
FPT Approximation Using Treewidth: Capacitated
Vertex Cover, Target Set Selection and Vector
Dominating Set
Huairui Chu #

Nanjing University, China

Bingkai Lin #

Nanjing University, China

Abstract
Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems
can be solved in linear time when the input graphs have small treewidth, there are problems which
remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection
problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely
the capacitated vertex cover problem, the target set selection problem and the vector dominating
set problem. We provide two new methods to obtain FPT approximation algorithms for these
problems. For the capacitated vertex cover problem and the vector dominating set problem, we
obtain (1 + o(1))-approximation FPT algorithms. For the target set selection problem, we give an
FPT algorithm providing a tradeoff between its running time and the approximation ratio.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases FPT approximation algorithm, Treewidth, Capacitated vertex cover, Target
set selection, Vector dominating set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.19

1 Introduction

We consider problems whose goals are to select a minimum sized vertex set in the input graph
that can “cover” all the target objects. In the capacitated vertex cover problem (CVC), we
are given a graph G with a capacity function c : V (G) → N, the goal is to find a set S ⊆ V (G)
of minimum size such that every edge of G is covered1 by some vertex in S and each vertex
v ∈ S covers at most c(v) edges. This problem has application in planning experiments on
redesign of known drugs involving glycoproteins [24]. In the target set selection problem
(TSS), we are given a graph G with a threshold function t : V (G) → N. The goal is to
select a minimum sized set S ⊆ V (G) of vertices that can activate all the vertices of G.
The activation process is defined as follows. Initially, all vertices in the selected set S are
activated. In each round, a vertex v gets active if there are t(v) activated vertices in its
neighbors. The study of TSS has application in maximizing influence in social network [26].
Vector dominating set (VDS) can be regarded as a “one-round-spread” version of TSS, where
the input consists of a graph G and a threshold function t : V (G) → N, and the goal is to
find a set S ⊆ V (G) such that for all vertices v ∈ V , there are at least t(v) neighbors of
v in S.

Since CVC generalizes the vertex cover problem, while TSS and VDS are no easier than
the dominating set problem2, they are both NP-hard and thus have no polynomial time
algorithm unless P = NP . Polynomial time approximation algorithms for capacitated vertex

1 An edge e can be covered by a vertex v if v is an endpoint of e.
2 For VDS, when t(v) = 1 for every vertex v in the graph, VDS is the dominating set problem. For TSS,

a reduction from dominating set to TSS can be found in the work of Charikar et al. [8].
© Huairui Chu and Bingkai Lin;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huairuichu@163.com
mailto:lin@nju.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 FPT Approximation Using Treewidth: CVC, TSS and VDS

cover problem have been studied extensively [24, 12, 22, 34, 11, 36, 35]. The problem has a
2-approximation polynomial time algorithm [22]. Assuming the Unique Game Conjecture,
there is no polynomial time algorithm for the vertex cover problem with approximation ratio
better than 2 [27]. As for the TSS problem, it is known that the minimization version of TSS
cannot be approximated to 2log1−ϵ n assuming P ̸= NP , or n0.5−ϵ assuming the conjecture
on planted dense subgraph [10, 9]. Cicalese et al. proved that VDS cannot be approximated
within a factor of c ln n for some c unless P = NP [13].

Another way of dealing with hard computational problems is to use parameterized
algorithms. For any input instance x with parameter k, an algorithm with running time
upper bounded by f(k) · |x|O(1) for some computable function f is called FPT. A natural
parameter for a computational problem is the solution size. The first FPT algorithm with
running time 1.2k2 + n2 for capacitated vertex cover problem parameterized by solution size
was provided in [25]. In [17], the authors gave an improved FPT algorithm that runs in
k3k · |G|O(1). However, using the solution size as parameter might be too strict for CVC.
Note that CVC instances with sublinear capacity functions cannot have small sized solutions.
On the other hand, TSS parameterized by its solution size is W[P]-hard 3 according to [1].
VDS is W[2]-hard since it generalizes the dominating set problem.

In this paper, we consider these problems parameterized by the treewidth [33] of the
input graph. In fact, since the treewidth of a graph having k-sized vertex cover is also
upper-bounded by k [17], CVC parameterized by treewidth can be regarded as a natural
generalization of CVC parameterized by solution size. And it is already proved in [17] that
CVC parameterized only by the treewidth of its input graph has no FPT algorithm assuming
W [1] ̸= FPT . As for the TSS problem, it can be solved in nO(w) time for graphs with n

vertices and treewidth bounded by w and has no no(
√

w)-time algorithm unless ETH fails [3].
VDS is also W [1]-hard when parameterized by treewidth [4], however, it admits an FPT
algorithm with respect to the combined parameter (w + k)[32].

Recently, the approach of combining parameterized algorithms and approximation al-
gorithms has received increased attention [19]. It is natural to ask whether there exist FPT
algorithms for these problems with approximation ratios better than that of the polynomial
time algorithms. Lampis [29] proposed a general framework for approximation algorithms
on tree decomposition. Using his framework, one can obtain algorithms for CVC and VDS
which outputs a solution of size at most opt(I) on input instance I but may slightly violate
the capacity or the threshold requirement within a factor of (1 ± ϵ). However, the framework
of Lampis can not be directly used to find an approximation solution for these problems
satisfying all the capacity or threshold requirement. The situation becomes worse in the TSS
problem, as the error might propagate during the activation process. We overcome these
difficulties and give positive answer to the aforementioned question. For the CVC and VDS
problems, we obtain (1 + o(1))-approximation FPT algorithms respectively.

▶ Theorem 1. There exists an algorithm 4, which takes a CVC instance I = (G, c) and
a tree decomposition (T, X) with width w for G as input and outputs an integer k̂min ∈
[opt(I), (1 + O(1/(w2 log n)))opt(I)] in (w log n)O(w)nO(1) time.

▶ Theorem 2. There exists an algorithm running in time 2O(w5 log w log log n)nO(1) which takes
as input an instance I = (G, t) of VDS and a tree decomposition of G with width w, finds a
solution of size at most (1 + 1/(w log log n)Ω(1)) · opt(I).

3 The well known W-hierarchy is F P T ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ W [P], where F P T denotes the set
of problems which admits FPT algorithms. The basic conjecture on parameterized complexity is
F P T ̸= W [1]. We refer the readers to [18, 20, 15] for more details.

4 The algorithm can be modified to output a solution with size as promised. See the remark in Appendix B.

H. Chu and B. Lin 19:3

Notice that the running time stated in above theorems are FPT running time, because
(log n)f(w) ≤ f(w)O(f(w)) + nO(1).

For the TSS problem, we give an approximation algorithm with a tradeoff between the
approximation ratio and its running time.

▶ Theorem 3. For all C ∈ N, there is an algorithm which takes as input an instance
I = (G, t) of TSS and a tree decomposition of G with width w, finds a solution of size
(1 + (w + 1)/(C + 1)) · opt(I) in time nC+O(1).

Open problems and future work. Note that our FPT approximation algorithm for TSS
has ratio equal to the treewidth of the input graph. An immediate question is whether
this problem has parameterized (1 + o(1))-approximation algorithm. We remark that the
reduction from k-Clique to TSS in [3] does not preserve the gap. Thus it does not rule out
constant FPT approximation algorithm for TSS on bounded treewidth graphs even under
hypotheses such as parameterized inapproximablity hypothesis (PIH) [30] or GAP-ETH [16, 31].

In the regime of exact algorithms, we have the famous Courcelle’s Theorem which states
that all problems defined in monadic second order logic have linear time algorithm on graphs
of bounded treewidth [2, 14]. It is interesting to ask if one can obtain a similar algorithmic
meta-theorem [23] for approximation algorithms.

1.1 Overview of our techiniques
Capacitated Vertex Cover. Our starting point is the exact algorithm for CVC on graphs
with treewidth w in nΘ(w) time. The exact algorithm has running time nΘ(w) because it has
to maintain a set of (w + 1)-dimension vectors d : Xα → [n] for every node α in the tree
decomposition. One can get more insight by checking out the exact algorithm for CVC in
Section 3. To reduce the size of such a table, Lampis’ approach [29] is to pick a parameter
ϵ ∈ (0, 1) and round every integer to the closest integer power of (1 + ϵ). In other words,
an integer n is represented by (1 + ϵ)x with (1 + ϵ)x ≤ n < (1 + ϵ)x+1. Thus it suffices to
keep (log n)O(w) records for every bag in the tree decomposition. The price of this approach
is that we can only have approximate values for records in the table. Note that the errors
of approximate values might accumulate after addition (See Lemma 9). Nevertheless, we
can choose a tree decomposition with height O(w2 log n) and set ϵ = 1/poly(w log n) so that
if the dynamic programming procedure only involves adding and passing values of these
vectors, then we can have (1 + o(1))-approximation values for all the records in the table.

