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Abstract
We study the uniform 2-dimensional vector multiple knapsack (2VMK) problem, a natural
variant of multiple knapsack arising in real-world applications such as virtual machine placement.
The input for 2VMK is a set of items, each associated with a 2-dimensional weight vector and a
positive profit, along with m 2-dimensional bins of uniform (unit) capacity in each dimension. The
goal is to find an assignment of a subset of the items to the bins, such that the total weight of items
assigned to a single bin is at most one in each dimension, and the total profit is maximized.

Our main result is a (1 − ln 2
2 − ε)-approximation algorithm for 2VMK, for every fixed ε > 0,

thus improving the best known ratio of (1 − 1
e

− ε) which follows as a special case from a result of
[Fleischer at al., MOR 2011]. Our algorithm relies on an adaptation of the Round&Approx framework
of [Bansal et al., SICOMP 2010], originally designed for set covering problems, to maximization
problems. The algorithm uses randomized rounding of a configuration-LP solution to assign items
to ≈ m · ln 2 ≈ 0.693 · m of the bins, followed by a reduction to the (1-dimensional) Multiple
Knapsack problem for assigning items to the remaining bins.
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1 Introduction

The knapsack problem and its variants have attracted much attention in the past four
decades, and have been instrumental in the development of approximation algorithms. In this
paper we study a variant of knapsack which uses components of two well studied knapsack
problems: multiple knapsack and 2-dimensional knapsack.

An instance of uniform multiple knapsack consists of a set I of items of non-negative
profits and weights in [0, 1], as well as m uniform (unit size) bins. We seek a subset of
the items of maximal total profit which can be packed in the m bins. An instance of
2-dimensional knapsack is a set I of items, each has a 2-dimensional weight in [0, 1]2, and
a non-negative profit. The objective is to find a subset of the items whose total weight is at
most one in each dimension, such that the total profit is maximized. We study a variant of
uniform multiple knapsack where each bin is a 2-dimensional knapsack, thus generalizing
both problems.
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20:2 Two-Dimensional Vector Multiple Knapsack

Formally, an instance of uniform 2-dimensional multiple knapsack (2VMK) is a
tuple I = (I, w, p,m), where I is a set of items, w : I → [0, 1]2 is a 2-dimensional weight
function, p : I → R≥0 is a profit function, and m is the number of bins. For any k ∈ N, let
[k] = {1, 2, . . . , k}. A solution for the instance (I, w, p,m) is a collection of subsets of items
S1, . . . , Sm ⊆ I such that w(Sb) =

∑
i∈Sb

w(i) ≤ (1, 1) for all b ∈ [m].1 Our objective is to
find a solution S1, . . . , Sm which maximizes the total profit, given by p

(⋃
b∈[m] Sb

)
.

A natural application of 2VMK arises in the cloud computing environment. Consider a
data center consisting of m hosts (physical machines). Each host has an available amount of
processing power (CPU) and limited memory. For simplicity, these amounts can be scaled
to one unit. The data center administrator has a queue of client requests to assign virtual
machines (VMs) to the hosts.2 Each VM has a demand for processing power and memory,
and its execution is associated with some profit. The administrator needs to assign a subset
of the VMs to the hosts, such that the total processing power and memory demands on each
host do not exceed the available amounts, and the profit gained from the VMs is maximized
(see [5] for other optimization objectives in this setting). Another application of 2VMK
comes from spectrum allocation in cognitive radio networks [18].

Our goal is to develop an efficient polynomial-time approximation algorithm for 2VMK.
Let α ∈ (0, 1] be a constant. An algorithm A is an α-approximation algorithm for 2VMK
if for any instance I of 2VMK it returns in polynomial-time a solution of profit at least
α · OPT(I), where OPT(I) is the optimal profit for I. A polynomial-time approximation
scheme (PTAS) is an infinite family {Aε} of (1− ε)-approximation algorithms, one for each
ε > 0. A weaker notion is that of a randomized α-approximation algorithm, where the
algorithm always returns a solution, but the profit is at least α ·OPT(I) with some constant
probability.

As the classic Multiple Knapsack problem admits an efficient PTAS (EPTAS), even
for instances with arbitrary bin capacities [10, 11], and the single bin problem, i.e., 2-
dimensional Knapsack has a PTAS [9], a natural question is whether 2VMK admits a
PTAS as well. By a simple reduction from 2-dimensional vector bin packing (2VBP),
we show that such a PTAS is unlikely to exist.3

▶ Theorem 1. Assuming P ̸= NP there is no PTAS for 2VMK.

Thus, we focus on deriving the best constant factor approximation for the problem. For any
ε > 0, a randomized (1− e−1 − ε) ≈ 0.632-approximation algorithm for 2VMK follows from
a result of [8], as a special case of the separable assignment problem (SAP). Our main
result is an improved approximation ratio for the problem.

▶ Theorem 2. For every fixed ε > 0, there is a randomized
(
1− ln 2

2 − ε
)
≈ 0.653-

approximation algorithm for 2VMK.

1.1 Prior Work
The special case of 2VMK with a single bin, i.e., 2-dimensional Knapsack, admits a PTAS
due to Frieze and Clarke [9]. As shown in [14], an EPTAS for the problem is unlikely to exist.
The first PTAS for Multiple Knapsack was presented by Chekuri and Khanna [6] who

1 We say that (a1, a2) ≤ (b1, b2) if a1 ≤ b1 and a2 ≤ b2.
2 This is also known as virtual machine instantiation [5].
3 We give the proof of Theorem 1 in Section 4.
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also showed the problem is strongly NP-hard. The PTAS was later improved to an EPTAS
by Jansen [10, 11]. For comprehensive surveys of known results on knapsack problems, see,
e.g., [12, 4].

Both Multiple Knapsack and 2VMK are special cases of the Separable Assignment
Problem (SAP) studied in [8]. The input for SAP is a set of items I and m bins. Each
item i ∈ I has a profit pi,j if assigned to bin j ∈ [m]. Each bin j ∈ [m] is associated with a
collection of feasible assignments Fj ⊆ 2I . The feasible assignments are hereditary, that is, if
S ∈ Fj and T ⊆ S then T ∈ Fj for all T ⊆ S. The feasible assignments are given implicitly
via a β-optimization oracle which, given a value function v : I → R≥0 and j ∈ [m], finds a
β-approximate solution for maxS∈Fj

∑
i∈S v(i). A solution for the SAP instance is a tuple

of disjoint sets S1, . . . , Sm ⊆ I such that Sj ∈ Fj for all j ∈ [m]. The objective is to find a
solution S1, . . . , Sm of maximum profit

∑m
j=1

∑
i∈Sj

pi,j . A (1− e−1) · β-approximation for
SAP was given in [8].

