.

These five outputs were created by Wijaya et al. [22] in block 1,468,425. All of them
were spent using the other four as mixins in five transaction rings in block 1,468,439 (Dec
17, 2017), to demonstrate that a set of outputs can be considered spent without relying on
zero-mixin transactions. These five outputs are also marked as spent by the Monero blackball
tool [13]. Thus, the DM decomposition of the Monero RingCT subgraph (using only main
chain data) does not identify any new outputs as spent.

There were 37,038,237 RingCT transaction rings in the blocks with heights from 1,468,426
to 2,530,000. The five spent RingCT outputs were chosen as mixins in only 25 of these RingCT
rings. Each of the 25 rings had at least 4 mixins and had their effective number of mixins
reduced by one. Thus, the RingCT rings are mostly unaffected by the DM decomposition
analysis.

The clustering algorithm was also able to identify the size 5 closed set. But it took 64
hours to finish running on our test machine while the DM decomposition could be computed
in 4 hours.

7.2 Empirical Analysis using Hard Fork Information
To check the immunity of Monero RingCT transactions against the DM decomposition
technique which incorporates hard fork information, we constructed a transaction graph
using four different hard forks: Monero Original, MoneroV, Monero v7, and Monero v9.
Table 2 gives the information regarding these forks where the last column contains the
number of RingCT key images which appeared both in fork chain and the Monero main
chain up to block height 2,530,000. While Monero Original and MoneroV were intentional
hard forks created by developers who preferred a different design, the blocks on the Monero
v7 and Monero v9 forks were unintentionally created by miners who were late in upgrading
to the latest version of the main Monero client. This is the reason for the small number of
blocks in the Monero v7 and Monero v9 forks.

We computed the performance of the DM decomposition technique on this graph up to
Monero block height 2,530,000 (January 4, 2022). We found that 63,060 RingCT transaction
rings out of 40,351,733 are undeniably traceable, i.e. only 0.15% of the RingCT rings are
undeniably traceable. Note that the number of traceable RingCT rings is less than the total
number of common RingCT key images shown in Table 2. This is because the appearance

4 We could not try later block heights as the resulting transaction graphs were too large to fit in the
memory of our test machine.

AFT 2023



28:20 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

Table 2 Information about the four Monero hard forks.

Fork Name Fork block Number of Number of Number of
blocks in common common RingCT

fork key images key images
Monero Original 1,546,000 238,682 86,685 64,189

MoneroV 1,564,966 146,325 9,387 6,609
Monero v7 1,685,555 29 1,061 1,027
Monero v9 1,788,000 73 1,581 1,581

of key image in both the main chain and the fork chain does not imply traceability. If the
transaction rings in both cases have more than one output in common, the true output being
spent may not be identified.

The clustering algorithm was also able to trace the same 63,060 RingCT transaction
rings. But it took 64 hours to finish while the DM decomposition took 4 hours. In fact, the
cascade attack, which is the first step in the clustering algorithm (see Algorithm 4), was able
to trace all these rings. The subsequent closed set search was fruitless as there were no closed
sets in the transaction graph, except for the size 5 closed set induced by Wijaya et al. [22].

Readers interested in the effect of the DM decomposition analysis (using hard forks)
on non-RingCT rings up to block height 2,530,000 can read the section at https://www.
respectedsir.com/cna/hardfork-nonringct.html in our documentation.

8 Conclusion

We showed that the classical notion of the Dulmage-Mendelsohn decomposition of bipartite
graphs gives an efficient implementation of the closed set attack, which is the optimal method
for undeniable traceability in CryptoNote blockchains. Combining the DM decomposition
with previously proposed methods for plausible traceability is an interesting direction for
future work. We have released open source implementations of the DM decomposition,
cascade attack, and clustering algorithm. We have also released the scripts used to generate
all the empirical results in this paper along with detailed instructions on how to use them.
We hope that these tools will be useful to other researchers, especially those working on
methods for plausible traceability.

References
1 Sina Aeeneh, João Otávio Chervinski, Jiangshan Yu, and Nikola Zlatanov. New attacks

on the untraceability of transactions in CryptoNote-style blockchains. In 2021 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–5, 2021.
doi:10.1109/ICBC51069.2021.9461130.

2 Sherman S. M. Chow, Christoph Egger, Russell W. F. Lai, Ivy K. Y. Woo, and Viktoria Ronge.
On sustainable ring-based anonymous systems. In 36th IEEE Computer Security Foundations
Symposium, 2023.

3 Timothy A. Davis. CSparse: A concise sparse matrix package. URL: https://people.engr.
tamu.edu/davis/suitesparse.html.

4 A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of
Mathematics, 10:517–534, 1958. doi:10.4153/CJM-1958-052-0.

5 Christoph Egger, Russell W. F. Lai, Viktoria Ronge, Ivy K. Y. Woo, and Hoover H.F.
Yin. On defeating graph analysis of anonymous transactions. In Michelle Kerschbaum,
Florian; Mazurek, editor, Proceedings on Privacy Enhancing Technologies, volume 2022 (3),
pages 538–557, Warschau (Polen), 2022. Sciendo. doi:10.56553/popets-2022-0085.

https://www.respectedsir.com/cna/hardfork-nonringct.html
https://www.respectedsir.com/cna/hardfork-nonringct.html
https://doi.org/10.1109/ICBC51069.2021.9461130
https://people.engr.tamu.edu/davis/suitesparse.html
https://people.engr.tamu.edu/davis/suitesparse.html
https://doi.org/10.4153/CJM-1958-052-0
https://doi.org/10.56553/popets-2022-0085


S. Vijayakumaran 28:21

6 Brandon Goodell. Perfect privacy or strong deniability? In Monero Konferenco, 2019. URL:
https://youtu.be/xicn4rdUj_Q.

7 Abraham Hinteregger and Bernhard Haslhofer. An empirical analysis of Monero cross-chain
traceability. In Financial Cryptography and Data Security, pages 150–157, 2019.

8 Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis
of Monero’s blockchain. In European Symposium on Research in Computer Security, pages
153–173. Springer, 2017.

9 Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group
signature for ad hoc groups. In Australasian Conference on Information Security and Privacy,
pages 325–335. Springer, 2004.

10 L. Lovász and M.D. Plummer. Matching Theory. North-Holland, 1986.
11 dmperm: MATLAB function for Dulmage-Mendelsohn decomposition. URL: https://in.

mathworks.com/help/matlab/ref/dmperm.html.
12 Monero Blackball Databases, 2021. Last Accessed: August 13, 2023. URL: https://github.

com/monero-blackball/monero-blackball-site.
13 Monero Blackball Tool Code, 2023. Last Accessed: June 13, 2023. URL:

https://github.com/monero-project/monero/blob/master/src/blockchain_utilities/
blockchain_blackball.cpp.

14 Monero Original GitHub Repository, 2018. URL: https://github.com/XmanXU/
monero-original.

15 Monero Scheduled Software Upgrades, 2020. Last Accessed: August 13, 2023. URL: https:
//github.com/monero-project/monero/#scheduled-software-upgrades.

16 MoneroV GitHub Repository, 2019. URL: https://github.com/monerov/monerov.
17 Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,

Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin. An
empirical analysis of traceability in the Monero blockchain. Proceedings on Privacy Enhancing
Technologies, 2018(3):143–163, 2018. doi:10.1515/popets-2018-0025.

18 Joāo Otávio Chervinski, Diego Kreutz, and Jiangshan Yu. Analysis of transaction flood-
ing attacks against Monero. In 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–8, 2021. doi:10.1109/ICBC51069.2021.9461084.

19 Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse matrix. ACM
Trans. Math. Softw., 16(4):303–324, December 1990. doi:10.1145/98267.98287.

20 Viktoria Ronge, Christoph Egger, Russell W. F. Lai, Dominique Schröder, and Hoover H.F. Yin.
Foundations of ring sampling. Proceedings on Privacy Enhancing Technologies, 2021:265–288,
2021. doi:10.2478/popets-2021-0047.

21 Nicolas van Saberhagen. CryptoNote v 2.0. White paper, 2013. URL: https://cryptonote.
org/whitepaper.pdf.

22 Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, and Dongxi Liu. Monero ring attack:
Recreating zero mixin transaction effect. In 2018 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages 1196–1201,
2018. doi:10.1109/TrustCom/BigDataSE.2018.00165.

23 Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, Dongxi Liu, and Tsz Hon Yuen. Anonymity
reduction attacks to Monero. In Fuchun Guo, Xinyi Huang, and Moti Yung, editors, Information
Security and Cryptology, pages 86–100, Cham, 2019. Springer International Publishing.

24 Dimaz Ankaa Wijaya, Joseph K. Liu, Ron Steinfeld, Dongxi Liu, and Jiangshan Yu. On
the unforkability of Monero. In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, Asia CCS ’19, pages 621–632, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3321705.3329823.

25 J. Yu, M. H. A. Au, and P. Esteves-Verissimo. Re-thinking untraceability in the CryptoNote-
style blockchain. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pages
94–106, 2019. doi:10.1109/CSF.2019.00014.

AFT 2023

https://youtu.be/xicn4rdUj_Q
https://in.mathworks.com/help/matlab/ref/dmperm.html
https://in.mathworks.com/help/matlab/ref/dmperm.html
https://github.com/monero-blackball/monero-blackball-site
https://github.com/monero-blackball/monero-blackball-site
https://github.com/monero-project/monero/blob/master/src/blockchain_utilities/blockchain_blackball.cpp
https://github.com/monero-project/monero/blob/master/src/blockchain_utilities/blockchain_blackball.cpp
https://github.com/XmanXU/monero-original
https://github.com/XmanXU/monero-original
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/monerov/monerov
https://doi.org/10.1515/popets-2018-0025
https://doi.org/10.1109/ICBC51069.2021.9461084
https://doi.org/10.1145/98267.98287
https://doi.org/10.2478/popets-2021-0047
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00165
https://doi.org/10.1145/3321705.3329823
https://doi.org/10.1109/CSF.2019.00014


28:22 Analysis of CryptoNote Transaction Graphs Using the DM Decomposition

26 Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat Lau. New
empirical traceability analysis of CryptoNote-style blockchains. In Financial Cryptography
and Data Security, pages 133–149, 2019.



Vector Commitments with Efficient Updates
Ertem Nusret Tas #

Stanford University, CA, USA

Dan Boneh #

Stanford University, CA, USA

Abstract
Dynamic vector commitments that enable local updates of opening proofs have applications ranging
from verifiable databases with membership changes to stateless clients on blockchains. In these
applications, each user maintains a relevant subset of the committed messages and the corresponding
opening proofs with the goal of ensuring a succinct global state. When the messages are updated,
users are given some global update information and update their opening proofs to match the new
vector commitment. We investigate the relation between the size of the update information and the
runtime complexity needed to update an individual opening proof. Existing vector commitment
schemes require that either the information size or the runtime scale linearly in the number k of
updated state elements. We construct a vector commitment scheme that asymptotically achieves
both length and runtime that is sublinear in k, namely kν and k1−ν for any ν ∈ (0, 1). We prove an
information-theoretic lower bound on the relation between the update information size and runtime
complexity that shows the asymptotic optimality of our scheme. While in practice, the construction
is not yet competitive with Verkle commitments, our approach may point the way towards more
performant vector commitments.

2012 ACM Subject Classification Security and privacy

Keywords and phrases Vector commitments, stateless clients

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.29

Related Version Full Version: https://arxiv.org/abs/2307.04085

Funding This work was partially funded by NSF, DARPA, the Simons Foundation, and NTT
Research. Additional support was provided by the Stanford Center for Blockchain Research.
Opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

1 Introduction

A Vector Commitment (VC) scheme [14, 24, 13] enables a committer to succinctly commit
to a vector of elements. Later, the committer can generate an opening proof to prove that
a particular position in the committed vector is equal to a certain value. VCs have found
many applications in databases and blockchains [26, 39] as they enable a storage system to
only store a commitment to the vector instead of the entire vector. The data itself can be
stored elsewhere along with opening proofs. In a multiuser system, every user might store
only one position of the vector along with the opening proof for that position.

Dynamic VCs [13] are vector commitments that support updates to the vector. Suppose
the committed vector is of length N and some k < N positions in the vector are updated,
so that a new vector commitment is published. Then, every user in the system will need
to update their local opening proof to match the updated commitment, and this is done
with the help of some global update information U that is broadcast to all users. This
information is typically generated and published by a manager who maintains the entire
vector. Applications of dynamic VCs include verifiable databases, zero-knowledge sets with

© Ertem Nusret Tas and Dan Boneh;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nusret@stanford.edu
https://orcid.org/0000-0001-6061-9700
mailto:dabo@cs.stanford.edu
https://orcid.org/0000-0003-0820-0421
https://doi.org/10.4230/LIPIcs.AFT.2023.29
https://arxiv.org/abs/2307.04085
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Vector Commitments with Efficient Updates

Table 1 Comparison of different VCs. |U | denotes the length of the update information. T

denotes the runtime of a single proof update. |G| and |H| denote the size of a single group element
and a single hash value, respectively. TG and Tf denote the time complexity of a single group
operation and a single function evaluation for the hash function used by the VC. The last column
PP is ‘Y’ if the proof update requires pre-processing to generate a global and fixed table of auxiliary
data needed for proof updates.

Vector Commitment |U | T PP

Merkle tree [25] Θ̃(k) |H| Õ(1) N
Hyperproofs [33] Θ̃(k) |G| Õ(1) N
Verkle tree [11] Θ̃(k) |G| Õ(1) |H| TG Y

This work with ν ∈ [0, 1] Θ̃(kν)|H| Θ̃(k1−ν) Tf N

KZG commitments [19] Õ(1) Θ̃(k) TG Y
RSA accumulators and VCs [7, 8] Õ(1) Θ̃(k) TG N

Bilinear accumulators [27, 34] Õ(1) Θ̃(k) TG N

frequent updates [13] and stateless clients for blockchains [9]. The challenge is to design a
VC scheme that minimizes the size of the update information U as well as the computation
work by each user to update their local opening proof.

For example, consider stateless clients on a blockchain as an important application for
dynamic VCs. The state of the chain can be represented as a vector of length N , where
position i corresponds to the state of account number i. Every user will locally maintain its
own state (corresponding to some position in the vector) along with an opening proof that
enables the user to convince a third party as to its current state. Whenever a new block is
published, the state of the chain changes. In particular, suppose k out of the N positions in
the vector need to be updated. The block proposer will publish the update information U

along with the new block, and every user will update their opening proof to match the new
committed state of the chain. Thus, users can ensure that their opening proofs are up to
date with respect to the latest committed state of the chain.

We stress that in this application, the data being updated, namely the updated positions
and diffs, is published as part of the block. The update information U only contains additional
information that is needed to update the opening proofs. When we refer to the size of U , we
refer to its size, excluding the updated data (i.e., excluding the updated positions and diffs).

In this paper, we investigate the trade-off between the length |U | of the update information
and the time complexity of proof updates. Dynamic VCs can be grouped into two categories
in terms of these parameters (Table 1). Tree-based VCs [25, 33] enable users to update
their proofs in time O(polylog N). Each opening proof typically consists of polylog (N) inner
nodes, and the update information U contains the changes in the inner nodes affected by the
message updates. Each user calculates its new opening proof by downloading the relevant
inner nodes published as part of U . When k positions are updated, a total of O(k log (N))
inner nodes in the tree are affected in the worst case. Thus, when each inner node has
length Θ(λ), proportional to the security parameter λ, the update information consists of
O(k log (N)λ) bits.

In contrast, algebraic VCs [19, 7, 8, 27, 34] enable users to update their opening proofs
with only knowledge of the updated data. They do not require any additional update
information U to be published beyond the indices and the “diffs” of the updated data. Thus,



E. N. Tas and D. Boneh 29:3

the length of the update information needed to update the opening proofs is O(1). However,
algebraic VCs typically require each user to read all of the changed messages and incorporate
the effect of these changes on their proofs, resulting in Θ(k) work per proof update.

To summarize, while tree-based VCs support efficient calculation of the new opening
proofs by publishing a large amount of update information, linear in k, algebraic VCs do not
require any additional update information beyond the updated data, but suffer from a large
runtime for proof updates, linear in k. We formalize the dichotomy of VCs in Section 3.

1.1 Our Results
We propose a family of VCs that can support sublinear update, where both the length |U |
of the update information and the complexity of proof updates are sublinear in k. More
specifically, our VCs can attain |U | = Θ(kνλ), ν ∈ (0, 1), with a proof update complexity of
Θ(k1−ν) operations. Our candidate construction with sublinear update is a homomorphic
Merkle tree, first developed by [29, 32], where each inner node can be expressed as a sum of
the partial digests of the messages underneath (Section 4). The algebraic structure of these
trees enable each user to calculate the effect of a message update on any inner node without
reading other inner nodes or messages. We identify homomorphic Merkle tree constructions
based on lattices, from the literature [30, 29, 32].

In Section 4, we provide the update algorithms (Alg. 1) for homomorphic Merkle trees,
parameterized by ν ∈ (0, 1). Our algorithm identifies a special subset of size Θ̃(kν) of the
inner nodes affected by the message updates, and publish their new values as U ; so that the
users need not calculate these values. These inner nodes are selected carefully to ensure that
any inner node outside of U is affected by at most Θ(k1−ν) updated messages. Thus, to
modify its opening proof, each user has to calculate the partial digests of at most Θ(k1−ν)
updated messages per inner node within its proof (that consists of Θ(log (N)) inner nodes).
Moreover, to calculate these partial digests, the user only needs the “diffs” of the updated
messages. This brings the asymptotic complexity of proof updates to Θ̃(k1−ν) operations,
while achieving an update information size of Θ̃(kνλ) as opposed to Θ̃(kλ) on Merkle trees
using SHA256.

In Section 6, we prove an information theoretic lower bound on the size of the update
information given an upper bound on the runtime complexity of proof updates. The bound
implies the asymptotic optimality of our scheme with sublinear update. Its proof is based on
the observation that if the runtime complexity is bounded by O(k1−ν), a user that wants
to update its proof cannot read beyond O(k1−ν) updated messages. Then, to calculate the
effect of the remaining k −O(k1−ν) messages on its opening proof, the user has to download
parts of the structured update information U . Finally, to obtain the lower bound on |U |,
we use Shannon entropy and lower bound the number of bits, namely O(kνλ), required to
capture the total information that will be downloaded by the users; while maintaining the
security of the VC with parameter λ.

1.2 Applications
We identify three main applications for VCs with sublinear update.

1.2.1 Stateless clients for Ethereum
Ethereum is the largest decentralized general purpose computation platform by market cap.
Ethereum state (e.g., user accounts) is currently stored in the form of a Merkle tree [5]
and grows approximately by half every year [10]. Stateless clients [9, 10] were proposed to

AFT 2023



29:4 Vector Commitments with Efficient Updates

mitigate the problem of state bloat and prevent the state storage and maintenance from
becoming a bottleneck for decentralization. Stateless clients maintain an opening proof to
their account balances within the Ethereum state, thus can effortlessly prove the inclusion
of their accounts within the latest state. This enables the other Ethereum clients to verify
the transactions that come with opening proofs without having to download the full state
and check the validity of the claimed account balances. Since block verification now requires
downloading the proofs for the relevant state elements, Verkle trees [20, 11, 16] were proposed
as a replacement for Merkle trees due to their short proof size.

Each new Ethereum block contains transactions that update the state elements and
their opening proofs. Archival nodes and block producers still maintain the full state
so that they can inform the stateless clients about their new opening proofs [10]. For
this purpose, block producers must broadcast enough information to the clients over the
peer-to-peer gossip network of Ethereum1. As minimizing the proof size was paramount
to decentralizing verification for blocks, minimizing the update information size becomes
necessary for decentralizing the role of the block producer who has to disseminate this
information. However, reducing the length of the update information must not compromise
the low overhead of stateless clients by requiring larger number of operations per proof
update. Therefore, the ideal VC scheme for stateless clients must strike a delicate balance
between the size of the update information and the runtime complexity of proof updates.

In Section 5, we provide the update algorithms for Verkle trees given their role in
supporting stateless clients. We observe that Verkle trees do not support sublinear update,
and fall under the same category as tree-based VCs with update information length Θ̃(kλ).
Despite this fact, Verkle trees are highly practical in terms of updates. In Section 5.5, we
estimate that the update information size after a typical Ethereum block does not exceed
|U | ≈ 100 kBytes (compared to the typical block size of < 125 kBytes). Moreover, each Verkle
proof can be updated within approximately less than a second on commodity hardware.
In contrast, even the most efficient homomorphic Merkle tree construction [32] requires
an update information size of 110.88 MBytes and an update time of 32.6 seconds when
the trade-off parameter ν is 1/2, despite its asymptotic optimality (cf. Section 4.4). The
large update information size is due to the lattice-based construction of these VCs. Despite
their advantage in terms of concrete performance, unlike these lattice-based constructions,
Verkle trees are not secure against quantum computers. Designing dynamic VCs that are
asymptotically optimal, practically efficient and post-quantum resilient remains an open
problem.

1.2.2 Databases with frequent membership changes

VCs with sublinear update can support databases with frequent membership changes. When
a user first registers, a message is updated to record the membership of the user. The user
receives this record and its opening proof, using which it can later anonymously prove its
membership. When the user leaves the system, the message is once again updated to delete
the record. In all these steps, membership changes result in updates to the opening proofs of
other members. When these changes are frequent, it becomes infeasible to distribute new
proofs after each change. VCs with sublinear update offer an alternative and efficient way to
update the opening proofs of the users in the event of such changes.

1 Block producers can enable the clients to succinctly verify the correctness of this information via SNARK
proofs, thus still keeping the verification cost of blocks small.



E. N. Tas and D. Boneh 29:5

1.3 Related Work
There are many VC constructions, each with different guarantees regarding the proof,
commitment and public parameter sizes, verification time, updatability and support for
subvector openings [14, 24, 13, 37, 29, 23, 21, 18, 17, 6, 40, 8, 34, 33, 19, 11] (cf [28] for an
SoK of VCs). First formalized by [13], almost all VCs allow some degree of updatability.
Whereas [29, 6, 8, 34] enable updating the commitment and the opening proofs with only
the knowledge of the old and the new messages, most VCs require some structured update
information beyond the messages when the users do not have access to the internal data
structures. Among the lattice-based accumulators, vector commitments and functional
commitments [18, 22, 31, 29, 32, 30, 38], constructions amenable to sublinear update are
presented in [30, 29, 32, 31]. Homomorphic Merkle trees were formalized and instantiated
by [30, 29, 32] in the context of streaming authenticated data structures and parallel online
memory checking. The construction presented in [31, Section 3.4] offers an alternative VC
with sublinear update as it is not a Merkle tree, yet has the property that each inner node
can be expressed as a sum of the partial digests of individual messages.

An alternative design to support stateless clients is the agregatable subvector commitment
(aSVC) scheme [36], which is a VC that enables aggregating multiple opening proofs into
a succinct subvector proof. It enables each user to update its opening proof with the
knowledge of the transactions in the blocks, and block producers to prove the validity of
these transactions succinctly by aggregating the proofs submitted by the transacting users.
As the scheme is based on KZG commitments, no update information is needed, yet, the
update time complexity is linear in the number of transactions per block.

For dynamic accumulators that support additions, deletions and membership proofs,
Camacho and Hevia proved that after k messages are deleted, Ω(k) bits of data must be
published to update the proofs of the messages in the initial accumulated set [12, Theorem 1].
Their lower bound is information-theoretic and follows from a compression argument. Christ
and Bonneau subsequently used a similar method to prove a lower bound on the global
state size of a revocable proof system abstraction [15]. As revocable proof systems can
be implemented by dynamic accumulators and vector commitments, their lower bound
generalizes to these primitives, i.e., after k messages are updated in a dynamic VC, at least
Ω(k) bits of data must be published to update the opening proofs (cf. the full version of the
paper [35, Appendix A] for the proof). They conclude that a stateless commitment scheme
must either have a global state with linear size in the number of accounts, or require a
near-linear rate of local proof updates. In our work, we already assume a linear rate of local
proof updates, i.e., after every Ethereum block or k messages in our parameterization, and
that the message updates are publicized by the blockchain. We instead focus on the trade-off
between the global structured update information size (beyond the published messages) and
the runtime complexity of proof updates.

2 Preliminaries

2.1 Notation
We denote the security parameter by λ. An event is said to happen with negligible probability,
if its probability, as a function of λ, is o(1/λd) for all d > 0. An event happens with
overwhelming probability if it happens except with negligible probability.

We denote the set {0, 1, 2, .. , N − 1} by [N ]. When y = O(h(x) polylog (x)), we use the
shorthand y = Õ(h(x)) (similarly for Θ(.) and Θ̃(.)). The function H(.) : M → {0, 1}λ

represents a collision-resistant hash function. We denote the binary decomposition of an

AFT 2023



29:6 Vector Commitments with Efficient Updates

integer x by bin(x), and for c > 2, its base c decomposition by binc(x). A vector of N

elements (n0, .. , nN−1) is shown as (ni)i. The notation x[i:j] denotes the substring starting
at the ith index and ending at the jth index within the sequence x. The indicator function
1P is equal to one if the predicate P is true, otherwise, it is zero. In the subsequent sections,
k will be used to denote the number of updated messages.

For a prime p, let Fp denote a finite field of size p. We use G to denote a cyclic group of
prime order p with generator g. The Lagrange basis polynomial for a given x ∈ Fp is denoted
as Lx(X):

Lx(X) =
∏
i∈Fp

i̸=x

X − i

x− i

We will use |G| and |H| to denote the maximum size of the bit representation of a single
group element and a single hash value respectively. We will use TG and Tf to denote the
time complexity of a single group operation and a single function evaluation for the hash
functions in Section 4.1.

2.2 Vector Commitments
A vector commitment (VC) represents a sequence of messages such that each message can be
proven to be the one at its index via an opening proof. A dynamic vector commitment allows
updating the commitment and the opening proofs with the help of an update information
when the committed messages are changed.

