
Prefix Sorting DFAs: A Recursive Algorithm
Nicola Cotumaccio #

Gran Sasso Science Institute, L’Aquila, Italy
Dalhousie University, Halifax, Canada

Abstract
In the past thirty years, numerous algorithms for building the suffix array of a string have been
proposed. In 2021, the notion of suffix array was extended from strings to DFAs, and it was shown
that the resulting data structure can be built in O(m2 + n5/2) time, where n is the number of states
and m is the number of edges [SODA 2021]. Recently, algorithms running in O(mn) and O(n2 log n)
time have been described [CPM 2023].

In this paper, we improve the previous bounds by proposing an O(n2) recursive algorithm
inspired by Farach’s algorithm for building a suffix tree [FOCS 1997]. To this end, we provide insight
into the rich lexicographic and combinatorial structure of a graph, so contributing to the fascinating
journey which might lead to solve the long-standing open problem of building the suffix tree of a
graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Pattern matching

Keywords and phrases Suffix Array, Burrows-Wheeler Transform, FM-index, Recursive Algorithms,
Graph Theory, Pattern Matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.22

Related Version Full Version: https://arxiv.org/abs/2305.02526

Funding This work was partially funded by Dante Labs.

Acknowledgements I thank Nicola Prezza for pointing out the paper [22].

1 Introduction

The suffix tree [31] of a string is a versatile data structure introduced by Weiner in 1973
which allows solving a myriad of combinatorial problems, such as determining whether a
pattern occurs in the string, computing matching statistics, searching for regular expressions,
computing the Lempel-Ziv decomposition of the string and finding palindromes. The book
by Gusfield [18] devotes almost 150 pages to the applications of suffix trees, stressing the
importance of these applications in bioinformatics. However, the massive increase of genomic
data in the last decades requires space-efficient data structures able to efficiently support
pattern matching queries, and the space consumption of suffix trees is too high. In 1990,
Manber and Myers invented suffix arrays [25] as a space-efficient alternative to suffix trees.
While suffix arrays do not have the full functionality of suffix trees, they still allow solving
pattern matching queries. Suffix arrays started a new chapter in data compression, which
culminated in the invention of data structures closely related to suffix arrays, notably, the
Burrows-Wheeler Transform [4] and the FM-index [14, 16], which have heavily influenced
sequence assembly [30].

The impact of suffix arrays has led to a big effort in the attempt of designing efficient
algorithms to construct suffix arrays, where “efficient” refers to various metrics (worst-case
running time, average running time, space, performance on real data and so on); see [28] for
a comprehensive survey on the topic. Let us focus on worst-case running time. Manber and
Myers build the suffix array of a string of length n in O(n log n) by means of a prefix-doubling
algorithm [25]. In 1997, Farach proposed a recursive algorithm to build the suffix tree of a

© Nicola Cotumaccio;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.cotumaccio@gssi.it
https://orcid.org/0000-0002-1402-5298
https://doi.org/10.4230/LIPIcs.ISAAC.2023.22
https://arxiv.org/abs/2305.02526
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Prefix Sorting DFAs: A Recursive Algorithm

string in linear time for integer alphabets [12]. In the following years, the recursive paradigm
of Farach’s algorithm was used to developed a multitude of linear-time algorithms for building
the suffix array [23, 20, 21, 26]. All these algorithms carefully exploit the lexicographic
struture of the suffixes of a string, recursively reducing the problem of computing the suffix
array of a string to the problem of computing the suffix array of a smaller string (induced
sorting).

The problem of solving pattern matching queries not only on strings, but also on labeled
graphs, is an active topic of research. Recently, Equi et al. showed that no algorithm can solve
pattern matching queries on arbitrary graphs in O(m1−ϵ|P |) time or O(m|P |1−ϵ) (where m is
the number of edges, P is the pattern and ϵ > 0), unless the Orthogonal Vectors hypothesis
fails [11, 10]. On the other hand, over the years the idea of (lexicographically) sorting the
suffixes of a string has been generalized to graphs, thus leading to compact data structures
that are able to support pattern matching queries on graphs. The mechanism behind the suffix
array, the Burrows-Wheeler Transform and the FM-index was first generalized to trees [13, 15];
later on, it was generalized to De Brujin graphs [3, 24] (which can be used for Eulerian
sequence assembly [19]). Subsequently, it was extended to the so-called Wheeler graphs [17, 1],
and finally to arbitrary graphs and automata [9, 6]. The idea of lexicographically sorting
the strings reaching the states of an automaton has also deep theoretical consequences in
automata theory: for example, it leads to a parametrization of the powerset construction,
which implies fixed-parameter tractable algorithms for PSPACE-complete problems such as
deciding the equivalence of two non-deterministic finite automata (NFAs) [8].

The case of deterministic finite automata (DFAs) is of particular interest, because in this
case the notion of “suffix array” of a DFA has a simple interpretation in terms of strings.
Assume that there is a fixed total order ⪯ on the alphabet Σ of a DFA A, and extend ⪯
lexicographically to the set of all infinite strings on Σ. Assume that each state has at least
one incoming edge. If u is a state, consider the set Iu of all infinite strings that can be
read starting from u and following edges in a backward fashion, and let minu and maxu

be the lexicograpically smallest (largest, respectively) string in Iu (see Figure 1). Consider
the partial order ⪯A on the set of all states Q such that for every u, v ∈ Q, with u ̸= v, it
holds u ≺A v if and only if maxu ⪯ minv. Then, the partial order ⪯A induces a (partial)
permutation of the set of all states that plays the same role of the permutation of text
positions induced by the suffix array of a string [9, 22], so ⪯A is essentially the “suffix array”
of the DFA. If we are able to compute the partial order ⪯A (and a minimum-size partition
of Q into sets such that the restriction of ⪯A to each set is a total order), then we can
efficiently and compactly solve pattern matching queries on the DFA by means of techniques
that extend the Burrows-Wheeler transform and the FM-index from strings to graphs. As a
consequence, we now have to solve the problem of efficiently building the “suffix array” of a
DFA, that is, the problem of computing ⪯A.

