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Abstract
In this paper, we focus on the matrix completion problem and aim to minimize the diameter over
an arbitrary alphabet. Given a matrix M with missing entries, our objective is to complete the
matrix by filling in the missing entries in a way that minimizes the maximum (Hamming) distance
between any pair of rows in the completed matrix (also known as the diameter of the matrix). It is
worth noting that this problem is already known to be NP-hard. Currently, the best-known upper
bound is a 4-approximation algorithm derived by applying the triangle inequality together with a
well-known 2-approximation algorithm for the radius minimization variant.

In this work, we make the following contributions:
We present a novel 3-approximation algorithm for the diameter minimization variant of the
matrix completion problem. To the best of our knowledge, this is the first approximation result
that breaks below the straightforward 4-factor bound.
Furthermore, we establish that the diameter minimization variant of the matrix completion
problem is (2 − ε)-inapproximable, for any ε > 0, even when considering a binary alphabet,
under the assumption that P ̸= NP. This is the first result that demonstrates a hardness of
approximation for this problem.
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1 Introduction

With the advent of big data, the occurrence of missing values in data objects has become
increasingly common. These missing entries can arise due to various errors occurring at
different stages of data processing, including data collection, data transfer, and data cleaning,
and they often even occur arbitrarily. Handling such missing data is widely recognized as a
challenging task, and numerous methods, including heuristic, greedy, convex optimization,
and statistical approaches, have been proposed in the context of practical applications [1].
One such popular technique is data imputation, which, albeit finds extensive use in data
mining, machine learning, and computational biology, requires prior knowledge of the dataset
or the adoption of certain statistical assumptions [33].

Addressing the issue of incomplete matrices by filling in missing values is a fundamental
problem in data analysis, often approached as an optimization task [10, 20, 21, 29, 16, 17].
In the context of clustering, a popular objective function is to minimize the cluster diameter
(e.g., [25, 13, 24, 29, 17]), which represents the maximum pairwise distance among data
points within a cluster. When dealing with missing entries (or wildcards denoted by ∗),
a fundamental question arises: Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d (over an
arbitrary alphabet Σ), how can we fill the ∗-entries with symbols from Σ to obtain a
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completion M̄ ∈ Σn×d that minimizes the maximum pairwise distance between rows? In
this paper, we consider the Hamming distance as the underlying distance measure, which is
arguably one of the most prevalent distance functions used in a wide range of applications.
This problem is known as the Minimum Diameter Matrix Completion (DMC) problem.

The DMC problem is a combinatorial matrix completion problem with numerous ap-
plications in coding theory, computational biology, and data science. For instance, in
computational biology, the DMC problem arises in assessing the degree of relatedness among
genome sequences, where missing entries represent missing data points. The DMC problem
is encountered in data science when completing entities with their attributes while satisfying
pairwise dissimilarity constraints. The stringology literature extensively explores several
consensus problems closely related to DMC [7, 4, 6, 10, 9, 11, 14, 26, 27, 37, 34, 32, 38].

The DMC problem, like most other variants of matrix completion problems, is known to
be NP-hard. Koana, Froese, and Niedermeier [29] conducted a comprehensive complexity
study on the DMC problem, considering diameter bounds and the maximum number of
missing entries, and identified various polynomial-time solvable cases and NP-hard cases. The
parameterized complexities of the DMC problem, specifically a more general k-clustering
version, have also been investigated in terms of various parameters [16, 17]. Regarding
approximation algorithms, only a 4-approximation algorithm is currently known for the DMC
problem. This approximation factor is derived from the result of another closely related matrix
completion problem called Minimum Radius Matrix Completion (RadMC) [28, 27]. In
the RadMC problem, the objective is to find a completion and a “center” string such that
the distance between each row of the completed matrix and the center string is minimized.
A straightforward application of the triangle inequality shows that any c-approximation
(for any c ≥ 1) to the RadMC problem implies a 2c-approximation to the DMC problem.
Since a simple (folklore) 2-approximation algorithm1 exists for the RadMC problem, it
immediately provides a 4-factor approximate solution for the DMC problem. However, it
has been proven that no (2 − ε)-approximation algorithm for the RadMC problem exists
unless P = NP [12], and thus there is no hope of getting a better factor than 4 to the DMC
problem by improving the approximation factor of the RadMC problem.

Currently, the possibility of improving the 4-factor approximation for the DMC problem
remains an open question. Moreover, there is no known inapproximability result for the
DMC problem, leaving room for the plausibility of achieving a polynomial-time approx-
imation scheme (PTAS). In this paper, we refute this possibility by demonstrating that
no polynomial-time (2 − ε)-approximation algorithm for the DMC problem exists unless
P = NP. Furthermore, we present a 3-approximation algorithm that surpasses the 4-factor
bound obtained from a direct application of the triangle inequality, along with a 2-factor
algorithm for the RadMC problem.

Our contributions and techniques. One of our primary contributions is a 3-approximation
algorithm for the DMC problem, which to the best of our knowledge, is the first one to
break below the straightforward 4-approximation bound.

▶ Theorem 1. There is a polynomial-time algorithm that, given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d, computes a 3-approximate solution for the Minimum Diameter Matrix
Completion (DMC) problem over an arbitrary alphabet Σ.

1 The 2-approximation is attained by first solving the LP relaxation of the standard ILP formulation of
the RadMC problem and then applying a simple deterministic rounding. We use a similar argument
to get a 2-approximation for a restricted version of the DMC problem, namely the DRMC problem
(see Appendix A).
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To show our result, we consider an intermediate restricted variant of the DMC problem,
which we refer to as Minimum Diameter Restricted Matrix Completion (DRMC).
In this variant, we add a column restriction – all the missing entries of a column must be
filled in with the same symbol – for feasible completion of an incomplete matrix. The main
advantage of putting this restriction is that now we can formulate this restricted variant
as an ILP. Then we solve the corresponding LP relaxation, and finally, applying a simple
deterministic rounding, we get a 2-approximation for the DRMC problem (Theorem 5).

Since the only distinction between the DMC and the DRMC problem is the column
restriction imposed on feasible completions in the DRMC problem, any feasible solution to
the DRMC problem is also a feasible solution to the DMC problem. Surprisingly, we show
that for any input incomplete matrix M , the optimum objective value to the DRMC problem
is at most 3/2 times that of the DMC problem (Lemma 3). By leveraging this finding along
with the 2-approximation algorithm for the DRMC, we can effectively establish Theorem 1.