Unfortunately, in the forgetting node for a vertex v, we need to compare the value of
d(v) and the capacity value c(v). This task seems impossible if we do not have the exact
value of d(v). Our idea is to modify the “slightly-violating-capacity” solution, based on two
crucial observations. The first is that, in a solution, for any vertex v ∈ V , the number of
edges incident to v which are not covered by v presents a lower bound for the solution size.
The second observation is that one can test if a “slightly-violating-capacity” solution can be
turned into a good one in polynomial time. These observations are formally presented in
Lemma 10 and 11.

Target Set Selection and Vector Dominating Set. We observe that both of the TSS
and VDS problems are monotone and splittable, where the monotone property states that
any super set of a solution is still a solution and the splittable property means that for
any separator X of the input graph G, the union of X and solutions for components after
removing X is also a solution for the graph G. We give a general approximation for vertex

ISAAC 2023

19:4 FPT Approximation Using Treewidth: CVC, TSS and VDS

subset problems that are monotone and splittable. The key of our approximation algorithm
is an observation that any bag in a tree decomposition is a separator in G. As the problem is
splittable, we can design a procedure to find a bag, and remove it, which leads to a separation
of G and we then deal with the component “rooted” by this bag. We can use this procedure
repeatedly until the whole graph is done.

1.2 Organization of the Paper

In Section 2 the basic notations are given, and we formally define the problem we study. In
Section 3 we present the exact algorithm for CVC. In Section 4 we present the approximate
algorithm for CVC. In Section 5, we give the approximation algorithms for TSS and VDS.

2 Preliminaries

2.1 Basic Notations

We denote an undirected simple graph by G = (V, E), where V = [n] for some n ∈ N
and E ⊆

(
V
2
)
. Let V (G) = V and E(G) = E be its vertex set and edge set. For any

vertex subset S ⊆ V , let the induced subgraph of S be G[S]. The edges of G[S] are
E[S] = E(G) ∩

(
S
2
)
. For any S1, S2 ⊆ V , we use E[S1, S2] to denote the edge set between S1

and S2, i.e. E[S1, S2] = {e = (u, v) ∈ E | u ∈ S1, v ∈ S2}. For every v ∈ V (G), we use N(v)
to denote the neighbors of v, and d(v) := |N(v)|.

For an orientation O of a graph G, which can be regarded as a directed graph whose
underlying undirected graph is G, we use D+

O(v) to denote the outdegree of v and D−
O(v) its

indegree. In a directed graph or an orientation, an edge (u, v) is said to start at u and sink
at v. Reversing an edge is an operation, in which an edge (u, v) is replaced by (v, u).

In a graph G = (V, E), a separator is a vertex set X such that G[V \X] is not a connected
graph. In this case we say X separates V into disconnected parts C1, C2, ... ⊆ V \ X, where
Ci and Cj are disconnected for all i ̸= j in G[V \ X].

Let f : A → B be a mapping. For a subset A′ ⊆ A, let f [A′] denote the mapping with
domain A′ and f [A′](a) = f(a), for all a ∈ A′. Let f \ a be f [A \ {a}]. For all b ∈ B, let
f−1(b) be the set {a ∈ A′ | f(a) = b}.

Let γ ≥ 0 be a small value, we use Nγ to denote {0} ∪ {(1 + γ)x | x ∈ N}. For a, b ∈ R,
we use a ∼γ b to denote that b/(1 + γ) ≤ a ≤ (1 + γ)b. It’s easy to see this is a symmetric
relation. Further, we use [a]γ to denote maxx∈Nγ ,x≤a x. Notice that [a]γ ∼γ a.

2.2 Problems

Capacitated Vertex Cover. An instance of CVC consists of a graph G = (V, E) and a
capacity function c : V → N on the vertices. A solution is a pair (S, M) where S ⊆ V and
M : E → S is a mapping. If for all v ∈ S, |M−1(v)| ≤ c(v) and for all e ∈ E, M(e) ∈ e, then
we say that S is feasible. The size of a feasible solution is |S|. The goal of CVC is to find a
feasible solution of minimum size. An equivalent description of this problem is the following.
Let O be an orientation of all the edges in E. O is a feasible solution if and only if for all
v ∈ V, D−

O(v) ≤ c(v). The size of O is defined as |{v ∈ V | d−(v) > 0}|. Here we actually use
a directed edge (u, v) to represent that {u, v} is covered by v. We mainly use this definition
as it’s more convenient for organizing our proof and analysis.

H. Chu and B. Lin 19:5

Target Set Selection. Given a graph G = (V, E), a threshold function t : V → N, and a set
S ⊆ V , the set S′ ⊆ V which contains the vertices activated by S is the smallest set that:

S ⊆ S′;
For a vertex v, if |N(V) ∩ S′| ≥ t(v), then v ∈ S′.

One can find the vertices activated by S in polynomial time. Just start from S′ := S, as
long as there exists a vertex v such that |N(v) ∩ S′| ≥ t(v), add v to S′, until no such vertex
exists. A vertex set that can activate all vertices in V is called a target set. The goal of TSS
is to find a target set of minimum size.

Vector Dominating Set. Given a graph G = (V, E), a threshold function t : V → N, the
goal of Vector Dominating Set problem is to find a minimum vertex subset S ⊆ V such that
every vertex v ∈ V \ S satisfies |N(v) ∩ S| ≥ t(v).

2.3 Tree Decomposition

In this paper, we consider problems parameterized by the treewidth of the input graphs. A
tree decomposition of a graph G is a pair (T, X) such that

T is a rooted tree and X = {Xα : α ∈ V (T), Xα ⊆ V (G)} is a collection of subsets of
V (G);⋃

α∈V (T) Xα = V (G);
For every edge e of G, there exists an α ∈ V (T) such that e ⊆ Xα;
For every vertex v of G, the set {α ∈ V (T) | v ∈ Xα} forms a subtree of T .

The width of a tree decomposition (T, X) is maxα∈V (T) |Xα| − 1. The treewidth of a graph
G is the minimum width over all its tree decompositions.

The sets in X are called “bags”. For a node α ∈ V (T), let Tα denote the subtree of T

rooted by α. Let Vα ⊆ V denote the vertex set Vα = ∪α′∈V (Tα)Xα′ . Let Yα := Vα \ Xα.
For a node α, we use α1(, α2) to denote its possible children. By the definition of tree
decompositions, for a join node α, Yα1 ∩ Yα2 = ∅.

It is convenient to work on a nice tree decomposition. Every node α ∈ V (T) in this nice
tree decomposition is expected to be one of the following:

(i) Leaf Node: α is a leaf and Xα = ∅;
(ii) Introducing v Node: α has exactly one child α1, v /∈ Xα1 and Xα = Xα1 ∪ {v};
(iii) Forgetting v Node: α has exactly one child α1, v /∈ Xα and Xα ∪ {v} = Xα1 ;
(iv) Join Node: α has exactly two children α1, α2 and Xα = Xα1 = Xα2 .

Treewidth is a popular parameter to consider because tree decompositions with optimal or
approximate treewidth can be efficiently computed [28]. We refer the reader to [15, 6, 5] for
more details of treewidth and nice tree decomposition. Using the tree balancing technique [7]
and the method of introducing new nodes, we can transform any tree decomposition with
width w in polynomial time into a nice tree decomposition with width O(w), depth upper
bounded by O(w2 log n), and containing at most O(nw) nodes. Moreover, we can add O(w)
nodes so that the root α0 is assigned with an empty set Xα0 = ∅. Notice that in this case,
Yα0 = Vα0 = V . We assume all the nice tree decompositions discussed in this paper satisfy
these properties.

ISAAC 2023

19:6 FPT Approximation Using Treewidth: CVC, TSS and VDS

3 Exact Algorithm for CVC

We present the exact algorithm for two reasons. The first is that one can gain some basic
insights on the structure of the approximate algorithm by understanding the exact algorithm,
which is more comprehensible. The other is that we need to compare the intermediate
results of the exact algorithm and the approximate algorithm, so the total description of the
algorithm can also be regarded as a recursive definition of the intermediate results (which
are the sets Rα’s defined in the following).

3.1 Definition of the Tables
Given a tree decomposition (T, X), we run a classical bottom-up dynamic program to solve
CVC. That is, on each node α we allocate a record set Rα. Rα contains records of the form
(d, k). A record (d, k) consists of two elements: a mapping d : Xα → N and an integer k ∈ N.
At first, we present a definition of Rα by its properties. Then we define Rα according to the
Recursive Rules. If our goal is only to design an exact algorithm for CVC, then there could
be many different definitions of the tables which all work. However, here our definitions
are elaborated so that they fit in our analysis of the approximation algorithm. After these
definitions are given, later in Theorem 5 we prove that these two definitions coincide.

Let Gα denote the graph with vertex set Vα and edge set E[Vα] \ E[Xα]. We expect that
the table Rα has the following properties.