▶ Definition 1 (from [13]). Dynamic (updateable) vector commitments can be described by
the following algorithms:
KeyGen(1λ, N) → pp : Given the security parameter λ and the size N = poly(λ) of the
committed vector, the key generation algorithm outputs public parameters pp, which implicitly
define the message space M.
Commitpp(m0, .. , mN−1) → (C, data) : Given a sequence of N messages in M and the
public parameters pp, the commitment algorithm outputs a commitment string C and the
data data required to produce the opening proofs for the messages. Here, data contains
enough information about the current state of the VC’s data structure ( i.e., the current list
of committed messages) to help generate the opening proofs.
Openpp(m, i, data)→ πi : The opening algorithm is run by the committer to produce a proof
πi that m is the ith committed message.
Verifypp(C, m, i, πi)→ {0, 1} : The verification algorithm accepts ( i.e., outputs 1) or rejects
a proof. The security definition will require that πi is accepted only if C is a commitment to
some (m0, .. , mN−1) such that m = mi.
Updatepp(C, (i, mi)i∈[N ], (i, m′

i)i∈[N ], data) → (C ′, U, data′) : The algorithm is run by the
committer to update the commitment C when the messages (mij )j∈[k] at indices (ij)j∈[k] are
changed to (m′

ij
)j∈[k]. The other messages in the vector are unchanged. It takes as input

the old and the new messages, their indices and the data variable data. It outputs a new
commitment C ′, update information U and the new data variable data′.
ProofUpdatepp(C, p((i, mi)i∈[N ], (i, m′

i)i∈[N ]), πj , m′, i, U) → π′
j : The proof update al-

gorithm can be run by any user who holds a proof πj for some message at index j and a
(possibly) new message m′ at that index. It allows the user to compute an updated proof π′

j

(and the updated commitment C ′) such that π′
j is valid with respect to C ′, which contains



E. N. Tas and D. Boneh 29:7

m′
i, i ∈ N , as the new messages at the indices i ∈ N (and m′ as the new message at index

i). Here, p(.) specifies what portion of the old and the new messages is sufficient to update
the opening proof. For instance, the proof update algorithm often does not need the old and
the new messages in the open; but can carry out the proof update using only their differences.
In this case, p((i, mi)i∈[N ], (i, m′

i)i∈[N ]) = (i, m′
i −mi)i∈N .

Correctness of a VC requires that ∀N = poly(λ), for all honestly generated parameters
pp←− KeyGen(1λ, N), given a commitment C to a vector of messages (m0, .. , mN−1) ∈MN ,
generated by Commitpp (and possibly followed by a sequence of updates), and an opening
proof πi for a message at index i, generated by Openpp or ProofUpdatepp, it holds that
Verifypp(C, mi, i, πi) = 1 with overwhelming probability.

Security of a VC is expressed by the position-binding property:

▶ Definition 2 (Definition 4 of [13]). A VC satisfies position-binding if ∀i ∈ [N ] and for
every PPT adversary A, the following probability is negligible in λ:

Pr
[

Verifypp(C,m,i,πi)=1∧
Verifypp(C,m′,i,π′

i)=1∧m̸=m′ : pp←−KeyGen(1λ,N)
(C,m,m′,πi,π′

i)←−A(pp)

]
We relax the succinctness assumption of [13] and denote a value to be succinct in x if it

is polylog(x).
Many VC constructions also satisfy the hiding property: informally, no PPT adversary

A should be able to distinguish whether the VC was calculated for a vector (m0, .. , mN−1)
or a vector (m′

0, .. , m′
N−1) ̸= (m0, .. , mN−1). In this work, we do not consider the hiding

property since it is not explicitly required by our applications, and VCs can be made hiding
by combining them with a hiding commitment [13].

2.3 KZG Polynomial Commitments
The KZG commitment scheme [19] commits to polynomials of degree bounded by ℓ using
the following algorithms:
KeyGen(1λ, ℓ) → pp : outputs pp = (g, gτ , g(τ2), .. , g(τℓ)) as the public parameters, where

g is the generator of the cyclic group G and τ is a trapdoor (pp[i] = gτ i).
Commit

(
pp, ϕ(X)

)
→ (C, data) : The commitment to a polynomial ϕ(X) =

∑ℓ−1
i=0 aiX

i

is denoted by [ϕ(X)], and is computed as [ϕ(X)] =
∏ℓ

i=0(pp[i])ai . The commitment
algorithm outputs C = [ϕ(X)] and data = ϕ(X).

Openpp(m, i, data) → π : outputs the opening proof πi that ϕ(i) = m, calculated as the
commitment to the quotient polynomial (ϕ(X)− ϕ(i))/(X − i).

Verify(C, m, i, π) accepts if the pairing check e (C/gm, g) = e
(
π, pp[1]/gi

)
holds.

We refer to [19] for the security analysis of this scheme.

2.4 Merkle Trees
Merkle Tree is a vector commitment using a collision-resistant hash function. In a Merkle tree,
hashes of the committed messages constitute the leaves of a c-ary tree of height h = logc(N),
where each inner node is found by hashing its children. The depth of the root is set to be 0
and the depth of the leaves is ⌈logc(N)⌉. The commitment function outputs the Merkle root
as the commitment C and the Merkle tree as data. The opening proof for a message mx at
some index x is the sequence of h(c−1) hashes consisting of the siblings of the inner nodes on
the path from the root to the hash of the message mx. We hereafter consider binary Merkle
trees (c = 2) and assume N = ch = 2h unless stated otherwise. Let ub0,b1,..,bi−1 , bj ∈ {0, 1},

AFT 2023



29:8 Vector Commitments with Efficient Updates

j ∈ [i], denote an inner node at depth i− 1 that is reached from the root by choosing the left
child at depth j if bj = 0 and the right child at depth j if bj = 1 (b0 = ⊥ and u⊥ is the root).
By definition, for a message mx at index x, H(mx) = u⊥,bin(x).

2.5 Verkle Trees
A Verkle tree [11, 16] is similar to a Merkle tree except that each inner node is calculated as the
hash of the KZG polynomial commitment to its children. Let bj ∈ [c], j = 1, .. , h, denote the
indices of the inner nodes on the path from the root to a leaf at index x, binc(x) = (b1, .. , bh),
relative to their siblings. Define fb0,..,bj

, j ∈ [h], as the polynomials determined by the
children of the inner nodes on the path from the root to the leaf, where fb0 = f⊥ is the
polynomial determined by the children of the root. Let Cb0,..,bj = [fb0,..,bj ], j ∈ [h], denote
the KZG commitments to these polynomials. By definition, ub0,..,bj

= H(Cb0,..,bj
), and the

value of the polynomial fb0,..,bj at index bj+1 is ub0,..,bj+1 for each j ∈ [h]. Here, ub0 = H(Cb0)
is the root of the tree, and ub0,..,bh

equals the hash H(mx) of the message at index x. For
consistency, we define Cb0,..,bh

as mx. For example, given h = 3 and c = 4, the inner nodes
from the root to the message m14 have the indices b0 = 0, b1 = 3 and b2 = 2, and they are
committed by the polynomials f⊥, f⊥,0 and f⊥,0,3 respectively.

The commitment function Commitpp(m0, .. , mN−1) outputs the root ub0 as the commit-
ment C and the Verkle tree itself as data.

The Verkle opening proof for the message mx, bin(x) = (b1, .. , bh), consists of two
parts: (i) the KZG commitments (Cb0,b1 , .. , Cb0,..,bh−1) on the path from the root to the
message, and (ii) a Verkle multiproof. The goal of the Verkle multiproof is to show that the
following evaluations hold for the inner nodes from the root to the message: fb0,..,bj

(bj+1) =
ub0,..,bj+1 = H(Cb0,..,bj+1), j ∈ [h]. It has two components: (i) the commitment [g(X)] and
(ii) the opening proof π′ for the polynomial h(X)− g(X) at the point t = H(r, [g(X)]), where

g(X) =
h−1∑
j=0

rj fb0,..,bj
(X)− ub0,..,bj+1

X − bj+1
, h(X) =

h−1∑
j=0

rj fb0,..,bj
(X)

t− bj+1
,

and r = H(Cb0 , .., Cb0,..,bh−1 , ub0,b1 , .., ub0,..,bh
, b1, .., bh). Thus, Openpp(m, i, data) outputs

((Cb0,b1 , .. , Cb0,..,bh−1), ([g(X)], π′)).
To verify a Verkle proof π = ((Cb0,b1 , .. , Cb0,..,bh

), (D, π′)), algorithm Verifypp(C, m, x, π)
first computes r and t using ub0,..,bj

= H(Cb0,..,bj
), j ∈ [h], and ub0,..,bh

= H(m). Then,
given the indices bin(x) = (b1, .. , bh) and the commitments (Cb0,b1 , .. , Cb0,..,bh

), it calculates

y =
h−1∑
j=0

rj Cb0,..,bj

t− bj+1
E =

h−1∑
j=0

rj

t− bj+1
Cb0,..,bj

.

Finally, it returns true if the pairing check e(E −D − [g(X)], [1]) = e(π′, [X − t]) is satisfied.
As the degree c of a Verkle tree increases, size of the opening proofs and the runtime of

the verification function decreases in proportion to the height h = logc N of the tree. This
enables Verkle trees to achieve a short opening proof size for large number of messages (as in
the case of the Ethereum state trie) by adopting a large degree (e.g., c = 256). In comparison,
each Merkle proof consists of (c− 1) logc N inner nodes, which grows linearly as c increases.

3 Formalizing the Dichotomy of VCs

We first analyze the trade-off between the number of operations required by proof updates
and the size of the update information U by inspecting different types of dynamic VCs.



E. N. Tas and D. Boneh 29:9

Recall that the number of updated messages is k ≤ N .

3.1 Updating KZG Commitments and Opening Proofs
In the subsequent sections, we assume that each user has access to a dictionary of KZG
commitments to the Lagrange basis polynomials Li(X), i ∈ Fp, and for each polynomial, its
opening proofs at each point j ∈ Fp, j < N . With the help of this table, one can instantiate
a KZG based VC to the messages (mi)i∈[N ], by treating them as the values of the degree N

polynomial ϕ(X) at inputs i ∈ Fp, i < N . We next analyze the complexity of the update
information and the proof updates in this VC. The update and proof update algorithms are
described in [35, Appendix F].

3.1.1 Update Information
Suppose the vector (i, mi)i∈[N ] is updated at some index i such that m′

i ←− mi + δ for some
δ ∈ Fp. Then, the polynomial ϕ(X) representing the vector is replaced by ϕ′(X) such that
ϕ′(X) = ϕ(X) if X ̸= i, and ϕ′(i) = ϕ(i) + δ at X = i. Thus, the new KZG commitment C ′

to ϕ′(X) is constructed from the commitment C to ϕ(X) as follows:

C ′ = [ϕ′(X)] = [ϕ(X) + δLi(X)] = [ϕ(X)][Li(X)]δ = C · [Li(X)]δ = C · [Li(X)]m
′
i−mi .

If the vector is modified at k different indices i1, ..., ik from message mij
to m′

ij
, j ∈ [k], then

the new commitment C ′ = [ϕ′(X)] becomesϕ(X) +
k∑

j=1
(m′

ij
−mij

)Lxij
(X)

 = [ϕ(X)]
k∏

j=1
[Lij

(X)](m′
ij

−mij
)

= C
k∏

j=1
[Lij

(X)](m′
ij

−mij
)
.

Thus, the commitment can updated given only the old and the new messages at the updated
indices, besides the table.

3.1.2 Proof Update
Let πx denote the opening proof of a polynomial ϕ(X) at a point (x, mx). When k messages
are updated, the new opening proof π′

x can be found as a function of the old proof πx and
the opening proofs πij ,x of the Lagrange basis polynomials Lij

(X), j ∈ [k], at the index x

(m′
x = mx +

∑k
j=1(m′

ij
−mij ) · 1x=ij is the new value of mx after the k updates). Namely,

π′
x is[

ϕ′(X)−mx −
∑k

j=1 δj · 1x=ij

X − x

]
= πx

k∏
j=1

[
Lij

(X)− Lij
(x)

X − x

]m′
ij

−mij

= πx

k∏
j=1

π
m′

ij
−mij

ij ,x

Thus, the proof can updated given only the old and the new messages at the updated indices,
besides the table. The update information is set to be the empty set, i.e., U = ∅.

3.1.3 Complexity
The size of the update information is constant, i.e., Θ̃(1). Each user can update its proof after
k accesses to the dictionary, and in the worst case, Θ(k log |M|) = Θ̃(k) group operations as
log (m′

i −mi) ≤ log |M| for all i ∈ [N ].

AFT 2023



29:10 Vector Commitments with Efficient Updates

3.2 Updating Merkle Trees and Opening Proofs
We next consider a Merkle tree and analyze the complexity of the update information size
and the runtime for proof updates. A simple update scheme would be recalculating the new
Merkle tree given all of the old messages or the old inner nodes of the Merkle tree, and
the message updates. However, this implies a large complexity for the runtime of the proof
update algorithm that scales as Ω(k) when users keep track of the inner nodes, and as Ω(N)
when the users recalculate the tree from scratch at each batch of updates. Moreover, in many
applications, the users do not have access to any messages or inner nodes besides those that
are part of the Merkle proof held by the user. Hence, in the following sections, we describe
update and proof update algorithms that reduce the runtime complexity of the proof updates
at the expanse of larger update information (cf. the full version of the paper [35, Appendix
F]).

3.2.1 Update Information
Suppose the vector (i, mi)i∈[N ] is updated at some index x, (b1, .. , bh) = bin(x), to m′

x. Then,
the root C = ub0 and the inner nodes (ub0,b1 , .. , ub0,b1,..,bh

), (b1, .. , bh) = bin(i), must be
updated to reflect the change at that index. Given the old inner nodes, the new values for
the root and these inner nodes, denoted by C ′ = u′

b0
and (u′

b0,b1
, .. , u′

b0,b1,..,bh
), are calculated

recursively as follows:

u′
b0,b1,..,bh

←− H(m′
x),

u′
b0,b1,..,bj

←−

{
H(u′

b0,b1,..,bj ,0, ub0,b1,..,bj ,1)if bj+1 = 0, j < h

H(ub0,b1,..,bj ,0, u′
b0,b1,..,bj ,1)if bj+1 = 1, j < h

When the messages are modified at k different points ij , j ∈ [k], the calculation above is
repeated k times for each update.

As the updated inner nodes are parts of the Merkle proofs, the update information consists
of the new values at the inner nodes listed from the smallest to the largest depth in the canon-
ical left to right order. For instance, U = ((⊥, u′

⊥), (⊥0, u′
0), (⊥1, u′

1), (⊥00, u′
00), (⊥10, u′

10), ..)
implies that the root u⊥ and the inner nodes u⊥0, u⊥1, u⊥00 and u⊥10 were updated after k

messages were modified at the leaves of the Merkle tree. We reference the updated inner
nodes using their indices (e.g., U [b0, b1 .. bj ] = v, when (b1 .. bj , v) ∈ U).

3.2.2 Proof Update
The Merkle proof πx for a message at index x, (b1, .. , bh) = bin(x), is the sequence
(ub1

, ub1,b2
, .. , ub1,b2,..,bh

). When k messages are updated, some of the inner nodes within the
proof might have changed. A user holding the Merkle proof for index x can find the new
values of these inner nodes by querying the update information with their indices.

3.2.3 Complexity
Upon receiving the update information U , each user can update its proof in Θ(log2 (N) +
|H| log (N)) = Θ̃(1) time by running a binary search algorithm to find the updated inner
nodes within U that are part of its Merkle proof, and reading the new values at these nodes.
Since modifying each new message results in h = log (N) updates at the inner nodes and some
of the updates overlap, |U | = Θ(k log (N/k)(log (N) + |H|)) = Θ̃(k)|H|, as each updated
inner node is represented by its index of size Θ(log (N)) and its new value of size |H| in U .



E. N. Tas and D. Boneh 29:11

3.3 Dichotomy of VCs
In the case of KZG commitments, |U | = Θ̃(1), and there is no information overhead on
top of the message updates. For Merkle trees with an efficient proof update algorithm,
|U | = Θ̃(k)|H|, thus there is an extra term scaling in Θ̃(k)|H| = Θ̃(k)λ, since |H| = Ω(λ)
for collision-resistant hash functions. In contrast, for KZG commitments, each user has to
do Θ̃(k) group operations to update its opening proof; whereas in Merkle trees, each user
can update its proof in Θ̃(1) time, which does not depend on k. Hence, KZG commitments
outperform Merkle trees in terms of the update information size, whereas Merkle trees
outperform KZG commitments in terms of the time complexity of proof updates. Table 1
generalizes this observation to a dichotomy between algebraic VC schemes and tree-based ones
favoring shorter runtimes for proof updates. The algebraic and tree-based ones outperform
each other in terms of the update information size and runtime complexity respectively.

4 Vector Commitments with Sublinear Update

We would like to resolve the separation in Table 1 and obtain a vector commitment, where
both the size of the update information and the complexity of proof updates have a sublinear
dependence on k. In particular, |U | = Θ̃(g1(k)λ) in the worst case, and the proof update
algorithm requires at most Θ̃(g2(k)) operations, where both g1(k) and g2(k) are o(k). We
say that such a VC supports sublinear update.

In this section, we describe a family of VCs with sublinear update, parameterized by the
values ν ∈ (0, 1) and characterized by the functions (g1, g2) = (kν , k1−ν).

4.1 Homomorphic Merkle Trees
We first introduce homomorphic Merkle trees where messages placed in the leaves take values
in a setM. We will use two collision-resistant hash functions f̃ : D×D → R and f : M→R,
where both M and D are vector spaces over some field F, and R is an arbitrary finite set.
We will also need an injective mapping g : R → D, which need not be efficiently computable.
We use g−1 : D → R to denote the inverse of g, meaning that g−1(g(x)) = x for all x ∈ R.
We require that g−1 be efficiently computable.

Now, for j ∈ [h], where h is the height of the tree, every node ub0,..,bj
∈ D of the

homomorphic Merkle tree is characterized by the following expressions:

a leaf node: g−1(ub0,bin(i)) = f(mi)
an internal node: g−1(ub0,..,bj ) = f̃(ub0,..,bj ,0, ub0,..,bj ,1) for j < h

The homomorphic property of the Merkle tree refers to the fact that there are efficiently
computable functions

hi,j : D → D for i ∈ [N ] and j ∈ [h],

such that every inner node ub0,..,bj
∈ D can be expressed as

ub0 =
∑

i∈[N ]

hi,0(mi)

ub0,..,bj =
∑

i : bin(i)[0:j−1]=(b1,..,bj)

hi,j(mi).

AFT 2023



29:12 Vector Commitments with Efficient Updates

We refer to the function hi,j as a partial digest function and refer to hi,j(mi) as the partial
digest of mi. In a homomorphic Merkle tree, every internal node is the sum of the partial
digests of the leaves under that node. We will show in Section 4.3 that each function hi,j can
be expressed as an iterated composition of the functions f and f̃ . Evaluating hi,j requires
evaluating the functions f and f̃ exactly h− j times.

Opening proof for a message consists of both children of the internal nodes on the path
from the message to the root (as opposed to Merkle opening proofs that contain only the
siblings of the internal nodes on the path). For instance, the opening proof for the message
mi at leaf index i, with bin(i) = (b1, .. , bh), is (i, (ub0,..,bj ,0, ub0,..,bj ,1)j=0,..,h−1). Opening
proofs are verified using the functions f and f̃ (not by using the functions hi,j). To verify
an opening proof (i, (ub0,..,bj ,0, ub0,..,bj ,1)j=0,..,h−1) for a message mi with respect to the root
ub0 , the verifier checks if the following equalities hold:

for the leaf: g−1(ub0,bin(i)) = f(mi)
for the internal nodes: g−1(ub0,..,bj ) = f̃(ub0,..,bj ,0, ub0,..,bj ,1) for j = h− 1, .. , 0.

If so, it accepts the proof, and otherwise it outputs reject.
As an example, consider a homomorphic Merkle tree that commits to four messsages

m0, m1, m2, m3. Then, its root u⊥ and inner nodes u⊥,0, u⊥,1, u⊥,0,0, u⊥,0,1, u⊥,1,0, u⊥,1,1
can be calculated as follows:

u⊥ = h0,0(m0) + h1,0(m1) + h2,0(m2) + h3,0(m3) ; u⊥,0,0 = h0,2(m0)
u⊥,0 = h0,1(m0) + h1,1(m1) ; u⊥,0,1 = h1,2(m1)
u⊥,1 = h2,1(m2) + h3,1(m3) ; u⊥,1,0 = h2,2(m2)

u⊥,1,1 = h3,2(m3)

The opening proof for m3 is given by (3, ((u⊥,0, u⊥,1), (u⊥,1,0, u⊥,1,1))), and verified by
checking the following equations:

for u⊥,1,1: g−1(u⊥,1,1) = f(mi)
for u⊥,1: g−1(u⊥,1) = f̃(u⊥,1,0, u⊥,1,1)
for u⊥: g−1(u⊥) = f̃(u⊥,0, u⊥,1)

It now follows that when a message mi is updated to m′
i, each inner node on the path

from the leaf to the root can be updated from ub0,..,bj to u′
b0,..,bj

using the functions hi,j as
follows:

u′
b0,..,bj

= hi,j(m′
i) +

∑
x̸=i :

bin(x)[0:j−1]=(b1,..,bj)

hx,j(mx) = ub0,..,bj
+ hi,j(m′

i)− hi,j(mi)

When the partial digest functions are linear in their input, the expression hi,j(m′
i)− hi,j(mi)

can be written as hi,j(m′
i)− hi,j(mi) = sign(m′

i −mi)hi,j(|m′
i −mi|). This lets us calculate

the updated internal node using only the knowledge of the message diff m′
i − mi. We

provide examples of homomorphic Merkle tree constructions in Section 4.3 with linear partial
digest functions hi,j . Homomorphic Merkle proofs in these constructions consist of the two
siblings of the inner nodes on the path from the proven message to the root and the vector
commitment itself is given by g−1(b⊥) (Section 4.3).

Unlike in Section 3.2, homomorphic Merkle trees enable calculating the new inner nodes
after message updates using only the new and the old updated messages, in particular using
only their difference. Hence, we can construct a tree that achieves the same complexity for



E. N. Tas and D. Boneh 29:13

the update information size as algebraic VCs, albeit at the expanse of the proof update
complexity, without requiring the users to keep track of the old messages or to calculate the tree
from scratch given all messages. This is in contrast to Merkle trees based on SHA256. The
update and proof update algorithms of such a homomorphic Merkle tree with no structured
update information and the same asymptotic complexity as algebraic VCs is described in the
full version of the paper [35, Appendix B]. Since the homomorphic Merkle trees can achieve
both extremes in terms of update information size and update runtime (Table 1), with a
smart structuring of the update information, they can support sublinear update. We show
how in the next subsection.

4.2 Structuring the Update Information

Algorithm 1 Algorithms for a homomorphic Merkle tree. Each user knows the total number of
leaves N . The recursive algorithm UpdateNode, parameterized by ν ∈ [0, 1], takes an index as
input, and checks if the new value of the node at that index is to be published as part of the update
information U . If so, it appends the new value to U , and recursively calls itself on the children of the
node. Not all of U and (i, m′

i −mi)i∈[N ] are passed to the proof update algorithm and its relevant
parts are read selectively to keep the runtime at a minimum.

1: algorithm Update(C, (i, m′
i −mi)i∈[N ], T )

2: U ← Empty()
3: algorithm UpdateNode(idx)
4: b0, .. , bd ← idx
5: S ← {j ∈ [k] : 1bin(ij )[0:d]=(b1,..,bd)}
6: if |S| > k1−ν

7: T [b0, .. , bd]← T [b0, .. , bd] +
∑

j∈S sign(m′
ij
−mij )hij ,d(|m′

ij
−mij |)

8: U [b0, b1, .. , bd]← T [b0, b1, .. , bd]
9: UpdateNode((b0, .. , bd, 0))

10: UpdateNode((b0, .. , bd, 1))
11: end if
12: end algorithm
13: UpdateNode((b0))
14: C′ ← T [b0]
15: return (C′, U, T )
16: end algorithm
17: algorithm ProofUpdate(C, πx, m′

x, x, U)
18: π′

x ← {}
19: (b1, .. , bh)← bin(x)
20: for d = h, .. , 1
21: if (b0, b1 .. bd) ∈ U

22: π′
x[b0, b1 .. bd]← U [b0, b1 .. bd]

23: else
24: S ← {j ∈ [k] : 1bin(ij )[0:d]=(b1,..,bd)}
25: π′

x[b0, .. , bd]← πx[b0, .. , bd] +
∑

j∈S sign(m′
ij
−mij )hij ,d(|m′

ij
−mij |)

26: end if
27: end for
28: return π′

x

29: end algorithm

We now describe the new update and proof update algorithms that enable homomorphic
Merkle trees to achieve sublinear complexity as a function of the parameter ν (Alg. 1).

4.2.1 Update Information
When the messages (ij , mij )j∈[k] change to (ij , m′

ij
)j∈[k], the update information U is gener-

ated recursively using the following algorithm:

AFT 2023



29:14 Vector Commitments with Efficient Updates

1. Start at the root ub0 . Terminate the recursion at an inner node if there are k1−ν or less
updated messages under that node.

2. If there are more than k1−ν updated messages with indices ≥ N/2, i.e., under the right
child, then publish the new right child of the root as part of U , and apply the same
algorithm to the subtree rooted at the right child, with ub0 and N replaced by ub0,1 and
N/2 respectively.

3. If there are more than k1−ν updated messages with indices less than N/2, i.e., under the
left child, then publish the new left child of the root as part of U , and apply the same
algorithm to the subtree rooted at the left child, with ub0 and N replaced by ub0,0 and
N/2 respectively.

The new values of the inner nodes included in U are again listed from the smallest to the
largest depth in the canonical left to right order.

4.2.2 Proof Update
When the messages (ij , mij

)j∈[k] are updated to (ij , m′
ij

)j∈[k], a user first retrieves the inner
nodes within its Merkle proof that are published as part of the update information. It
then calculates the non-published inner nodes within the proof using the partial digests.
For instance, consider a user with the proof (ub1

, ub1,b2
, .. , ub1,b2,..,bh

) for some message mx,
(b1, .. , bh) = bin(x). To update the proof, the user first checks the update information U and
replaces the inner nodes whose new values are provided by U : u′

b1,..,bd
←− U [b1 .. bd], d ∈ [h],

if U [b1 .. bd] ̸= ⊥. Otherwise, the user finds the new values at the nodes ub1,..,bd
, d ∈ [h],

using the functions hx,d:

u′
b1,..,bd−1,bd

= ub1,..,bd−1,bd
+

∑
j∈[k]

1bin(ij)[:d]=(b1,..,bd)

(
sign(m′

ij
−mij

)hij ,d(|m′
ij
−mij

|)
)

4.2.3 Complexity
Finally, we prove bounds on the complexity given by these algorithms:

▶ Theorem 3. Complexity of the update information size and the runtime of proof updates
are as follows: g1(k) = kν and g2(k) = k1−ν .

Proof. Let U denote the subset of the inner nodes published by the algorithm as part of U such
that no child of a node u ∈ U is published. Then, there must be over k1−ν updated messages
within the subtree rooted at each node u ∈ U . Since there are k updated messages, and by
definition of U , the subtrees rooted at the nodes in U do not intersect at any node, there must
be less than k/k1−ν = kν inner nodes in U . Since the total number of published inner nodes is
given by U and the nodes on the path from the root to each node u ∈ U , this number is bounded
by kν log (N) = Θ̃(kν). Hence, |U | = Θ(kν log (N)(log (N) + |H|)) = Θ̃(kν)|H| = Θ̃(kν)λ,
which implies g1(k) = kν .

