
New Support Size Bounds for Integer
Programming, Applied to Makespan Minimization
on Uniformly Related Machines
Sebastian Berndt #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Hauke Brinkop #

Kiel University, Germany

Klaus Jansen #

Kiel University, Germany

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Tobias Stamm #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Abstract
Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving
fundamental problems in combinatorial optimization. The complexity of solving MILPs directly
correlates with their support size, which is the minimum number of non-zero integer variables in
an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows
that any feasible integer linear program (ILP) has a solution with support size s ≤ 2m · log(4m∆),
where m is the number of constraints, and ∆ is the largest absolute coefficient in any constraint.

Our main combinatorial result are improved support size bounds for ILPs.
We show that any ILP has a solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)),

where Amax := ∥A∥1 denotes the 1-norm of the constraint matrix A. Furthermore, we show support
bounds in the linearized form s ≤ 2m · log(1.46Amax). Our upper bounds also hold with Amax

replaced by
√

m∆, which improves on the previously best constants in the linearized form.
Our main algorithmic result are the fastest known approximation schemes for fundamental

scheduling problems, which use the improved support bounds as one ingredient.
We design an efficient approximation scheme (EPTAS) for makespan minimization on uniformly

related machines (Q||Cmax). Our EPTAS yields a (1 + ε)-approximation for Q||Cmax on N jobs
in time 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N), which improves over the previously fastest algorithm
by Jansen, Klein and Verschae (Math. Oper. Res., 2020) with run time 2O(1/ε log4(1/ε)) + NO(1).
Arguably, our approximation scheme is also simpler than all previous EPTASes for Q||Cmax, as we
reduce the problem to a novel MILP formulation which greatly benefits from the small support.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Integer programming, scheduling algorithms, uniformly related machines,
makespan minimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.13

Related Version arXiv Version: https://arxiv.org/abs/2305.08432 [7]

Funding Hauke Brinkop: Partially supported by DFG project JA 612/25-1, Fein-granulare Komple-
xität und Algorithmen für Scheduling und Packungen.
Klaus Jansen: Partially supported by DFG project JA 612/25-1, Fein-granulare Komplexität und
Algorithmen für Scheduling und Packungen.
Matthias Mnich: Partially supported by DFG project MN 59/4-1, Multivariate algorithms for
high-multiplicity scheduling.

© Sebastian Berndt, Hauke Brinkop, Klaus Jansen, Matthias Mnich, and Tobias Stamm;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.berndt@uni-luebeck.de
https://orcid.org/0000-0003-4177-8081
mailto:hab@informatik.uni-kiel.de
https://orcid.org/0000-0002-7791-2353
mailto:kj@informatik.uni-kiel.de
https://orcid.org/0000-0001-8358-6796
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:tobias.stamm@tuhh.de
https://orcid.org/0000-0002-5381-4935
https://doi.org/10.4230/LIPIcs.ISAAC.2023.13
https://arxiv.org/abs/2305.08432
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 New Support Size Bounds for Integer Programming

1 Introduction

The Integer Linear Programming (ILP) problem is to find an optimal integral solution
x⋆ ∈ Zn

≥0, which minimizes a linear objective c⊺x subject to a system Ax = b of m linear
constraints. In the Mixed-Integer Linear Programming (MILP) problem, the solution
sought is a pair (x⋆, y⋆) ∈ Zn

≥0 × Qr
≥0, which minimizes c⊺(x y) subject to Ax + By = b1

and Cy = b2. Solving (M)ILPs is at the core of many advanced algorithms for fundamental
combinatorial optimization problems. Very often, the run time of these algorithms scales
with the support size of the (M)ILPs, which is the smallest number of non-zero entries in an
optimal solution x⋆ resp. (x⋆, y⋆). Thus, support size bounds have found applications all
over computer science, for example in scheduling [5, 25], logic [30, 35], and even complexity
theory [21]. Therefore, the smaller the support size, the better these results become. Hence,
an important research direction is to prove strong upper bounds on the support size of
(M)ILPs. The original result on support size bounds, which is already finding its way into
the standard curriculum of integer programming courses [37, Lemma 6.1] is:

▶ Proposition 1 (Eisenbrand, Shmonin [15, Thm. 1(ii)]). Any feasible and bounded integer
program with m constraints admits a solution with support size s ≤ 2m log(4m∆), where ∆
is the largest absolute value of any entry in the constraint matrix A.

The result by Eisenbrand and Shmonin is about feasible solutions, and thus does not depend
on any objective function. Aliev et al. [2] improved the Eisenbrand-Shmonin bound to
2m log(2

√
m∆), and showed it to hold even for the support size of optimal solutions with

respect to any linear objective function. Recently, Gribanov et al. [19] were the first to achieve
a leading coefficient of 1, with a bound of the form m log(c1 ·

√
m∆ ·

√
log(c2 ·

√
m∆)), and

improved constants of 1.18m log(7.02
√

m∆) in the linearized form. For the special cases of
positively space spanning matrices [1], and in the average case over all right-hand sides [34],
results on the order of O(m) have recently been obtained. One important application
of the Eisenbrand-Shmonin bound are efficient polynomial-time approximation schemes
(EPTAS) for scheduling problems [23]. An EPTAS computes, for any problem instance I
and any ε > 0, a solution whose value is within (1 + ε) of the optimal solution value in time
f(1/ε)⟨I⟩O(1), where ⟨I⟩ denotes the encoding size of I. Several EPTAS were devised for
the classical scheduling problem of makespan minimization on uniformly related machines.
This problem is denoted as Q||Cmax in Graham’s 3-field notation [18]. The input to Q||Cmax
is a set J of N jobs, each of which is characterized by an integer processing time pj , and
a set M of M machines, each of which is characterized by an integer speed si. The goal
is to find an assignment (or schedule) σ : J → M of jobs to machines, which minimizes
the maximum completion time Cmax := maxi∈M

∑
j∈σ−1(i) pj/si of any machine. Problem

Q||Cmax is well-known to be NP-hard, even in the special case of unit speeds s1 = · · · = sm,
but still approximable to arbitrary precision, in contrast to the setting of unrelated machines.
The previously fastest EPTAS for Q||Cmax is due to Jansen, Klein and Verschae [25, 26],
and runs in time 2O(1/ε log4(1/ε)) + NO(1). Since their result first appeared in 2016, it has
been an open question whether the exponential dependency on 1/ε can be improved. In
particular, there is a gap to the best-known lower bound, which shows that a run time
of 2O((1/ε)1−δ) + NO(1) is not possible for any δ > 0, assuming the Exponential-Time
Hypothesis [12]. It is unknown, whether this gap can be improved to δ = 0, even under
stronger assumptions such as Gap-ETH [33]. Further, a gap remains to the best-known run
time 2O(1/ε log(1/ε) log(log(1/ε))) + NO(1) for the case of unit speeds s1 = · · · = sm [8]. Our
work shows that this gap could be closed with an algorithm for MILPs with few constraints,
as efficient as those available for ILPs with few constraints.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:3

Combinatorial results. Our main combinatorial result improves on the fundamental support
size bound of Proposition 1 with regard to the new parameter Amax. Prior work used the
maximum norm ∆ := ∥A∥max = maxi,j |Ai,j |, the largest absolute value of an entry in the
constraint matrix A. Instead, we use the 1-norm Amax := ∥A∥1 = maxi ∥Ai∥1, the largest
1-norm of any column Ai in A. The matrix 1-norm is sub-multiplicative, consistent with
the vector 1-norm and recognizes some sparsity, all in contrast to the maximum norm. This
makes Amax a natural parameter to consider for studying the properties of ILPs. We show:

▶ Theorem 2. Any feasible bounded ILP with an m-row constraint matrix A with 1-norm Amax
has an optimal solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)).

We also derive parametric support size bounds in linearized form, like s ≤ 1.1m·(3.42Amax).
As all our upper bounds can equally be derived with Amax replaced by

√
m∆, we thereby

improve on the constants of Gribanov et al. [19] in this form. For the parameter Amax, we
show an asymptotically matching lower bound on the support size of an optimal solution:

▶ Theorem 3. For any m ∈ Z≥0 and any Amax ∈ Z≥1, there is an ILP with m constraints,
n := m · (⌊log(Amax)⌋ + 1) ≥ m · log(Amax) variables, and 1-norm Amax of the constraint
matrix, whose unique optimal solution is the 1-vector.

