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Abstract
Shannon’s entropy is a definitive lower bound for statistical compression. Unfortunately, no such
clear measure exists for the compressibility of repetitive strings. Thus, ad hoc measures are employed
to estimate the repetitiveness of strings, e.g., the size z of the Lempel–Ziv parse or the number r of
equal-letter runs of the Burrows-Wheeler transform. A more recent one is the size γ of a smallest
string attractor. Let T be a string of length n. A string attractor of T is a set of positions of T

capturing the occurrences of all the substrings of T . Unfortunately, Kempa and Prezza [STOC 2018]
showed that computing γ is NP-hard. Kociumaka et al. [LATIN 2020] considered a new measure
of compressibility that is based on the function ST (k) counting the number of distinct substrings
of length k of T , also known as the substring complexity of T . This new measure is defined as
δ = sup{ST (k)/k, k ≥ 1} and lower bounds all the relevant ad hoc measures previously considered.
In particular, δ ≤ γ always holds and δ can be computed in O(n) time using Θ(n) working space.
Kociumaka et al. showed that one can construct an O(δ log n

δ
)-sized representation of T supporting

efficient direct access and efficient pattern matching queries on T . Given that for highly compressible
strings, δ is significantly smaller than n, it is natural to pose the following question:

Can we compute δ efficiently using sublinear working space?

It is straightforward to show that in the comparison model, any algorithm computing δ using
O(b) space requires Ω(n2−o(1)/b) time through a reduction from the element distinctness problem
[Yao, SIAM J. Comput. 1994]. We thus wanted to investigate whether we can indeed match this
lower bound. We address this algorithmic challenge by showing the following bounds to compute δ:

O( n3 log b
b2 ) time using O(b) space, for any b ∈ [1, n], in the comparison model.

Õ(n2/b)1 time using Õ(b) space, for any b ∈ [
√

n, n], in the word RAM model. This gives an
Õ(n1+ϵ)-time and Õ(n1−ϵ)-space algorithm to compute δ, for any 0 < ϵ ≤ 1/2.

Let us remark that our algorithms compute ST (k), for all k, within the same complexities.
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1 Introduction

We are currently witnessing our world drowning in data. These datasets are generated by
a large gamut of applications: databases, web applications, genome sequencing projects,
scientific computations, sensors, e-mail, entertainment, and others. The biggest challenge is
thus to develop theoretical and practical methods for processing datasets efficiently.

Compressed data representations that can be directly used in compressed form have a
central role in this challenge [61]. Indeed, much of the currently fastest-growing data is highly
repetitive; this, in turn, enables space reductions of orders of magnitude [35]. Prominent
examples of such data include genome, versioned text, and software repositories collections.
A common characteristic is that each element in a collection is very similar to every other.

Since a significant amount of this data is sequential, a considerable amount of algorithmic
research has been devoted to text indexes over the past decades [68, 59, 29, 45, 31, 42, 44, 6,
23, 60, 46, 35, 47]. String processing applications (see [43, 2] for reviews) require fast access
to the substrings of the input string. These applications rely on such text indexes, which
arrange the string suffixes lexicographically in an ordered tree [68] or an ordered array [59].

This significant amount of research has resulted in compressed text indexes that support
fast pattern searching in space close to the statistical entropy of the text collection. The
problem, however, is that this kind of entropy is unable to capture repetitiveness [57, 58]. To
achieve orders-of-magnitude space reductions, one thus needs to resort to other compression
methods, such as Lempel-Ziv (LZ) [71], grammar compression [50] or run-length compressed
Burrows-Wheeler transform (BWT) [35], to name a few; see [35] for a review.

Unlike Shannon’s entropy, which is a definitive lower bound for statistical compression, no
such clear measure exists for the compressibility of repetitive texts. Other than Kolmogorov’s
complexity [55], which is not computable, repetitiveness is measured in ad hoc terms, based
on what the compressors may achieve. Such measures on a string T include: the number z

of phrases produced by the LZ parsing of T ; the size g of the smallest grammar generating
T ; and the number r of maximal equal-letter runs in the BWT of T . See [62] for a survey.

An improvement is the recent introduction of the string attractor [49] notion. Let T be a
string of length n. An attractor Γ is a set of positions over [1, n] such that any substring of T

has an occurrence covering a position in Γ. The size γ of a smallest attractor asymptotically
lower bounds all the repetitiveness measures listed above (and others; see [52]). Unfortunately,
using indexes based on γ comes also with some challenges. Other than computing γ is NP-
hard [49], it is unclear if γ is the definitive measure of repetitiveness: we do not know whether
one can always represent T in O(γ) space (machine words). This motivated Christiansen
et al. [18] to consider a new measure δ of compressibility, initially introduced in the area of
string compression by Raskhodnikova et al. [66], and for which δ ≤ γ always holds [18].

▶ Definition 1 ([18]). Let T be a string and ST (k) its substring complexity: the function
counting the number of distinct substrings of length k of T . The normalized substring
complexity of T is the function ST (k)/k and we set δ = sup{ST (k)/k, k ≥ 1} its supremum.

Christiansen et al. also showed that δ can be computed in O(n) time using Θ(n) working
space. Kociumaka et al. [52, 53] showed that δ can also be strictly smaller than γ by up to a
logarithmic factor: for any n and any δ, there are strings with γ = Ω(δ log n

δ ). Moreover,
Kociumaka et al. developed a representation of T of size O(δ log n

δ ), which is worst-case
optimal in terms of δ and allows for accessing any T [i] in time O(log n

δ ) and for finding all
occ occurrences of any pattern P [1 . . m] in T in near-optimal time O(m log n + occ logϵ n),
for any constant ϵ > 0 (see also [51] and [48] for further improvements). Since for highly
compressible strings, δ is significantly smaller than n, we pose the following basic question:

Can we compute δ efficiently using sublinear working space?
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The question on computing δ in bounded space arises naturally: it extends a large body
of work on problems on strings, which admit a straightforward solution if we have the space
to construct and store the suffix tree [68]; but as this is often not the case, one needs to
overcome the space challenge by investigating space-time trade-offs for these problems.

Related Work. The standard approach for showing space-time trade-off lower bounds for
problems answered in polynomial time has been to analyze their complexity on (multi-way)
branching programs. In this model, the input is stored in read-only memory, the output in
write-only memory, and neither is counted towards the space used by any algorithm. This
model is powerful enough to simulate both Turing machines and standard RAM models that
are unit-cost with respect to time and log-cost with respect to space. It was introduced by
Borodin and Cook, who used it to prove that any multi-way branching program requires a
time-space product of Ω(n2/ log n) to sort n integers in the range [1, n2] [11, 4]. Unfortunately,
the techniques in [11] yield only trivial bounds for problems with single outputs.