For each inner node in its Merkle proof, the user can check if a new value for the node was
provided as part of U , and replace the node if that is the case, in at most Θ(log (N) + |H|)
time by running a binary search algorithm over U . On the other hand, if the new value
of a node in the proof is not given by U , the user can calculate the new value after at
most k1−ν log (N) function evaluations. This is because there can be at most k1−ν updated
messages within the subtree rooted at an inner node, whose new value was not published as
part of U . This makes the total time complexity of a proof update at most

Θ(log (N)(log (N) + |H|+ k1−ν log (N)Tf )) = Θ̃(k1−ν)Tf ,



E. N. Tas and D. Boneh 29:15

Figure 1 Homomorphic Merkle tree example. The new values of the inner nodes with solid blue
color are published as part of the updated information.

which implies g2(k) = k1−ν . ◀

To illustrate the proof above, consider the homomorphic Merkle tree in Figure 1 where k

messages are updated. Suppose there are k1−ν/2 updated messages among the first N/2kν

messages m0, .. , mN/2kν −1, another k1−ν/2 updated messages among the second N/2kν

messages mN/2kν , .. m2N/2kν −1 and so on. In this case, the algorithm identifies the inner
nodes within the subtree at the top of the tree (whose nodes are denoted in solid blue) and
publishes their new values as part of the update information. This is because there are k1−ν

updated messages under each inner node and leaf of this subtree, denoted by u′
i, i = 1, .. , kν ,

whereas under the children of these leaf nodes there are less than k1−ν updated messages.
Thus, each user can update its opening proof by downloading the new values of the top log kν

inner nodes within its proof from the update information. There are at most k1−ν/2 updated
messages under each of the remaining log N/kν nodes in the proof; hence, the user can find
their updated values in Θ(kν log N) time. Note that in this example, and in general when
the updated messages are distributed uniformly among the leaves, the size of the update
information becomes Θ(kν)λ rather than Θ(kν log N)λ.

4.3 Constructions for Homomorphic Merkle Trees
Homomorphic Merkle trees were proposed by [30, 29, 32]. They use lattice-based hash
functions, and their collision-resistance is proven by reduction to the hardness of the gap
version of the shortest vector problem (GAPSVPγ), which itself follows from the hardness of
the small integer solution problem. We next describe the construction introduced by [30],
which is similar to those proposed by later works [29, 32]. Its correctness and security follow
from [30, Theorem 4].

Let L(M) denote the lattice defined by the basis vectors M ⊂ Zk×m
q for appropriately

selected parameters k, m, q, where m = 2k log q. Consider vectors u ∈ {0, .. , t}k log q, where t

is a small integer. The (homomorphic) hash functions f : Zk log q → L(M) and f̃ : Zk log q ×
Zk log q → L(M) used by [30] are defined as f(x) = Mx and f̃(x, y) = MUx + MDy

respectively. Here, U and D are special matrices that double the dimension of the multiplied
vector and shift it up or down respectively. The remaining entries are set to zero. For
convenience, we define L = MU and R = MD.

Since the domain and range of the hash functions are different, to ensure the Merkle
tree’s homomorphism, authors define a special mapping g : Zk

q → Zk log q
q from the range of

AFT 2023



29:16 Vector Commitments with Efficient Updates

the hash functions to their domain. Here, g(.) takes a vector v ∈ Zq as input and outputs a
radix-2 representation for v. However, as there can be many radix-2 representations of a
vector, to help choose a representation that yields itself to homomorphism, authors prove the
following result: for any x1, x2, .. , xt ∈ Zq, there exists a short radix-2 representation g(.)
such that g(x1 + x2 + .. + xt mod q) = b(x1) + b(x2) + .. + b(xt) mod q ∈ {0, .. , t}k log q,
where the function b : Zk

q → {0, 1}k log q returns the binary representation of the input
vector. This equality enables the mapping g(.) to preserve the hash functions’ original
homomorphic property. Then, given an inner node ub0,..,bj as input, the homomorphic
Merkle tree uses the short radix-2 representation g(.) that enforces the following equality:
ub0,..,bj

= g(Lub0,..,bj ,0 + Rub0,..,bj ,1 mod q) = b(Lub0,..,bj ,0) + b(Rub0,..,bj ,1) mod q. Finally,
this enables calculating the value of each inner node as a sum of the partial digests hi,j(.) of
the messages mi under the node ub0,..,bj

(i.e., (mi)bin(i)[0:j]=(b0,..,bj)) as outlined in Section 4.1,
i.e.,

ub0,..,bj
=

∑
i : bin(i)[0:j−1]=(b1,..,bj)

hi,j(mi),

where hi,j(.) is expressed in terms of the bits bin(i)[j:h− 1] = (b′
1, .. , b′

h−j):

hi,j(mi) = fb′
1
(fb′

2
(.. fb′

h−j
(b(f(mi)))))

Here, f0(.) and f1(.) are defined as b(L.) and b(R.) respectively. Since b(.), binary expansion,
is a linear operation and matrix multiplication is linear, hi,j(.) is linear in its input.

4.4 A Concrete Evaluation
Suppose the Ethereum state is persisted using the homomorphic Merkle tree construction
of [29, 32] with the trade-off parameter ν = 1/2. We next estimate the size of the update
information and the proof update time after observing an Ethereum block with ERC20 token
transfers. Suppose the block has the target size of 15 million gas [4], and each token transfer
updates the balance of two distinct accounts stored at separate leaves of the homomorphic
Merkle tree. Since each ERC20 token transfer consumes approximately 65, 000 gas, there are
∼ 230 such transactions in the block, and the block updates k = 460 accounts.

Suppose the homomorphic Merkle tree has degree 2 and commits to N = 2563 = 224

accounts. For comparison, 2563 ≈ 16.7 million, matching in magnitude the total number of
cumulative unique Ethereum addresses, which is 200 million as of 2023 [3]. Each opening
proof consists of 2 log (N) = 48 inner nodes.

When 460 accounts are updated, in the worst case, the update information consists of
⌈
√

k⌉ log (N) = 528 inner nodes. To evaluate its size, we use the parameters calculated by
[32] for secure instantiations of the homomorphic Merkle trees from both their paper and
[29]. Since the parameters for [29] result in a large inner node size on the order of hundreds
of MBs, our evaluation takes the size of an inner node as that of [32], namely |H| = 0.21
MB (which is equal to the key size in [32]). This implies an update information size of
|U | = 110.88 MBytes and an opening proof size of |π| = 10.08 MBytes.

As for update time, in the worst case, each user has to calculate the partial digests
of 44 updated messages at each height of the homomorphic Merkle tree, i.e., the effect of
these updated messages on each inner node of its opening proof. Calculating the partial
digest of a message at height h measured from the leaves requires h evaluations of the hash
function. This implies a proof update complexity of 2

∑log N−1
i=0 i min(⌈

√
k⌉, 2i) = 11, 900

hash evaluations. To find numerical upper bounds for the update time, we use the hash



E. N. Tas and D. Boneh 29:17

Table 2 For different trade-off points between the update information size and proof update
complexity, parameterized by ν, the table shows the number of published inner nodes ⌈kν⌉ log (N),
the total update information size ⌈kν⌉ log (N)|H|, the number of hash function evaluations per
proof update 2

∑log N−1
i=0 i min(⌈k1−ν⌉, 2i) and the proof update time 2

∑log N−1
i=0 i min(⌈k1−ν⌉, 2i)Tf .

There are N = 224 accounts in total, k = 460 updates at the accounts, the inner nodes have size
|H| = 0.21 Mbytes, and a hash function evaluation takes Tf = 2.74 ms.

ν # inner nodes |U | (MBytes) # hash evaluations Time (s)

0 1 0.21 227, 972 624.6
1/4 120 25.20 52, 284 143.3
1/2 528 110.88 11, 900 32.6
3/4 2400 504.00 2750 7.54
1 11040 2318.40 552 1.51

function evaluation times, namely Tf = 26.84 and Tf = 2.74 ms, published by [32] for both
the hash function in [29] and their new and more performant function (these times are for
commodity hardware; cf. [32] for the details). This gives an upper bound of 319.4 and 32.6
seconds for the update time using the hash functions in [29] and [32] respectively.

Based on the benchmarks for the practical hash function introduced in [32], Table 2
compares the number of published inner nodes ⌈kν⌉ log (N), the total update inform-
ation size ⌈kν⌉ log (N)|H | (assuming that the size of each inner node is |H| upper
bounded by 0.21 MBytes), the number of hash function evaluations per proof update
2

∑log N−1
i=0 i min(⌈k1−ν⌉, 2i) and the proof update time 2

∑log N−1
i=0 i min(⌈k1−ν⌉, 2i)Tf (as-

suming that each hash evaluation takes less than Tf = 2.74 ms) at ν = 0, 1/4, 1/2, 3/4, 1.
The degree of the homomorphic Merkle tree and the opening proof size are fixed at 2 and 48
inner nodes (|π| = 10.08) respectively.

5 Updating Verkle Trees and Opening Proofs

We now describe the update and proof update functions for Verkle trees (see Algs. 2 and
3 in the full version of the paper [35, Section 5] for update and proof update algorithms
respectively). Since Verkle trees were proposed to support stateless clients, we describe
an update scheme that minimizes the runtime complexity of proof updates and does not
require the users to download the updated messages or have access to old inner nodes. As
Verkle trees do not support sublinear update, we numerically estimate the size of the update
information and the complexity of proof updates in Section 5.5.

5.1 Update Information
Suppose the vector (i, mi)i∈[N ] is modified at some index x, (b1, .. , bh) = bin(x) to be
m′

x. Since each inner node is the hash of a KZG commitment, the new inner nodes
u′

b0,..,bj
= H(C ′

b0,..,bj
), j ∈ [h], can be found as a function of the old commitments at the

nodes and the powers of the Lagrange basis polynomials as described in Section 3.1:

C ′
b0,..,bh

←− m′
x, C ′

b0,..,bj
←− Cb0,..,bj

[Lbj+1 ](u′
b0,..,bj+1

−ub0,..,bj+1 )

When k messages are updated, the above calculation is repeated k times for each update.
Update information U consists of the new values of the KZG commitments on the path

from the updated messages to the Verkle root akin to the Merkle trees, ordered in the
canonical top-to-bottom and left-to-right order.

AFT 2023



29:18 Vector Commitments with Efficient Updates

5.2 Verkle Proofs
Let πx denote the Verkle proof of some message mx at index x, (b1, .. , bh) = bin(x): πx =
((Cb0,b1 , .. , Cb0,..,bh−1), ([g(X)], π)). We define πf

x as the opening proof for index x within
polynomial f . We observe that the commitment [g(X)] and the proof π can be expressed as
functions of the opening proofs of the inner nodes ub0,b1 , .. , ub0,..,bh

at the indices b1, .. , bh

within the polynomials fb0 , .. , fb0,..,bh−1 , respectively. Namely, [g(X)] ish−1∑
j=0

rj fb0,..,bj
(X)− ub0,..,bj+1

X − bj+1

 =
h−1∏
j=0

[
fb0,..,bj

(X)− ub0,..,bj+1

X − bj+1

]rj

=
h−1∏
j=0

(
π

fb0,..,bj

bj+1

)rj

Similarly, the opening proof π = π
(h−g)
t for index t within the polynomial h(X)− g(X) can

be expressed as follows (for details, see the full version of the paper [35, Appendix E]):

[
h(X)− g(X)− (h(t)− g(t))

X − t

]
=

h−1∏
j=0

[
fb0,..,bj (X)− ub0,..,bj+1

X − bj+1

] rj

t−bj+1

=
h−1∏
j=0

(
π

fb0,..,bj

bj+1

) rj

t−bj+1

We assume that each user holding the Verkle proof πx for some index x, (b1, .. , bh) =
bin(x), also holds the opening proofs π

fb0,..,bj

bj+1
, j ∈ [h], in memory. As we will see in the next

section, the user also holds the KZG commitments at the children of the inner nodes on the
path from the root to the message mx, i.e. Cb0,..,bj ,i for all j ∈ [h] and i ∈ [c] in memory.
These opening proofs and KZG commitments are not broadcast as part of any proof; however,
they are needed for the user to locally update its Verkle proof after message updates.

5.3 Proof Update
When the messages (ij , mij

)j∈[k] are updated to (ij , m′
ij

)j∈[k], to calculate the new Verkle
proof π′

x, the user must obtain the new commitments C ′
b0

, .. , C ′
b0,..,bh−1

on the path from
the root to message mx, the new commitment [g′(X)] and the new opening proof π′ for
the polynomial h′(X) − g′(X) at index t′ = H(r′, [g′(X)]). Message updates change the
commitments at the inner nodes, which in turn results in new polynomials fb0,..,bj , j ∈ [h].
Suppose each polynomial fb0,..,bj

, j ∈ [h], is updated so that

f ′
b0,..,bj

(X) = fb0,..,bj (X) +
c−1∑
i=0

(f ′
b0,..,bj

(i)− fb0,..,bj (i))Li(X),

where, by definition, f ′
b0,..,bj

(i) − fb0,..,bj (i) = u′
b0,..,bj ,i − ub0,..,bj ,i = H(C ′

b0,..,bj ,i) −
H(Cb0,..,bj ,i). Then, given the new and the old commitments (Cb0,..,bj ,i, C ′

b0,..,bj ,i) for i ∈ [c]
and j ∈ [h], the table of Lagrange basis polynomials, and using the technique in Section 3.1,
the new opening proofs π̃

fb0,..,bj

bj+1
after the message updates can be computed as follows for

j ∈ [h]:

π̃
fb0,..,bj

bj+1
= π

fb0,..,bj

bj+1

c−1∏
i=0

[
Li(X)− Li(bj+1)

X − bj+1

](H(C′
b0,..,bj ,i)−H(Cb0,..,bj ,i))

,



E. N. Tas and D. Boneh 29:19

where
[

Li(X)−Li(bj+1)
X−bj+1

]
is the opening proof of the Lagrange basis polynomial Li(X) at index

bj+1. Once the new opening proofs are found, the new commitment [g′(X)] and the new
proof π′ become

[g′(X)] =
h−1∏
j=0

(
π̃

fb0,..,bj

bj+1

)r′j

, π′ =
h−1∏
j=0

(
π̃

fb0,..,bj

bj+1

) r′j

t′−bj+1

where r′ = H(C ′
b0,b1

, .., C ′
b0,..,bh−1

, u′
b0,b1

, .., u′
b0,..,bh

, b1, .., bh) and t′ = H(r′, [g′(X)]). Note
that both r′ and t′ can be calculated by the user given the new KZG commitments C ′

b0,..,bj ,i

for all i ∈ [c] and j ∈ [h].
Finally, to retrieve the new KZG commitments C ′

b0,..,bj ,i for all i ∈ [c] and j ∈ [h], the user
inspects the commitments published as part of the update information U : C ′

b0,b1,..,bj−1,i ←−
U [b0, b1, .. , bj−1, i] if U [b0, b1, .. , bj−1, i] ̸= ⊥ and C ′

b0,b1,..,bj−1,i ←− Cb0,b1,..,bj−1,i otherwise, for
all i ∈ [c] and j ∈ [h].

In Verkle trees, the user cannot calculate the effect of an updated message on an arbitrary
inner node without the knowledge of the inner nodes on the path from the message to the
target node. For instance, suppose U [b0, b1, .. , bj−1, i] = ⊥ for some i ∈ [c] and j ∈ [h], and
the user wants to calculate the effect of an update from mx to m′

x on C ′
b0,..,bj−1,i,b̃j+1,..,b̃h

,
bin(x) = (b1, .. , bj−1, i, b̃j+1, .. , b̃h) and b̃j = i. Then, for each ℓ ∈ {j, .. , h− 1}, the user have
to find

C ′
b0,..,b̃j ,..,b̃h

←− m′
x

C ′
b0,..,b̃j ,..,b̃ℓ

←− Cb0,..,b̃j ,..,b̃ℓ
[Lb̃ℓ+1

](u′
b0,..,b̃j ,..,b̃ℓ+1

−ub0,..,b̃j ,..,b̃ℓ+1
)
,

where C ′
b0,..,b̃j ,..,b̃ℓ

are the commitments on the path from the target commitment Cb0,b1,..,bj−1,i

to the message mx. Hence, the user has to know the original commitments on the path from
the message to the target commitment, i.e., keep track of inner nodes, which contradicts
with the idea of stateless clients. This shows the necessity of publishing all of the updated
inner nodes as part of the update information.

5.4 Complexity
Suppose each KZG commitment is of size |G| and each hash H(C) of a KZG commitment,
i.e. each inner node, has size |H|. Then, updating a single message results in one update
at each level of the Verkle tree and requires Θ(h|H|) group operations. Thus, when k

messages are updated, the new Verkle root can be found after Θ(kh|H|) group operations.
As U consists of the published KZG commitments at the inner nodes and their indices,
|U | = Θ(k logc (N)(log (N) + |G|)) = Θ̃(k)|G|, which implies g1(k) = k.

The user can replace each KZG commitment at the children of the inner nodes from
the root to its message in Θ(log (N) + |G|) time by running a binary search algorithm over
U . Since there are ch such commitments to be updated, i.e., Cb0,..,bj ,i, i ∈ [c] and j ∈ [h],
updating these commitments takes Θ(ch(log (N) + |G|)) = Θ̃(1) time.

Upon obtaining the new commitments C ′
b0,..,bj−1,i, i ∈ [c], j ∈ [h], with access to the

table of Lagrange basis polynomials, the user can update each opening proof πbj+1 (for the
function fb0,..,bj

), j ∈ [h], with Θ(c|H|) group operations. Since there are h such proofs,
updating them all requires Θ(ch|H |) group operations. Given the new proofs, computing the
new commitment [g′(X)] and proof π′ requires Θ(h|H|) group operations. This makes the
total complexity of updating a Verkle proof Θ(ch + 2h)|H |TG + Θ(ch(logc (N) + |G|)). For

AFT 2023



29:20 Vector Commitments with Efficient Updates

a constant c and h = logc (N), this implies a worst-case time complexity of Θ̃(1)|H|TG for
Verkle proof updates, i.e., g2(k) = 1.

5.5 A Concrete Evaluation
We now estimate the size of the update information and the number of group operations
to update an opening proof after observing an Ethereum block consisting of ERC20 token
transfers. As in Section 4.4, suppose the block has the target size of 15 million gas [4], and
each token transfer updates the balance of two distinct accounts stored at separate leaves of
the Verkle tree. Then, there are ∼ 230 such transactions in the block, and the block updates
k = 460 accounts. We assume that the Verkle tree has degree 256 (cf. [11]) and commits to
2563 accounts as in Section 4.4. Then, each proof consists of 2 KZG commitments, C⊥,b1

and C⊥,b1,b2 and a multiproof consisting of the commitment [g(X)] and proof π′. These
components are elements of the pairing-friendly elliptic curve BLS12_381 and consist of
|G| = 48 bytes [11]. This implies a proof size of (logc (N) + 1)|G| = 192 bytes (excluding the
message at the leaf and its hash value; adding those makes it 272 bytes).

When 460 accounts are updated, in the worst-case, the update information has to contain
k logc(N)(log(N) + |G|) = 460× 3× (24 + 48) Bytes, i.e., 99.4 kBytes. This is comparable
to the size of the Ethereum blocks, which are typically below 125 kBytes [2]. Hence, even
though the update information of Verkle trees is linear in k, it does not introduce a large
overhead beyond the block data. Note that the runtime of the proof updates are constant
and do not scale in the number of updated messages k, or the Ethereum block size.

On the other hand, in the worst case, an opening proof can be updated after c log (c)|H |+
2 logc (N)|H | group operations. Then, with |H| = 256, the number of bits output by SHA256,
as many as c logc (N)|H|+2 logc (N)|H | = (c+2) logc (N)|H | = 774×2256 ≈ 200, 000 elliptic
curve multiplications might have to be made. Following the benchmarks published in [1] for
the specified curve, these operations can take up to (c + 2) logc (N) 0.000665471 ns = 0.52
seconds on commodity hardware, given a runtime of 665471 nanoseconds per exponentiation
of a group element with a message hash value. This is again comparable to the 12 second
inter-arrival time of Ethereum blocks.

Table 3 compares the Verkle proof size |π| = (logc (N) + 1)|G|, update information size
|U | = k logc(N)(logc N + |G|), the upper bound (c + 2) logc N |H| on the number of group
operations needed for a single proof update and the estimated time it takes to do these
operations on a commodity hardware for different values of c, the Verkle tree degree, while
keeping the number of accounts and the updated accounts fixed at 224 and 460 respectively.
The table shows the trade-off between the Verkle proof and update information size on one
size and update complexity on the other.

Comparing Table 3 with Table 2 shows that the Verkle tree with any given degree c,
1 < c ≤ 256, significantly outperforms the existing homomorphic Merkle trees in Section 4.4
in terms of almost all of proof size, update information size and proof update time.

6 Lower Bound

Finally, we prove the optimality of our VC scheme with sublinear update by proving a lower
bound on the size of the update information given an upper bound on the complexity of proof
updates. The lower bound is shown for VCs that satisfy the following proof-binding property.
It formalizes the observation that for many dynamic VCs (e.g., Merkle trees [25], Verkle
trees [11], KZG commitments [19], RSA based VCs [8]) including homomorphic Merkle trees
(cf. the full version of the paper [35, Section 6]), the opening proof for a message at some
index can often act as a commitment to the vector of the remaining messages.



E. N. Tas and D. Boneh 29:21

Table 3 For different values of the tree degree c, the table shows the Verkle proof size which is
|π| = (logc (N) + 1)|G|; the update information size which is |U | = k logc (N)(log (N) + |G|); the
number of group operations for a single proof update which is (c + 2) logc (N)|H|; and the estimated
time for a single proof update. We use N = 224 accounts in total, k = 460 updates at the accounts,
a group element size of |G| = 48 bytes, and a hash size of |H| = 32 bytes.

c |π| (Bytes) |U | (kBytes) # Group Operations Time (s)

2 1200 794.9 24,576 0.064
4 628 397.4 18,432 0.048
16 336 198.7 27,648 0.072
64 240 132.5 67,584 0.18
256 192 99.4 198,144 0.52

▶ Definition 4. A VC scheme is said to be proof-binding if the following probability is
negligible in λ for all PPT adversaries A:

Pr

 Verifypp(C,mi∗ ,i∗,π)=1
∧Verifypp(C′,mi∗ ,i∗,π)=1 :

pp←−KeyGen(1λ,N);
π,mi∗ ,(m0,..,mi∗−1,mi∗+1,..,mN−1),

(m′
0,..,m′

i∗−1,m′
i∗+1,..,m′

N−1)←−A(pp);
(m0,..,mi∗−1,mi∗+1,..,mN−1)

̸=(m′
0,..,m′

i∗−1,m′
i∗+1,..,m′

N−1);
Commitpp(m0,..,mi∗−1,mi∗ ,mi∗+1,..,mN−1)=C;
Commitpp(m′

0,..,m′
i∗−1,mi∗ ,m′

i∗+1,..,m′
N−1)=C′


In the definition above, the opening proof while committing to the vector of remaining
messages, need not be of the same format as the original VC. For instance, for RSA
accummulators, the opening proof is itself an RSA accummulator, whereas for Merkle trees,
the opening proof is not a Merkle tree root, but contains a sequence of inner nodes and the
index of the opened message. Nevertheless, the proof and the message together act as a
commitment to the vector of remaining messages.

The proof-binding property is distinct from the position-binding (security) property of
VCs: whereaas position-binding states the difficulty of opening the VC to two different
messages at the same index, proof-binding implies the difficulty of creating two VCs with
different messages that open to the same message at some index i with the exact same proof.

We next state the main lower bound for proof-binding VCs.

▶ Theorem 5. Consider a dynamic and proof-binding VC such that for every PPT adversary
A, it holds that

Pr
[

Verifypp(C,m,i,πi)=1∧
Verifypp(C,m′,i,π′

i)=1 ∧ m̸=m′ : pp←−KeyGen(1λ,N)
(C,m,m′,πi,π′

i)←−A(pp)

]
≤ e−Ω(λ).

Then, for this VC, if g2(k) = O(k1−ν), then g1 = Ω(kν) for all ν ∈ (0, 1).

Proof of Theorem 5 is given in the full version of the paper [35, Section 6].
▶ Remark 6. Theorem 5 shows that the update information length scales as Θ̃(kνλ) when the
runtime complexity for proof updates is Θ̃(k1−ν) and the error probability for the security
of the VC is e−Ω(λ) for a PPT adversary. When the error probability is just stated to be
negligible in λ, then the same proof can be used to show that the update information length
must scale as Ω(kν polylog(λ)) for any polynomial function of log(λ).

References
1 benchmarks-bls-libs. URL: https://github.com/AlexiaChen/benchmarks-bls-libs.

AFT 2023

https://github.com/AlexiaChen/benchmarks-bls-libs


29:22 Vector Commitments with Efficient Updates

2 Ethereum average block size chart. URL: https://etherscan.io/chart/blocksize.
3 Ethereum cumulative unique addresses. URL: https://ycharts.com/indicators/ethereum_

cumulative_unique_addresses.
4 Gas and fees. URL: https://ethereum.org/en/developers/docs/gas/.
5 State trie. URL: https://ethereum.github.io/execution-specs/autoapi/ethereum/

frontier/trie/index.html.
6 Shashank Agrawal and Srinivasan Raghuraman. Kvac: Key-value commitments for blockchains

and beyond. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer Science, pages
839–869. Springer, 2020.

7 Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In EUROCRYPT, volume 765 of Lecture Notes in
Computer Science, pages 274–285. Springer, 1993.

8 Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to iops and stateless blockchains. In CRYPTO (1), volume 11692 of Lecture Notes
in Computer Science, pages 561–586. Springer, 2019.

9 Vitalik Buterin. The stateless client concept, 2017. URL: https://ethresear.ch/t/
the-stateless-client-concept/172.

10 Vitalik Buterin. A state expiry and statelessness roadmap, 2021. URL: https://notes.
ethereum.org/@vbuterin/verkle_and_state_expiry_proposal.

11 Vitalik Buterin. Verkle trees, 2021. URL: https://vitalik.ca/general/2021/06/18/verkle.
html.

12 Philippe Camacho and Alejandro Hevia. On the impossibility of batch update for cryptographic
accumulators. In LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages
178–188. Springer, 2010.

13 Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public Key
Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer, 2013.

14 Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with short proofs.
In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 433–450. Springer,
2008.

15 Miranda Christ and Joseph Bonneau. Limits on revocable proof systems, with applications
to stateless blockchains. IACR Cryptol. ePrint Arch., page 1478, 2022. Appeared in the
International Conference on Financial Cryptography and Data Security 2023.

16 Dankrad Feist. Pcs multiproofs using random evaluation, 2021. URL: https://dankradfeist.
de/ethereum/2021/06/18/pcs-multiproofs.html.