The first paper on the topic [9] presents an algorithm that builds ⪯A in O(m2 +n5/2) time,
where n is the number of states and m is the number of edges. In a recent paper [22], Kim
et al. describe two algorithms running in O(mn) and O(n2 log n) time. The key observation
is that, if we build the min/max-partition of the set of all states, then we can determine the
partial order ⪯A in linear time by means of a reduction to the interval partitioning problem.
Determining the min/max-partition of the set of all states means picking the string minu

and maxu for every state u ∈ Q, and sorting these 2|Q| strings (note that some of these
strings may be equal, see Figure 1 for an example). As a consequence, we are only left with
the problem of determining the min/max-partition efficiently.

N. Cotumaccio 22:3

1start

2

3

4

5

6

7

a

b

c

c

a

c

a

c

c

#
i mini maxi

1 ##### . . . ##### . . .

2 a#### . . . a#### . . .

3 b#### . . . b#### . . .

4 c#### . . . c#### . . .

5 ca### . . . ccccc . . .

6 ab### . . . ac### . . .

7 cc### . . . ccccc . . .

Figure 1 A DFA A, with the minimum and maximum string reaching each state (we assume
≺ a ≺ b ≺ c). The min/max partition is given by {(1, min), (1, max)} < {(2, min), (2, max)} <

{(6, min)} < {(6, max)} < {(3, min), (3, max)} < {(4, min), (4, max)} < {(5, min)} < {(7, min)} <

{(5, max), (7, max)}, meaning that min1 = max1 ≺ min2 = max2 ≺ min6 ≺ max6 ≺ min3 =
max3 ≺ min4 = max4 ≺ min5 ≺ min7 ≺ max5 = max7.

The O(n2 log n) algorithm builds the min/max-partition by generalizing Manber and
Myers’s O(n log n) algorithm from strings to DFAs. However, since it is possible to build
the suffix array of a string in O(n) time, it is natural to wonder whether it is possible to
determine the min/max-partition in O(n2) time.

In this paper, we show that, indeed, it is possible to build the min/max-partition in O(n2)
time by adopting a recursive approach inspired by one of the linear-time algorithms that
we have mentioned earlier, namely, Ko and Aluru’s algorithm [23]. As a consequence, our
algorithm is asymptotically faster than all previous algorithms.

A long-standing open problem is whether it is possible to define a suffix tree of a graph.
Some recent work [5] suggests that it is possible to define data structures that simulate the
behavior of a suffix tree by carefully studying the lexicographic structure of the graph (the
results in [5] only hold for Wheeler graphs, but we believe that they can be extended to
arbitrary graphs). More specifically, it is reasonable to believe that it is possible to generalize
the notion of compressed suffix tree of a string [29] to graphs. A compressed suffix tree is a
compressed representation of a suffix tree which consists of some components, including a
suffix array. We have already seen that ⪯A generalizes the suffix array to a graph structure,
and [5] suggests that the remaining components may also be generalized to graphs. The
complements of the suffix tree of a string heavily exploit the lexicographic and combinatorial
structure of a string. Since the algorithm that we present in this paper deeply relies on the
richness of the lexicographic structure (which becomes even more challenging and surprising
when switching from a string setting to a graph setting), we believe that our results also
provide a solid conceptual contribution towards extending suffix tree functionality to graphs.

We remark that, a few days after we submitted this paper to arXiv, a new arXiv preprint
showed how to determine the min/max partition in O(m log n) time, where n is the number
of states and m is the number of edges (this new arXiv preprint was also accepted for
publication [2]). If the graph underlying the DFA is sparse, then the algorithm in [2] improves
our O(n2) algorithm. Since the O(m log n) algorithm uses different techniques (it is obtained
by adapting Paige and Tarjan’s partition refinement algorithm [27]), we are left with the
intriguing open problem of determining whether, by possibly combining the ideas behind our
algorithm and the algorithm in [2], it is possible to build the min/max partition in O(m)
time.

Due to space constraints, all proofs can be found in the full version of this paper [7].

ISAAC 2023

22:4 Prefix Sorting DFAs: A Recursive Algorithm

2 Preliminaries

2.1 Relation with Previous Work

In the setting of the previous works on the topic [1, 9, 22], the problem that we want to solve
is defined as follows. Consider a deterministic finite automaton (DFA) such that (i) all edges
entering the same state have the same label, (ii) each state is reachable from the initial state,
(iii) each state is co-reachable, that is, it is either final or it allows reaching a final state, (iv)
the initial state has no incoming edges. Then, determine the min/max partition of the set of
states (see Section 2.2 for the formal definition of min/max partition, and see Figure 1 for
an example).

Assumptions (ii) and (iii) are standard assumptions in automata theory, because all states
that do not satisfy these assumptions can be removed without changing the accepted
language.

In this setting, all the non-initial states have an incoming edge, but the initial state
has no incoming edges. This implies for some state u it may hold Iu = ∅ (remember
that Iu is the set of all infinite strings that can be read starting from u and following
edges in a backward fashion, see the introduction), so Kim et al. [22] need to perform a
tedious case analysis which also takes finite strings into account in order to define the
min/max-partition (in particular, the minimum and maximum strings reaching the initial
state are both equal to the empty string). However, we can easily avoid this complication
by means of the same trick used in [5]; we can add a self-loop to the initial state, and the
label of the self-loop is a special character # smaller than any character in the alphabet.
Intuitively, # plays the same role as the termination character in the Burrows-Wheeler
transform of a string, and since # is the smallest character, adding this self-loop does
not affect the min/max-partition (see [22] for details).

Notice that the initial state and the set of all final states play no role in the definition
of the min/max partition; this explains why, more generally, it will be expedient to
consider deterministic graphs rather than DFAs (otherwise we would need to artificially
add an initial state and add a set of final states when we recursively build a graph in
our algorithm). Equivalently, one may assume to work with semiautomata in which the
transition function is not necessarily total. This justifies the assumptions that we will
make in Section 2.2.

Some recent papers [6, 8] have shown that assumptions (i) and (iv) can be removed. The
partial order ⪯A is defined analogously, and all the algorithms for building ⪯A that we
have mentioned still work. Indeed, if a state u is reached by edges with the distinct labels,
we need to only consider all edges with the smallest label when computing minu and
all edges with the largest label when computing maxu; moreover, we once again assume
that the initial state has a self loop labeled #. The only difference is that assumption
(i) implies that m ≤ n2 (n being the number of states, m being the number of edges)
because each state can have at most n incoming edges, but this is no longer true if we
remove assumption (i). As a consequence, the running time of our algorithm is no longer
O(n2) but O(m + n2) (and the running time of the O(n2 log n) algorithm in [22] becomes
O(m + n2 log n)) because we still need to process all edges in the DFA.