String algorithms that use sublinear space have been extensively studied over the past
decades [36, 26, 64, 13, 67, 12, 54, 19, 34, 20, 22, 41, 40, 39, 38, 21, 37, 3, 63, 15, 65, 56].
The perhaps most relevant problem to our work is the classic longest common substring of
two strings. Formally, given two strings X and Y of total length n, the longest common
substring (LCS) problem consists in computing a longest string occurring as a substring of
both X and Y . The LCS problem was conjectured by Knuth to require Ω(n log n) time. This
conjecture was disproved by Weiner who, in his seminal paper on suffix tree construction [68],
showed how to solve the LCS problem in O(n) time for constant-sized alphabets. Farach
showed that the same problem can be solved in the optimal O(n) time for polynomially-sized
integer alphabets [29]. A straightforward space-time trade-off lower bound of Ω(b) space and
Ω(n2/b) time for the LCS problem can be derived from the problem of checking whether the
length of an LCS is 0; i.e., deciding if X and Y have a common letter or not. Thus, in some
sense, the LCS problem can be seen as a generalization of the element distinctness problem:
given n elements over a domain D, decide whether all n elements are distinct.

On the upper bound side, Starikovskaya and Vildhøj showed that for any b ∈ [n2/3, n],
the LCS problem can be solved in Õ(n2/b) time and O(b) space [67]. In [54], Kociumaka et
al. gave an O(n2/b)-time algorithm to find an LCS for any b ∈ [1, n], and also provided a
lower bound, which states that any deterministic multi-way branching program that uses
b ≤ n

log n space must take Ω(n
√

log(n/(b log n))/ log log(n/(b log n))) time. This lower bound
implies that the classic O(n)-time solution for the LCS problem [68, 29] is optimal in the
sense that we cannot hope for an O(n)-time algorithm using o(n/ log n) space. Unfortunately,
we do not know if the O(b)-space and O(n2/b)-time trade-off is generally the best possible
for the LCS problem. For the easier element distinctness problem, Beame et al. [5] showed a
randomized multiway branching program using Õ(n3/2/

√
b)-time and O(b) space.

It is thus a big open question to answer whether the LCS problem can be solved
asymptotically faster than O(n2/b) using O(b) space. Towards this direction, Ben-Nun
et al. exploited the intuition suggesting that an LCS of X and Y can be computed more
efficiently when its length L is large [63] (see also [16]). The authors showed an algorithm
which runs in Õ( n2

L·b + n) time, for any b ∈ [1, n], using O(b) space. Still, a straightforward
lower bound for the aforementioned problem is in Ω( n2

L2·b + n) time when O(b) space is used;
it seems that further insight is required to match this space-time trade-off lower bound.

Our Results and Techniques. Our goal is to efficiently compute δ using O(b) space. As a
preliminary step towards this algorithmic challenge, we show the following theorem.

ISAAC 2023
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▶ Theorem 2. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O( n3 log b

b2 ) time using O(b) space, for any b ∈ [1, n], in the comparison model.

It is straightforward to show that any comparison-based branching program to compute δ

using O(b) space requires Ω(n2−o(1)/b) time through a reduction from the element distinctness
problem [70]. By Yao’s lemma, this lower bound also applies to randomized branching
programs [70]. This suggests that a natural intermediate step towards fully understanding
the computation complexity of computing δ in small space should be designing an Õ(n2/b)-
time algorithm using O(b) space (not necessarily in the comparison model).

The natural approach for computing δ is through computing all values of ST (k). In
particular, this is the idea behind the straightforward O(n)-time computation of δ using
O(n) space [18]. It is unclear to us if a more direct approach exists (see also Section 6 for a
combinatorial analysis on the behaviour of δ). Under this plausible assumption, we stress
that computing ST (k), for all k one-by-one, is a more general problem than computing the
length L of an LCS of X and Y , as an algorithm computing ST (k) can be used to compute
L within the same complexities. This follows by the following argument: we compute SX(k),
SY (k), and SX#Y (k) (where # is a special letter that does not occur in X or in Y ) in parallel,
and set L equal to the largest k such that SX(k)+SY (k) > SX#Y (k)−k. As the best-known
time upper bound for the very basic question of computing LCS in O(b) space remains to
be O(n2/b), this further motivates the algorithmic challenge of designing an algorithm with
such bounds for computing δ. We address it by proving the following theorem.

▶ Theorem 3. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
Õ(n2/b) time using Õ(b) space, for any b ∈ [

√
n, n], in the word RAM model.

Our algorithms compute ST (k), for all k, within the same complexities. To arrive at the
O( n3 log b

b2 )-time bound, we split the computation of the values ST (k) in n/b phases: in each
phase, we restrict to substrings whose length is in a range of size b. In turn, in each phase,
we process the substrings that start within a range of b positions of T at a time, from left to
right. With this scheme, we process in O(n log b) time each block of n/b positions of T in
each of the n/b phases, resulting in O(n3 log b

b2 ) time using O(b) space. For large enough b,
we can process all the substrings of a single phase at once, saving a factor of n/b. We show
in fact that a representation of all the occurrences of all the substrings of a phase can be
packed in Õ(b) space if b is large enough, and process them in different ways depending on
their period, following a scheme similar to [8]; we also adapt a method used in [9] to select a
small set of anchors (length-b substrings), so that each fragment of T contains at least one
anchor but their total number of occurrences in T is bounded. Note that Theorem 3 implies
an Õ(n1+ϵ)-time and Õ(n1−ϵ)-space algorithm to compute δ, for any 0 < ϵ ≤ 1/2.

Paper Organization. Section 2 introduces the basic definitions and notation we use and
the space-time trade-off lower bound for computing δ. In Section 3, we present a simple
O(n3/b)-time and O(b)-space algorithm, for any b ∈ [1, n]. This algorithm is refined to run
in O(n3 log b

b2 ) time using O(b) space, for any b ∈ [1, n], in Section 4. Our main result, the
Õ(n2/b)-time and Õ(b)-space algorithm, for any b ∈ [

√
n, n], is presented in Section 5. In

Section 6, we consider the notion of substring complexity from the combinatorial point of
view; and in Section 7, we conclude this paper with a final remark on approximating δ.
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2 Preliminaries

An alphabet Σ is a finite nonempty set of elements called letters. We fix throughout a string
T = T [1] · · · T [n] of length |T | = n over an ordered alphabet Σ. By ε we denote the empty
string of length 0. For two indices 1 ≤ i ≤ j ≤ n, the (i, j)-fragment of T is an occurrence of
the underlying substring T [i . . j] = T [i] · · · T [j]. A prefix of T is a fragment of T of the form
T [1 . . j] and a suffix of T is a fragment of T of the form T [i . . n]. A prefix (resp. suffix) of T

is proper if it is not equal to T . We let T r = T [n]T [n − 1] · · · T [1] denote the reversal of T .
A positive integer p is a period of a string T if T [i] = T [j] whenever i = j (mod p); we

call the period of T , denoted by per(T ), the smallest such p. A string T is said to be strongly
periodic if per(T ) ≤ |T |/4 and periodic if per(T ) ≤ |T |/2. We call the lexicographically
smallest cyclic shift of T [1 . . per(T )] the (Lyndon) root of T . Notice that if T is periodic,
then the root of T is always a fragment of T (that is, it has an occurrence in T ).