3.1.1 Expected Properties for Rα

A record (d, k) ∈ Rα if and only if there exists O, an orientation of Gα, such that
(1) For each v ∈ Xα, d(v) = D+

O(v) is just its out degree;
(2) D−

O(v) ≤ c(v) for all v ∈ Yα;
(3) |{v ∈ Yα | D−

O(v) > 0}| ≤ k ≤ |Yα|.
Intuitively, (d, k) ∈ Rα if there exists a vertex set S ⊆ Yα and a mapping M : E[Vα]\E[Xα] →
S ∪ Xα such that

all edges are covered correctly, i.e. M(e) ∈ e for all e ∈ E[Vα] \ E[Xα];
for each v ∈ Xα, there are d(v) edges from v to Yα that are covered by S, i.e. |E[{v}, Yα]∩
∪u∈SM−1(u)| = d(v);
M satisfies the capacity constraints for vertices in Yα, i.e. for all v ∈ Yα, |M−1(v)| ≤ c(v);
|S| ≤ k ≤ |Yα|.

One can imagine that S is a feasible solution for a spanning subgraph of Gα, where the
vector d governs the edges between Xα and Yα.

Note that the root node α0 satisfies Xα0 = ∅, and Gα0 = G. So if Rα0 is correctly
computed, then the k values in those records in Rα0 have a one-to-one correspondence to
all feasible solution sizes for the original instance. We output min(d,k)∈Rα0

k to solve the
instance.

3.1.2 Recursive Rules for Rα

Fix a node α ∈ V (T), if α is a introducing node or a forgetting node, let α1 be its child. If α

is a join node, let α1, α2 be its children. In case α is a:
Leaf Node. Rα = {(d, k)}, in which d is a mapping with empty domain and k := 0.
Introducing v Node. Note that by the properties of tree decompositions, there is no edge

between v and Yα in G. A record (d, k) ∈ Rα if and only if (d \ v, k) ∈ Rα1 and d(v) = 0.

H. Chu and B. Lin 19:7

Join Node. (d, k) ∈ Rα if and only if there exist (d1, k1) ∈ Rα1 and (d2, k2) ∈ Rα2 such that
for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2.

Forgetting v Node. (d, k) ∈ Rα if and only if there exists (d1, k1) ∈ Rα1 satisfying one of
the following conditions:

(1) k1 = k, d1(v) = |N(v) ∩ Yα| and d1 \ v = d. In this case, v is not “included in S”. All
the edges between v and Yα must be covered by other vertices in Yα.

(2) k1 = k−1 and there exist ∆(v) ⊆ N(v)∩Xα and A ∈ [|N(v)∩Yα|−c(v)+|∆(v)|, |N(v)∩
Yα|] such that d1(v) = A, d1(u) = d(u) − 1 for all u ∈ ∆(v), and d1(u) = d(u) for
all u ∈ Xα1 \ (∆(v) ∪ {v}). In this case, v is “included in S”. We enumerate a set
∆(v) ⊆ N(v)∩Xα of edges between v and Xα and let v cover these edges. Note that for
a record (d1, k1) ∈ Rα1 , there are |N(v) ∩ Yα| − d1(v) edges that are covered by v. To
construct (d, k) from (d1, k1), we need to check that c(v) ≥ |∆(v)|+ |N(v)∩Yα|−d1(v),
which is implicitly done by the setting d1(v) = A ≥ |N(v) ∩ Yα| − c(v) + |∆(v)|.

▶ Remark 4. In fact, one can find many different ways to define the dynamic programming
table for CVC. We use this definition because we want to upper bound the values of records
in Rα by the size of solution (Lemma 10), so we need to record “outdegrees” rather than
“indegrees” or “capacities”.

Valid certificate. Notice that all the rules are of the form (d1, k1) ∈ Rα1 ⇒ (d, k) ∈ Rα or
(d1, k1) ∈ Rα1 ∧ (d2, k2) ∈ Rα2 ⇒ (d, k) ∈ Rα, thus a rule can actually be divided in to two
parts: we found a “valid certificate” (d1, k1) ∈ Rα1 (and (d2, k2) ∈ Rα2 , for join nodes), then
we add a “product” (d, k) ∈ Rα based on the certificate. In fact, every record in Rα1 can be a
valid certificate in introducing nodes, and every pair of records ((d1, k1), (d2, k2)) ∈ Rα1 ×Rα2

can be a valid certificate in join nodes. But in forgetting v nodes, we further require that
d1(v) satisfies some condition. To be specific, in a forgetting node α1 we say (d1, k1) ∈ Rα1

is valid if it satisfies the following condition:

(⋆) d1(v) = |N(v) ∩ Yα| or ≥ |N(v) ∩ Yα| − c(v) + |∆(v)| for some ∆(v) ⊆ N(v) ∩ Xα.

▶ Theorem 5. The set {Rα : α ∈ V (T)} can be computed by the recursive rules above in
time nw+O(1), and the Expected Properties are satisfied.

The proof sketch of the correctness of these rules are presented in Appendix A. As |Rα| ≤ nw+2

for all α ∈ V (T) and the enumerating ∆(v) procedure in dealing with a forgetting node runs
in time wO(w), it’s not hard to see that this algorithm runs in time nw+O(1) (for w small
enough compared to n).

4 Approximation Algorithm for CVC

Let ϵ be a small value to be determined later. We try to compute an approximate record
set R̂α for each node α, still using bottom-up dynamic programming like what we do in the
exact algorithm. An approximate record is a pair (d̂, k̂), where k̂ ∈ N and d̂ is a mapping
from Xα to Nϵ = {0} ∪ {(1 + ϵ)x | x ∈ N}. As we can see, d̂ can take non-integer values.

Height of a Node. The height h of a node α is defined by the length of the longest path
from α to a leaf which is descendent to α. By this definition, the height of a node is 1 plus
the maximum height among the heights of its children. Let the height of the root node be
h0. According to the property of nice tree decompositions, h0 is at most O(w2 log n).

Let ϵh, δh be two non-negative values (which are functions of h, n and w) to be determined
later.

ISAAC 2023

19:8 FPT Approximation Using Treewidth: CVC, TSS and VDS

h-close records. If an exact record (d, k) and an approximate record (d̂, k̂) satisfy d(v) ∼ϵh

d̂(v) for all v ∈ Xα and k ∼δh
k̂, then we say these two records are h-close.

We expect that for each node α, R̂α satisfies the following. Let the height of α be h.
(A) If (d, k) ∈ Rα, then there exists (d̂, k̂) ∈ R̂α which is h-close to (d, k).
(B) If (d̂, k̂) ∈ R̂α, then there exists (d, k) ∈ Rα which is h-close to (d̂, k̂).
After R̂α0 is correctly computed (i.e. satisfying (A) and (B)), we output the value k̂min =
(1 + δh0) min(d̂,k̂)∈R̂α0

k̂. Let OPT be the size of the minimum solution, which equals to
min(d,k)∈Rα0

k. We claim that k̂min ∈ [OPT, (1 + δh0)2OPT].

Proof. By property (B), we have OPT ≤ (1 + δh0) min(d̂,k̂)∈R̂α0
k̂. By property (A), we have

min(d̂,k̂)∈R̂α0
k̂ ≤ (1 + δh0)OPT . The claim follows by combining these two inequalities. ◀

We need the following procedure to test in polynomial time if a sub-problem is solvable when
we are allowed to use all vertices to cover the edges.

▶ Lemma 6. Testing whether (d, |Yα|) ∈ Rα for any d can be done in nO(1) time.

Proof. Construct a directed graph with vertex set {s, t} ∪ (E[Vα] \ E[Xα]) ∪ Vα. For each
e ∈ (E[Vα] \ E[Xα]) add an edge (s, e) with capacity 1. For each e = (u, v) ∈ (E[Yα] \ E[Xα])
add an edge (e, u) and an edge (e, v) both with capacity 1. For each v ∈ Xα add an edge
(v, t) with capacity |N(v) ∩ Yα| − d(v). For each v ∈ Yα add an edge (v, t) with capacity
c(v). We claim that (d, |Yα|) ∈ Rα if and only if there is a flow from s to t with value
|E[Vα] \ E[Xα]|. For the ’if’ part, notice that by the well-known integrality theorem for
network flow, there exists a integral flow with the same value. Every integral flow with
this value can be transform to an O as expected in the Expected Properties: An edge
e ∈ E[Yα] \ E[Xα] is oriented so that it sinks at vertex v if (e, v) has flow value 1, then
for each vertex v ∈ Xα, reverse some edges in E[{v}, Yα] so that D+

O(v) = d(v), if the flow
carried in (v, t) is less than |N(v) ∩ Yα| − d(v). One can construct a flow with the value
based on an orientation O, too. Thus the ’only if’ part is easy to see, too. ◀

We first define {R̂α : α ∈ V (T)} using the following Recursive Rules. Then we
prove that these sets satisfy the properties (A) and (B). The basic idea of our approximate
algorithm is to run the exact algorithm in an “approximate way”. For a rule formed as
(d̂1, k̂1) ∈ R̂α1 ⇒ (d̂, k̂) ∈ R̂α or (d̂1, k̂1) ∈ R̂α1 ∧ (d̂2, k̂2) ∈ R̂α2 ⇒ (d̂, k̂) ∈ R̂α, we also call
(d̂1, k̂1) (and (d̂2, k̂2)) the certificate while (d̂, k̂) is the product.