To build the relationship between the optimal solution of the DRMC and the DMC, we
consider an (arbitrary) optimal completion M̄∗ for the DMC problem, acknowledging that
this completion may not satisfy the column restriction requirement for the DRMC problem.
To overcome this, we modify the completion by taking any arbitrary row, say the first row
M̄∗

1 , and then for each column ℓ depending on the symbol at the ℓ-th coordinate of the row
M̄∗

1 fill in all the missing entries of that column in the whole input (incomplete) matrix. This
modification yields a completion M̃ that satisfies the column restriction and thus becomes
a feasible solution to the DRMC problem. Let ∆ and ∆R represent the diameters of the
completed matrices for DMC (M̄∗) and DRMC (M̃), respectively. We aim to demonstrate
that ∆R ≤ 3

2 · ∆. To provide a high-level idea, let us consider any two rows i, j. It is not
hard to see that by applying the triangle inequality, the distance between the rows M̃i and
M̃j is at most twice ∆. However, that only shows ∆R ≤ 2∆, which, when combined with a
2-approximation of the DRMC, only gives a 4-approximation to the DMC problem, which
is no better than the already known bound. Overcoming this challenge requires developing
an argument that surpasses this naive application of the triangle inequality. To tackle this
challenge, we divide the rows M̃i and M̃j into three parts: The first one comprises coordinates
where no missing entries are there in both the i-th and j-th row of the input matrix, the
second one contains all the coordinates with missing entries in the i-th row but no missing
entries in the j-th row, and the third one consists of all the coordinates with missing entries
in the j-th row but no missing entries in the i-th row (we disregard the coordinates with
missing entries in both the rows because these positions do not contribute to the Hamming
distance due to the column restriction). We emphasize that this partitioning is solely for
the sake of analysis. Next, we look into these three parts separately and analyze their
contributions to the overall Hamming distance. Finally, by using the fact that in M̄∗, all
the pairwise distances between the rows M̄∗

1 , M̄∗
i , and M̄∗

j are bounded by ∆, we establish
that the distance between the rows M̃i and M̃j is at most 3

2 · ∆. The detailed argument is
provided in Section 3.

Our next significant contribution is an inapproximability result for the DMC problem.
We show that it is NP-hard to get a (2 − ε)-approximation, the first inapproximability result
for the DMC problem.

▶ Theorem 2. Consider any ε > 0. There is no deterministic polynomial-time algorithm
that, given an incomplete matrix M ∈ {0, 1, ∗}n×d, computes a (2 − ε)-approximate solution
for the Minimum Diameter Matrix Completion (DMC) problem, unless P = NP.

We highlight that the aforementioned inapproximability result holds even for a binary
alphabet. To establish the inapproximability bound, we employ a reduction from the well-
known Label Cover problem to a gap version of the DMC problem (Definition 6). Informally
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speaking, in the label cover problem, we are presented with a (left and right-regular) bipartite
graph with each edge having a function (defined on a label set) as a constraint relation,
and the objective is to come up with an assignment (of labels to each vertex) that satisfies
“as many” edges as possible (see Definition 7). It is well-known that a gap version of
the label cover problem – deciding whether an assignment (of labels) satisfies all the edge
constraints or no assignment (of labels) can satisfy more than a small constant fraction of the
edges – is NP-hard, even for constant-sized label set and constant left/right-degree bipartite
graphs [2, 36]. Given such a label cover instance, we construct a “sparse” incomplete matrix
(DMC instance), i.e., a matrix with only a small number of non-∗ entries per row. For
the construction, we utilize the concept of a dictatorship gadget [3] (see Section 4 for the
reduction). The completeness of our reduction follows from the properties of the dictatorship
gadget. However, for soundness, we need more intricate arguments. The crux of the argument
lies in the fact that if the given label cover instance is a No instance (i.e., no assignment can
satisfy more than a small constant fraction of the edges), then in our constructed incomplete
matrix, for every possible completion we can find “a large” subset of rows where the sum of
pairwise distances is large and as a consequence, by averaging a “distant” pair of rows exists.

We remark that a similar proof provides the same inapproximability bound to the
restricted version of DMC, namely DRMC, that we consider as an intermediate problem to
show our 3-approximation result, establishing that our 2-approximation algorithm for the
DRMC is essentially optimal.

Other related works. Various optimization tasks with numerous applications have been
investigated in the matrix completion problem [5, 39, 19, 18]. In addition to minimizing the
diameter of a cluster, as in the case of the DMC problem, researchers have also studied the
problem of radius minimization, known as the Minimum Radius Matrix Completion
(RadMC) problem. Alternatively, the RadMC problem is also formulated as the closest
string with wildcards problem (or the 1-center in Hamming distance with wildcards). The
parameterized complexities of this problem have been explored in [27, 28]. A result of
(2 − ε)-inapproximability (for any ε > 0) was demonstrated in [12] under the assumption that
P ̸= NP, while a 2-approximation algorithm is commonly known. Notably, when there are no
missing entries (i.e., without wildcards), the closest string problem admits a polynomial-time
approximation scheme (PTAS) [31].

Both the DMC and the RadMC problems are specific variations of clustering problems.
In [16, 17], the authors considered a more general version of the clustering problem, where
the goal is to partition the rows of an incomplete matrix into clusters while minimizing
the diameter or radius of each cluster. Besides radius and diameter, [20] investigated the
minimization of rank and the number of distinct rows in the completed matrix. In [21], the
authors explore the complexity of completing an incomplete matrix in a way that satisfies
specific constraints and can be partitioned into low-rank subspaces. Within the clustering
literature, numerous variants of non-combinatorial matrix completion, such as k-center and
k-means clustering, have also been extensively studied from the perspective of designing
approximation algorithms [22, 23, 30, 35, 15, 8].

2 Preliminaries

Notations. Let [n] denote the set {1, 2, . . . , n}. For any n × d dimensional matrix M , we
use Mi to denote the i-th row of M , and Mi[j] (or sometimes for brevity Mij) to denote the
(i, j)-th entry of M . Further, for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use Mi[J ]
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to denote the sequence Mi[j1]Mi[j2] · · · Mi[jk]. For two strings x, y ∈ Σd, we use H(x, y) to
denote the Hamming distance between x and y, which counts the number of coordinates
where the symbols of x and y do not match, i.e., H(x, y) := |{i ∈ [d] | x[i] ̸= y[i]}|.

Matrix Completion. For any incomplete matrix M ∈ (Σ ∪ {∗})n×d, we call M̄ ∈ Σn×d a
valid (feasible) completion iff for all i ∈ [n], j ∈ [d] with Mi[j] ̸= ∗, M̄i[j] = Mi[j]. Sometimes
we refer to M̄ as a complete matrix of M .

Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d, for any feasible completion M̄ ∈ Σn×d

of M , we refer to the quantity maxi̸=j∈[n] H(M̄i, M̄j) as the objective value of M̄ , denoted
by Obj(M̄). For any completion M̄∗ that minimizes Obj(M̄), we denote Obj(M̄∗) by
OPTDMC(M) (or simply OPT(M) when the problem DMC is clear from the context). We
call a feasible solution M̄ a c-approximate solution (for c ≥ 1) of M iff Obj(M̄) ≤ c ·OPT(M).

3 Approximation Algorithm for DMC

In this section, we describe a 3-approximation algorithm for the Minimum Diameter
Matrix Completion (DMC) problem over an arbitrary alphabet Σ.

▶ Theorem 1. There is a polynomial-time algorithm that, given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d, computes a 3-approximate solution for the Minimum Diameter Matrix
Completion (DMC) problem over an arbitrary alphabet Σ.

In proving the above theorem, we first consider a restricted version of the DMC problem,
namely Minimum Diameter Restricted Matrix Completion (DRMC), which, given
an incomplete matrix M ∈ (Σ ∪ {∗})n×d, asks to find a (valid) completion M̄ of M with a
restriction, referred to as column restriction, that

For each column ℓ ∈ [d], for all i, j ∈ [n], if Mi[ℓ] = Mj [ℓ] = ∗, then M̄i[ℓ] = M̄j [ℓ],
while minimizing the objective value maxi ̸=j∈[n] H(M̄i, M̄j).

It is worth noting that the only difference between DMC and DRMC is that in a complete
matrix for DMC, the missing entries of a single column can be completed with different
symbols, whereas for DRMC, the missing entries of any particular column must be completed
with the same symbol. Thus, it is easy to observe that any feasible solution to the DRMC
problem is also a feasible solution to the DMC problem, although the converse may not be
true. We provide an LP-based 2-approximation algorithm for the DRMC problem and then
argue that it also gives us a 3-approximate solution to the DMC problem. The heart of the
argument lies in the relationship between the optimum solution of the DMC problem and
that of the DRMC problem.

Relationship between DMC and DRMC. For any incomplete matrix M ∈ (Σ ∪ {∗})n×d,
let us use OPTDMC(M) and OPTDRMC(M) to denote the optimum objective value of the
DMC and DRMC problem, respectively. Recall that no matter whether it is the DMC
or DRMC problem, the objective value of a (feasible) complete matrix M̄ is defined as
Obj(M̄) = maxi̸=j∈[n] H(M̄i, M̄j).

▶ Lemma 3. For any M ∈ (Σ ∪ {∗})n×d, OPTDMC(M) ≤ OPTDRMC(M) ≤ 3
2 ·OPTDMC(M).

Proof. First, observe that any feasible solution to the DRMC problem is also a feasible
solution to the DMC problem. It immediately implies that

OPTDMC(M) ≤ OPTDRMC(M).
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We now focus on proving that OPTDRMC(M) ≤ 3
2 ·OPTDMC(M). For that purpose, let us

first consider an (arbitrary) optimal completion M̄∗ of M with respect to the DMC problem.
Next, we use this solution to come up with a feasible solution (complete matrix) M̃ of M to
the DRMC problem. We construct M̃ using M̄∗ as follows:

Consider any arbitrary row, say the first row, of M̄∗, i.e., M̄∗
1 .

Next, for each i ∈ [n] and j ∈ [d], if Mi[j] = ∗, then set M̃i[j] = M̄∗
1 [j]; otherwise set

M̃i[j] = Mi[j].
It is straightforward to see that M̃ is a feasible completion of M for the DRMC problem.
Next, we claim the following.

▷ Claim 4. For all i, j ∈ [n], H(M̃i, M̃j) ≤ 3
2 · Obj(M̄∗).

This claim is pivotal in proving our lemma. We will prove this claim later, and let us now
conclude the proof of the lemma by assuming the above claim.

Obj(M̃) = max
i ̸=j∈[n]

H(M̃i, M̃j) ≤ 3
2 · Obj(M̄∗) (By Claim 4)

= 3
2 · OPTDMC(M) (Since M̄∗ is an optimal solution to DMC).

Now, since M̃ is a feasible completion of M for the DRMC problem,

OPTDRMC(M) ≤ Obj(M̃) ≤ 3
2 · OPTDMC(M),

which concludes the proof of the lemma. ◀

It now remains to prove Claim 4. Before proceeding with the proof, let us recall that
for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use Mi[J ] to denote the sequence
Mi[j1]Mi[j2] · · · Mi[jk].

Proof of Claim 4. Consider any i, j ∈ [n]. Let us now consider the indices with ∗-entries in
the i-th and the j-th row of the matrix M ∈ (Σ ∪ {∗})n×d. Formally,

I := {ℓ ∈ [d] | Mi[ℓ] = ∗} , J := {ℓ ∈ [d] | Mj [ℓ] = ∗} , and K := [d] \ (I ∪ J) .

By the construction of M̃ ,

M̃i[I] = M̄∗
1 [I], M̃j [J ] = M̄∗

1 [J ], M̃i[K] = M̄∗
i [K], M̃j [K] = M̄∗

j [K]. (1)

Let us now focus on the Hamming distances between the subsequences induced by the index
sets I, J , and K of the rows M̄∗

1 , M̄∗
i , and M̄∗

j . Let

α1 := H(M̄∗
1 [I], M̄∗

i [I]), β1 := H(M̄∗
1 [J ], M̄∗

i [J ]), γ1 := H(M̄∗
1 [K], M̄∗

i [K]),
α2 := H(M̄∗

1 [I], M̄∗
j [I]), β2 := H(M̄∗

1 [J ], M̄∗
j [J ]), γ2 := H(M̄∗

1 [K], M̄∗
j [K]),

α3 := H(M̄∗
i [I], M̄∗

j [I]), β3 := H(M̄∗
i [J ], M̄∗

j [J ]), γ3 := H(M̄∗
i [K], M̄∗

j [K]).

See Figure 1 for a pictorial representation of the distances. The Hamming distance between
the rows M̃i and M̃j is

H(M̃i, M̃j) ≤ H(M̃i[I], M̃j [I]) + H(M̃i[J ], M̃j [J ]) + H(M̃i[K], M̃j [K])
= H(M̄∗

1 [I], M̄∗
j [I]) + H(M̄∗

i [J ], M̄∗
1 [J ]) + H(M̄∗

i [K], M̄∗
j [K]) (By Equation 1)

= α2 + β1 + γ3.
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Figure 1 An example matrix M partitioned into coordinate sets I, J, K. For simplicity, in this
figure, we assume I and J are disjoint (however, our proof works in full generality).

Thus, to prove our claim, it suffices to argue that

α2 + β1 + γ3 ≤ 3
2 · Obj(M̄∗).

