
Clustering in Polygonal Domains
Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Leyla Biabani #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Morteza Monemizadeh #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Leonidas Theocharous #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
We study various clustering problems for a set D of n points in a polygonal domain P under
the geodesic distance. We start by studying the discrete k-median problem for D in P . We
develop an exact algorithm which runs in time poly(n, m) + nO(

√
k), where m is the complexity of

the domain. Subsequently, we show that our approach can also be applied to solve the k-center
problem with z outliers in the same running time. Next, we turn our attention to approximation
algorithms. In particular, we study the k-center problem in a simple polygon and show how to
obtain a (1 + ε)-approximation algorithm which runs in time 2O(k log k/ε)(n log m + m). To obtain
this, we demonstrate that a previous approach by Bădoiu et al. [5, 4] that works in Rd, carries over
to the setting of simple polygons. Finally, we study the 1-center problem in a simple polygon in the
presence of z outliers. We show that a coreset C of size O(z) exists, such that the 1-center of C is
a 3-approximation of the 1-center of D, when z outliers are allowed. This result is actually more
general and carries over to any metric space, which to the best of our knowledge was not known so
far. By extending this approach, we show that for the 1-center problem under the Euclidean metric
in R2, there exists an ε-coreset of size O(z/ε).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases clustering, geodesic distance, coreset, outliers

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.23

Funding MdB and LT are supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.

1 Introduction

Given a set D of n points in Rd, the 1-center problem asks to find a point p ∈ Rd that
minimizes the maximum distance from p to the points in D. The problem dates back to 1857,
when Sylvester posed this question for the Euclidean plane [20]. A linear-time algorithm for
the problem was first proposed by Megiddo [15], thus refuting an earlier conjecture of Shamos
and Hoey that it cannot be solved faster than O(n log n) [19]. A natural way to generalise
the 1-center problem, is to instead ask for a set S ⊂ Rd of k centers that minimizes the
maximum distance of points in D from their closest center in S. The 1-center problem serves
as a basic example of a facility location problem and is thus directly related to clustering.

In this paper, we are interested in studying this and similar clustering problems for sets of
points in simple polygons and polygonal domains under the geodesic distance, that is, when
the distance between any two points is the Euclidean length of a shortest path between them.
In the literature, the term obstructed distance has also been used in the past to highlight
that a polygonal domain can be used to model a physical environment where obstacles
may obstruct or delay communication between different locations of the environment. For

© Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:M.T.d.Berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:l.biabani@tue.nl
mailto:M.Monemizadeh@tue.nl
mailto:l.theocharous@tue.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2023.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Clustering in Polygonal Domains

example, as mentioned in [23], when a bank decides where to place ATMs, it is important to
take into account the existence of highways which act as obstacles for pedestrians. Motivated
by such applications, various practical clustering algorithms for realistic scenarios have been
proposed [10, 21, 23, 24, 25]. Thus, the use of geodesic distance is well motivated from an
application point of view.

We first study the discrete k-median and k-center problems in a polygonal domain,
i.e. a polygon P with holes. The discrete k-median problem asks to find a set S ⊂ D of k

center points such that the quantity
∑

d∈D{mins∈S{∥π(d, s)∥}} is minimized, where ∥π(p, q)∥
denotes the length of the shortest path π(p, q) between two points p, q in P . The k-center
problem asks to find a set S ⊂ Rd of k center points such that the maximum distance of
points in D to their nearest center in S is minimized (so here, in contrast with k-median,
we consider the continuous version of the problem). An outlier can significantly increase
the maximum distance to the nearest center, so we also study the k-center problem with
z outliers, which asks to minimize the maximum distance of all but z points of D to their
nearest center. Our interest here lies in developing an exact algorithm for these problems,
whose running time is polynomial in n and m (for fixed k), and whose dependency on k is
subexponential. (Note that the Euclidean problem in the plane is already NP-hard when
k is part of the input [16], so an algorithm that is also polynomial in k is not possible,
assuming p ̸= np.) The k-center problem in the plane has been studied extensively, for
general k [9, 13] and also for the special case k = 2 [1, 22]. Most relevant to our approach is
the work by Hwang et al. [12], who presented algorithms with running time nO(