4.1 Recursive Rules for R̂α

Fix a node α ∈ V (T) with height h, in case α is a:
Leaf Node. R̂α = {(d̂, k̂)}, in which d̂ is a mapping with empty domain and k̂ = 0.
Introducing v Node. A record (d̂, k̂) ∈ R̂α if and only if (d̂ \ v, k̂) ∈ R̂α1 and d̂(v) = 0.
Join Node. (d̂, k̂) ∈ R̂α if and only if there exists (d̂1, k̂1) ∈ R̂α1 , (d̂2, k̂2) ∈ R̂α2 such that

for each v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and k̂ = k̂1 + k̂2.
Forgetting v Node. This case is the most complicated. Think in this way: we pick (d̂1, k̂1) ∈

R̂α1 and based on it we try to construct (d̂, k̂) to add into R̂α. Notice that in the
exact algorithm, not every (d1, k1) ∈ Rα1 can be used to generate a corresponding
product (d, k) ∈ Rα – it has to be the case that d1(v) = |N(v) ∩ Yα| or d1(v) ≥
|N(v) ∩ Yα| − c(v) + |∆(v)|, which is what we called to be a valid certificate. We have to
test both the validity of the certificate and its exact counterpart using an indirect way.
So there are three issues we need to address:

H. Chu and B. Lin 19:9

(a) The requirement for (d̂1, k̂1) being valid, i.e. satisfying the “approximate version” of
condition (⋆);

(b) There exists a valid exact counterpart (d1, k1) ∈ Rα1 of (d̂1, k̂1) satisfying condition
(⋆);

(c) How to construct (d̂, k̂).
(b) seems impossible since we do not compute Rα1 , we obtain this indirectly using
Lemma 6. Later we explain why such an approach reaches our goal. Formally, suppose
we have (d̂1, k̂1) ∈ R̂α1 , we consider two cases:

(1) v is not “included”.
(1a) See if d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|;
(1b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}

and dt(v) = |N(v) ∩ Yα| (This is polynomial-time tractable by Lemma 6);
(1c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂ = d̂1 \ v, k̂ = k̂1.

(2) v is “included”. We enumerate ∆(v) ⊆ N(v) ∩ Xα and integer A satisfying A ∈
[|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|].
(2a) See if d̂1(v) ≥ A/(1 + ϵh−1);
(2b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}

and dt(v) = A (By Lemma 6, this is still polynomial-time tractable);
(2c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂(u) = d̂1(u) for all

u ∈ Xα \ ∆(v), d̂(u) = [d̂(u) + 1]ϵ for all u ∈ ∆(v), k̂ = k̂1 + 1.

▶ Theorem 7. Set ϵ = 1
(w2 log n)3 , ϵh = 2hϵ and δh = 4(h + 1)hϵ. Suppose n is great enough.

When the dynamic programming is done, for all α, R̂α satisfies property (A) and (B).

Proof of Theorem 1. According to Theorem 7 and the above discussion, we immedi-
ately get k̂min ∈ [OPT, (1 + δh0)2OPT]. By the property of nice tree decomposition,
h0 is at most O(w2 log n), thus k̂min ∈ [OPT, (1 + O(1/(w2 log n)))2OPT] = [OPT, (1 +
O(1/(w2 log n)))OPT].

The space we need to memorize each R̂α is O((w6 log4 n)wnO(1)). Computing a leaf/in-
troduce/join node we need O((w6 log4 n)2wnO(1)) time. In a forgetting node, we may need to
enumerate some set ∆(v) ⊆ N(v) ∩ Xα, which requires time O(2|Xα|) = O(2w+1). So com-
puting a Forgetting node requires O((w6 log4 n)w2wnO(1)) time. The tree size is polynomial,
so the total running time is FPT. ◀

To prove Theorem 7, we need a few lemmas. The proof of Lemma 8 and Lemma 9
are presented in Appendix B. Lemma 8 and Lemma 9 are some simple observations. To
understand why we need Lemma 10 and Lemma 11, remember that we have a complicated
recursive rule for forgetting nodes in which we verifies (a) and (b). However, we cannot
directly verify if a valid exact record described in (b) exists, because we don’t have Rα1 . We
overcome this by verifies a feasible partial solution (e.g. (d1, |Yα1 |) in (1b)) rather than an
optimal one, which can be done by Lemma 6. When we are computing R̂α, we assume that
R̂α1 has been correctly computed, i.e. it satisfies (A) and (B). So there exists (d1, k1) ∈ rcds1
which is h − 1-close to (d̂1, k̂1). However, we don’t know if (d1, k1) is a so-called valid
certificate. Lemma 11 shows how to modify (d1, k1) so that it becomes we want in (b),
knowing (dt, |Yα1 |) ∈ Rα1 . We introduces some error like o(1)d1(v) on k1 in this procedure.
Lemma 10 helps us to rewrite it as o(1)k1.

▶ Lemma 8. If (d, k) ∈ Rα for some node α, then for every (d′, k′) with d(v) ≥ d′(v) for all
v ∈ Xα and k′ satisfying k ≤ k′ ≤ |Yα|, we have (d′, k′) ∈ Rα.

ISAAC 2023

19:10 FPT Approximation Using Treewidth: CVC, TSS and VDS

▶ Lemma 9. Let a, b, a′, b′ ∈ R, h ∈ N+, ϵh ∈ [0, 1], a′ ∼ϵh
a and b′ ∼ϵh

b. Then we have
[a′ + b′]ϵ ∼ϵh+1 (a + b).

▶ Lemma 10. For all (d, k) ∈ Rα and v ∈ Xα, k ≥ d(v).

Proof. Let O be the orientation. Let N+(v) = {u ∈ V (G) : (v, u) ∈ E(G)} be out neighbors
of v. By definition, we have d(v) = |N+(v)| ≤ |{u ∈ Yα | D−

O(u) > 0}| ≤ k. ◀

▶ Lemma 11. Fix some (d, k) ∈ Rα, v ∈ Xα and some integer p > 0 satisfying k + p ≤ |Yα|.
Let dm : Xα → N be a function such that dm(v) = d(v) + p and dm \ v = d \ v. We have
(dm, |Yα|) ∈ Rα if and only if (dm, k + p) ∈ Rα.

Proof. On one hand, the ’if’ part is obvious by Lemma 8. On the other hand, we prove that
(dm, |Yα|) ∈ Rα implies (d′, k + 1) ∈ Rα, where d′(v) = d(v) + 1, d′ \ v = d \ v. Then we
can repeatedly increase the value of k by 1 for p times to obtain the ’only if’ part. Let the
orientation corresponding to (d, k) and (dm, |Yα|) be O1, O2 respectively. Now let G′ be a
graph with vertex set Yα ∪ {v}. A directed edge (x, y) is in G′ if and only if (x, y) ∈ O2 and
(y, x) ∈ O1.

By picking O1 so that the number of edges in G′ is minimized, we can assume that G′

contains no cycle. Otherwise if G′ contains a cycle, we can reverse every edge along the cycle
in O1 so that it is still a valid orientation for (d, k) but the number of edges in G′ decreases.

As D+
O2

(v) > D+
O1

(v), there exists an non-empty path in G′ starting from v ending at,
say, v′ ̸= v such that v′ has no out edge in G′. This implies D−

O1
(v′) ≤ D−

O2
(v′) − 1, or

v′ will have an out edge in G′. We reverse the edges along this path in O1. Let the new
orientation be O3. D−

O3
(v′) ≤ D−

O1
(v′) + 1 ≤ D−

O2
(v′) ≤ c(v). Moreover, {u | D−

O3
(u) >

0} \ {u | D−
O1

(u) > 0} ⊆ {v′}. Thus, O3 is a valid orientation for (d′, k + 1). ◀

4.2 Theorem 7 Proof Sketch
Due to space limit, the complete proof is presented in Appendix B.2.

We use induction on nodes, following a bottom-up order on the tree decomposition. Leaf
nodes satisfy property (A) and (B), because Rα = R̂α for every leaf node. Fix a node α of
height h, by induction, we assume that every node descendent to α satisfies (A) and (B). We
only need to prove that α satisfies both (A) and (B). We make a case distinction based on
the type of α. The case where α is a forgetting node is the most complicated and requires
lemma 10 and 11. The other two types follow Lampis’ framework.