Observe that 2VMK can be cast as SAP by setting pi,j = p(i) for every (i, j) ∈ I × [m],
and Fj = {S ⊆ I | w(S) ≤ (1, 1)} for every j ∈ [m]. That is, the profit of item i is p(i)
regardless of the bin to which it is assigned, and the feasible assignments of all bins are simply
all subsets of items which fit into a bin. For every fixed ε > 0, a (1− ε)-optimization oracle
for the bins can be implemented in polynomial time using the PTAS of [9] for 2-dimensional
knapsack. Hence, a (1− e−1 − ε)-approximation for 2VMK follows from the result of [8].

Parameterized algorithms for 2VMK were proposed in [15, 1]. We are not aware of earlier
works which directly study 2VMK from approximation algorithms viewpoint.

1.2 Technical Overview
Our algorithm combines the approximation algorithm of Fleischer et al. [8] with a simple
reduction of 2VMK to (1-dimensional) Multiple Knapsack.

The algorithm of [8] is based on randomized rounding of a configuration-LP solution.
Given an instance I = (I, w, p,m) of 2VMK, let wj(i) denote the weight of item i in the
jth coordinate, for all i ∈ I and j ∈ {1, 2}. Also, given f : I → Rd we use the notation
f(S) =

∑
i∈S f(i) for all S ⊆ I. A configuration of the instance I is C ⊆ I such that

w(C) ≤ (1, 1). Let C(I) be the set of all configurations of the 2VMK instance I. For any
i ∈ I, let C(I, i) be the set of configurations containing item i. We often omit I and use C
and C(i) when the instance I is known by context. Observe that a solution for the instance
I is a tuple of m configurations.

Given a 2VMK instance I = (I, w, p,m), let xC ∈ {0, 1} be an indicator for the selection
of configuration C ∈ C = C(I) for the solution. In the configuration-LP relaxation of the
problem, we have xC ≥ 0 ∀C ∈ C. Our algorithm initially solves the following.

(C-LP) max
∑
C∈C

∑
i∈C

xC · p(i)

subject to :
∑
C∈C

xC ≤ m (1)∑
C∈C(i)

xC ≤ 1 ∀i ∈ I (2)

xC ≥ 0 ∀C ∈ C

The next lemma follows from a result of [8].

▶ Lemma 3. There is a PTAS for C-LP.

ISAAC 2023
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Let x be a solution for C-LP. We say that a random configuration R ∈ C is distributed by x
if Pr[R = C] = xC

m .4
To obtain a

((
1− e−1) · (1− ε))-approximation for 2VMK, the algorithm of [8] finds a

(1− ε)-approximate solution x for C-LP, and then independently samples m configuration
R1, . . . , Rm ∈ C, where each of the configurations Rj is distributed by x. The returned
solution is the sampled configurations R1, . . . , Rm. For simplicity of this informal overview,
assume that

∑
C∈C

∑
i∈C xC · p(i) ≈ OPT(I).

It can be shown that

E [p(R1 ∪ . . . ∪Rj)] ≈
(

1− e− j
m

)
·
∑
C∈C

∑
i∈C

xC · p(i) ≈
(

1− e− j
m

)
·OPT(I) (3)

for all j ∈ [m], and in particular E [p(R1 ∪ . . . ∪Rm)] ≈
(
1− e−1) ·OPT(I). Define

qj = E [p(R1 ∪ . . . ∪Rj)− p(R1 ∪ . . . ∪Rj−1)]

to be the marginal expected profit of the jth sampled configuration. By (3) we have

qj ≈
((

1− e− j
m

)
−
(

1− e− j−1
m

))
·OPT(I) ≈ 1

m
· e− j

m ·OPT(I), (4)

where the last estimation follows from e− j−1
m ≈ e− j

m + 1
m · e

− j
m by a Taylor expansion of ex

at x = − j
m . Equation (4) implies that the marginal profit from each configuration decreases

as the sampling process proceeds. The first sampled configuration has a marginal profit of
≈ 1

m ·OPT(I), while the marginal profit of the mth configuration is ≈ e−1 · 1
m ·OPT(I) ≈

0.367 · 1
m ·OPT(I).

We note that a simple reduction to Multiple Knapsack can be used to derive a( 1
2 − ε

)
-approximation for 2VMK. An instance J of uniform multiple knapsack (MK)

is a tuple J = (I, w, p,m), where I is a set of items, w : I → [0, 1] is a weight function,
p : I → R≥0 is a profit function, and m is the number of (unit size) bins. A configuration
of J is a subset of items C ⊆ I satisfying w(C) ≤ 1. We use C(J ) to denote the set of all
configurations of J , and sometimes omit J from this notation if it is known by context. A
feasible solution for J is a tuple of m configurations C1, . . . , Cm ∈ C(J ). The objective is
to find a solution C1, . . . Cm for which the total profit, given by p(

⋃
t∈[m] Ct), is maximized.

We note that uniform MK can be viewed as uniform 1-dimensional vector multiple
knapsack.

Let I = (I, w, p,m) be a 2VMK instance, and define an MK instance J = (I, w′, p,m)
where w′(i) = max {w1(i), w2(i)} for every i ∈ I. It can be easily shown that C(J ) ⊆ C(I),
i.e., a configuration of the MK instance is a configuration of the 2VMK instance. Furthermore,
every C ∈ C(I) can be partitioned into C1, C2 ∈ C(J ) (possibly with C1 = ∅). That is,
every configuration of the 2VMK instance can be split into two configurations of the MK
instance. Therefore OPT(J ) ≥ 1

2 · OPT(I), as we can take the optimal solution of the
2VMK instance I, convert its configurations to 2m configurations of the MK instance J ,
and select the m most profitable ones. As MK admits a PTAS [6], we can find a (1 − ε)-
approximate solution for J in polynomial time. This leads to the following algorithm, to
which we refer as the reduction algorithm. Given the instance I, return a (1− ε)-approximate
solution for J . The above arguments can be used to show that the reduction algorithm is a( 1

2 − ε
)
-approximation algorithm for 2VMK.