17 Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating
proofs for multiple vector commitments. In CCS, pages 2007–2023. ACM, 2020.

18 Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini. Compact accumulator using lattices. In
SPACE, volume 9354 of Lecture Notes in Computer Science, pages 347–358. Springer, 2015.

19 Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In ASIACRYPT, volume 6477 of Lecture Notes in
Computer Science, pages 177–194. Springer, 2010.

20 John Kuszmaul. Verkle trees, 2018. URL: https://math.mit.edu/research/highschool/
primes/materials/2018/Kuszmaul.pdf.

21 Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages
530–560. Springer, 2019.

22 Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for
lattice-based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages
1–31. Springer, 2016.

23 Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In ICALP,

https://etherscan.io/chart/blocksize
https://ycharts.com/indicators/ethereum_cumulative_unique_addresses
https://ycharts.com/indicators/ethereum_cumulative_unique_addresses
https://ethereum.org/en/developers/docs/gas/
https://ethereum.github.io/execution-specs/autoapi/ethereum/frontier/trie/index.html
https://ethereum.github.io/execution-specs/autoapi/ethereum/frontier/trie/index.html
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://vitalik.ca/general/2021/06/18/verkle.html
https://vitalik.ca/general/2021/06/18/verkle.html
https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html
https://dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf


E. N. Tas and D. Boneh 29:23

volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

24 Benoît Libert and Moti Yung. Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In TCC, volume 5978 of Lecture Notes in Computer Science,
pages 499–517. Springer, 2010.

25 Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO,
volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer, 1987.

26 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

27 Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, volume 3376
of Lecture Notes in Computer Science, pages 275–292. Springer, 2005.

28 Anca Nitulescu. Sok: Vector commitments. URL: https://www.di.ens.fr/~nitulesc/files/
vc-sok.pdf.

29 Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. Streaming authentic-
ated data structures. In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science,
pages 353–370. Springer, 2013.

30 Charalampos Papamanthou and Roberto Tamassia. Cryptography for efficiency: Authenticated
data structures based on lattices and parallel online memory checking. IACR Cryptol. ePrint
Arch., page 102, 2011.

31 Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional commitments from
lattices. In TCC (3), volume 13044 of Lecture Notes in Computer Science, pages 480–511.
Springer, 2021.

32 Yi Qian, Yupeng Zhang, Xi Chen, and Charalampos Papamanthou. Streaming authenticated
data structures: Abstraction and implementation. In CCSW, pages 129–139. ACM, 2014.

33 Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, and
Yupeng Zhang. Hyperproofs: Aggregating and maintaining proofs in vector commitments. In
USENIX Security Symposium, pages 3001–3018. USENIX Association, 2022.

34 Shravan Srinivasan, Ioanna Karantaidou, Foteini Baldimtsi, and Charalampos Papamanthou.
Batching, aggregation, and zero-knowledge proofs in bilinear accumulators. In CCS, pages
2719–2733. ACM, 2022.

35 Ertem Nusret Tas and Dan Boneh. Vector commitments with efficient updates.
arXiv:2307.04085, 2023. URL: https://arxiv.org/abs/2307.04085.

36 Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry
Khovratovich. Aggregatable subvector commitments for stateless cryptocurrencies. In SCN,
volume 12238 of Lecture Notes in Computer Science, pages 45–64. Springer, 2020.

37 Alin Tomescu, Yu Xia, and Zachary Newman. Authenticated dictionaries with cross-incremental
proof (dis)aggregation. IACR Cryptol. ePrint Arch., page 1239, 2020.

38 Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments
from lattices. IACR Cryptol. ePrint Arch., page 1515, 2022.

39 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014. URL:
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf.

40 Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew K. Miller. hbACSS:
How to Robustly Share Many Secrets. In NDSS. The Internet Society, 2022.

AFT 2023

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://arxiv.org/abs/2307.04085
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf




Time Is Money: Strategic Timing Games in
Proof-Of-Stake Protocols
Caspar Schwarz-Schilling # Ñ

Ethereum Foundation, Berlin, Germany

Fahad Saleh # Ñ

Wake Forest University, Winston Salem, NC, USA

Thomas Thiery # Ñ

Ethereum Foundation, Lyon, France

Jennifer Pan #

Jump Crypto, Chicago, IL, USA

Nihar Shah #

Jump Crypto, Chicago, IL, USA

Barnabé Monnot # Ñ

Ethereum Foundation, Berlin, Germany

Abstract
We propose a model suggesting that rational consensus participants may play timing games, and
strategically delay their block proposal to optimize MEV capture, while still ensuring the proposal’s
inclusion in the canonical chain. In this context, ensuring economic fairness among consensus
participants is critical to preserving decentralization. We contend that a model grounded in rational
consensus participation provides a more accurate portrayal of behavior in economically incentivized
systems such as blockchain protocols. We empirically investigate timing games on the Ethereum
network and demonstrate that while timing games are worth playing, they are not currently being
exploited by consensus participants. By quantifying the marginal value of time, we uncover strong
evidence pointing towards their future potential, despite the limited exploitation of MEV capture
observed at present.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design

Keywords and phrases blockchain, proof-of-stake, game theory, maximal extractable value

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.30

Acknowledgements The authors acknowledge helpful discussions and comments from Francesco
d’Amato and Anders Elowsson. We also appreciate the significant contributions of Mike Neuder in
obtaining the necessary data for this study.

1 Introduction

Consensus protocols are typically evaluated based on their ability to maintain liveness and
safety [11], referring to the regular addition of new transactions to the output ledger in a timely
manner, and to the security of confirmed transactions remaining in their positions within the
ledger. However, beyond liveness and safety, blockchain protocols require fairness of economic
outcomes amongst consensus participants to preserve decentralization. More specifically,
a protocol should be designed to maximize profitability of honest participation, defined
as adherence to the prescribed rules. Otherwise, a deviating participant may outcompete
their honest peers, leading to centralization of the validation set over time and security
implications for consensus itself.

© Caspar Schwarz-Schilling, Fahad Saleh, Thomas Thiery, Jennifer Pan, Nihar Shah, and Barnabé
Monnot;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:caspar.schwarz-schilling@ethereum.org
https://tinyurl.com/ethrig
https://orcid.org/0000-0003-0734-4722
mailto:saleh@wfu.edu
https://www.fahadsaleh.com/
https://orcid.org/0000-0003-1652-5189
mailto:thomas.thiery@ethereum.org
https://tinyurl.com/ethrig
https://orcid.org/0000-0003-4998-3100
mailto:jpan@jumptrading.com
mailto:nshah@jumptrading.com
mailto:barnabe.monnot@ethereum.org
https://tinyurl.com/ethrig
https://orcid.org/0000-0002-6940-974X
https://doi.org/10.4230/LIPIcs.AFT.2023.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 Strategic Timing Games in PoS Protocols

However, the advent of Maximal Extractable Value (MEV) frustrates such fairness goals.
MEV is defined as the value that consensus participants, in their duties as block proposers,
accrue by selectively including, excluding and ordering user transactions [14, 6]. This concept
has significant implications for the security of consensus protocols. For systems predominantly
based on transaction fee rewards, increased variance in miner rewards may result in consensus
instability [12]. Similarly, it was argued that a rational actor issuing a whale transaction
with an abnormally large transaction fee can convince peers to fork the current chain, further
destabilizing consensus [22]. As such, understanding and mitigating the impact of MEV on
the security and fairness of blockchain networks has become a central concern of protocol
designers [30].

Potential MEV accrues over time as users submit transactions and the value of the set of
pending transactions increases for the block proposer. As a consequence, time is valuable to
consensus participants, a feature obviated by the assumption of honest behavior in previous
models of consensus. However, we argue that protocols who wish to preserve properties such
as economic fairness amongst consensus participants must assume some share of rational
consensus participation. In particular, the effects of MEV on the consensus participants’
incentives must be better understood.

In this paper, we investigate the possibility for block proposers to delay their block
proposal as long as possible while ensuring they become part of the canonical chain, aiming to
maximize MEV extraction. The reader may note that in Proof-of-Work (PoW)-based leader
selection protocols, delaying a proposal bears the risk of losing to a competing block proposer.
PoW protocols exhibit an inherent racing condition that prevents these types of strategic
delay deviations, or at least make them unprofitable in expectation. Thus, we investigate the
implications of MEV on the incentives of consensus participants, particularly block proposers,
in a Proof-of-Stake (PoS) context. More specifically, we consider propose-vote type of PoS
protocols, where in each consensus round, one leader proposes a block, and a committee of
consensus participants is selected in-protocol to vote on the acceptance of that block. This
effectively grants block proposers a short-lived monopoly as the only valid proposer for some
given round. During this time interval they can attempt to strategically deviate from their
assigned block proposal time and delay the release of their block as long as possible in order
to extract more MEV, while still ensuring that a sufficient share of attesters see the block in
time to vote it into the canonical chain. This behavior leads to an environment in which
honest validators earn less than their deviating counterparts, resulting in stake centralization
and second-order effects for consensus stability.

Related Work

To the best of our knowledge, timing games have not been formally analyzed in previous
literature on Proof-of-Stake. Selfish mining [19], studied in the context of Proof-of-Work,
relies on appropriately timing the release of a block, in order to waste computation of honest
miners and earn an outsize share of the rewards. Our timing games are also concerned
with strategic behavior to capture a larger share of the total available rewards to consensus
participants, yet do not feature the same dynamics as selfish mining in Proof-of-Work, since
participants in many PoS-based consensus mechanisms are given a fixed time interval in
which to perform their duties.

The security of PoS-based mechanisms has been discussed in terms of chain growth [18]
or focusing on the safety and liveness properties of hybrid protocols such as Gasper [10, 24].
The economics literature has also examined Proof-of-Stake security with respect to particular



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:3

attacks such as the double-spending attack [26] and 51% attacks [20]. Separately, incentive
considerations in the presence of MEV led to the discovery of severe attacks on the Gasper
consensus [28, 25] and protocol changes to address such attacks [15, 16, 17].

Our Contributions

Our work models the value of time to consensus participants and explores the potential
emergence of timing games in Proof-of-Stake protocols. By understanding the strategic
behavior of consensus participants within this model, we gain insights into how these dynamics
affect the robustness of consensus protocols to exogenous incentives, and ultimately fairness.

Despite initial pessimism regarding the existence of equilibria in timing games [23], we
formally show how to sustain equilibrium behavior, where it is individually irrational for
proposers to deviate from a schedule enforced by attesters, and reward-sharing is fair
among participants (Sections 2 and 3).
We then investigate whether such timing games might occur in real-world systems (namely,
the Ethereum network), using a large, granular data set recording the MEV offered to
block proposers over time. We show incidental deviations from the honest protocol
specification, highlighting the feasibility of timing games, yet we do not conclude on the
existence of intentional deviations from honest behavior (Section 4).

2 Model

We model an infinite horizon game among block proposers and attesters. Time is partitioned
into slots n ∈ N, each of time length ∆ > 0. Each slot n has a block proposer n and a unit
measure of attesters An = {A(i,n)}i∈[0,1] where A(i,n) refers to the ith attester within slot n.1

The game evolves as follows:
At the beginning of slot n, proposer n acts by deciding whether to build on top of the
block of proposer n − 1 and also when to release their own block. More formally, proposer
n selects ϕn ∈ {0, 1} and tn ≥ n · ∆ where ϕn = 1 (ϕn = 0) refers to proposer n (not)
building on top of the block of proposer n − 1 and tn denotes the time at which proposer
n releases their own block. Note that we specify that proposer n cannot release their
block before the start of slot n (i.e., tn ≥ n · ∆) but that they release their block after
the end of the slot.
After proposer n acts, all slot n attesters act simultaneously. In particular, attester A(i,n)
decides whether to attest to the block of proposer n and also the time to release their
attestation. More formally, attester A(i,n) select ν(i,n) ∈ {0, 1} and τ(i,n) ≥ n · ∆ where
ν(i,n) = 1 (ν(i,n) = 0) refers to attester A(i,n) (not) attesting to proposer n’s block and
τ(i,n) refers to the time that they release their attestation. Notably, attester A(i,n) can
attest to the block of proposer n only if they receive the block before releasing their
attestation. We let δn,(i,n) ∼ exp(θ−1) refer to the random time required for the block
of proposer n to reach attester A(i,n) where θ > 0 denotes the average communication
time across the network and we assume that the slot length is at least double the average
communication time across the network (i.e., ∆ ≥ 2θ). In turn, the action of attester
A(i,n) is constrained by ν(i,n) = 1 =⇒ τ(i,n) ≥ tn + δn,(i,n).

1 Note that we have a continuum of attesters, rather than a discrete set. In Ethereum, over 19,000
attesters emit a vote per slot (as of 2023-06-16).

AFT 2023



30:4 Strategic Timing Games in PoS Protocols

2.1 Block proposers
The pay-off for proposer n is given as follows:

UP (tn, ϕn) =
{

α + µ · (tn − tn−)+ if χn = 1
0 otherwise

(1)

where α, µ > 0 are exogenous constants while tn− corresponds to the time of the most recent
canonical block before slot n and χn ∈ {0, 1} corresponds to whether the block in slot n is
canonical on the blockchain. We introduce the conditions for a block to become canonical
in our model in the following, and delay until Section 3.2 its interpretation with respect to
established consensus models.

Note that we assume that the reward of proposer n increases linearly with time relative
to the most recent canonical block so long as block n eventually becomes canonical. This
assumption reflects that proposer n accrues incremental MEV over time by delaying the
release of their block but that they risk being skipped if they delay release for too long. The
time of the most recent canonical block, tn− , is endogenous where slot n− refers to the most
recent canonical slot and is thus given explicitly as follows:

n− = max{k ∈ N : χk = 1, k ≤ n − 1} (2)

For a block to be canonical, we require both that it receives sufficiently many successful
attestations and that the subsequent block producer builds on top of it. More formally,
letting Ãn denote the successful attestations for block n, χn is given explicitly as follows:

χn =
{

1 if ϕn+1 = 1, Ãn ≥ γ

0 otherwise
(3)

where the number of successful attestations for block n is given as the measure of attesters
in slot n voting for block n:

Ãn = |{i ∈ [0, 1] : ν(i,n) = 1}| (4)

2.2 Attesters
Attester (i, n) receives a pay-off if and only if two conditions are met:

Correctness: A vote by attester (i, n) is correct if their vote is consistent with the
canonical blockchain. Recall that the vote of attester (i, n) is given by ν(i,n) and the
eventual canonical status of the block is given by χn; thus, this condition is equivalent to
ν(i,n) = χn.
Freshness: A vote by attester (i, n) is fresh if it was received by proposer n+1 soon enough
that it could be included in the block in slot n + 1 and the block in slot n + 1 is eventually
made canonical. We let δ(i,n),n+1 ∼ exp(θ−1) denote the random communication time
between attester (i, n) and proposer n + 1, implying that the first part of this condition
equates with τ(i,n) +δ(i,n),n+1 ≤ tn+1. Moreover, the second part of this condition equates
with χn+1 = 1.

For exposition, we normalize the pay-off for attester (i, n) to unity, implying that their
pay-off function is given explicitly as follows:

UA(ν(i,n), τ(i,n)) =


1 if ν(i,n) = χn, τ(i,n) + δ(i,n),n+1 ≤ tn+1, χn+1 = 1

0 otherwise
(5)



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:5

3 Analysis

3.1 Equilibrium analysis
There exists a multiplicity of Nash equilibria. In particular, attesters can coordinate to
implement proposers acting at any particular time ∆⋆ ∈ [0, ∆] within the slot. Formally, we
have the following result:

▶ Proposition 1 (Multiple Equilibria). For any ∆⋆ ∈ [0, ∆], there exists an equilibrium as
follows:

Proposer n selects tn as follows:

tn = n · ∆ + ∆⋆ (6)

and selects ϕn as follows:

ϕn =
{

1 if tn−1 ≤ (n − 1) · ∆ + ∆⋆

0 otherwise
(7)

Attester (i, n) selects ν(i,n) as follows:

ν(i,n) =
{

1 if (6) and (7) hold
0 otherwise

(8)

and selects τ(i,n) as follows:

τ(i,n) =
{

tn + δn,(i,n) if (6) and (7) hold
n · ∆ otherwise

(9)

Proposition 1 arises because a proposer receives a zero pay-off unless their block earns
sufficiently many attestations. In turn, if attesters coordinate on voting for a proposer’s
block only if the proposer releases their block at a particular time, then the proposer earns a
strictly positive pay-off only if she releases their block at that particular time. Thus, since a
proposer prefers a strictly positive pay-off to a zero pay-off, each proposer optimally releases
their block at the release time on which attesters coordinate.

As an aside, we emphasize that the referenced coordination by attesters is equilibrium
behavior. In particular, an attester receives a strictly positive pay-off only if their attestation
is correct, and their attestation is correct only if it agrees with the majority of attesters in
their slot. As a consequence, when all other attesters vote in one direction, each attester
optimally votes in that same direction to avoid a zero pay-off.

Proof. We begin by establishing that (8) - (9) are optimal responses for any attester (i, n).
Formally, we take as given that all attesters other than (i, n) follow the equilibrium actions
(8) - (9) and also that all proposers follow the equilibrium actions (6) - (7); in that context,
we demonstrate that (8) - (9) maximize (5) and thus these are equilibrium actions for each
attester (i, n).

If (6) and (7) hold, then ϕn = 1 follows directly for all n ∈ N. Moreover, if all attesters
other than (i, n) follow (8), then (6) and (7) imply ν(−i,n) = 1 which implies Ãn = 1 for
all n ∈ N. Then, since (6) and (7) imply ϕn = 1 for all n ∈ N and also Ãn = 1 ≥ γ, (3)
therefore implies χn = 1 for all n ∈ N. In turn, since ν(i,n) ̸= χn implies the lowest possible
pay-off in (5), we have that ν(i,n) = χn = 1 whenever (6) and (7) holds. If (6) and (7) do not

AFT 2023



30:6 Strategic Timing Games in PoS Protocols

hold, then (8) implies ν(−i,n) = 0 which implies Ãn = 0 for all n ∈ N. Moreover, (3) implies
χn = 0 for all n ∈ N. In turn, since ν(i,n) ≠ χn implies the lowest possible pay-off, we have
that ν(i,n) = χn = 0 whenever the conjunction of (6) and (7) do not hold. Thus, ν(i,n) = 1 is
an optimal response if (6) and (7) and ν(i,n) = 0 is an optimal response otherwise, thereby
establishing (8) as the equilibrium action for any attester (i, n).

To establish (9) as an optimal response for attester (i, n), note that (5) pointwise decreases
in τi,n and thus it is optimal to set τ(i,n) as low as possible subject to feasibility. In general,
τ(i,n) ≥ n · ∆ but ν(i,n) = 1 =⇒ τ(i,n) ≥ tn + δn,(i,n) = n · ∆ + ∆⋆ + δn,(i,n) > n · ∆. As such,
whenever ν(i,n) = 0, then τ(i,n) = n ·∆, whereas whenever ν(i,n) = 1, then τ(i,n) = tn +δn,(i,n).
Then, as per our proof of (8), (6) and (7) imply ν(i,n) = 1 which implies τ(i,n) = tn + δn,(i,n),
whereas if either (6) or (7) does not hold, then ν(i,n) = 0 which implies τ(i,n) = n · ∆, which
thereby establishes (9).

We conclude by demonstrating that (6) - (7) are an optimal response for any proposer n.
More formally, we take as given that all attesters follow the equilibrium actions (8) - (9) and
also that all proposers other than proposer n follow the equilibrium actions (6) - (7); in this
context, we establish that (6) - (7) maximize (5) and thus these are equilibrium actions for
each proposer n.

Due to (8), any deviation in (6) or (7) implies ν(i,n) = 0 for all (i, n) which further implies
Ãn = 0. Then, under such a deviation, (3) implies χn = 0 which implies a zero pay-off
as per (1). Finally, since pay-offs are bounded below by zero, not deviating from (6) and
(7) necessarily produces a higher pay-off than any such deviation and thus (6) and (7) are
equilibrium actions. ◀

3.2 Model justification
The model presented in Section 2 is an idealized description of a blockchain consensus
mechanism. A sequence of proposers is selected, each of which is given the right to produce
a block for the slot they are assigned to in the sequence. Once the block is released, a set of
attesters assigned for the current slot gets to vote for the presence or absence of the block.

When the proposer chooses to build on the previous block, they affirm its place in the
canonical chain. There is no block tree: either the current proposer recognizes the block
produced by the proposer before them as part of the canonical chain (ϕ = 1), or they
recognize that the previous proposer failed to produce a block which is part of the canonical
chain (ϕ = 0). With the assumption of a continuum of attesters, at equilibrium, sufficiently
many votes reach the following proposer, allowing them to make the call on whether or not
the previous proposer’s block is canonical.

This model resembles the Streamlet protocol [13]. A proposer submits a block for
consideration to the rest of the network. If γ = 2/3 share of attesters vote the block in, the
block is notarized. If attesters do not, e.g., because the block is unavailable, the chain height
is not increased, but the next slot starts, giving the opportunity to the next block producer
to submit a block for consideration. Leaders extend the longest chain of notarized blocks
they have seen.

The model also bears resemblance with the proposed (block, slot) fork choice rule of the
Ethereum Gasper protocol [1], specifically the dynamically available chain produced by the
protocol, when γ = 1/2. In this model of the fork choice, attesters submit a vote attesting to
the presence or absence of a block at some given slot. The canonicity of a block is however
complicated by the LMD-GHOST rule for block weight accumulation. Obtaining more than
half of the attesters’ vote may then neither be a sufficient nor a necessary condition to be
part of the canonical chain.



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:7

Generally, we formulate the hypothesis that most Proof-of-Stake-based leader selection
protocols will be exposed to timing games. As long as duties are assigned according to an
absolute (wall-clock) time schedule, there exists no pressure to complete duties in a timely
manner comparable to the random arrival process of leaders in Proof-of-Work. For instance,
PBFT-based finalization protocols such as Tendermint [21] or HotStuff [31] do not perform
a view change until some timeout is reached, which a leader may use to time their release
appropriately. While a sufficiently decentralized committee of validators is an existing feature
of these protocols, our model further highlights its role in enforcing timeliness at equilibrium,
as described in Section 3.1.

4 An empirical case study: Ethereum

Following a formal analysis of the coordination game between proposers and attesters, we
now investigate the occurrence of such strategic timing games in real-world systems. To
this end, we examine Ethereum, an ideal candidate for the empirical analysis of potential
timing games, owing to its mature MEV market structure and the availability of accessible,
informative data points.

We show that timing games are indeed worth playing. However, we find that proposers
do not delay their block release with the intention to capture more MEV. Instead, we find
that delays are mostly due to latency in their signing processes. Thus, we can conclude that
timing games are rational to engage in, but do not yet occur to their full possible extent.

4.1 Consensus mechanism
The Ethereum consensus mechanism is a composite of two protocols: variants of LMD
GHOST [29] and Casper FFG [9], often referred to together as Gasper [10]. In this paper, we
focus exclusively on Ethereum’s available chain that is built roughly following LMD GHOST.
This is because timing games only occur on the available chain. Within this protocol, time
progresses in 12-second slots [3]. For each slot, one consensus participant, referred to as a
validator, is selected as the block proposer. According to the honest validator specifications
[4], which define the rules for honest protocol participation, a block should be released at
the beginning of the slot (0 seconds into the slot). Furthermore, the protocol selects a
committee of attesters from the validator set who vote on what they consider to be the latest
canonical block as soon as they hear a valid block for their assigned slot, or 4 seconds into
the slot, whichever comes first [4]. We refer to this 4-second mark as the attestation deadline.
This dynamic, in which block proposers must release their block early enough for attesters
to receive it via the peer-to-peer network before the attestation deadline, results from the
attestation deadline serving as a coordination Schelling point [27]. It is worth noting that
the honest validator specification prescribes block proposers to release their block at the
beginning of the slot, while attesters only attest 4 seconds into the slot (unless a valid block
is heard prior to the attestation deadline). This opens up room for block proposers to release
their block strategically – i.e., as late as possible while ensuring they accumulate a sufficient
share of attestations.

4.2 Block production process
To assess the potential benefits of timing games for block proposers, it is important to
comprehend the value of time and the process by which MEV opportunities are captured in
the block proposing process. In Ethereum, the MEV market structure evolved and matured

AFT 2023



30:8 Strategic Timing Games in PoS Protocols

significantly over time, turning the block production process into an intricate interplay
between specialized actors [30]. This division of labor enables validators to profit from
MEV without engaging in the complex process of identifying MEV opportunities themselves.
Instead, validators can outsource the task of building a maximally profitable block to an
out-out-protocol block auction process known as MEV-Boost [5].

Searchers look for MEV opportunities (e.g., arbitrages), and submit bundles of transactions
alongside bids to express their order preference to block builders. Block builders, in turn,
specialize in packing maximally profitable blocks using searcher bundles and other available
user transactions before submitting their blocks with bids to relays. Relays act as trust
facilitators between block proposers and block builders, validating blocks received by block
builders and forwarding only valid headers to validators. This ensures validators cannot
steal the content of a block builder’s block, but can still commit to proposing this block by
signing the respective block header. In the long run, Ethereum’s plans include enshrining
this currently out-of-protocol mechanism into the protocol [7, 8] to eliminate relay trust
assumptions. It is worth noting that MEV-Boost is an opt-in protocol, and validators can
always choose to revert to local block building. Finally, when a validator is selected to
propose a block in a given slot, they request the highest-bidding block header from the relay,
sign it, and return the signed block header to the relay, which then releases the block to the
peer-to-peer network.

In summary, searchers find MEV opportunities and express their transaction-ordering
preferences within a block via bids. Block builders aim to build maximally profitable blocks
using searcher bundles and user transactions, then submit their block content and bids to
relays. Validators ultimately request the highest-paying block header, sign it and return it
to relays, which release the signed block to the peer-to-peer network. Due to competition at
all levels in this block production process (except for the block proposing monopoly), the
block proposer is able to capture most of the MEV via this block auction.

MEV-Boost block auction

Here, we granularly outline the sequence of events that take place during the block construction
of MEV-Boost block auctions on the Ethereum network. Figure 1 illustrates these events
along with their corresponding timestamps, and is intended to serve as a reference for the
remainder of this empirical analysis.

The auction for the block of slot n begins in slot n − 1 (at t = −12000ms), during
which builders submit blocks alongside bids to relays. This competitive process between
block builders determines the right to construct the block for slot n and secures potential
MEV-derived profits (block building profit equates to extracted MEV minus bid value).
For each bid, the relay logs the timestamps of events at which the bid was received by the
relay (receivedAt). After some validity checks are completed by the relay, the bid is made
available to the proposer (eligibleAt). When the proposer chooses to propose a block 2,
the proposer requests getHeader to receive the highest bidding, eligible block header from
the relay. Upon receiving the header associated with the winning bid, the proposer signs it
and thereby commits to proposing this block built by the respective builder in slot n. The
signed block header is sent to the relay, along with a request to get the full block content
from the relay (getPayload). Finally, the relay receives the signed block header (signedAt)

2 An honest participant will request the block header shortly before slot n such that the block can be
released on time, at the beginning of slot n (t = 0ms).