To show α satisfies (A), we need to prove the existence of some (d̂, k̂) ∈ R̂α for any
given (d, k) ∈ Rα such that (d̂, k̂) and (d, k) are h-close. This is done by first picking up the
certificate of (d, k), that is, the record (d1, k1) ∈ Rα1 (or a pair of records in the case α is a
join node, we omit join node case in the following sketch) which “produces” (d, k) based on
recursive rules for Rα. Then by induction hypothesis, there is an (h − 1)-close record (d̂1, k̂1)
in R̂α1 . If α is not a forgetting node, then according to recursive rules for R̂α, there exists
(d̂, k̂) ∈ R̂α. We prove that (d̂, k̂) and (d, k) are h-close. If α is a forgetting node, then we
verify (1b) or (2b) by applying Lemma 8 on (d1, k1).

To show α satisfies (B), if α is not a forgetting node, then we pick up and compare some
records in a different order: We start from (d̂, k̂) ∈ R̂α; Then we pick (d̂1, k̂1) ∈ R̂α1 according
to recursive rules for R̂α; Next we pick (d1, k1) ∈ Rα1 based on induction hypothesis; Finally
we find out (d, k) ∈ Rα using recursive rules for Rα. If α is a forgetting node, suppose the
record (d̂, k̂) ∈ R̂α is produced by (d̂1, k̂1). The main idea is to apply Lemma 11 on (dt, |Yα1 |),
the record verified by (1b) or (2b), and (d1, k1), the record (h − 1)-close to (d̂1, k̂1), so as to
show the existence of some (d, k) ∈ Rα. At the same time we use Lemma 10 to bound k.

H. Chu and B. Lin 19:11

5 Approximation algorithms for TSS and VDS

In this section, we introduce the vertex subset problem which is a generalization of many
graph problems. Then we present a sufficient condition for the existence of parameterized
approximation algorithms for such problems parameterized by the treewidth. Finally, we
apply our algorithm to target set selection problem (TSS) and vector dominating set problem
(VDS), which are both vertex subset problems satisfying this condition. The definitions
bellow are inspired by Fomin, et al. [21].

▶ Definition 12 (Vertex Subset Problem). A vertex subset problem Φ takes a string I ∈ {0, 1}∗

as an input, which encodes a graph GI = (VI , EI) and some possible additional information,
e.g. threshold values on vertices. Φ is identified by a function FΦ which maps a string
I ∈ {0, 1}∗ to a family of vertex subsets of VI , say FΦ(I) ⊆ 2VI . Any vertex set in FΦ(I) is
a solution of the instance I. The goal is to find a minimum sized solution.

We will often select a set of vertices and assume that it is included in a solution, and
then consider the remaining sub-problem. So we introduce the concept of partial instances.

▶ Definition 13 (Partial Vertex Subset Problem). Let Φ be a vertex subset problem. The
partial version of Φ takes a string I ∈ {0, 1}∗ appended with a vertex subset U ⊆ VI as input.
We call such a pair (I, U) a partial instance of Φ. Any vertex set W ⊆ VI \ U is a solution if
and only if W ∪ U ∈ FΦ(I). Still, the goal is to find a minimum sized solution.

We consider the following conditions of a vertex subset problem Φ.
Φ is monotone, if for any instance I, S ∈ FΦ(I) implies for all S′ satisfying S ⊆ S′ ⊆ VI ,
S′ ∈ FΦ(I).
Φ is splittable, if: for any instance I and any separator X of GI which separates VI \ X

into disconnected parts V1, V2, ..., Vp, if S1, S2, ..., Sp are vertex sets such that Si is a
solution for the partial instance (I, VI \ Vi), ∀1 ≤ i ≤ p, then X ∪

⋃
1≤i≤p Si is a solution

for I.

It is trivial to show the monotonicity for TSS and VDS. To see that they are splittable,
observe that given an instance I = (G, t) of VDS for example, fix some X ⊆ V (G), a set
S containing X is a solution for I if and only if S \ X is a solution for I ′ = (G′, t′), where
G′ = G[V \ X] and t′(v) = t(v) − |N(v) ∩ X| for all v ∈ V \ X. If X is a separator, then the
graph G′ is not connected, and the union of any solutions of each component in G′, with X

together forms a solution of I. This observation also works for TSS.
The main theorem in this section is to show the tractability, in the sense of parameterized

approximation, of monotone and splittable vertex subset problems on graphs with bounded
treewidth.

▶ Theorem 14. Let Φ be a vertex selection problem which is monotone and splittable. If there
exists an algorithm such that on input a partial instance of Φ appended with a corresponding
nice tree decomposition with width w, it can run in time f(ℓ, w, n) and

either output the optimal solution, if the size of it is at most ℓ;
or confirm that the optimal solution size is at least ℓ + 1

then there exists an approximate algorithm for Φ with ratio 1 + (w + 1)/(l + 1) and runs in
time f(l, w, n) · nO(1), for all l ∈ N.

We provide a trivial algorithm for the partial version of TSS. Given a partial instance
(I = (G, t), U), we search for a solution of size at most ℓ by brute-force. This takes time
f(ℓ, w, n) = nℓ+O(1). Setting l := C in Theorem 14, we simply get the following.

ISAAC 2023

19:12 FPT Approximation Using Treewidth: CVC, TSS and VDS

▶ Corollary 15 (Restated version of Theorem 3). For all constant C, TSS admits a 1 + (w +
1)/(C + 1)-approximation algorithm running in time nC+O(1).

As mentioned before, Raman et al.[32] showed that VDS is W [1]-hard parameterized by
w, but FPT with respect to the combined parameter (k + w) where k is the solution size.
The running time of their algorithm is kO(wk2)nO(1). A partial instance (I, U) of VDS can
be transformed to an equivalent VDS instance, in which the input graph is G[VI \ UI], so this
algorithm can also be used for the partial version of VDS. Set l := w2(log log n/ log log log n)0.5

in Theorem 14, we get Corollary 16.

▶ Corollary 16 (Restated version of Theorem 2). Vector Dominating Set admits a 1 +
1/(w log log n)Ω(1)-approximation algorithm running in time 2O(w5 log w log log n)nO(1).

Notice that we can’t obtain a (1 + o(1))-approximation for TSS using a similar approach,
because solving TSS in f(w + k)nO(1)-time is W [1]-hard [3].

One may also think of applying Theorem 14 to CVC, since CVC is FPT when para-
meterized by solution size [17]. However, CVC is not splittable. Think of a simple 3-
vertex graph with vertex set {a, b, c} and edge set {{a, b}, {b, c}}. The capacities are:
c(a) = 0, c(b) = 1, c(c) = 0. {b} is a separator in this graph and empty sets are two solutions
for the two partial instances. However, {b} cannot cover both two edges in the original graph.

5.1 The Algorithm Framework
To prove Theorem 14, we introduce the concept of l-good node.

▶ Definition 17 (l-good Node). Let I be an instance of a vertex selection problem Φ and
(T, X) be a nice tree decomposition of any subgraph of GI . A node α ∈ V (T) is an l-good
node if the partial instance (I, VI \ Yα) admits a solution of size at most l.

For a node α, let N−
α denote the set of all children of α. We present the pseudocode of

our algorithm in Algorithm 1. Figure 1 in Appendix C illustrates how the sets defined in
Algorithm 1 are related. Algorithm 1 solves the partial version of Φ. For the original version,
when we get an instance I, we just create an equivalent partial instance (I, ∅) appended with
a nice tree decomposition (T, X) and an integer l, then we run Solve((I, ∅), (T, X), l). The
analyze of Algorithm 1 is presented in Appendix C.

Main idea of Algorithm 1: Let Alg be an algorithm solving partial instances in time
f(l, w, n). Given a partial instance (I, D) and a nice tree decomposition (T, X) on G[I \ D],
we run Alg to test the goodness of each node. If the root node is l-good, then (I, D) has
a solution with size at most l, we use Alg to find the optimal solution. If a leaf node is
not l-good then by monotonicity I has no solution5.Otherwise, we can pick a lowest node α

which is not l-good. Then all its children are l-good. Such a node has nice properties.
On one hand, since all children of α are l-good, the partial instances (I, VI \ Yαc

) can be
optimally solved by Alg for each αc a child of α. Adding Xαc

and the optimal solution
Eαc for (I, VI \ Yαc) into the solution enables us to “discard” the whole subtree rooted
by αc and the corresponding vertices, i.e. Vαc

;

5 By our definition of vertex subset problem, the set of solutions can be empty. However any instance of
TSS or VDS admits at least one solution which is the whole vertex set.

H. Chu and B. Lin 19:13

On the other hand, as α is not l-good, by the splittable and monotone properties, we can
deduce that the optimal solution S∗ has an intersection of size at least (l + 1) with Yα i.e.
|S∗ ∩ Yα| ≥ l + 1.