4 W.l.o.g we assume that ∥x∥ =
∑

C∈C xC = m.
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While this simple
( 1

2 − ε
)
-approximation is inferior to the

(
1− e−1 − ε

)
-approximation

of Fleischer et al. [8], it is still useful for obtaining a better approximation for 2VMK, due to
the following property. Let T ⊆ I be a random subset of the items such that Pr(i ∈ T ) ≤ α
for all i ∈ I, and T satisfies some concentration bounds. Then, if the reduction algorithm is
executed with the 2VMK instance (I \ T, p, w, (1− α)m), it returns with high probability a
solution of profit at least 1

2 · (1− α) ·OPT(I). In other words, if every item is removed from
the instance with probability at most α, then the algorithm can find a packing into (1−α) ·m
bins that yields 1

2 · (1−α) of the original profit OPT(I). This property resembles the notion
of subset oblivious algorithms used by [2] as part of their Round&Approx framework for set
covering problems. Indeed, we use a subset oblivious algorithm of [2] in our proof of this
property.

This suggests the following hybrid algorithm. First, solve C-LP and sample ℓ ≈ αm

configuration R1, . . . , Rℓ distributed by the C-LP solution x. Subsequently, define T =⋃ℓ
j=1 Rj , and use the reduction algorithm to find a solution S for the instance (I \T,w, p, (1−

α)m). The algorithm returns R1, . . . , Rℓ together with the m− ℓ = (1− α)m configurations
of S. It can be shown that Pr(i ∈ T ) ≤ α for all T , and that T satisfies the required
concentration bounds; therefore, the expected profit of S is ≈ 1

2 · (1− α) ·OPT(I). Since S
uses (1−α)m configurations, this can be interpreted as a residual profit of 1

2·m ·OPT(I) per
configuration. This property suggests how to select α. We set the value of α such that the
marginal profit of the (αm)-th sampled configuration is equal to 1

2m ·OPT(I), the marginal
profit of a configuration in S. By (4), this is realized for α = ln 2.

We note that this hybrid approach is similar to the Round&Approx framework of Bansal
et al. [2], which solves set covering problems by sampling random configurations based on a
solution for a configuration-LP, followed by a subset oblivious algorithm which completes
the solution. Our algorithm can be viewed as an adaptation of the framework of [2] to
knapsack variants. To the best of our knowledge, this is the first application of ideas from
[2] to maximization problems.

Our proofs rely on a dimension-free concentration bound for self-bounding functions due
to Boucheron et al. [3] (see Section 3.1 for details). While our approach is conceptually similar
to the Round&Approx of [2], which uses McDiarmid’s bound [16] to show concentration, it
appears that McDiarmid’s bound does not suffice to guarantee concentration of the profits.
The bound of Boucheron et al. was previously used by Vondrák to show concentration
bounds for submodular functions [20]. We are not aware of other applications of this bound
in the context of combinatorial optimization.

1.3 Organization

In Section 2 we give some definitions and preliminary results. Section 3 presents our
approximation algorithm for 2VMK, and in Section 4 we give a proof of APX-hardness
(stated in Theorem 1). We conclude in Section 5 with a summary and some directions for
future work. Due to space constraints, some of the proofs are given in the full version of the
paper [7].

2 Preliminaries

For any function f : I → Rd where d ∈ {1, 2} we use the notation f(A) =
∑
i∈A f(i). We

note that in both MK and 2VMK an item selected for the solution may appear in more than
one configuration; however, the profit of each selected item is counted exactly once.

ISAAC 2023
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Let I be an instance of either 2VMK or MK. We say that a subset of items S ⊆ I can be
packed into q bins of I, for some 1 ≤ q ≤ m, if there are configurations C1, . . . , Cq ∈ C(I)
such that ∪qt=1Ct = S.

Finally, given n ∈ N and an arbitrary set X , define Xn to be the set of all vectors of
dimension n over X ; that is, Xn = {(x1, . . . , xn) | ∀t ∈ {1, . . . , n} : xt ∈ X}.

2.1 Associated Instances
Our approximation algorithm for 2VMK uses as a subroutine an approximation algorithm
for MK. To this end, we define for a given 2VMK instance an associated MK instance.
Formally, given a 2VMK instance I = (I, w, p,m), we define the k-associated MK instance
I ′ = (I ′, w′, p′,m′) as follows. The set of items is I ′ = I. The item weights are given by
w′(i) = max{w1(i), w2(i)}, for 1 ≤ i ≤ n; the profit of item i is p′(i) = p(i), and the number
of (unit size) bins is m′ = k ·m. The next result will be useful in analyzing our algorithm for
2VMK.

▶ Lemma 4. Let I = (I, w, p,m) be a 2VMK instance, and I ′ = (I ′, w′, p′,m′) its k-
associated instance. Then, any set S ⊆ I that can be packed in q bins of I, can be packed in
2 · q bins of I ′.

2.2 Restriction to ε-Nice Instances
The correctness proofs for our approach require the number of bins m to be large, and the
maximum profit for a single configuration to be relatively small. These properties are essential
for the concentration bounds that we use to ensure success with high probability. We show
that for instances in which m is small (i.e., bounded by some constant), a simple reduction to
d-dimensional knapsack with a matroid constraint yields a PTAS. This allows us to focus on
instances with a large number of bins. Furthermore, for such instances we use a simple greedy
pre-processing to ensure bounded maximal profit for a single configuration. Thus, we restrict
our attention to the following subclass of ε-nice instances. Let exp[k](x) = exp(exp[k−1](x)),
for any integer k ≥ 2, and exp[1](x) = exp(x).

▶ Definition 5. Given ε ∈ (0, 0.01), an instance I = (I, w, p,m) is ε-nice if m ≥ exp[3](ε−30)
and p(C) ≤ ε20 ·OPT(I) for every C ∈ C.5

We show that efficient approximation for 2VMK on ε-nice instances yields almost the
same approximation ratio for general instances.

▶ Lemma 6. For any ε ∈ (0, 0.01) and β ∈ (0, 1 − ε), if there is polynomial-time β-
approximation algorithm for 2VMK on ε-nice instances, then there is a polynomial-time
(1− ε) · β-approximation algorithm for 2VMK.

2.3 Two-dimensional Vector Bin Packing
An instance I of the 2-Dimensional Vector Bin Packing (2VBP) problem is a pair
(I, w), where I is a set of n items and w : I → [0, 1]2 is a two-dimensional weight function.
A solution for the instance (I, w) is a collection of subsets of items S1, . . . , Sm ⊆ I such that
w(Sb) =

∑
i∈Sb

w(i) ≤ (1, 1) for all b = 1, . . . ,m, and
⋃m
b=1 Sb = I. The size of the solution

is m. Our objective is to find a solution of minimum size.

5 We did not attempt to optimize the constants.



T. Cohen, A. Kulik, and H. Shachnai 20:7

An asymptotic polynomial-time approximation scheme (APTAS) is an infinite family
{Aε} of asymptotic (1− ε)-approximation algorithms, one for each ε > 0. Ray [17] showed
that 2VBP does not admit an asymptotic approximation ratio better than 600

599 , assuming
P ̸= NP ; thus, 2VBP does not admit an APTAS.

