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Abstract
We develop algorithms for (min, +)-Convolution and related convolution problems such as Super
Additivity Testing, Convolution 3-Sum and Minimum Consecutive Subsums which use the
degree of convexity of the instance as a parameter. Assuming the min-plus conjecture (Künnemann-
Paturi-Schneider, ICALP’17 and Cygan et al., ICALP’17), our results interpolate in an optimal
manner between fully convex instances, which can be solved in near-linear time using Legendre
transformations, and general non-convex sequences, where the trivial quadratic-time algorithm is
conjectured to be best possible, up to subpolynomial factors.
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1 Introduction

The (min, +)-convolution, also called tropical convolution, is an operation on sequences that
forms the analogue of polynomial multiplication in the tropical semiring: additions are
replaced by taking minima, whereas multiplications become additions.

Let R̄ = R ∪ {∞}. Formally, the (min, +)-convolution a ∗ b of two sequences a =
(a0, . . . , an) ∈ R̄n+1 and b = (b0, . . . , bn) ∈ R̄n+1 is defined as the sequence c = (c0, . . . , c2n) ∈
R̄2n+1 where

ck = min
i+j=k

ai + bj for k = 0, . . . , 2n. (1)

For computational purposes, the inputs are restricted to sequences over Z̄ = Z ∪ {∞}.
Associated with this operation is the following problem.

(min, +)-Convolution

Input: Two sequences a, b ∈ Z̄n+1

Output: All entries of c = a ∗ b

The trivial algorithm computing a ∗ b given a and b takes a quadratic number of steps in
n. Over the years, great efforts have been directed at improving substantially over this trivial
bound to no avail. Consequently, it has been conjectured that this is essentially optimal up
to subpolynomial factors:

▶ Conjecture 1 ([19, 25]). There is no algorithm solving (min, +)-Convolution in time
n2−ε · polylog(d) on integral inputs a, b of maximal absolute value d, for any constant ε > 0.

© Cornelius Brand and Alexandra Lassota;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cbrand@ac.tuwien.ac.at
https://orcid.org/0000-0002-1929-055X
mailto:alassota@mpi-inf.mpg.de
https://orcid.org/0000-0001-6215-066X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Fast Convolutions for Near-Convex Sequences

While polynomial improvements seem out of reach, there are faster algorithms for the
problem, shaving off subpolynomial factors [10, 31, 15].

However, some algorithms can solve the problem in truly subquadratic time, but do so
only on restricted input classes. Namely, Chan and Lewenstein [14] give an O(n1.87)-time
algorithm for inputs consisting of monotone sequences with numbers bounded by O(n). This
was recently improved to Õ(n1.5) by a break-through result by Chi et al. [16]. Further, there
is an algorithm that solves (min, +)-Convolution on convex input sequences in time Õ(n).
It can be formulated abstractly as an application of the so-called Legendre transformation,
which can even be implemented in linear instead of quasilinear time [27].

Tropical convolutions on general inputs are conjectured to need a least a quadratic running
time, whereas there is a linear-time algorithm if both sequences are convex. So far, no results
are known which interpolate between fully convex and non-convex sequences in a way that
reproduces the quadratic running time in the hardest cases, and the linear running time in
the easiest cases. This shows that the role convexity plays is not yet well understood and
raises the following question: Can this difference in complexity be quantified? In particular,
can the degree of convexity of a sequence be measured in a way that explains both the
linear and the quadratic running times in the “most convex” and “most non-convex” cases?
We answer these questions in the affirmative. We give two sensible measures to quantify
the convexity of an instance. Further, we use them to obtain algorithms which interpolate
between convex and non-convex instances.

This line of research can be understood as part of a recent branch of research in para-
meterized algorithms referred to as FPT-in-P algorithms [2, 22, 23, 24, 28].1 These are
algorithms that admit FPT-style running times of the form f(k) · nO(1), but for problems
that are polynomial-time solvable, with the goal of reducing the polynomial dependency on
n for small values of k.

Related Problems
Given that (min, +)-Convolution is a well-studied problem within fine-grained complexity
theory, there are many other, closely related problems that can either be reduced to (min, +)-
Convolution or that (min, +)-Convolution reduces to. The independent articles by
Cygan et al. [19] and Künnemann, Paturi and Schneider [25] give an excellent overview over
these problems and their relations to each other, and we make no attempt of recalling all of
them here.

Yet, there are some specific problems that are relevant in the context of this article. Let
us first address some obvious variations of (min, +)-Convolution. Consider the problem
obtained from (min, +)-Convolution after changing the min in the definition of a ∗ b for a
max, thereby obtaining the following problem.

(max, +)-Convolution

Input: Two sequences a, b ∈ Z̄n+1

Output: All entries of the sequence c ∈ Z̄2n+1, where ck = maxi+j=k ai + bj

For general inputs, these two cases are interreducible via a pointwise negation of the inputs.
Since we are concerned with convexity of inputs, we note that whatever applies to convex
sequences for (min, +)-Convolution applies equally to concave sequences for (max, +)-
Convolution, which are precisely the pointwise negations of convex sequences. In particular,

1 Of course, as with parameterized algorithms in general, there is a large number of works that fall into
the regime of FPT-in-P algorithms before the term had been coined.
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our algorithmic results and even our notion of measuring convexity translate in a direct
manner to algorithmic results about (max, +)-Convolution. For ease of exposition, we
thus only speak about (min, +)-Convolution in the remainder of this article.