Based on these properties, the algorithm iteratively finds one such node α and includes
Xαc

∪ Eαc
for its every child αc into the solution, then “removes” Vαc

from the graph. Once
we repeat this procedure, the optimal solution size decreases by at least |S∗ ∩ (

⋃
αc

Vαc)| ≥
|S∗ ∩ Yα| ≥ l + 1. For each αc, we use Alg to find the optimal solution Eαc

, so in each Yαc

we select at most |S∗ ∩ Yαc | vertices. The “non-optimal” part is
⋃

αc
Xαc , which is at most

O(w) = O(w/l)|S∗ ∩ (
⋃

αc
Vαc

)|. Therefore, the approximation ratio is upper bounded by

1 +
|
⋃

αc
Xαc |

l+1 ≤ 1 + O(w/l).

Algorithm 1 Subprocess Solve().

Input: A partial instance (I, D) of Φ, a nice tree decomposition (T, X) of GI [VI \ D]
with width w, l ∈ N an integer.

Output: A solution S to (I, D), or ’there exists no solution’.

1 for each node α do
2 Use Alg to test if α is an l-good node;
3 if α is l-good then
4 Eα := the minimum solution for (I, VI \ Yα);
5 end
6 end
7 if the root α0 is l-good then
8 Return Eα0 ;
9 end

10 Find a node α which is not l-good with minimum height;
11 if α is a leaf node then
12 Return ’there exists no solution’;
13 end
14 E′ := ∅;
15 F := ∅;
16 for each αc ∈ N−

α do
17 E′ := E′ ∪ Eαc

∪ Xαc
;

18 F := F ∪ Vαc ;
19 end
20 Find a nice tree decomposition (T ′, X ′) for GI [VI \ (D ∪ F)];
21 Return E′ ∪ Solve((I, D ∪ F), (T ′, X ′), l);

References
1 Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability

and completeness IV: on completeness for W[P] and PSPACE analogues. Ann. Pure Appl.
Log., 73(3):235–276, 1995. doi:10.1016/0168-0072(94)00034-Z.

2 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

3 Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth governs
the complexity of target set selection. Discrete Optimization, 8(1):87–96, 2011.

ISAAC 2023

https://doi.org/10.1016/0168-0072(94)00034-Z

19:14 FPT Approximation Using Treewidth: CVC, TSS and VDS

4 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53–
60, 2012.

5 Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
226–234, 1993.

6 Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.
7 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded

treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.
8 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set

selection. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60
of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.APPROX-RANDOM.2016.4.

9 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set selection.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2016), 2016.

10 Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415, 2009.

11 Wang Chi Cheung, Michel X Goemans, and Sam Chiu-wai Wong. Improved algorithms for
vertex cover with hard capacities on multigraphs and hypergraphs. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1714–1726. SIAM,
2014.

12 Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM Journal on
Computing, 36(2):498–515, 2006.

13 Ferdinando Cicalese, Martin Milanič, and Ugo Vaccaro. On the approximability and exact
algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics,
161(6):750–767, 2013.

14 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and
Semantics, pages 193–242. Elsevier, 1990.

15 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

16 Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electron.
Colloquium Comput. Complex., page 128, 2016. URL: https://eccc.weizmann.ac.il/report/
2016/128.

17 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated domina-
tion and covering: A parameterized perspective. In International Workshop on Parameterized
and Exact Computation, pages 78–90. Springer, 2008.

18 Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

19 Andreas Emil Feldmann, Euiwoong Lee, and Pasin Manurangsi. A survey on approximation
in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020.

20 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
21 Fedor V Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via

monotone local search. Journal of the ACM (JACM), 66(2):1–23, 2019.
22 Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An

improved approximation algorithm for vertex cover with hard capacities. Journal of Computer
and System Sciences, 72(1):16–33, 2006.

https://doi.org/10.1137/S0097539795289859
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://eccc.weizmann.ac.il/report/2016/128
https://eccc.weizmann.ac.il/report/2016/128

H. Chu and B. Lin 19:15

23 Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 357–422. Amsterdam University Press, 2008.

24 Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering with
applications. In Symposium on Discrete Algorithms: Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, volume 6, pages 858–865. Citeseer, 2002.

25 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized
vertex cover problems. In Workshop on Algorithms and Data Structures, pages 36–48. Springer,
2005.

26 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

27 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

28 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
184–192. IEEE, 2022.

29 Michael Lampis. Parameterized approximation schemes using graph widths. In International
Colloquium on Automata, Languages, and Programming, pages 775–786. Springer, 2014.

30 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.

31 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 78:1–78:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.78.

32 Venkatesh Raman, Saket Saurabh, and Sriganesh Srihari. Parameterized algorithms for
generalized domination. In International Conference on Combinatorial Optimization and
Applications, pages 116–126. Springer, 2008.

33 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

34 Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
International Colloquium on Automata, Languages, and Programming, pages 762–773. Springer,
2012.

35 Jia-Yau Shiau, Mong-Jen Kao, Ching-Chi Lin, and DT Lee. Tight approximation for partial
vertex cover with hard capacities. In 28th International Symposium on Algorithms and
Computation (ISAAC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

36 Sam Chiu-wai Wong. Tight algorithms for vertex cover with hard capacities on multigraphs
and hypergraphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2626–2637. SIAM, 2017.

A Proof Sketch of Theorem 5

It is easy to see that |Rα| ≤ nO(w) for all α. And one execution of a recursive rule
takes time at most polynomial of the size of some Rα. Thus the total running time is
nO(w) · O(w2 log n) = nO(w).

To prove the correctness, we need to show the record sets computed by the recursive rules
satisfy the expected properties. We use induction. Leaf nodes are trivial to verify. Fix a
node α, assume that for every node descendent to it, the corresponding record set is correctly

ISAAC 2023

https://doi.org/10.4230/LIPIcs.ICALP.2017.78

19:16 FPT Approximation Using Treewidth: CVC, TSS and VDS

computed. The proof then contains the ’if’ part and the ’only if’ part. For the ’if’ part we
have some O, (d, k) satisfying the expected properties and aim to prove (d, k) is included
into Rα by the recursive rules. The framework is to extract O1 and (d1, k1) (and O2, (d2, k2)
for join nodes) satisfying the expected properties for the child node(s) and shows that (d, k)
will be add into Rα because of (d1, k1) (and (d2, k2)). By induction, the extracted record will
be included by the algorithm because they satisfy the expected properties, so (d, k) will also
be included. For the ’only if’ part we have (d, k) included and aim to prove the existence of
a satisfying O. The framework is to take the record(s) based on which (d, k) is added. By
induction, the record(s) we take has corresponding orientation(s) that satisfies the expected
properties. We build O according to this(these) orientation(s).

B Proof of Theorem 7

Before the main proof, we prove Lemma 8 and Lemma 9. Remember that Lemma 8 states that
if (d, k) ∈ Rα then (d′, k′) ∈ Rα for all (d′, k′) with d(v) ≥ d′(v), ∀v ∈ Xα and k ≤ k′ ≤ |Yα|;
Lemma 9 states that [a′ + b′]ϵ ∼ϵh+1 (a + b) for a, b, a′, b′ ∈ R satisfying a′ ∼ϵh

a, b′ ∼ϵh
b for

ϵh ∈ [0, 1].

Proof (Lemma 8). Let O be the orientation for (d, k). For each v, we arbitrarily select
d(v) − d′(v) out neighbors of v and reverse each edge between one selected neighbor and v.
Let the obtained orientation be O1. We show that O1 and (d′, k′) satisfies the properties. (1)
and (3) are trivial. To see (2), observe that D−

O1
(v) ≤ D−

O(v) for all v ∈ Yα. ◀

Proof (Lemma 9). a′ +b′ ∈ [a/(1+ϵh)+b/(1+ϵh), a(1+ϵh)+b(1+ϵh)], that is, (a′ +b′) ∼ϵh

(a+b). As [a′+b′]ϵ ∼ϵ (a′+b′), we have max{[a′+b′]ϵ/(a+b), (a+b)/[a′+b′]ϵ} ≤ (1+ϵ)(1+ϵh) =
1 + ϵh+1 + ϵhϵ − ϵ ≤ 1 + ϵh+1. Thus [a′ + b′]ϵ ∼ϵh+1 (a + b). ◀

In the following we start the main proof. Leaf nodes satisfy property (A) and (B) since
Rα = R̂α for a leaf node α. Fix a node α of height h, by induction, we assume that every
node descendent to α satisfies (A) and (B). Now we prove α satisfies both (A) and (B).

