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Abstract
We study the online variant of the language distance problem for two classical formal languages, the
language of palindromes and the language of squares, and for the two most fundamental distances,
the Hamming distance and the edit (Levenshtein) distance. In this problem, defined for a fixed
formal language L, we are given a string T of length n, and the task is to compute the minimal
distance to L from every prefix of T . We focus on the low-distance regime, where one must compute
only the distances smaller than a given threshold k. In this work, our contribution is twofold:
1. First, we show streaming algorithms, which access the input string T only through a single

left-to-right scan. Both for palindromes and squares, our algorithms use O(k polylog n) space
and time per character in the Hamming-distance case and O(k2 polylog n) space and time per
character in the edit-distance case. These algorithms are randomised by necessity, and they err
with probability inverse-polynomial in n.

2. Second, we show deterministic read-only online algorithms, which are also provided with read-only
random access to the already processed characters of T . Both for palindromes and squares,
our algorithms use O(k polylog n) space and time per character in the Hamming-distance case
and O(k4 polylog n) space and amortised time per character in the edit-distance case.
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1 Introduction

The language distance problem is one of the most fundamental problems in formal language
theory. In this problem, the task is to compute the minimal distance between a given string S

and any string belonging to a formal language L. Introduced in the early 1970s by Aho and
Peterson [2], the language distance problem has been studied extensively for regular languages
under Hamming and edit distances [5], for general context-free languages, mainly focusing on
the edit distance [1, 2, 8, 10, 25, 27, 29, 32, 33, 34], and the Dyck language (the language of
well-nested parentheses sequences) in particular [1, 4, 8, 10, 12, 13, 15, 22, 23, 31, 32, 33].
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10:2 Online Language Distance Problem for Palindromes and Squares

Our results. In this work, we study the complexity of the online and low-distance version
of the language distance problem, where we are given a string T of length n, and the task is
to compute the minimal distance from every prefix of T to a formal language L (the distance
and the language are specified in the problem definition). We focus on the low-distance
regime, i.e., we assume to be given a threshold parameter k such that distances larger than k

do not need to be computed. We consider the edit distance (defined as the minimum number
of character insertions, deletions, and substitutions needed to transform one string into the
other) and, as a preliminary step, the Hamming distance (allowing for substitutions only).
We study the problem for two classical languages: the language PAL of all palindromes,
where a palindrome is a string that is equal to its reversed copy, and the language SQ
of all squares, where a square is the concatenation of two copies of a string. These two
languages are very similar yet very different in nature: PAL is not regular but is context-free,
whereas SQ is not even context-free. Formally, the problems we consider are defined as
follows:

▶ Problem 1.1. k-LHD-PAL (resp. k-LHD-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k + 1, hdi}, where hdi is the minimum Hamming
distance between T [1. .i] and a string in PAL (resp. in SQ).

▶ Problem 1.2. k-LED-PAL (resp. k-LED-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k + 1, edi}, where edi is the minimum edit distance
between T [1. .i] and a string in PAL (resp. in SQ).

Table 1 Summary of the complexities of the algorithms introduced in this work.

Problem Model Time per character Space complexity Reference

k-LHD-PAL Streaming O(k log3 n) O(k log n) Thm 3.2
k-LHD-SQ Streaming Õ(k) O(k log2 n) Thm 3.3
k-LHD-PAL/SQ Read-only O(k log n) O(k log n) Thms 4.8 and 4.10
k-LED-PAL/SQ Streaming Õ(k2) Õ(k2) Thms 5.1 and 5.2
k-LED-PAL/SQ Read-only Õ(k4) (amortised) Õ(k4) Thms 5.3 and 5.4

Amir and Porat [3] showed that there is a randomised streaming algorithm that solves the
k-LHD-PAL problem in Õ(k) space and Õ(k2) time per input character.1 We continue their
line of research and show streaming algorithms for all four problems that use poly(k, log n)
time per character and poly(k, log n) space. While streaming algorithms are extremely
efficient (in particular, the space complexities above account for all the space used by the
algorithms, including the space needed to store information about the input), it is important
to note that they are randomised in nature, which means that they may produce incorrect
results with a certain probability (inverse polynomial in the input size n). Motivated by this,
we also study the problems in the read-only model, where random access to the input is
allowed (and not accounted for in the space usage). In this model, we show deterministic
algorithms for the four problems that use poly(k, log n) time per character and poly(k, log n)
space; see Table 1 for a summary. As a side result of independent interest, we develop the first
poly(k, log n) space read-only algorithms for computing k-mismatch and k-edit occurrences
of a pattern in a text.

1 Hereafter, Õ(·) hides factors polynomial in log n.
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Due to the lack of space, descriptions of the algorithms for the Language edit distance
problems (k-LED-PAL and k-LED-SQ) are omitted from this version of the paper, but can
be found in the full one.

1.1 Related work
Offline model. In the classical offline model, the problem of finding all maximal substrings
that are within Hamming distance k from PAL can be solved in O(nk) time as a simple
application of the kangaroo jumps technique [17]. For the edit distance, Porto and Barbosa [28]
showed an O(nk2) solution. For the SQ language, the best known solutions take O(nk log k +
output) time for the Hamming distance [21] and O(nk log2 k+output) for the edit distance [24,
35, 36].

Online model. The problems k-LHD-PAL and k-LED-PAL can be viewed as a gener-
alization of the classical online palindrome recognition problem (see [16] and references
therein).

Streaming algorithms for PAL and SQ. Berebrink et al. [6] followed by Gawrychowski et
al. [18] studied the question of computing the length of a maximal substring of a stream that
belongs to PAL. Merkurev and Shur [26] considered a similar question for the SQ language.

2 Preliminaries

We assume to be given an alphabet Σ, the elements of which, called characters, can be stored
in a single machine word of the RAM model. For an integer n ≥ 0, we denote the set of all
length-n strings by Σn, and we set Σ≤n =

⋃n
m=0 Σm as well as Σ∗ =

⋃∞
n=0 Σn. The empty

string is denoted by ε.
For two strings S, T ∈ Σ∗, we use ST or S · T indifferently to denote their concatenation.

For an integer m ≥ 0, the string obtained by concatenating S to itself m times is denoted
by Sm; note that S0 = ε. A string S is a square if there exists a string T such that S = T 2.

For a string T ∈ Σn and an index i ∈ [1. .n],2 the ith character of T is denoted by T [i].
We use |T | = n to denote the length of T . For indices 1 ≤ i, j ≤ n, T [i. .j] denotes the
substring T [i]T [i + 1] · · · T [j] of T if i ≤ j and the empty string otherwise. When i = 1
or j = n, we omit these indices, i.e., we write T [. .j] = T [1. .j] and T [i. .] = T [i. .n]. We
extend the above notation with T [i. .j) = T [i. .j − 1] and T (i. .j] = T [i + 1. .j]. We say that
a string P is a prefix of T if there exists j ∈ [1. .n] such that P = T [. .j], and a suffix of T

if there exists i ∈ [1. .n] such that P = T [i. .]. We use T R to denote the reverse of T , that
is T R = T [n]T [n − 1] · · · T [1]. A string T is a palindrome if T R = T .