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:9

and publishes the full block contents to the peer-to-peer network and proposer. As soon as
peers see the new block, validators assigned to the slot can attest to it. This cycle completes
one round of consensus repeating every slot.

Figure 1 Logical representation of the block production process for slot n. Builder bids begin
streaming in during slot n − 1, after which the proposer and relay interact through requests and
responses.

4.3 Data sets
The analysis utilizes data provided by the ultra sound relay from March 4, 2023, to April 11,
2023. This covers just under 185,000 slots, interspersed from slot 5,965,398 to slot 6,282,397,
and includes all bids placed by block builders through this relay. There were over 800 bids per
slot, for a total of over 150 million bids. The winning block originated from the ultra sound
relay for nearly 85,000 of these slots, and so we measure timestamps and other properties for
those slots when investigating winning bids specifically. Finally, we augmented the winning
slots with various on-chain measures from the execution layer (EL) and consensus layer (CL),
such as attestations and aggregations, using a combination of analytical tools like Dune and
direct observation of the peer-to-peer network.

4.4 Are timing games worth playing?
Marginal value of time

Timing games offer potential for substantial profit due to the increased MEV opportunities
they provide. First, we assess whether timing games are worth playing for proposers, by
estimating the incremental MEV gained per second. We utilize all bids submitted by builders
from the ultra sound relay to examine the relationship between the timestamp at which the
relay received a bid (receivedAt timestamp relative to the slot boundary) and the bid value,
residualized against slot fixed effects to account for differences between low- and high-MEV

AFT 2023



30:10 Strategic Timing Games in PoS Protocols

regimes and other unobservable forms of heterogeneity. We then fit a regression line to this
relationship, obtaining a slope with a coefficient of 0.0065 ETH per second, an estimate for
the marginal value of time. Figure 2 depicts the linear increase in median bid values over the
slot duration on a point-by-point basis, and the distribution of bid receival times, indicating
that most bids are submitted between four seconds before the slot boundary to one second
after. This analysis shows there exists a linear positive marginal value of time, indicating
that a rational block proposer would participate in timing games.

Figure 2 Analysis of bid values and their distribution over slot duration. The histogram (in blue)
shows the distribution of bid counts across time. The dark green line represents the median bid
value in Ether (ETH) for each time bin (with its associated IQR in green), residualized against the
slot fixed effects that are estimated in a linear regression of bid on timestamp (dashed red line).
The x-axis shows time in milliseconds relative to the slot boundary, the left y-axis displays the
residualized bid value in ETH, and the right y-axis displays the count of bids.

4.5 Are block proposers playing timing games?
Having shown that timing games are worth playing, we turn our attention to whether
proposers are currently taking advantage of the opportunity to accumulate more MEV by
committing to a bid later than foreseen by the honest validator specifications.

Characterizing late block signing behavior

First, we investigate whether block proposers sign headers and associated bids later than
the slot boundary (t = 0), the time stipulated by the honest protocol specifications to
broadcast their block to the network. We observe that meadian winning bid is signed 774
ms after the slot boundary (t(111573) = 575.5, p < 1 × 10−20, using a two-tailed paired
Student t-test) and about 513 ms after the relay made the bid eligible (t(111573) = 472.6,
p < 1 × 10−20, using a two-tailed paired Student t-test). Figure 3a displays the distribution
of timings for winning bids, based on ultra sound relay timestamps for bid reception from the



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:11

builder (receivedAt, median = 157ms), eligibility for proposer signing (eligibleAt, median
= 260ms), and the actual signing by proposers (signedAt, median = 774ms). To better
understand the reasons behind late-signing behavior by proposers, we map validator public
keys to their staking entities and CL clients, see Figure 3b and 3c respectively). Validator
to staking entity mappings were obtained via a combination of open source data sets 3,
and validator to client mappings were obtained using blockprint [2], an open source tool
assigning client labels to validators based on their attestation packing on the Ethereum
beacon chain. We found that staking entities such as Kraken (t = 38.9, p < 1 × 10−20) and
Coinbase (t = 67.6, p < 1 × 10−20), as well as proposers using the Lodestar client (t = 44.9,
p < 1 × 10−20) sign block headers significantly later than other block proposer types (results
were obtained using two-tailed unpaired Student t-tests). Notably, additional analysis is
required to differentiate the interdependencies between validator entities and clients. This
analysis shows that proposers are signing blocks significantly later than expected, but it does
not yet clarify the underlying reasons, which could include participation in timing games or
increased latency for independent reasons, e.g., longer signing processes.

We subsequently collected data for 1241 slots (slot 6,200,251 to 6,204,957 on April 11, 2023)
and used the time difference between getHeader and getPayload calls by proposers as an
approximation to estimate the duration of the signing process (see Figure 1). Figure 4 shows
that the median difference between getHeader and getPayload call is 418 ms. Interestingly,
this delay, attributable to the signing process, accounts for 75.42% of the overall latency.
This percentage was determined by calculating the difference between the signing time
and the moment the bid was deemed eligible by the relay on a slot-by-slot basis, using
the formula median(getPayload−getHeader)

median(signedAt−eligibleAt) × 100. We conclude that late signing behavior is
primarily attributed to latency caused by the signing process, rather than intentional delays
to incorporate more MEV in blocks. This finding aligns with the hypothesis that large
US-based staking entities, such as Coinbase and Kraken, may prefer utilizing sophisticated
remote secure signing mechanisms, resulting in a lengthier signing process compared to other
parties.

4.6 The impact of latency on the peer-to-peer network

Our prior results indicate that validators are largely not engaging in timing games to accrue
more MEV. Nonetheless, we assess the implications of late signing of consensus messages on
the peer-to-peer network. Specifically, we examine the relationship between relay timestamps
and the time at which (1) blocks and (2) attestations and aggregations are first seen by the
rest of the peer-to-peer network. The consensus layer data was obtained through nodes run
by the Ethereum Foundation, for 2643 slots (slots 6,357,601 to 6,363,807 on May 3 and 4,
2023). Figure 5a shows the sequence of these event timestamps over the course of a slot.
We subsequently assess the correlations between each of these event pairs, as depicted in
Figure 5b. Our analysis reveals high correlations between the time at which blocks are signed
by proposers (i.e., the signedAt relay timestamp) and the time at which blocks (correlation
coefficient = 0.986) and attestations (correlation coefficient = 0.971) are initially observed
by the peer-to-peer network. These findings underscore the significance of proposers signing
blocks promptly, as it considerably impacts the downstream processes at the consensus layer
in the network.

3 Dune Spellbooks: https://dune.com/spellbook, Mevboost.pics Open Data: https://mevboost.pics/
data.html

AFT 2023

https://dune.com/spellbook
https://mevboost.pics/data.html
https://mevboost.pics/data.html


30:12 Strategic Timing Games in PoS Protocols

(a)

(b)

(c)

Figure 3 Analysis of event timestamps and their distributions among Validator Clients and
Entities. (3a) Multiple Kernel Density Estimation (KDE) distributions of event timestamps from
the relay data, showing the probability density functions for three event types: receivedAt (blue),
eligibleAt (green), and signedAt (light green). (3b-3c) Violin plots comparing the distribution
of signedAt event timestamps for the top 7 validator entities and clients. The x-axis represents
time in milliseconds (ms) relative to the slot boundary, while the y-axis displays validator clients
and entities, ordered by the mean signedAt time. The width of each violin plot signifies the kernel
density estimation of the signedAt event timestamps, demonstrating the distribution and frequency
of the events within each group.

We evaluate the impact of the release time of block n on the share of attestations that
vote for block n and are included on-chain in block n + 1. As a reminder, attestations of
slot n are only included on-chain one or more slots later (slot ≥ n + 1). We use the time at
which blocks are signed by proposers (signedAt) as a heuristic for the block release time. In
our analysis, we focus on attestations included in the subsequent slot and compute a metric
next-slot attestation share. This metric refers to the share of attestations voting for block
n that are included in block n + 1, out of the total number of slot n attestations included
in block n + 1 that vote for any block other than n. The argument is that if a proposer
releases their block n too late, attesters will not receive it in time to vote for it before their
attestation deadline (t = 4000ms, see Figure 1, and [4]). Hence, in such scenarios attesters
vote for a different block (e.g., the parent block). This is captured by the next-slot shares
metric.

Figure 6 shows that late blocks do indeed cause a steep drop-off in the share of attestations
voting for that block that are included in the subsequent block. We observe that the next-slot
attestation share remains close to one for as long as the block is signed within the first
two seconds of the slot. Once the two second threshold is crossed, there is a substantial



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:13

(a) (b)

Figure 4 Estimating the latency induced by the signing process. (4a) Histogram of getHeader and
getPayload call timestamps relative to slot boundary. The histogram displays the density of events
occurring at different times into the slot (in milliseconds) for getHeader (yellow) and getPayload
(blue) calls. (4b) Histogram of the time difference between getHeader and getPayload calls.
The histogram shows the density of time differences (in milliseconds) getHeader and getPayload
calls. Vertical lines represent the 50th (solid), 90th (dashed), and 99th (dotted) percentiles of the
distribution.

drop-off and many winning blocks earn fewer than half of the next-slot attestation share,
which continues to rapidly decrease towards zero as we approach the theoretical t = 4000ms
attestation deadline. These results demonstrate the impact of untimely block proposals on
the rest of the peer-to-peer network and highlight the importance of signing and broadcasting
blocks on time in order to prevent fair rewards for honest consensus participation, missed
slots and chain reorganizations.

5 Discussion

In this paper, we present an argument that consensus participants are subject to exogenous
incentives, primarily MEV, that exist outside the consensus mechanism itself. This highlights
the imperative for blockchain protocols to ensure economic fairness among all consensus
participants. Specifically, it necessitates a design where honest and rational consensus
participation become indistinguishable, and honesty within the protocol is the most profitable
strategy. This approach ensures that rational participants have no incentive to deviate from
honest consensus participation.

We present a model that highlights the time-dependent value for consensus participants
and probes into the strategic timing considerations that block proposers face. Our model
uncovers a spectrum of equilibria wherein attesters can enforce any deadline for block
proposals to achieve canonical status, thereby emphasizing the crucial role of Schelling
points as coordination mechanisms. For instance, in the Ethereum network we observe
the emergence of such Schelling points through the default settings of client software. The
widespread use of these default settings among consensus participants generally ensures their
effectiveness.

We support our theoretical findings by observations of the Ethereum network. Our
analysis demonstrates that timing games are indeed worth playing for block proposers,
enabling them to capture additional MEV by delaying their block proposals beyond the

AFT 2023



30:14 Strategic Timing Games in PoS Protocols

(a) (b)

Figure 5 Analysis of relay and consensus layer timestamps. (5a) Box plot of the time differences
between relay and consensus timestamps. The box plots display the distribution of time differences
for receivedAt, eligibleAt, and signedAt events, as well as blocks, attestations, and aggregations
first seen by the peer-to-peer network. The boxes represent the interquartile range (IQR) from the
first quartile (Q1, 25th percentile) to the third quartile (Q3, 75th percentile), while the whiskers
extend to the minimum and maximum values within three times the IQR. The horizontal lines within
the boxes represent the median values. (5b) Bar plot of Pearson correlation coefficients for each pair
of event timestamps. The bars represent the mean correlation coefficient for each relationship, while
the error bars represent the 95% confidence intervals obtained via bootstrapping.

timeframe prescribed by the honest validator specification. However, we observe that current
instances of delayed block proposals are primarily due to latency in the block signing process,
rather than a conscious strategy to maximize profits. The apparent lack of maximal MEV
capture by honest proposers could be attributed to either a lack of common knowledge or
existing social norms around this practice. It’s clear, however, that these are not sustainable
safeguards for maintaining economic fairness.

The implications of timing games are manifold and significant. An rational participant
who engages in timing games will outperform honest participants, leading to a centralization
of stake over time. Hypothetically, this could culminate in a breach of consensus security.
In a more practical sense, it may encourage individual stakers to delegate their stake to
professional entities adept at these practices, negatively impacting the network’s decentraliz-
ation. Moreover, timing games can overload the messaging system within a short time span,
potentially causing cascading failures at the peer-to-peer layer, particularly within client
systems.

Essentially, timing games are facilitated by the monopolistic right that block proposers
possess for a single round of consensus. Introducing competition in block proposing, similar in
effect to the exogenous randomness in Proof of Work (PoW) systems, emerges as a potential
solution. However, the challenge lies in deterministically selecting a winning proposer, or
reverting to peer-to-peer latency races, which in itself is centralizing. Alternatively, an
on-chain heuristic for timely block proposals could incentivize timely participation, yet the
allure of MEV rewards might still outweigh any in-protocol consensus rewards. Tackling the
root cause of timing games remains an open challenge.

In the Ethereum context, a late-block reorging mechanism has been adopted in the
fork choice, effectively imposing a 4-second deadline for block proposers. This constraint
significantly limits the extent to which block delays are possible. Looking ahead, the adoption
of (block, slot) type of attestations is likely, further refining the protocol. However, it



C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:15

Figure 6 Effect of block release time on share of attestations that vote for said block and are
included in subsequent block. The signedAt timestamps are used as a heuristic for release time.
Each point on the graph corresponds to the time (in milliseconds) at which the winning block was
signed within the slot and the average share of attestations voting for it that are included in the
next block.

remains challenging to address the root cause of timing games, as it is deeply intertwined
with the fundamental workings of Proof of Stake (PoS). Although limiting the length of the
proposer’s interval is feasible, completely eliminating the monopolistic market structure of
block proposers proves to be a difficult task.

Consequently, it may prove valuable to find a more general abstraction for PoS type
of protocols and further explore the implications of consensus participants being exposed
to incentives outside of consensus itself, such as MEV. More generally, assuming rational
as opposed to honest type of consensus participation should prove significant in designing
economically fair blockchain protocols. Revisiting the existing literature on consensus
mechanisms through the lens of rational as opposed to honest consensus participation should
prove valuable.

References
1 (block, slot) fork choice. https://github.com/ethereum/consensus-specs/pull/2197. Ac-

cessed: 2023-10-05.
2 blockprint. Accessed: 2023-10-05. URL: https://github.com/sigp/blockprint.
3 Ethereum consensus specifications - beacon chain. Accessed: 2023-10-05. URL: https:

//github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md.
4 Ethereum consensus specifications - honest validator. Accessed: 2023-10-05. URL: https:

//github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md.
5 Mev-boost. Accessed: 2023-10-05. URL: https://github.com/flashbots/mev-boost.
6 Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari Juels. Clockwork finance: Automated

analysis of economic security in smart contracts. arXiv preprint arXiv:2109.04347, 2021.

AFT 2023

https://github.com/ethereum/consensus-specs/pull/2197
https://github.com/sigp/blockprint
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md
https://github.com/flashbots/mev-boost


30:16 Strategic Timing Games in PoS Protocols

7 Vitalik Buterin. Proposer/block builder separation-friendly fee mar-
ket designs. Accessed: 2023-10-05. URL: https://ethresear.ch/t/
proposer-block-builder-separation-friendly-fee-market-designs/9725.

8 Vitalik Buterin. Two-slot proposer/builder separation. Accessed: 2023-10-05. URL: https:
//ethresear.ch/t/two-slot-proposer-builder-separation/10980.

9 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv:1710.09437
[cs.CR], 2019. URL: https://arxiv.org/abs/1710.09437.

10 Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan,
Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining ghost and casper. arXiv preprint
arXiv:2003.03052, 2020.

11 Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild. arXiv
preprint arXiv:1707.01873, 2017.

12 Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016 acm sigsac
conference on computer and communications security, pages 154–167, 2016.

13 Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies, pages 1–11, 2020.

14 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges. CoRR, abs/1904.05234, 2019. arXiv:1904.
05234.

15 Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on
proof-of-stake ethereum? arXiv preprint arXiv:2209.03255, 2022.

16 Francesco D’Amato and Luca Zanolini. Recent latest message driven ghost: Balancing dynamic
availability with asynchrony resilience. arXiv preprint arXiv:2302.11326, 2023.

17 Francesco D’Amato and Luca Zanolini. A simple single slot finality protocol for ethereum.
arXiv preprint arXiv:2302.12745, 2023.

18 Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao
Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages
859–878, 2020.

19 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018.

20 Kose John, Thomas Rivera, and Fahad Saleh. Economic implications of scaling blockchains:
Why the consensus protocol matters. NYU Stern Working Paper, 2023.

21 Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.
22 Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transactions. In

Financial Cryptography and Data Security: FC 2017 International Workshops, WAHC, BIT-
COIN, VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21,
pages 264–279. Springer, 2017.

23 Barnabé Monnot. Timing games in proof-of-stake. Accessed: 2023-10-05. URL: https:
//ethresear.ch/t/timing-games-in-proof-of-stake/13980.

24 Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the
availability-finality dilemma. In 2021 IEEE Symposium on Security and Privacy (SP), pages
446–465. IEEE, 2021.

25 Joachim Neu, Ertem Nusret Tas, and David Tse. Two more attacks on proof-of-stake
ghost/ethereum. In Proceedings of the 2022 ACM Workshop on Developments in Consensus,
pages 43–52, 2022.

26 Fahad Saleh. Blockchain without waste: Proof-of-stake. Review of Financial Studies, 34(3):1156–
1190, 2021.

27 Thomas C Schelling. The Strategy of Conflict: with a new Preface by the Author. Harvard
university press, 1980.

https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/two-slot-proposer-builder-separation/10980
https://ethresear.ch/t/two-slot-proposer-builder-separation/10980
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234
https://ethresear.ch/t/timing-games-in-proof-of-stake/13980
https://ethresear.ch/t/timing-games-in-proof-of-stake/13980


C. Schwarz-Schilling, F. Saleh, T. Thiery, J. Pan, N. Shah, and B. Monnot 30:17

28 Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar, Ertem Nusret
Tas, and David Tse. Three attacks on proof-of-stake ethereum. In Financial Cryptography and
Data Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised
Selected Papers, pages 560–576. Springer, 2022.

29 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in Bitcoin.
In International Conference on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

30 Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. Sok: Mev
countermeasures: Theory and practice, 2022. doi:10.48550/ARXIV.2212.05111.

31 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347–356, 2019.

AFT 2023

https://doi.org/10.48550/ARXIV.2212.05111




Practical Large-Scale Proof-Of-Stake
Asynchronous Total-Order Broadcast
Orestis Alpos
University of Bern, Switzerland

Christian Cachin
University of Bern, Switzerland

Simon Holmgaard Kamp
Aarhus University, Denmark

Jesper Buus Nielsen
Aarhus University, Denmark

Abstract
We present simple and practical protocols for generating randomness as used by asynchronous
total-order broadcast. The protocols are secure in a proof-of-stake setting with dynamically changing
stake. They can be plugged into existing protocols for asynchronous total-order broadcast and
will turn these into asynchronous total-order broadcast with dynamic stake. Our contribution
relies on two important techniques. The paper “Random Oracles in Constantinople: Practical
Asynchronous Byzantine Agreement using Cryptography” [Cachin, Kursawe, and Shoup, PODC
2000] has influenced the design of practical total-order broadcast through its use of threshold
cryptography. However, it needs a setup protocol to be efficient. In a proof-of-stake setting with
dynamic stake this setup would have to be continually recomputed, making the protocol impractical.
The work “Asynchronous Byzantine Agreement with Subquadratic Communication” [Blum, Katz,
Liu-Zhang, and Loss, TCC 2020] showed how to use an initial setup for broadcast to asymptotically
efficiently generate sub-sequent setups. The protocol, however, resorted to fully homomorphic
encryption and was therefore not practically efficient. We adopt their approach to the proof-of-stake
setting with dynamic stake, apply it to the Constantinople paper, and remove the need for fully
homomorphic encryption. This results in simple and practical proof-of-stake protocols.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Total-Order Broadcast, Atomic Broadcast, Proof of Stake, Random Beacon

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.31

Related Version Full Version: https://eprint.iacr.org/2023/1103

Funding This work has received funding from the Swiss National Science Foundation (SNSF) under
grant agreement Nr. 200021_188443 (Advanced Consensus Protocols). Simon Holmgaard Kamp
and Jesper Buus Nielsen are partially funded by The Concordium Foundation.

1 Introduction

State of the art. It is well known that Asynchronous Total-Order Broadcast (ATOB) cannot
be deterministic [25]. The necessary randomness is usually modelled as a common coin
scheme [33], informally defined as a source random values observable by all participants but
unpredictable for the adversary [10]. Common coins are most practically implemented using
threshold cryptography [11, 23, 32, 10]. This approach has many benefits. It is conceptually
simple and efficient, it achieves optimal resilience t < n/3, where n the number of parties
running the protocol, and it results in a perfect coin, meaning that it is uniformly distributed
and agreed-upon with probability 1. The drawback, however, is that it requires a trusted

© Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Advances in Financial Technologies (AFT 2023).
Editors: Joseph Bonneau and S. Matthew Weinberg; Article No. 31; pp. 31:1–31:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.AFT.2023.31
https://eprint.iacr.org/2023/1103
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

setup or an Asynchronous Distributed Key Generation (ADKG) protocol. Current state
of the art ADKG protocols [20, 1, 2] have communication cost of O(λn3), where λ is the
security parameter.

Given that state-of-the-art ATOB protocols have communication complexity O(λn2), or
even amortized O(λn), it is evident that the communication cost of ADKG becomes the
bottleneck. In a permissioned setting with a static set of parties, it is common to proactively
refresh the threshold setup [9]. In a Proof-of-Stake (PoS) setting, particularly, where the
stake is constantly evolving and parties may dynamically join or leave the protocol, the
ADKG protocol must be run periodically. Recent literature on asynchronous consensus
uses committees, which contain only a subset of the parties, reducing the communication
complexity of BA even further to O(λn log n) at the cost of tolerating only t < (1 − ϵ)n/3
corruptions for any ϵ > 0 [5, 18]. As the protocol run by the committee assumes an honest
supermajority, this paradigm comes with one of two significant drawbacks. Either the
sampled committee has to be very large, so that its maximal corruption remains below n/3
with overwhelming probability [22]. Otherwise, in order to keep the committee size small, the
corruption level in the ground population must be assumed lower than n/3 by a considerable
margin. Directly porting this idea to ADKG results in the same drawbacks. Finally, existing
DKG protocols support only flat structures, where every party has the same weight and in
total t < n/3 parties are corrupted. They do not readily work for a setting where every party
holds a different share of the stake.

Seeds in PoS protocols. PoS-based ATOB protocols and blockchains require, apart from
common coins, a second type of randomness, usually referred to as a seed. In PoS blockchains
there is the notion of accounts with stake on them, of roles, such as “produce the 42-nd
block”, and of a lottery, through which accounts win the right to execute roles. This is
typically [21, 26] implemented using a Verifiable Pseudo-Random Function (VRF) [30]: each
account has a private key for a VRF and applies it to the role, producing a pseudorandom
value. If this value is above a threshold then the account wins the right to execute the role.
However, for this approach to work the lottery needs as input not only a role but also a seed.
Without the seed, a party can operate with several accounts and move all its stake to the
luckiest account. By including a seed in the lottery and using the stake distribution from a
point in time when the seed was unpredictable one can mitigate this attack [21].

In practice one can use a common-coin protocol to produce the seeds. We remark, however,
that the two randomness-generation protocols have different requirements. A common-coin
scheme does not have to be always unpredictable and agreed-upon, but only with some
constant probability [31, 12]. It should, however, be efficient, as it is used in every agreement
instance within the broadcast protocol. On the other hand, the seed-generation protocol must
always be unpredictable and agreed upon, but it can be slow, as it is only run periodically
(e.g., once per epoch).

Related work. Multiple common-coin constructions without a trusted dealer have been
proposed in the literature. Ben-Or [4] presents a simple protocol, where every party flips a
local coin. As a result, parties agree on the value of the coin only with probability Θ(2−n), A
common-coin scheme from verifiable secret sharing has been shown by Canetti and Rabin [12],
but their resulting Byzantine agreement protocol has communication complexity O(n11).
Patra, Choudhury, and Rangan [31] bring this down to O(n3).

A different approach constructs common coins from publicly verifiable secret sharing. The
resulting protocols [13, 14, 19, 36, 38] are efficient, yet they all make synchrony assumptions.
RandShare [38] has been formalized in the asynchronous communication setting but it is



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:3

not scalable, as it requires O(n3) communication per party. Another line of work is based
on time-based cryptography. Protocols in this category [29, 16] employ verifiable delay
functions [7] and rely on the assumption that certain functions (such as exponentiation in
groups of unknown order [35]) can only be computed serially. None of the aforementioned
works explicitly mentions the network assumptions. Overviews of random beacon protocols
are given by Raikwar and Gligoroski [34], and by Choi, Manoj, and Bonneau [17].

Multiple works that circumvent ADKG exist in the literature, but they either make more
assumptions, have non-optimal resilience, or result in inefficient protocols. Existing PoS
blockchains rely on the timely delivery of honestly generated blocks, hence make timing
assumptions. Ouroboros Praos [21] implements a randomness beacon protocol, used as seed in
their leader-election algorithm, by hashing a large number of VRF outputs. Partial-synchrony
assumptions assure that the honestly generated VRF outputs cannot be delayed arbitrarily
by the adversary. King and Saia [27, 28] propose a synchronous common-coin protocol that
makes uses of pseudorandomly selected committees, but achieves non-optimal resilience. This
is improved in the protocol of Algorand [26, 15], where each committee member applies a
VRF on the seed of previous block, and then the smallest valid VRF value sent by some
committee member is kept. The protocol is first described in the synchronous model [26] and
later extended to the partially synchronous [15]. Cohen, Keidar, and Spiegelman [18] extend
this idea to the asynchronous model, but their protocol achieves an n = 4.5t resilience. In all
these protocols the coins are not reusable and the whole coin-generation algorithm has to be
run repeatedly.

Blum et al. [5] also generate randomness without ADKG. Their ATOB protocol works
in the following way. Assume first that a trusted dealer publishes on a ledger all the setup
material required for one instance of Byzantine agreement and one instance of a Multiparty
Computation (MPC) protocol. Then, on every invocation of the agreement protocol, parties
use the Byzantine-agreement setup in the agreement protocol and the MPC setup in a
tailor-made MPC protocol that refreshes the whole setup. Finally, they replace the trusted
dealer with a standard MPC protocol, executed once in a distributed setup phase. This
blueprint solves the problem of dynamic stake elegantly, but, the proposed MPC protocol for
refreshing the setup, which has to be executed for every Byzantine agreement instance, is not
efficient: it employs Threshold Fully Homomorphic Encryption (TFHE), digital signatures,
and zero-knowledge proofs.