B.1 Proof of (A)
Recall that we have some (d, k) ∈ Rα now and we aim to show the existence of some
(d̂, k̂) ∈ R̂α which is h-close to (d, k). The case for leaf node is trivial. There are three other
cases:

Introducing v Node. Suppose α is an introducing v node and α1 is its child, then we have
a certificate (d1, k1) ∈ Rα1 , where d1 = d \ v, k1 = k. By the induction hypothesis, there
exists a record (d̂1, k̂1) ∈ R̂α1 which is (h−1)-close to (d1, k1). By the recursive algorithm
for R̂, there exists (d̂, k̂) ∈ R̂α, where d̂ \ v = d̂1, d̂(v) = 0 and k̂ = k̂1. Note that for
all u ∈ Xα \ {v}, d̂(u) = d̂1(u) ∼ϵh−1 d1(u) = d(u), thus we have d̂(u) ∼ϵh

d(u). And
d̂(v) = 0 = d(v). Since k̂ = k̂1 ∼δh−1 k1 = k, we get k ∼δh

k̂. So (d̂, k̂) is h-close to (d, k).
Join Node. If α is a join node with children α1 and α2, then we have a certificate (d1, k1) ∈

Rα1 and (d2, k2) ∈ Rα2 , where for all v ∈ Xα, d1(v) + d2(v) = d(v) and k1 + k2 = k.
By the induction hypothesis, there exist (d̂1, k̂1) ∈ R̂α1 and (d̂2, k̂2) ∈ R̂α2 which are
(h − 1)-close to (d1, k1) and (d2, k2) respectively. Note that (d̂1, k̂1), (d̂2, k̂2) is a valid
certificate, so there exists (d̂, k̂) ∈ R̂α, where for all v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and
k̂ = k̂1 + k̂2. By Lemma 9, for all v ∈ Xα, d̂(v) ∼ϵh

d(v) and k̂ ∼δh
k.

H. Chu and B. Lin 19:17

Forgetting Node. If α is a forgetting v node with child α1, then we have a certificate
(d1, k1) ∈ Rα1 which satisfies one of the following conditions:
(1) d1(v) = |N(v) ∩ Yα|, d1 \ v = d and k1 = k.
(2) There exist ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]

such that for all u ∈ ∆(v), d1(u) = d(u) − 1 and for all u ∈ Xα1 \ (∆(v) ∪ {v}), d1(u) =
d(u), d1(v) = A and k1 = k − 1.

Notice that these two conditions just correspond to the recursive rules with the same
index. By the induction hypothesis, there exists an approximate counterpart of the
certificate. To be specific, there exists (d̂1, k̂1) ∈ R̂α1 which is (h − 1)-close to (d1, k1).
Consider two sub-cases:
Type (1) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = |N(v) ∩ Yα|, we

have d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|, which means (1a) is satisfied. Let (dt, |Yα1 |) be the
tested pair in (1b). By the definition of (dt, |Yα1 |), for all u ∈ Xα1 \ {v}, dt(u) =
⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ ⌈(1 + ϵh−1)d1(u)/(1 + ϵh−1)⌉ = d1(u), and dt(v) = d1(v) =
|N(v) ∩ Yα|. Also observe that k1 ≤ |Yα1 |. Thus by Lemma 8, (dt, |Yα1 |) ∈ Rα1 , which
means (1b) is satisfied. As (1a), (1b) are satisfied, there exists (d̂, k̂) ∈ R̂α, where
d̂ = d̂1\v, k̂ = k̂1. Finally, observe that for all u ∈ Xα, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u).
k = k1 ∼δh−1 k̂1 = k̂. So (d, k) and (d̂, k̂) are h-close.

Type (2) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = A, we have
d̂1(v) ≥ A/(1 + ϵh−1), which means (2a) is satisfied. Let (dt, |Yα1 |) be the tested
pair in (2b), i.e. for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ and dt(v) = A.
Similarly we have that d1(u) ≥ dt(u) for all u ∈ Xα while k1 ≤ |Yα1 |. Thus by Lemma
8, (dt, |Yα1 |) ∈ Rα1 , which means (2b) is satisfied. As (2a), (2b) are satisfied, there
exists (d̂, k̂) ∈ R̂α, where d̂(u) = [d̂1(u) + 1]ϵ for all u ∈ Xα \ ∆(v), d̂(u) = d̂1(u) for
all u ∈ ∆(v), and k̂ = k̂1 + 1. For each u ∈ ∆(v), d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u); for
all u ∈ Xα \ ∆(v), d(u) ∼ϵh

d̂(u) by Lemma 9; k − 1 = k1 ∼δh−1 k̂1 = k̂ − 1 and thus
k ∼δh

k̂. So (d, k) and (d̂, k̂) are h-close.

B.2 Proof of (B)
Now we have some (d̂, k̂) ∈ R̂α and we aim to show the existence of some (d, k) ∈ Rα which
is h-close to (d̂, k̂).

Introducing v Node. Suppose α is an introducing v node with α1 as its child, then by the
the recursive rules we have a certificate (d̂1, k̂1) ∈ R̂α1 , where d̂1 = d̂ \ v, k̂1 = k̂. By
induction hypothesis, there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). (d1, k1)
is a valid certificate, so there exists (d, k) ∈ Rα, where d \ v = d1, d(v) = 0 and k = k1.
For all u ∈ Xα \ {v}, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u) so d̂(u) ∼ϵh

d(u); d̂(v) = 0 = d(v);
k = k1 ∼δh−1 k̂1 = k̂, so k ∼δh

k̂.
Join Node. If α is a join node with α1 and α2 as its children, then we have a certificate

(d̂1, k̂1) ∈ R̂α, (d̂2, k̂2) ∈ R̂α2 , where for all v ∈ Xα, [d̂1(v)+ d̂2(v)]ϵ = d̂(v) and k̂1 + k̂2 = k̂.
By induction hypothesis, there exist (d1, k1) ∈ Rα1 , (d2, k2) ∈ Rα2 which are (h − 1)-close
to (d̂1, k̂1) and (d̂2, k̂2) respectively. Since (d1, k1), (d2, k2) is a valid certificate, we have
there exists (d, k) ∈ Rα, where for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2. By
Lemma 9, for all v ∈ Xα, d(v) ∼ϵh

d̂(v). And k ∼δh
k̂.

Forgetting v Node. If α is a forgetting v node, then we have a certificate (d̂1, k̂1) ∈ R̂α1

and a tested pair (dt, |Yα1 |) ∈ Rα1 in (1b) or (2b) with one of the following types:
(1) d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|; d̂1 \ v = d̂; k̂1 = k̂; dt(v) = |N(v) ∩ Yα|;

ISAAC 2023

19:18 FPT Approximation Using Treewidth: CVC, TSS and VDS

(2) there exists ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]
such that for all u ∈ ∆(v), d̂(u) = [d̂1(u) + 1]ϵ; for all u ∈ Xα1 \ ∆(v) ∪ {v}, d̂1(u) =
d̂(u); d̂1(v) ≥ A/(1 + ϵh−1); k̂1 = k̂ − 1; dt(v) = A.

In both types, for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉. Notice that these two
types just correspond to the recursive rules with the same index. By induction hypothesis,
there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). By the definition of (h − 1)-
closeness we have that for every u ∈ Xα1 \ {v}, d1(u) ≥ ⌈d̂1(u)/(1 + ϵh−1)⌉ = dt(u).
Consider the two cases:
Type (1) certificate and tested pair. In this case dt(v) = |N(v) ∩ Yα| and d̂1(v) ∼ϵh−1

|N(v) ∩ Yα|. Notice that for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ d1(u).
Consider the pair (dt, k∗

1) where k∗
1 = k1 + |N(v)∩Yα|−d1(v). As (d1, k1), (dt, |Yα1 |) ∈

Rα1 , by Lemma 8 and 11, we have (dt, k∗
1) ∈ Rα1 . This is a valid certificate as

dt(v) = |N(v) ∩ Yα|. So there exists (d, k) ∈ Rα, where d = dt \ v and k = k∗
1 .

Then we show that (d, k) is h-close to (d̂, k̂). Notice that k̂ = k̂1 ∼δh−1 k1, k = k∗
1 =

k1 + |N(v) ∩ Yα| − d1(v). As d1(v) ∼ϵh−1 d̂1(v), thus d1(v) ≥ |N(v) ∩ Yα|/(1 + ϵh−1)2,
thus we have that |N(v) ∩ Yα| − d1(v) ≤ ((1 + ϵh−1)2 − 1)d1(v) ≤ 3ϵh−1k1. Notice that
d1(v) ≤ k1 by Lemma 10. So k ∼3ϵh−1 k1 ∼δh−1 k̂1 = k̂. As (1 + 3ϵh−1)(1 + δh−1) =
1 + (4h + 6)(h − 1)ϵ + 24h(h − 1)2ϵ2 ≤ 1 + 4h(h + 1)ϵ, we have k̂ ∼δh

k.
For all u ∈ Xα, we just have d(u) = dt(u) ∼ϵh−1 d̂1(u) = d̂(u).