To sum up, all the algorithms for computing ⪯A work on arbitrary DFAs.

N. Cotumaccio 22:5

2.2 Notation and First Definitions

Let Σ be a finite alphabet. We consider finite, edge-labeled graphs G = (V, E), where V is
the set of all nodes and E ⊆ V × V × Σ is the set of all edges. Up to taking a subset of Σ, we
assume that all c ∈ Σ label some edge in the graph. We assume that all nodes have at least
one incoming edge, and all edges entering the same node u have the same label λ(u) (input
consistency). This implies that an edge (u, v, a) ∈ E can be simply denoted as (u, v), because
it must be a = λ(v). In particular, it must be |E| ≤ |V |2 (and so an O(|E|) algorithm is
also a O(|V |2) algorithm). If we do not know the λ(u)’s, we can easily compute them by
scanning all edges. In addition, we always assume that G is deterministic, that is, for every
u ∈ V and for every a ∈ Σ there exists at most one v ∈ V such that (u, v) ∈ E and λ(v) = a.

Let Σ∗ be the set of all finite strings on Σ, and let Σω be the set of all (countably)
right-infinite strings on Σ. If α ∈ Σ∗ ∪ Σω and i ≥ 1, we denote by α[i] ∈ Σ the ith character
of α (that is, α = α[1]α[2]α[3] . . .). If 1 ≤ i ≤ j, we define α[i, j] = α[i]α[i+1] . . . α[j −1]α[j],
and if j < i, then α[i, j] is the empty string ϵ. If α ∈ Σ∗, then |α| is length of α; for every
0 ≤ j ≤ |α| the string α[1, j] is a prefix of α, and if 0 ≤ j < |α| it is a strict prefix of α;
analogously, one defines suffixes and strict suffixes of α. An occurrence of α ∈ Σ∗ starting
at u ∈ V and ending at u′ ∈ V is a sequence of nodes u1, u2, . . . , u|α|+1 of V such that (i)
u1 = u, (ii) u|α|+1 = u′, (iii) (ui+1, ui) ∈ E for every 1 ≤ i ≤ |α| and (iv) λ(ui) = α[i] for
every 1 ≤ i ≤ |α|. An occurrence of α ∈ Σω starting at u ∈ V is a sequence of nodes (ui)i≥1
of V such that (i) u1 = u, (ii) (ui+1, ui) ∈ E for every i ≥ 1 and (iii) λ(ui) = α[i] for every
i ≥ 1. Intuitively, a string α ∈ Σ∗ ∪ Σω has an occurrence starting at u ∈ V if we can read α

on the graph starting from u and following edges in a backward fashion.

In the paper, occurrences of strings in Σω will play a key role, while occurrences of strings
in Σ∗ will be used as a technical tool. For every u ∈ V , we denote by Iu the set of all strings
in Σω admitting an occurrence starting at u. Since every node has at least one incoming
edge, then Iu ̸= ∅.

A total order ≤ on a set V if a reflexive, antisymmetric and transitive relation on V . If
u, v ∈ V , we write u < v if u ≤ v and u ̸= v.

Let ⪯ be a fixed total order on Σ. We extend ⪯ to Σ∗ ∪ Σω lexicographically. It is easy to
show that in every Iu there is a lexicographically smallest string minu and a lexicographically
largest string maxu (for example, it follows from [22, Observation 8]).

We will often use the following immediate observation. Let u ∈ V , and let (ui)i≥1
be an occurrence of minu. Fix i ≥ 1. Then, (uj)j≥i is an occurrence of minui , and
minu = minu[1, i − 1] minui

.

Let V ′ ⊆ V . Let A be the unique partition of V ′ and let ≤ be the unique total order on A
such that, for every I, J ∈ A and for every u ∈ I and v ∈ J , (i) if I = J , then minu = minv

and (ii) if I < J , then minu ≺ minv. Then, we say that (A, ≤), or more simply A, is the
min-partition of V ′. The max-partition of V ′ is defined analogously. Now, consider the set
V ′ × {min, max}, and define ρ((u, min)) = minu and ρ((u, max)) = maxu for every u ∈ V ′.
Let B be the unique partition of V ′ × {min, max} and let ≤ be the unique total order on B
such that, for every I, J ∈ B and for every x ∈ I and y ∈ J , (i) if I = J , then ρ(x) = ρ(y)
and (ii) if I < J , then ρ(x) ≺ ρ(y). Then, we say that (B, ≤), or more simply B, is the
min/max-partition of V ′.

The main result of this paper will be proving that the min/max partition of V can be
determined in O(|V |2) time.

ISAAC 2023

22:6 Prefix Sorting DFAs: A Recursive Algorithm

2.3 Our Approach
Let G = (V, E) be a graph. We will first show how to build the min-partition of V in O(n2)
time, where n = |V | (Section 4); then, we will show how the algorithm can be adapted so
that it builds the min/max-partition in O(n2) time (Section 5).

In order to build a min-partition of V , we will first classify all minima into three categories
(Section 3), so that we can split V into three pairwise-disjoint sets V1, V2, V3. Then, we will
show that in O(n2) time:

we can compute V1, V2, V3 (Section 4.1);
we can define a graph Ḡ = (V̄ , Ē) having |V3| nodes (Section 4.2);
assuming that we have already determined the min-partition of V̄ , we can determine the
min-partition of V (Section 4.3).

Analogously, in O(n2) time we can reduce the problem of determining the min-partition of
V to the problem of determining the min-partition of the set of all nodes of a graph having
|V1| (not |V3|) nodes (Section 4.4). As a consequence, since min{|V1|, |V3|} ≤ |V |/2 = n/2,
we obtain a recursive algorithm whose running time is given by the recurrence:

T (n) = T (n/2) + O(n2)

and we conclude that the running time of our algorithm is O(n2).

3 Classifying Strings

In [23], Ko and Aluru divide the suffixes of a string into two groups. Here we follow an
approach purely based on stringology, without fixing a string or a graph from the start.
We divide the strings of Σω into three groups, which we call group 1, group 2 and group 3
(Corollary 3 provides the intuition behind this choice).