For every string t and every natural number ℓ, we define the ℓth power of t, denoted by
tℓ, by t0 = ε and tk = tk−1t, for integer k = [1, ℓ]. A run with (Lyndon) root t in a string
T is a periodic fragment T [i . . j] = t[q . . |t|]tβt[1 . . γ], with q, γ ∈ [1, |t|] and β a positive
integer, such that both T [i − 1 . . j] and T [i . . j + 1], if defined, have their smallest period
larger than |t|; we say that q ∈ [1, |t|] is the offset of the run t[q . . |t|]tβt[1 . . γ] and that two
runs with the same root are synchronized if they have the same offset. We represent a run
t[q . . |t|]tβt[1 . . γ] by its starting and ending positions (i, j) in T , its root t, and its offset q.

The element distinctness problem asks to determine if all the elements of an array A of
size n are pairwise distinct. Yao showed that, in the comparison-based branching program
model, the time required to solve the element distinctness problem using O(b) space is in
Ω(n2−o(1)/b) [70]. We show the following lower bound for computing δ in the same model.

▶ Theorem 4. The time required to compute δ for a string T of length n using O(b) space
in the comparison model is in Ω(n2−o(1)/b).

Proof. We reduce the element distinctness problem to computing δ in O(n) time as follows.
Let A be the input array for the element distinctness problem. Further let #1, #2, . . . , #n

be pairwise distinct elements not occurring in A. We set T = A · #1#2 . . . #n, with
|T | = 2n, #i ̸= A[j], for all i, j ∈ [1, n]. Observe that ST (k)/k < n, for all k ≥ 2, and thus
δ = ST (1) = n + |{A}|. Then A has a repeating element if and only if δ < 2n. ◀

3 O(n3/b) Time Using O(b) Space in the Comparison Model

We start with a warm-up lemma to guide the reader smoothly to the O(n3/b)-time algorithm.

▶ Lemma 5. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O(n3) time using O(1) space in the comparison model.

Proof. Let us consider each ST (k) separately, for all k ∈ [1, n].
Set ST (k) = 0. For all i ∈ [1, n], we increase ST (k) if T [i . . i+k −1] is the first occurrence

in T [1 . . i + k − 1]. To perform this we check whether T [j . . j + k − 1] = T [i . . i + k − 1], for all
j ∈ [1, i−1]. We employ any linear-time constant-space pattern matching algorithm [36, 26, 13]
to do this check in O(n) time using O(1) space for a single i. The statement follows. ◀

We next generalize Lemma 5 by employing the following straightforward observation.

▶ Observation 6. Let S be a substring of T . If S occurs at least twice in T , then every
substring of S occurs at least twice in T ; if S occurs only once in T , then any substring of T

containing S as a substring occurs only once in T .

ISAAC 2023
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M

L
R

1 ni i+ k − 1

Figure 1 The main setting of the algorithm underlying Proposition 7.

Main Idea. Recall that we have O(b) budget for space. At any phase of the algorithm,
we maintain ST (k) for b values of k, and iterate on consecutive non-overlapping substrings
of T of length b, which we call blocks. This gives n/b phases and n/b iterations per phase,
respectively. For each iteration, we define a substring M of T , which we call anchor. We
search for occurrences of this anchor in T and extend each of the (at most) n occurrences of
M in O(b) time per occurrence. This gives O(n3/b) time and O(b) space.

▶ Proposition 7. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O(n3/b) time using O(b) space, for any b ∈ [1, n], in the comparison model.

Proof. Our algorithm consists of n/b−2 phases. In phase α, for all α ∈ [2, 3, . . . , n/b−1],2 we
compute altogether the b values of ST (k), for all k ∈ [αb + 1, (α + 1)b]. Let S = S[1 . . b] be an
array of size b where we store the values of ST (k) corresponding to phase α: S[h] = ST (αb+h),
for h ∈ [1, b]. At the end of phase α we maintain the maximum of S[h]/(αb + h). Clearly, at
the end of the whole procedure, we can output δ = sup{ST (k)/k | k ≥ 1}.

We start by decomposing T into n/b blocks B1, B2, . . . , Bn/b, each of length b. We next
describe our algorithm for a fixed phase α > 1. First we set S[h] = 0, for all h ∈ [1, b]. Let i

be a position on T . For each k in the range of α, we want to know if T [i . . i+k−1] has its first
occurrence in T at position i or if it occurs also at some position to the left of i. We process
together all positions i in the same block Bj = T [(j − 1)b + 1 . . jb], for every j ∈ [1, n/b]. Let
L = Bj be the block we are currently processing (inspect also Figure 1). To compute ST (k)
we consider, for all k ∈ [αb + 1, (α + 1)b], the length-k fragments with starting position i in
L. All such fragments share the same anchor M = T [jb + 1 . . (j + α − 1)b]. The fragment of
length k ends at position i + k − 1, which belongs to one of the two blocks succeeding M

for all k ∈ [αb + 1, (α + 1)b]; we denote the concatenation of these two succeeding blocks as
fragment R. In particular, we have |M | = (α − 1)b and R = Bj+αBj+α+1.

We will use the occurrences of M in T that start before its starting position jb + 1 as
anchors for finding possible occurrences of the length-k fragments starting within L. We
search for such occurrences of M with any linear-time constant-space pattern matching
algorithm [36, 26, 13]. For each such occurrence of M , we then need to check the b letters
preceding it and the 2b − 1 letters following it in order to determine whether it generates a
previous occurrence of some (i, i + k − 1)-fragment, where i is a position within the block
L. In particular, we check the b letters preceding it because L is the block of b positions
preceding M ; we check the 2b − 1 letters following it because k ≤ (α + 1)b.