Another very closely related problem studied in its maximization-guise in [19] is:

Super Additivity Testing
Input: A sequence a ∈ Z̄n+1

Output: Whether ak ≤ mini+j=k ai + aj for all k holds

This can be immediately reduced to the special case of (min, +)-Convolution where a = b

holds, and O(n) additional comparisons – in particular, all our algorithms for (min, +)-
Convolution yield also algorithms for Super Additivity Testing.

One more problem relevant for this article that is close in spirit to (min, +)-Convolution
is the following:

Convolution 3-Sum
Input: A sequence t ∈ Zn+1

Output: Whether there are 0 ≤ i ≤ j ≤ n such that ti + tj = ti+j

This problem is a variant of the well-known 3-Sum problem. Most relevant to our work
is the reduction from 3-Sum to Convolution 3-Sum, first appearing as a randomized
reduction [29]. Later, this reduction was made deterministic [13].

Finally, we deal with the following problem.

Minimum Consecutive Subsums
Input: A sequence t ∈ Zn

Output: For each length k = 1, . . . , n, mini=1,...,n−k+1
∑i+k−1

j=i
ti

In prose, we are looking for the minimum consecutive sum of every length in the sequence t.
The fine-grained equivalence between (min, +)-Convolution and Minimum Consecutive
Subsums was first observed in [26]. Like (min, +)-Convolution, the problem Minimum
Consecutive Subsums has an obvious maximization variant Maximum Consecutive
Subsums, which we also discuss.

Our Contribution
We present new measures to capture the degree of convexity of an instance of (min, +)-
Convolution, namely, the convex sequence number and the convex rank. We present
a linear-time algorithm to compute the convex sequence number of a sequence (and its
decomposition into convex sub-sequences). This measure can be large for a particular class
of inputs whose convexity can nevertheless be exploited efficiently. To handle such cases, we
introduce a generalization to the convex sequence number, which we call the convex rank
of a sequence. We prove that we can compute a sufficiently accurate approximation to this
parameter and output the corresponding convex sequences in polynomial time.

Secondly, we present efficient algorithms for (min, +)-Convolution, Super Additivity
Testing, Convolution 3-Sum, and Minimum Consecutive Subsums under both para-
meters. This yields Õ(sn) algorithms for each problem if the input sequence(s) have length
n and a convex sequence number of s. As for the convex rank, (min, +)-Convolution,
Super Additivity Testing, and Minimum Consecutive Subsums can be solved in
time Õ(r2n) for r being the convex rank of the input sequence(s). These algorithms con-
tribute to the understanding of the usefulness of convexity and the structural properties

ISAAC 2023



16:4 Fast Convolutions for Near-Convex Sequences

of instances with bounded convexity. Further, our observations also lead to the result
for (min, +)-Convolution on fully convex sequences but avoids the heavy machinery of
Legendre transformations.

Related Work
We have already pointed out related algorithmic results on (min, +)-Convolution. More
closely related to our bounded-convexity regime, there are other works that consider sequences
that are “near-convex” in other ways. For instance, Axiotis-Tzamos [4] consider k-step concave
sequences (and the extension to convexity is trivial); Bateni et al. [6] as well as a recent
preprint of Bringmann-Cassis [11] use so-called ∆-convexity; furthermore, Arkin et al. define
a convex partition number [3] in a different context. While all of these measures are well-
motivated in the respective papers, they do not meet the criterion that motivates the research
reported on in the present paper: they do not allow in a natural manner to interpolate
between maximally non-convex sequences (corresponding to parameter value roughly n) and
maximally convex (that is, plainly, convex) sequences (corresponding to parameter value 1).
It is this gap that this article addresses.

2 Preliminaries

A sequence a ∈ R̄n+1 is called convex if, for all i = 1, . . . , n − 1, it holds that

2ai ≤ ai−1 + ai+1.

This can be seen as a discretized version of the characterization that a differentiable function
is convex if and only if its derivative is monotonically increasing; in particular, the preceding
condition is equivalent to the slopes of the sequence satisfying

ai − ai−1 ≤ ai+1 − ai.

By convention, we regard every sequence of length less than three as convex. This is in
line with the characterization of convex sequences as those sequences whose piecewise-linear
interpolation epigraph is convex.

Let us formally define the matrix consisting of all possible index combinations a and b.

▶ Definition 2. Let [a, b] ∈ R̄(n+1)×(n+1) denote the tropical rank-1 matrix associated with
a ∈ R̄(n+1) and b ∈ R̄(n+1), defined through:

[a, b]i,j = ai + bj for i, j = 0, . . . , n.

▶ Remark 3. There are several inequivalent variants of the tropical rank of a matrix, each
stemming from a different characterization of matrix rank in the usual sense. The notion of
rank-1 matrices employed here corresponds to what is sometimes called the Barvinok rank of
a matrix [21].
Define the entries in the k-th antidiagonal for k = 0, . . . , 2n in [a, b] as

[a, b](k) =
{

([a, b]0,k, [a, b]1,k−1, . . . , [a, b]k,0) if 0 ≤ k ≤ n,

([a, b]n,k−n, [a, b]n−1,k−n+1, . . . , [a, b]n−(k−n),2k−2n) if n < k ≤ 2n.