Observe that the Hamming distance between the rows M̄∗
1 and M̄∗

i is

H(M̄∗
1 , M̄∗

i ) ≤ α1 + β1 + γ1 ≤ Obj(M̄∗)
=⇒ α1 + β1 ≤ Obj(M̄∗) − γ1. (2)

Similarly, the Hamming distance between the rows M̄∗
1 and M̄∗

j is

H(M̄∗
1 , M̄∗

j ) ≤ α2 + β2 + γ2 ≤ Obj(M̄∗)
=⇒ α2 + β2 ≤ Obj(M̄∗) − γ2. (3)

Also, the Hamming distance between the rows M̄∗
i and M̄∗

j is

H(M̄∗
i , M̄∗

j ) ≤ α3 + β3 + γ3 ≤ Obj(M̄∗)
=⇒ α3 + β3 ≤ Obj(M̄∗) − γ3. (4)

Next, the Hamming distance between M̄∗
i [K] and M̄∗

j [K] is

γ3 = H(M̄∗
i [K], M̄∗

j [K])
≤ H(M̄∗

i [K], M̄∗
1 [K]) + H(M̄∗

1 [K], M̄∗
j [K]) (By the triangle inequality)

= γ1 + γ2. (5)

Also, the Hamming distances between M̄∗
1 [I] and M̄∗

j [I] is

α2 = H(M̄∗
1 [I], M̄∗

j [I])
≤ H(M̄∗

1 [I], M̄∗
i [I]) + H(M̄∗

i [I], M̄∗
j [I]) (By the triangle inequality)

= α1 + α3 ≤ Obj(M̄∗) − γ1 − β1 + α3 (By Equation 2)

which in turn implies that

α2 + β1 ≤ Obj(M̄∗) − γ1 + α3. (6)

Similarly, from the Hamming distance between M̄∗
i [J ] and M̄∗

j [J ], we get the following

β1 ≤ β2 + β3 ≤ Obj(M̄∗) − γ2 − α2 + β3 (By Equation 3)

ISAAC 2023



17:8 Matrix Completion: Approximating the Minimum Diameter

which in turn implies that

α2 + β1 ≤ Obj(M̄∗) − γ2 + β3. (7)

Adding Equation 6 and Equation 7, we get

2(α2 + β1) ≤ 2 · Obj(M̄∗) − (γ1 + γ2) + (α3 + β3)
≤ 2 · Obj(M̄∗) − γ3 + (Obj(M̄∗) − γ3) (By Equation 5 and Equation 4)
≤ 3 · Obj(M̄∗) − 2γ3

which implies that α2 + β1 + γ3 ≤ 3
2 · Obj(M̄∗). This completes the proof. ◁

2-approximation for DRMC. In this subsection, we design a 2-approximation algorithm
for the DRMC problem, which, when combined with Lemma 3 provides a 3-approximation
guarantee for the DMC problem.

▶ Theorem 5. There is a polynomial-time algorithm that, given an incomplete matrix M ∈
(Σ ∪ {∗})n×d, computes a 2-approximate solution for the Minimum Diameter Restricted
Matrix Completion (DRMC) problem over an arbitrary alphabet Σ.

We first formulate the problem using an integer linear program (ILP), and then relax the
integer constraints to get a linear program (LP), and finally apply a simple (deterministic)
rounding scheme on an optimal solution to that LP. We defer the details to Appendix A.

Completing the proof of Theorem 1. Next, we combine Theorem 5 and Lemma 3 to get a
3-approximation algorithm for the DMC problem.

Proof of Theorem 1. Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d, we run the algorithm
mentioned in Theorem 5 to get a complete matrix M̄ ∈ Σn×d. Since any feasible solution to
the DRMC problem is also a feasible solution to the DMC problem, M̄ is a feasible solution
to the DMC problem for the input (incomplete) matrix M . Further,

Obj(M̄) ≤ 2 · OPTDRMC(M) (By Theorem 5)

≤ 2 · 3
2 · OPTDMC(M) (By Lemma 3)

= 3 · OPTDMC(M).

Thus M̄ is a 3-approximate solution to the DMC problem, which completes the proof. ◀

4 Inapproximability of the DMC problem

In the previous section, we have seen a 3-approximation algorithm for the DMC problem.
On the hardness side, so far, we only know that the DMC problem is NP-hard. No
inapproximability result is known. In this section, we refute the possibility of getting better
than a 2-factor approximation algorithm unless P = NP, even when the alphabet Σ is binary,
i.e., Σ = {0, 1}. In particular, we prove Theorem 2.

▶ Theorem 2. Consider any ε > 0. There is no deterministic polynomial-time algorithm
that, given an incomplete matrix M ∈ {0, 1, ∗}n×d, computes a (2 − ε)-approximate solution
for the Minimum Diameter Matrix Completion (DMC) problem, unless P = NP.
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To show the (2 − ε)-inapproximability result, we consider the following gap-version of the
DMC problem.

▶ Definition 6. Consider an alphabet Σ and an ε > 0. Given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d and a positive integer g, decide between the following two cases:

YES: OPT(M) ≤ g,
NO: OPT(M) > (2 − ε)g.

Label cover problem and dictatorship gadget. To show the inapproximability result, we
provide a reduction from the well-known label cover problem to the gap-version of the DMC
problem. Let us start by defining the label cover problem.

▶ Definition 7 (Label Cover Instance). A label cover instance Ψ = (U, V, E, Π) consists of
A bipartite graph G = (U, V, E) that is left and right regular. Let DU and DV be the
degrees of each vertex in U and V respectively,
Label sets LU and LV for U and V respectively,
For each edge e ∈ E, a function πe : LV → LU . Let Π = {πe : LV → LU | e ∈ E}.

A labelling σ is a mapping that assigns each u ∈ U a label σ(u) ∈ LU , and each v ∈ V a
label σ(v) ∈ LV . A labelling σ is said to satisfy an edge e = (u, v) ∈ E iff πe(σ(v)) = σ(u).
The value of a labelling σ, denoted by Val(Ψ, σ), is defined as the fraction of edges of E

satisfied by σ.

It is known that a gap version of the label cover problem is NP-hard.

▶ Theorem 8 ([2, 36]). For every δ ∈ (0, 1), there exists (1/δ)O(1)-sized label sets LU , LV

such that, given a label cover instance Ψ = (U, V, E, Π) with label sets LU and LV and the
left degree and the right degree of the instance (bipartite) graph being at most (1/δ)O(1), it is
NP-hard to decide between the following two cases:

There exists a labelling σ of Ψ such that Val(Ψ, σ) = 1,
For every labelling σ of Ψ, Val(Ψ, σ) ≤ δ.