To obtain this lower bound, we adapt the previously best lower bound of m log(∆) on
the support size of an optimal solution by Berndt, Jansen and Klein [9].

Algorithmic results. We use our upper bounds on the support sizes of optimal solutions
to ILPs from Theorem 2 as one ingredient to obtain new algorithmic results. Namely, we
design a new EPTAS for Q||Cmax, which is asymptotically faster than all previous EPTAS for
Q||Cmax. See Table 1 for a survey of prior work on approximation algorithms for Q||Cmax.

▶ Theorem 4. There is an algorithm for Q||Cmax that, for any ε > 0 and any set of N jobs,
computes a (1 + ε)-approximate schedule in time 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N).

Table 1 History of selected complexity results for approximating Q||Cmax.

authors year approximation run time

Gonzales, Ibarra, Sahni [17] 1977 2 − 2
M+1 O(N log(N))

Cho, Sahni [13] 1980 1 +
√

M−1
2 O(N log(N))

Woeginger [38] 1999 2 − 1
M

O(N log(N))
Hochbaum, Shmoys [22] 1988 1 + ε NO(1/ε2 log(1/ε))

Azar, Epstein [4] 1998 1 + ε NO(1/ε2)

Jansen [23] 2010 1 + ε 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen, Robenek [28] 2012 1 + ε 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen, Klein, Verschae [25, 26] 2016 1 + ε 2O(1/ε log4(1/ε)) + NO(1)

This paper 2023 1 + ε 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N)

Compared to previous works, we devise a novel MILP formulation for Q||Cmax whose
constraint matrix has small column norm. Solving this new formulation not only yields
the fastest known EPTAS for Q||Cmax, but also an EPTAS which is conceptually much
simpler than all previous ones. In particular, we introduce the following simplifications in
our algorithm compared to the previous EPTAS results:

ISAAC 2023

13:4 New Support Size Bounds for Integer Programming

In contrast to all other previous algorithms, we do not need a case distinction that
splits the algorithm and its analysis into three or four different cases, depending on the
processing time ratios and numbers of machines. Our algorithm handles all these cases
simultaneously by incurring an increase in the constants hidden within the O terms.
We set up an MILP where both jobs and machines with similar size and speed are
combined into few distinct job and machine classes. All but the longest jobs and machines
are then scheduled fractionally. Rounding the fractional allocations for relatively tiny
jobs in a machine class was usually done via a separate algorithm by Lenstra, Shmoys
and Tardos [32]. Instead, we pack these jobs with a simple greedy strategy.
We assign relatively huge jobs of each rounded machine speed using basic linear program
properties. This creates a linear instead of logarithmic overhead, which we accommodate
by increasing the number of integer variables by a constant factor. Previous EPTAS
mostly used a complex algorithm by Jansen [24] for a particular bin packing problem.

The only remaining algorithm used as a black-box is the well-known algorithm by Lenstra [31]
for solving MILPs with constant dimension (resp. its improvement due to Kannan [29]). To
show the versatility of our approach, we applied it to three related scheduling problems. Due
to space constraints, the details of these applications are only in the full version [7].

High-Multiplicity Scheduling. We study the problem Q|HM |Cmax, where both jobs and
machines are given in the succinct high-multiplicity encoding. We are not aware of any prior
constant-factor approximation for Q|HM |Cmax, only for the restricted setting where only
the jobs are given in a high-multiplicity encoding by Filippi and Romanin-Jacur [16].

▶ Corollary 5. There is an algorithm for Q|HM |Cmax that, for any ε > 0 and any instance I,
computes a (1 + ε)-approximate schedule in time 2O(1/ε log3(1/ε) log(log(1/ε))) + ⟨I⟩O(1).

Few Different Machine Speeds. In the special case of Q||Cmax with only k distinct machine
speeds, the run time of our algorithm can be improved.

▶ Theorem 6. There is an algorithm for Q||Cmax that, for any ε > 0, any set of N

jobs and any k distinct machine speeds, computes a (1 + ε)-approximate schedule in time
2O(k·1/ε log(1/ε) log(log(1/ε))) + O(N).

Few Different Uniform Machine Types. Jansen and Maack [27] posed RKQ||Cmax, a
generalization of Q||Cmax where each job can have up to K different processing times.

▶ Theorem 7. There is an algorithm for RKQ||Cmax that, for any ε > 0 and any set of N jobs,
computes a (1+ε)-approximate schedule in time 2O(K log(K)1/ε log3(1/ε) log(log(1/ε))) +O(K ·N).

2 Preliminaries

We use log(2) = 1, i.e., base 2 logarithms and denote Euler’s number by e := exp(1). For
a vector v, let vmin := minℓ vℓ and vmax := maxℓ vℓ be its extremal entries and supp(v) :=
{ℓ | vℓ ̸= 0} its support, i.e., the set of indices with non-zero entries. For an instance I,
its encoding size ⟨I⟩ is given by ⟨I⟩ :=

∑
x∈I(log(|x| + 1) + 1), the sum over the sizes in

binary representations of all quantities. For example, an instance I of Q||Cmax has size ⟨I⟩
logarithmic in the job processing times and machine speeds, but linear in the number of jobs
and machines. We generally use i as index for machines, and j as index for jobs.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:5

Mixed-Integer Linear Programs. The set of feasible solutions of any MILP is

Q :=
{

x ∈ Zn
≥0, y ∈ Rr

≥0 |
(

A B

0 C

)
·
(

x

y

)
= b

}
(MILP)

for matrices A ∈ Zm×n, B ∈ Zm×r, C ∈ Zs×r and a vector b ∈ Zm+s. The encoding size
⟨MILP⟩ of (MILP) is logarithmic in the absolute value ∆ := maxi,j |Ai,j | of the largest
coefficient and right-hand side b, but linear in the number of variables and constraints.

We will make use of the following classical result for finding solutions of (MILP), which
was proved first by Lenstra [31] and obtained with improved run time by Kannan [29].

▶ Proposition 8 (Kannan [29]). For any instance of (MILP), in time 2O(n log(n))⟨MILP⟩O(1)

one either finds a solution (x, y) ∈ Q or determines that Q = ∅.

In the following, we reproduce two useful lemmata about the structure of (MILP) solutions,
which are inherited from its integral and fractional parts.

▶ Lemma 9. For any instance of (MILP) and any (x̂, ŷ) ∈ Q, in time ⟨MILP⟩O(1) we can
find (x̂, ỹ) ∈ Q such that ỹ is a vertex solution of the following restricted LP:{

y ∈ Rr
≥0 |

(
B

C

)
· y = b −

(
A

0

)
· x̂

}
. (R-LP)

Proof. By assumption, (R-LP) is feasible, as ŷ is a solution. With the ellipsoid algorithm [20,
Remark 6.5.2] we find a vertex solution ỹ of (R-LP) in polynomial time. ◀

▶ Lemma 10. For any instance of (MILP) and any (x̂, ŷ) ∈ Q there is some (x̃, ŷ) ∈ Q
such that x̃ has minimum support | supp(x)| of all solutions x to the restricted ILP{

x ∈ Zn
≥0 |

(
A

0

)
· x = b −

(
B

C

)
· ŷ

}
. (R-ILP)

Proof. By assumption, (R-ILP) is feasible, as x̂ is a solution. Hence, it also has a solution x̃

with minimum support size. Then (x̃, ŷ) ∈ Q holds because of (x̂, ŷ) ∈ Q and A·x̂ = A·x̃. ◀

Importantly, Lemma 10 implies that any support size bound for an ILP can be directly
applied to the integer variables of an MILP. One of these applications is an algorithm to
solve MILPs with few constraints. This was presented explicitly and analyzed in terms of
m and ∆ by Rohwedder and Verschae [36, p. 30], see also Dadush et al. [14]. For us, the
crucial underlying idea to efficiently solve MILPs is:

▶ Lemma 11. For any instance of (MILP) and any s ≤ n, in time 2O(s log(n)) · ⟨MILP⟩O(1)

we either find a solution (x, y) ∈ Q≤s := {(x, y) ∈ Q : | supp(x)| ≤ s} of bounded support,
or determine that Q≤s = ∅.