▶ Definition 1. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then, we define
τ(α) as follows:
1. τ(α) = 1 if α′ ≺ α.
2. τ(α) = 2 if α′ = α.
3. τ(α) = 3 if α ≺ α′.

We will constantly use the following characterization.

▶ Lemma 2. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then:
1. τ(α) = 2 if and only if α′ = aω, if and only if α = aω.
2. τ(α) ̸= 2 if and only if α′ ̸= aω, if and only if α ̸= aω.
Assume that τ(α) ̸= 2. Then, there exist unique c ∈ Σ \ {a}, α′′ ∈ Σω and i ≥ 0 such that
α′ = aicα′′ (and so α = ai+1cα′′). Moreover:
1. τ(α) = 1 if and only if c ≺ a, if and only if α′ ≺ aω, if and only if α ≺ aω.
2. τ(α) = 3 if and only if a ≺ c, if and only if aω ≺ α′, if and only if aω ≺ α,

The following corollary will be a key ingredient in our recursive approach.

▶ Corollary 3. Let α, β ∈ Σω. Let a, b ∈ Σ and α′, β′ ∈ Σω such that α = aα′ and β = bβ′.
Then:
1. If a = b and τ(α) = τ(β) = 2, then α = β.
2. If a = b and τ(α) < τ(β), then α ≺ β. Equivalently, if a = b and α ⪯ β, then τ(α) ≤ τ(β).

N. Cotumaccio 22:7

1

2

3

4

5

6

7

a

b

c

c

a

c

a

c

c

#
i mini τ(i) (= τ(mini))
1 ##### . . . 2
2 a#### . . . 1
3 b#### . . . 1
4 c#### . . . 1
5 ca### . . . 1
6 ab### . . . 3
7 cc### . . . 1

Figure 2 The graph from Figure 1, with the values mini’s and τ(i)’s.

4 Computing the min-partition

Let G = (V, E) be a graph. We will prove that we can compute the min-partition of V in
O(|V |2) time. In this section, for every u ∈ V we define τ(u) = τ(minu) (see Figure 2).

Let u ∈ V , and let (ui)i≥1 be an occurrence of minu starting at u. It is immediate to
realize that (i) if τ(u) = 1, then λ(u2) ⪯ λ(u1), (ii) if τ(u) = 2, then λ(uk) = λ(u1) for every
k ≥ 1 and (iii) if τ(u) = 3, then λ(u1) ⪯ λ(u2).

As a first step, let us prove that without loss of generality we can remove some edges from
G without affecting the min/max-partition. This preprocessing will be helpful in Lemma 23.

▶ Definition 4. Let G = (V, E) be a graph. We say that G is trimmed if it contains no edge
(u, v) ∈ E such that τ(v) = 1 and λ(v) ≺ λ(u).

In order to simplify the readability of our proofs, we will not directly remove some edges
from G = (V, E), but we will first build a copy of G where every node u is a mapped to a
node u∗, and then we will trim the graph. In this way, when we write minu and minu∗ it
will be always clear whether we refer to the original graph or the trimmed graph. We will
use the same convention in Section 4.2 when we define the graph Ḡ = (V̄ , Ē) that we will
use for the recursive step.

▶ Lemma 5. Let G = (V, E) be a graph. Then, in O(|E|) time we can build a trimmed graph
G∗ = (V ∗, E∗), with V ∗ = {u∗ | u ∈ V }, such that for every u ∈ V it holds minu∗ = minu.
In particular, τ(u∗) = τ(u) for every u ∈ V .

4.1 Classifying Minima
Let us first show how to compute all u ∈ V such that τ(u) = 1.

▶ Lemma 6. Let G = (V, E) be a graph, and let u, v ∈ V .
1. If (u, v) ∈ E and λ(u) ≺ λ(v), then τ(v) = 1.
2. If (u, v) ∈ E, λ(u) = λ(v) and τ(u) = 1, then τ(v) = 1.

▶ Corollary 7. Let G = (V, E) be a graph, and let u ∈ V . Then, τ(u) = 1 if and only if
there exist k ≥ 2 and z1, . . . , zk ∈ V such that (i) (zi, zi+1) ∈ E for every 1 ≤ i ≤ k − 1, (ii)
zk = u, (iii) λ(z1) ≺ λ(z2) and (iv) λ(z2) = λ(z3) = · · · = λ(zk).

Corollary 7 yields an algorithm to decide whether u ∈ V is such that τ(u) = 1.

▶ Corollary 8. Let G = (V, E) be a graph. We can determine all u ∈ V such that τ(u) = 1
in time O(|E|).

ISAAC 2023

22:8 Prefix Sorting DFAs: A Recursive Algorithm

Now, let us show how to determine all u ∈ V such that τ(u) = 2. We can assume that
we have already determined all u ∈ V such that τ(u) = 1.

▶ Lemma 9. Let G = (V, E) be a graph, and let u ∈ V such that τ(u) ̸= 1. Then, we have
τ(u) = 2 if and only if there exist k ≥ 2 and z1, . . . , zk ∈ V such that (i) (zi+1, zi) ∈ E

for every 1 ≤ i ≤ k − 1, (ii) z1 = u, (iii) zk = zj for some 1 ≤ j ≤ k − 1 and (iv)
λ(z1) = λ(z2) = · · · = λ(zk).

In particular, such z1, . . . , zk ∈ V must satisfy τ(zi) = 2 for every 1 ≤ i ≤ k.

▶ Corollary 10. Let G = (V, E) be a graph. We can determine all u ∈ V such that τ(u) = 2
in time O(|E|).

From Corollary 8 and Corollary 10 we immediately obtain the following result.

▶ Corollary 11. Let G = (V, E) be a graph. Then, in time O(|E|) we can compute τ(u) for
every u ∈ V .

4.2 Recursive Step
Let us sketch the general idea to build a smaller graph for the recursive step. We consider
each u ∈ V such that τ(u) = 3, and we follow edges in a backward fashion, aiming to
determine a prefix of minu. As a consequence, we discard edges through which no occurrence
of minu can go, and by Corollary 3 we can restrict our attention to the nodes v such that
τ(v) is minimal. We proceed like this until we encounter nodes v′ such that τ(v′) = 3.