Type (2) certificate and tested pair. In this case, there exists ∆(v) ⊆ N(v) ∩ Xα and
A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|] such that dt(v) = A. Still we have
that for all u ∈ Xα1 \ {v}, dt(u) ≤ d1(u). Let k∗

1 := k1 + max{0, A − d1(v)}. As
(d1, k1), (dt, |Yα1 |) ∈ Rα1 , by Lemma 8 and 11, we have (dt, k∗

1) ∈ Rα1 . This is a valid
certificate as dt(v) = A. So there exists (d, k) ∈ Rα, where for all u ∈ Xα \∆(v), d(u) =
dt(u), for all u ∈ ∆(v), d(u) = dt(u) + 1 and k = k∗

1 + 1.
We use the same idea to show k̂ ∼δh

k. Still, we have k1 ≥ d1(v) ≥ A/(1 + ϵh−1)2. So
k∗

1 = k1 + max{0, A − d1(v)} ≤ 3ϵh−1k1 and obviously, k∗
1 ≥ k1. So k∗

1 ∼3ϵh−1 k1. As
k̂ − 1 = k̂1 ∼δh−1 k1, we have k̂ − 1 ∼δh

k∗
1 = k − 1. Thus k̂ ∼δh

k.
For all u ∈ Xα \ ∆(v), we have d(u) = d1

∗(u) ∼ϵh−1 d̂1(u) = d̂. For all u ∈ ∆(v), we
have d(u) − 1 = d1

∗(u) ∼ϵh−1 d̂1(u) and d̂(u) = [d̂1(u) + 1]ϵ, by Lemma 9 we have
d(u) ∼ϵh

d̂(u).

▶ Remark. The above proof actually provides the intuition of how to modify our algorithm
so that it outputs a solution of size at most (1 + δh0)2OPT . The idea is to, for all α ∈ V (T)
and all (d̂, k̂) ∈ R̂α, keep track of an exact h-close record (d, k) of (d̂, k̂) and its corresponding
orientation i.e. an orientation O with which (d, k) satisfies the expected properties. Still, this
is done by a bottom-up dynamic programming. Fix a non-leaf node α, suppose that for all
its children, this has been done. Now suppose we want to find that orientation for a record
(d̂, k̂) ∈ R̂α. According to the recursive rules, there exists (d̂1, k̂1) ∈ R̂α1 (and (d̂2, k̂2) ∈ R̂α2

for join nodes) from which we construct (d̂1, k̂1). Proof of (B) in fact shows that if the exact
h − 1-close exact counterpart and the corresponding orientation has been stored, then we
can construct the h-close record (d, k) ∈ Rα and its corresponding orientation. Notice that if
α is the forgetting node we may need Lemma 11 to prove the existence of such (d, k). But
fortunately, Lemma 11 is also constructive.

C Proof of Theorem 14

We first prove that for any bag Xα in a tree decomposition for a graph G = (V, E), vertex sets
Yα and V \ Vα are disconnected in G[V \ Xα] i.e. Xα separates V \ Xα into two disconnected
parts Yα and V \ Vα. Assume they are connected, then there exists u ∈ Yα and v ∈ V \ Vα

H. Chu and B. Lin 19:19

such that (u, v) ∈ E. So there exists some bag containing both u and v. This implies that
the nodes whose assigned bags containing u or v forms a subtree in the tree decomposition.
However, X divides apart some nodes whose assigned bags containing u or v, a contradiction.

Since (T, X) is a tree decomposition for GI [VI \ D], a corollary is that for any node
α ∈ V (T), Xα ∪ D separates VI \ (D ∪ Xα) into disconnected parts Yα and VI \ (Vα ∪ D).

Now we analyze Algorithm 1. We use induction. Firstly let’s consider basic cases. If
(I, D) has a minimum solution of size at most l, then the algorithm returns at line 8 an
optimal solution. If (I, D) contains no solution, which is equivalent to VI is not a solution
due to monotonicity, then any leaf node is not l-good since Yα′ = ∅ for a leaf node α′ and
the algorithm returns at line 12. So in these cases, the algorithm is correct. In the remaining
case, the algorithm picks a node α which is not l-good at line 10, then it adds some vertices
to the final output and creates a new instance to make a recursive call. Since α is the node
which is not l-good node with minimum height, its children are all l-good. Let the optimal
solution for (I, D) be S∗. Let S := Solve((I, D ∪ F), (T ′, X), l) and let S′ denote the optimal
solution for (I, D ∪ F).

▶ Lemma 18. As the problem is monotone and splittable, we have the following:

(i) S∗ ∩ Yα is a solution for (I, VI \ Yα).

(ii) For all αc a child of α, S∗ ∩ Yαc
is a solution for (I, VI \ Yαc

);

(iii) S∗ \ F is a solution for (I, D ∪ F);

(iv) E′ ∪ S is a solution for (I, D).

Proof.

(i) By the definition of partial instances, S∗ ∪ D is a solution for I. By monotonicity,
S∗ ∪ D ∪ (VI \ Yα) = S∗ ∩ Yα ∪ (VI \ Yα) is also a solution for I. So S∗ ∩ Yα is a solution
for (I, VI \ Yα) according to the definition of partial solution.

(ii) Similarly as above, by monotonicity, S∗ ∪ D ∪ (VI \ Yαc
) = S∗ ∩ Yαc

∪ (VI \ Yαc
) is also

a solution for I. So S∗ ∩ Yαc is a solution for (I, VI \ Yαc).

(iii) By monotonicity, S∗ ∪D∪F is also a solution for I. So S∗ \F is a solution for (I, D∪F).

(iv) We need to use the property that Φ is splittable. By the algorithm, E′ =
⋃

αc∈N−
α

Xαc ∪⋃
αc∈N−

α
Eαc

and F =
⋃

αc∈N−
α

Vαc
. Let X ′ denote ∪αc∈N−

α
Xαc

. To use the property
that Φ is splittable, observe that D ∪ X ′ is a separator. Each Yαc

is an isolated part
(not connected to the remaining graph) in GI [VI \ (D ∪ X ′)]. The remaining part in
GI [VI \ (D ∪ X ′)] is thus isolated and it is VI \ (D ∪ X ′ ∪

⋃
αc∈N−

α
Yαc

) = VI \ (D ∪ F).
Because each Eαc is a solution for (I, VI \ Yαc), and by induction hypothesis, S is a
solution for (I, D ∪ F), we get that Φ is splittable implies X ′ ∪ D ∪ S ∪

⋃
αc∈N−

α
Eαc

=
E′ ∪ D ∪ S is a solution for I. So E′ ∪ S is a solution for (I, D). ◀

By induction we assume that |S| ≤ (1 + (w + 1)/(l + 1))|S′|. The approximation ratio is

|S ∪ E′|
|S∗|

≤
|S| +

∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F | + |S∗ \ F |
.

ISAAC 2023

19:20 FPT Approximation Using Treewidth: CVC, TSS and VDS

(a) T in a tree decomposition
(T, X).

(b) The vertex sets about α
and αc. Dotted part is Yα.

(c) Eαc is added, and F is the
lined part.

Figure 1 Venn diagram of sets defined in Algorithm 1.

Since |S|/|S∗ \ F | ≤ |S|/|S′| ≤ 1 + (w + 1)/(l + 1), we only need to show (
∑

αc∈N−
α

|Eαc
| +

|
⋃

αc∈N−
α

Xαc
|)/|S∗ ∩ F | ≤ 1 + (w + 1)/(l + 1). Notice that by the definition, Yα ⊆ F . Since

α is not l-good, (i) implies that |S∗ ∩ F | ≥ |S∗ ∩ Yα| ≥ l + 1. By (ii), for all αc ∈ N−
α ,

|Eαc
| ≤ |S∗ ∩ Yαc

|. We have∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |

=
∑

αc∈N−
α

|Eαc
|

|S∗ ∩ F |
+

|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |

≤
∑

αc∈N−
α

|Eαc
|∑

αc∈N−
α

|S∗ ∩ Yαc
|

+
|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
(Yαc

’s are disjoint subsets of F)

≤1 +
|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
(By (ii) and the definition of Eαc

)

≤1 +
|
⋃

αc∈N−
α

Xαc |
l + 1 (By |S∗ ∩ F | ≥ l + 1).

In a nice tree decomposition, the only case that |N−
α | > 1 is that α is a join node, however

in this case, the bags of its two children are the same. So |
⋃

αc∈N−
α

Xαc
|/(l + 1) + 1 ≤

(w + 1)/(l + 1) + 1. The approximation ratio follows. Each time we make a recursive call,
the optimal solution size for the current instance decreases by at least 1. It follows that the
algorithm makes at most O(n) recursive calls, so the running time is f(l, w, n)nO(1). And
thus Theorem 14 is proved.

	1 Introduction
	1.1 Overview of our techiniques
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basic Notations
	2.2 Problems
	2.3 Tree Decomposition

	3 Exact Algorithm for CVC
	3.1 Definition of the Tables
	3.1.1 Expected Properties for R_{alpha}
	3.1.2 Recursive Rules for R_{alpha}

	4 Approximation Algorithm for CVC
	4.1 Recursive Rules for R^_{alpha}
	4.2 Theorem 7 Proof Sketch

	5 Approximation algorithms for TSS and VDS
	5.1 The Algorithm Framework

	A Proof Sketch of Theorem 5
	B Proof of Theorem 7
	B.1 Proof of (A)
	B.2 Proof of (B)

	C Proof of Theorem 14