We define the forward cyclic rotation rot(T ) = T [2] · · · T [n]T [1]. In general, a cyclic
rotation rots(T ) with shift s ∈ Z is obtained by iterating rot or the inverse operation rot−1.
A non-empty string T ∈ Σn is primitive if it is distinct from its non-trivial rotations, i.e.,
if T = rots(T ) holds only when n divides s.

Given two strings U, V and two indices i ∈ [1. .|U |] and j ∈ [1. .|V |], the longest common
prefix (LCP) of U [i. .] and V [j. .], denoted LCP(U [i. .], V [j. .]), is the length of the longest
string that is a prefix of both U [i. .] and V [j. .].

2 For integers i, j ∈ Z, denote [i. .j] = {k ∈ Z : i ≤ k ≤ j}, [i. .j) = {k ∈ Z : i ≤ k < j}, and
(i. .j] = {k ∈ Z : i < k ≤ j}.

ISAAC 2023
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Given two non-empty strings U, Q and an operator F defined over pairs of strings, we use
the notation F (U, Q∞) for the application of F to U and the prefix of Q∞ = QQ · · · that
has the same length as U , i.e., F (U, Q∞) = F (U, Qm[. .|U |]), where m is any integer such
that |Qm| ≥ |U |. We define F (Q∞, U) symmetrically.

2.1 Hamming distance, palindromes, and squares
The Hamming distance between two strings S, T (denoted hd(S, T )) is defined to be equal
to infinity if S and T have different lengths, and otherwise to the number of positions
where the two strings differ (mismatches). We define the mismatch information between
two length-n strings S and T , MI(S, T ) as the set {(i, S[i], T [i]) : i ∈ [1. .n] and S[i] ̸= T [i]}.
For two strings P, T , a position i ∈ [|P |. .|T |] of T is a k-mismatch occurrence of P in T

if hd(T (i−|P |. .i], P ) ≤ k. For an integer k, we denote hd≤k(X, Y ) = hd(X, Y ) if hd(X, Y ) ≤ k

and ∞ otherwise.
Due to the self-similarity of palindromes and squares, the Hamming distance from a

string U to PAL and SQ can be measured in terms of the self-similarity of U .

▶ Property 2.1. Each string U ∈ Σm satisfies hd(U, PAL) = hd(U [. .⌊m/2⌋], U(⌈m/2⌉. .]R) =
1
2 hd(U, UR).

Proof. Denote U1 = U [. .⌊m/2⌋] and U2 = U(⌈m/2⌉. .]. For the second equality, we have
hd(U, UR) = hd(U1, UR

2 ) + hd(U2, UR
1 ) = 2 · hd(U1, UR

2 ).
The first equality is equivalent to hd(U1, UR

2 ) = hd(U, PAL). As the Hamming dis-
tance between U and the palindrome UR

2 U2 (or UR
2 aU2 if m is odd) is hd(U1, UR

2 ), we
have hd(U1, UR

2 ) ≥ hd(U, PAL).
Conversely, let V be a palindrome such that hd(U, V ) = hd(U, PAL). We decompose

similarly V into V1V R
1 (or V1bV R

1 for odd m) and obtain hd(U, V ) ≥ hd(U1, V1) + hd(U2, V R
1 ).

Using the fact that hd(U2, V R
1 ) = hd(UR

2 , V1) and applying the triangle inequality, we
get hd(U1, UR

2 ) ≤ hd(U, PAL). ◀

▶ Property 2.2. Each string U ∈ Σm satisfies hd(U, SQ) = hd(U [. .m/2], U(m/2. .]) if m is
even and hd(U, SQ) = ∞ if m is odd.

Proof. Every square has even length; hence, if m is odd, the distance between U and SQ
is infinite. In what follows, we assume that m = 2i for some i ∈ N. Let U1 = U [. .i] and
U2 = U(i. .]. By modifying the copy of U1 in U into U2, we obtain a square U2U2; hence,
hd(U, SQ) ≤ hd(U1, U2).

For the converse inequality, let V 2 be a square such that hd(U, SQ) = hd(U, V 2). We
have |V | = |U1| = |U2|; hence, hd(U, V 2) = hd(U1, V ) + hd(V, U2). Applying the triangle
inequality, we obtain hd(U, SQ) = hd(U, V 2) ≥ hd(U1, U2). ◀

2.2 Models of computation
In this work, we focus on two by now classical models of computation: streaming and
read-only random access. In the streaming model, we assume that the input string T arrives
as a stream, one character at a time. For each prefix T [1. .i], we must report the distance
to PAL or SQ as soon as we receive T [i]. We account for all the space used, including the
space needed to store any information about T . In contrast, in the read-only model, we
do not account for the space occupied by the input string. We assume that T is read from
the left to the right. After having read T [1. .i], we assume to have constant-time read-only
random access to the first i characters of T . Similar to the streaming model, the distance
from T [1. .i] to PAL or SQ must be reported as soon as we read T [i].
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3 Warm-up: Streaming algorithms for the LHD problems

In this section, we present streaming algorithms for k-LHD-PAL and k-LHD-SQ. Our
solutions use the Hamming distance sketches introduced by Clifford, Kociumaka, and
Porat [11] to solve the streaming k-mismatch problem.

▶ Fact 3.1. There exists a function skhd
k (parameterized by a constant c > 1, integers

n ≥ k ≥ 1, and a seed of O(log n) random bits) that assigns an O(k log n)-bit sketch to each
string in Σ≤n. Moreover:
1. There is an O(k log2 n)-time encoding algorithm that, given U ∈ Σ≤k, builds skhd

k (U).
2. There is an O(k log n)-time algorithm that, given any two among skhd

k (U), skhd
k (V ), or

skhd
k (UV ), computes the third one (provided that |UV | ≤ n).

3. There is an O(k log3 n)-time decoding algorithm that, given skhd
k (U) and skhd

k (V ), computes
MI(U, V ) if hd(U, V ) ≤ k. The error probability is O(n−c).

3.1 A streaming algorithm for k-LHD-PAL
We first show that the sketches described in Fact 3.1 give a simple algorithm improving upon
the result of Amir and Porat [3] and achieving the time complexity of Õ(k) per letter.

▶ Theorem 3.2. There is a randomised streaming algorithm that solves the k-LHD-PAL
problem for a string T ∈ Σn using O(k log n) bits of space and O(k log3 n) time per character.
The algorithm errs with probability inverse-polynomial in n.

Using Property 2.1, we can reduce the k-LHD-PAL problem to that of computing
the threshold Hamming distance between the current prefix of the input string and its
reverse. The algorithm maintains the sketches skhd

2k(T [. .i]) and skhd
2k(T [. .i]R). When it

receives T [i], it constructs skhd
2k(T [i]), updates both skhd

2k(T [. .i]) and skhd
2k(T [. .i]R), and com-

putes d = hd≤2k(T [. .i], T [. .i]R) (in O(k log3 n) total time by Fact 3.1). Property 2.1 implies
hd≤k(T [. .i], PAL) = d/2. The error probability of the algorithm follows from the error
probability for the decoding algorithm for Hamming distance sketches.