Let us formalize our intuition. We will first present some properties that the occurrences
of a string minu must satisfy.

▶ Lemma 12. Let G = (V, E) be a graph. Let u, v ∈ V be such that minu = minv. Let
(ui)i≥1 be an occurrence of minu and let (vi)i≥1 be an occurrence of minv. Then:
1. λ(ui) = λ(vi) for every i ≥ 1.
2. minui = minvi for every i ≥ 1.
3. τ(ui) = τ(vi) for every i ≥ 1.
In particular, the previous results hold if u = v and (ui)i≥1 and (vi)i≥1 are two distinct
occurrences of minu.

▶ Lemma 13. Let G = (V, E) be a graph. Let u ∈ V and let (ui)i≥1 an occurrence of minu

starting at u. Let k ≥ 1 be such that τ(u1) = τ(u2) = · · · = τ(uk−1) = τ(uk) ̸= 2. Then,
u1, . . . , uk are pairwise distinct. In particular, k ≤ |V |.

The previous results allow us to give the following definition.

▶ Definition 14. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Let ℓu to be the
smallest integer k ≥ 2 such that τ(uk) ≥ 2, where (ui)i≥1 is an occurrence of minu starting
at u.

Note that ℓu is well-defined, because (i) it cannot hold τ(uk) = 1 for every k ≥ 2 by
Lemma 13 (indeed, if τ(u2) = 1, then (ui)i≥2 is an occurrence of minu2 starting at u2, and
by Lemma 13 there exists 2 ≤ k ≤ |V | + 2 such that τ(uk) ̸= 1) and (ii) ℓu does not depend
on the choice of (ui)i≥1 by Lemma 12. In particular, it must be ℓu ≤ |V | + 1 because
u1, u2, . . . , uℓu−1 are pairwise distinct (u1 is distinct from u2, . . . , uℓu−1 because τ(u1) = 3
and τ(u2) = τ(u3) = . . . τ(uℓu−1) = 1 by the minimality of ℓu).

▶ Lemma 15. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Then, minu[i+1] ⪯
minu[i] for every 2 ≤ i ≤ ℓu − 1. In particular, if 2 ≤ i ≤ j ≤ ℓu, then minu[j] ⪯ minu[i].

N. Cotumaccio 22:9

If R ⊆ Q is a nonempty set of nodes such that for every u, v ∈ R it holds λ(u) = λ(v), we
define λ(R) = λ(u) = λ(v). If R ⊆ Q is a nonempty set of nodes such that for every u, v ∈ R

it holds τ(u) = τ(v), we define τ(R) = τ(u) = τ(v).
Let R ⊆ Q be a nonempty set of states. Let F(R) = arg minu∈R′ τ(u), where R′ =

arg minv∈R λ(v). Notice that F(R) is nonempty, and both λ(F(R)) and τ(F(R)) are well-
defined. In other words, F(R) is obtained by first considering the subset R′ ⊆ F(R) of all
nodes v such that λ(v) is as small as possible, and then considering the subset of R′ of all
nodes v such that τ(v) is as small as possible. This is consistent with our intuition on how
we should be looking for a prefix of minu.

Define:

Gi(u) =
{

{u} if i = 1;
F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}) \

⋃i−1
j=2 Gj(u) if 1 < i ≤ ℓu.

Notice that we also require that a node in Gi(u) has not been encountered before.
Intuitively, this does not affect our search for a prefix of minu because, if we met the same
node twice, then we would have a cycle where all edges are equally labeled (because by
Lemma 15 labels can only decrease), and since τ(Gi(u)) = 1 for every 2 ≤ i ≤ ℓu − 1, then
no occurrence of the minimum can go through the cycle because if we remove the cycle from
the occurrence we obtain a smaller string by Lemma 2.

The following technical lemma is crucial to prove that our intuition is correct.

▶ Lemma 16. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3.
1. Gi(u) is well-defined and nonempty for every 1 ≤ i ≤ ℓu.
2. Let (ui)i≥1 be an occurrence of minu starting at u. Then, ui ∈ Gi(u) for every 1 ≤ i ≤ ℓu.

In particular, τ(ui) = τ(Gi(u)) and minu[i] = λ(ui) = λ(Gi(u)) for every 1 ≤ i ≤ ℓu.
3. For every 1 ≤ i ≤ ℓu and for every v ∈ Gi(u) there exists an occurrence of minu[1, i − 1]

starting at u and ending at v.

Let u ∈ V such that τ(u) = 3. We define:
γu = minu[1, ℓu];
tu = τ(Gℓu

(u)) ∈ {2, 3}

Now, in order to define the smaller graph for the recursive step, we also need a new
alphabet (Σ′, ⪯′), which must be defined consistently with the mutual ordering of the minima.
The next lemma yields all the information that we need.

▶ Lemma 17. Let G = (V, E) be a graph. Let u, v ∈ V such that τ(u) = τ(v) = 3. Assume
that one of the following statements is true:
1. γu is not a prefix of γv and γu ≺ γv.
2. γu = γv, tu = 2 and tv = 3.
3. γv is a strict prefix of γu.

Then, minu ≺ minv.
Equivalently, if minu ⪯ minv, then one the following is true: (i) γu is not a prefix of γv

and γu ≺ γv; (ii) γu = γv and tu ≤ tv; (iii) γv is a strict prefix of γu.

Now, let Σ′ = {(γu, tu) | u ∈ V, τ(u) = 3}, and let ⪯′ be the total order on Σ′ such that
for every distinct (α, x), (β, y) ∈ Σ′, it holds (α, x) ≺′ (β, y) if and only if one of the following
is true:
1. α is not a prefix of β and α ≺ β.
2. α = β, x = 2 and y = 3.
3. β is a strict prefix of α.

ISAAC 2023

22:10 Prefix Sorting DFAs: A Recursive Algorithm

It is immediate to verify that ⪯′ is a total order: indeed, ⪯′ is obtained (i) by first comparing
the γu’s using the variant of the (total) lexicographic order on Σ∗ in which a string is smaller
than every strict prefix of it and (ii) if the γu’s are equal by comparing the tu’s, which are
elements in {2, 3}.