Contributions. In this paper we address all the aforementioned limitations of randomness
generation for the first time. We present asynchronous seed-generation and common-coin
protocols that

require no trusted setup,
support optimal resilience t < n/3,
employ small committees and are concretely efficient,
directly support the PoS setting and dynamic participation,
are modular and can be generically used in any ATOB broadcast.

Our methods. We are motivated by the question whether one can use the simple, practical,
and efficient approach of getting common coins from threshold setup without running
inefficient and complicated protocols whenever the stake has shifted. Building on the idea of
Blum et al. [5], we rely on the fact that there already exists a functional ATOB: we generate
the setup assuming that we already have the ATOB, and then use the generated setup to

AFT 2023



31:4 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Figure 1 The high level idea of our protocols. A proposers committee is elected, and we wait
until w proposers broadcast a setup. Assuming 2/3 honesty in the ground population, a proposer is
honest with probability 2/3. Each proposer is assigned a holding committee of size n and creates an
(n, τ) threshold setup for it. A committee is hiding if it contains at most τ corrupted parties, and
live if it contains at most n− τ − 1 corrupted parties. A setup is good if its proposer in honest and
its holding committee is hiding and live. We set w so as to have enough honest proposers, and n

and τ so that each holding committee is hiding with constant probability β and live with all but
negligible probability. As a result, we get good setups with a constant probability γ.

keep the ATOB running. To maintain practical efficiency the crucial step is to avoid FHE.
We achieve this by generating weaker setups than Blum et al. [5], nonetheless still strong
enough for the continued execution of the ATOB.

A crucial observation is that coins consumed by Byzantine agreement do not need to be
perfect, i.e., always unpredictable and agreed upon [12, 31]. Hence, instead of generating a
single, perfect threshold setup, we generate several candidate setups, such that some constant
fraction of them are good. Many DKG protocols can be seen as doing this as their first step,
but their next step is to combine them into a single perfect setup. In order to be combinable,
the setups must be of a particular form, and the committee that holds the setup must be
good (that is, contain less than a threshold corruptions) except with negligible probability.
As our setups are not combined and our committees only need to be good with a constant
probability, our protocols are simpler and more efficient, and use smaller committees.

Both seed, our seed-generation protocol, and wMDCF, our common-coin protocol, follow
the approach depicted in Figure 1. They elect a proposers committee, each member of which
is expected to create a setup (a VSS setup or a coin setup, for seed and wMDCF, respectively).
Each elected proposer is assigned a holding committee, for which it creates the threshold setup.
For this, the proposer acts as a dealer, encrypts the private setup material under the keys
of the holding committee, and broadcasts these encryptions and the required verifications
keys with a single message on the ATOB. We use a VRF-based lottery to determine both
the proposers and the holding committees, where each party is elected with probability
proportional to its stake. To open a seed value in the seed protocol, each of the holding
committees reveals its shares and these are all added together. To flip a coin cid in the
wMDCF protocol we first open a new seed value and then hash cid with the seed to obtain a
pointer to one of the published setups, which is used to obtain the value of cid.

As we show in Section 7, we can have a proposers committee of size 653 and holding
committees of size 359, resulting in approx. 85K encrypted values posted on Ledger. For 60
bits of security and assuming optimal corruption 1/3 in the ground population, our protocols



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:5

are live with all but negligible probability, and our common-coin protocol is unpredictable and
agreed-upon with probability approx. 31.8%. It is instructive to compare these results against
previous literature, particularly against the approach that runs the randomness-generation
protocols in committees with honest supermajority. Algorand [26, Figure 3] requires a
committee of size approx. 2000, assuming corruption 0.2 in the ground population, and larger
than 4000, assuming corruption 0.24, to get good committees with probability 5 · 10−9, or
approx. 28 bits of security. Extending this approach to a ground population with corruption
0.3, which is still sub-optimal, and 60 bits of security, the authors of GearBox [22, Table 1]
show that committees of size 16037 are needed. We remark that asynchronous distributed
key generation protocols, the state-of-the-art approach for threshold-setup generation, require
honest supermajority, hence one would require a committee of similar sizes and sub-optimal
resilience in the ground population.

Organization. The rest of this paper is organized as follows. Section 2.1 presents the formal
model used in the schemes and Section 2.2 presents the primitives used in our schemes.
Then, each of the seed-generation and common-coin protocols are presented in modular way,
in two steps. Section 3 presents wVSS, a weak verifiable secret sharing scheme, which is
then used in Section 4 to build the seed-generation protocol. Section 5 presents wHDCF, a
weak honest-dealer coin-flip protocol, which is then used in Section 6 to build the wMDCF
common-coin protocol. All of these schemes are parameterized over committee sizes and
thresholds, and secure bounds for these are computed in Section 7.

2 Preliminaries

2.1 Model
We assume a model with asynchronous authenticated point-to-point channels. In addition
we assume an asynchronous persistent total-order broadcast channel. We denote by Ledger
the totally-ordered sequence of messages that have been delivered on the channel. We point
out that if a blockchain has a distinction between final and non-final messages, then Ledger
denotes the final messages. We assume that when a protocol is started all the parties taking
part in the protocol agree on a session identifier sid and an existing point on the ledger,
p ≤ |Ledger|. We think of p as the starting point of the protocol, which gives consensus on
the context of the protocol like stake distribution and lottery as discussed below. Protocols
can have public output which might not be explicitly posted on the ledger, but will have a
well-defined value and virtual point p at which they happened.

▶ Definition 1 (Public output). We say that PubOutF is a public output function if it
computes a public output from a ledger Ledger and a session identifier sid, where either
PubOutF(Ledger, sid) = y ∈ {0, 1}∗ or PubOutF(Ledger, sid) = ⊥. We require that if
PubOutF(Ledger, sid) ̸= ⊥ then PubOutF(Ledger∥m, sid) = PubOutF(Ledger, sid) for all m.
We say that sid gave public output y at position p if |Ledger| ≥ p and PubOutF(Ledger[1, p −
1], sid) = ⊥ and PubOutF(Ledger[1, p], sid) = y. Unless multiple sid’s are in scope, we omit
the sid parameter. Finally, we informally say that some protocol gives public output PubOutF
when additionally the ledger is implicit or when it is an eventual property of the ledger.

Dynamic Stake. We consider proof-of-stake defined via the ledger. For each Ledger there
is a stake distribution Σ(Ledger) : P → R0 which may change as the ledger grows, can be
computed in poly-time, and which gives for each party P its stake Σ(Ledger)(P). For each
point p there is also a stake distribution Σp, which is the stake distribution used by protocols
with p as starting point. It may be different from Σ(Ledger[1, p]), as discussed below.

AFT 2023



31:6 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Lotteries. In PoS based protocol it is common that parties are selected at random for
carrying out a role in the protocol, like serving on a committee or producing the next block in
a blockchain. To keep the model simple we assume that this is done via a random oracle. To
keep the model simple we assume that for each point p on the ledger there is a random oracle
Γp : {0, 1}∗ → {0, 1}λ. We assume that Γp is sampled and made available to the parties at
some point after Σp can be computed from Ledger. This ensures that Γp is independent of
Σp. If Γp was made available before Σp was fixed, then corrupted parties would be able to
update Σp based on Γp (e.g., by moving their stake to parties “lucky” in Γp). We implement
this by iteratively generating random and unpredictable seeds, appearing as public outputs,
with our seed protocol. Then, for a given point p, let seedp be the latest seed on Ledger[1, p],
let Γp(x) = R(seedp, x), for a random oracle R, let p′ < p be the latest point where seedp

was unpredictable, and let Σp = Σ(Ledger[1, p′]).
Our protocols include steps where a party samples a committee cid of size n. We

model this as a function SampleCommitteep(cid, n) →
(
Hi

)
i∈[n] that uses Γp to sample

(with replacement) n parties from P with probability proportional to the stake Σp. As the
input is public, the output can be verified by a function VerifyCommitteep(cid,

(
Hi

)
i∈[n])

that reruns SampleCommitteep(cid, n) and verifies that it matches
(
Hi

)
i∈[n]. We assume

SampleCommitteep(cid, n) is locally computable by every party. Using our lottery abstraction
this could be implemented by calling Γp(cid, i), for some committee cid and for i ∈ [n], to
obtain a number ri ∈ {0, 2λ − 1}, and then deterministically mapping ri to a party Pi ∈ P
based on Σp. Observe that a party with relatively large stake can appear multiple times in
the committee.

2.2 Primitives
Our schemes make use of the following primitives.

2.2.1 Public-Key Encryption with Full Decryption
There are keys (dki, eki), for all Pi ∈ P, for an IND-CPA encryption scheme with full
decryption, PKE. Encrypting a message m ∈ PKE.M using randomness r ∈ PKE.R results
in a ciphertext c = Enceki

(m; r) ∈ PKE.C. Given a ciphertext c ∈ PKE.C the decryption
algorithm Decdki(c) returns both m ∈ PKE.M and r ∈ PKE.R. The triple (m, r, c) can then
be verified by anyone holding eki by checking if Enceki

(m; r) = c. Given an invalid ciphertext
a zero knowledge proof that the ciphertext is invalid can be obtained using the secret key.

Construction using El Gamal. We first show that we can obtain the properties above in
the random oracle model, as long as only encryptions of random messages are needed. This
can then be lifted to a complete encryption scheme by symmetrically encrypting the message
under a freshly sampled random key.

To encrypt a random value r, use El Gamal with H(r) as randomness. I.e. if dk = x

and ek = h = gx, then you encrypt r as c = (A, B) = (gH(r), r · hH(r)). To decrypt you first
compute r = B/(Ax), then check if re-encrypting using H(r) as randomness gives back c. If
verification checks out you can simply send r as proof. If the re-encryption does not match,
you provide a proof that r was obtained by decrypting c. Note that (A, B) decrypts to r

(under (g, h)) iff DLg(h) = DLA(B/r), so this proof can be constructed using the Fiat-Shamir
transform of the Σ-protocol for equality of discrete logarithms.

In the full scheme, in order to encrypt m using randomness r, you encrypt r as above and
additionally include a symmetric encryption of m using r as key. To decrypt you first use
regular El Gamal decryption to obtain r and verify it by re-encrypting. If it was encrypted
correctly you use it to decrypt m and return (m, r), otherwise return (⊥, r).



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:7

2.2.2 Threshold Coin Flip
We use a (n, t)-threshold coin-flip (CF) scheme, where n is the total number of parties, t

is the corruption threshold, and the reconstruction threshold is t + 1. The scheme has the
following interface.

Setup(n, t) → (vk, sk1, . . . , skn): The dealer generates a verification key vk and secret key
shares ski of Pi. The secret keys can be used to create coin shares of multiple coins.
VerifyKeyShare(vk, i, ski) → b ∈ {0, 1}: Given the verification keys vk, it verifies ski.
Flip(ski, coin) → (si, wi): Given a coin identifier coin and secret key ski, it returns a coin
share si for coin and potentially a correctness proof wi, i.e., a proof that the coin share
has been computed correctly using ski.
VerifyCoinShare(vk, coin, si, wi) → b ∈ {0, 1}: It verifies coin share si for coin identifier
coin using the correctness proof wi and verification key vk.
Combine(coin, {sij

}j∈[t+1]) → s ∈ {0, 1}λ: Given t + 1 valid coin shares sij
, for j ∈ [t + 1],

it returns the value s of the coin identifier coin.
VerifyCoin(vk, coin, s) → b ∈ {0, 1}: It verifies s as the value of coin identifier coin using
the verification key vk.

Security properties. Assuming an honest dealer, i.e., that Setup() is correctly executed,
and that there are no more than t corrupted parties, the scheme satisfies the following.
Completeness If the dealer is honest then all key shares generated with Flip(ski, coin) will

verify with VerifyCoinShare.
Agreement For any t + 1 valid key shares the value Combine(coin, {sij }j∈[t]) is the same,

which define the value scoin.
Unpredictability The value scoin is unpredictable without honest shares, i.e., for a set C =

{Pij
}j∈[t+1] of corrupted parties, if a poly-time adversary has been given vk and ski for

Pi ∈ C for a random setup and has not been given Flip(ski, coin) for Pi ̸∈ C, then it
cannot guess scoin better than at random. This holds even if it has access to an oracle
giving Flip(ski, coin′) for all honest Pi for all coin′ ̸= coin.

Instantiation. Scheme CF can be instantiated with any non-interactive unique threshold
signature scheme, such as BLS threshold signatures [8, 6]. The dealer picks a random secret

key sk and shares it among all n parties using a polynomial ϕ(X) =
t∑

k=0
ϕkXk, such that

ϕ0 = sk. The only difference from threshold BLS is in Setup(): it runs the key generation
algorithm of the threshold signature scheme, but it does not return the verification keys in
the form gski

2 ∈ G2, where i ∈ [n] and g2 is the generator of G2, as in the original scheme.
Instead, it returns a vector (V0, . . . , Vt), where Vk = gϕk ∈ G2, for k ∈ {0, . . . , t}, i.e., it
returns Feldman commitments [24] to the coefficients of ϕ. This allows us to implement
VerifyKeyShare(), so Pi can verify that its key share ski is indeed a point on polynomial ϕ by
checking whether

gski
2

?=
t∏

k=0
(Vk)ik

. (1)

Observe that the original verification keys can still be obtained using (1) with input vk and
i, hence VerifyCoinShare() and VerifyCoin() need no modification. Algorithm Flip() returns a
signature share si on message coin using the key share ski of party Pi. Algorithm Combine()
creates the threshold signature s from t + 1 valid signature shares, which can then be hashed

AFT 2023



31:8 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

to get a value in {0, 1}. Algorithms VerifyCoinShare() and VerifyCoin() invoke the signature
verification algorithm, which, in the case of BLS, only takes as input the message coin and a
signatures share si or signature s, i.e., wi = ⊥, and uses a pairing function. Alternatively,
one can use the common-coin scheme of Cachin, Kursawe, and Shoup [10], but VerifyCoin()
would additionally need as input the t + 1 valid coin shares and proofs {sij

, wij
}j∈[t+1].

2.2.3 Secret sharing
We require a secret-sharing scheme TSS with threshold t with the following interface.
1. Share(s; r) → (s1, . . . , sn): It shares a secret s using randomness r to n secret shares

(s1, . . . , sn).
2. Reconstruct({sij

}t
j=1) → s′: Given t shares it reconstructs some secret s′.

The hiding property says that the joint distribution of t shares si is independent of s.
We can instantiate TSS with Shamir’s secret sharing scheme [37].

2.2.4 Digital Signature
Finally, there are keys (skP, vkP), for all P ∈ P, for a digital signature scheme DS with unique
signatures.

3 Weak Verifiable Secret Sharing

In this section we define a weak VSS protocol. It is weak in the sense that it is sometimes
not hiding. But it is always binding and live (allows reconstruction). There is a designated
dealer D, which is one of the participating parties. We assume D is given as part of session
identifier, sid = (D, sid′), and hence is known by all parties when the instance is created.

Syntax. The syntax of wVSS is as follows.
Commit On input (commit, sid, m) to D it starts running the commitment protocol and

may as a result help produce a public output (see Definition 1) PubOutVSSCommit. On
input (commit, sid) to a participating party P ̸= D it starts running the commitment
protocol and may as a result help produce a public output PubOutVSSCommit.

Open On input (open, sid) after PubOutVSSCommit(sid, LedgerP) ̸= ⊥, a party P starts
running the open protocol and may as a result output (done-open, sid, mP, π), where π

is a proof that mP is the output. The proof can be checked by any party P′ for which
PubOutVSSCommit(sid, LedgerP′) ̸= ⊥ using wVSSVerify(π, m).

Security. The security properties of wVSS are as follows.
Termination

(1) If D is honest and gets input (commit, sid, m), and all other honest parties get input
(commit, sid) then eventually there is a public output PubOutVSSCommit.

(2) If PubOutVSSCommit occurred and all honest parties get input (open, sid) then even-
tually all honest parties give an output (done-open, sid, ·).

(3) If any honest party gives an output (done-open, sid, ·) then eventually all honest
parties give output (done-open, sid, ·).

Validity If D is honest and had input (commit, sid, m) and some honest P gave output
(done-open, sid, mP, π), then mP = m and ∀m′ : wVSSVerify(π, m′) = ⊤ ⇔ m′ = m.



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:9

Binding If D is corrupted, then the following holds. When the first honest party observes
public output PubOutVSSCommit then one can in poly-time compute from the view of the
adversary up to this point, a message m such that if later an honest party P gives output
(done-open, sid, mP, π) then mP = m and ∀m′ : wVSSVerify(π, m′) = ⊤ ⇔ m′ = m.

β-Weak Hiding If D is honest then for each session sid it holds with probability β > 0 at
a point in time t before any honest party got input (open, sid) that m is hidden in the
view of the adversary at time t, i.e., if m = mb for (m0, m1) picked by the adversary and
a uniformly random bit b, then the adversary cannot guess b better than at random.

Construction. The central idea of our wVSS construction is to have a dealer choose a
secret seed σ and secret share it unto a random holding committee and put on the ledger an
encryption of each of the shares under the public key of the holder, this vector of encryptions
is called the setup. If this was done correctly any t + 1 honest parties can decrypt their shares
and use them to reconstruct σ. All randomness for the secret sharing and the encryption will
be generated from σ using a PRG. This allows the committee to rerun the setup procedure
and check consistency with the published setup after reconstruction. This ensures that if
anyone t+1 parties can reconstruct to some value σ, then all shares are correct, and therefore
all subsets of t + 1 shares reconstruct to the same σ. We also use randomness derived from σ

to encrypt m and include the encryption in the setup. We cannot let the dealer pick the
holding committee as we need enough honest parties on it to avoid deadlock of reconstruction.
Therefore the holding committee is sampled pseudorandomly from the session identifier sid.

We use nvss and τvss to define the size of the holding committee sampled by the dealer,
and the reconstruction threshold in the holding committee, respectively. To ensure weak
hiding these parameters should be chosen such that the sampled committee has at most τvss
corruptions with constant probability at least β, and to ensure liveness less than nvss − τvss
should be corrupted except with negligible probability. The scheme makes use of a signature
scheme DS (Section 2.2.4), an encryption scheme PKE with full decryption (Section 2.2.1), a
threshold secret-sharing scheme TSS (Section 2.2.3), a pseudorandom generator PRG, and a
hash function H modelled as a random oracle.

Algorithm 1 Scheme wVSS, algorithm Commit, where an instance sid of wVSS is created at point
p on Ledger. Code for process Pi.

1: function commit_value(σ, C)
2: ρ = PRG(H(σ))
3: mmask

$ρ← {0, 1}λ

4: (s1, . . . , snvss )
$ρ← TSS.Share(σ)

5: for j in C do
6: rj

$ρ← {0, 1}λ; ej ← PKE.Encekj (sj , rj)
7: return ((e1, . . . , envss ), mmask)

8: upon input (commit, sid, π, m) where sid = (D, sid′) and Pi = D do // only dealer D
9: (H1, . . . , Hnvss )← SampleCommitteep(sid, nvss)
10: σ ← DS.SignskD

(sid)
11: ((e1, . . . , envss ), mmask)← commit_value(σ, (H1, . . . , Hnvss ))
12: broadcast (sid, π, (e1, H1) . . . , (envss , Hnvss ), m⊕mmask) on Ledger

We implement Commit in Algorithm 1. In order to commit to a chosen value m, D first
pseudorandomly samples a holding committee of size nvss (line 9). We say that the committee
is “assigned” to D, as D cannot influence it without getting rejected as public output. The

AFT 2023



31:10 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

dealer then computes a signature σ on sid, obtaining a unique and unpredictable value. Then
D commits to σ by secret-sharing it to the committee. This logic is extracted in an auxiliary
function commit_value. It computes a random tape ρ = PRG(H(σ)). This random tape
is used in all subsequent steps that require randomness. Specifically, in line 3 a random
message mmask is sampled, in line 4 the value σ is secret-shared to the members of the
holding committee C using an (nvss, τvss)-TSS, and in lines 5– 6 the shares of σ are encrypted
to the committee members. Each of these values are sampled pairwise independently from ρ.
Finally, D broadcasts its VSS setup on Ledger (line 12). This VSS setup serves as a public
output signalling that the message is committed and can at this point only be opened to some
unique value–which could be ⊥. We define the function PubOutVSSCommit(Ledger, (D, sid′))
as the earliest (in Ledger) message

(
(D, sid′), π, (e1, H1) . . . , (envss , Hnvss), m

)
which is signed

by D, where VerifyCommittee((D, sid′), H1, . . . , Hnvss) = 1. If no such message exists in Ledger,
then PubOutVSSCommit(Ledger, sid) = ⊥.

Algorithm 2 Scheme wVSS, algorithm Open, where an instance sid of wVSS is created at point p

on Ledger. Code only for process Pi is in the committee of instance sid, i.e., Pi is one of the Hj in
the VSS-setup (sid, (e1, H1) . . . , (envss , Hnvss ), mmasked) published on Ledger.

State:
13: validShares[sid]← [ ]

14: upon input (open, sid) such that PubOutVSSCommit(LedgerPi
, sid) ̸= ⊥ do

15: let ((e1, H1) . . . , (envss , Hnvss ), mmasked) = PubOutVSSCommit(LedgerPi
, sid)

16: let C = {H1, . . . , Hnvss}
17: (s′

i, r′
i)← Decdki (ei)

18: e′
i ← Enceki (s′

i, r′
i)

19: if e′
i = ei then

20: send (share, s′
i, r′

i) to parties in C
21: else
22: create zk-proof Wi that ei decrypts to (s′

i, r′
i)

23: send (complaintEncryption, sid, Wi, s′
i, r′

i) to parties in C

24: upon deliver (share, sj , rj) from Pj do
25: if ej = Encekj (sj , rj) then
26: append sj to validShares[sid]

27: upon |validShares[sid]| = τvss + 1 do
28: let

(
sj1 , . . . , sjτvss+1

)
= validShares[sid]

29: σ′ ← TSS.Reconstruct({sjk}j∈[τvss+1])
30: if DS.VervkD (σ′, sid) = 0 then
31: output (done-open, sid,⊥, validShares[sid])
32: ((e′

1, . . . , e′
nvss ), mmask)← commit_value(σ′)

33: if (e′
1, . . . , e′

nvss ) ̸= (e1, . . . , envss ) then
34: output (done-open, sid,⊥, validShares[sid])
35: else
36: output (done-open, sid, mmask ⊕mmasked, σ′)

37: upon deliver c = (complaintEncryption, sid, Wj , sj , rj) do
38: e′

j ← PKE.Encekj ((sj , rj))
39: if e′

j ̸= ej and Wj is valid then
40: output (done-open, sid,⊥, c)



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:11

We implement Open in Algorithm 2. On input open, and after
PubOutVSSCommit(Ledger, sid) ̸= ⊥, a party in the holding committee of the sid in-
stance parses the output as a VSS setup. Party Pi then decrypts ei to get its share and
the randomness used for encryption, (si, ri) (line 17). It then re-encrypts (si, ri) (line 18)
to verify that the encryption was done correctly (line 19). If the encryption is valid they
send (si, ri) to the other parties, otherwise it sends a verifiable complaint (lines 22–23). The
complaint includes a that ei decrypts to (s′

i, r′
i).

Upon receiving a share from Pj (line 24), party Pi verifies that the share sent by Pj

indeed corresponds to the value ej published on Ledger. If this is the case, the share is
considered valid. Observe that the share the dealer created for Pj might be wrong in the
first place. This is detected upon reconstruction. Specifically, once τvss + 1 valid shares
are received (line 27), Pi runs the reconstruction of TSS to get back some σ′, which should
be a signature on sid computed by D. Party Pi first verifies the signature and, if valid, it
repeats the steps performed by D to secret-share σ′ (line 32). Observe that, given σ′, all
steps in commit_value() are deterministic. Hence, if the reconstructed σ′ is the same as the
σ computed by the dealer, then commit_value(σ′) will return the same values as the ones
posted on Ledger by D or we detect that the dealer cheated and output ⊥. This is checked
in line 33. Finally, upon delivering a complaint, sent by some party Pj , party Pi verifies
the complaint and, if valid, outputs ⊥. Note that no party can produce a valid complaint if
the check in line 33 goes through. The wVSSVerify check can simply be implemented by a
function that when given an encryption complaint checks if it is valid as in line 37, and when
given a set of shares checks that they are all valid and treats them as input to the activation
rule in line 27 to see that the same output is obtained. When the output of wVSS needs to
be distributed to the full set of parties, each party on the committee simply forwards their
(done-open, sid, mP, π) message to the remaining parties. Note that even though the proof
of the outputs can differ, an outside party only needs to receive one. Hence, in gossiping
networks the output messages can be deduplicated by only forwarding the first valid one to
lower communication complexity.

4 Generating an Unpredictable Seed

In this section we define a seed-generation protocol seed. A seed can be thought of as a
perfect coin flip: there is agreement on the output and its value is unpredictable before the
protocol starts.

Syntax. The syntax of seed is as follows:
Commit On input (seed, sid) in a session with session identifier sid a party starts running

the commit protocol and may as a result public output PubOutSeedCommit.
Open On input (seed-open, sid), which must be given after public output

PubOutSeedCommit, in a session with id sid a party starts running the opening pro-
tocol and may as a result output (done-seed, sid, c), for c ∈ {0, 1}λ.

Security. The security properties of seed are as follows:
Termination If all honest parties get inputs (seed, sid) then eventually all honest parties

get public output PubOutSeedCommit.
If all honest parties get correct inputs (seed-open, sid) then eventually all honest parties
give an output (done-seed, sid, ·).

AFT 2023



31:12 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Agreement If two honest parties have outputs (done-seed, sid, cP) and (done-seed, sid, cQ)
then cP = cQ. Call the common value csid.

Unpredictability For each session sid it holds that csid is unpredictable before the first honest
party gets input (seed-open, sid).

Algorithm 3 Scheme seed, algorithm Commit, where an instance sid of seed is created at some
point p on Ledger. Code for process Pi.

41: upon input (seed, sid) do
42: C ← SampleCommittee(sid, mseed)
43: for j ∈ [mseed] such that C[j] = Pi do
44: r

$← {0, 1}λ

45: wVSS(commit, ((Pi, j), sid), r)

Algorithm 4 Scheme seed, algorithm Open, where an instance sid of seed is created at some point
p on Ledger. Code for process Pi.

46: State:
47: openings[sid]← [ ]

48: upon input (seed-open, sid) such that PubOutSeedCommit(sid, Ledger) ̸= ⊥ do
49: setups← PubOutSeedCommit(sid, Ledger)
50: for j ∈ [wseed] do
51: sidj ← setups[j]
52: wVSS(open, sidj)

53: upon deliver (done-open, sidj , r, π) do
54: if j ∈ [wseed] ∧ wVSSVerify(π, r) then
55: append m to openings[sid]

56: upon |openings| = wseed

57: output (done-seed, sid,
⊕

r∈openings[sid] r)

Construction. The protocol uses parameters mseed and wseed. The idea is to sample mseed
parties in P to contribute a wVSS setup, asynchronously wait for the first wseed setups and
use the XOR of them as a seed. We discuss in Section 7 how to set these parameters, such
that at least one good setup (that is, from an honest proposer and with a committee with at
most τvss corrupted members) appears on the ledger, except with negligible probability.