Proof. We exhaustively try all choices of supp(x), which are
(

n
s

)
≤ ns candidates, from

| supp(x)| = 0 up to s. For each choice we restrict (MILP) to supp(x), by fixing all other
integer variables to 0. With Proposition 8 we either find a solution with s integral variables,
or determine the infeasibility, in time sO(s)⟨MILP⟩O(1). The run time follows from s ≤ n. ◀

Note that a support size bound s on any solution of (R-ILP) allows us to use Lemma 11 to
find a solution with support size s, or decide the infeasibility of the entire (MILP). Lemma 11
directly extends to optimizing a linear objective function; and to finding a non-zero solution
of minimum support, which might be of interest for augmentation algorithms.

ISAAC 2023

13:6 New Support Size Bounds for Integer Programming

3 Refined Support Size Bounds for Integer Linear Programs

In this section, we refine the general support size bounds independent of n for integer linear
programs. Previous such bounds used as parameters the number of constraints m, and the
largest absolute value ∆ of an entry in the constraint matrix A. In our MILP formulation for
Q||Cmax, we bound the support size by the maximum 1-norm of a column vector, denoted
by Amax := ∥A∥1 = maxi=1,...,n ∥Ai∥1. Clearly, ∆ ≤ Amax ≤ m · ∆ holds, but it also means
that support size bounds using only m and ∆ are too coarse for some ranges. In this section,
we only consider feasible ILPs L ≠ ∅ with rank(A) = m. Let S := supp(v) be the support of
the vertex v, and let s := |S| be the size of the support. Our results are based on:

▶ Proposition 12 (Aliev et al. [2, Thm. 1(2)]). Any ILP L with constraint matrix A ∈ Zm×n

has an optimal solution v ∈ L with support size s := | supp(v)| ≤ m + log(
√

det(A · AT)).

In this form, the determinant of the support size bound can depend on n. The strength of
Proposition 12 is the ability to restrict A to the columns with non-zero variables. For our
vertex solution v with support S = supp(v), this is exactly AS , the columns of the variables
in the support. Aliev et al. [2] used the inequality

√
det(AS · AT

S) ≤ (
√

s∆)m to ultimately
obtain the support size bound s ≤ 2m log(2

√
m∆) [3, Thm. 1(ii)]. We analyze the term

det(AS · AT
S) in the more fine-grained parameter Amax to obtain a tighter bound:

▶ Lemma 13. For any matrix AS ∈ Zm×s it holds that
√

det(AS · AT
S) ≤ (

√
s/m · Amax)m.

Proof. The matrix G := AS · AT
S is symmetric and positive semi-definite. If G has an

eigenvalue of 0 then det(G) = 0 and the inequality holds. We will thus assume that G is
positive definite, i.e., all eigenvalues are positive. It is a classical result that for positive
definite matrices, the Hadamard inequality can be strengthened to det(G) ≤

∏m
i=1 Gi,i, the

product of the diagonal entries Gi,i. We refer to a modern presentation by Browne et al. [10,
Thm. 2] for this fact. As G = AS · AT

S , it is sufficient to bound φ(AS) :=
∏m

i=1
∑s

j=1 A2
S;i,j

subject to
∑m

i=1 |AS;i,j | ≤ Amax for j = 1, . . . , s by (s/m · A2
max)m to obtain our result.

We will first characterize a matrix AS such that φ(AS) is maximal and then relate φ(AS)
to (s/m · A2

max)m. As all entries AS;i,j of AS occur as squares or absolute values in the
optimization, we can assume AS;i,j ≥ 0 in the following. As φ is monotone in each variable,
the matrix AS that maximizes φ(AS) under the condition

∑m
i=1 |AS;i,j | ≤ Amax will fulfill

these constraints with equality, i.e.,
∑m

i=1 |AS;i,j | = Amax for j = 1, . . . , s. Renaming AS;i,j
to xi,j thus gives us the optimization problem:

max
m∏

i=1

s∑
j=1

x2
i,j s.t.

m∑
i=1

xi,j = Amax xi,j ≥ 0 for i = 1, . . . , m; j = 1, . . . , s .

To bound the optimal solutions to this program, we first consider optimal solutions over the
same region with objective function

∑m
i=1
∑s

j=1 x2
i,j . This is a convex objective function over

a polyhedral region. By Bauer’s maximum principle [6], the maximum is assumed at a vertex
and thus has s non-zero variables. Consequently, we have

∑m
i=1
∑s

j=1 x2
i,j ≤ s · A2

max. Now,
consider the problem of maximizing max

∏m
i=1 yi with

∑m
i=1 yi ≤ s · A2

max and yi ≥ 0. The
logarithm is monotone, so we can apply it to the objective, giving

∑m
i=1 log(yi) instead. For

any solution x∗
i,j maximizing

∑m
i=1
∑s

j=1 x2
i,j , we can compute the y∗

i with y∗
i =

∑s
j=1 x∗

i,j
2

that will maximize
∑m

i=1 log(yi). As the logarithm is concave, we can thus maximize∑m
i=1 log(yi) by y∗

1 = . . . = y∗
m = s/m · A2

max, as we could otherwise improve a solution by
re-balancing it. Hence, φ(AS) ≤ (s/m · A2

max)m, which implies our inequality. ◀

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:7

Importantly, by substituting Amax with
√

m∆, our inequality in Lemma 13 becomes the one
used by Aliev et al. [2]. Therefore, any of the following results can also be obtained for

√
m∆

instead of Amax. Proposition 12 and Lemma 13 imply the essential intermediate result:

▶ Corollary 14. Any ILP L with constraint matrix A ∈ Zm×n has an optimal solution v ∈ L
with | supp(v)| = s such that s/m ≤ 1 + log(

√
s/m · Amax) = 1 + log(Amax) + log(s/m)/2.

The proof of Proposition 12 uses Siegel’s Lemma, a deep result from transcendental number
theory. In contrast, Berndt et al. [9] derive a support size bound of the same form using only
elementary methods, but with worse constants. Building on their approach, we also derive a
simple combinatoric, but weaker bound similar to Corollary 14 in the extended version [7].

▶ Lemma 15. Any ILP L with constraint matrix A ∈ Zm×n has an optimal solution v ∈ L
with | supp(v)| = s such that s/m ≤ 1 + log(e) + log(1 + (s/m) · Amax).

Unfortunately, both sides of Corollary 14 are still dependent on s. We resolve Corollary 14
for s in two ways, both parametric in the trade-off between constant and super-constant
terms. In the first approach, we bound the logarithm by its tangents.

▶ Lemma 16. For any α > 0 and x > 0, it holds log(x) ≤ α · x − log(e) + log(log(e)/α).

Proof. At x = log(e)/α, both sides are log(log(e)/α), and the derivatives are α. Hence, the
affine function of the right-hand side upper bounds the left-hand side, as log(x) is concave. ◀

This direct approach allows us to give simple and short formulas for the bounds.

▶ Theorem 17. For any α ∈ (0, 1) there is an optimal solution v of ILP with

s ≤ m · log(
√

2 log(e)/(e · α) · Amax)/(1 − α) .

Proof. Applying Lemma 16 with 2α to Corollary 14 yields

s/m ≤ 1 + log(Amax) + (2α · s/m − log(e) + log(log(e)/(2α)))/2

≤ log(2Amax) + α · s/m + log
(√

log(e)
2α

)
≤ log

(√
2 log(e)

e · α
· Amax

)
+ α · s/m .

We subtract α · s/m, and multiply by m/(1 − α), which proves the claim for 0 < α < 1. ◀

For example, we can set α = 1/2 or α = 1/11 to obtain the bounds s ≤ 2m · log(1.46 · Amax)
and s ≤ 1.1m · log(3.42 · Amax). This approach, however, only gives bounds with coefficient
strictly larger than 1 for the leading term. To reduce this to 1, we make use of advanced
analytical function techniques, to tighter analyze the inequality of Corollary 14.

▶ Lemma 18. For s, m, Amax ≥ 1, the inequality in Corollary 14 is equivalent to

s/m ≤ − log(e) · W−1(−1/(2 log(e)A2
max))/2,

where W−1 is the −1 branch of the Lambert W-function, the inverse function of x 7→ xex.