Starting from G = (V, E), we define a new graph Ḡ = (V̄ , Ē) as follows:
V̄ = {ū | u ∈ V, τ(u) = 3}.
The new totally-ordered alphabet is (Σ′, ⪯′).
For every ū ∈ V̄ , we define λ(ū) = (γu, tu).
Ē = {(v̄, v̄) | tv = 2} ∪ {(ū, v̄) | tv = 3, u ∈ Gℓv

(v)}.

Note that for every v̄ ∈ V̄ such that tv = 3 and for every u ∈ Gℓv
(v) it holds τ(u) =

τ(Gℓv (v)) = tv = 3, so ū ∈ V̄ and (ū, v̄) ∈ E. Moreover, Ḡ = (V̄ , Ē) satisfies all the
assumptions about graphs that we use in this paper: (i) all edges entering the same node have
the same label (by definition), (ii) every node has at least one incoming edge (because if v̄ ∈ V̄ ,
then Gℓv (v) ̸= ∅ by Lemma 16) and (iii) Ḡ is deterministic (because if (ū, v̄), (ū, v̄′) ∈ Ē

and λ(v̄) = λ(v̄′), then γv = γv′ and tv = tv′ , so by the definition of Ē if tv = tv′ = 2 we
immediately obtain v̄ = ū = v̄′, and if tv = t′

v = 3 we obtain u ∈ Gℓv (v) ∩ Gℓv′ (v′); since by
Lemma 16 there exist two occurrences of minv[1, ℓv − 1] = γv[1, ℓv − 1] = γv′ [1, ℓv′ − 1] =
minv′ [1, ℓv′ − 1] starting at v and v′ and both ending at u, the determinism of G implies
v = v′ and so v̄ = v̄′).

Notice that if v̄ ∈ V̄ is such that tv = 2, then Iv̄ contains exactly one string, namely,
λ(v̄)ω; in particular, minv̄ = maxv̄ = λ(v̄)ω.

When we implement G = (V, E) and Ḡ = (V̄ , Ē), we use integer alphabets Σ =
{0, 1, . . . , |Σ| − 1} and Σ′ = {0, 1, . . . , |Σ′| − 1}; in particular, we will not store Σ′ by
means of pairs (γu, tu)’s, but we will remap Σ′ to an integer alphabet consistently with the
total order ⪯′ on Σ′, so that the mutual order of the minū’s is not affected.

Let us prove that we can use Ḡ = (V̄ , Ē) for the recursive step. We will start with some
preliminary results.

▶ Lemma 18. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3, γu = γv

and tu = tv = 2. Then, minu = minv.

▶ Lemma 19. Let G = (V, E) be a graph. Let u ∈ V , and let (ui)i≥1 be an occurrence of
minu starting at u. Then, exactly one of the following holds true:
1. There exists i0 ≥ 1 such that τ(ui) ̸= 2 for every 1 ≤ i < i0 and τ(ui) = 2 for every

i ≥ i0.
2. τ(ui) ̸= 2 for every i ≥ 1, and both τ(ui) = 1 and τ(ui) = 3 are true for infinitely many

i’s.

Crucially, the next lemma establishes a correspondence between minima of nodes in
G = (V, E) and minima of nodes in Ḡ = (V̄ , Ē).

▶ Lemma 20. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Let (ui)i≥1 be an
occurrence of minu starting at u. Let (u′

i)i≥1 be the infinite sequence of nodes in V obtained
as follows. Consider L = {k ≥ 1 | τ(uk) = 3}, and for every i ≥ 1, let ji ≥ 1 be the ith

smallest element of L, if it exists. For every i ≥ 1 such that ji is defined, let u′
i = uji

, and if
i ≥ 1 is such that ji is not defined (so L is a finite set), let u′

i = u′
|L|. Then, (ū′

i)i≥1 is an
occurrence of minū starting at ū in Ḡ = (V̄ , Ē).

The following theorem shows that our reduction to Ḡ = (V̄ , Ē) is correct.

N. Cotumaccio 22:11

▶ Theorem 21. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3.
1. If minu = minv, then minū = minv̄.
2. If minu ≺ minv, then minū ≺′ minv̄.

Since ⪯ is a total order (so exactly one among minu ≺ minv, minu = minv and minv ≺
minu holds true), from Theorem 21 we immediately obtain the following result.

▶ Corollary 22. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3.
1. It holds minu = minv if and only if minū = minv̄.
2. It holds minu ≺ minv if and only if minū ≺′ minv̄.
In particular, if we have the min-partition of V̄ (with respect to Ḡ), then we also have the
min-partition of {u ∈ V | τ(u) = 3} (with respect to G).

Lastly, we show that our reduction to Ḡ = (V̄ , Ē) can be computed within O(n2) time.

▶ Lemma 23. Let G = (V, E) be a trimmed graph. Then, we can build Ḡ = (V̄ , Ē) in
O(|V |2) time.

4.3 Merging
We want to determine the min-partition A of V , assuming that we already have the min-
partition B of {u ∈ V | τ(u) = 3}.

First, note that we can easily build the min-partition B′ of {u ∈ V | τ(u) = 2}. Indeed, if
τ(u) = 2, then minu = λ(u)ω by Lemma 2. As a consequence, if τ(u) = τ(v) = 2, then (i)
minu = minv if and only if λ(u) = λ(v) and (ii) minu ≺ minv if and only if λ(u) ≺ λ(v), so
we can build B′ in O(|V |) time by using counting sort.

For every c ∈ Σ and t ∈ {1, 2, 3}, let Vc,t = {v ∈ V | λ(v) = c, τ(v) = t}. Consider
u, v ∈ V : (i) if λ(u) ≺ λ(v), then minu ≺ minv and (ii) if λ(u) = λ(v) and τ(u) < τ(v), then
minu ≺ minv by Corollary 3. As a consequence, in order to build A, we only have to build
the min-partition Ac,t of Vc,t, for every c ∈ Σ and every t ∈ {1, 2, 3}.

A possible way to implement each Ac,t is by means of an array Ac,t storing the elements
of Vc,t, where we also use a special character to delimit the border between consecutive
elements of Ac,t.

It is immediate to build incrementally Ac,3 for every c ∈ Σ, from its smallest element
to its largest element. At the beginning, Ac,3 is empty for every c ∈ Σ. Then, scan the
elements I in B from smallest to largest, and add I to Ac,3, where c = λ(u) for any u ∈ I

(the definition of c does not depend on the choice of u). We scan B only once, so this step
takes O(|V |) time. Analogously, we can build Ac,2 for every c ∈ Σ by using B′.