√
k) for the

Euclidean version of the problems in R2. Their approach works with the Voronoi diagram
of the (unknown) optimal solution, and “guesses” a cycle separator of its dual graph. The
separator splits the problem into two subproblems, which are then solved recursively. This
is an idea that we also make use of. The same approach was employed more recently by
Marx and Pilipczuk [14] to solve a wide range of covering and packing problems defined
on planar graphs. This includes k-center, which they solve in nO(

√
k). To the best of our

understanding, their approach cannot be used to tackle k-median and also cannot directly
handle outliers. Thus, in Section 2 we develop an exact algorithm for the discrete k-median
problem in a polygonal domain. The running time is poly(n, m) + nO(

√
k), where m is the

complexity of the domain. With our approach, we can also solve the k-center problem with
z outliers in the same running time.

Next, we develop an FPT approximation algorithm for the k-center problem in a simple
polygon, that is, an algorithm whose running time is O(f(k, ε) · poly(n, m)), for some
computable function f . Towards this algorithm, we first study the 1-center problem. Exact
algorithms for the 1-center problem in a simple polygon have been developed before. More
specifically, Ahn et al. [2] studied the problem of computing the geodesic center of a (weakly)
simple polygon P , where the task is to find the point s ∈ P that minimizes the maximum
geodesic distance from any other point in P . They developed a linear-time algorithm for
this problem. Their algorithm can be used to compute the 1-center of a set D of n points
in P because the 1-center of D coincides with the geodesic center of rchP (D), the relative
convex hull of D in P . Since the geodesic convex hull is a weakly simple polygon that can be
computed in time O(n log n + m), where m is the complexity of P), the 1-center of D can be
computed in the same time.

Here, however, we study this problem through the lens of coresets. In general, a coreset is
a small subset of the input to a problem, such that the solution of the problem on the coreset
is a good approximation of the solution on the whole input. Coresets can be categorised in
strong coresets and weak coresets, depending on the kind of guarantee they provide. Roughly

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:3

speaking, a strong coreset provides error guarantees for any candidate solution on the coreset,
while a weak coreset only guarantees that an optimal solution on the coreset is a good
approximation of an optimal solution on the whole set. All coresets presented in this paper
are weak coresets, so from now on we will just use the term coreset.

Most related to our work are previous approaches for constructing coresets for the 1-center
problem in Rd. Bădoiu et al. [5] showed the existence of a coreset C ⊂ D of size O(1

ε2), such
that the 1-center of the coreset is a (1 + ε)-approximation to the 1-center of a set of points
D ⊂ Rd. The time to construct this coreset is O

(
dn
ε2 + 1

εO(1)

)
. They then showed that their

approach can be extended to obtain a (1 + ε)-approximation for the k-center problem, for
k > 1 in time 2O(k log k/ε2)dn. By providing a better analysis of the approach in [5], Bădoiu
and Clarkson [4] showed that the coreset obtained actually has size O(1/ε), which is tight.
We show that these approaches also work when the underlying space is a simple polygon.
A priori this is not at all clear, because the geodesic metric in a simple polygon does not
have bounded doubling dimension. Specifically, in Section 3 we show the existence of an
ε-coreset of size O (1/ε) for the 1-center problem for a set of points in a simple polygon. The
time to construct this is O

(
n log m+m

ε + 1
ε2 log 1

ε

)
, where m is the complexity of the polygon.

Note that a coreset of size two or three always exists in the plane (both in the Euclidean
setting as well as in a polygon), since the minimum enclosing (geodesic) ball of a set of points
in P is defined by two or three of the points. Thus it can be computed in the same time
it takes to compute the 1-center of D, which, as mentioned, is O(n log n + m). Hence, for
constant m the construction takes O(n log n) time, whereas our coreset can be constructed
in O

(
n/ε + 1/ε2 log(1/ε)

)
time. More importantly, our coreset can be combined with the

approach by Bădoiu et al. [5] to approximately solve the k-center problem for k > 1, in
2O(k log k/ε)(n log m + m) time.