3 Approximation Algorithm for ε-Nice Instances

In this section we present an algorithm for ε-nice 2VMK instances. Our algorithm proceeds
by initially obtaining an approximate solution x for C-LP (as given in Section 1.2), and
then forming a partial solution by sampling 1 ≤ ℓ ≤ m configurations. The remaining
(m− ℓ) configurations are derived by solving the associated MK instance for the remaining
(unassigned) items. The pseudocode of our algorithm is given in Algorithm 1.

Algorithm 1 Approximation Algorithm for ε-nice instances.

configuration : ε ∈ (0, 0.01).
input : An ε-nice instance I = (I, w, p,m) of 2VMK.
output : A solution for the instance I.

1: Find a (1− ε)-approximate solution x for C-LP; let x∗ be its value.
2: for t = 1 to ℓ = ⌈m · ln 2⌉ do

Sample a random configuration Rt distributed by x
end

3: S ← I \ (∪t∈{1,...,l}Rt)
4: Let I ′ be the 1-associated MK instance of the 2VMK instance (S,w, p,m− ℓ).
5: Find a (1− ε)-approximate solution for the MK instance I ′; denote the solution

by Rℓ+1, . . . , Rm.
6: Return (R1, . . . , Rm).

Note that, by Lemma 3, Step 1 of Algorithm 1 can be implemented in polynomial time,
for any fixed ε > 0. Let ε ∈ (0, 0.01). and I be an ε-nice 2-VMK instance. Consider the
execution of Algorithm 1 configured by ε with I as its input. Let OPT be the set of items
selected by an optimal solution for I, and T =

⋃
t∈{1,...,ℓ} Rt the items selected in Step 2

in Algorithm 1. We use the next lemmas in the analysis of the algorithm. Lemma 7 lower
bounds the expected profit of R1, . . . , Rℓ, the configurations sampled in Step 2 of Algorithm 1.
Lemma 8 gives a lower bound on the profit of the MK solution Rℓ+1, . . . , Rm found in Step 5
of Algorithm 1. Lemma 9 lower bounds the profit of the solution returned by the algorithm
using the bounds in Lemmas 7 and 8, whose proofs are given in Sections 3.2 and 3.3.

▶ Lemma 7. Pr [p(T ) ≤ (1− e−α − 2 · ε) · p(OPT)] ≤ exp
(
−ε−7).

▶ Lemma 8. Pr
[
p(
⋃m
t=ℓ+1 Rt) ≤

( 1−α
2 − 3 · ε

)
· p(OPT)

]
≤ 1

4 .

▶ Lemma 9. Algorithm 1 returns a solution of profit at least
(
1− ln 2

2 − 5 · ε
)
· p(OPT) with

probability at least 1
2 .

For an event A, let Ā denote the complementary event.

Proof of Lemma 9. Let A be the event “p (T ) > (1−e−α−2 ·ε) ·p(OPT)”, and B the event
“p
(⋃m

t=ℓ+1 Rt
)
>
( 1−α

2 − 3ε
)
· p(OPT)”. If both A and B occur then Algorithm 1 returns a

solution of profit at least

p(T ) + p

(
m⋃

t=ℓ+1

Rt

)
≥
(

1 − e−α − 2ε + 1 − α

2 − 3ε
)

p(OPT) =
(

1 − ln 2
2 − 5ε

)
p(OPT).

ISAAC 2023



20:8 Two-Dimensional Vector Multiple Knapsack

The inequality holds since both A and B occur. The equality holds since α = ln 2. The
probability that A and B occur is given by

Pr [A ∩B] = 1− Pr
[
Ā ∪ B̄

]
≥ 1−

(
Pr
[
Ā
]

+ Pr
[
B̄
])
≥ 1− exp

(
−ε−7)− 1

4 ≥
1
2

The first inequality follows from the union bound. The second inequality follows from
Lemmas 7 and 8, and since ε < 0.01. ◀

3.1 Self-Bounding Functions
Lemmas 7 and 8 we use a concentration bound for self-bounding functions.

▶ Definition 10. A non-negative function f : Xn → R≥0 is called self-bounding if there exist
n functions f1, . . . , fn : Xn−1 → R such that for all x = (x1, . . . , xn) ∈ Xn,

0 ≤ f(x)− ft(x(t)) ≤ 1, and
n∑
t=1

(
f(x)− ft(x(t))

)
≤ f(x),

where x(t) = (x1, . . . , xt−1, xt+1, . . . , xn) ∈ Xn−1 is obtained by dropping the t-th component
of x.

The next result is shown in [3].

▶ Lemma 11. Let f : Xn → R≥0 be a self-bounding function and let X1, . . . , Xn ∈ X be
independent random variables. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr[Z ≥ E[Z] + t] ≤ exp

(
− t2

2·E[Z]+ t
3

)
, for every t ≥ 0.

2. Pr[Z ≤ E[Z]− t] ≤ exp
(
− t2

2·E[Z]

)
, for every 0 < t < E[Z].

We use the following construction of self-bounding functions several times in the paper.
Recall that C = C(I).

▶ Lemma 12. Let I = (I, w, p,m) be a dVMK instance, and h : I → R≥0. Define f : Cℓ → R

by f(C1, . . . , Cℓ) =
h(
⋃

i∈[ℓ]
Ci)

η , where η ≥ maxC∈C h(C). Then f is a self-bounding function.

3.2 Profit of the Sampled Configurations
In this section we prove Lemma 7; namely, we show that with high probability the profit
p(∪t∈{1,...,ℓ}Rt) is sufficiently large. We first prove the next lemma.

▶ Lemma 13. E[p(T )] ≥ (1− e−α − ε) · p(OPT).

Proof. Let C(i) = C(I, i) be the set of configurations containing item i ∈ I, then for every
i ∈ I, the probability that i is not contained in the sampled configurations is

Pr[i /∈ T ] = Pr[i /∈ ∪t∈{1,...,ℓ}Rt] =
∏

t∈{1,...,ℓ}

Pr[i /∈ Rt] =

1−
∑

C∈C(i)

xC
m

ℓ

,

where third equality holds since Pr[i ∈ Rt] =
∑
C∈C(i)

xC

m , for all t ∈ {1, . . . , ℓ}. Hence,

Pr[i /∈ T ] =

1 −
∑

C∈C(i)

xC

m

ℓ

≤

1 −
∑

C∈C(i)

xC

m

m·α·

∑
C∈C(i)

xC∑
C∈C(i)

xC

≤ exp

−α ·
∑

C∈C(i)

xC

 .
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The first inequality holds since ℓ ≥ α ·m. The second inequality holds by (1− 1
x )x ≤ e−1 for

x ≥ 1. Thus, we have

Pr[i ∈ T ] = 1− Pr[i /∈ T ] ≥

1− exp

−α · ∑
C∈C(i)

xC

 ≥ ∑
C∈C(i)

xC · (1− e−α)

For the second inequality, we used 1− e−x·α ≥ x · (1− e−α) for x, α ∈ [0, 1]. Therefore,

E[p(T )] =
∑
i∈I

p(i) · Pr[i ∈ T ]

≥
∑
i∈I

p(i) ·
∑

C∈C(i)

xC · (1− e−α)

= (1− e−α) ·
∑
C∈C

∑
i∈C

xC · p(i)

= (1− e−α) · x∗

≥ (1− e−α − ε) · p(OPT).