We are only left with showing how to build Ac,1 for every c ∈ Σ. At the beginning, each
Ac,1 is empty, and we will build each Ac,1 from its smallest element to its largest element.
During this step of the algorithm, we will gradually mark the nodes u ∈ V such that τ(u) = 1.
At the beginning of the step, no such node is marked, and at the end of the step all these
nodes will be marked. Let Σ = {c1, c2, . . . , cσ}, with c1 ≺ c2 ≺ · · · ≺ cσ. Notice that it must
be Vc1,1 = ∅, because if there existed u ∈ Vc1,1, then it would be minu ≺ cω

1 by Lemma 2
and so c1 would not be the smallest character in Σ. Now, consider Vc1,2; we have already
fully computed Ac1,2. Process each I in Ac1,2 from smallest to largest, and for every ck ∈ Σ
compute the set Jk of all non-marked nodes v ∈ V such that τ(v) = 1, λ(v) = ck, and
(u, v) ∈ E for some u ∈ I. Then, if Jk ̸= ∅ add Jk to Ack,1 and mark the nodes in Jk. After
processing the elements in Ac1,2, we process the element in Ac1,3, Ac2,1, Ac2,2, Ac2,3, Ac3,1
and so on, in this order. Each Aci,t is processed from its (current) smallest element to its
(current) largest element. We never remove or modify elements in any Ac,t, but we only

ISAAC 2023

22:12 Prefix Sorting DFAs: A Recursive Algorithm

add elements to the Ac,1’s. More precisely, when we process I in Ac,t, for every ck ∈ Σ
we compute the set Jk of all non-marked nodes v ∈ V such that τ(v) = 1, λ(v) = ck, and
(u, v) ∈ E for some u ∈ I and, if Jk ≠ ∅, then we add Jk to Ack,1 and we mark the nodes
in Jk.

The following lemma shows that our approach is correct. Let us give some intuition. A
prefix of a min-partition C is a subset C′ of C such that, if I, J ∈ C, I < J and J ∈ C′, then
I ∈ C′. Notice that every prefix of A is obtained by taking the union of Ac1,2, Ac1,3, Ac2,1,
Ac2,2, Ac2,3, Ac3,1, . . . in this order up to some element Ac,t, where possibly we only pick a
prefix of the last element Ac,t. Then, we will show that, when we process I in Ac,t, we have
already built the prefix of A whose largest element is I. This means that, for every v ∈ Jk

and for any any occurrence (vi)i≥1 of minv starting at v, it must hold that v2 is in I.

▶ Lemma 24. Let G = (V, E) be a graph. If we know the min-partition of {u ∈ V | τ(u) = 3},
then we can build the min-partition of V in O(|E|) time.

4.4 The Complementary Case

We have shown that in O(n2) time we can reduce the problem of determining the min-
partition of V to the problem of determining the min-partition of the set of all nodes of
a graph having |{u ∈ V | τ(u) = 3}| nodes. Now, we must show that (similarly) in O(n2)
time we can reduce the problem of determining the min-partition of V to the problem of
determining the min-partition of the set of all nodes of a graph having |{u ∈ V | τ(u) = 1}|
nodes. The merging step will be more complex, because the order in which we will process
the Ac,t will be from largest to smallest (Acσ,2, Acσ,1, Acσ−1,3, Acσ−1,2, Acσ−1,1, Acσ−2,3 and
so on) so we will need to update some elements of some Ac,t’s to include the information
about minima that we may infer at a later stage of the algorithm. We provide the details in
the full version of the paper [7].

5 Computing the min/max-partition

Let G = (V, E) be a graph. We can build the max-partition of V by simply considering the
transpose total order ⪯∗ of ⪯ (the one for which a ⪯∗ b if and only if b ⪯ a) and building
the min-partition. As a consequence, the algorithm to build the max-partition is entirely
symmetrical to the algorithm to build the min-partition.

Let G = (V, E) be a graph. Let us show how we can build the min/max-partition of
V in O(|V |2) time. Assume that we have two graphs G1 = (V1, E1) and G2 = (V2, E2) on
the same alphabet (Σ, ⪯), with V1 ∩ V2 = ∅ (we allow G1 and G2 to possibly be the null
graph, that is, the graph without vertices). Let V ′

1 ⊆ V1, V ′
2 ⊆ V2, W = V ′

1 ∪ V ′
2 , and for

every u ∈ W define ρ(u) = minu if u ∈ V ′
1 , and ρ(u) = maxu if u ∈ V ′

2 . Let A be the unique
partition of W and let ≤ be the unique total order on A such that, for every I, J ∈ A and
for every u ∈ I and u ∈ J , (i) if I = J , then ρ(u) = ρ(u) and (ii) if I < J , then ρ(u) ≺ ρ(u).
Then, we say that (A, ≤), or more simply A, is the min/max-partition of (V ′

1 , V ′
2). We will

show that we can compute the min/max partition of (V1, V2) in O((|V1| + |V2|)2) time. In
particular, if G1 = (V1, E1) and G2 = (V1, E2) are two (distinct) copies of the same graph
G = (V, E), then we can compute the min/max-partition of V in O(|V |2) time.

N. Cotumaccio 22:13

We compute τ(minu) for every u ∈ V1 and we compute τ(maxu) for every u ∈ V2. If the
number of values equal to 3 is smaller than the number of values equal to 1, then (in time
O(|V1|2 + |V2|2) = O((|V1| + |V2|)2)) we build the graphs Ḡ1 = (V̄1, Ē1) and Ḡ2 = (V̄2, Ē2)
as defined before, where V̄1 = {ū | u ∈ V1, τ(minu) = 3} and V̄2 = {ū | u ∈ V2, τ(maxu) = 3},
otherwise we consider the complementary case (which is symmetrical). When building
Ḡ1 = (V̄1, Ē1) and Ḡ2 = (V̄2, Ē2), we define a unique alphabet (Σ′, ⪯′) obtained by jointly
sorting the (γminu

, tminu
)’s and the (γmaxu

, tmaxu
)’s, which is possible because Lemma 17

also applies to maxima. Note that |V̄1| + |V̄2| ≤ (|V1| + |V2|)/2.
Assume that we have recursively obtained the min/max-partition of (V̄1, V̄2) with respect

to Ḡ1 and Ḡ2. This yields the min/max-partition of ({u ∈ V1 | τ(minu) = 3}, {u ∈
V2 | τ(maxu) = 3}). Then, we can build the min/max-partition of (V1, V2) by jointly
applying the merging step, which is possible because both the merging step for minima
and the merging step for maxima require to build the Ac,1’s by processing Ac1,2Ac1,3, Ac2,1,
Ac2,2, Ac2,3, Ac3,1 and so on in this order.