Finally, we study the 1-center problem with z outliers through the lens of coresets in
Section 4. We show that in any metric space, there exists a coreset of size 2z + 2 that is
a 3-approximation for the 1-center problem with z outliers. In the Euclidean plane, we
can generalize our result and obtain an ε-coreset of size O(z/ε). Coresets for the k-center
problem with z outliers have been studied for the metrics of bounded doubling dimension
[7, 6]. Particularly, De Berg et al. [7] present an ε-coreset of size O(k/εd + z), where d is the
doubling dimension. In the plane, their construction can give an ε-coreset of size O(k/ε2 + z).
Note that the dependency on 1/ε in their bound is quadratic, while our coreset only has a
linear dependency on 1/ε. (On the downside, in our case this is multiplied by z, while [7]
has an additive term in z.) They also show that under some natural conditions, any coreset
with a constant approximation ratio is of size Ω(k + z).

2 k-Median and k-center with outliers in a polygonal domain

In this section, we study the discrete k-median problem in a polygonal domain P . We will
develop a subexponential exact algorithm for this problem, which depends exponentially on
k and not on the complexity of the polygonal domain. We will then show that our algorithm
can also be used to solve the k-center problem with outliers in a polygonal domain. We start
by introducing some notation.

Notation. We denote the outer polygon of our polygonal domain P by P0, and we use H to
denote the collection of holes in P . Recall that π(p, q) denotes the shortest path between two
points p, q in P . For a finite set D ⊂ P , the geodesic Voronoi diagram of D in P , denoted
gvd(D), is the partition of P into |D| Voronoi cells, where the Voronoi cell V (q) of a point

ISAAC 2023

23:4 Clustering in Polygonal Domains

p

q
b(p, q)

x(p, q)

xH(p, q)

H

Figure 1 Illustration for the definition of b(p, q), x(p, q) and xH(p, q).

p(i) (ii)

Figure 2 (i) An example where the dual of the geodesic Voronoi diagram corresponds to a tree.
(ii) Adding p to the outside face of P and connecting it to cells incident to ∂P0 via the intervals Ii.

q ∈ D is defined as VD(q) := {x ∈ P : ∥π(x, q)∥ ⩽ ∥π(x, p)∥ for all p ∈ D}. When the set
D is clear from the context, we may simply write V (q). For two points p, q ∈ P , let b(p, q)
denote their geodesic bisector and let bD(p, q) denote the part of b(p, q) which appears in
gvd(D). Let B(p, q) = {x ∈ P : ∥π(p, x)∥ ⩽ ∥π(q, x)∥}. We will denote by x(p, q) the first
point of b(p, q) that is met during a clockwise transversal of ∂P0 which starts from a point of
∂P0 ∩B(p, q). Finally, we will denote by xH(p, q) the first point of b(p, q) that is met during
a clockwise transversal of hole H, starting from a point of H ∩B(p, q); see Figure 1.

The main idea. The idea is to extend the approach by Hwang et al. [12], which worked for
R2, to a polygonal domain. We therefore start by considering the geodesic Voronoi diagram
of our (unknown) optimal solution S. In the Euclidean case, the dual of this diagram is
called the Delaunay triangulation, denoted by dt(S). Every inner face of dt(S) is a triangle,
and one can add a set I of three extra points to S sufficiently far away, such that the outside
face of dt(S ∪ I) also becomes a triangle. This results in a maximal planar graph. Hence, by
Miller’s separator theorem [17] there exists a simple cycle separator C of dt(S ∪ I) of size
O(
√

k) which is (2/3)-balanced with respect to S ∪ I. (The latter means that at most 2/3 of
the points in S ∪ I lie inside C and at most 2/3 of the points in S ∪ I lie outside C.) In our
setting, it is not guaranteed that the dual of gvd(S) is an (almost) triangulated graph. See
Figure 2(i) for an example where it corresponds to a tree. Therefore we will need a few extra
steps before we can apply a separator theorem.

Transforming the dual of gvd(S). Let G = (V, E) denote the dual graph of gvd(S). The
goal is to transform G to a graph G∗ = (V ∗, E∗) such that any face of G∗ has size at most
three. The Voronoi cells of gvd(S) that are incident to ∂P0, induce a decomposition of ∂P0
into disjoint intervals. Note that it is possible for a Voronoi cell to contribute to more than
one interval. The following lemma gives a linear bound on the number of these intervals.

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:5

(i) (ii) (iii)

H1 H2

p

Figure 3 Holes H1 and H2 are essential, so we add a vertex for each of them. In (iii), observe
that every face has bounded size.