The algorithm uses O(k log n) bits, which is nearly optimal: Indeed, by Property 2.1,
if U = V W , with |V | = |W |, then hd(U, UR) = 2 · hd(V, W R). Therefore, using a standard
reduction from streaming algorithms to one-way communication complexity protocols, we
obtain a lower bound of Ω(k) bits for the space complexity of streaming algorithms for the
k-LHD-PAL problem from the Ω(k) bits lower bound for the communication complexity of
the Hamming distance [19].

3.2 A streaming algorithm for k-LHD-SQ
In this section, we show the following theorem:

▶ Theorem 3.3. There is a randomised streaming algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log2 n) bits of space and Õ(k) time per character.
The algorithm errs with probability inverse-polynomial in n.

Property 2.2 allows us to derive hd≤k(T [. .2i], SQ) from the sketches skhd
k (T [. .i])

and skhd
k (T [. .2i]): we can combine them to obtain skhd

k (T (i. .2i]), and a distance computation
on skhd

k (T [. .i]) and skhd
k (T (i. .2i]) returns hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i], SQ).

Naively applying this procedure requires storing the sketch skhd
k (T [. .i]) until the algorithm

has read T [. .2i], that is, storing Θ(n) sketches at the same time. To reduce the number of
sketches stored, we use a filtering procedure based on the following observation:

ISAAC 2023



10:6 Online Language Distance Problem for Palindromes and Squares

▶ Observation 3.4. If hd(T [. .2i], SQ) ≤ k and ℓ ∈ [1. .i], then i + ℓ is a k-mismatch
occurrence of T [. .ℓ], that is, hd(T [. .ℓ], T (i. .i + ℓ]) ≤ k.

▶ Example 3.5. For k = 1, ℓ = 2, and i = 3, the word T [. .6] = abcacc is a 1-mismatch
square (by Property 2.2) and the fragment T (3. .5] = ac is a 1-mismatch occurrence of the
prefix T [. .2] = ab.

Observation 3.4 motivates our filtering procedure: if we choose some prefix P = T [. .ℓ] of
the string, we only need to store every i ≥ ℓ such that i + ℓ is a k-mismatch occurrence of P .
Clifford, Kociumaka and Porat [11] showed a data structure S that exploits the structure of
such occurrences and stores them using O(k log2 n) bits of space while allowing reporting the
occurrence at position i + ℓ when T [i + ℓ + ∆] is pushed into S – we say that S reports the
k-mismatch occurrences of P in T with a fixed delay ∆ [11]. Our algorithm needs to receive
the occurrence at position i + ℓ when T [2i] is pushed into the stream, i.e., we require S to
report occurrences with non-decreasing delays. In Section 3.2.1 we present a modification of
the data structure [11] to allow non-decreasing delays, and in Section 3.2.2 we explain how
we use it to implement a space-efficient streaming algorithm for k-LHD-SQ.

3.2.1 Reporting k-mismatch occurrences with nondecreasing delay
The algorithm of Clifford, Kociumaka, and Porat [11] reports additional information along
with the positions of the k-mismatch occurrences: specifically, it produces the stream of
k-mismatch occurrences of P in T , defined as follows.

▶ Definition 3.6 ([11, Definition 3.2]). The stream of k-mismatch occurrences of a pattern P

in a text T is a sequence Sk
P such that Sk

P [i] = (i, MI(T (i − |P |. .i], P ), skhd
k (T [. .i − |P |])) if

hd(P, T (i − |P |. .i]) ≤ k and Sk
P [i] = ⊥ otherwise.

As explained next, the algorithm of [11] can report the k-mismatch occurrences with a
prescribed delay.

▶ Corollary 3.7 (of [11]). There is a streaming algorithm that, given a pattern P followed by
a text T ∈ Σn, reports the k-mismatch occurrences of P in T using O(k log2 n) bits of space
and O(

√
k log3 n + log4 n) time per character. The algorithm can report each occurrence i

with no delay (that is, upon receiving T [i]) or with any prescribed delay ∆ = Θ(|P |) (that is,
upon receiving T [i + ∆]). For each reported occurrence i, the underlying tuple Sk

P [i] can be
provided on request in O(k log2 n) time.

Proof. If no delay is required, we use [11, Theorem 1.2], which reports k-mismatch occurrences
of P in T and, upon request, provides the mismatch information MI(T (i − |P |. .i], P ); this
algorithm uses O(k log2 n) bits of space and takes O(

√
k log3 n + log4 n) time per character.

We also use [11, Fact 4.4] to maintain the sketch skhd
k (T [. .i]) (reported on request); this

algorithm uses O(k log n) bits of space and takes O(log2 n) time per character.
Whenever requested to provide Sk

P [i] for some k-mismatch occurrence i of P in T ,
we retrieve the mismatch information MI(T (i − |P |. .i], P ) (in O(k) time) and the sketch
skhd

k (T [. .i]) (in O(k log2 n) time). Combining skhd
k (P ) with MI(T (i − |P |. .i], P ), we build

skhd
k (T (i−|P |. .i]) (using [11, Lemma 6.4] in O(k log2 n) time) and then derive skhd

k (T [. .i−|P |])
using Fact 3.1 (in O(k log n) time). Overall, processing the request takes O(k log2 n) time
and O(k log2 n) bits of space.

If a delay ∆ = Θ(|P |) is required, our approach depends on whether there exists p ∈ [1. .k]
such that hd(P [. .|P | − p], P (p. .|P |]) ≤ 2k (such p is called a 2k-period in [11]). This
property is tested using a streaming algorithm of [11, Lemma 4.3], which takes O(k log n)
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bits of space, O(
√

k log n) time per character of P , and requires O(k
√

k log n)-time post-
processing (performed while reading T [. .k]). If P satisfies this condition, then we just use
[11, Theorem 4.2], whose statement matches that of Corollary 3.7.

Otherwise, [11, Observation 4.1] shows that P has at most one k-mismatch occurrence
among any k consecutive positions in T . In that case, we use the aforementioned approach
to produce the stream Sk

P with no delay and the buffer of [11, Proposition 3.3] to delay the
stream by ∆ characters. The buffering algorithm takes O(k log2 n) bits of space and processes
each character T [i] in O(k log2 n+log3 n) time (if P has k-mismatch occurrences at positions i

or i − ∆) or O(
√

k log n + log3 n) time (otherwise). Since the former case holds for at most
two out of every k consecutive positions, we can achieve O(

√
k log3 n + log4 n) worst-case

time per character by decreasing the delay to ∆ − k and buffering up to k characters of T

and up to k elements of Sk
P . While the algorithm processes T [i + ∆], the latter buffer already

contains Sk
P [i], but O(k) time is still needed to output this value (if Sk

P [i] ̸= ⊥). ◀

The algorithm of Corollary 3.7 has a fixed delay ∆, i.e., it outputs Sk
P [i] upon receiving

T [i + ∆]. Our application requires a variable delay: we need to access Sk
P [i + |P |] upon

reading T [2i], that is, with a delay of i − |P |. We present a black-box construction that
extends the data structure of Corollary 3.7 to support non-decreasing delays ∆i, i ∈ [1. .d].
Naively, one could use the algorithm A of Corollary 3.7 with a fixed delay ∆1 and buffer
the input characters so that A receives T [i + ∆1] only when we actually process T [i + ∆i].
Unfortunately, this requires storing T [i + ∆1. .i + ∆i), which could take too much space.
Thus, we feed A with T [1. .∆1] followed by blank characters ⊥ (issued at appropriate time
steps without the necessity of buffering input characters) so that A reports k-mismatch
occurrences i ∈ [1. .∆1] with prescribed delays. Then, we use another instance of the
algorithm of Corollary 3.7, with a fixed delay ∆1+∆1 , to output k-mismatch occurrences
i ∈ (∆1. .∆1 + ∆1+∆1 ]; we continue this way until the whole interval [1. .d] is covered. We
formalise this idea in the following lemma.