Proof. We substitute s/m by − log(e) · y/2, and rearrange to obtain:

− log(e) · y/2 ≤ 1 + log(Amax) + log(− log(e) · y/2)/2
⇔ log(− log(e) · y) + log(e) · y ≥ −(2 + 2 log(Amax) − 1) = −1 − 2 log(Amax)

⇔ − log(e) · y · 2log(e)·y ≥ 1/(2 · A2
max) ⇔ y · ey ≤ −1/(2 log(e) · A2

max) .

ISAAC 2023

13:8 New Support Size Bounds for Integer Programming

For the right-hand side z := −1/(2 log(e) · A2
max), we have −1/e ≤ −1/(2 log(e)) ≤ z ≤ 0.

Therefore, the inequality is satisfied exactly when W−1(z) ≤ y ≤ W0(z) holds, where Wk are
the real branches of the aforementioned Lambert W-function.

Next, we show y ≤ W0(z) does not restrict any relevant values. For x ∈ [−1/e, 0], we
have W0(x) ≥ e · x. Furthermore s/m · A2

max ≥ 1 ≥ e/4 holds for the relevant values of
s/m ≥ 1 and Amax ≥ 1. Therefore W0(z) ≥ −e/(2 log(e)A2

max) ≥ −2 · (s/m)/ log(e) = y.
This shows that the positive solutions are only constrained from above, by W−1(z). Applying
the resubstitution of y to its lower bound gives the claimed result. ◀

Now, we apply techniques analogous to Chatzigeorgiou [11] to prove parametric bounds for
the W−1(z) branch, which we optimize for z → 0 instead of z → −1/e.

▶ Lemma 19. For any α > 0 and u ≥ 0, it holds −W−1(−e−u−1) ≤ u +
√

2α · u + α − ln(α).

Proof. Chatzigeorgiou [11] showed for x = −W−1(−e−u−1) − 1 that g(x) = u, where
g(x) := x − ln(1 + x). To show our result, it thus suffices to show that for all x ∈ R > 0 and
some additive term β, only dependent on α, it holds that

−W−1(−e−u−1) = x + 1 ≤ g(x) +
√

2α · g(x) + β + 1 = u +
√

2α · u + β + 1 .

By definition of g, this reduces to showing f(x) := − ln(1+x)+
√

2α · (x − ln(1 + x))+β ≥ 0.
The function f has a unique minimum, since we will show that f ′(x) = 0 has only one
solution and limx→∞ f(x) = ∞. Consider the critical condition:

d
dx

f(x) = −1
1 + x

+
(1 − 1

1+x) · α√
2α(x − ln(1 + x))

= 0 ⇔ xα√
2α(x − ln(1 + x))

= 1 . (1)

We show that Equation 1 has only one solution, a global minimum, because the second
derivative of f(x) is always positive, making f(x) monotonously increasing.

d
dx2 f(x) =

−x(1 − 1
1+x)α2

(2α(x − ln(1 + x)))3/2 + α√
2α(x − ln(1 + x))

> 0 ⇔

−α2x2/(1 + x)
2α(x − ln(1 + x)) +α > 0 ⇔ x2

1 + x
< 2(x−ln(1+x)) ⇔ x(2 + x)

2(1 + x) ≥ ln(1+x)

We know Equation 1 holds at the global minimum. Hence, substituting it in the inequality
f(x) ≥ 0 and applying Lemma 16 on ln(1 + x) bounds the minimal value of f(x) by

f(x) = − ln(1+x)+αx+β ≥ −α(1+x)−ln(1/α)+1+αx+β ≥ 0 ⇔ β ≥ α+ln(1/α)−1 .

We conclude that −W−1(−e−u−1) ≤ u +
√

2α · u + α + ln(1/α), as desired. ◀

From Lemma 18 and Lemma 19 we derive our asymptotically tight support size bound.

▶ Theorem 20. For any α′ > 0 there is an optimal solution v of ILP with

s ≤ m · (log(Amax) +
√

α′(log(Amax) + 0.05) + α′/2 + log(
√

1/α′) + 1.03) .

Proof. We need to rewrite the argument z := −1/(2 log(e)A2
max) in Lemma 18 to the form

−e−u−1 used in Lemma 19. Hence, solving z = −e−u−1 gives u = ln(2 log(e)A2
max/e) =

2 ln(Amax) + ln(2 log(e)/e). We now substitute α by α′/ log(e) to get log instead of ln, and
through calculation obtain the bound:

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:9

s/m ≤ − log(e)W−1(z)/2 ≤ log(e)(u +
√

2α · u + α − ln(α))/2

≤ log(e)(u +
√

2α′/ log(e) · u + α′/ log(e) − ln(α′/ log(e)))/2

≤ log(e)u/2 +
√

log(e)α′u/2 + α′/2 − log(α′/ log(e))/2

≤ log(Amax) + log(2 log(e)/e)/2 +
√

log(e)α′u/2 − log(α′/ log(e))/2 + α′/2

≤ log(Amax) +
√

α′(log(Amax) + log(2 log(e)/e)/2) + α′/2 + log(log(e)
√

2/(eα′)) .

Inserting numerical values for terms independent of α′ and Amax gives the desired result. ◀

For α′ = 1 and Amax ≥ 1 we obtain the particularly simple bounds

s ≤ m · (log(Amax) +
√

log(Amax) + 0.05 + 1.53) ≤ m · (log(3Amax) +
√

log(Amax)) .

This immediately implies our main support size bound:

▶ Theorem 2. Any feasible bounded ILP with an m-row constraint matrix A with 1-norm Amax
has an optimal solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)).

In order to understand how tight our bound is, we adapt a construction by Berndt et
al. [9] to obtain an asymptotically matching lower bound on the support size:

▶ Theorem 3. For any m ∈ Z≥0 and any Amax ∈ Z≥1, there is an ILP with m constraints,
n := m · (⌊log(Amax)⌋ + 1) ≥ m · log(Amax) variables, and 1-norm Amax of the constraint
matrix, whose unique optimal solution is the 1-vector.

Proof. With d := ⌊log(Amax)⌋ we construct an ILP as follows:

max
(
30 · · · 3d 30 · · · 3d · · · 30 · · · 3d

)
· x s.t. x ∈ Zm(d+1)

≥0 ,
20 · · · 2d 0 · · · 0
0 · · · 0 20 · · · 2d · · · 0 · · · 0

...
. . .

0 · · · 0 20 · · · 2d

 · x =


2d+1 − 1
2d+1 − 1

...
2d+1 − 1

 .

Because of
∑d

i=0 2i = 2d+1 − 1, the 1-vector is a solution. All coefficients are positive. Hence,
in any solution the value of the variables with coefficient 2d must be less than 2. For any other
variable xi, if it is xi ≥ 2, we can increase the objective by setting xi := xi −2; xi+1 := xi+1 +1.
Since all objective coefficients are positive, the 1-vector is the unique optimal solution. ◀

Hence, Theorem 20 is exact in the dominant term. We pose the question, whether there is a
support size bound of the form m · log(c · Amax) for some constant c, as an open problem.

4 An Efficient Approximation Scheme for Makespan Minimization on
Uniformly Related machines

Our algorithm follows a typical structure of approximation schemes. First, we preprocess
the input, by discarding jobs and machines which are so short or slow that assigning them
naïvely is acceptable. Next, we perform a binary search on the makespan, to reduce the
optimization problem to a feasibility problem. Then, we round the remaining processing
times and machine speeds, according to our makespan guess, to make the resulting instance
more structured. Now, we construct an MILP, whose feasibility is equivalent to the existence
of a schedule. Finally, we solve the MILP and transform the solution into a schedule.

ISAAC 2023

13:10 New Support Size Bounds for Integer Programming

4.1 Preprocessing
We reduce the number of parameters bounding the instance to the number of jobs N and
a constant fraction δ of the approximation guarantee ε. To enforce N ≥ M we potentially
drop the M − N slowest machines, as there is an optimal solution not assigning them a job.