The protocol is started at some starting point p of Ledger, with associated stake Σp and
committee sampling mechanism SampleCommitteep(). We implement Commit in Algorithm 3
and Open in Algorithm 4. A party that is elected to contribute a wVSS setup (line 42)
picks a random r and starts an instance of wVSS to share r (lines 44–45). Once wseed wVSS
protocols with session identifiers sidj = (Pj , k, sid), where C[k] = Pj , have given public output
PubOutVSSCommit on Ledger, then we define PubOutSeedCommit to be the ordered tuple
of the session identifiers of the first wseed such outputs. After this point, the value of the
nonce is implicitly defined by the state of the ledger, and on input (seed-open, sid), parties
start running the Open algorithm on these wseed instances of wVSS (lines 48–52). By design,
the holding committee of each of these instances has enough honest members for wVSS to
terminate. The final seed value is defined as the XOR of the values output by each Open
(line 57).



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:13

5 Weak Honest-Dealer Coin-Flip

In this section we define the weak honest-dealer coin-flip (wHDCF) protocol. In wHDCF
there is a designated dealer D, which is one of the participating parties. We assume D is
given as part of session identifier, sid = (D, sid′), and hence is known by all parties when
the instance is created. The scheme is weak in the sense that parties may output ⊥ as the
value of the coin, but if two honest parties output a value in {0, 1}, then it will be the same.
It is honest-dealer as the coin value becomes predictable for a corrupted D. The scheme
makes use of a committee verification mechanism SampleCommitteep() proportional to stake
at point p (Section 2.1), an encryption scheme with full decryption PKE (Section 2.2.1), and
an (ncoin, τcoin)-threshold weak coin flip scheme CF (Section 2.2.2). Here ncoin and τcoin are
protocol parameters, for which we choose specific values in Section 7.

Syntax. The syntax of weak honest-dealer coin-flip is as follows:
Deal On input (deal, sid) a participating party starts running the dealing protocol of CF

and may as a result produce a public output PubOutSingleDeal.
Flip On input (flip, sid, cid), for coin identifier cid, after PubOutSingleDeal(sid, Ledger) ̸= ⊥,

a party starts running the flip protocol of CF and outputs (done-flip, sid, cid, s, π), where
s ∈ {⊥} ∪ {0, 1}λ and π is a proof that s is the output of the coinflipping protocol. The
proof can be checked by any party P′ for which PubOutSingleDeal(sid, LedgerP′) ̸= ⊥
using wHDCFVerify(π, m).

Security. The security properties of wHDCF are as follows.
Termination

(1) If D is honest and all honest parties get input (deal, sid), then eventually
PubOutSingleDeal(sid, Ledger) ̸= ⊥.

(2) If, after PubOutSingleDeal(sid, Ledger) ̸= ⊥, all honest parties get input (flip, sid, cid),
then eventually all honest parties give output (done-flip, sid, cid, ·), except with
negligible probability.

Weak Agreement If two honest parties output (done-flip, sid, cid, cP, π) and
(done-flip, sid, cid, cQ, π), such that cP ≠ ⊥ and cQ ̸= ⊥, then cP = cQ, except
with negligible probability. The same holds if cQ ≠ ⊥ and wHDCFVerify(π, cQ) ̸= ⊥.
Moreover, if D is honest, then no honesty party P outputs cP = ⊥.

Honest-Dealer β-Unpredictability If dealer D of session sid is honest, then each coin flip cid
is independently unpredictable with some constant probability β > 0, where β is defined
when PubOutSingleDeal(sid, Ledger) ̸= ⊥ and is independent of cid.

In the full version of this work [3] we formalize the Honest-Dealer β-Unpredictability
property and show the proofs.

Construction. In a high level, the scheme works as follows. Dealer D is assigned a coin-
holding committee of size ncoin and creates a coin setup for an (ncoin, τcoin)-threshold
coin scheme CF for this committee. Termination is achieved by appropriately setting the
parameters and from the pseudorandom nature of the committee: if the dealer completes the
setup, there are at least τcoin + 1 honest parties in the committee, except with negligible
probability. The weak agreement property is achieved by verifiable complaints against a
corrupted dealer. Upon receiving a valid complaint, a party terminates the Flip protocol
outputting ⊥. If, additionally, D is honest, then our protocol guarantees unpredictability
with constant probability β, defined as the probability of having at most τcoin corruptions in
the committee, and depending only on ncoin and τcoin.

AFT 2023



31:14 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Algorithm 5 Scheme wHDCF, algorithm Deal, where an instance sid of wHDCF is created at point
p on Ledger. Code for process Pi.

58: upon input (deal, sid) where sid = (D, sid′) and Pi = D do // only dealer D
59: (H1, . . . , Hncoin )← SampleCommitteep(sid, ncoin),
60: (vk, sk1, . . . , skncoin )← CF.Setup(ncoin, τcoin)
61: for j ∈ [ncoin] do
62: rj

$← {0, 1}λ; ej = PKE.Encekj ((skj , rj))
63: broadcast (sid, vk, (H1, e1), . . . , (Hncoin , encoin )) on Ledger

In Algorithm 5 we implement Deal. The dealer first (line 59) samples the coin-holding
committee of size ncoin and then (line 60) uses CF to create a coin setup for it. The coin setup
includes secret keys sk1, . . . , skncoin and verification key vk. Each secret key ski is encrypted to
party’s Pi long term private key eki using a fresh randomness ri (lines 61–62). The coin setup
is broadcast on Ledger. When a coin-setup is included in Ledger we define the public output
PubOutSingleDeal(sid, Ledger) as (vk, (H1, e1), . . . , (Hncoin , encoin)) if the included committee
verifies using VerifyCommittee. Otherwise the output is ⊥.

In Algorithm 6 we implement Flip. Only parties in the coin-holding committee run it.
When Pi gets input (flip, sid, cid) and PubOutSingleDeal(sid, LedgerPi

) ̸= ⊥, it first reads the
coin setup and tries to decrypt ei to obtain its key share (line 70). Scheme PKE returns sk′

i

and the randomness r′
i that D is supposed to have used at encryption time. Party Pi checks

whether D has indeed done so by re-encrypting (sk′
i, r′

i) and checking the result against ei. If
it is different, Pi sends a complaintEncryption message that includes a zero-knowledge
proof that ei decrypts to (sk′

i, r′
i) (lines 71–73) and stops handling the Flip event. Otherwise,

Pi can prove correct decryption of ei in a complaint message by sending (sk′
i, r′

i). Party Pi

then verifies its key share against the verification vector vk published in the coin setup, and,
if it is invalid, sends a complaintKeyShare message to C (lines 74–75) and returns. If
the check passes, it creates a coin share using the threshold-coin scheme CF (line 76) and
sends to the committee C. All complaints are verifiable: complaintEncryption is valid
if the zk-proof Wj , proving that the published ej decrypts to (skj , rj)), is valid, and the
re-encryption of (skj , rj) gives something different from ej (lines 81–84). complaintShare
is valid if the re-encryption of (skj , rj) gives the published ej and the key share skj is deemed
invalid by the CF scheme (lines 85–88). Party Pi outputs in two cases, whichever comes first.
First, upon collecting τcoin + 1 valid coin shares (line 89), in which case the value of the coin
is reconstructed using the underlying CF scheme. Second, upon receiving a valid complaint
(line 94), in which case a ⊥ value is output. The wHDCFVerify check can be implemented by
a function that when given a complaint checks if it is valid according to the activation rules
in line 81 or line 85, and when given a set of shares checks that they are valid and reruns the
activation rule in line 89.

6 Weak Multiple-Dealer Coin-Flip

In this section we define the weak multiple-dealer coin-flip (wMDCF) protocol. It is weak
as it inherits the agreement property from wHDCF: parties may output ⊥, but if two
honest parties output a value in {0, 1}, then it will be the same. It is called multiple-dealer
as there are multiple dealers, forming a proposers committee, selected pseudorandomly
using SampleCommitteep(). The protocol uses parameters mwMDCF and wwMDCF. Parameter
mwMDCF refers to the size of the proposers committee, i.e., the number of parties that are



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:15

Algorithm 6 Scheme wHDCF, algorithm Flip (cid), where an instance sid of wHDCF is cre-
ated at point p on Ledger. Code for process Pi, Pi is one of the Hj in the coin-setup
(sid, vk, (H1, e1), . . . , (Hncoin , encoin )) published on Ledger.

State:
64: validShares[sid][cid]← [ ], for each sid and cid
65: justifiedComplaint[sid][cid]← ⊥, for each sid and cid
66: terminated[sid][cid]← 0, for each sid and cid

67: upon input (flip, sid, cid) such that PubOutSingleDeal(sid, Ledger) ̸= ⊥ do
68: (vk, (H1, e1), . . . , (Hncoin , encoin ))← PubOutSingleDeal(sid, Ledger)
69: let C = {H1, . . . , Hncoin}
70: (sk′

i, r′
i) = PKE.Decdki (ei)

71: if ei ̸= PKE.Enceki ((sk′
i, r′

i)) then
72: create zk-proof Wi that ei decrypts to (sk′

i, r′
i)

73: send (complaintEncryption, sid, cid, Wi, sk′
i, r′

i) to parties in C; return
74: if CF.VerifyKeyShare(vk, i, sk′

i) = 0 then
75: send (complaintKeyShare, sid, cid, sk′

i, r′
i) to parties in C; return

76: si = CF.CreateShare(sk′
i, cid)

77: send (coinShare, sid, cid, si) to parties in C

78: upon deliver (coinShare, sid, cid, sj) from Pj do
79: if CF.VerifyCoinShare(vk, cid, sj) = 1 then
80: append sj to validShares[sid][cid]

81: upon deliver c = (complaintEncryption, sid, cid, Wj , skj , rj) do
82: e′

j ← PKE.Encekj ((skj , rj))
83: if e′

j ̸= ej and Wj is valid then
84: justifiedComplaint[sid][cid]← c

85: upon deliver c = (complaintKeyShare, sid, cid, skj , rj) do
86: e′

j ← PKE.Encekj ((skj , rj))
87: if e′

j = ej and CF.VerifyKeyShare(vk, j, skj) = 0 then
88: justifiedComplaint[sid][cid]← c

89: upon |validShares[sid][cid]| = τcoin + 1 and terminated[sid][cid] = 0 do
90: let

(
sj1 , . . . , sjτcoin+1

)
= validShares[sid][cid]

91: s← CF.Combine(cid, {sjk}k∈[τcoin+1])
92: terminated[sid][cid]← 1
93: output (done-flip, sid, cid, s, validShares[sid][cid])

94: upon justifiedComplaint[sid][cid] ̸= ⊥ and terminated[sid][cid] = 0 do
95: terminated[sid][cid]← 1
96: output (done-flip, sid, cid,⊥, justifiedComplaint[sid][cid])

selected to act as a dealer in an instance of wMDCF. Parameter wwMDCF refers to the number
of parties in the proposers committee we asynchronously wait for. In Section 7 we show how
to set these parameters, such that at least one good setup appears on the ledger, except with
negligible probability, and a constant rate γ of the setups are good.

Syntax. The syntax of weak Multiple-Dealer Coin-Flip (wMDCF) is as follows:
Deal On input (deal, sid) a participating party starts running the dealing protocol and may

as a result help produce a public output PubOutMultiDeal.

AFT 2023



31:16 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

Flip On input (flip, sid, cid) for a coin identifier cid, after PubOutMultiDeal(sid, Ledger) ̸= ⊥,
a party starts running the coin-flip protocol and outputs (done-flip, sid, cid, s), where
s ∈ {⊥} ∪ {0, 1}λ.

Security. The security properties of honest-dealer coin-flip are as follows. For the agreement
and unpredictability properties we use a probability γ > 0, called the good-setup probability,
which depends on the parameter wwMDCF and on the hiding probability β of wHDCF, and is
constant and independent of sid and cid.
Termination

(1) If all honest parties get input (deal, sid) then eventually there is public output
PubOutMultiDeal(sid, Ledger) ̸= ⊥, except with negligible probability.

(2) If all honest parties get input (flip, sid, cid) then eventually all honest parties give an
output (done-flip, sid, cid, ·), except with negligible probability.

γ-Agreement For each session sid and coin identifier cid it holds that, if two honest parties
output (done-flip, sid, cid, cP) and (done-flip, sid, cid, cQ), such that cP ≠ ⊥ and cQ ≠
⊥, then cP = cQ, except with negligible probability. Moreover, with probability γ it holds
that no honest party outputs ⊥ as the value of the coin. All together, this means that,
if two honest parties have outputs (done-flip, sid, cid, cP) and (done-flip, sid, cid, cQ),
then cP = cQ ̸= ⊥ with probability γ.

γ-Unpredictability For each session sid and coin identifier cid it holds that the value of coin
cid is unpredictable with probability γ.

In the full version of this work [3] we formalize the agreement and unpredictability
properties and show the proofs.

Algorithm 7 Scheme wMDCF, algorithm Deal, where an instance sid of wMDCF is created at
some point p on Ledger. Code for process Pi.

State:
97: setups[wwMDCF]← [ ]

98: upon input (deal, sid) do
99: C ← SampleCommittee(sid, mwMDCF)
100: for j ∈ [mwMDCF] such that C[j] = Pi do
101: wHDCF(Deal, ((Pi, j), sid))

102: upon wwMDCF setups PubOutMultiDeal(((Pj , k), sid), Ledger) ̸= ⊥ where C[k] = Pj

103: Let setups contain the identifiers which gave public output sorted deterministically
104: seed(seed, sid)

Construction. On Algorithm 7 we implement Deal. On input (deal, sid), a protocol
instance is created with some starting point p. For each time Pi is sampled to be a dealer
in a wHDCF instance (line 99), it creates a new instance of wHDCF and runs the Deal
algorithm. Every party waits for wwMDCF instances of the wHDCF protocol (started by
the dealers sampled in line 99) to give public output on the Ledger. When this happens,
parties run an instance of the seed protocol (line 104). This seed will be later used in the
Flip algorithm of wMDCF to pseudorandomly choose one of the wwMDCF setups. We define
PubOutMultiDeal = PubOutSeedOpen, so the output of the seed protocol signals the end of
the dealing phase.



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:17

Algorithm 8 Scheme wMDCF, algorithm Flip (cid), where an instance sid of wMDCF is created
at some point p on Ledger. Code for process Pi.

105: upon input (flip, sid, cid) such that PubOutMultiDeal(sid, Ledger) ̸= ⊥ do
106: j ← H(sid, cid, seed)
107: wHDCF(flip, setups[j], cid)

108: upon deliver (done-flip, sid, cid, s, π)
109: if wHDCFVerify(π, s) then
110: output (done-flip, sid, cid, s)

In Algorithm 8 we implement Flip. On input (flip, sid, cid) and after observing public
output PubOutMultiDeal every party Pi uses a cryptographic hash function H, to hash
(sid, cid, seed) into j ∈ {1, . . . , wwMDCF} (line 106). Then, the algorithm Flip of the wHDCFj

instance is used to compute the value of coin cid. We assume that each party on the committee
of the selected wHDCF instance disseminate the output to the ground population.

7 Setting the Parameters

▶ Definition 2 (Binomial distribution). Let X a random variable counting the number of
successes out of n trials, where success happens with probability p. Then X follows the
binomial distribution, i.e., X ∼ B(n, p) and the probability that exactly k successes happen is

Pr[X = k] = Pr[B(n, p) = k] =
(

n

k

)
pk(1 − p)(n−k). (2)

7.1 Sampling a holding committee for wVSS and wHDCF
Let n denote the size of a holding committee and τ < n/2 denote a number, such that
the holding committee has at most τ corruptions with a constant probability β, and more
than n − τ corruptions only with a negligible probability ϵ = 2−λ, where λ is the security
parameter. The idea is the following. If we use a (n, τ)-secet-sharing or common-coin scheme
in the committee, then the committee is hiding with probability β and live with probability
1 − ϵ. These capture the parameters of both the wVSS and the wHDCF schemes. In wVSS
we have n ≜ nvss and τ ≜ τvss, and in wHDCF we have n ≜ ncoin and τ ≜ τcoin.

As discussed earlier, we model a committee-election mechanism as a black-box function
SampleCommittee(), which samples parties with probability proportional to their stake at some
well-defined point on the ledger. As SampleCommittee() does sampling with replacement, it
can be modelled with a binomial distribution. Using (2) we have that β =

τ∑
k=0

Pr[B(n, 1−p) =

k] and ϵ =
n∑

k=n−τ+1
Pr[B(n, 1 − p) = k], for p = 2/3. In Table 1 we show various combinations

for n and τ , such that ϵ ≤ 2−λ for λ = 60, and the resulting hiding probability β.

7.2 Sampling a proposer committee for seed and wMDCF
In protocols seed and wMDCF parties have a chance to participate in the proposers committee,
i.e., to win the right to become a dealer in a wVSS or wHDCF instance, respectively. Parties
are again sampled using SampleCommittee (Section 7.1), which returns a committee of size

AFT 2023



31:18 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

m, but the protocols only wait for the first w setups to appear on Ledger and only use those.
In seed, we have m ≜ mseed and w ≜ wseed, and in wMDCF we have m ≜ mwMDCF and
w = wwMDCF.

Necessary conditions. As before, we need to make sure that, except with negligible
probability ϵ = 2−λ, there are at least w honest parties on the committee to ensure termination.
This is bounded as ϵ in Section 7.1 but with n and τ replaced by m and w − 1 respectively.
But now we additionally need to make sure that, except with negligible probability at least
one of the w setups that appear on Ledger is a good setup, that is, from an honest party who
sampled a committee with less than τ corruptions. This condition corresponds exactly to the
setup in Section 7.1 being hiding, but with the probability p changed to account for the fact
that we are interested in the probability of an honest party who provided a good setup. Since
an honest dealer has a β (which depends on the parameters of the subprotocol) probability

of providing a good setup, we set p = β · 2/3 and require
w−1∑
k=0

Pr[B(m, 1 − p) = k] ≥ 1 − 2−λ.

Good-setup probability. Finally, specifically for wMDCF, we calculate the probability γ,
defined in Section 6, that a setup published on Ledger is good, i.e., the probability of getting
an unpredictable and agreed upon value in each coin flip. We derive this from the expected
number of bad setups, which (by linearity of expectation) is m · (1 − β · 2

3 ), and from the fact
that the adversary can schedule the order of messages, causing all bad setups and, hence,
only w − m · (1 − β · 2

3 )) good setups, to appear on Ledger. This gives us the fraction of good
setups that in expectation appear on the ledger as

γ =
w − (m · (1 − β · 2

3 ))
w

. (3)

Putting it all together. We show the resulting parameters with λ = 60 bits of security
in Table 1. As an example, for a holding committee with size n = 259 and reconstruction
threshold τ = 103, we get hiding probability β = 98.7%. Then we can sample a proposers
committee of size m = 653 and wait for w = 327. This results in 84, 693 encrypted shares
being posted on the Ledger, and for wMDCF it gives a good-setup probability γ = 31.8%.

8 Analysis of Communication Complexity

To demonstrate the power of being able to sample concretely small committees, we analyze
the concrete complexity of our protocols. Note that a purely asymptotic analysis would not
show any gains over simply using a state of the art ADKG protocol with subset sampling
and near optimal resilience. We give all sizes in bits, but for simplicity we treat group and
field elements as λ bits. For instance, we use 3λ as the size of an encrypted share, which
(using Section 2.2.1) consists of 2 group elements and a symmetrically encrypted share of
a secret of size λ. This would not be precise for concrete instantiations, but it would only
change our estimates by a small constant factor which depends, for example, on the concrete
curves being employed.

We define ATOB complexity as the cost of including a message of a given size in Ledger.
In the following “broadcast” refers to broadcasting through the ATOB and “multicast” refers
to a party sending a message to all parties. As the communication cost of a broadcast and
multicast depend on the implementation, we keep these costs opaque and report results as
a number of broadcasts and multicasts required. For inter-committee communication we
assume point-to-point channels and give results in total number of bits sent.



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:19

Table 1 This table shows possible values (subject to conditions in Section 7.1) for the holding
committee parameters, n and τ , and the resulting hiding probability β. For each obtainable β, it
shows possible values (subject to conditions in Section 7.2) for the proposers committee parameters,
m and w, and the resulting good-setup probability γ. In both seed and wMDCF schemes, each of
the w dealers encrypts keys for a committee of size n, which gives a total of m ∗ w encryptions.

n τ β m w γ n · w
653 320 > 1− 260 653 321 32.2% 209.6K

300 125 99.9% 653 322 32.3% 96.6K

280 114 99.6% 653 323 32.1% 90.4K

275 111 99.4% 653 324 32.0% 89.1K

271 109 99.3% 653 325 32.0% 88.1K

265 106 99.0% 653 326 31.9% 86.4K

261 104 98.8% 653 327 31.9% 85.3K

259 103 98.7% 653 327 31.8% 84.7K

257 102 98.6% 659 330 31.6% 84.8K

256 101 98.3% 672 337 31.3% 86.3K

254 100 98.1% 682 342 31.1% 86.9K

252 99 98.0% 692 347 30.8% 87.4K

The wVSS protocol has an ATOB complexity of 1 message of size nvss · 3λ + λ with
the encrypted shares and masked message in the setup. To distribute the output either
the secret of size λ is multicast or a complaint of size at most (τvss + 1) · 2λ (in case of
correctly encrypted shares reconstructing an inconsistent setup) is multicast. A priori, every
member of the committee needs to multicast the output, giving a multicast complexity of
nvss messages of size λ (or of size at most (τvss + 1) · 2λ, in which case the dealer can be
slashed). The remaining interaction consists of nvss committee members sending one message
with a decrypted share or a complaint of total size at most 4λ to the rest of the committee,
resulting in a total message complexity of at most nvss

2 · 4λ.
The seed protocol does not add any interaction besides running mseed instances of wVSS.

Only the first wseed of those to make it onto the ledger will result in interaction between
committe members, so the communication complexity is at most mseed ·nvss

2 ·4λ. The ATOB
complexity of the deal phase of seed is mseed messages of size nvss · 3λ + λ. To disseminate
the outputs there is an additional (wseed − s) · nvss multicasts of size λ and s · nvss multicasts
of size at most (τvss + 1) · 2λ, where s is the number of parties that can be slashed.

The wHDCF protocol has an ATOB complexity of 1 message of size ncoin · 3λ + λ and
no additional communication in the initial setup phase. The message complexity of each
coin flip is at most ncoin

2 · 4λ to reconstruct the coin (or ⊥) in the committee, and then
to disseminate the value to the ground population each committee member multicasts the
reconstructed coin or a complaint of size at most 4λ, resulting in at most ncoin

2 · 4λ bits
communicated in addition to ncoin multicasts of size 4λ. The deal phase of the wMDCF
protocol has the same complexity as mwMDCF deal phases of wHDCF and a single run of the
seed protocol. That is, an ATOB complexity of mwMDCF messages of size ncoin · 3λ + λ and
mseed messages of size nvss · 3λ + λ, and a multicast complexity of wseed · nvss messages of
size at most (τvss + 1) · 2λ, in addition to a communication complexity of mseed · nvss

2 · 4λ

bits. Whenever a coin needs to be flipped using wMDCF, the message complexity is that of
running the selected wHDCF protcol.

AFT 2023



31:20 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

To refresh the setup after the stake distribution has changed, one would need to first
run an instance of the seed protocol and then the deal phase of the wMDCF protocol. Using
the best parameters in Table 1 the concrete cost of refreshing the setup is 1959 messages of
size 778λ, and 169, 386 multicasts of size at most 208λ. The communication complexity of
flipping a coin and disseminating it to all parties is 2592 · 4λ in addition to 259 multicasts
of 4λ bits. Employing the optimizations in Remark 3 reduces the multicast complexity of
refreshing the setup to 654 messages of size at most (τvss + 1) · 2λ. Similarly the cost of
distributing a coin becomes the same as 1 multicast of size 4λ.

If we were to assume t < 0.3n in the paradigm of “subset sampling with almost optimal
resilience” [5], and need a committee with honest supermajority with probability 1−2−60, then
one would need to sample a committee with 16037 parties [22, Table 1]. If we then instantiate
a state of the art ADKG protocol with O(n3λ) communication using the committee, assuming
for the sake of an example the concrete cost is n3λ, then we get a complexity of > 4 · 1012λ.
It is then clear that our approach is far cheaper for all but extremely large values of n.

▶ Remark 3 (Deduplicating multicasts). Notice that each party only needs to receive a
single proof of output for each of the wseed wVSS setups. Since large-scale P2P networks
usually employ gossiping with deduplication of previously forwarded messages, each node
can consider different output justifications from the same wVSS as identical for the purpose
of decuplication. We conjecture that in most gossip-based P2P networks this results in a
communication cost which is less than that of a single multicast, as it can be seen as a
multicast from a single source which has gotten a headstart by being predistributed to O(λ)
nodes. With this instantiation the cost of disseminating the wVSS outputs from the seed
protocol becomes the same as multicasting wseed messages of size at most (τvss + 1) · 2λ over
the gossip network. The same deduplication trick can be employed when disseminating the
coin flips, reducing the cost of distributing the coin to the same as 1 multicast of size 4λ.

9 Conclusion

In this work we have presented protocols for generating randomness in an asynchronous PoS
setting with dynamic participation. They are practical and concretely efficient, employ no
trusted setup, and they make use of small committees. We have computed concrete numbers
for the committees. Specifically, we can have a committee of m = 653 proposers, each
generating a setup for n = 359 holders, resulting in approx. 85K encrypted values posted
on Ledger. For κ = 60 bits of security and assuming optimal corruption 1/3 in the ground
population, our protocols are live with all but negligible probability. Our common-coin
protocol is unpredictable and agreed-upon with probability approx. 31.8%, and, as it is based
on threshold cryptography, the setup can be used for a flipping a polynomial number of coins.
These committee sizes result from the fact that we require not all but only a constant factor
of our setups to be good.

References

1 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo:
Adaptively secure packed asynchronous verifiable secret sharing and asynchronous distributed
key generation. IACR Cryptol. ePrint Arch., page 1759, 2022.

2 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In PODC, pages
363–373. ACM, 2021.



O. Alpos, C. Cachin, S. H. Kamp, and J. B. Nielsen 31:21

3 Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen. Practical
large-scale proof-of-stake asynchronous total-order broadcast. IACR Cryptol. ePrint Arch.,
page 1103, 2023.