While processing L = Bj = T [(j − 1)b + 1 . . jb], we also maintain an array ENDL[1 . . b]
of size b. After we have finished processing L, ENDL[q] will store the length rq of the
longest prefix of R such that T [(j − 1)b + q . . (j − 1)b + q + |M | + rq − 1] occurs in T before

2 We process the substrings of length k ∈ [1, 2b] separately: for each block Bj , we compute an array LSj

of size b such that LSj [q] is the length the longest substring of length up to 2b starting at position q in
Bj that occurs in T before position (j − 1)b + q. This is done as described in the proof of Lemma 8 and
requires O( n2 log b

b ) total time. At the end of this procedure, we just maintain max{ST (k) | k ∈ [1, 2b]}.
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M R

1 n

L = Bj

rq(j − 1)b+ q

U
U

M

Figure 2 Largest rq such that U = T [(j − 1)b + q . . (j − 1)b + q + |M | + rq − 1].

position (j − 1)b + q (inspect Figure 2). We compute ENDL as follows. We search for all
the occurrences of M = T [jb + 1 . . (j + α − 1)b] in T [1 . . (j + α − 1)b − 1], from left to right.
Let M = T [i′ . . i′ + |M | − 1] be one such occurrence. Let ℓ be the length of the longest
common suffix of L and T [1 . . i′ − 1]; let r be the length of the longest common prefix of R

and T [i′ + |M | . . n]. For each q ≥ b − ℓ + 1, we update ENDL[q] with the maximum between
its previous value ENDL[q] and r (note that we do not update any values if ℓ = 0). After
we have processed all the occurrences of M , for each q we increase by 1 all ST (k) such that
k > b − q + 1 + |M | + ENDL[q] = b − q + 1 + (α − 1)b + ENDL[q] = αb − q + ENDL[q] + 1.
This is an application of Observation 6: all these occurrences correspond to a substring that
is longer than a substring that occurs for the first time in T at position (j − 1)b + q.

The whole algorithm takes time O( n3

b ): there are n
b phases; in each phase, we consider

n
b blocks and for each block we spend O(n) time for pattern matching anchor M ; for each
occurrence of the anchor, we spend O(b) time for finding and updating the possible extensions,
thus O(nb) time overall. We finally need O(b2) time for updating the values of ST (k) for all
k’s in the range and all positions i in L. Overall this is O( n

b · n
b · (nb + b2)) = O( n3

b ) time. ◀

4 O(n3 log b
b2 ) Time Using O(b) Space in the Comparison Model

Recall that in Proposition 7, we spend O(nb + b2) time to process the at most n occurrences
of a single anchor M in T . We show here that all these occurrences can be processed in
O(n log b) time. This is made possible by processing together batches of occurrences of M

that are close enough in T . This is done by means of answering longest common extension
queries on suffix trees constructed for certain length-O(b) fragments of T .

The first trick is based on the following remark: The pattern matching algorithm for
reporting the occurrences of M (e.g., [13]) reports the occurrences of M in real-time from left
to right. Every such occurrence m of M is preceded by a block L′ of length b on the left of m

starting at position m − b and ending at position m − 1, and it is succeeded by a fragment R′

of length 2b starting at position m + |M | and ending at position m + |M | + 2b − 1. We thus
need to find the longest common prefix of R and R′ and the longest common suffix of L and
L′. Let us describe the process for the longest common prefix of R and R′. (The procedure
for the longest common suffix of L and L′ is analogous and is executed simultaneously.)

We use the so-called standard trick to construct a sequence of n/(4b) suffix trees for
fragments of T of length 4b overlapping by 2b positions. We first concatenate each such
fragment of length 4b with R. Constructing one such suffix tree takes O(b log b) time using
O(b) space [68]. Recall that an occurrence m of M implies an occurrence of R′ at position
m+ |M | and thus this position is part of some fragment of length 4b. We preprocess this suffix
tree in O(b) time and space to answer longest common prefix queries in O(1) time [7]. The
whole preprocessing thus takes n/(4b)O(b log b) = O(n log b) time. Thus, for any occurrence
m of M we can find the longest right extension (and the longest left extension with a similar
procedure) in O(1) time; recall that each extension cannot be of length greater than 2b so
we do not miss any of them. To memorize the extensions we use an array ENDL of size b.
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For each occurrence of M , if we have a left extension of length ℓ > 0 and a right extension
of length r, we set ENDL[b − ℓ + 1] = max{ENDL[b − ℓ + 1], r} in O(1) time. At the end of
this process we sweep through ENDL and set ENDL[q] = max{ENDL[q − 1], ENDL[q]}, for
all i ∈ [2, b] by Observation 6: if we can extend a position q in L r positions to the right of
M , then we must be able to extend position q + 1 in L at least r positions to the right of M .

The second trick updates all values of ST (k) using array ENDL in O(b) time instead of
O(b2) time. We use an array I of size b with all its entries initialized to 0; I[h] will store the
number of positions q in L such that the shortest unique substring starting at q is of length
αb+h. We fill in I scanning ENDL: the shortest unique substring starting at q is by definition
of length αb − q + ENDL[q] + 2, which equals αb + h when h = ENDL[q] − q + 2. We thus
increment I[h] by one. We finally increase ST (αb + h) by

∑h
j=1 I[j] for all h = 1, . . . , b. Thus,

updating all values of ST (k) is implemented in O(b) time. We have arrived at Theorem 2.

5 Õ(n2

b
) Time Using Õ(b) Space for b ≥

√
n in the word RAM model

The algorithm underlying Theorem 2 is organized in n/b phases. In phase α we process
b values of ST (k) making use of evenly-spaced fragments of T , each of length (α − 1)b, as
anchors for finding possible multiple occurrences of the length-k fragments of T . Considering
O(n/b) anchors in each phase and processing them one by one is the bottleneck of this
algorithm. Our approach here is thus to avoid the burden of considering new anchors at
every phase by carefully selecting a set of anchors that will remain unchanged in each phase
of the algorithm. Let c > 1 be any integer constant. We will process the values of ST (k) for
k ≤ cb (Section 5.1) and for k > cb (Sections 5.2 to 5.5) in two different ways.

We work in the word RAM model and our goal is a deterministic algorithm. Recall that a
suffix tree of any string of length d can be constructed in Õ(d) time using O(d) space [68, 29].

5.1 Computing ST (k) for Small k

We process together all values k ∈ [1, cb]. Like in Sections 3-4, for such values of k we split
T into n/b blocks of b positions and work with each such block separately; we compute all
values ST (k) and keep track of maxk≤cb ST (k)/k before computing ST (k) for all k > cb.

Consider block L = Bj = T [(j − 1)b + 1 . . jb]. We compute an array LSL of size b such
that LSL[q] is the length the longest substring starting at position q in L that occurs in T

before position (j − 1)b + q, if this length does not exceed cb, otherwise we set it to ∞. This
is done by constructing multiple generalized suffix trees of windows of length 2cb and L.

▶ Lemma 8. max
k≤cb

ST (k)
k can be computed in Õ(n2/b) time and O(b) space, for any b ∈ [1, n].

Proof. We consider a block L = T [(j − 1)b + 1 . . jb] of b positions of T at a time; for each
position i of T within L, we must compute the length of the longest fragment T [i . . ℓ] that
occurs to the left of position i, if this length does not exceed cb. We consider windows of
length 2cb over the prefix T [1 . . (j + c)b], overlapping by cb positions. Clearly, if a fragment
T [i . . ℓ] occurs earlier in T , then it must be a substring of at least one such window. For a
fixed L we initialize all the b positions of an array LSL to 0; we then consider one window W

of 2cb positions at a time, from left to right. At the end of the computation for a window W ,
LSL[q] will store the length of the longest fragment starting at position (j − 1)b + q which
occurs earlier in T . We proceed as follows to achieve this computation.