Step 1: Removing Negligible Machines and Jobs. We remove all machines slower than
δ ·smax/N and all jobs shorter than δ ·pmax/N . Compensating for the lost processing times on
a longest job and the machine speeds on a fastest machine introduces an approximation error
of at most a factor (1+δ) each. Now we have pmin > δ ·pmax/N and smin > δ ·smax/N and the
largest ratios of job processing times pmax/pmin < N/δ and machine speeds smax/smin < N/δ

are bounded only by the parameters N and δ.

Step 2: Preround the Inputs. To achieve a linear run time, we preround the machine
speeds and processing times to fewer distinct values. These are rerounded again more
carefully at every iteration of the binary search, reducing the run time at the cost of a limited
accuracy loss. We round every processing time pj and machine speed si down to the next
power of (1 + δ), introducing errors of no more than (1 + δ) by construction. Let η̃j be the
number of jobs with rounded processing times p̃j be and µ̃i be the number of machines with
rounded speed s̃j . Due to step 1, the amount of distinct values after rounding is bounded
by log1+δ(pmax/(pmaxδ/N)) = log1+δ(smax/(smaxδ/N)) ∈ O(1/δ log(1/δ · N)). Because our
inputs are sorted, the rounding above can be performed in time O(N + 1/δ log(1/δ · N)).

Step 3: Binary Search for the Makespan. We reduce finding the optimal makespan
OPT(I) to successively checking whether a schedule with makespan T is realizable. The
processing time of a longest job on a fastest machine is a lower bound: OPT(I) ≥ pmax/smax.
The schedule assigning all jobs to a fastest machine proves OPT(I) ≤

∑N
j=1 pi/smax ≤

N · pmax/smax. Hence, we can use a binary search for OPT(I) in the interval [pmax/smax, N ·
pmax/smax] of ratio N . As accuracy up to a factor (1+δ) is sufficient, we only need to consider
integer powers of (1 + δ). Our binary search therefore adds a factor of O(log1+δ(N)) =
O(1/δ log(N)) to the run time of the following steps. We denote the current makespan in
the binary search by T . This transforms the problem into either finding a schedule with
makespan (1 + O(δ)) · T , or deciding that no schedule with makespan T exists.

Step 4: Rounding Machine Speeds and Job Processing Times. A (1 + ε)-approximate
schedule σ satisfies, for each machine i, the equivalent inequalities∑

j∈σ−1(i)

pj

si
≤ (1 + ε) · T ⇔

∑
j∈σ−1(i)

pj

T
≤ (1 + ε) · si . (2)

With the aforementioned bounds on the makespan we have enforced the descending chain

smax ≥ pmax/T ≥ pmin/T > δ · pmax/(N · T) ≥ δsmax/N2 .

Therefore, all relevant quantities – especially the scaled processing times pj/T – are in
the interval I := (δ · smax/N2, smax], whose left and right end are within a ratio N2/δ.
See also Figure 1 for an overview on the relations between the parameters. We now scale
each processing time pj with 1/T ; this yields an instance with scaled processing times
p̃j = 1/T · pj , equivalent to our original instance by Equation 2. Our goal is now to cover our
interval I by as few subintervals as possible. To this end, we adapt an approach by Berndt

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:11

T

smaxδ/N2

pmaxδ/(N · T)

smaxδ/N smax

pmax/T

Figure 1 Overview on the range of parameters.

et al. [8] which combines exponential and linear rounding to obtain both sufficient accuracy
with few values and useful structural properties. With κ := ⌈log(1/δ · N2)⌉, consider the
points bk,0 := smax · 2−k for k = 0, . . . , κ. The intervals [bk+1,0, bk,0] become exponentially
finer, but have a ratio of 2, not the necessary (1 + δ). Therefore, with λ := ⌈1/δ⌉, we
add the points bk,ℓ := (1 − ℓ/(2λ)) · bk,0 for k = 0, . . . , κ − 1 and ℓ = 0, . . . , λ, which
is a linear interpolation between bk,0 and bk+1,0. Simple calculations show the relations
bk,ℓ−1/bk,ℓ = 1 + 1/(2λ − ℓ) ≤ 1 + δ and bk+1,0 = bk,0/2 = bk,⌈1/δ⌉ for all k = 0, . . . , κ − 1
and ℓ = 1, . . . , λ, which means we have achieved the necessary precision. Crucially, two jobs
within a linear interval of the same parity combine exactly to a job in the next larger linear
interval. Formally, this is described by

bk,ℓ + bk,ℓ′ =
(

2 − ℓ + ℓ′

2λ

)
· bk,0 =

(
1 − (ℓ + ℓ′)/2

2λ

)
· bk−1,0 = b

k−1, ℓ+ℓ′
2

(3)

for all 0 ≤ ℓ ≤ ℓ′ ≤ λ with ℓ + ℓ′ divisible by 2, i.e., ℓ and ℓ′ are both odd or both
even. Equation 3 will allow us to significantly reduce the number of configurations and the
maximum 1-norm of a column. To simplify our notations, we re-index the values of bk,ℓ in
descending order by setting br := bk(r),ℓ(r) with k(r) = ⌊(r − 1)/λ⌋ and ℓ(r) = (r − 1) mod λ,
such that bk·λ+ℓ+1 = bk,ℓ. Therefore, the interval I is covered completely by the τ := κ · λ ∈
O(1/δ log(1/δ · N)) intervals (br+1, br] for r = 1, . . . , τ . Finally, we round every machine
speed s̃i as well as every scaled processing time p̃j in (br+1, br] up to br. Let µi be the number
of machines with scaled speed bi. Let ηj be the number of jobs with scaled processing time bj .
This takes time O(1/δ log(1/δ · N)), which means steps 1 to 4 can be performed in total time
O(N + 1/δ log(N)(1/δ log(1/δ · N) + τ)) = O(N + 1/δ2 log2(1/δ · N)) ⊆ O(1/δ2+2·2) + O(N).

4.2 Solving an MILP Formulation
Consider the resulting instance after all steps from subsection 4.1 have been applied. Nearly
all previous approaches used a mix of configuration variables that determine the complete
schedule of a machine and assignment variables that determine the position of a single job.
We combine these different variables into a unified structure called recursive configurations.
The core idea of our formulation is that an additional machine i of speed bi can be simulated
by placing a corresponding job of the same size bi on a faster machine i′ with bi′ < bi. In
other words, by placing more jobs than the problem requires, we are also allowed to use
more machines of the same size than the problem provides. By applying this idea recursively,
we can cover a large range of job processing times with configurations of limited range only,
as the virtual machines allow us to merge several short jobs (with respect to to a certain
machine speed) into a long job. This approach allows us to successively build a configuration
from other configurations. Combined with the rounding scheme of Berndt et al. [8] we
thereby significantly reduce the overall necessary number of configurations.

ISAAC 2023

13:12 New Support Size Bounds for Integer Programming

For k = 0, . . . , κ, we define the set Gk := {r ∈ {1, . . . , τ} | br ∈ [bk,0, bk,λ]} of indices of
affine slices in our rounding scheme, separated into Geven

k := {r ∈ Gk | r = 0 mod 2} and
Godd

k := Gk\Geven
k . For i = 1, . . . , τ , we define the set Hi := {j ∈ {1, . . . , τ} | bj ∈ (δbi, bi]} of

indices of long job speeds, greater than δbi and less than the entire machine speed bi. We will
now define configurations. All configurations are vectors γ with τ entries, each representing
multiples of scaled processing times in b = (b1, . . . , bτ). In the following, we describe the
configurations for machines with speed bi. The set C(1)

i contains all the exact combinations
bj + bj′ = bi as described in Equation 3. With ej ∈ {0, 1}τ being the j-th unit vector, let

C(1)
i := {ej + ej′ | j, j′ ∈ Gk(i)−1 and j + j′ = 2 · (i − λ)} .

The second set C(2)
i contains the remaining feasible configurations of long jobs, with at most

one job at even and odd positions in an affine slice Gk:

C(2)
i := {γ ∈ {0, 1}τ | γ · b ≤ bi and supp(γ) ⊆ Hi and for all

k = 0, . . . , κ − 1 :
∑

r∈Geven
k

γr ≤ 1 and
∑

r∈Godd
k

γr ≤ 1} .