▶ Lemma 3.8. Let ∆1 ≤ ∆2 ≤ · · · ≤ ∆d be a non-decreasing sequence of d = O(|P |) integers
∆i = Θ(|P |), represented by an oracle that reports each element ∆i in constant time.

There is a streaming algorithm that, given a pattern P followed by a text T , reports the
k-mismatch occurrences of P in T using O(k log2 n) bits of space and O(

√
k log3 n + log4 n)

time per character. The algorithm reports each occurrence i ∈ [1. .d] with delay ∆i, that is,
upon receiving T [i + ∆i]. For each reported occurrence i ∈ [1. .d], the underlying tuple Sk

P [i]
can be provided on request in O(k log n) time.

Proof. We use multiple instances A1, . . . , At of the algorithm of Corollary 3.7. We define
a sequence (sr)t

r=0 so that Ar works with a fixed delay ∆sr−1 , it is given T [1. .sr) · ⊥∆sr−1 ,
and it reports k-mismatch occurrences i ∈ [sr−1. .sr). Specifically, we set s0 = 1 and
sr = sr−1 + ∆sr−1 , with t chosen as the smallest integer such that st > d. Note that
sr − sr−1 = ∆sr−1 ≥ ∆1 implies t ≤ 1 + d

∆1
= O(1).

We assign three different roles to the algorithms A1, . . . , Ar: passive, active, and inactive.
While we process T [j], the algorithm Ar is passive if j < sr, active if j ∈ [sr. .sr+1), and
inactive if j ≥ sr+1. Our invariant is that, once we process T [j], each passive algorithm Ar

has already received T [1. .j], the unique active algorithm Ar has already received T [1. .sr) ·
⊥1+i−sr−1 , where i is the largest integer such that i+∆i ≤ j, and each inactive algorithm Ar

has already received its entire input, that is, T [1. .sr) · ⊥∆sr−1 .
Upon receiving T [j], we simply forward T [j] to all passive algorithms. Moreover, if

j = i + ∆i for some i ∈ [1. .d], we feed the active algorithm with ⊥ so that it checks whether
i is a k-mismatch occurrence of P in T and, upon request, outputs Sk

P [i].
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Let us argue that this approach is correct from the perspective of a fixed algorithm Ar.
As we process T [1. .sr), the algorithm is passive, and it is fed with subsequent characters
of T . For j = sr − 1, the position i = sr−1 − 1 is the maximum one such that i + ∆i ≤ j.
Consequently, the input T [1. .sr) already satisfies the invariant for passive algorithms. For
subsequent iterations j ∈ [sr. .sr+1), as Ar is active, it receives ⊥ whenever i increases, so its
input stays equal to T [1. .sr) ·⊥1+i−sr−1 . The length of this string is sr + i−sr−1 = i+∆sr−1 ,
so the algorithm indeed checks whether i is a k-mismatch occurrence of P in T at each
such iteration (recall that its fixed delay is ∆sr−1), and it satisfies the invariant for active
algorithms. Once we reach j = sr+1 − 1, we have i = sr − 1 = sr−1 + ∆sr−1 − 1, so the input
becomes T [1. .sr) · ⊥∆sr−1 , and it already satisfies the invariant for inactive algorithms. The
state of inactive algorithms does not change, so this invariant remains satisfied as Ar stays
inactive indefinitely.

The time and space complexity analysis follows from the fact that t = O(1). ◀

3.2.2 Algorithm
We now show how to use the data structure of Lemma 3.8 to implement our filtering procedure
using low space. For each j ∈ [1. .⌊log n⌋], let Pj denote the prefix of the text of length
ℓj = 2j , i.e., Pj = T [. .2j ]. We search for k-mismatch occurrences of Pj in Tj = T (3ℓj/2. .4ℓj ].
As argued below, this allows filtering positions in (3ℓj . .6ℓj ]. Additionally, our choice of (ℓj)j

ensures that we do not miss any k-mismatch square when running our search for every Pj in
parallel.

▷ Claim 3.9. For each j ∈ [1. .⌊log n⌋], let Occj be the set of k-mismatch occurrences of Pj

in Tj = T (3ℓj/2. .4ℓj ]. If hd(T [. .2i], SQ) ≤ k and 2i ∈ [3ℓj . .6ℓj), then p = i − ℓj/2 ∈ Occj .

Proof. Since ℓj ≤ i, Observation 3.4 implies that i + ℓj is a k-mismatch occurrence of Pj

in T . Moreover, when 2i ∈ [3ℓj . .6ℓj), we have 3ℓj/2 ≤ i ≤ 3ℓj ; therefore, that k-mismatch
occurrence of Pj is fully contained within Tj , and it ends at positions i + ℓj − 3ℓj/2 = i − ℓj/2
of Tj . ◁

In what follows, we use p to denote indices in Tj , whereas i denotes indices in the original
text T . As Tj = T (3ℓj/2. .4ℓj ], the correspondence is given by i = p + 3ℓj/2. In other words,
we only need to compute hd≤k(T [. .2i], SQ) when i−ℓj/2 ∈ Occj . As noted in Property 2.2, it
suffices to know the sketches skhd

k (T (i. .2i]) and skhd
k (T [. .i]). We store skhd

k (Pj) = skhd
k (T [. .ℓj ])

as well as sj = skhd
k (T [. .3ℓj/2]) and maintain skhd

k (T [. .2i]) in a rolling manner as we receive
the characters of the text.