For the current window W of length 2cb, we concatenate W and T [(j −1)b+1 . . (j +c)b] =
L · T [jb + 1 . . (j + c)b] (that is, block L and the following cb positions) constructing a new
string S; we use a separator letter that does not occur in either of the two strings. We then
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construct the suffix tree of S; and from there on the Longest Previous Factor (LPF) array of
S in O(|S|) = O(b) time [25]. The LPF array is an array of length |S|; for each position i of
S, it gives the length of the longest substring of S that occurs both at i and to the left of
i in S. Finally, we use this information to update the values of LSL: LSL[q] maintains the
maximum between its previous value and the new value computed for the current W . We
proceed to the next window. Once we have processed all the windows, we use LSL to update
the corresponding values of ST in O(b) time the same way as we used ENDL in Section 4.

The time and space complexity is as follows. There are n/b blocks in T , each of length b.
For each such block, we consider O(n/b) windows of 2cb positions each, and for each window,
we construct the suffix tree and the LPF array of the two underlying fragments of length
O(b) in Õ(b) time using O(b) words of space. The whole procedure, for all n/b blocks and
all O(n/b) windows, thus requires Õ( n

b
n
b b) = Õ(n2/b) time using O(b) words of space. ◀

5.2 b-Runs and b-Gaps
When k > cb, we process b values of ST (k) at each phase, just like we did in Section 4.
Different from Section 4, though, we aim at selecting a global set of anchors, carefully
chosen among the length-b substrings of T . At each phase, we will distinguish three types
of substrings, depending on the period of their length-b substrings. A b-run is a maximal
fragment of length at least b such that each of its length-b substrings is strongly periodic; a
standard reasoning based on the periodicity lemma [33] shows that the period of each b-run
is at most b/4, and so a b-run is indeed a run. A b-gap is a maximal fragment such that none
of its length-b substrings is strongly periodic. Any fragment of T of length at least b and
period at most b/4 is fully contained in a unique b-run; and every fragment of T of length at
least b and such that none of its length-b substrings is strongly periodic is fully contained in
a unique b-gap. At each phase, the substrings to be processed are thus of three types: (i)
either they are fully contained in a b-gap, or (ii) they are fully contained in a b-run, or (iii)
neither of the two. We will process the substrings differently depending on their type. A
standard reasoning using the periodicity lemma [33] shows that two b-runs cannot overlap
by more than b/2 letters, so there are only O(n/b) of them. Lemma 10 states that we can
identify and store the b-runs of T in such space complexity. For proving it we rely on the
space-efficient construction of sparse suffix trees. The term “sparse” refers to constructing
the compacted trie of an arbitrary subset of the set of the suffixes of the input string.

▶ Theorem 9 ([10]). Given a set B ⊆ [n] of size Ω(log n) ≤ |B| ≤ n, there exists a
deterministic algorithm which constructs the (sparse) suffix tree of B in O(n log n

|B| ) time
using O(|B|) words of space.

▶ Lemma 10. A representation of the b-runs of T can be computed in Õ(n) time using
O(n/b) space, which is O(b) space when b ≥

√
n.

Proof. We process windows of b positions of T at a time, with any two consecutive windows
overlapping by b/2 positions. At each step, we compute the longest suffix, which has period
at most b/4, of the window in O(b) time [24]. If such a suffix has nonzero length, we keep
track of its starting position in T and extend it naïvely to the right as much as possible. If
this extension results in a run of length at least b, we store its starting and ending position
in a list ordered by starting position and resume the process using the window starting b − 1
positions before the end of the run. Otherwise, if the extension results in a run shorter
than b, we ignore it. Whenever we identify a b-run, we compute its root t in O(b) time [28],
and store in a list the starting and ending position (sr, er) of its root and the starting and
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ending position (s, e) of the b-run (as mentioned above). After computing all b-runs in T , we
construct the sparse suffix tree over the set of all sr positions in the list. Each internal node
of the sparse suffix tree, corresponding to a root of a b-run of T , is associated with the list of
the starting and ending positions (s, e) of the b-runs corresponding to this root.

This procedure identifies all the b-runs of T . Indeed, consider a window T [i . . i + b − 1].
If a b-run Y with period p ≤ b/4 begins between position i and position i + b − 1 − p, a prefix
of it of length greater than p is a suffix of the window with period p. If it is the longest such
suffix, it will be extended to the right allowing the identification of the whole Y . Otherwise,
suppose there is a longer suffix of T [i . . i + b − 1] with period b/4 ≥ p′ > p (it cannot be
p′ < p, because otherwise, p′ would have been the period of the whole suffix) that includes
the whole prefix of Y in T [i . . i + b − 1]. In this case, we only extend the longer suffix and
do not find Y at this stage. However, the longer suffix with period p′ ≤ b/4 is part of a
run that overlaps with Y , and therefore such overlap must be shorter than b/2 because of
the periodicity lemma [33]. This means: (a) this situation can only happen when the prefix
of Y in T [i . . i + b − 1] is shorter than b/2, thus a longer prefix of Y will be a suffix of the
next window T [i + b/2 . . i + 3b/2 − 1]; and (b) the period p′ must break before the end of
T [i + b/2 . . i + 3b/2 − 1], thus the prefix of Y in T [i + b/2 . . i + 3b/2 − 1] must be the longest
suffix with period at most b/4 and will therefore be extended, allowing to identify the whole
Y . Finally, if Y begins between position i + b − p and position i + b − 1 of T [i . . i + b − 1], its
prefix included in the window does not have a period p, and will therefore not be extended.
However, the next window is T [i + b/2 . . i + 3b/2 − 1]: since the length of any b-run is at
least b, a prefix of the b-run of length greater than b/2 is now a suffix of the window, and
since p ≤ b/4, it will be extended to the right allowing the identification of the whole b-run.

The time and space complexity is as follows. We consider O(n/b) windows of length b.
At each step, we spend O(b) time to compute the longest suffix of the current window with
period at most b/4. Whenever we identify a suffix of a run Y with period at most b/4, we
extend it naïvely to the right in O(|Y |) time, and the next window we consider only covers
the last b − 1 positions of Y . Since consecutive b-runs can only overlap by less than b/2
positions because of the periodicity lemma [33], they are at most O(n/b) and their total
length is O(n), so it takes O(n) time to perform all extensions. For each b-run, we spend
O(b) time to compute its root. For the sparse suffix tree, we employ Theorem 9. Hence the
overall time complexity is Õ(n). As for the space, we process blocks of O(b) positions in
O(b) space. We also store a pair of positions for each b-run, therefore the space required to
store them is O(n/b), which is O(b) when b ≥

√
n. ◀

The output of Lemma 10 is a list representing all the b-runs of T in the natural left-to-right
order. The b-gaps can be deduced from this list as follows: if T [i . . j] and T [i′ . . j′] are two
consecutive b-runs in the list, then T [j − b + 2 . . i′ + b − 2] is a b-gap (if T [i . . j] is the first
run, then so is T [1 . . i + b − 2], and similarly for the last run).