Finally, the set of configurations Ci for machines with speed bi is defined as Ci := C(1)
i ∪ C(2)

i .
The total number of entries in a configuration γ is at most ∥γ∥1 ≤ 2 log(2 · 1/δ). Only long
jobs from Hi are used, and for each k there is at most one job at an even or odd position in Gk,
respectively. We can bound the number of configurations in C(1)

i by λ2, and the number of
configurations in C(2)

i by (λ2)2 log(2·1/δ) ∈ 2O(log2(1/δ)), which implies |Ci| ∈ 2O(log2(1/δ)).
We require integrality in the variables only for the fastest L := λ⌈log(1/δ3 log(1/δ))⌉ ∈

O(1/δ log(1/δ)) machine speeds. Intuitively, we just need to assign configurations integrally
on these machines, as all remaining configurations are very short relative to the machines
with the fastest speed. Hence, we can assign them fractionally and round them later on. The
overhead from rounding is then scheduled on a fastest machine. The resulting MILP is:

∑
γ∈Ci

xi,γ − µi
(4)=

τ∑
i′=1

∑
γ∈Ci′

γi · xi′,γ − ηi

(5)
≥ 0 for i = 1, . . . , τ

xi,γ ≥ 0 for i = 1, . . . , τ ; γ ∈ Ci

xi,γ ∈ Z≥0 for i = 1, . . . , L; γ ∈ Ci.

(recursive-MILP)

Recall that the number of jobs with processing time bj in configuration γ is γj , the number
of machines with speed bi is µi, and the number of jobs with scaled processing time bj is ηj .
The constraints (4) enforce that the number of additional virtual machines of any speed
equals the number of additional corresponding jobs of that same size scheduled somewhere
else. The constraints (5) ensure that at least as many jobs of each size are assigned in
configurations, as are required by the problem. We show (recursive-MILP) is feasible, up to
an approximation factor, for a feasible instance.

▶ Lemma 21. If the original Q||Cmax-instance I has a schedule σ with makespan T , then
(recursive-MILP) is feasible for makespan (1 + 17δ) · T .

Proof. The schedule σ specifies which jobs are scheduled on any machine i and that those
have sufficient speed. We perform steps 1–4, which uses additional speed of at most a factor
(1 + δ)7. If a single job of processing time bi has been assigned to a machine of speed bi by σ,
then we create a new configuration which assigns this job on that machine, and speed up the

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:13

machine by a factor (1 + δ). Otherwise, the difficulty is finding configurations for jobs which
are not long, i.e., less than δ · bi. We repeatedly combine pairs of jobs according to Equation 3
until we have at most one job at an even and odd position in each affine slice Gk on a
machine. We partition these jobs j by their value of ℓ = ⌊logδ(bj/bi)⌋, i.e., into slices with
ratio δ. The total processing time of jobs in slice ℓ is bounded by bi ·δℓ ·2

∑∞
j=0 2−j = 4 ·bi ·δℓ.

We iteratively bundle all jobs from the same slice, starting with the last slice until only
the first slice is left, into at most 8 configurations of size bi · δℓ. Each configuration can be
packed at least half full by the greedy algorithm. The resulting configurations for slice ℓ

might have to be rounded in size to the next br. Hence, the additional speed introduced
for slice ℓ is bounded by 8 · bi · δℓ · (1 + δ). After the creation of such a configuration, if
possible, it gets combined again, which uses no additional speed. Eventually, only jobs
in the slice for ℓ = 0 are left. These can be scheduled exactly in a configuration on the
machine, by the premise. The additional load incurred on a machine can be bounded by∑∞

ℓ=1 8 · bi · δℓ · (1 + δ) = 8 · (1 + δ)/(1 − δ) · δ · bi. For δ ≤ 1/35 this is less than 9 · δ · bi and
in total a factor (1 + δ)7(1 + 9δ) ≤ (1 + 17δ) on the makespan, as claimed. The values x

derived from this satisfy constraints (4) and (5) by construction. ◀

For (recursive-MILP), the integer subproblem has m = 2L ∈ O(1/δ log(1/δ)) constraints
and maximal 1-norm of a column max ∥Ai∥1 ∈ O(log(1/δ)). The first L machine speeds
have L · 2O(log2(1/δ) = 2O(log2(1/δ)) configurations, i.e., integer variables. By Theorem 2 and
Lemma 10, if there is a feasible solution of (recursive-MILP), then there is also one with
O(1/δ log(1/δ) log(log(1/δ))) positive integer variables. Lemma 11 thus implies that we can
solve (recursive-MILP)(S) in time 2O(1/δ log3(1/δ) log(log(1/δ))) · log(N)O(1), as the encoding
size is ⟨(recursive-MILP)(S)⟩ ≤ (1/δ log(N))O(1). Note that this is the dominant run time
in terms of 1/δ. We thus either find a feasible solution for the current makespan guess T , or
discover that no such solution exists. In the latter case, we discard our current makespan
guess and increase it in the next step of the binary search.

4.3 Constructing a Schedule
We need to construct a schedule from a solution x⋆ to (recursive-MILP). By constraints (5),
we know that x⋆ schedules all jobs in some configuration. By constraints (5), we know
that x⋆ schedules each job in some configuration. By constraints (4), the number of virtual
machines equals the additional number of corresponding jobs with equal size scheduled in some
configuration. Assigning all configurations to machines within a makespan of approximately T

therefore gives a valid schedule, implemented by Algorithm AssignConfsToMachines.

▶ Lemma 22. Algorithm AssignConfsToMachines gives a schedule of makespan at most
(1 + 5δ) · T from a feasible solution x⋆ to (recursive-MILP) in time 2O(1/δ) + O(N log2(N)).

Proof. The algorithm assigns ⌊xi,γ⌋ + 1 ≥ xi,γ configurations, at least as many as x⋆ uses.
By constraints (5), all jobs get assigned, as they are assigned before the additional jobs
corresponding to virtual machines. We always have at least as many virtual machines as x⋆,
because of the extra configuration added to a fastest machine. We thus need to guarantee that
the additional speed scheduled on a fastest machine is sufficiently bounded. The variables
of x⋆ corresponding to the fastest L machines are already integral. Hence, the first bi, for
which additional speed is put onto the fastest machine, is at most δ3 · smax/ log(1/δ). There
are ⌈log(1/δ)⌉λ + 1 constraints on the variables xi,γ for γ ∈ Ci. Consequently, at most that
many variables xi,γ can be positive in a vertex solution of the projected LP, which we can
find in polynomial time by Lemma 9. As each of these has a size bi, the total additional
speed assigned to a fastest machine is bounded by

ISAAC 2023

13:14 New Support Size Bounds for Integer Programming

AssignConfsToMachines
Input: A feasible solution x⋆ to (recursive-MILP).
Output: An approximate schedule σ to the pre-processed instance.

1 : for decreasing machine speeds bi :
2 : for each γ ∈ Ci :
3 : assign ⌊xi,γ⌋ copies of γ to machines with speed bi

4 : if xi,γ ̸∈ Z≥0 : assign another copy of γ to a fastest machine
5 : for each processing time bj used in γ :
6 : assign as many jobs of processing time bj to machines with configuration γ

7 : // stop when all jobs are packed or all configurations are filled

8 : for each job in a configuration γ not filled :
9 : create a virtual machine with the same speed as the corresponding job

10 : return the resulting schedule σ

smax(⌈log(1/δ)⌉λ + 1)
∞∑

r=L

br = smax(⌈log(1/δ)⌉λ + 1)
∞∑

k=L/λ

λ−1∑
ℓ=0

(2 − ℓ/λ)2−k

≤ δ3 · smax

log(1/δ) (⌈log(1/δ)⌉λ + 1)(1 + 3λ) < 5δsmax .

The last inequality holds for δ ≤ 1/35. Adding this much speed to a fastest machine results
in a schedule with makespan at most (1 + 5δ) · T . The run time needed to construct the
schedule is bounded by the number of machines times the effort per machine, resulting in

O(N · τ) = O(1/δ · N log(1/δ · N2)) ⊆ 2O(1/δ) + O(N log2(N)) . ◀

5 Faster Schedule Construction

The results of the previous section already give us an EPTAS for Q||Cmax with almost linear
run time of 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N log2(N)). Interestingly, the bottleneck (with
respect to N) of this approach is the transformation from a valid MILP solution into a
feasible schedule. In this section, we give a more conventional Q||Cmax MILP formulation
(hybrid-MILP) using both configuration and assignment variables to improve the run time
in N . First, we give an algorithm to transform a solution of (recursive-MILP) into a solution
of (hybrid-MILP) in sublinear run time in N . Then, we show how to construct a schedule
from a solution to (hybrid-MILP) in linear time. This allows us to transform a solution of
(recursive-MILP) into a valid schedule in linear run time in N .