Computing a ∗ b can be equivalently viewed as finding the minimum in each antidiagonal
in [a, b]i,j . In particular,

ck = min [a, b](k)
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and thus,

a ∗ b = c = (min [a, b](0), . . . , min [a, b](2n)).

The two following lemmas will come in handy for our algorithms.

▶ Lemma 4. Let a, b ∈ R̄n+1 be convex sequences. Then, for each k, the k-th antidiag-
onal [a, b](k) is also a convex sequence.

Proof. Let ãk = (a0, . . . , ak) for 0 ≤ k ≤ n and ãk = (ak−n, . . . , an) for n < k ≤ 2n,
i.e., the subsequence of a used to form the antidiagonal [a, b](k). We define analogously
b̃k = (bk, . . . , b0) for 0 ≤ k ≤ n and b̃k = (bn, . . . , bk−n) for n < k ≤ 2n. It is clear that ãk

is convex for all k. The convexity of b̃k for all k follows geometrically from the fact that
convexity of the epigraph is retained by reflection along a line parallel to the ordinate. The
sum of ãk and b̃k is convex since ãk and b̃k are, and this sum is precisely [a, b](k). ◀

▶ Lemma 5. The minimum of a convex sequence t ∈ R̄n+1 can be computed in time O(log n).

Proof. Convex sequences are characterized by the differences between the values at adjacent
positions increasing, and their minimum is attained where these differences pass from negative
to positive. Since there are n differences and they form a non-decreasing sequence, this can
be done in time O(log n) using binary search. ◀

▶ Remark 6. Note now that Lemmas 5 and 4 imply directly a Õ(n) algorithm for (min, +)-
Convolution on convex sequences, by computing the minima of the 2n + 1 anti-diagonals
in time O(log n). We extend this algorithm based on binary search on the anti-diagonals to
more general, non-convex sequences. The same principle will be useful for algorithms for
other problems related to (min, +)-convolutions.

In addition to this method, we use a second approach, recently described in [12, 4], that
can be employed to design a linear-time algorithm for convolving a convex sequence and an
arbitrary sequence, convex or not. This is based on a variant of the matrix [a, b], defined as
follows:

▶ Definition 7. Pad b with n + 1 ∞-entries to the left, by setting b−i = ∞ for 1 ≤ i ≤ n + 1,
and let [a, b] ∈ R̄(n+1)×(n+1)[a, b]k,i = ai + bk−i. We call [a, b] the shifted rank-1 matrix
associated to a and b.

We then make the following observation, as done in [12]:

▶ Lemma 8. Let b be convex. Then [a, b] is Monge, that is

[a, b]i,j + [a, b]i+1,j+1 ≤ [a, b]i+1,j + [a, b]i,j+1.

Proof. First, note that padding b with ∞-entries does not impact convexity. Then, we have
that

[a, b]i,j + [a, b]i+1,j+1 − [a, b]i+1,j − [a, b]i,j+1 =

ai + bj−i + ai+1 + bj−i − ai+1 − bj−i−1 − ai − bj−i+1 =
2bj−i − bj−i−1 − bj−i+1,

and 2bk ≤ bk−1 + bk+1 is precisely the definition of b being convex. ◀

▶ Remark 9. Note that instead of searching for minima of anti-diagonals in [a, b], the
equivalent task for [a, b] is finding the minimum of each row, which, for Monge matrices, can
be accomplished in linear time via the SMAWK algorithm [1].

ISAAC 2023
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3 Convexity Measures

In the following, we introduce two related, natural definitions for quantifying convexity.
Both of these measures come with different advantages and can be used in different settings,
witnessing their independent relevance.

The first convexity measure called convex sequence number captures the smallest number
of cuts to divide a sequence t ∈ R̄n+1 into convex sub-sequences in a straightforward manner.
In turn, the convex rank of t is the number of convex sequences of length n + 1 such that
their index-wise minimum equals t. While the convex sequence number is easy to compute, it
may be large compared to the convex rank whenever the convex length-n + 1 sub-sequences
are “entangled.” We elaborate on an example below. However, we do not know how to
compute the convex rank exactly. Instead, we show how to efficiently compute an O(log(n))-
approximation algorithm for the convex rank, which is indeed sufficient to (nearly) maintain
the running time guarantees of our algorithms.

Convex Sequence Number
Let us define the convex sequence number s formally.

▶ Definition 10. Let t = (t0, . . . , tn) ∈ R̄n+1 be a sequence. If there exist indices I =
(i0, i1 . . . , is−2) with i0 < i1 < · · · < is−2 such that the sequences (t0, . . . , ti0), (ti0+1, . . . ti1),
. . . , (tis−2+1, . . . , tn) are convex and |I| is of minimum cardinality, then we call s = |I| + 1
the convex sequence number of t.

That is, the convex sequence number measures the smallest amount of cuts we have to
make in t such that all s sub-sequences are convex, which we believe to be a natural way of
measuring how convex a sequence is that is accessible on an intuitive level. We refer to the
indices in I as cuts. If it is not obvious from the context, we use the convention to denote
the convex sequence number of a sequence t by st.

Indeed, we can compute the convex sequence number efficiently.

▶ Theorem 11. There is a linear-time algorithm that outputs the minimum number of cuts
for a decomposition of a sequence t ∈ R̄n+1 into convex sub-sequences.

Proof. We proceed in a greedy fashion. That is, we pass through the sequence and check if
each new point added to the sequence satisfies the convexity property.