The third equality follows from our definition of x∗ as the value of the solution x found in
Step 1 of Algorithm 1. The second inequality holds since x∗ ≥ (1− ε) · p(OPT). ◀

Proof of Lemma 7. Define f : Cℓ → R by f(C1, . . . , Cℓ) =
p(
⋃

t∈{1,...,ℓ}
Ct)

ε10·p(OPT) As the instance
I is ε-nice, we have that ε10 · p(OPT) ≥ maxC∈C p(C). By Lemma 12, f is a self-bounding
function. Hence, by Lemma 13 we have,

Pr
[
p(T ) ≤ (1− e−α − 2 · ε) · p(OPT)

]
≤ Pr

[
p(T )

ϵ10 · p(OPT ) ≤
E[p(T )]

ϵ10 · p(OPT) −
ε · p(OPT)
ϵ10 · p(OPT)

]
= Pr

[
f(R1, . . . , Rℓ) ≤ E[f(R1, . . . , Rℓ)]− ε−9]

≤ exp
(
− ε−18

2 · E[f(R1, . . . , Rℓ)]

)

≤ exp

− ε−18

2 · p(OPT)
ϵ10·p(OPT)

 ≤ exp
(
−ε−7) .

The first equality holds by the definition of f . The second inequality follows from Lemma 11,
by taking t = ε−9. The third inequality holds since f(R1, . . . , Rℓ) ≤ p(OPT)

ε10·p(OPT) , as R1, . . . , Rℓ
along with additional m− ℓ empty configurations is a solution for I. The fourth inequality
holds since 2 · ε ≤ 1. ◀

3.3 The Solution for the Residual Items
In this section we prove Lemma 8. Specifically, we show that the profit of the solution for
the MK instance constructed in Step 4 of Algorithm 1 is sufficiently high. Since we obtain a
(1− ε)-approximate solution for the MK instance I ′, we only need to derive a lower bound
for OPT(I ′). To this end, we show that there exists a set Q ⊆ OPT, such that the set Q \ T
has sufficiently high profit p(Q \ T ), and Q \ T can be almost entirely packed in twice the
number of remaining bins. We choose among these bins the most profitable ones to obtain
the lower bound. In our analysis, we use the notion of subset-obliviousness, introduced
in [2]. The following is a simplified version of a definition given in [2] w.r.t. the bin packing
(BP) problem. Let BP-OPT(I, w) denote the size of an optimal solution for a BP instance
I = (I, w).
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▶ Definition 14. Let ρ > 1. We say that Bin Packing is ρ-subset oblivious if, for any fixed
ε > 0, there exist k, ψ, δ (possibly depending on ε) such that, for any BP instance I = (I, w),
there exist functions g1, . . . , gk : 2I → R≥0 which satisfy the following.

(i) gt(C) ≤ ψ for any C ∈ C(I) and t ∈ {1, . . . , k};
(ii) BP-OPT(I, w) ≥ maxt∈{1,...,k} gt(I);
(iii) BP-OPT(S,w) ≤ ρ ·maxt∈{1,...,k} gt(S) + ε · BP-OPT(I, w) + δ, for all S ⊆ I.

We refer to the values k, ψ and δ as the (ρ, ε)-subset oblivious parameters of Bin Packing,
and the functions g1, . . . , gk as the (ρ, ε)-subset oblivious functions of I.

The next lemma follows from a result of [2].
▶ Lemma 15. For any fixed ε > 0, Bin Packing is (1 + ε)-subset oblivious, and the (1 + ε, ε)
parameters k, δ, ψ satisfy k ≤ exp[3](ε−1), δ ≤ 4

ε4 , and ψ ≤ 1.
Let J = (OPT, w′, p, 2 ·m) be the 2-associated MK instance of IOPT = (OPT, w, p,m). By
Lemma 15, Bin Packing is (1 + ε2)-subset oblivious. Thus, there exist k, ψ, δ which are
(1 + ε2, ε2) subset oblivious parameters of Bin Packing. Let g1, . . . , gk be the (1 + ε2, ε2)
subset-oblivious functions of the Bin Packing instance (OPT, w′). By Lemma 15, the values k,
ψ and δ satisfy, k ≤ exp[3](ε−2), δ ≤ 4

ε8 , ψ ≤ 1. Define α′ = ⌈α·m⌉
m , then as α′ ·m−α ·m ≤ 1,

we have that α′ − α ≤ 1
m ≤ ε.

▶ Lemma 16. There exists Q ⊆ OPT which satisfies the following.
1. Pr

[
gt(Q \ T ) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ exp

(
− ε

21·m
ψ2

)
, for all t ∈

{1, . . . , k}.
2. Pr [p(Q \ T ) ≤ (1− α′ − ε) · p(OPT)] ≤ exp

(
−ε−7).

Proof. To show the existence of the set Q satisfying the properties in the lemma, consider
first the following optimization problem. Given an optimal solution OPT for a 2VMK
instance I, find a subset of items Q ∈ OPT for which E [p(Q \ T )] is maximized, under the
constraint that E [gt(Q \ T )] ≤ (1−α′)gt(OPT) for all t ∈ [k]. Let yi ∈ {0, 1} be an indicator
for the inclusion of item i ∈ OPT in Q. We can formulate an integer program for the above
optimization problem. In the following LP relaxation we have 0 ≤ yi ≤ 1, ∀ i ∈ OPT.

(Q-LP) max
∑

i∈OPT
yi · p(i) · Pr[i /∈ T ]

s.t.
∑

i∈OPT
yi · Pr[i /∈ T ] · gt(i) ≤ (1− α′)gt(OPT) ∀t ∈ {1, . . . , k} (5)

0 ≤ yi ≤ 1 ∀i ∈ OPT

Let y∗ be a basic optimal solution for Q-LP. We define

Q = {i ∈ Q | y∗
i > 0} (6)

to be the set of all items with positive entries in y∗. We show that the set Q defined in (6)
satisfies E [p(Q \ T )] ≥ (1− α′)p(OPT). To this end, we prove the next claim.
▷ Claim 17.