Note that Lemma 21 constructs a solution to (recursive-MILP) from a schedule to Q||Cmax.
Hence, both formulations are equivalent up to a multiplicative error of 1 + O(ε).

5.1 The Hybrid-MILP Formulation
Let C′

i := {γ ∈ Nτ | γ ·b ≤ bi and supp(γ) ⊆ Hi} be the set of configurations of long jobs with
range 1/δ for machine i. For any machine speed bi and corresponding configuration γ ∈ C′

i,
let free(i, γ) := bi − γ · b be the speed of the machine that is free after placing the jobs
specified by γ. Then (hybrid-MILP) is given by

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:15

∑
γ∈C′

i

xi,γ = µi for i = 1, . . . , τ (6)

τ∑
i=1

∑
γ∈C′

i

γj · xi,γ +
τ∑

i=1
yi,j = ηj for j = 1, . . . , τ (7)

∑
γ∈C′

i

free(i, γ) · xi,γ −
τ∑

j=1
bj · yi,j ≥ 0 for i = 1, . . . , τ (8)

xi,γ , yi,j ≥ 0 for i = 1, . . . , τ ; j = 1, . . . , τ ; γ ∈ Ci

yi,j = 0 for i = 1, . . . , τ ; j ∈ {min(Hi), . . . , τ}
xi,γ ∈ Z≥0 for i = 1, . . . , L ; γ ∈ Ci .

(hybrid-MILP)

In this formulation, there are no recursive configurations. Instead, we use configuration
variables xi,γ , indicating how often a configuration γ is used on machine i. Short jobs, taking
up speed less than δbi on machine i, are handled via assignment variables yi,j indicating how
many jobs of size bj are assigned to machines of speed bi. The constraints (6) enforce that
every machine is assigned a configuration, the constraints (7) guarantee that every job is
scheduled somewhere, and the constraints (8) make sure that the speed used by short jobs is
at most the speed left free by configurations.

We now convert a solution x⋆ of (recursive-MILP) into a solution (x, y) of (hybrid-MILP).

ConvertMILPsolution
Input: A feasible solution x⋆ to (recursive-MILP).
Output: A feasible solution x, y to (hybrid-MILP).

1 : for i = 1, . . . , τ :
2 : initialize η′

i := ηi and xi,γ = x⋆
i,γ for γ ∈ Ci, otherwise xi,γ = 0

3 : for decreasing machine speeds bi :

4 : decrease arbitrary xi,γ > 0 until
∑

γ∈C′
i

xi,γ = µi

5 : do count the number of jobs ζj in configurations xi,γ for j ∈ Hi

6 : for every job size bj with ζj ≥ η′
j :

7 : substitute ζj − η′
j many jobs in appropriate xi,γ with xj,γ′

8 : (that is, decrease xj,γ′ , xi,γ and increase xi,γ′′ , where γ′′ is γ with
9 : jobs j replaced with γ′ and jobs shorter than δbi in γ′ dropped)

10 : until there are no more ζj ≥ η′
j

11 : decrease every η′
i by ζj

12 : for increasing machine speeds bi :

13 : calculate the free machine speed zi :=
∑

γ∈C′
i

free(i, γ) · xi,γ

14 : starting with the shortest jobs bj , increase yi,j , decrease zi and η′
j

15 : until zi is 0, η′
j = 0 or j ∈ Hi

16 : return (x, y)

ISAAC 2023

13:16 New Support Size Bounds for Integer Programming

▶ Lemma 23. Algorithm ConvertMILPsolution converts a solution x⋆ of (recursive-MILP)
into a solution (x, y) of (hybrid-MILP) in time 2O(1/δ log2(1/δ)) logO(1)(N).

Proof. The algorithm guarantees that the sum of the configuration variables xi,γ for machines
with speed bi is exactly µi. Hence, constraints (6) are satisfied. Jobs are only replaced once
all original jobs have been accommodated and, by constraints (4), there are exactly as many
additional virtual machines, as there are additional jobs. Therefore, this step never reduces
the total number of configurations for any machine speed below µi. After the loop of lines
3-11 on machines with speed bi, only jobs of size bj ∈ (δbi, bi], or in other words j ∈ Hi, are
assigned via configurations. Additional short jobs would have been assigned via the recursive
configurations on these machines, which we neglect by stopping at δbi. Thus, these machines
have sufficient speed to handle these short jobs, which would have been assigned to them.
Instead of their original order, we assign the short jobs by increasing size. This does not
change the total load assigned, which therefore still remains sufficient. As the sorting ensures
that any short job assigned is smaller or equal to some short job that would have been
assigned by the original order, we do not assign jobs which are no longer tiny. Due to having
sufficient machine speed and not dropping jobs anywhere in the algorithm, we assign all real
jobs and hence satisfy constraints (7). Finally, constraints (8) are satisfied by construction,
as we never overfill the available speed. The number of configurations |C′

i| is bounded by
2O(1/δ log2(1/δ)) and all other quantities are bounded by O(1/δ log(1/δ · N)). That allows us
to analyze the run time of the algorithm to be within the claimed complexity. ◀

5.2 Constructing a Schedule
Now, we have an assignment for all small jobs, albeit with fractional variables. However, we
can assign the small jobs integrally faster than if we had to resolve recursive configurations.

▶ Lemma 24. Given a feasible solution of (hybrid-MILP), a schedule with makespan at
most (1 + 9δ)T can be constructed in time 2O(1/δ log2(1/δ)) + O(N).

Proof. For the configuration variables, we pursue the same strategy as in Lemma 22, that
is, rounding them down and assigning one configuration to a fastest machine for every
rounded variable. Through the use of basic solutions, we construct a schedule introducing a
multiplicative error of at most(1 + 5δ) in comparison to the optimal makespan. The process
takes time 2O(1/δ log2(1/δ)) logO(1)(N) with our increased number of configurations.

For the assignment variables of the short jobs, we first note that any machine speed bi

is assigned at most 2 fractional short jobs, as a variable only becomes fractional when the
preceding or current group runs out of speed. As in Lemma 23, we first sort the assignment
variables, in time O((1/δ log(1/δ · N))4). By increasing every machine speed by a factor
of (1 + 2δ), those two fractional jobs can be placed on an arbitrary machine of speed bi,
without exceeding the speed. We get another overhead of a factor of (1 + δ) by greedily
packing the assigned jobs to machines, overpacking each machine just slightly. This greedy
packing takes time O(N + (1/δ log(1/δ · N))2). In total the approximation error is bounded
by (1 + 5δ)(1 + 2δ)(1 + δ) ≤ (1 + 9δ) for δ < 1/35, as claimed. ◀

By Lemma 21 for an instance I with makespan OPT(I) the recursive-MILP with makespan
(1 + 17δ) · OPT(I) is feasible. We then converted a solution to one of hybrid-MILP with
Lemma 23. A solution for hybrid-MILP with makespan (1 + 17δ) · OPT(I) then gives a
schedule with makespan (1 + 9δ)(1 + 17δ) · OPT(I) by Lemma 24. Hence, for ε ≤ 1 we can
pick δ = ε/35 and obtain a schedule with makespan (1 + ε) OPT(I). All of the above steps
take linear run time in N . Therefore we have achieved Theorem 4.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:17

References
1 Iskander Aliev, Gennadiy Averkov, Jesús A. De Loera, and Timm Oertel. Sparse representation

of vectors in lattices and semigroups. Math. Program., 192(1-2, Ser. B):519–546, 2022.
doi:10.1007/s10107-021-01657-8.

2 Iskander Aliev, Jesús A. De Loera, Friedrich Eisenbrand, T. Oertel, and Robert Weismantel.
The support of integer optimal solutions. SIAM J. Optim., 28(3):2152–2157, 2018. doi:
10.1137/17M1162792.