In detail, we start with the first sub-sequence. Every two next points can always be added
(or less, if we already arrived at the end of the instance). For every next new point with
index i + 1, we check whether the second-order difference ti−1 − 2ti + ti+1 is non-negative.
If so, we add the point and continue. Otherwise, we define i + 1 as the cut and repeat the
procedure.

Regarding minimality, this is indeed optimal as we cannot add any further point to the
current sub-sequence and each new point is independent of the points selected before the
direct two predecessors. As for correctness, note that the resulting sub-sequences are convex
by construction.

It is clear that this procedure takes a linear amount of steps in the input length. ◀

The following property is crucial for our algorithms.

▶ Lemma 12. Let a, b ∈ Z̄n+1. The parameter convex sequence number is subadditive on
each antidiagonal, that is,

s[a,b](k) ≤ sa + sb

holds for all k.
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Proof. Let I = i0 < . . . < isa−2 be the cuts of a decomposition into convex sub-sequences of
a, and similarly, J = j0 < · · · < jsb−2 for b.

Let ℓ0 < ℓ1 < . . . < ℓs−2 be the union of I and J in increasing order. Note that we can
still assume this arrangement to be strictly increasing, since taking the union of two sets
removes any potential duplicates. Then, clearly, it holds that s ≤ sa + sb.

It remains to show that ℓ0, . . . , ℓs−2 are indeed the cuts of [a, b](k) into convex sub-
sequences, and thus s ≥ s[a,b](k) . Since a and b are per definition convex on each of their
sub-sequences, they are also convex on every contiguous subset of them. That is, on each
sub-sequence induced by the breakpoints ℓ, a and b are both convex. Hence, [a, b](k) is convex
on these sub-sequences as well, which was to show. ◀

▶ Remark 13. We may at this point already observe the following generalization of the
convolution algorithm for purely convex sequences described in Remark 6: Namely, there
is an algorithm for (min, +)-Convolution on two sequences a, b ∈ Z̄n+1 running in time
Õ((sa + sb) · n), by employing Theorem 11 and Lemma 12, and observing that the merged
index sets in the proof of the latter can be computed in linear time in n.

Convex Rank
For convex sequences, also the procedure from the previous remark can be adapted to
use the SMAWK algorithm. To this end, let b(1), . . . , b(sb) ∈ R̄n+1 be the pieces of the
convex sequence decomposition of b, with each b(i) padded with ∞-entries outside the indices
corresponding to the i-th index interval in the decomposition of b. Let c = a ∗ b as before.
Then, observe that

ck = min
s=1,...,sb

(a ∗ b(s))k

holds for all k, that is, c is given as the point-wise minimum of a ∗ b(1), . . . , a ∗ b(sb). Using
the fact that b(s) is convex by definition for each s, we can then apply the SMAWK-based
algorithm from Remark 9 to compute c in time O(min{sa, sb} · n) This observation can be
generalized as follows.

▶ Lemma 14. Let a, b(1), . . . , b(r) ∈ R̄n+1 be any convex sequences, and let b ∈ R̄n+1 be
defined by setting bi = minρ b

(ρ)
i , that is, b is the point-wise minimum of the b(ρ). Let c = a∗ b

and c(ρ) = a ∗ b(ρ). Then,

ck = min
ρ

c
(ρ)
k

for all k, that is, c is the point-wise minimum of the c(ρ).

Proof. Follows directly from the fact that x + min{y, z} = min{x + y, x + z} for all x, y, z ∈
R̄. ◀

This observation motivates directly and naturally the following definition:

▶ Definition 15. Let t = (t0, . . . , tn) ∈ R̄n+1 be a sequence. If there exists a set T =
{t(0), t(1) . . . , t(r−1)} of convex sequences with ti ∈ R̄n+1 such that the index-wise minimum
satisfies tk = min{t

(0)
k , . . . , t

(r−1)
k }, then we call T a convex r-decomposition of t. The

minimum r such that there exists a convex r-decomposition for t we call the convex rank of t.

ISAAC 2023
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Figure 1 The solid line is the piece-wise linear extension of a non-convex sequence c. The dashed
and dotted lines define the piece-wise linear extension of two convex sequences a and b whose
point-wise minimum is c (the values of a and b are indicated by disks and crosses, respectively).
Dashed, gray vertical lines signify the cut points of the convex sequence number of the sequence c.

Beyond the motivation through the structural observation in Lemma 14, it may require
further elaboration to make plausible the supposition that the convex rank is indeed a natural
measure of convexity. In essence, it can be viewed as one answer to the question: How many
convex sequences are needed to build t from them? Any answer to this question depends on
what operation constitutes the formal meaning of “building” a sequence from others.

In the general context of mathematical structures, this is formalized as having a set S with
a binary operation ⊕ (the “building” operation), such that S contains some distinguished
subset X ⊂ S of particular interest. Then, it is natural to ask for the X-rank of an arbitrary
element s ∈ S: If s ∈ X, its X-rank is one, and in general it is the minimum number r

needed to write s = x1 ⊕ · · · ⊕ xr with xi ∈ X for all 1 ≤ i ≤ r. Examples of this abound in
the familiar setting of ⊕ being ordinary addition over a linear space: If S is a linear space of
matrices, X can be taken to be the set of matrices of the form A = uvT for vectors u and v of
the appropriate dimension; in this case, X-rank recovers the ordinary matrix rank. A more
involved example from algebraic geometry is furnished by secant varieties of a variety X,
arising as (the closure of projectivized) ordinary sums of points on the variety X, recovering
symmetric, anti-symmetric and tensor (border) rank (when choosing X to be the Veronese,
Grassmannian and Segre, respectively), see [8] for ample background on this particular class
of examples.