One of the standard tools to provide a reduction from the label cover problem is the
dictatorship gadget. Here, we use a construction of a dictatorship gadget presented in [3].
Before presenting a brief description of the dictatorship construction, let us first introduce
a few notions. Let ¬ be a negation operator that works both on bits and strings, where
the negation of a string is obtained by negating each of its bits individually. A function
f : {0, 1}m → {0, 1} is said to be odd or folded if for every x, f(¬x) = ¬f(x). The oddness
of f allows us to store only the value of f(x) for every pair (x, ¬x). If f(¬x) is needed, we
use ¬f(x) instead.

Let us now describe the dictatorship gadget given in [3]. Consider a positive integer
k. A k-dictatorship gadget is a CNF formula defined over 2m (for some positive integer
m) variables, where an assignment can be viewed as a function f : {0, 1}m → {0, 1} and
assumed to be folded. The set of constraints C on f is the set of all the clauses of the form
(f(x1) ∨ f(x2) ∨ · · · ∨ f(x2k+1)), where x1, . . . , x2k+1 are such that for each ℓ ∈ [m],

2k+1∑
i=1

xi,ℓ ≥ k (8)

where xi,ℓ denotes the ℓ-th bit of the string xi.
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Before proceeding further, let us define a few basic notions. A function f : {0, 1}m → {0, 1}
is said to be a dictatorship function if there exists an ℓ ∈ [m] such that for every input
xi ∈ {0, 1}m, f(xi) = xi,ℓ. For a function f : {0, 1}m → {0, 1}, we call a coordinate ℓ ∈ [m]
relevant if there exists an input xi ∈ {0, 1}m such that f(xi) ̸= f(x⊕ℓ

i ), where x⊕ℓ
i denotes

the input obtained by just flipping the ℓ-th bit of xi. A function f is said to depend on
r variables if there are r relevant coordinates. The following result about the dictatorship
gadget plays a crucial role in our reduction.

▶ Lemma 9 ([3]).
1. If f is a dictatorship function, then it satisfies at least k literals of every clause in the

constraint set C.
2. Any assignment f that is odd and satisfies all the clauses in the constraint set C depends

on at most 2k − 1 variables.

It is worth remarking that Item 1 of the above lemma follows immediately from the
construction of the dictatorship gadget, especially from Equation 8, whereas Item 2 of the
above lemma (which is a weaker converse of Item 1) was shown in [3].

Reduction from the label cover problem. Consider a δ ∈ (0, 1). Let us consider a label
cover instance Ψ = (U, V, E, Π), where Π = {πe : LV → LU | e ∈ E}. Let us assume that the
sizes of both the label set LV and LU are upper bounded by some L = (1/δ)Θ(1). Also, the
left degree and the right degree of the instance graph (U, V, E) are upper bounded by some
D = (1/δ)Θ(1). We associate a function fu : {0, 1}|LU | → {0, 1} (intended to be a dictator
of a label of u) to each vertex u ∈ U . Similarly, we associate fv : {0, 1}|LV | → {0, 1} to
each v ∈ V . Let us partition the set {0, 1}|LU | into two disjoint equal-sized sets TU and FU

(arbitrarily) such that for each x ∈ TU , ¬x ∈ FU . Similarly, partition the set {0, 1}|LV | into
two disjoint equal-sized sets TV and FV . (The purpose of this partitioning is that we store
the value of the functions only on TU (and TV ) when the functions are folded.)

Let us consider a positive integer k = (min {L, D, 1/δ})1/3 (which is at most (1/δ)Θ(1),
and this choice of the value of k is used in the proof of Claim 13). We now construct an
incomplete matrix MΨ (for brevity, we drop Ψ and simply refer to it as M). For each
u ∈ U , consider the k-dictatorship gadget on fu, and similarly, for each v ∈ V , consider the
k-dictatorship gadget on fv. For each u ∈ U (resp., v ∈ V ), there is a column corresponding
to each x ∈ TU (resp., x ∈ TV ). (So each column is essentially indexed by either fu(xi) for
u ∈ U , xi ∈ TU , or fv(xi) for v ∈ V , xi ∈ TV .) Thus, the number of columns is

d = |U | · 2(|Lu|−1) + |V | · 2(|Lv|−1).

We create rows as follows:
Left Vertex Rows: For each u ∈ U , consider the k-dictatorship gadget on fu, and
let Cu be the corresponding constraint set. Then add a row for each clause C ∈ Cu as
follows: For each x ∈ TU , if the literal represented by fu(x) is present in C, then set the
corresponding entry in the row to be 1; if the literal represented by fu(¬x) is present in
C, then set the corresponding entry in the row to be 0; otherwise (none of fu(x) and
fu(¬x) is present in C), set the corresponding entry in the row to be ∗.
Right Vertex Rows: For each v ∈ V , consider the k-dictatorship gadget on fv, and let
Cv be the corresponding constraint set. Then add a row for each clause C ∈ Cv in a way
similar to the above.
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Edge Rows: For each edge e = (u, v) ∈ E, add rows as follows: For each possible k

inputs x1, . . . , xk ∈ {0, 1}|LU | on the U side, and k + 1 inputs y1, . . . , yk+1 ∈ {0, 1}|LV |

on the V side, we add a row if the following holds:

For each label ℓ ∈ LV ,

k∑
j=1

xj,πe(ℓ) +
k+1∑
j=1

yj,ℓ ≥ k. (9)

In this added row, we set the entries as: If xi ∈ TU , then set the entry corresponding
to the column fu(xi) to be 1; otherwise (xi = ¬x′

i for some x′
i ∈ TU ), set the entry

corresponding to the column fu(x′
i) to be 0. Similarly, if yi ∈ TV , then set the entry

corresponding to the column fv(yi) to be 1; otherwise (yi = ¬y′
i for some y′

i ∈ TV ), set
the entry corresponding to the column fv(y′

i) to be 0. All the remaining entries of the
row are set to ∗.

It is straightforward to observe that the number of rows n of the constructed matrix M

is at most polynomial in the size of the label cover instance (due to our choice of k). Before
arguing about the completeness and soundness of the above reduction, let us make a simple
observation that immediately follows from the construction of M .

▶ Observation 10. For any label cover instance Ψ, let M be the incomplete matrix constructed
as mentioned above. Then each row of M contains exactly 2k + 1 non-∗ entries.

Proof. For any left vertex row or right vertex row, by the construction of the k-dictatorship
gadget, it contains exactly 2k + 1 non-∗ entries. For any edge row, by the construction of
that row, it contains exactly 2k + 1 non-∗ entries. ◀

Let us now state the completeness of the reduction, the proof of which is relatively direct
from the construction and Lemma 9.