▶ Lemma 2.1. Let I1, . . . , Ir denote the intervals along ∂P0 induced by gvd(S), enumerated
in clockwise order. Then r = O(k).

Proof. For 1 ⩽ i ⩽ r, let si ∈ S be the center in the optimal solution S whose Voronoi cell
has Ii on its boundary. Note that the si need not all be distinct. For i = 1, ...r − 1, we
charge Ii to b(si, si+1). Any bisector can be charged at most two times. Moreover, a bisector
uniquely corresponds to an edge of G and we know that G is a planar graph. Therefore
r ⩽ 2|E| ⩽ 6k − 12. ◀

Now let p denote an arbitrary point in the outside face of P . We connect p to each si via
any arbitrary interior point of Ii. Let {e1, . . . , er} denote the set of these extra edges. Then
we have so far, V ∗ = V ∪ {p} and E∗ = E ∪ {ei}r

i=1. It’s easy to see that we can embed
these edges such that: (i) they are pairwise non-crossing and (ii) any face of the resulting
graph incident to p is a triangle. See Figure 2(ii) for an example.

Handling the faces that do not contain p. Now we need to handle the faces of G∗ that are
not incident to p. By construction, the outer face of G∗ contains p and thus is a triangle.
Therefore, the only way G∗ can contain a face of size at least four is if there exists a cycle of
size four “around” a hole as in Figure 3(i).

We define an essential hole to be a hole H ∈ H which is incident to at least four Voronoi
cells of gvd(S). Since every essential hole corresponds to a face of G (or G∗), the number of
essential holes is O(k). Let H∗ denote the set of essential holes and for every H ∈ H∗ let
pH be an arbitrary point in H. We add the set {pH}H∈H∗ to V ∗ and we connect pH to the
vertices of the Voronoi cells that are incident to H. If V (q) is such a Voronoi cell, then, as
before, we can embed the edge (pH , q) by going through any interior point of H ∩ V (q). At
the end of this process, G∗ is a graph where every face is a triangle. See Figure 3(iii).

2.1 Applying the Separator Theorem to G∗

We now want to apply Miller’s Separator Theorem to G∗. One thing that prevents us
from doing so, is that G∗ could be a multigraph, because p may be connected to the same
Voronoi vertex more than once. (Recall that a Voronoi cell may contribute to more than one
interval Ii). To deal with this, we can add a “dummy vertex” to each edge which has p as an
endpoint; see Figure 2(ii). This way we only increase the number of vertices and edges by
O(k). Moreover, the faces of the resulting graph still have bounded size, which ensures that
a separator theorem can still be applied (see below). Note that we want our separator to
be balanced with respect to V . To ensure that, we employ the cost-balanced version of the
Planar Separator Theorem, proven by Djidjev and Venkatesan [8].

ISAAC 2023

23:6 Clustering in Polygonal Domains

Figure 4 An example of three points and two holes, such that all three pairwise bisectors between
the points intersect both holes.

Planar Separator Theorem. Let G = (V, E) be a maximal planar graph with n

nodes. Let each node v ∈ V have a non-negative weight, denoted weight(v), with∑
v∈V weight(v) = 1. Then V can be partitioned in O(n) time into three sets A, B, C

such that (i) C is a simple cycle of size O(
√

n), (ii) G has no arcs between a node in
A and a node in B, and (iii)

∑
v∈A weight(v) ⩽ 2/3 and

∑
v∈B weight(v) ⩽ 2/3.

The theorem is stated for maximal planar graphs, but as pointed out in [8], it can be extended
to graphs with faces of bounded size (as is our case). In our application, we give weight zero
to the intermediate vertices as well as all vertices in V ∗ \ V , and weight 1

|V | to each vertex
in V . Thus we obtain a simple-cycle separator C, which we can turn into a separator for G∗

by ignoring any of the dummy vertices appearing on it. We obtain the following lemma.

▶ Lemma 2.2. There exists a separator C for G∗ with the following properties: 1. C is a
simple cycle, 2. C has size O(

√
k) and 3. C is (2/3)-balanced with respect to V .