In the more closely related context of tropical convolutions, the operation ⊕ being the
point-wise minimum of its operands is the natural “additive” operation, forming a semiring
together with the operation of tropical convolution. For example, the Barvinok rank of a
tropical matrix (see [5] and the treatment in [21]), is the smallest number of tropical rank-one
matrices needed to express a given matrix as their pointwise minimum. Work by Develin [20]
deepens the analogy to ordinary ranks through a tropical analogue of secant varieties. In all
of the cases outlined, X-rank corresponds to the complexity of some object with respect to a
representation (as a sum) by the set X. Given this mathematical context, it is a very natural
thing to measure the degree of convexity through the concept of X-rank of a sequence, where
X is the set of convex sequences.
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Relation to Convex Sequence Numbers

From its definition, it is clear that the convex rank of a sequence is at most its convex
sequence number. However, the two measures can be arbitrarily far apart: Roughly speaking,
the critical instances are those where two non-consecutive sub-sequences of t together form a
convex sub-sequence (padding the missing indices accordingly). In particular, two convex
sequences can be intertwined arbitrarily often. Choosing points which are always at the point-
wise minimum of the two sequences, we can produce an arbitrarily large convex sequences
number as every time the sequences are intertwined further, their intersection point defines a
new cut in the sense of convex sequence numbers. Indeed, consider any prefix of the infinite
sequences which are defined for i ≥ 0 as

a2i = i2 + (i mod 2),
b2i = i2 + 1 − (i mod 2),

b2i+1 = a2i+1 = i2 + i + 1.

An easy calculation shows that both a and b define convex sequences, but their point-wise
minimum has unbounded convex sequence number. See Figure 1 for an illustration.

Algorithms and Properties

An obvious question is how to compute the convex rank of a sequence. First, note the
following.

▶ Proposition 16. There is an algorithm running in time O(rn) to decide whether or not a
given sequence a ∈ Z̄n+1 has convex rank at most r.

Proof. Let a ∈ Z̄n+1 and r be given. By definition, for every i = 0, . . . , n in any convex
r-decomposition a(1), . . . , a(r) of a there must be some ρ such that ai = a

(ρ)
i . Now, we may

guess this ρ for every i and obtain r sequences â(1), . . . , â(r) defined partially only at those
indices i for which the current guess assumed a given â(ρ) to satisfy ai = â

(ρ)
i . However, it

is easy to extend these partial definitions in a piece-wise linear manner (and with ∞ from
the left and the right) and check if the resulting sequences are convex and define a as their
point-wise minimum. Clearly, if all â(ρ) are convex and yield a point-wise, a is of convex
rank at most r. If this is not the case for any guess of assignments, then a is of convex rank
at least r + 1. ◀

In addition to this brute-force approach, we now show how we can approximate the convex
rank of a sequence t with a greedy method efficiently, yielding the following theorem. For
the remainder of the paper, we write rt to denote the convex rank of a sequence t.

▶ Theorem 17. There is an O(log(n))-approximation algorithm running in time O(rt ·
n4 log n) that outputs for a sequence t ∈ R̄n+1 its decomposition into convex sequences of
length n + 1 such that their index-wise minimum equals t.

The algorithm is a greedy algorithm enriched with a dynamic program. The intuition is as
follows: We consider the problem as a sort of arithmetic variant of Set Cover. In particular,
we are given a sequence of numbers t, and the goal is to “cover” this sequence of numbers
with convex sequences t(0), . . . , t(r−1), such that for each index i, none of the elements t

(j)
i in

any sequences j in the covering can be strictly less than ti. The approach is similar to the
greedy approximation algorithm for Set Cover. However, making locally optimal decisions
in each step requires a separate dynamic program.

ISAAC 2023
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Proof of Theorem 17. We make the assumption that t contains no ∞-entries: trailing and
leading ∞-entries can simply be removed from t without changing the optimum. Furthermore,
if there is an ∞ in the interior of t, this splits t into two disjoint parts, t(1) and t(2), such
that t = (t(1), ∞, t(2)). Any convex sequence t(i) that can contribute to a solution (that is,
has t

(i)
j = tj for at least one j) can be less than ∞ on at most one of t(1) or t(2), so we may

treat t(1) and t(2) as separate instances, and their optimal solutions are the unions of any
two optimal solutions of t(1) and t(2), respectively. This procedure can be repeated for any
remaining ∞-entries of t.

Now, at each step of our greedy algorithm, we aim to solve the following problem. Given
a set of indices I ⊆ {0, . . . , n}, we wish to compute a convex sequence t(j) ∈ R̄n+1 that
satisfies t

(j)
i ≥ ti for all i ∈ {0, . . . , n}, and furthermore, meets the following criterion: Let

Jj ⊆ {0, . . . , n} be the set of indices where equality holds, i.e., t
(j)
i = ti if and only if i ∈ Jj .