4 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In PODC, pages 27–30. ACM, 1983.

5 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. In TCC (1), volume 12550 of Lecture Notes in
Computer Science, pages 353–380. Springer, 2020.

6 Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In Public Key Cryptography, volume 2567 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

7 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 757–788. Springer,
2018.

8 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J.
Cryptol., 17(4):297–319, 2004.

9 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 524–541. Springer, 2001.

10 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219–246,
2005.

11 Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup, and
Dominic Williams. Internet computer consensus. In PODC, pages 81–91. ACM, 2022.

12 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC, pages 42–51. ACM, 1993.

13 Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested by public
entities. In ACNS, volume 10355 of Lecture Notes in Computer Science, pages 537–556.
Springer, 2017.

14 Ignacio Cascudo and Bernardo David. ALBATROSS: publicly attestable batched randomness
based on secret sharing. In ASIACRYPT (3), volume 12493 of Lecture Notes in Computer
Science, pages 311–341. Springer, 2020.

15 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. ALGORAND AGREE-
MENT: super fast and partition resilient byzantine agreement. IACR Cryptol. ePrint Arch.,
page 377, 2018.

16 Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically
efficient distributed randomness beacon. IACR Cryptol. ePrint Arch., page 221, 2023.

17 Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed randomness beacons.
IACR Cryptol. ePrint Arch., page 728, 2023.

18 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement WHP. In DISC, volume 179 of LIPIcs, pages 25:1–25:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

19 Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. In IEEE Symposium on Security and Privacy,
pages 2502–2517. IEEE, 2022.

20 Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and Ling
Ren. Practical asynchronous distributed key generation. In IEEE Symposium on Security and
Privacy, pages 2518–2534. IEEE, 2022.

21 Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 66–98. Springer, 2018.

AFT 2023



31:22 Practical Large-Scale Proof-Of-Stake Asynchronous Total-Order Broadcast

22 Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Gearbox: Optimal-size shard committees by leveraging the safety-liveness dichotomy. In CCS,
pages 683–696. ACM, 2022.

23 Drand. A distributed randomness beacon daemon, 2022. URL: https://drand.love.
24 Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS,

pages 427–437. IEEE Computer Society, 1987.
25 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus

with one faulty process. In PODS, pages 1–7. ACM, 1983.
26 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:

Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–68. ACM, 2017.
27 Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. J. ACM,

63(2):13:1–13:21, 2016.
28 Valerie King and Jared Saia. Correction to byzantine agreement in expected polynomial time,

JACM 2016. CoRR, abs/1812.10169, 2018.
29 Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. IACR

Cryptol. ePrint Arch., page 366, 2015.
30 Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,

pages 120–130. IEEE Computer Society, 1999.
31 Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Asynchronous byzantine agreement

with optimal resilience. Distributed Comput., 27(2):111–146, 2014.
32 Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/filecoin.

pdf, 2017.
33 Michael O. Rabin. Randomized byzantine generals. In FOCS, pages 403–409. IEEE Computer

Society, 1983.
34 Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness beacon protocols. In

ACISP, volume 13494 of Lecture Notes in Computer Science, pages 420–446. Springer, 2022.
35 David A. Wagner Ronald L. Rivest, Adi Shamir. Time-lock puzzles and timed-release crypto.

Technical report, Massachusetts Institute of Technology, 1996.
36 Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. Hydrand:

Efficient continuous distributed randomness. In IEEE Symposium on Security and Privacy,
pages 73–89. IEEE, 2020.

37 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
38 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail

Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
IEEE Symposium on Security and Privacy, pages 444–460. IEEE Computer Society, 2017.

https://drand.love
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

	p000-Frontmatter
	Preface

	p001-MovsowitzDavidow
	1 Introduction
	1.1 Motivation
	1.2 Verifiable Differentially Private Transactions
	1.3 Related Work
	1.3.1 Central Differential Privacy
	1.3.2 Local Differential Privacy Mechanisms


	2 Preliminaries
	2.1 Blockchain-Based Privacy-Preserving Transactions
	2.2 Differential Privacy
	2.3 Randomized Response
	2.4 Basic Cryptographic Building Blocks
	2.4.1 Commitment Schemes
	2.4.2 Digital Signatures
	2.4.3 Public Key Encryption

	2.5 Zero-Knowledge Proofs

	3 Overview of the VDP Transaction Scheme
	3.1 Participants
	3.2 Threat Model
	3.3 Components
	3.4 VDP Transaction Flow

	4 The VDP Transaction Scheme
	4.1 The {BindRandomness} Protocol
	4.2 The {VerRR} Mechanism
	4.3 The VDP Transfer
	4.3.1 The Binding Proof
	4.3.2 The Encrypted VDP Proof

	4.4 Security Analysis
	4.4.1 Preserving Integrity
	4.4.2 Preserving User Privacy


	5 Evaluation and Implementation
	6 Discussion
	6.1 The LDP Mechanism
	6.2 The Zero-Knowledge Proof Scheme
	6.3 Incentivising Conformation by Design

	7 Conclusions

	p002-Yaish
	1 Introduction
	1.1 Our Approach
	1.2 Motivating Example

	2 Background
	2.1 Cryptocurrencies
	2.2 Real-World Considerations of Miners
	2.3 Financial Options

	3 Model
	3.1 Mining Model
	3.2 Financial Model

	4 Theoretical Results
	4.1 Pricing an ASIC
	4.2 Pricing the Current Mining Opportunity
	4.3 Pricing the Next Mining Opportunity
	4.4 Pricing Relative to an Arbitrary Time
	4.5 Imitating Portfolio

	5 Empirical Evaluation
	5.1 Parameters
	5.2 Results

	6 Related Work
	7 Conclusion

	p003-Zhang
	1 Introduction
	2 Background
	2.1 Blockchain & Transaction Ordering
	2.2 Smart Contract & Decentralized Exchange
	2.3 Front-Running Attacks & Mitigation

	3 Strawman Protocols
	3.1 Strawman I: Sender Commit-and-Reveal
	3.2 Strawman II: The Trusted Custodian
	3.3 Strawman III: Threshold Encryption with Block Key

	4 System Overview
	4.1 System Goals
	4.2 Architecture Overview
	4.3 System and Network Model
	4.4 Threat Model

	5 F3B Protocol
	5.1 Preliminaries
	5.2 Protocol Outline
	5.2.1 Protocol based on TDH2
	5.2.2 Protocol based on PVSS

	5.3 Overhead Analysis
	5.4 TDH2 and PVSS: Pros and Cons

	6 Achieving the System Goals
	7 Security Analysis
	7.1 Front-Running Protection
	7.2 Replay Attack

	8 Incentive
	8.1 Spamming Protection
	8.2 Operational Incentive
	8.3 Slashing Protocol

	9 Evaluation
	9.1 Latency
	9.2 Throughput
	9.3 Reconfiguration in TDH2
	9.4 Storage Overhead

	10 Discussion
	10.1 Transition of Epoch
	10.2 Ethereum Gas Fees
	10.3 Verifiable Key Propagation
	10.4 Metadata Leakage
	10.5 Key Storage and Node Catchup

	11 Related Work
	12 Conclusion

	p004-Diamandis
	1 Introduction
	1.1 Related work

	2 Transactions and resources
	3 Resource allocation problem
	3.1 Setting prices using duality
	3.2 Properties
	3.3 Solution methods

	4 The cost of uniform prices
	5 Extensions
	6 Conclusion

	p005-Wang
	1 Introduction
	2 Model
	2.1 Participants
	2.2 Network assumptions
	2.3 Randomness

	3 Filecoin's Expected Consensus (EC)
	3.1 Leader Selection Protocol
	3.2 Block and Tipset Structure
	3.3 Fork Choice Rule and Weight Function
	3.4 Mining Algorithm

	4 Security Definitions
	5 Security Proof
	5.1 Nakamoto epochs
	5.2 Occurrence of Nakamoto epochs
	5.3 Waiting time for Nakamoto epochs
	5.4 Persistence and liveness

	6 n-split Attack
	6.1 Attack description
	6.2 Discussion

	7 Mitigations
	7.1 Replace EC by the Longest-chain Protocol in SPC
	7.2 Consistent Broadcast

	8 Limitations and Future Work
	9 Conclusion
	A Pseudocode for EC
	B Concentration Inequalities

	p006-Keller
	1 Introduction
	2 System Model
	3 The Tailstorm Protocol
	3.1 Chain Structure
	3.2 Honest Nodes
	3.3 Difficulty Adjustment
	3.4 Protocol Variant With Constant Rewards

	4 Fairness Under Protocol Compliance
	4.1 Analytical Orphan Rate Analysis
	4.2 Measuring Fairness in Simulation

	5 Attack Evaluation
	5.1 Network
	5.2 Observation Space
	5.3 Action Space
	5.4 Reference Policies

	6 Attack Search
	7 Tailstorm Cryptocurrency
	7.1 Transaction Handling
	7.2 Fast Confirmations
	7.3 Tailstorm Prototype

	8 Discussion
	9 Conclusion

	p007-Beaver
	1 Introduction
	2 Construction Intuition
	3 Related Work
	4 The STROBE Protocol
	4.1 Proof of Correctness of STROBE

	5 Security Model
	6 Proof of Security
	7 Extensions
	7.1 Dynamic Beacon Committees
	7.2 Succinct Proofs of Beacon Validation
	7.3 Deeper Blockchain Integration

	8 Applications
	8.1 Blockchain Light-clients
	8.2 Blockchain-based Gambling and Lotteries
	8.3 High-throughput Beacon Streams


	p008-Kawai
	1 Introduction
	2 Related work
	3 Dataset
	3.1 Cryptocurrency derivative exchanges
	3.1.1 Perpetual futures
	3.1.2 Performance indices
	3.1.3 Rankings
	3.1.4 Cryptocurrency prices

	3.2 Data collected

	4 Estimating the number of investors
	4.1 Number of investors
	4.2 Leaderboard data idiosyncracies

	5 Regression analysis
	5.1 Variables
	5.1.1 Daily user increase
	5.1.2 Prices

	5.2 Method
	5.2.1 Unit root test
	5.2.2 Principal Component Analysis
	5.2.3 Autoregressive distributed lag model


	6 Results
	6.1 Unit root test
	6.2 Principal Component Analysis
	6.3 ARDL model analysis
	6.3.1 Fitting result
	6.3.2 Individual cryptocurrency influence


	7 Conclusion
	A Cryptocurrency prices
	B Convergence of marginal effects

	p009-Heimbach
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Merge
	3.2 EthereumPoW
	3.3 Lending Protocols
	3.4 DAO

	4 Data
	4.1 Ethereum
	4.2 EthereumPoW
	4.3 Price Data

	5 Merge Anticipation
	5.1 Compound
	5.2 AAVE

	6 Discussion
	7 Conclusions
	A stETH Market Capitalization and AAVE stETH Collateral
	B Cumulative Rates on AAVE and Compound
	C Interest Rate Curves

	p010-Chiang
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Delay Encryption
	3.2 Longest-chain PoS model and security

	4 The FairPoS protocol
	4.1 Input fairness & encryption
	4.2 Introducing key extraction in FairPoS
	4.3 The (d,delta,Delta)-FairPoS consensus protocol
	4.4 Parameterization of FairPoS

	5 FairPoS security
	5.1 Common-prefix in FairPoS
	5.2 Chain growth, chain quality and input fairness

	6 Conclusion

	p011-Chiang
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Round differential privacy in the trusted curator model
	3.1 The trusted curator
	3.2 Differential privacy for inputs
	3.3 Differential privacy for correlated outputs
	3.4 Single-round & Multi-round privacy

	4 Round differentially private market mechanisms
	4.1 Round-DP volume matching
	4.2 Round DP double auctions

	5 Round-DP market mechanisms with MPC
	5.1 rDP-volume-match with MPC
	5.2 rDP-double-auction with MPC
	5.3 Experiments

	6 Future work

	p012-Baum
	1 Introduction
	2 Available Privacy-enhancing Technologies
	3 Identity, KYC, AML
	4 Markets & Transaction Settlement
	4.1 Markets in Traditional Finance
	4.2 Markets on Public Ledgers
	4.3 Inter-bank Netting on Public Ledgers

	5 Future applications

	p013-Newman
	1 Introduction
	2 Modeling Mining and the Cost of Corruption
	2.1 Mining Model
	2.2 Miner Valuation Model
	2.3 Budish's Cost of Corruption
	2.4 The Participation-Success Matrix
	2.5 Bounding Expected Devaluation Loss

	3 A Thresholding Corruptive Attack
	3.1 Estimating v
	3.2 Estimating f

	4 Refining the Model: A Block-By-Block Attack
	4.1 A Payout Rule With Unique Subgame Perfect Nash Equilibrium
	4.2 Success Likelihood, Expected Attack Length, and Expected Attack Cost

	5 Relative Immunity of Proof-of-Stake: Ethereum
	6 Practical Economic Considerations
	7 Attacker Incentives and Dangers
	8 Economic Prevention and Mitigation
	8.1 Coalitions
	8.2 Social Consensus as Deterrence/Mitigation
	8.3 Counterattacks and the Model of Moroz et al.
	8.4 Countercorruption
	8.5 Extra Confirmations

	9 Non-Economic Prevention and Mitigation
	9.1 Social Consensus
	9.2 Force
	9.3 Non-Profitability

	10 Conclusion: What Do We Trust?
	A Notation Reference
	B Proofs of Results in Section 4

	p014-Agrawal
	1 Introduction
	1.1 Construction Overview
	1.2 Implementation Overview
	1.3 Related Work
	1.4 Outline

	2 Preliminaries
	3 The PoPoS Primitive
	4 The Optimistic Light Client
	5 The Superlight Client
	6 Proof-of-Stake Ethereum Light Clients
	6.1 Sync Committee Essentials
	6.2 Linear-Complexity Light Client
	6.3 Logarithmic Bootstrapping from Bisection Games
	6.4 Superlight Client Architecture

	7 Experiments
	7.1 Setup
	7.2 Time-To-Completion & Total Verifier Communication
	7.3 Power & Energy Consumption

	8 Analysis

	p015-Vafadar
	1 Introduction
	2 Related Work
	3 Model
	4 Preliminaries
	5 Condorcet Attack
	6 Mitigation
	6.1 Ranked Pairs Batch-ordering
	6.2 Post-decryption Resolution
	6.3 Broadcast

	7 Simulation
	7.1 Honest Environment
	7.2 Adversarial Environment
	7.3 Network Reordering
	7.4 A Non-Injective Condorcet Attack
	7.5 Mitigation

	8 Conclusion

	p016-Wang
	1 Introduction
	2 Preliminaries
	2.1 On-chain Mixers
	2.2 Cryptographic Primitives

	3 On-chain Mixer System
	3.1 System Components
	3.2 Contract Setup
	3.3 Client Algorithm
	3.4 Smart Contract Algorithm
	3.5 System Goals

	4 Basic On-chain Mixer
	4.1 Cryptographic Building Blocks
	4.2 Workflow of Basic On-chain Mixer
	4.3 System Goals of Basic On-chain Mixer

	5 Improving On-chain Mixers via Merkle Pyramid Builder
	5.1 Contract Setup
	5.2 Deposit Interaction
	5.3 Withdrawal Interaction
	5.4 Further Improvement with Verifiable Computation Techniques
	5.4.1 Building Blocks for On-Chain Mixer with VC
	5.4.2 Algorithms for On-Chain Mixer with VC


	6 System Analysis
	6.1 Privacy
	6.1.1 Linking deposit and withdrawal transactions
	6.1.2 Linking deposit and withdrawal addresses
	6.1.3 Privacy Analysis

	6.2 Correctness
	6.3 Availability
	6.4 Fairness
	6.5 Efficiency
	6.5.1 Efficiency for On-Chain Mixer with MPB
	6.5.2 Efficiency for On-Chain Mixer with VC


	7 Evaluation
	7.1 Evaluating Merkle Pyramid Builder Costs
	7.2 Evaluating Deposit Finalization Time
	7.3 Evaluating Deposit Gas Prices
	7.4 Evaluating Verifiable Computation Costs

	8 Related Work
	9 Discussion
	10 Conclusion

	p017-Dziembowski
	1 Introduction
	1.1 Background
	1.2 Our contribution and related work

	2 Informal description
	2.1 Overview of the NAPS definition
	2.1.1 NAPS security properties
	2.1.2 Atomic vs. non-atomic payment splitting

	2.2 Overview of the EthNA protocol

	3 Technical details
	3.1 NAPS formal security definition
	3.2 Formal description of EthNA
	3.3 Efficiency analysis

	4 Practical aspects
	5 Conclusions and future work

	p018-Nguyen
	1 Introduction
	2 Preliminaries
	2.1 Incrementally Verifiable Computation (IVC)
	2.2 Committed Relaxed R1CS over a Ring
	2.3 A Folding Scheme for Committed Relaxed R1CS over a Ring

	3 The Nova Proof System over a Cycle of Curves: Preliminary Details
	3.1 Folding over a Cycle of Curves
	3.1.1 Folding Setup
	3.1.2 Folding Keygen


	4 The Augmented Constraint Systems Used in Nova
	5 The Modified Nova IVC Scheme
	5.1 Setup
	5.2 The Modified Nova Verifier
	5.3 The Modified Nova Prover
	5.3.1 Initial Procedure
	5.3.2 The Base Case
	5.3.3 The Non-Base Case


	6 Proof of security
	7 The Original Nova Vulnerability
	7.1 The Prior (Vulnerable) Nova Verifier
	7.2 The Vulnerability
	7.3 Attack Procedure
	7.3.1 Proof of Concept Attack Against the Minroot Verifier


	8 Malleability of Nova's IVC proofs
	8.1 The Malleability Attack
	8.2 Preventing This Malleability Attack


	p019-Fox
	1 Introduction
	2 Related Literature
	3 Formalizing Censorship Resistance
	4 Modelling the Auction
	5 Results
	5.1 Two Bidder Case
	5.2 Three or more bidders
	5.3 General Distributions

	6 Restoring Censorship Resistance
	6.1 Auction over Multiple Blocks
	6.2 Multiple Concurrent Block Proposers

	7 Discussion
	7.1 Multiple Concurrent Proposers in the Real world
	7.2 Future Directions


	p020-Gupta
	1 Introduction
	2 Related Literature
	3 Background
	4 Data and Empirical Analysis
	5 Model and Theoretical Analysis
	5.1 Baseline Results
	5.2 Stochastic Top-of-Block Opportunities
	5.3 An Analytic Example

	6 Discussion

	p021-Bahrani
	1 Introduction
	1.1 Informal Description of Our Model
	1.2 Summary of Results
	1.3 Related Work

	2 Preliminaries
	3 Single-Item Mechanisms
	3.1 Truthful Mechanism
	3.2 Lower Bounds

	4 Multi-Unit Mechanisms
	4.1 Additive Valuations
	4.2 Unit-demand Valuations

	5 Conclusion
	A Truthful Mechanisms Don't Compose

	p022-Moosavi
	1 Introductory Remarks
	2 Background
	2.1 Inbox
	2.2 Outbox
	2.3 Optimistic vs. zk-rollups
	2.4 Bridge
	2.5 Related Work

	3 Proposed Solution
	3.1 Design Landscape
	3.1.1 Properties
	3.1.2 Alternatives

	3.2 Tradeable Exits
	3.3 Hedged Tradeable Exits

	4 Implementation and Performance Measurements
	4.1 Tradeable Exits
	4.2 Prediction Market 

	5 Pricing
	6 Discussion
	6.1 Prediction Market Fidelity
	6.2 Withdrawal Format
	6.3 Markets
	6.4 Low Liquidity or Non-Fungible Tokens

	7 Concluding Remarks

	p023-Mamageishvili
	1 Introduction
	1.1 Existing Ordering Policies
	1.2 Our contributions

	2 Ordering Policies
	2.1 Preliminaries
	2.2 Independence of Irrelevant Transactions (IIT)
	2.3 IIT Implies a Score-Based Policy

	3 TimeBoost Description
	3.1 TimeBoost Economic Analysis Overview

	4 Analysis of TimeBoost with 2 Players
	4.1 Ex-Ante Latency Investment
	4.1.1 Only latency investment
	4.1.2 Budget constraints
	4.1.3 Ex-ante Latency with Interim Bidding
	4.1.4 Proofs

	4.2 Ex-Post Latency with Bidding
	4.2.1 Proofs


	5 Analysis of TimeBoost with n players
	6 Comparison of TimeBoost with a Pure Bidding Policy
	7 Discussion on Sequencer Decentralization
	8 Conclusion

	p024-Canidio
	1 Introduction
	2 The function-maximizing AMM
	2.1 Path-dependence (or why batching trades is necessary)
	2.2 Generalization of definitions

	3 The model
	4 Extension: multiple trading venues
	4.1 The batch operator optimal behavior
	4.2 Deep market
	4.3 Shallow market

	5 Discussion of empirical results
	6 Conclusion
	A Mathematical derivations

	p025-Fan
	1 Introduction
	1.1 Related work
	1.2 Outline

	2 The Mechanics of Uniswap
	2.1 v3 Contracts

	3 Liquidity Allocation Strategies and LP Earnings
	3.1 Static Liquidity Provision Strategies
	3.1.1 Linearity of Fee Rewards in x
	3.1.2 Burning Liquidity Allocations at P_T
	3.1.3 Linearity of Overall Earnings in x

	3.2 Dynamic Liquidity Provision Strategies
	3.2.1 Reset Liquidity Strategies


	4 Optimizing Earnings
	4.1 Optimal τ-reset Strategies
	4.2 Sampling to Approximate OPT
	4.3 Computing Optimal tau-reset Strategies with Neural Networks
	4.4 Liquidity Provision Strategies

	5 Experimental Setup: Contract-Market Prices
	5.1 Modeling Contract-Market Prices
	5.2 Market Prices as a Geometric Brownian Motion
	5.3 Contract Price Updates

	6 Experimental Results
	6.1 The Impact of Price Volatility
	6.2 Varying Non-arbitrage Flow
	6.3 The Impact of Risk-aversion
	6.4 The Impact of Reallocation Costs

	7 Conclusion

	p026-Boneh
	1 Introduction
	1.1 Technical Overview
	1.2 Paper Organization

	2 Preliminaries
	2.1 Lattice Assumption
	2.2 Ring Lattice Assumption
	2.3 Randomness Extraction

	3 Re-randomizable Commitments
	3.1 Syntax & Correctness
	3.2 Notions of Security
	3.3 An RRC scheme based on DDH

	4 A Construction from Learning with Errors
	4.1 The Construction
	4.2 Binding
	4.3 Unlinkability

	5 A Construction from Ring LWE
	5.1 Binding
	5.2 Unlinkability

	6 Handling Adversarially-Randomized Commitments
	6.1 A Stronger Unlinkability Definition
	6.2 Constructing Strongly-Pseudorandom RRCs
	6.3 Strong Pseudorandomness without A Randomness Beacon


	p027-Arjmand
	1 Introduction
	2 Background
	2.1 Blockchains
	2.2 Decentralized Finance (DeFi)
	2.3 Attacks on DeFi
	2.4 High frequency trading

	3 System model
	4 Attacks on lending markets
	4.1 Utilization kink attack
	4.1.1 Simplified attack
	4.1.2 Utilization kink attack in general setting

	4.2 DoS attack on liquidators
	4.2.1 Simplified Attack
	4.2.2 DoS attacks in general setting

	4.3 Economical games by adversary

	5 Liquidity aggregation
	5.1 Designing Logic and Liquidity Layers
	5.1.1 Piggybacking Liquidity Pool
	5.1.2 Standalone liquidity pool


	6 Analyzing on-chain lending protocols
	7 Related work
	8 Conclusion and future work

	p028-Vijayakumaran
	1 Introduction
	1.1 CryptoNote Transactions
	1.2 CryptoNote Transaction Graphs
	1.3 Tracing CryptoNote Transactions
	1.4 Paper Organization

	2 Related Work
	3 Our Contributions
	4 The Closed Set Attack and Clustering Algorithm
	4.1 Brute-Force Attack
	4.2 Closed Set Attack
	4.3 Clustering Algorithm

	5 The Dulmage-Mendelsohn Decomposition
	5.1 Minimum Covers of Bipartite Graphs
	5.2 Maximum Matchings on Bipartite Graphs
	5.3 Definition of the DM Decomposition
	5.3.1 Case 1: A_* = A*
	5.3.2 Case 2: A_* ! = A*

	5.4 Computing the DM Decomposition

	6 The DM Decomposition Finds All Closed Sets
	7 DM Decomposition of the Monero Transaction Graph
	7.1 Empirical Analysis without Hard Fork Information
	7.2 Empirical Analysis using Hard Fork Information

	8 Conclusion

	p029-Tas
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.2.1 Stateless clients for Ethereum
	1.2.2 Databases with frequent membership changes

	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Vector Commitments
	2.3 KZG Polynomial Commitments
	2.4 Merkle Trees
	2.5 Verkle Trees

	3 Formalizing the Dichotomy of VCs
	3.1 Updating KZG Commitments and Opening Proofs
	3.1.1 Update Information
	3.1.2 Proof Update
	3.1.3 Complexity

	3.2 Updating Merkle Trees and Opening Proofs
	3.2.1 Update Information
	3.2.2 Proof Update
	3.2.3 Complexity

	3.3 Dichotomy of VCs

	4 Vector Commitments with Sublinear Update
	4.1 Homomorphic Merkle Trees
	4.2 Structuring the Update Information
	4.2.1 Update Information
	4.2.2 Proof Update
	4.2.3 Complexity

	4.3 Constructions for Homomorphic Merkle Trees
	4.4 A Concrete Evaluation

	5 Updating Verkle Trees and Opening Proofs
	5.1 Update Information
	5.2 Verkle Proofs
	5.3 Proof Update
	5.4 Complexity
	5.5 A Concrete Evaluation

	6 Lower Bound

	p030-Schwarz-Schilling
	1 Introduction
	2 Model
	2.1 Block proposers
	2.2 Attesters

	3 Analysis
	3.1 Equilibrium analysis
	3.2 Model justification

	4 An empirical case study: Ethereum
	4.1 Consensus mechanism
	4.2 Block production process
	4.3 Data sets
	4.4 Are timing games worth playing?
	4.5 Are block proposers playing timing games?
	4.6 The impact of latency on the peer-to-peer network

	5 Discussion

	p031-Alpos
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Primitives
	2.2.1 Public-Key Encryption with Full Decryption
	2.2.2 Threshold Coin Flip
	2.2.3 Secret sharing
	2.2.4 Digital Signature


	3 Weak Verifiable Secret Sharing
	4 Generating an Unpredictable Seed
	5 Weak Honest-Dealer Coin-Flip
	6 Weak Multiple-Dealer Coin-Flip
	7 Setting the Parameters
	7.1 Sampling a holding committee for wVSS and wHDCF
	7.2 Sampling a proposer committee for seed and wMDCF

	8 Analysis of Communication Complexity
	9 Conclusion