2.2 Guessing and embedding the separator
What we would like to do now, is guess the separator C of G∗. Regarding the essential holes,
note that we know that |H∗| = O(k), but we don’t have any bound on H in terms of n, the
size of the input point set D. This is problematic for the running time because we will need
to “guess” what the essential holes are. However, we will argue that only O(n3) holes are
good candidates for being essential. We start with the following lemma.

▶ Lemma 2.3. Let P be a polygon and let H = {H1, H2, ..., Hm} be the set of holes in P .
Let T = {p, q, r} be a set of three points in P . Then there are at most two holes in H that
are incident to all three Voronoi cells VT (p), VT (q), VT (r).

Proof. Assume for contradiction that there exist three holes Hi, Hj , Hk incident to all three
cells VT (p), VT (q), VT (r) . Since Voronoi cells are connected, for each x ∈ {p, q, r} and for
each H ∈ {Hi, H,j , Hk}, there exists a path connecting x to H which stays inside V (x).
In this way, we get a planar embedding of K3,3, which is a contradiction. (Note that it is
possible to have two holes bordering VT (p), VT (q), VT (r), see Figure 4.) ◀

Now we define the set of candidate essential holes R as follows: for every triplet of points
in D we identify at most two holes which are incident to all three pairwise bisectors between
the points. We then place these holes in R. Clearly, |R| = O(n3). Therefore we can afford
to guess O(

√
k) essential holes on our separator C.

Now we give a more detailed description of how our algorithm works. Recall that each
node in G∗ (and, hence, each node on the separator we are looking for) corresponds to either
a point in D, or to the extra point p we added, or to an essential hole. Thus, to find the

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:7

separator, we guess all ordered subsets of size O(
√

k) from the set R ∪D ∪ p. This results in
nO(

√
k) candidate separators. We then would like to use each separator to split our problem

into two independent subproblems, one for the inside and one for the outside of the separator.
To do that, we have to make sure that for every demand point d ∈ D its closest center point
in the optimal solution, is located at the same side of the separator as d. For this, it suffices
to embed the edges of the separator such that no edge crosses a Voronoi cell of a point which
is not one of its endpoints. We have three categories of edges:

Edges that connect p to a Voronoi site s. Clearly if (p, s) ∈ E∗, then there exists
some r ∈ S such that (s, r) ∈ E and then we can embed such an edge using the shortest
paths π(p, x(s, r)), π(x(s, r), s). Note that we don’t know r, but we can afford to guess it
from D and therefore there are n options.
Edges that connect a Voronoi site s to a pH for some H ∈ R. If (s, pH) ∈ E∗,
then again there exists some r ∈ S such that s, r ∈ E and then we can embed such an
edge by going through xH(s, r), again using shortest paths. We can guess r from D and
there are n options.
Edges that connect two Voronoi sites s and r. Note that then one of the following
holds if (s, r) ∈ E:
1. there exists a t ∈ S, such that VS(s), VS(r), VS(t) meet at a point c in P or at a hole

H ∈ H∗

2. bS(s, r) intersects ∂P0 at two points.
Therefore we can check for all t ∈ D whether 1. holds and if yes we embed (s, r) as
π(s, c) ∪ π(c, r) or as π(s, xH(s, r)) ∪ π(xH(s, r), r). Otherwise, we can embed (s, r) via
x(s, r). Again we have at most n guesses.

Since we are using shortest paths to embed the edges, we know that they will stay inside
the Voronoi cells of the sites they connect and thus we get a good embedding. Assuming
our guessed separator is correct, the points on the separator have to be part of the optimal
solution that we seek. Therefore in the two subproblems, these points have to be passed on
as part of the input. If we assume that our separator has size i then we also need to guess
how many of the remaining k − i optimal centers lie in the inside and how many lie in the
outside subproblem. In terms of running time, this is clearly not a problem since it can only
give an extra factor of O(k) = O(n). The base case of our algorithm is when k = 1, where
we simply try all possible options.

A word on precomputing shortest paths. Our algorithm will need to make use of shortest
paths between points in the set D∪{p}∪{pH}H∈R∪{x(p, q), xH(p, q)}(p,q,H)∈D×D×R. Note
that this set has size poly(n) and thus all necessary shortest paths can be precomputed in
poly(n, m) time. The only information about these paths our algorithm will need during
the recursion is their length and whether two paths cross or not. Indeed, this is enough to
determine, for a guessed separator C, which are its two corresponding subproblems; two
points p, q not on C will be on different sides of C if and only if π(p, q) crosses C an odd
number of times. Therefore, the complexity of the polygon does not appear during the
recursion. Note that the same idea was used for the preprocessing step in [3].