Then, our goal is to find a sequence t(j) maximizing |Jj \ I|. The set I will take on the
following role in the greedy procedure: At every step, we keep track of the indices in the
original sequence t that already have been covered by the selection of sequences up until this
point. The set Jj \ I is then the set of indices that are covered by the newly constructed
sequence t(j).

For this intermediate problem, we now construct a dynamic program that solves it
optimally. First, we argue that we can make the following assumption on any optimal
solution t(j) without loss of generality: Firstly, the piece-wise linear extension of t(j) is
not linear precisely at the indices Jj . Secondly, t

(j)
i = ∞ for all values of i outside of

[min Jj , max Jj ]. Let us refer to such sequences t(j) as t-compatible. This can be seen as
follows. Consider some convex sequence t(j) that satisfies t

(j)
i ≥ ti at all i, and has t

(j)
i = ti

at indices i ∈ Jj = (j1, . . . , jp), where j1 < . . . < jp. Observe that replacing t
(j)
i with ∞ both

strictly before and after j1 and jp retains convexity of t(j). We further replace the segment
of the piece-wise linear extension of t(j) between jℓ and jℓ+1 with the straight line segment
connecting the points (jℓ, t

(j)
jℓ

) and (jℓ+1, t
(j)
jℓ+1

) contained in this epigraph. By the geometric
characterization of convexity of a sequence as convexity of the epigraph of its piece-wise linear
extension, and in turn by the definition of convexity as containing all line segments between
any pair of contained points, the sequence t(j′) obtained by this operation has t(j′) ≥ t(j) ≥ t

at every point. Moreover, replacing t(j) by t(j′) corresponds to intersecting the epigraph of
the piece-wise linear extension of t(j) with a collection of half-planes. Therefore, t(j′) is a
convex sequence satisfying t(j′) ≥ t(j) ≥ t (point-wise), and the restrictions of t(j′), t(j) and t

to Jj are all equal. By construction, t(j′) is t-compatible.
Consider now ∆, the set of normalized differences between any two (possibly non-

consecutive) values of t, that is, ∆ =
{

ti−tj

|i−j| | i ̸= j
}

∪ {±∞}. In our dynamic program,
we keep track of the following data: For each index i and every δ ∈ ∆, we are interested
in t-compatible sequences t(j) maximizing |Jj \ I| among all choices of t(j) such that the
following holds: (1) t

(j)
i = ti, t

(j)
ℓ = ∞ for all ℓ > i, and (2) t

(j)
i − t

(j)
i−1 ≤ δ if i > 0. For

each i > 0 and δ, let T [i, δ] contain such a sequence. If indeed these conditions are satisfied,
then

⋃
i T [i, ∞] contains an optimal solution. Now, towards constructing T that contains

such an optimal sequence at every index, let first T [0, δ] = (t0, ∞, . . . , ∞) for all δ > −∞,
and T [i, −∞] = (∞, . . . , ∞, ti, ∞, . . . , ∞) for all i. Note that the condition t

(j)
i − t

(j)
i−1 ≤ −∞

forces t
(j)
i < ∞ and t

(j)
i−1 = ∞. Compute then, for every i, the set V (i) of all indices visible

from i, that is, all indices j < i such that the straight line segment between ti and tj is
contained in the epigraph of the piece-wise linear extension of t. Then, for δ > −∞, T [i+1, δ]
is given by the optimum sequence t(j) contained in

⋃
j∈V (i+1) T [j, δ], extended between j and

i+1 with the straight-line segment connecting (j, tj) and (i, ti+1). In particular, t
(j)
i+1 −t

(j)
i = δ

in the sequence corresponding to this straight-line extension.
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The sequences are t-compatible by construction: The sequence has a possible leading and
trailing stretch of ∞, and at all points in between, it is constructed by forming straight-line
connections between points of the form (i, ti) and (j, tj). Furthermore, the sequences are
convex, because the slopes between consecutive line segments are chosen to be non-decreasing.
Optimality follows inductively. Now, applying this algorithm greedily yields the desired
approximation bound, with an identical analysis as for Set Cover [17].

As for the running time, the table T has O(n3) entries; computing the sets ∆, as well as
V (i) over all i, takes O(n2) time. Computing a single table entry therefore requires O(n)
time because each V (i) is of size O(n), and over all O(n3) table entries yields an algorithm
running time in O(n4). Performing this greedily at most O(rt log n) times gives the claimed
running time bound. ◀

▶ Remark 18. The greedy set cover approach has proved useful in a vast number of combinat-
orial and geometric problems. Notably, e.g. the so-called convex partition number [3] admits
a similar, if much more direct approximation via the greedy set cover heuristic, which is
however known to NP-hard to compute. Another concept related at least in spirit to convex
rank is the notion of Barvinok rank, where one asks for the minimum number of tropical
rank-one matrices needed to express a given matrix as their entry-wise minimum. This
quantity, in turn, is hard to compute (and even approximate) [30]. One pressing question
raised by these results is the complexity of exactly computing the convex rank of a sequence.
As it will turn out, the running time for computing the decomposition is the bottleneck
in the algorithms. The blow-up for the algorithms itself is negligible though, as it only
adds a factor of O(log n). So, to distinguish between computing the decomposition and the
running times of the algorithms, we suppose in the following that the decomposition is given.
Such assumptions are commonly used since at least 1993 [18] in the regime of fine-grained
complexity and fixed-parameter tractability to distinguish the running times with respect
to some parameter and the corresponding computation of the decomposition, see, e.g., the
parameters and algorithms for treewidth [9], cliquewidth [18], and twinwidth [7] (which is
even NP-hard to compute optimally) among others.