∑
i∈OPT y

∗
i · p(i) · Pr[i /∈ T ] ≥ (1− α′) · p(OPT).

Proof. For every i ∈ OPT, the following holds:

Pr[i ∈ T ] = Pr [∃t ∈ {1, . . . , ℓ}, i ∈ Rt]

≤
∑

t∈{1,...,ℓ}

Pr [i ∈ Rt]

=
∑

t∈{1,...,ℓ}

∑
C∈C(i)

xC
m
≤

∑
t∈{1,...,ℓ}

1
m

= ℓ

m
.
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Consider the vector y′ = (y′
1, . . . , y

′
|OPT|) where y′

i = 1− α′

Pr[i /∈ T ] for every i ∈ OPT. Then y′

is a feasible solution for Q-LP since the following holds:
1. For every i ∈ OPT, y′

i = 1−α′

Pr[i/∈T ] satisfies the following,

0 ≤ 1− α′

Pr[i /∈ T ] = 1− α′

1− Pr[i ∈ T ] ≤
1− α′

1− ℓ
m

= 1− α′

1− α′·m
m

= 1.

Therefore 0 ≤ y′
i ≤ 1, for all i ∈ OPT.

2. For every t ∈ {1, . . . , k}, the following holds:∑
i∈OPT

y′
i · Pr[i /∈ T ] · gt(i) = (1− α′) ·

∑
i∈OPT

gt(i) = (1− α′) · gt(OPT).

The objective value
∑
i∈OPT y

′
i · p(i) · Pr[i /∈ T ] satisfies:∑

i∈OPT
y′
i · p(i) · Pr[i /∈ T ] =

∑
i∈OPT

(1− α′) · p(i) = (1− α′) · p(OPT).

This implies that the objective value of an optimal solution for Q-LP is at least (1− α′) ·
p(OPT). Hence,

∑
i∈OPT y

∗
i · p(i) · Pr[i /∈ T ] ≥ (1− α′) · p(OPT). ◁

▷ Claim 18. The subset Q satisfies the following properties.
1. E [gt(Q \ T )] ≤ (1− α′)gt(OPT) + k · ψ, for every t ∈ {1, . . . , k}.
2. E [p(Q \ T )] ≥ (1− α′)p(OPT).

Proof. The basic optimal solution y∗ has at least |OPT| tight constraints. Therefore, at least
|OPT| − k constraints of the form yi ≥ 0 or yi ≤ 1 are tight, i.e., we have at least |OPT| − k
variables yi with tight constraint. Let B = {i ∈ OPT | 0 < y∗

i < 1} the set of fractional
variables, then |B| ≤ k. For every t ∈ {1, . . . , k}, the following holds:

E [gt(Q \ T )] =
∑
i∈Q

1 · Pr[i /∈ T ] · gt(i)

=
∑
i∈B

Pr[i /∈ T ] · gt(i) +
∑
i∈Q\B

y∗
i · Pr[i /∈ T ] · gt(i)

≤ k · ψ +
∑
i∈Q\B

y∗
i · Pr[i /∈ T ] · gt(i)

≤ (1− α′) · gt(OPT) + k · ψ.

The second equality holds since y∗
i = 1, for every i ∈ Q \B. The first inequality holds since

C = {i} ∈ C(J ) is a configuration, for every i ∈ B. Therefore, gt(C) ≤ ψ, and |B| ≤ k. The
second inequality follows from the constraints of Q-LP. Furthermore,

E [p(Q \ T )] =
∑
i∈Q

1 · p(i) · Pr[i /∈ T ] ≥
∑
i∈Q

y∗
i · p(i) · Pr[i /∈ T ] ≥ (1− α′) · p(OPT).

The first inequality holds since y∗
i ≤ 1, for every i ∈ Q. The second inequality follows from

Claim 17. ◁
We now show that the set Q defined in (6) satisfies properties 1. and 2. in the lemma.

▷ Claim 19. For every t ∈ {1, . . . , k},

Pr
[
gt (Q \ T ) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ exp

(
−ε

21 ·m
ψ2

)
.
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Proof. Let t ∈ {1, . . . , k}. Define q : C(I)→ C(IOPT) by q(C) = C ∩Q for every C ∈ C(I).
Also, define f : Cℓ → R by

f(C1, . . . , Cℓ) =
gt

(⋃
r∈{1,...,ℓ} q(Cr)

)
2 · ψ

for every (C1, . . . , Cℓ) ∈ Cℓ, where C = C(I). Since q(Cr) ∈ C(IOPT), for every r ∈
{1, . . . , ℓ}, by Lemma 4, there exists C1, C2 ∈ J , such that C1 ∪ C2 = q(Cr). Thus,
2 ·ψ ≥ gt(C1) + gt(C2) ≥ gt(q(C)). By Lemma 12, f is self-bounding function. We note that

E [gt(T ∩Q)] ≤ E [gt(OPT)] ≤ 2 ·m · ψ.

The first inequality holds since T ∩ Q ⊆ Q ⊆ OPT. By Lemma 4, there exist 2 · m
configurations in C(J ), whose union is OPT, and each configuration C ∈ C(J ) satisfies
gt(C) ≤ ψ; thus, the second inequality holds. Hence, we have

Pr
[
gt(Q \ T ) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ Pr

[
gt(Q \ T ) ≥ E [gt(Q \ T )] + ε10 ·m

]
= Pr

[
gt(T ∩Q)

2 · ψ ≤ E
[
gt(T ∩Q)

2 · ψ

]
− ε10 ·m

2 · ψ

]
= Pr

[
f(R1, . . . , Rℓ) ≤ E [f(R1, . . . , Rℓ)]−

ε10 ·m
2 · ψ

]
.

The first inequality holds by Claim 18. The first equality holds since g(Q\T ) = g(Q)−g(Q∩T ).
Thus,

Pr
[
gt(Q \ T ) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ Pr

[
f(R1, . . . , Rℓ) ≤ E [f(R1, . . . , Rℓ)]−

ε10 ·m
2 · ψ

]

≤ exp

−
(
ε10·m

2·ψ

)2

2 · E[f(R1, . . . , Rℓ)]

 ≤ exp
(
− ε20 ·m2

2 · 2m · 4 · ψ2

)
≤ exp

(
−ε

21 ·m
ψ2

)
.