We use the algorithm of Lemma 3.8, asking for k-mismatch occurrences of Pj in Tj , to
report skhd

k (Tj [. .i − ℓj ]) = skhd
k (T (ℓj . .i]) for every i ∈ Occj . The delay sequence is specified

as ∆p = p − ℓj/2 for p ∈ [ℓj . .5ℓj/2) so that the conditions of Lemma 3.8 are satisfied.
(For p < ℓj , we can assume ∆p = ∆ℓj

= ℓj/2; anyway, there cannot be a k-mismatch
occurrence of Pj before position ℓj .) This way, for every i ∈ [3ℓj/2. .3ℓj), we receive
Sk

Pj
[i + ℓj ] (which corresponds to a potential k-mismatch occurrence starting at position

i + 1) while processing Tj [p + ∆p] for p = i + ℓj − 3ℓj/2 = i − ℓj/2. As ∆p = p − ℓj/2,
this corresponds to position p′ = 2p − ℓj/2 in Tj , or position i′ = 2p + ℓj = 2i in T ,
i.e., this happens precisely as we are processing T [2i]. See Figure 1 for an illustration
of the above. If Sk

Pj
[i + ℓj ] is blank, we move on to the next position. Otherwise, we

retrieve the sketch skhd
k (Tj [. .i]) = skhd

k (T (3ℓj/2. .i]), combine it with sj = skhd
k (T [. .3ℓj/2])

and skhd
k (T [. .2i]) to obtain skhd

k (T [. .i]) and skhd
k (T (i. .2i]), and use the latter two sketches to

compute hd≤k(T [. .i], T (i. .2i]), which is equal to hd≤k(T [. .2i], SQ) by Property 2.2.
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T

3ℓj/2 4ℓji i + ℓj 2i

Pj P ′

Tj

0

p = i − ℓj/2

∆p = p − ℓj/2

Figure 1 Illustration of our filtering procedure. Here, P ′ is a k-mismatch occurrence of Pj at
position i + ℓj in T and position p = i − ℓj/2 in Tj , reported with delay ∆p = p − ℓj/2 in Tj , hence
it arrives at time 2i in T .

We proceed with the complexity analysis of our algorithm. The k-mismatch pattern
matching algorithm of Lemma 3.8 uses O(k log2 n) bits of space and Õ(k) time per character,
and we maintain O(log n) instances of this algorithm. However, since all the patterns Pj

are prefixes of T , the instances can share the pattern processing phase. Moreover, since any
position is contained in at most three fragments T [ℓj . .6ℓj) (each such fragment follows Pj

and contains Tj), at most three instances contribute to the time and space complexity at
any given moment. Thus, the entire algorithm uses O(k log2 n) bits of space and Õ(k) time
per character, which completes the proof of Theorem 3.3.

Our streaming algorithm for k-LED-SQ (Theorem 5.2) relies on the streaming algorithm
for k-LHD-SQ. It requires testing hd(T [. .2i], SQ) ≤ k only for selected positions i, and thus
it benefits from the following variant of Theorem 3.3:

▶ Proposition 3.10. There is a randomised streaming algorithm that, given a string T ∈ Σn,
upon receiving T [2i], can be requested to test whether hd(T [. .2i], SQ) ≤ k and, if so, report the
mismatch information between T [. .2i] and a closest square. The algorithm uses O(k log2 n)
bits of space and processes each character in Õ(

√
k) or Õ(k) time, depending on whether the

request has been issued at that character.

Proof. We follow the algorithm above with minor modifications. First, instead of maintaining
skhd

k (T [. .2i]) explicitly, we apply [11, Fact 4.4], which uses O(k log n) bits of space, takes
O(log2 n) time per character, and reports skhd

k (T [. .2i]) on demand in O(k log2 n) time.
To process a request concerning position 2i, we retrieve skhd

k (T [. .2i]) and ask the
pattern-matching algorithm of Lemma 3.8 to output Sk

Pj
[i] (normally, the algorithm

only reports whether i is a k-mismatch occurrence of Pj in Tj). In this case, we build
skhd

k (T [. .i]) and skhd
k (T (i. .2i]) as in algorithm above. The decoding algorithm not only results

in hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i], SQ) but, if hd(T [. .2i], SQ) ≤ k, also the underlying
mismatch information.

The space complexity of the modified algorithm is still O(k log2 n) bits. The running time
is Õ(

√
k) if we do not ask the algorithm to test hd(T [. .2i], SQ) ≤ k and Õ(k) if we do. ◀

4 Deterministic read-only algorithms for the LHD problems

In this section, we present deterministic read-only algorithms for k-LHD-PAL and k-LHD-SQ.
We start by recalling structural results for k-mismatch occurrences used by the algorithms.
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4.1 Structure of k-mismatch occurrences
▶ Definition 4.1 ([9]). A string U is d-mismatch periodic if there exists a primitive string Q

such that |Q| ≤ |U |/128d and hd(U, Q∞) ≤ 2d. Such a string Q is called the d-mismatch
period of U .

The condition |Q| ≤ |U |/128d implies that Q is equal to some substring of U ; hence, given
the starting and ending positions of Q in U and random access to U , we can simulate random
access to Q.

▷ Claim 4.2 (From [20, Claim 7.1]). Let U and V be strings such that U is a prefix of V ,
and |V | ≤ 2|U |. If U is d-mismatch periodic with d-mismatch period Q, then V either is not
d-mismatch periodic or has d-mismatch period Q.

Charalampopoulos, Kociumaka, and Wellnitz [9] showed that the set of k-mismatch
occurrences has a very regular structure:

▶ Fact 4.3 (See [9, Section 3]). Let P and T be two strings such that |P | ≤ |T | ≤ 3/2|P |.
1. If P is not k-mismatch periodic, then there are O(k) k-mismatch occurrences of P in T .
2. If P is k-mismatch periodic with period Q, then any two k-mismatch occurrences i ≤ i′

of P in T satisfy i ≡ i′ (mod |Q|) and hd(T (i − |P |. .i′], Q∞) ≤ 3k.

They also presented efficient offline algorithms for computing the k-mismatch period and
the k-mismatch occurrences in the so-called PILLAR model. In this model, one is given
a family of strings X for preprocessing. The elementary objects are fragments X[i. .j] of
strings X ∈ X . Given elementary objects S, S1, S2, the PILLAR operations are:
1. Access(S, i): Assuming i ∈ [1. .|S|], retrieve S[i].
2. Length(S): Retrieve the length |S| of S.
3. LCP(S1, S2): Compute the length of the longest common prefix of S1 and S2.
4. LCPR(S1, S2): Compute the length of the longest common suffix of S1 and S2.
5. IPM(S1, S2): Assuming that |S2| ≤ 2|S1|, compute the set of the starting positions of

occurrences of S1 in S2, which by Fine and Wilf periodicity lemma [14] can be represented
as one arithmetic progression.

In the read-only model, operations Access and Length can be implemented in constant time
and O(log m) bits. The operations LCP and LCPR can be implemented naively via character-
by-character comparison in O(min{|S1|, |S2|}) total time and O(log m) bits. Finally, the IPM
operation can be implemented in O(|S1| + |S2|) total time and O(log m) bits (see e.g. [30]).

As a corollary, we immediately obtain:

▶ Corollary 4.4 (From [9, Lemma 4.4]). Given random access to a string U , testing whether
it is d-mismatch periodic, and, if so, computing its d-mismatch period, can be done using
O(d|U |) time and O(d) space.

4.2 Read-only algorithm for the pattern matching with k mismatches
The above implementation of the PILLAR operations further implies an offline algorithm that
finds all k-mismatch occurrences of P in T in Õ(k2 · |T |) time and Õ(k2) space (see [9, Main
Theorem 8]). Nevertheless, we provide a more efficient online algorithm that additionally
provides the mismatch information for every k-mismatch occurrence of P .