3 Iskander Aliev, Jesús A. De Loera, Timm Oertel, and Christopher O’Neill. Sparse solutions
of linear Diophantine equations. SIAM J. Appl. Algebra Geom., 1(1):239–253, 2017. doi:
10.1137/16M1083876.

4 Yossi Azar and Leah Epstein. Approximation schemes for covering and scheduling in related
machines. Proc. APPROX 1998, 1444:39–47, 1998. doi:10.1007/BFb0053962.

5 Nikhil Bansal, Tim Oosterwijk, Tjark Vredeveld, and Ruben van der Zwaan. Approximating
vector scheduling: almost matching upper and lower bounds. Algorithmica, 76(4):1077–1096,
2016. doi:10.1007/s00453-016-0116-0.

6 Heinz Bauer. Minimalstellen von Funktionen und Extremalpunkte. II. Arch. Math., 11:200–205,
1960. doi:10.1007/BF01236933.

7 Sebastian Berndt, Hauke Brinkop, Klaus Jansen, Matthias Mnich, and Tobias Stamm. New
support size bounds for integer programming, applied to makespan minimization on uniformly
related machines, 2023. arXiv:2305.08432.

8 Sebastian Berndt, Max A. Deppert, Klaus Jansen, and Lars Rohwedder. Load balancing:
The long road from theory to practice. In Proc. ALENEX 2022, pages 104–116, 2022.
doi:10.1137/1.9781611977042.9.

9 Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. New bounds for the vertices of the
integer hull. Proc. SODA 2021, pages 25–36, 2021. doi:10.1137/1.9781611976496.3.

10 Patrick Browne, Ronan Egan, Fintan Hegarty, and Padraig Ó Catháin. A survey of the
Hadamard maximal determinant problem. Electron. J. Combin., 28(4):Paper No. 4.41,35,
2021. doi:10.37236/10367.

11 Ioannis Chatzigeorgiou. Bounds on the Lambert function and their application to the outage
analysis of user cooperation. IEEE Comm. Lett., 17(8):1505–1508, 2013. doi:10.1109/LCOMM.
2013.070113.130972.

12 Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of exact and approximation
algorithms for scheduling problems. J. Comput. Syst. Sci., 96:1–32, 2018. doi:10.1016/j.
jcss.2018.03.005.

13 Yookun Cho and Sartaj Sahni. Bounds for list schedules on uniform processors. SIAM J.
Comput., 9(1):91–103, 1980. doi:10.1137/0209007.

14 Daniel Dadush, Arthur Léonard, Lars Rohwedder, and José Verschae. Optimizing low dimen-
sional functions over the integers. In Integer Programming and Combinatorial Optimization,
pages 115–126, 2023. doi:10.1007/978-3-031-32726-1_9.

15 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper.
Res. Lett., 34(5):564–568, 2006. doi:10.1016/j.orl.2005.09.008.

16 Carlo Filippi and Giorgio Romanin-Jacur. Exact and approximate algorithms for high-
multiplicity parallel machine scheduling. J. Sched., 12(5):529–541, 2009. doi:10.1007/
s10951-009-0122-z.

17 Teofilo Gonzalez, Oscar H. Ibarra, and Sartaj Sahni. Bounds for LPT schedules on uniform
processors. SIAM J. Comput., 6(1):155–166, 1977. doi:10.1137/0206013.

18 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math., 5:287–326, 1979. doi:10.1016/S0167-5060(08)70356-X.

19 Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, and Panos Pardalos. On ∆-modular
integer linear problems in the canonical form and equivalent problems. J. Glob. Optim., pages
1–61, 2022. doi:10.1007/s10898-022-01165-9.

ISAAC 2023

https://doi.org/10.1007/s10107-021-01657-8
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/16M1083876
https://doi.org/10.1137/16M1083876
https://doi.org/10.1007/BFb0053962
https://doi.org/10.1007/s00453-016-0116-0
https://doi.org/10.1007/BF01236933
https://arxiv.org/abs/2305.08432
https://doi.org/10.1137/1.9781611977042.9
https://doi.org/10.1137/1.9781611976496.3
https://doi.org/10.37236/10367
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1137/0209007
https://doi.org/10.1007/978-3-031-32726-1_9
https://doi.org/10.1016/j.orl.2005.09.008
https://doi.org/10.1007/s10951-009-0122-z
https://doi.org/10.1007/s10951-009-0122-z
https://doi.org/10.1137/0206013
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s10898-022-01165-9

13:18 New Support Size Bounds for Integer Programming

20 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2 of Algorithms and Combinatorics: Study and Research Texts.
Springer Berlin, Heidelberg, 1988. doi:10.1007/978-3-642-97881-4.

21 Christoph Haase and Georg Zetzsche. Presburger arithmetic with stars, rational subsets of
graph groups, and nested zero tests. Proc. LICS 2019, pages 1–14, 2019. doi:10.1109/LICS.
2019.8785850.

22 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988. doi:10.1137/0217033.

23 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation
with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457–485, 2010.
doi:10.1137/090749451.

24 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In Proc.
SOFSEM 2012, volume 7147 of Lecture Notes Comput. Sci., pages 313–324, 2012. doi:
10.1007/978-3-642-27660-6_26.

25 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling
via sparsification techniques. In Proc. ICALP 2016, volume 55 of Leibniz Int. Proc. Informatics,
pages Art. No. 72,13, 2016. doi:10.4230/LIPIcs.ICALP.2016.72.

26 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling
via sparsification techniques. Math. Oper. Res., 45(4):1371–1392, 2020. doi:10.1287/moor.
2019.1036.

27 Klaus Jansen and Marten Maack. An EPTAS for scheduling on unrelated machines of few
different types. Algorithmica, 81(10):4134–4164, 2019. doi:10.1007/s00453-019-00581-w.

28 Klaus Jansen and Christina Robenek. Scheduling jobs on identical and uniform processors
revisited. In Proc. WAOA 2011, volume 7164 of Lecture Notes Comput. Sci., pages 109–122,
2012. doi:10.1007/978-3-642-29116-6_10.

29 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

30 Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for Boolean algebra
with Presburger arithmetic. In Proc. CADE 2021, volume 4603 of Lecture Notes Comput. Sci.,
pages 215–230, 2007. doi:10.1007/978-3-540-73595-3_15.

31 Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

32 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Programming, 46(3, (Ser. A)):259–271, 1990. doi:10.
1007/BF01585745.

33 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. Proc. ICALP 2017, 80:Art. No. 78,15, 2017. doi:10.4230/
LIPIcs.ICALP.2017.78.

34 Timm Oertel, Joseph Paat, and Robert Weismantel. Sparsity of integer solutions in the
average case. Proc. IPCO 2019, 11480:341–353, 2019. doi:10.1007/978-3-030-17953-3_26.

35 Ian Pratt-Hartmann. On the computational complexity of the numerically definite syllogistic
and related logics. Bull. Symbolic Logic, 14(1):1–28, 2008. doi:10.2178/bsl/1208358842.

36 Lars Rohwedder. Algorithms for Integer Programming and Allocation. phdthesis, Universität
Kiel, 2019. URL: https://macau.uni-kiel.de/receive/diss_mods_00026125.

37 Thomas Rothvoss. Integer optimization and lattices, 2016. Lecture Notes. URL: https:
//sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf.

38 Gerhard J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Oper. Res. Lett., 26(3):107–109, 2000. doi:10.1016/S0167-6377(99)
00076-0.

https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1137/0217033
https://doi.org/10.1137/090749451
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.4230/LIPIcs.ICALP.2016.72
https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1007/978-3-642-29116-6_10
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1007/BF01585745
https://doi.org/10.1007/BF01585745
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1007/978-3-030-17953-3_26
https://doi.org/10.2178/bsl/1208358842
https://macau.uni-kiel.de/receive/diss_mods_00026125
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1016/S0167-6377(99)00076-0

	1 Introduction
	2 Preliminaries
	3 Refined Support Size Bounds for Integer Linear Programs
	4 An Efficient Approximation Scheme for Makespan Minimization on Uniformly Related machines
	4.1 Preprocessing
	4.2 Solving an MILP Formulation
	4.3 Constructing a Schedule

	5 Faster Schedule Construction
	5.1 The Hybrid-MILP Formulation
	5.2 Constructing a Schedule