A subset of the length-b substrings of T is a valid set of anchors if two properties hold:
(i) at least one anchor occurs in each fragment of T of length cb; and (ii) the total number of
occurrences of all anchors in T is in O(n/b · log n). Lemma 11 shown next will be useful to
prove that there always exists a set of valid anchors included in the b-gaps of T .

▶ Lemma 11. Let Z be a string with all length-d substrings not strongly periodic, and c > 1
be any integer constant. Then we can compute in Õ(|Z|2/d) time and Õ(|Z|/d + d) space
a subset A of the length-d substrings of Z such that: (i) at least one h ∈ A occurs in each
fragment of Z of length cd; and (ii) the total number of occurrences of all h ∈ A in Z is
O(|Z|/d · log |Z|).
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Sketch of Proof. The high-level idea of the proof is to first reduce the problem to the
following: we have O(|Z|/d) strings Zi, each of length 5d/4 and with all length-d substrings
not strongly periodic, and a set of O(|Z|) possible anchors consisting of all length-d substrings
of the Zis. We want to choose a subset A of the anchors such that (i) at least one h ∈ A occurs
in each Zi, (ii) the total number of occurrences of all h ∈ A in the Zis is O(|Z|/d · log |Z|).
This is a special case of the Node Selection problem, considered in [9] as a strengthening
of the well-known Hitting Set problem.3 Indeed, we can take U to be the set of strings
Zi, V to be the set of possible anchors, and add an edge (u, v) in G(U, V, E) when the
possible anchor corresponding to v occurs in the string Zi corresponding to u. Because
every possible anchor is not strongly periodic and every Zi is of the same length 5d/4,
the degree of every node u ∈ U is 5d/4. Then, by Lemma 5.4 of [9] (the weights are
irrelevant) we can choose a set V ′ ⊆ V such that (i) N [u] ∩ V ′ ̸= ∅ for every u ∈ U , (ii)∑

u∈U |N [u] ∩ V ′| = O(|U | log |U |) = O(|Z|/d · log |Z|), so V ′ corresponds to a set of anchors
A′ with the sought properties. Furthermore, V ′ can be found in linear time and space in
the size of G, which is O(|Z|). This is however not enough for our purposes, as we cannot
store the whole G. Analysing the algorithm used inside the proof of Lemma 5.4 of [9] we
see that it considers the nodes v ∈ V one-by-one while maintaining some information of size
O(|U |) = O(|Z|/d) and a precomputed table of a size that can be bounded by the maximum
degree of any u ∈ U , which is O(d). Furthermore, the algorithm accesses G only by iterating
a constant number of times over the neighbours of the current node v ∈ V . In the full version,
we show how to implement this efficiently in our model to achieve the claimed bounds. ◀

5.3 Processing the b-Gaps
For ease of presentation, in this section, we will assume that all length-b substrings of T are
not strongly periodic, but no major changes are required to apply the same reasoning on the
set of all b-gaps. Assume we have already computed a set A of valid anchors over T . For each
h ∈ A, we compute a list of its occurrences in T . The overall size of these lists is O(n/b · log n)
because of property (ii), and the occurrences of each h ∈ A can be generated in O(n) time
and O(1) space (plus the space to store the list) with any linear-time constant-space pattern
matching algorithm, so Õ(n2/b) time overall. We divide the computation of ST (k) in n/b

phases. Consider phase α, in which we consider substrings of length k ∈ [αb + 1, (α + 1)b].
Because of property (i), at least one anchor occurs in the first cb positions of each such
substring. We conceptually associate such a substring with the leftmost anchor h ∈ A

occurring therein, and we say that a fragment of T is anchored at an occurrence i of some
anchor h if the leftmost occurrence of any anchor in the fragment is i. We then process the
substrings according to the anchor with which they are associated.

All substrings associated with an anchor h ∈ A have a (possibly empty) prefix of length
O(b) where no anchors occur, followed by h and then by a suffix where any anchor can occur.
This implies that any occurrence of such substrings can only start in a range of O(b) positions
preceding some occurrence of h in T . In particular, if h occurs at position i in T and the
closest anchor to its left is at position i′ < i, the starting range of substrings of T associated
with h is [i′ + 1, i], or [1, i] if i is the first occurrence of any anchors in T . All starting ranges
for all anchors can be computed in O(n) time by scanning the list of occurrences of the
anchors. To update the values of ST (k) with the substrings associated with h we need to

3 Let us remark that this problem has already been considered in the conference version [8], with a slightly
different definition but essentially the same proof. However, our goal is a deterministic algorithm and
to this end we need [9], the extended version of [8].
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Figure 3 A previous occurrence of T [i . . j] anchored at i′ can be detected using D(h).

know, for each occurrence i of h in T and each of its previous occurrences i′ < i, the longest
left extension within the starting ranges of i and i′, and the longest right extension of the
fragments of T following the occurrences of h at i and i′. We cannot afford to store all these
pairs of values explicitly as this would require Õ(n2/b2) space. We thus construct a separate
data structure, denoted by D(h), for each anchor h ∈ A. This data structure encode the same
information in a compact form. We next describe the data structure and its construction.

D(h) consists of two compacted tries TPr(h) and TS(h). For every occurrence i of h in
T , TS(h) contains a leaf corresponding to T [i + b . . n], and TPr(h) a leaf corresponding to
(T [1 . . i − 1])r, both labelled with position i. We only store the list of children and the length
of the path label of each node, which we call its depth. Because of property (ii), the overall
size of these data structures for all anchors is thus in O(n/b · log n). For any two occurrences
i, i′ of h, the depth of the lowest common ancestor of leaves i and i′ in TPr(h) gives the
length of their longest left extension, and the depth of their lowest common ancestor in TS(h)
gives the length of their longest right extension: see Figure 3 for an example. D(h) can be
efficiently constructed for all h ∈ A, as shown by Lemma 12.

▶ Lemma 12. Data structures D(h), for all h ∈ A, can be constructed in Õ(n2/b) total time
using Õ(n/b) space, which is Õ(b) when b ≥

√
n.

Proof. Let occ(h) be the list of occurrences of anchor h in T , let B =
⋃

h∈A occ(h) and
B′ =

⋃
h∈A occ(h) + b − 1. Recall that D(h) consists of two compacted tries TPr(h) and

TS(h). We will first construct two global compacted tries TPr(A) and TS(A) for all anchors
in A, and then extract from them subtries TPr(h) and TS(h) for each h ∈ A.