▶ Lemma 11 (Completeness). If there exists a labelling σ of Ψ such that Val(Ψ, σ) = 1, then
OPT(M) ≤ 2k + 2.

Proof. Let σ be a labeling such that Val(Ψ, σ) = 1, i.e., for all the edges e = (u, v) ∈ E,
πe(σ(v)) = σ(u). For each u ∈ U , let fu be the dictatorship function of the label σ(u), i.e.,
for every x ∈ {0, 1}|LU |, fu(x) is equal to the σ(u)-th bit of x. Similarly, for each v ∈ V , let
fv be the dictatorship function of the label σ(v). Then create a string s ∈ {0, 1}d as follows:
For each u ∈ U and x ∈ TU (resp., each v ∈ V and x ∈ TV ), set the corresponding entry of s

to be equal to fu(x) (resp., fv(x)).
Let us now create a feasible completion M̄ by setting each ∗-entry of any column r of

M to be s[r] (i.e., the r-th entry of the string s). Next, observe, for each left vertex row or
right vertex row Mi, it immediately follows from Item 1 of Lemma 9 that H(M̄i, s) ≤ k + 1
(since by Observation 10, there are only 2k + 1 non-∗ entries in Mi). Also, for each edge row
Mi, by the construction (Equation 9), it follows from Observation 10 that H(M̄i, s) ≤ k + 1.
Hence, for any two i ̸= j, by the triangle inequality,

H(M̄i, M̄j) ≤ H(M̄i, s) + H(s, M̄j) ≤ 2k + 2. ◀

Next, we consider the more intriguing case of soundness.

▶ Lemma 12 (Soundness). For any δ ∈ (0, 1), there exists an ε ∈ (0, 1), such that if for
every labelling σ of Ψ, Val(Ψ, σ) ≤ δ, then OPT(M) > (2 − ε) · 2k.

We devote the rest of this section to proving the soundness.
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Proof of soundness. Let us fix a δ ∈ (0, 1), and set ε = (min {δ, 1/k})2 (which is δΘ(1) and
this choice of the value of ε is used in the proof of Claim 13). For each row Mi, let us denote
the set of coordinates with non-∗ entries by Ni, i.e.,

Ni := {r ∈ [d] | Mi[r] ̸= ∗} .

We now show the soundness in two steps. First, we argue that if for every labelling σ of
Ψ, Val(Ψ, σ) ≤ δ, then for every plausible completion (represented by a string s ∈ {0, 1}d)
of any particular row, there exists a “large” subset of rows with every pair of rows having
mutually disjoint sets of non-∗ coordinates. Formally,

▷ Claim 13. If for every labelling σ of Ψ, Val(Ψ, σ) ≤ δ, then for every row Mp of
M ∈ (Σ ∪ {∗})n×d (where Σ = {0, 1}), and for every (feasible) completion s ∈ {0, 1}d of that
row, there exists a subset Cs ⊆ [n] of rows of M such that

|Cs| ≥ 2/ε + 1,
For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
For every i ∈ Cs, Np ∩ Ni = ∅, and
For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.

Proof. We prove the claim in two parts.
A “large” subset of non-∗ disjoint rows exists. For a δ ∈ (0, 1), fix a suitably small
constant λ ∈ (0, 1) that depends on δ. First, we show that if for every labeling σ of Ψ,
Val(Ψ, σ) ≤ δ, then for every row Mp of M , and for every (feasible) completion s ∈ {0, 1}d

of that row, there exists a subset Ks ⊆ [n] of rows of M such that
|Ks| ≥ (1 − λ)n, and
For every i ∈ Ks and every index r ∈ Ni, Mi[r] ̸= s[r].

The proof of this part resembles the argument used in [3]. We prove the contrapositive
of the above statement. For that purpose, let us consider a row Mp, a feasible completion
s ∈ {0, 1}d of that row, and a subset Ks ⊆ [n] of size at least (1 − λ)n such that

For every i ∈ Ks, there exists r ∈ Ni, Mi[r] = s[r]. (10)

Let U ′ denote the set of all u ∈ U such that for all the left vertex rows i ∈ [n] corresponding
to u, there exists r ∈ Ni, such that Mi[r] = s[r]. Similarly, define V ′ ⊆ V . Also, let E′

denote the set of all e ∈ E such that for all the edge rows i ∈ [n] corresponding to e, there
exists r ∈ Ni, such that Mi[r] = s[r]. Recall that the label sets LU and LV are of size at
most L = (1/δ)O(1) ≤ poly(k) (for our choice of k), and thus the number of left vertex rows
(resp., right vertex rows) for each u ∈ U (resp., v ∈ V ) is at most some constant that depends
only on k. Also, the left degree and the right degree of the instance graph (U, V, E) are
upper bounded by some D = (1/δ)O(1) ≤ poly(k) (for our choice of k), and thus the number
of edge rows is also at most r(k) · |U |, where r(k) is some constant that depends only on k.
Thus for small enough λ, there exists a constant λ′ > 0 such that

|U ′| ≥ (1 − λ′)|U |, |V ′| ≥ (1 − λ′)|V |, and |E′| ≥ (1 − λ′)|E|.

Observe, by the construction, for each u ∈ U ′ (resp., v ∈ V ′), the substring of s corresponding
to be positions of fu (resp., fv) (viewed as an assignment) satisfies the k-dictatorship gadget
for u (resp., v). For simplicity, we refer to these substrings of s as the assignment fu (resp.,
fv). Thus by Item 2 of Lemma 9, fu (resp., fv) depends on at most 2k − 1 variables. For
each u ∈ U ′ (resp., v ∈ V ′), let Su ⊆ LU (resp., Sv ⊆ LV ) be the set of variables fu (resp.,
fv) depend on.
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Next, we focus on a subset of E′, which contains edges with both endpoints in U ′ and V ′.
Formally,

E′′ := {e = (u, v) ∈ E′ | u ∈ U ′, v ∈ V ′} .

It is not hard to observe that |E′′| ≥ (1 − 3λ′)|E|. Furthermore, we claim that for each
e ∈ E′′, Su ∩ πe(Sv) ̸= ∅. To see this, for the sake of contradiction, assume Su ∩ πe(Sv) = ∅.
Consider k inputs x1, . . . , xk ∈ {0, 1}|LU | on the U side such that fu(xj) = 0 and r-th bit
of xj is 1 for all r ∈ LU \ Su, and k + 1 inputs y1, . . . , yk+1 ∈ {0, 1}|LV | on the V side such
that fv(yj) = 0 and r-th bit of yj is 1 for all r ∈ LV \ Sv. It is easy to verify that this set of
inputs satisfies Equation 9. Thus, by the construction, all the bits of the corresponding row
in M are different from that of the string s, which is a contradiction.