▶ Theorem 4.5. There is a deterministic online algorithm that finds all k-mismatch oc-
currences of a length-m pattern P within a text T using O(k log m) space and O(k log m)
worst-case time per character. The algorithm outputs the mismatch information along with
every reported k-mismatch occurrence of P .
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Consistently with the streaming algorithm of [11], our algorithm uses a family of
exponentially-growing prefixes to filter out candidate positions. However, in order to use
the structural properties of Fact 4.3 efficiently, we construct a different family P to ensure
that we are either working in an approximately periodic region of the text or processing an
aperiodic prefix.

We first add to P the prefixes Rj = P [. . min{m, ⌊(3/2)j⌋}] for j ∈ [0. .⌈log3/2 m⌉]. If Rj

is k-mismatch periodic but Rj+1 is not, we also add to P the shortest extension of Rj that
is not k-mismatch periodic. Hereafter, let P = (Pj)t

j=1 denote the resulting sequence of
prefixes, sorted in order of increasing lengths, and let ℓj = |Pj | for every j ∈ [1. .t].

▷ Claim 4.6. The sequence P = (Pj)t
j=1 satisfies the following properties:

(a) P1 = P [1] and Pt = P ,
(b) t = |P| = O(log m),
(c) for every j ∈ [1. .t), we have ℓj+1 ≤ 3ℓj/2,
(d) for every j ∈ [1. .t), if Pj is k-mismatch periodic with period Qj , then hd(Pj+1, Q∞

j ) ≤
2k + 1.

Proof. Properties (a), (b), and (c) are straightforward. For Property (d), there are two
possible cases: if Pj+1 is k-mismatch periodic, Claim 4.2 implies that Pj+1 has the same
k-mismatch period Qj as Pj , that is hd(Pj+1, Q∞

j ) ≤ 2k. Otherwise, by construction, Pj+1
is the shortest extension of Pj that is not k-mismatch periodic. By minimality, removing
its last character yields a k-mismatch periodic prefix, and by Claim 4.2, it has the same
k-mismatch period Qj as Pj , i.e., we have hd(P [. .ℓj+1), Q∞

j ) ≤ 2k for i < ℓj . Adding one
more character to P [. .ℓj+1) can increase the Hamming distance by at most one. ◁

Processing the pattern. In the preprocessing phase, we build P and, for each k-mismatch
periodic prefix Pj ∈ P \ {P}, we also retrieve the period Qj (represented as a fragment of Pj)
and the mismatch information MI(Pj+1, Q∞

j ). For subsequent indices j ∈ [0. .⌈log3/2 m⌉], we
add the prefix Rj to P . If Rj ̸= P , we apply Corollary 4.4 to test whether Rj is k-mismatch
periodic and, if so, retrieve the period Q. If Rj is k-mismatch periodic, we build MI(Rj , Q∞)
and extend Rj while maintaining the mismatch information with the appropriate prefix
of Q∞. We proceed until we reach length |Rj+1| or 2k + 1 mismatches, whichever comes first.
We add the obtained extension R′

j to P and store the mismatch information MI(R′
j , Q∞).

If hd(R′
j , Q∞) ≤ 2k, then R′

j = Rj+1 is k-mismatch periodic with the same period Q.
Otherwise, by Claim 4.2, neither R′

j nor Rj+1 are k-mismatch periodic. Processing each j

takes O(|Rj+1|k) time and O(k) space, for a total of O(mk) time and O(k log m) space across
j ∈ [0. .⌈log3/2 m⌉].

Processing the text. Our online algorithm processing the text T consists of t = |P| layers,
each of which reports the k-mismatch occurrences of Pj ∈ P, along with the underlying
mismatch information.

The first layer, responsible for P1 = P [1], is implemented naively in O(1) space and time
per character.

Each of the subsequent layers receives the k-mismatch occurrences of Pj and outputs the
k-mismatch occurrences of Pj+1. The processing is based on the following simple observation:

▶ Observation 4.7. If Pj+1 has a k-mismatch occurrence at position i of T , then Pj has a
k-mismatch occurrence at position i − ℓj+1 + ℓj of T .
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We partition T into blocks of length b := ⌈ℓj/2⌉ and, for each block T (rb. .(r + 1)b],
use a separate subroutine to output k-mismatch occurrences of Pj+1 at positions i ∈
(rb. .(r + 1)b]. This subroutine receives the k-mismatch occurrences of Pj at positions
i − ℓj+1 + ℓj ∈ (rb − ℓj+1 + ℓj . .(r + 1)b − ℓj+1 + ℓj ]. It is considered active as the algorithm
reads T (rb − ℓj+1 + ℓj . .(r + 1)b]; since ℓj+1 ≤ 3

2 ℓj , at most two subroutines are active at any
given time. The implementation of the subroutine depends on whether Pj is k-mismatch
periodic or not.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occurrence i′

of Pj , the subroutine stores the mismatch information MI(T (i′ − ℓj . .i′], Pj) and, as the
algorithm receives subsequent characters T [i] for i ∈ (i′. .i′+ℓj+1−ℓj ], we maintain MI(T (i′−ℓj

. .i], P [. .ℓj + i − i′]) as long as there are at most k mismatches. If this is still the case for
i = i′ + ℓj+1 − ℓj , we report a k-mismatch occurrence of Pj+1 and output MI(T (i′ − ℓj

. .i], P [. .ℓj +i−i′]) = MI(T (i−ℓj+1. .i], Pj+1). By Observation 4.7, no k-mismatch occurrence
of Pj+1 is missed. Moreover, Fact 4.3 guarantees that the subroutine receives O(k) k-mismatch
occurrences of Pj , and thus it uses O(k) space and O(k) time per character.

Pj is k-mismatch periodic with period Qj . In this case, we wait for the leftmost k-
mismatch occurrence p ∈ (rb − ℓj+1 + ℓj . .(r + 1)b − ℓj+1 + ℓj ] of Pj and ignore all the
subsequent occurrences of Pj . We use the received mismatch information MI(T (p − ℓj . .p], Pj)
and the preprocessed mismatch information MI(Pj+1, Q∞

j ) to construct MI(T (p− ℓj . .p], Q∞
j );

by the triangle inequality, the size of this set is guaranteed to be at most 3k. As the algorithm
receives subsequent characters of T [i] for i ∈ (p. .(r + 1)b], we maintain MI(T (p − ℓj . .i], Q∞

j )
as long as the number of mismatches does not exceed 6k + 1. Whenever i ≥ p + ℓj+1 − ℓj and
i ≡ p+ℓj+1 −ℓj (mod |Qj |), we extract MI(T (i−ℓj+1. .i], Q∞

j ) from MI(T (p−ℓj . .i], Q∞
j ) and

use the precomputed mismatch information MI(Pj+1, Q∞
j ) to construct MI(T (i− ℓj+1. .i], Pj).