▶ Lemma 19. Let a, b ∈ Z̄n+1. It holds that

r[a,b](k) ≤ ra · rb

for all k.
Proof. Denote by A = {a(0), a(1) . . . , a(ra−1)} the convex sequences of the decomposition of
a, and similarly, B = {b(0), b(1) . . . , b(rb−1)} for b.

Set C = {a(ℓ) ∗ b(m) | a(ℓ) ∈ A, b(m) ∈ B)}. We claim that C corresponds to a decomposi-
tion of [a, b](k) into convex sequences.

Let [a, b](k) = c = (c0, . . . , c2n) be the entries of the antidiagonal. Each entry ck is a sum
of two sequences a

(ℓ)
i ∈ A and b

(m)
k−i ∈ B as all entries of a and, respectively, b are preserved

in (at least) one of the sequences of the decompositions.
All entries corresponding to one of such combinations a(ℓ), b(m) form a convex sequence

as adding two convex sequences remains convex.
It holds that |C|= ra · rb > r[a,b](k) . This concludes the proof. ◀

4 Convolution Problems

In this section, we present efficient algorithms for the convolution problems under the paradigm
of both convexity measures. Note that ra ≤ sa implies that, whenever the dependence on
ra in an algorithm is linear, this also implies an algorithm with linear dependence on sa.
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However, there are cases where the algorithms we obtain have running times depending on
ra e.g. quadratically, in which case a separate treatment of parameterizations by sa still
makes sense.

(min, +)-Convolution
We start with the (min, +)-Convolution problem with respect to the convex rank, expedit-
ing Lemma 14.

▶ Theorem 20. There is an algorithm for (min, +)-Convolution on two sequences a, b ∈
Z̄n+1 running in time O(ra · n), provided a convex rank decomposition a(1), . . . , a(ra) of a is
given.

Proof. From Lemma 14, it suffices to compute a(ρ) ∗ b for all ρ = 1, . . . , ra, which can
be accomplished in time O(n) using the SMAWK algorithm as pointed out in Remark 9.
Taking point-wise minima can be done in time O(ra · n), and this shows the claimed running
time. ◀

▶ Remark 21. This algorithm applies to the case of max-convolution of concave rank
decomposition, yielding the same running time bounds. In case the decomposition is not
given, we note that the overhead of applying the decomposition algorithm of Theorem 17 to
the entire input naively, adding a O(n4rt) preprocessing step, can be ameliorated to some
degree: Split a and b into nc consecutive parts of length n1−c each. Then, preprocess each
part separately in time O(n4(1−c)rt), and use the O(n1−crt)-time algorithm for each of the
n2c pairs of such parts to find the solution of the original instance in time O(n4−3c + nc+1),
which is minimized for c = 3/4, giving an algorithm running in time O(n7/4rt).

Observe that there is a direct lower bound under the (min, +)-convolution conjecture:
There is no algorithm solving (min, +)-Convolution in time less than ((sa + sb)n)1−ϵ ·
polylog(d) on integral inputs a, b of maximal absolute value d, for any constant ϵ > 0:
Suppose that there exists an algorithm solving (min, +)-Convolution in time ((sa +
sb)n)2−ϵ · polylog(d) on integral inputs a, b of maximal absolute value d, for any constant
ϵ > 0. As each sequence a (and b) can have a convex sequence number of at most n/2 (every
two consecutive points form one convex sub-sequence), this would mean that we can solve
(min, +)-Convolution in time

((sa + sb)n)1−ϵ · polylog(d) ≤ ((n/2 + n/2)n)1−ϵ ≤ n2−ϵ′
· polylog(d)

on integral inputs a, b of maximal absolute value d, for some constant ϵ′ > 0, contradicting
the (min, +)-convolution conjecture.

Minimum Consecutive Subsums
We consider the Minimum Consecutive Subsums problem on convex inputs. Even though
there exists a reduction to (min, +)-Convolution, see [26], it does not preserve the convexity
of the input. In particular, the reduction computes a such that the i-th entry is the sum of the
first i elements in the (in our case convex) input sequence t. For b, the reduction computes
the sum of the last i elements as its i-th entry. While the first sequence remains convex, the
second becomes concave. Convolving a convex with a concave sequence results in an arbitrary
output with respect to the convexity and thus, our algorithm for (min, +)-Convolution
cannot be used to obtain an algorithm with the desired running time bound. However, we
observe other structural properties of potential solutions, so that we can indeed solve this
problem optimally within the same running time bounds as above yielding the following two
theorems.
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▶ Theorem 22. There is an algorithm for Minimum Consecutive Subsums on a sequence
t ∈ Z̄n+1 running in time Õ(stn).

Proof. We first compute the decompositions of t into at most st convex sub-sequences in
time O(n) using Theorem 11. Next, we divide each convex sub-sequence into two parts (one
of which may be empty), namely a monotonically decreasing sub-sequence (preceding the
minimum), and a monotonically increasing part (following the minimum). Call the set of
monotone sequences t(1), . . . , t(k) with k ≤ 2st.