For the first inequality we used Lemma 11 with t = ε10·m
2·ψ . The second inequality holds since

E [f(R1, . . . , Rℓ)] = E[gt(T∩Q)]
2·ψ ≤ 2 ·m. The third inequality holds since ε · 16 ≤ 1. ◁

▷ Claim 20. Pr [p(Q \ T ) ≤ (1− α′ − ε) · p(OPT)] ≤ exp
(
−ε−7).

Proof of Claim 20. Let p̃ : I → R≥0 such that p̃(i) = p(i) for i ∈ Q, and p̃(i) = 0 for i /∈ Q.
Define f : Cℓ → R by

f(C1, . . . , Cℓ) =
p̃(
⋃
i∈[ℓ] Ci)

ε10 · p(OPT)

for every (C1, . . . , Cℓ) ∈ Cℓ, where C = C(I). Since the instance I is ε-nice,

ε10 · p(OPT) ≥ max
C∈C(I)

p(C) ≥ max
C∈C(I)

p̃(C).
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Therefore, by Lemma 12, f is self bounding function. Now, we can use Lemma 11 and get
the following.

Pr [p(Q \ T ) ≤ (1− α′) · p(OPT)− ε · p(OPT)]
≤ Pr [p(Q \ T ) ≤ E [p(Q \ T )]− ε · p(OPT)]
= Pr [p̃(T ) ≥ E [p̃(T )] + ε · p(OPT)]

= Pr
[

p̃(T )
ε10 · p(OPT) ≥ E

[
p̃(T )

ε10 · p(OPT)

]
+ ε−9

]
= Pr

[
f(R1, . . . , Rℓ) ≥ E [f(R1, . . . , Rℓ)] + ε−9] .

The first inequality holds by Claim 18. The first equality follows from subtracting p(Q) for
both sides and using p(Q \ T ) = p(Q)− p(Q ∩ T ). Thus,

Pr [p(Q \ T ) ≤ (1− α′) · p(OPT)− ε · p(OPT)]
≤ Pr

[
f(R1, . . . , Rℓ) ≥ E [f(R1, . . . , Rℓ)] + ε−9]

≤ exp
(
− ε−18

2 · E[f(R1, . . . , Rℓ)] + ε−9

3

)

≤ exp

− ε−18

2 · p(OPT)
ε10·p(OPT) + ε−9

3


≤ exp

(
−ε−7) .

The first inequality follows from using Lemma 11 with t = ε−9. In the second inequality we
used the inequality E

[
p̃(T )

ε10·p(OPT)

]
≤ p(OPT)

ε10·p(OPT) . The third inequality holds since ε−10 ≥ ε−9

3
and ε · 3 ≤ 1. ◁

By Claim 19 and Claim 20, we have the statement of the lemma. ◀

Proof of Lemma 8. Let Q be the set defined in Lemma 16, and let Ft be the event “gt(Q \
T ) ≤ (1 − α′) · gt(S) + k · ψ + ε10 ·m”, for every t ∈ {1, . . . , k}. Also, let Fp be the event
“p(Q \ T ) ≥ (1− α′ − ε) · p(OPT)”. By Lemma 16, the following holds:
1. Pr[Ft] ≥ 1− exp(− ε

21·m
ψ2 ), for every t ∈ {1, . . . , k}.

2. Pr[Fp] ≥ 1− exp(−ε−7).
Therefore, by the union bound, we have

Pr

Fp ∩ ⋂
t∈{0,...,k}

Ft

 ≥ 1−

exp(−ε−7) +
∑

t∈{0,...,k}

exp
(
−ε

21 ·m
ψ2

)
= 1− exp(−ε−7)− k · exp

(
−ε

21 ·m
ψ2

)
≥ 3

4 .

The second inequality holds since k ≤ exp[3](ε−2), ψ ≤ 1, and m ≥ exp[3](ε−30).

▷ Claim 21. Assuming that Fp ∩
⋂
t∈{1,...,k} Ft occurs,

BP-OPT(Q \ T,w′) ≤
(
2 · (1− α′) + 6 · ε2) ·m.

Proof. We note that
max

t∈{1,...,k}
gt(Q \ T ) ≤ (1− α′) · max

t∈{1,...,k}
{gt(OPT)}+ k · ψ + ε10 ·m

≤ (1− α′) · BP-OPT(OPT, w′) + k · ψ + ε10 ·m
≤
(
2 · (1− α′) + ε10) ·m+ k · ψ.
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The first inequality holds since
⋂
t∈{1,...,k} Ft occurs. The second inequality holds since

g1, . . . , gk are the (1 + ε2, ε2)-subset oblivious functions of (OPT, w′). The third inequality
holds since there exist m configurations in C(I) whose union is OPT. Therefore, by Lemma 4,
there exist in C(J ) 2 ·m configurations whose union is OPT. Thus, BP-OPT(OPT, w′) ≤ 2 ·m.
We have that

BP-OPT(Q \ T,w′) ≤ (1 + ε2) · max
t∈{1,...,k}

{gt(Q \ T )}+ ε2 · BP-OPT(OPT, w′) + δ

≤ (1 + ε2) ·
((

2 · (1− α′) + ε10) ·m+ k · ψ
)

+ ε2 · 2 ·m+ δ

≤
(
2 · (1− α′) + 5 · ε2) ·m+ 2 · k · ψ + δ

≤
(
2 · (1− α′) + 5 · ε2) ·m+ 2 · exp[3](ε−2) + 4

ε8

≤
(
2 · (1− α′) + 6 · ε2) ·m.

The first inequality follows from Definition 14. The second inequality follows from Lemma 4.
The fourth inequality holds since k ≤ exp[3](ε−2) and δ ≤ 4

ε8 . The fifth inequality holds since
ε2 ·m ≥ 2 · exp[3](ε−2) + 4

ε8 . ◁

By Claim 21, there exist
(
2 · (1− α′) + 6 · ε2) · m configurations in C(J ) whose union is

Q \ T . Among these configurations, we choose the (1− α′) ·m most profitable. Let R be the
items chosen in these configurations. Then,

p(R) ≥ (1− α′) ·m
(2 · (1− α′) + 6 · ε2) ·m · p(Q \ T )

≥ (1− α′) ·m
(2 · (1− α′) + 6 · ε2) ·m · (1− α

′ − ε) · p(OPT)

= 1− α′

2 · (1− α′) + 6 · ε2 · (1− α
′ − ε) · p(OPT)

≥ 1− α′ − ε
2 + ε

· p(OPT) ≥
(

1− α− 2ε
2 − ε

4

)
· p(OPT) ≥

(
1− α

2 − 2 · ε
)
· p(OPT).