If it is of size at most k, we report i as a k-mismatch occurrence of Pj .
As for the correctness, we argue that we miss no k-mismatch occurrence i ∈ (rb. .(r + 1)b]

of Pj+1 in T . Since hd(T (i − ℓj+1. .i], Pj+1) ≤ k and hd(Pj+1, Q∞
j ) ≤ 2k + 1, we have

hd(T (i − ℓj+1. .i], Q∞
j ) ≤ 3k + 1. Moreover, by Observation 4.7, i − ℓj+1 + ℓj is a k-

mismatch occurrence of Pj . Fact 4.3 further implies that i − ℓj+1 + ℓj ≡ p (mod |Qj |) and
hd(T (p − ℓj . .i − ℓj+1], Q∞

j ) ≤ 3k. Consequently, hd(T (p − ℓj . .i], Q∞
j ) ≤ 6k + 1, and thus we

compute MI(T (i − ℓj+1. .i], Q∞
j ) and report i as a k-mismatch occurrence of Pj+1.

We conclude with the complexity analysis: the working space is O(k), dominated by the
maintained mismatch information. Moreover, whenever we compute MI(T (i − ℓj+1. .i], Pj),
the size of this set is, by the triangle inequality, at most 6k + 1 + 2k + 1 ≤ 8k + 2, and it can
be computed in O(k) time.

Summary. Overall, each subroutine of each level takes O(k) space and O(k) time per
character. Since there are t = O(log m) levels and each level contains at most two active
subroutines, the algorithm takes O(k log m) space and O(k log m) time per text character.
Although our pattern preprocessing algorithm is an offline procedure, we can run it while
the algorithm reads the first m/2 characters of the text. Then, while the algorithm reads
further m/2 characters, it can process two characters at a time to catch up with the input
stream. This does not result in any delay on the output because the leftmost k-mismatch
occurrence of P is at position m or larger.
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4.3 Read-only algorithm for k-LHD-PAL
▶ Theorem 4.8. There is a deterministic online algorithm that solves the k-LHD-PAL
problem for a string of length n using O(k log n) space and O(k log n) worst-case time per
character.

The algorithm uses a filtering approach to select positions where a prefix close to PAL
can end. Define a family P = {Pj = T [. .⌊(3/2)j⌋] : j ∈ [1. .⌊log3/2 n⌋]} of prefixes of the text,
and let ℓj = |Pj |, setting ℓ0 = 0 for notational convenience.

▷ Claim 4.9. Consider j ∈ [1. .⌊log3/2 n⌋] and a position i ∈ (2ℓj−1. .2ℓj ]. If
hd(T [. .i], PAL) ≤ k, then i is a 2k-mismatch occurrence of P R

j in T . Moreover,
hd(T [. .i], PAL) = hd(T (i − i′. .i], Pj [1. .i′)R) for i′ = ⌊i/2⌋.

Proof. Note that i > 2ℓj−1 ≥ ℓj implies that Pj is a prefix of T [. .i] and, equivalently,
P R

j is a suffix of T [. .i]R. Property 2.1 implies 2 · hd(T [. .i], PAL) = hd(T [. .i], T [. .i]R) ≥
hd(T (i − ℓj . .i], Pj). Thus, if hd(T [. .i], PAL) ≤ k, then i is a 2k-mismatch occurrence of
Pj in T . Since T [. .i′] is a prefix of Pj , Property 2.1 further implies hd(T [. .i], PAL) =
hd(T (i − i′. .i], T [. .i′]R) = hd(T (i − i′. .i], Pj [1. .i′)R). ◁

The algorithm constructs the family P as it reads the text. For each level j, we implement
a subroutine responsible for positions i ∈ (2ℓj−1. .2ℓj ]. First, while reading T [ℓj . .2ℓj−1), we
launch the pattern-matching algorithm of Theorem 4.5 in order to compute the 2k-mismatch
occurrences of P R

j in Tj = T [. .2ℓj) and feed the pattern-matching algorithm with the
pattern Pj and a prefix T [. .2ℓj−1) of Tj , ignoring any output produced. The total number of
characters provided is ℓj + 2ℓj−1 ≤ 7 · (2ℓj−1 − ℓj), so we can feed the algorithm with O(1)
characters for every scanned character of T . Then, while reading T [2ℓj−1. .2ℓj), we feed the
pattern-matching algorithm with subsequent characters of T . For every reported 2k-mismatch
occurrence i of P R

j in Tj , we retrieve the mismatch information MI(T (i − ℓj . .i], P R
j ) and

obtain MI(T (i − i′. .i], Pj [. .i′]R) by removing the entries corresponding to the leftmost ℓj − i′

positions. We report the size of this set (or ∞ if the size exceeds k) as hd≤k(T [. .i], PAL).
By Claim 4.9, all positions i ∈ (2ℓj−1. .2ℓj ] such that hd(T [. .i], PAL) ≤ k pass the test

and the distance hd(T [. .i], PAL) is equal to the size of the set MI(T (i − i′. .i], Pj [. .i′]R). As
for the complexity analysis, observe that, for each level j, the pattern-matching algorithm
uses O(k ·j) space and takes O(k ·j) time per character. Since, at any time, there is a constant
number of active levels, the main algorithm uses O(k log n) space and takes O(k log n) time
per character.

4.4 Read-only algorithm for k-LHD-SQ
▶ Theorem 4.10. There is a deterministic online algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log n) space and O(k log n) worst-case time per
character.

Our algorithm is very similar to the pattern-matching algorithm of Theorem 4.5. We use
the same sequence P = (Pj)t

j=1 of prefixes, now defined for P = T . Again, we set ℓj = |Pj |
for j ∈ [1. .t]. Instead of Observation 4.7, we use Observation 3.4 to argue that our filtering
procedure is correct.

Processing P. We build P in an online fashion so that the prefix Pj is constructed while
scanning T (ℓj . .⌈3ℓj/2⌉]. If Pj is k-mismatch periodic, then we also identify Pj+1 and build
MI(Pj+1, Q∞

j ).
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For subsequent indices j ∈ [0. .⌊log3/2 n⌋], we add the prefix Rj to P as soon as it has
been read. Then, we launch an offline procedure that applies Corollary 4.4 to test whether Rj

is k-mismatch periodic and, if so, retrieves the period Q. If Rj is k-mismatch periodic,
we build MI(Rj , Q∞) and extend Rj while maintaining the mismatch information with the
appropriate prefix of Q∞. We proceed until we reach length |Rj+1| or 2k + 1 mismatches,
whichever comes first. We add the obtained extension R′

j to P and store the mismatch
information MI(R′

j , Q∞). If hd(R′
j , Q∞) ≤ 2k, then R′

j = Rj+1 is k-mismatch periodic with
the same period Q. Otherwise, by Claim 4.2, neither R′

j nor Rj+1 are k-mismatch periodic.
Processing each j takes O(|Rj+1|k) time and O(k) space, and this computation needs to
be completed while the algorithm reads T (|Rj |. .|Rj+1|]. This gives O(k) time per position
since ⌊ 3

2 |Rj |⌋ ≤ |Rj+1| ≤ ⌈ 3
2 |Rj |⌉.