Given the above discussion, the recursive formula of our algorithm is of the form T (k) =
nO(

√
k)T (2k/3), which solves to T (k) = nO(

√
k). The following theorem summarises our

result, where the poly(n, m) term comes from precomputing shortest paths.

▶ Theorem 2.4. Let D be a set of n points inside a polygonal domain P with m vertices
and let k be a given positive integer. Then the discrete k-median problem for D in P can be
solved in time poly(n, m) + nO(

√
k).

ISAAC 2023

23:8 Clustering in Polygonal Domains

2.3 The k-Center problem with outliers
To solve the k-center problem with z outliers, we first show that the same approach as our
k-median algorithm works to solve the so-called (k, r)-coverage problem, and then we show
how to reduce the k-center problem with z outliers to the (k, r)-coverage problem. Let P be
a polygonal domain, D denote a set of n demand points in P , and k, r be two parameters.
We define a (k, r)-coverage of D as a set of k balls of radius at most r, such that the number
of outliers (that is, points in D not covered by the balls) is minimized.

The divide-and-conquer algorithm we presented earlier for k-median clustering has a base
case of k = 1. Our algorithm relies on the n candidates for the optimal centers in k-median,
and has a running time of nO(

√
k). However, we only use the properties of k-median to solve

for the base case and determine the candidate centers when guessing the separator in an
optimal solution. Note that above we solved the discrete k-median problem, where the set of
candidate centers is given (namely, it is the same as the set D of demand points, although
our algorithm would also work if a different discrete set of candidate centers is given). For
the k-center problem, we wish to solve the continuous version, where the set of candidate
centers is not given. It is well known, however, that in the continuous k-center problem,
we can still restrict our attention to a discrete set of candidates, namely the centers of the
smallest enclosing (geodesic) balls of every triple and pair of points in D. Thus there are
O(n3) candidate centers. We denote the set of candidate centers by C∗. Therefore, the same
approach can be applied to solve the (k, r)-coverage problem, where for the base case, we can
consider all O(n3) balls of radius r centered at a point in C∗ and find the one that covers the
maximum number of points in D. This means that our algorithm can compute an optimal
(k, r)-coverage in nO(

√
k) time.

It remains to reduce the k-center problem with z outliers to the (k, r)-coverage problem.
Observe that if r is at least the optimal radius for k-center clustering with z outliers, then
the number of outliers for (k, r)-coverage is at most z. Moreover, there are at most O(n3)
candidates for the optimal radius (namely the radii of the smallest enclosing balls of the
triples and pairs of points in D). By performing a binary search over these O(n3) possible
radii, we can find the minimum radius r∗ such that the (k, r∗)-coverage covers all but at
most z outliers. This (k, r∗)-coverage is an optimal solution for the k-center problem with z

outliers, and the running time to find it is O(nO(
√

k) · log (n3)) = nO(
√

k).

▶ Theorem 2.5. Let D be a set of n points inside a polygonal domain P with m vertices
and let k, z be two given integers. Then the k-center problem for D with z outliers can be
solved in time poly(n, m) + nO(

√
k).

3 A coreset for the k-center of points in a simple polygon

In this section, we turn our attention to the k-center problem in a simple polygon. As already
mentioned, here we are interested in coresets for this problem. We will start by studying
the 1-center. In itself, a coreset for the 1-center in a simple polygon is not so interesting,
since the minimum enclosing (geodesic) ball of a set D of points inside P is always defined
by two or three points, and so there exists a coreset of size two or three. However, the
technique that we use (which is borrowed from Bădoiu and Clarkson [4]) forms the basis
of the result for k-center. For a set S of points, let cS denote the center of the minimum
enclosing geodesic ball of S (that is, its 1-center) and let rS be its radius. We denote the
ball of radius r centered at a point c be B(c, r), so B(cS , rS) is the minimum enclosing ball
of S. Note that these definitions apply in the standard Euclidean case, but also for geodesic