The third inequality holds since 6·ε2

1−α′ ≤ ε. The fourth inequality follows from

1− α′ − ε
2 + ε

≥ 1− α′ − ε
2 − (1− α′ − ε) · ε

4 ≥ 1− α′ − ε
2 − ε

4 ,

and by using α′ ≤ α+ ε. Therefore, with probability at least 3
4 , the optimal profit of the MK

instance (Q \ T,w′, p, (1−α′) ·m) is at least p(R). Since Q \ T ⊆ I \ T , the optimal profit of
the MK instance (I \T,w′, p, (1−α′) ·m) is at least p(R). As we obtain a 1−ε-approximation
for I ′ (using, e.g., [10]), the profit of Step 4 in Algorithm 1 is at least

(1− ε) · p(R) ≥
(

1− α
2 − 2 · ε

)
· (1− ε) · p(OPT) ≥

(
1− α

2 − 3 · ε
)
· p(OPT). ◀

4 APX-hardness

In this section we prove Theorem 1. We use a reduction from 2VBP to show that a PTAS
for 2VMK would imply the existence of an APTAS for 2VBP. We rely on the following result
of Ray [17], which addresses a flaw in an earlier proof of Woeginger [21].

▶ Theorem 22 ([17]). Assuming P ̸= NP, there is no APTAS for 2VBP.
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Proof of Theorem 1. Assume towards a contradiction that there is a PTAS {Aε} for 2VMK.
That is, for every ε > 0, Aε is a polynomial-time (1− ε)-approximation algorithm for 2VMK.

In Algorithm 2 we use {Aε} to derive an APTAS for 2VBP. The algorithm calls as a
subroutine algorithm First-Fit (FF). The input for FF is an instance I of 2VMK. The output
is a feasible packing of all items in I in a set of 2-dimensional bins with unit size in each
dimension. First-Fit proceeds by considering the items in arbitrary order and assigning
the next item in the list to the first bin which can accommodate the item. If no such bin
exists, FF opens a new bin and assigns the item to this bin. (For more details on FF and
its analysis see, e.g., [19].) Given a 2VBP instance, we use in Algorithm 2 the notion of
associated 2VMK instance.

▶ Definition 23. Given a 2VBP instance I = (I, w) and t ≥ 1, we define its t-associated
2VMK instance I ′ = (I ′, w′, p′,m′) as follows. The set of items is I ′ = I, and the weight
function is w′ = w. The profit of each item i ∈ I ′ is p′(i) = w1(i) + w2(i), and the number
of bins is m′ = t.

Algorithm 2 Reduction from 2VBP.

configuration : A PTAS {Aε} for 2VMK and ε > 0
input : A 2VBP instance I = (I, w).
output : A solution for I which uses at most (1 + ε) · BP-OPT(I) + 2 bins.

1 for t = 1 to |I| do
2 Let I ′ = (I ′, w′, p′,m′) be the t-associated 2VMK instance of I
3 Use Aε′ to solve I ′, where ε′ = ε

16 . Let C1, . . . , Cm′ ⊆ I be the returned solution.
4 Define S =

⋃m′

j=1 Cj and pack the residual items I \ S using First-Fit.
5 Add C1, . . . , Cm along with the packing of S to a list of candidate solutions.
6 end
7 Return the candidate solution with the smallest number of bins used.

▷ Claim 24. For any 2VBP instance I and ε > 0, Algorithm 2 returns a solution which
uses at most (1 + ε) · BP-OPT(I) + 2 bins.

Proof. Let R = BP-OPT(I) and let I ′ = (I ′, w′, p′,m′) be the R-associated instance of I.
Note that OPT(I ′) =

∑
i∈I p

′(i), since we can pack all the items I in R bins with the
weight function w. Consider the iteration of Step 1 in Algorithm 2 where t = R. We
show that the number of bins used by the solution is at most (1 + ε) · BP-OPT(I, w) + 2.
Observe that S, the set in Step 4 of Algorithm 2, satisfies p′(S) ≥ (1− ε

16 ) ·OPT(I ′). Thus,
p′(I \ S) ≤ ε

16 ·OPT(I ′). It follows that

w1(I \ S) + w2(I \ S) ≤ ε

16 ·OPT(I ′)

= ε

16 · (w1(I) + w2(I))

≤ ε

16 · 2 max{w1(I), w2(I)}

≤ ε · BP-OPT(I, w)
8 .

The third inequality holds since every bin b ∈ C(I ′) satisfies w1(b), w2(b) ≤ 1. In the
packing of the residual items I \ S using First-Fit, every two consecutive bins b1, b2 satisfy
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w1(b1∪b2)+w2(b1∪b2) > 1. Assume the items in I\S are packed in at least ε·BP-OPT(I, w)+2
bins in Step 4 of Algorithm 2. Then,

w1(I \ S) + w2(I \ S) ≥
⌊

ε · BP-OPT(I, w) + 2
2

⌋
>

ε · BP-OPT(I, w) + 2
2 − 1 ≥ w1(I \ S) + w2(I \ S)

The first inequality holds since there are at least
⌊
ε·BP-OPT(I,w)+2

2

⌋
disjoint pairs of consecutive

bins, and each pair b1, b2 satisfies w1(b1 ∪ b2) + w2(b1 ∪ b2) ≥ 1. This is a contradiction.
Therefore, at most ε · BP-OPT(I, w) + 2 bins are used for the items I \ S. Hence, Algorithm 2
returns a solution with at most (1 + ε) · BP-OPT(I, w) + 2 bins. ◁

For every constant ε > 0, it also holds that Algorithm 2 runs in polynomial time. Thus,
by Claim 24, it follows that Algorithm 2 is an APTAS for 2VBP. ◀

5 Concluding Remarks

In this paper we present a randomized
(
1− ln 2

2 − ε
)
≈ 0.653-approximation algorithm for

2VMK, for every fixed ε > 0, thus improving the ratio of (1 − e−1 − ε) ≈ 0.632, which
follows from the results of [8] for the separable assignment problem. To the best of
our knowledge, this work is the first direct study of 2VMK in the arena of approximation
algorithms.

As an interesting direction for future work, we note that our approach, which combines a
technique of [8] with a solution for a residual (1-dimensional) MK instance, does not scale to
higher dimensions. Specifically, for dVMK instances where d ≥ 3, the residual algorithm will
obtain marginal profit of 1

d·m · OPT(I) per configuration, which is always lower than the
marginal profit obtained by the randomized rounding of [8], due to (4). Hence, for d ≥ 3,
a better approximation ratio is achieved by random sampling of the whole solution as in
[8]. We believe that this bottleneck can be resolved by an iterative randomized rounding
approach, similar to the approach used in [13] for 2-dimensional vector bin packing.
This approach can potentially lead also to an improved approximation for 2VMK.
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