Since we obtain the same recursion as before, we conclude that we can compute the
min/max partition of (V1, V2) in O((|V1| + |V2|)2) time.

References
1 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular languages

meet prefix sorting. In Shuchi Chawla, editor, Proc. of the 31st Symposium on Discrete
Algorithms, (SODA’20), pages 911–930. SIAM, 2020. doi:10.1137/1.9781611975994.55.

2 Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco
Olivares, and Nicola Prezza. Sorting Finite Automata via Partition Refinement. In Inge Li
Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual
European Symposium on Algorithms (ESA 2023), volume 274 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 15:1–15:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2023.15.

3 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn
graphs. In Ben Raphael and Jijun Tang, editors, Algorithms in Bioinformatics, pages 225–235,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

4 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Systems Research Center, 1994.

5 Alessio Conte, Nicola Cotumaccio, Travis Gagie, Giovanni Manzini, Nicola Prezza, and Mar-
inella Sciortino. Computing matching statistics on Wheeler DFAs. In 2023 Data Compression
Conference (DCC), pages 150–159, 2023. doi:10.1109/DCC55655.2023.00023.

6 Nicola Cotumaccio. Graphs can be succinctly indexed for pattern matching in O(|E|2 + |V |5/2)
time. In 2022 Data Compression Conference (DCC), pages 272–281, 2022. doi:10.1109/
DCC52660.2022.00035.

7 Nicola Cotumaccio. Prefix sorting dfas: a recursive algorithm, 2023. arXiv:2305.02526.
8 Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-

lexicographically ordering automata and regular languages - part i. J. ACM, 70(4), August
2023. doi:10.1145/3607471.

9 Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Dániel Marx, editor, Proc. of the 32nd Symposium on Discrete Algorithms, (SODA’21), pages
2585–2599. SIAM, 2021. doi:10.1137/1.9781611976465.153.

10 Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. In Tomáš Bureš,
Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdziński, Claus Pahl, Florian
Sikora, and Prudence W.H. Wong, editors, SOFSEM 2021: Theory and Practice of Computer
Science, pages 608–622, Cham, 2021. Springer International Publishing.

ISAAC 2023

https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.4230/LIPIcs.ESA.2023.15
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1109/DCC52660.2022.00035
https://arxiv.org/abs/2305.02526
https://doi.org/10.1145/3607471
https://doi.org/10.1137/1.9781611976465.153

22:14 Prefix Sorting DFAs: A Recursive Algorithm

11 Massimo Equi, Veli Mäkinen, Alexandru I. Tomescu, and Roberto Grossi. On the complexity of
string matching for graphs. ACM Trans. Algorithms, 19(3), April 2023. doi:10.1145/3588334.

12 M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 137–143, 1997. doi:10.1109/SFCS.
1997.646102.

13 P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In proc. 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’05), pages 184–193, 2005. doi:10.1109/SFCS.2005.69.

14 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. 41st
Annual Symposium on Foundations of Computer Science (FOCS’00), pages 390–398, 2000.
doi:10.1109/SFCS.2000.892127.

15 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1), November 2009. doi:10.1145/
1613676.1613680.

16 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
July 2005. doi:10.1145/1082036.1082039.

17 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-
based data structures. Theoretical Computer Science, 698:67–78, 2017. Algorithms, Strings
and Theoretical Approaches in the Big Data Era (In Honor of the 60th Birthday of Professor
Raffaele Giancarlo). doi:10.1016/j.tcs.2017.06.016.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

19 Ramana M. Idury and Michael S. Waterman. A new algorithm for DNA sequence assembly.
Journal of computational biology: A journal of computational molecular cell biology, 2 2:291–306,
1995.

20 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, November 2006. doi:10.1145/1217856.1217858.

21 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Constructing suffix arrays
in linear time. Journal of Discrete Algorithms, 3(2):126–142, 2005. Combinatorial Pattern
Matching (CPM) Special Issue. doi:10.1016/j.jda.2004.08.019.

22 Sung-Hwan Kim, Francisco Olivares, and Nicola Prezza. Faster prefix-sorting algorithms for
deterministic finite automata. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th Annual
Symposium on Combinatorial Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-
Vallée, France, volume 259 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.CPM.2023.16.

23 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2):143–156, 2005. Combinatorial Pattern Matching (CPM) Special
Issue. doi:10.1016/j.jda.2004.08.002.

24 Veli Mäkinen, Niko Välimäki, and Jouni Sirén. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11:375–388, 2014.

25 U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

26 Joong Chae Na. Linear-time construction of compressed suffix arrays using o(n log n)-bit
working space for large alphabets. In Alberto Apostolico, Maxime Crochemore, and Kunsoo
Park, editors, Combinatorial Pattern Matching, pages 57–67, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

27 Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989, 1987. doi:10.1137/0216062.

28 Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2):4–es, July 2007. doi:10.1145/1242471.1242472.

https://doi.org/10.1145/3588334
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.4230/LIPIcs.CPM.2023.16
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0216062
https://doi.org/10.1145/1242471.1242472

N. Cotumaccio 22:15

29 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

30 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph using
the FM-index. Bioinformatics, 26(12):i367–i373, June 2010. doi:10.1093/bioinformatics/
btq217.

31 P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Annual Symposium on
Switching and Automata Theory, pages 1–11, 1973. doi:10.1109/SWAT.1973.13.

ISAAC 2023

https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	2 Preliminaries
	2.1 Relation with Previous Work
	2.2 Notation and First Definitions
	2.3 Our Approach

	3 Classifying Strings
	4 Computing the min-partition
	4.1 Classifying Minima
	4.2 Recursive Step
	4.3 Merging
	4.4 The Complementary Case

	5 Computing the min/max-partition