When executing the algorithm, we maintain a table M with n entries where the ith entry
corresponds to the best solution found so far for a consecutive subsum of length i. Initialize
each value with ∞ (or a sufficiently large value). We then sweep once through the whole
sequence t and compute for each point tj the minimum consecutive subsum starting at tj ,
but only for all reasonable lengths (defined below) i ∈ {1, . . . , n}.

More formally, for each point tj and each monotone sequence t(k), find its reasonable
interval I(k) = [t(k)

ℓ , t
(k)
ℓ+1, . . . , t

(k)
ℓk

] such that t
(k)
ℓ − tj−1 < 0 (shifting the whole sum one index

to the left is not improving) and tj − t
(k)
ℓk+1 < 0 (shifting the whole sum one index to the

right is not improving). Update all entries in the table M which corresponds to the length
of consecutive sums from tj to t

(k)
p for all j, k and t

(k)
p ∈ I(k) if they are smaller than the

current entry in M . Finally, output M as the solution. During execution, edge cases are
simulated by padding with ±∞ at the end/beginning of monotonically increasing/decreasing
sequences.

Correctness follows easily, as each potential interval holding the minimum is considered.
Regarding the running time, it is crucial to see that each monotone piece will be divided
into non-overlapping intervals by different tj . Thus, while considering all start points tj , we
overall go through all points once. Hence, computing the reasonable intervals for each tj and
k, and the corresponding consecutive subsum overall costs time Õ(stn) (using a standard
trick, we assume that we computed all initial partial sums of t in a single pass, which makes
the interval sums

∑i2
i=i1

ti accessible in time Õ(1)). ◀

▶ Theorem 23. There is an algorithm for Minimum Consecutive Subsums on a sequence
t ∈ Z̄n+1 running in time Õ(r2

t n) given the convex rank decomposition of t.

Proof. The algorithm proceeds basically as in Theorem 22. However, we now have to
deal with multiple convex sequences. This means that for every point tj , we consider the
reasonable intervals of all convex sequences. Again, there will be exactly one interval for
each convex sequence and they are non-overlapping. This leads to a blow-up of a factor of rt,
as we now have rtn instead of n points overall. Also note that once we determined the start
index and end index in the interval, we sum up the actual values in t and not the ones from
the decomposition into convex sequences. ◀

▶ Remark 24. As we only care about the monotone sub-sequences of the sequence, the
concave case can be solved equivalently. Further, by defining the reasonable intervals such
that t

(k)
ℓ − tj−1 > 0 and tj − t

(k)
ℓ+1 > 0, and initializing the table with −∞ entries, we can

also solve the maximising version of the problem called Maximum Consecutive Subsums.

Super Additivity Testing
Turning our attention to Super Additivity Testing, we can immediately deduce the
following by applying our previous results.
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▶ Theorem 25. There is an algorithm for Super Additivity Testing on a sequence
a ∈ Z̄n+1 running in time O(ra · n) given the convex rank decomposition of a.

Proof. This follows from choosing b = a, applying Theorem 20, and then checking whether
the result is at least ai for each i. ◀

▶ Remark 26. As (min, +)-Convolution is used as a subroutine, we can easily see that
these algorithms also work for concave inputs.

Convolution 3-Sum

While the previous problems relied on the SMAWK algorithm, we will now employ the
strategy laid out in Remarks 6 and 13.

▶ Theorem 27. There is an algorithm for Convolution 3-Sum on a sequence a ∈ Z̄n+1

running in time Õ(sa · n).

Proof. We first compute the decompositions of a, b into at most sa convex sub-sequences in
time O(n) using Theorem 11. Then, for every anti-diagonal [a, a](k) of [a, a], the breakpoints
of a decomposition of [a, a](k) into convex sub-sequences is immediate from the proof of Lemma
12. Instead of asking for the minimum (as for (min, +)-Convolution), the Convolution
3-Sum problem asks whether a specific element ak is contained in the k-th anti-diagonal
[a, a](k) (although finding the minimum of a convex sub-sequence is still part of our algorithm).
We can answer this question in O(log n) time for each of the O(sa) convex sub-sequences
of [a, a](k), by performing, first, a binary search to find the minimum of each convex sub-
sequences, as in the case of (min, +)-Convolution. Each convex sub-sequence is thereby
divided into two parts (one of which may well be empty), namely a monotonically decreasing
sub-sequence (preceding the minimum), and a monotonically increasing part (following the
minimum). On each of those (at most) two parts, we may then perform an ordinary binary
search in order to determine the presence or absence of the element ak in the current convex
sub-sequence of [a, a](k). Correctness and running time follow immediately. ◀

Interestingly, this algorithm cannot be adapted for the parameter convex rank as before.
This is due to the issue that we do preserve the real minimum values, but cannot guarantee
that each value in the kth antidiagonal corresponds to some sum ti + tj for i + j = k. Testing
this would give an increase in the running time by a factor of n as each antidiagonal could
have up to n positions of the desired value, which would be worse than the trivial known
algorithm for this problem. It remains an interesting question whether there exists an O(rtn)
algorithm for Convolution 3-Sum.

5 Open Questions

The results in the present paper suggest further research directions: Some of the algorithms
could not be shown to be tight as known reduction do not retain the convexity of the
instances, see [19]. Also, excluding a running time of the form O(n + k2) for both convexity
measures k would be of great interest. Further, whether or not the quadratic dependency on
the convex rank in the algorithms is necessary is yet to be determined. It remains open if we
can compute the convex rank exactly in polynomial time or if this problem is NP-hard.
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