TPr(A) and TS(A) are constructed in the same way, except that for TPr(A) we consider
the reversal of strings. To construct TS(A) we employ Theorem 9 on set B, as it is essentially
the sparse suffix tree for the suffixes starting at positions in B; and to construct TPr(A) we
employ Theorem 9 on the reverse of T and set B′. Once we have constructed TS(A) and
TPr(A), to extract subtries TS(h) and TPr(h) for h ∈ A it suffices to spell h from the root
of TS(A) (resp. hr from the root of TPr(A)) and take the subtrie below.

The time and space complexity of computing TS(A) and TPr(A) is as follows. The size of
sets B and B′ is O(n/b · log n) = O(b log n) when b ≥

√
n, thus by Theorem 9 we make use

of O(b log n) words of space. Again by Theorem 9, the overall time complexity to construct
them is Õ(n). To find the right subtrie for each h ∈ A we then spend Õ(b) time for each of
the O(n/b log n) anchors of A, thus again Õ(n) time overall. ◀

Computing ST (k) Using D(h). Similar to Section 4, in each phase α we fill in an auxiliary
array I = I[1 . . b] such that, at the end of the phase, I[q] contains the number of positions i

in T such that the shortest substring that does not occur in T before position i is of length
αb + q. We proceed as follows. We consider one position of T at the time, from left to right.
When we are at position i, let h be the leftmost anchor occurring at some position i′ ≥ i.
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We binary search for the smallest position j such that T [i . . j] does not occur to the left
of i using D(h). We first identify in TPr(h) the highest ancestor u of leaf i′ with string
depth at least i′ − i. This corresponds to answering a weighted level ancestor query [30] on
TPr(h), where the weight of each node is its depth. After linear-time preprocessing, weighted
ancestor queries for nodes of a weighted tree with integer weights from a universe [1 . . U ] can
be answered in O(log log U) time [1]. In our case, the queries thus cost O(log log n) time.

We then start binary searching for the leftmost position j such that T [i . . j] does not
occur to the left of position i and such that |T [i . . j]| ∈ [αb + 1, (α + 1)b]: we thus look for j

in the range [i + αb, i + (α + 1)b− 1]. For each value j considered in the binary search, we find
in TS(h) the highest ancestor v of leaf i′ with string depth at least j − (i′ + b), by answering
a weighted level ancestor query. We then need to check whether T [i . . j] occurs somewhere
to the left of i, in correspondence of a previous occurrence of anchor h, in which case we
increase j in the next step; or it does not occur before, in which case we decrease j. We do
so by looking at the leaves (occurrences of h) in the subtree below u in TPr(h), denoted by
TPr(h)|u, and in the subtree below v in TS(h), TS(h)|v. Every leaf in the intersection of the
two subsets of leaves corresponds to an occurrence of T [i . . j] in T . The information we need
is whether i′ is the smallest leaf in the intersection, meaning that T [i . . j] does not occur
anywhere before. This reduces to a 2D range searching problem.

We assume that each leaf of each tree has a unique identifier, independent from their label
and such that the identifiers of the leaves of any subtree form a contiguous range. For each
leaf ℓ, its identifiers in TPr(h) and TS(h) give the coordinates of a point on a plane, to which
we assign ℓ as weight. By construction, the points corresponding to leaves in the intersection
of TPr(h)|u and TS(h)|v are contained in a rectangle: we need to find the point with the
smallest weight there and check whether it is i′ or not. Such queries can be answered in time
O(log s) with a data structure that is constructed in time and space O(s log s), where s is
the total number of points [17]. At the end of the binary search, if j = i + αb + q we increase
the counter at I[q] by one, unless j = i + (α + 1)b − 1 and T [i . . j] occurs before i, in which
case we do not increase any counters. We finally move to the next position of T .

▶ Lemma 13. Assume that all length-b substrings of T are not strongly periodic. Then δ

can be computed in Õ(n2/b) time using Õ(n/b + b) space, which is Õ(b) when b ≥
√

n.

Proof. Set A is selected in Õ(n2/b) time and Õ(n/b + b) space as per Lemma 11, and D(h)
can be computed in the same time and space for all h ∈ A and all phases, as per Lemma 12.
In each phase α, we go over the n positions of T one at a time. At each position i we binary
search for the shortest substring not occurring before i in O(log αb) steps, each requiring
O(log n) time. Over all O(n/b) phases, this requires Õ(n2/b) time and Õ(n/b) space. ◀

5.4 Processing the b-Runs
Recall that we have computed, as per Lemma 10, a representation of all the b-runs of T .
In this section, we only focus on the substrings of length at least b and periods at most
b/4. Every occurrence of such a substring is fully contained in some b-run, and for ease
of presentation we will assume that in phase α, in which we process substrings of length
k ∈ [αb + 1, (α + 1)b], every b-run is longer than αb. Observe that each substring of a b-run
T [s . . e] with root t occurs also as a prefix of some fragment starting within the first |t|
positions of the run, which we call its relevant range. Since we aim to identify the leftmost
occurrence of each substring of T , we can ignore all positions of a b-run after its relevant
range. By slightly abusing notation, we select as anchors some fragments of the b-runs of T ,
instead of selecting substrings together with the whole set of their occurrences. However,
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this set of anchors must have the following property, that for the anchors of Section 5.3 held
naturally: for any two occurrences of the same substring in the relevant ranges, the leftmost
occurrence of any anchor therein is at the same offset from the beginning of the substring.
In phase α we use as anchors the first two occurrences of the root in each b-run: let H be
this set of fragments of T . Clearly, H is of size O(n/b) because the representation of all the
b-runs is of such size.

▶ Lemma 14. For any two occurrences of the same substring of length at least b and period
at most b/4, both starting in the relevant ranges of the b-runs of T , the leftmost occurrence
of any h ∈ H in each of them is at the same offset from the beginning of the substring.

Proof. Let Y = t[d . . |t|]tβt[1 . . f ] be a fragment occurring at the first t positions in some b-run
T [s . . e] = t[q . . |t|]tγt[1 . . g]. The anchors within T [s . . e] are, by definition, the occurrences
of t at position p1 = s + (|t| − q + 1) mod |t| and p2 = p1 + |t|. If d ≥ q, the leftmost
occurrence of any anchors in Y is at p1, which is at offset |t| − d + 2 in Y . Otherwise, if
d < q, the leftmost occurrence of any anchors in Y is at p2, which is in any case at offset
|t| − d + 2 in Y .

Consider another occurrence of Y in the first |t| positions of some other b-run T [s′ . . e′] =
t[q′ . . |t|]tγ′

t[1 . . g′]. The anchors are the occurrences of t at position p′
1 = s′ + (|t| − q′ + 1)

mod |t| and p′
2 = p′

1 + |t|; depending on whether d ≥ q′ or not, the leftmost occurrence of any
anchor in this occurrence of Y is either p′

1 or p′
2, in either case at offset |t| − d + 2 in Y . ◀

Let P be the set of roots of the b-runs of T . We construct a data structure D(P ) for all roots
t ∈ P similar to what we do in Section 5.3, but we use only the occurrences of t corresponding
to fragments in H. We then proceed as described in Section 5.3 to fill in array I, except that,
in each b-run with root t, we disregard any position after the first |t|.