Now, if we assign labels to each u ∈ U ′ and v ∈ V ′ by picking labels uniformly at
random from Su and Sv respectively, then each edge e = (u, v) ∈ E′′ is satisfied with
probability 1

|Su|·|Sv| ≥ 1
(2k−1)2 . This implies that there exists a labeling σ of Ψ such that

Val(Ψ, σ) ≥ (1 − 3λ′)/(2k − 1)2 ≥ δ (for our choice of k and λ).

A “large” subset of non-∗ pairwise-disjoint rows exists. Next, let us consider any row Mp

of M and any (feasible) completion s ∈ {0, 1}d of that row. We have already argued that
there exists a subset Ks ⊆ [n] of rows of M such that

|Ks| ≥ (1 − λ)n, and
For every i ∈ Ks and every index r ∈ Ni, Mi[r] ̸= s[r].

We now claim that there exists a subset Cs ⊆ Ks such that
1. |Cs| ≥ 2/ε + 1,
2. For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
3. For every i ∈ Cs, Np ∩ Ni = ∅, and
4. For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.
We construct a subset Cs ⊆ Ks as follows: Consider the row Mp. If the row Mp is a left/right
vertex row for a vertex u, then discard all other left/right vertex rows added for that vertex
u, and also all the edge rows corresponding to any of the incident edges of u. If the row Mp

is an edge row for an edge e = (u, v), then discard all the other edge rows corresponding
to that edge and all the edge rows corresponding to incident edges of u and v, and also
all the left/right vertex rows corresponding to u and v. Then, pick a row arbitrarily from
the remaining rows from Ks. Again, discard the rows as before and proceed unless we pick
2/ε + 1 rows.

Note, |Ks| ≥ (1 − λ)n. Further, recall the number of left vertex rows (resp., right vertex
rows) for each u ∈ U (resp., v ∈ V ) is at most some constant that depends only on k, and
also the number of edge rows for each edge is at most some constant that depends only on k.
Thus, in the above construction of Cs, at each step, we discard at most some constant (that
depends only on k) many rows. Hence, the above construction process does not terminate
before picking 2/ε + 1 rows.

Item 1, 3 and 4 are immediate from the construction. Since Cs ⊆ Ks, Item 2 also follows.
This concludes the proof of the claim. ◁

Next, we argue that if for every string s ∈ {0, 1}d, such a subset Cs exists, then for every
feasible completion M̄ of M , Obj(M̄) ≥ (2 − ε) · 2k.

▷ Claim 14. Let n and d denote the number of rows and columns of M , respectively. If for
every row Mp, and any (feasible) completion s ∈ {0, 1}d of that row, there exists a subset
Cs ⊆ [n] of rows of M such that
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|Cs| ≥ 2/ε + 1,
For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
For every i ∈ Cs, Np ∩ Ni = ∅, and
For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.

then OPT(M) ≥ (2 − ε) · 2k.

Proof. Let us consider a feasible completion M̄ of M , and then consider any arbitrary row,
say the first row, of it. Let s = M̄1. Then, by the premise of the claim, there exists a subset
Cs ⊆ [n] such that
1. |Cs| = c ≥ 2/ε + 1 (the value to be fixed),
2. For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
3. For every i ∈ Cs, N1 ∩ Ni = ∅, and
4. For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.
Recall, for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use M̄i[J ] to denote the
sequence M̄i[j1]M̄i[j2] · · · M̄i[jk]. For any i ≠ j ∈ Cs, let αij = H(M̄i[Ni], M̄j [Ni]) and
αji = H(M̄i[Nj ], M̄j [Nj ]). Thus for any i ̸= j ∈ Cs, we have that

H(M̄i, M̄j) ≥ H(M̄i[Ni], M̄j [Ni]) + H(M̄i[Nj ], M̄j [Nj ]) = αij + αji. (11)

Further, consider any i ̸= j ∈ Cs. Since M̄ is a feasible completion of M , by Item 2,
for every index r ∈ Nj , M̄j [r] ̸= M̄1[r]. Now, since M̄ ∈ {0, 1}n×d, for any index r ∈ Nj ,
M̄i[r] = M̄1[r] if and only if M̄i[r] ̸= M̄j [r]. Thus

H(M̄1[Nj ], M̄i[Nj ]) = |Nj | − αij . (12)

Hence, for any i ∈ Cs, we get that

H(M̄i, M̄1) ≥
∑

j∈Cs

H(M̄i[Nj ], M̄1[Nj ])

= |Ni| +
∑

j∈Cs:j ̸=i

(|Nj | − αij) (By Item 2 and Equation 12)

= (2k + 1)c −
∑

j∈Cs:j ̸=i

αij (By Observation 10). (13)

Now, if for some i ∈ Cs, H(M̄i, M̄1) ≥ 4k, then clearly Obj(M̄) ≥ 4k and we are done
with the proof. So let us assume that for all i ∈ Cs, H(M̄i, M̄1) ≤ 4k. Then by Equation 13,
for every i ∈ Cs,∑

j∈Cs:j ̸=i

αij ≥ (2k + 1)c − 4k = 2k(c − 2) + c. (14)

Then it follows from Equation 11,∑
i∈Cs

∑
j∈Cs:j ̸=i

H(M̄i, M̄j) ≥
∑
i∈Cs

∑
j∈Cs:j ̸=i

(αij + αji)

= 2
∑
i∈Cs

∑
j∈Cs:j ̸=i

αij

≥ 2c (2k(c − 2) + c) (By Equation 14).

Then, by a simple averaging, there must exist i ̸= j ∈ Cs such that

H(M̄i, M̄j) ≥ 2c (2k(c − 2) + c)
c(c − 1) > (2 − ε) · 2k

where the last inequality follows since c ≥ 2/ε + 1. So we have argued that for any feasible
completion M̄ of M , Obj(M̄) > (2 − ε) · 2k, and hence OPT(M) > (2 − ε) · 2k. ◁
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Finally, by combining Claim 13 and Claim 14, we get our desired soundness Lemma 12.

▶ Remark 15. We want to remark that our reduction also establishes (2−ε)-inapproximability
for the restricted variant of the DMC problem, namely the Minimum Diameter Restricted
Matrix Completion (DRMC) problem, for which we provide a 2-approximation algorithm
in Theorem 5. To understand why this is the case, first, observe that we indeed get a
solution to the DRMC problem in our completeness proof. For soundness, using a similar
(though much simpler) argument that is used in the proof of Lemma 12, we can show that
if Val(Ψ, σ) ≤ δ, then for every string s ∈ {0, 1}d, we get at least two rows whose non-∗
entries do not match with the corresponding entries of s and the set of non-∗ coordinates are
disjoint. Consequently, by an argument similar to that in Claim 14, their distance must be
at least (2 − ε) · 2k.