Across all indices j ∈ [0. .⌊log3/2 n⌋], the preprocessing algorithm takes O(k) space and
time per character (since no two indices are processed simultaneously).

Computing the distances. For each level j ∈ [1. .t], we implement a subroutine responsible
for even positions i ∈ [2ℓj . .2ℓj+1); this procedure is active as we read T [ℓj . .2ℓj+1). As
described above, the pattern Pj is identified while the algorithm reads T (ℓj . .⌈3ℓj/2⌉] and,
if Pj is k-mismatch periodic, the period Qj and the mismatch information MI(Pj+1, Q∞

j ) are
also computed at that time. While reading T [⌈3ℓj/2⌉. .2ℓj), we launch the pattern-matching
algorithm of Theorem 4.5 to report the k-mismatch occurrences of Pj in Tj = T [. .ℓj + ℓj+1)
and feed this algorithm with the pattern Pj and the prefix T [. .2ℓj) of the text Tj . The
total number of characters provided is 3ℓj ≤ 6 · 1

2 ℓj , so can feed the pattern-matching
algorithm with O(1) character for every scanned character of T . Then, while reading
T [2ℓj . .ℓj + ℓj+1), we feed the pattern-matching algorithm subsequent text characters. For
every i′ ∈ [2ℓj . .ℓj + ℓj+1), we learn whether i′ is a k-mismatch occurrence of Pj and, if so, we
obtain the mismatch information MI(Pj , T (i′ − ℓj . .i′]). How we utilise this output depends
on whether Pj is k-mismatch periodic or not: if Pj is not k-mismatch periodic, then Tj

contains O(k) k-mismatch occurrences of Pj and storing them explicitly requires little space.
When Pj is k-mismatch periodic, Tj must exhibit similar periodicity, which we can use to
avoid storing all occurrences explicitly.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occurrence i′

of Pj , we store the mismatch information MI(T (i′ − ℓj . .i′], Pj) and, as the algorithm receives
subsequent characters T [i] for i ∈ (i′. .2(i′ − ℓj)], we maintain MI(T (i′ − ℓj . .i], T [. .ℓj + i − i′])
as long as there are at most k mismatches. If this is still the case for i = 2(i′ − ℓj), we report
that T [. .i] is a k-mismatch square, with hd(T [. .i], SQ) = hd(T (i′ − ℓj . .i], T [. .ℓj + i − i′]) =
hd(T (i/2. .i], T [. .i/2]). By Observation 3.4, no k-mismatch square T [. .i] is missed. Moreover,
Fact 4.3 guarantees that there are O(k) k-mismatch occurrences of Pj , and thus we use O(k)
space and O(k) time per character to process all of them.

Pj is k-mismatch periodic with period Qj . In this case, we wait for the leftmost k-
mismatch occurrence p ∈ [2ℓj . .ℓj + ℓj+1) of Pj and ignore all the subsequent occurrences
of Pj . We use the received mismatch information MI(T (p − ℓj . .p], Pj) and the preprocessed
mismatch information MI(Pj+1, Q∞

j ) to construct MI(T (p − ℓj . .p], Q∞
j ); by the triangle

inequality, the size of this set is guaranteed to be at most 3k. As the algorithm receives
subsequent characters of T [i] for i ∈ (p. .2ℓj+1), we maintain MI(T (p − ℓj . .i], Q∞

j ) as long as
the number of mismatches does not exceed 6k + 1. Whenever i/2 ≥ p − ℓj and i/2 ≡ p − ℓj

(mod |Qj |), we extract MI(T (i/2. .i], Q∞
j ) from MI(T (p−ℓj . .i], Q∞

j ) and use the precomputed
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mismatch information MI(Pj+1, Q∞
j ) to construct MI(T [. .i/2], Q∞

j ) first, and then derive
MI(T [. .i/2], T (i/2. .i]). If the latter is of size at most k, we report T [. .i] as a k-mismatch
square.

As for the correctness, we argue that we miss no k-mismatch square T [. .i] with i ∈
(2ℓj . .2ℓj+1]. Since hd(T (i/2. .i], T [. .i/2]) ≤ k and hd(Pj+1, Q∞

j ) ≤ 2k + 1, as a corollary
we obtain hd(T (i/2. .i], Q∞

j ) ≤ 3k + 1. Moreover, by Observation 3.4, i/2 + ℓj is a k-
mismatch occurrence of Pj . Fact 4.3 further implies that i/2 + ℓj ≡ p (mod |Qj |) and
hd(T (p − ℓj . .i/2], Q∞

j ) ≤ 3k. Consequently, hd(T (p − ℓj . .i], Q∞
j ) ≤ 6k + 1, and thus we

compute MI(T [. .i/2], T (i/2. .i]) and report T [1. .i] as a k-mismatch square.
We conclude with the complexity analysis: the working space is O(k), dominated by the

maintained mismatch information. Moreover, whenever we compute MI(T [. .i/2], T (i/2. .i]),
the size of this set is, by the triangle inequality, at most 6k + 1 + 2k + 1 ≤ 8k + 2, and it can
be computed in O(k) time.

Summary. Overall, each level takes O(k log n) space and O(k log n) time per character,
dominated by the pattern-matching algorithm of Theorem 4.5. However, since constantly
many levels are processed at any given time, the entire algorithm still uses O(k log n) space
and O(k log n) time per character.

5 Language Edit Distance problems

The edit distance between two strings U and V , denoted by ed(U, V ), is the minimum number
of character insertions, deletions, and substitutions required to transform U into V . Similar
to the Hamming distance, the edit distance from a string U to PAL and SQ can be expressed
in terms of self-similarity of U . This allows us to use similar approaches as for the Language
Hamming distance problems, with tools for the Hamming distance replaced with appropriate
tools for the edit distance. Details for the proof of these theorems can be found in the full
version of the paper, available on arXiv at https://arxiv.org/abs/2309.14788.

By replacing the Hamming distance sketch [11] with the edit distance sketch of Bhat-
tacharya and Koucký [7].

▶ Theorem 5.1. There is a randomised streaming algorithm that solves the k-LED-PAL
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Furthermore, the results of Bhattacharya and Koucký [7] show a reduction from the edit
distance to the Hamming distance via locally consistent string decompositions, which allows
reducing the k-LED-SQ problem to k-LHD-SQ, solved via Proposition 3.10:

▶ Theorem 5.2. There is a randomised streaming algorithm that solves the k-LED-SQ
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Finally, by replacing the online read-only algorithm for finding the k-mismatch occurrences
of a pattern in a text with an online read-only algorithm for finding k-error occurrences
and the structural results for the Hamming distance with the structural results for the edit
distance, we obtain algorithms for k-LED-PAL and k-LED-SQ:

▶ Theorem 5.3. There is a deterministic online read-only algorithm that solves the k-
LED-PAL problem for a string of length n using Õ(k4) bits of space and Õ(k4) time per
character.

ISAAC 2023
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▶ Theorem 5.4. There is a deterministic online read-only algorithm that solves the k-LED-
SQ problem for a string of length n using Õ(k4) bits of space and Õ(k4) amortised time per
character.
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