We have arrived at the following lemma.

▶ Lemma 15. The substrings of T that are fully contained within a b-run can be processed
in Õ(n2/b) time using O(n/b) space, which is O(b) when b ≥

√
n.

5.5 Computing ST (k) for Large k

The occurrences of anchors h ∈ A selected for the b-gaps anchor all the fragments fully
contained in a b-gap and possibly some other fragments. However, we are not guaranteed
that this holds for any fragment not fully contained in a b-run. Consider a fragment T [i . . j]
of length at least b with period larger than b/4 (thus, not contained in any b-run) but
containing a strongly periodic length-b fragment T [i′ . . j′] inside (so, not contained in any
b-gap). Then, T [i′ . . j′] is fully contained in some b-run T [s . . e]. Because T [i . . j] is not
fully contained in T [s . . e], either T [s − 1 . . s + b − 2] or T [e − b + 2 . . e + 1] (that is, a
length-b substring with exactly one letter before or after the b-run) is fully within T [i . . j].
This suggest that we should augment A with the following length-b substrings: for each
b-run T [s . . e], T [s − 1 . . s + b − 2] ∈ A and T [e − b + 2 . . e + 1] ∈ A, and we consider all
their occurrences in T . By the above reasoning, this guarantees that T [i . . j] contains an
occurrence of some anchor inside. We are defining only O(n/b) new anchors, but then we
need to consider all of their occurrences. Therefore, we need to argue that the total number
of occurrences of the new anchors is O(n/b). It is enough to show this for the occurrences of
the anchors T [s − 1 . . s + b − 2], where the period of T [s . . s + b − 2] is at most b/4. We claim
that for any two such occurrences T [s − 1 . . s + b − 2] and T [s′ − 1 . . s′ + b − 2] with s < s′

we have s + b/2 < s′: otherwise T [s . . s + b − 2] and T [s′ . . s′ + b − 2] overlap by at least b/2
positions, but two b-runs cannot overlap by b/2 positions, a contradiction. We generate all
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these occurrences and then process all the anchors as in Section 5.3. The only difference is
the starting range associated with the anchors obtained from the suffix of some b-run: when
they are not preceded by another anchor within cb positions, we take as starting range the
αb positions preceding the anchor.

Let us put everything together. Before computing ST (k) in phases, we identify the b-runs
and the b-gaps of T as per Lemma 10. We then extract a set of anchors from the b-gaps as
described in Lemma 11, and we complement it with the length-b substrings that start one
position before each b-run, and with the length-b substrings that end one position after the
end of each b-run, to complete the set A of anchors. We then compute the list of occurrences
of each h ∈ A; we also identify the relevant ranges within each b-run. We then proceed in
phases. In each phase, we scan T from left to right and process all positions in b-gaps as per
Section 5.3. All positions within a b-run are processed as per Section 5.4, and additionally as
per Section 5.3, when they are within the starting range of an occurrence of some h ∈ A. At
the end of a phase α, we have computed an auxiliary array I such that I[h] gives the number
of positions i of T such that the shortest substring that does not occur in T before position i

is of length αb + h. We use I to compute ST (k) for each k ∈ [αb + 1, (α + 1)b] as in Section 4.
By combining Lemmas 13 and 15 we arrive at Theorem 3, the main result of this paper.

6 Substring Complexity from the Combinatorial Point of View

Knowing the substring complexity of a string can also be used to find other regularities. To
mention a few, we have the following straightforward implications in sublinear working space:

T has a substring of length k repeating in T if and only if ST (k) < n − k + 1. This yields
the length r of the longest repeated substring of T (also known as the repetition index of
T ) [68]. It is worth noticing that ST (k + 1) = ST (k) − 1 for every k > r [27] and that r

approximates O(log|Σ| n) when T is randomly generated by a memoryless source [32].
A string S is called a minimal absent word of T if S does not occur in T but all proper
substrings of S occur in T . The length ℓ of a longest minimal absent word of T is equal
to 2 + r [32]. This quantity is important because if two strings X and Y have the same
set of distinct substrings up to length ℓ, then X = Y [32, 14]. The length of a shortest
absent word [69] of T over alphabet Σ is equal to the smallest k such that ST (k) < |Σ|k.
The longest common substring of strings X and Y is equal to the largest k such that
SX(k) + SY (k) > SX#Y (k) − k, where # does not occur in X nor in Y , since there are
precisely k distinct substrings of length k containing the letter # in X#Y .

The substring complexity function is well studied in the area of combinatorics on words,
both for finite and infinite strings. However, the normalization S(k)/k and its supremum δ

have not been considered until very recently. In [27] it is proved that the substring complexity
ST (k) of a string T takes its maximum precisely for k = R, where R is the minimum
length for which no substring of T has occurrences followed by different letters, and one
has ST (R) = n + 1 − max{R, K}, where K is the length of the shortest unrepeated suffix
of T . But this seems to be of little help in understanding the behaviour of the normalized
substring complexity ST (k)/k.

7 Approximating δ in Sublinear Space

Our algorithms compute the exact value of δ. If one is interested in a constant-factor
approximation of δ (e.g., an algorithm’s complexity has a polynomial dependency on δ [53]),
then there is a simple algorithm in our model based on the following combinatorial observation,
which follows directly by the number of fragments of length ℓ of a string of length n being
n − ℓ + 1, and by the fact that each fragment of length ℓ′ > ℓ has a prefix of length ℓ.

ISAAC 2023
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▶ Observation 16. For any string T , let ST (k) be the number of distinct substrings of length
k. The number ST (k′) of distinct substrings of any length k′ > k is at least ST (k) − (k′ − k).

▶ Lemma 17. Let δ′ = sup{ ST (2d)
2d | d = 0, . . . , log n}. Then δ ≤ 2δ′ + 1.

Proof. Let δ = ST (k)
k for some k ≥ 1, and let d be the integer such that

2d ≤ k < 2d+1. (1)

By the definition of δ′, we have that δ′ ≥ ST (2d+1)
2d+1 . By applying Observation 16, we obtain:

ST (2d+1)
2d+1 ≥ ST (k) − (2d+1 − k)

2d+1 ≥ ST (k) − (2d+1 − 2d)
2d+1 ≥ ST (k)

2k
− 2d

2d+1 = 1
2δ − 1

2 . ◀

Recall that the algorithm underlying Theorem 2 works in n
b phases, where each phase

handles a range of b lengths k. By plugging in Lemma 17, the number of phases become
Θ(log n) – instead of Θ(n/b) – and so we obtain a simple Õ(n2/b)-time and O(b)-space
algorithm to approximate δ, within a constant factor, in the comparison model.
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