5 Conclusion

In this paper, we focus on the task of completing an incomplete matrix while minimizing
the diameter, which represents the maximum pairwise distance between any two rows.
Currently, the only known approach is a 4-factor approximation algorithm derived from a
straightforward utilization of the triangle inequality combined with a simple 2-approximation
algorithm for the radius minimization variant. Although the problem is known to be NP-hard,
no inapproximability result has been established until now. Our main contribution is the
development of a novel 3-approximation algorithm. Notably, this result surpasses the existing
4-factor approximation, marking the first improvement in approximating this problem.

Additionally, we demonstrate that the problem is (2 − ε)-inapproximable for any ε > 0,
even when considering a binary alphabet. This represents the first inapproximability result for
this problem. One of the intriguing open problems is to bridge the gap between the 3-factor
approximation and the (2 − ε)-inapproximability. Furthermore, it would be interesting to
extend our approximation approach to a more general variant of k-clustering, with a focus
on minimizing the diameter of each cluster.
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A Approximation Algorithm for the DRMC Problem

Let us start by restating the theorem.

▶ Theorem 5. There is a polynomial-time algorithm that, given an incomplete matrix M ∈
(Σ ∪ {∗})n×d, computes a 2-approximate solution for the Minimum Diameter Restricted
Matrix Completion (DRMC) problem over an arbitrary alphabet Σ.

We now prove the above theorem. We first formulate the problem using an integer linear
program (ILP), and then relax the integer constraints to get a linear program (LP), and
finally apply a simple (deterministic) rounding scheme on an optimal solution to that LP. It is
worth mentioning that the argument used here is very similar to the folklore 2-approximation
algorithm for the RadMC problem.

LP relaxation and rounding. Let us first give an ILP formulation. For each column ℓ ∈ [d]
and symbol σ ∈ Σ, we consider a {0, 1}-variable xℓ,σ. The variable xℓ,σ denotes whether all
the ∗ entries of M in the ℓ-th column are set to the symbol σ. More specifically, if xℓ,σ = 1,
then all the ∗ entries of M in the ℓ-th column are set to σ.

Let us define δij to be the Hamming distance between the non-∗-entries of the i-th and
j-th row of M . More formally, let

Kij := {ℓ ∈ [d] | Mi[ℓ] ̸= ∗ and Mj [ℓ] ̸= ∗} .
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Then δij := H(Mi[Kij ], Mj [Kij ]). For each row i ∈ [n], let Ii denote the set of indices with
non-∗ entries in M . Formally,

Ii := {ℓ ∈ [d] | Mi[ℓ] ̸= ∗} .

We use these notations to describe our ILP formulation.

Minimize z

s.t.
∑

ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

xℓ,σ

 +
∑

ℓ∈Ij \Kij

 ∑
σ ̸=Mj [ℓ]

xℓ,σ

 + δij ≤ z ∀i, j ∈ [n] (15)

∑
σ∈Σ

xℓ,σ = 1 ∀ℓ ∈ [d] (16)

xℓ,σ ∈ {0, 1} ∀ℓ ∈ [d], ∀σ ∈ Σ
(17)

In the above ILP, the constraints 16 ensure that for each column, for all the ∗ entries, exactly
one symbol is selected. It is easy to observe that the constraints 15 ask the Hamming distance
between i-th and j-th row (for every pair of i, j ∈ [n]) of the output complete matrix to be
at most z, which we minimize in the ILP. Hence, the above ILP provides an optimal solution
to the DRMC problem on input M .

In order to convert it to LP, we relax the constraints 17 to

xℓ,σ ∈ [0, 1], ∀ℓ ∈ [d], ∀σ ∈ Σ.

Let us consider an optimal solution
(

x∗
ℓ,σ

)
ℓ∈[d],σ∈Σ

to the above LP. Next, we use the

following simple (deterministic) rounding: For each ℓ ∈ [d], if there exists a symbol σ ∈ Σ
such that x∗

ℓ,σ ≥ 1/2 (break ties arbitrarily), then set x̄ℓ,σ = 1, and set x̄ℓ,σ′ = 0 for all
σ′ ̸= σ. For an ℓ ∈ [d], if for all σ ∈ Σ, x∗

ℓ,σ < 1/2, then pick a symbol σ ∈ Σ arbitrarily and
set x̄ℓ,σ = 1, and set x̄ℓ,σ′ = 0 for all σ′ ̸= σ.

It is straightforward to see that by the above rounding, the following holds:

For each ℓ ∈ [d],
∑
σ∈Σ

x̄ℓ,σ = 1.

Thus, it provides us with a feasible completion of M for the DRMC problem.

Approximation guarantee. Now we argue that the solution (x̄ℓ,σ)ℓ∈[d],σ∈Σ obtained by the
rounding provides a 2-approximate solution to the DRMC problem for the incomplete input
matrix M .

Let z∗ be the value of z of any optimal solution to our LP formulation. Let z̄ be the
minimum integer such that

∑
ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

x̄ℓ,σ

 +
∑

ℓ∈Ij\Kij

 ∑
σ ̸=Mj [ℓ]

x̄ℓ,σ

 + δij ≤ z̄ ∀i, j ∈ [n].

We want to claim that z̄ ≤ 2z∗, and as a consequence, we get that the solution x̄ℓ,σ (for all
ℓ ∈ [d], σ ∈ Σ) obtained by the rounding, provides a 2-approximate solution to the DRMC
problem.
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To show that z̄ ≤ 2z∗, we analyze each term separately in the constraints 15. By our
rounding procedure, for any j ∈ [n], ℓ ∈ [d],

∑
σ ̸=Mj [ℓ] x̄ℓ,σ = 1 if and only if x∗

ℓ,Mj [ℓ] ≤ 1/2
that means

∑
σ ̸=Mj [ℓ] x∗

ℓ,σ ≥ 1/2. Hence,
∑

σ ̸=Mj [ℓ] x̄ℓ,σ ≤ 2 ·
∑

σ ̸=Mj [ℓ] x∗
ℓ,σ. Hence,

∑
ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

x̄ℓ,σ

 +
∑

ℓ∈Ij\Kij

 ∑
σ ̸=Mj [ℓ]

x̄ℓ,σ

 + δij ≤ 2z ∀i, j ∈ [n]

which implies z̄ ≤ 2z∗. This concludes the proof of Theorem 5.

ISAAC 2023


	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm for DMC
	4 Inapproximability of the DMC problem
	5 Conclusion
	A Approximation Algorithm for the DRMC Problem