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:9

distances in a simple polygon. Our algorithm to compute a coreset C for the 1-center of a
point set D inside a simple polygon P uses the approach of Bădoiu et al. [5, 4], which works
as follows. First, we place in C an arbitrary point p ∈ D. Then we repeat the following
procedure: we check whether there exists a point q ∈ D such that ∥cCq∥ > (1 + ε)rC and if
yes, we add in C the point of D furthest from cC. Otherwise, we have our desired coreset.
The analysis of the number of iterations of the above procedure relies on two key lemmas.
Note that any chord in a simple polygon P (that is, any segment inside P connecting two
points on ∂P) splits P into two sub-polygons, which we call half-polygons.

▶ Lemma 3.1. Let B(cD, rD) denote the minimum enclosing geodesic ball for a set D of
points inside a simple polygon P . Then any closed half-polygon containing cD also contains
a point p ∈ D such that ∥π(p, cD)∥ = rD.

Proof. We proceed in the same way as in the Euclidean case. Namely, suppose there exists
a chord s of P through cD, such that one of the two defined half-polygons does not contain
a point p ∈ D such that ∥π(p, cD)∥ = rD. Let H1 denote this half-polygon. Then we can
slightly move cD to the direction perpendicular to s and to the interior of P \H1. In this way,
every point of D will now be fully contained in the interior of B(cD, rD). The reason is that
any shortest path π(cD, q), for q ∈ P \H1 is contained in P \H1 and thus this translation
of cD can only decrease ∥π(cD, q)∥. As a result the ball B(cD, rD) can be slightly shrunk,
contradicting its minimality. ◀

The second lemma we need is as follows.

▶ Lemma 3.2. Let B(cD, rD) denote the minimum enclosing geodesic ball for a set D of
points inside a simple polygon P . For any point q ∈ P , there exists a point p ∈ D at distance
rD from cD such that ∥π(p, q)∥ ⩾

√
∥π(p, cD)∥2 + ∥π(cD, q)∥2.

The corresponding lemma in the Euclidean case (that is when P = R2) follows directly
from (the Euclidean version of) Lemma 3.1, by using the Pythagorean Inequality. For geodesic
triangles however, we were not able to find in the literature an analog of the Pythagorean
Inequality. Thus we prove now that the following property still holds for geodesic triangles in
a simple polygon. Note that Lemma 3.3 together with Lemma 3.1 imply Lemma 3.2. Indeed,
let s be the chord through cD that is perpendicular to the first edge of π(cD, p). Then by
applying Lemma 3.1 to the closed half-polygon defined by s and not containing q, we get that
there exists a point p ∈ D such that ∥π(p, cD)∥ = rD. The result follows by observing that
in the geodesic triangle △πpcDq, the angle at cD is at least π

2 and thus Lemma 3.3 applies.

▶ Lemma 3.3. Let p, q, r denote three points in a simple polygon P , such that in the geodesic
triangle △πpqr, the angle at q is at least π

2 . Then we have ∥π(p, r)∥2 ⩾ ∥π(p, q)∥2+∥π(q, r)∥2.

Proof. For the following, refer to Figure 5. Let qq1, qq2 denote the first edges of the paths
π(q, p), π(q, r) respectively. We extend qq1, qq2 to the interior of △πpqr and let q′

1, q′
2 denote

the points where these extensions intersect π(p, r) respectively. By the triangle inequality we
have

∥π(p, q)∥ ⩽ |qq′
1|+ ∥π(q′

1, p)∥ and ∥π(r, q)∥ ⩽ |qq′
2|+ ∥π(q′

2, r)∥.

Moreover, since the angle at q is at least π/2 and the Euclidean triangle ∆(qq′
1q′

2) satisfies
the Pythagorean Inequality, and ∥π(q′

1, q′
2) ⩾ |q′

1q′
2|, we have

∥π(q′
1, q′

2)∥2 ⩾ |qq′
1|2 + |qq′

2|2.

ISAAC 2023

23:10 Clustering in Polygonal Domains

q

q1 q2

q′1
q′2

p

r

Figure 5 Illustration for the proof of Lemma 3.3. Here, the red points represent the points where
the paths π(p, r), π(p, q) and π(r, q), π(r, p) split.

Finally, observe that for any numbers a, b, c ⩾ 0 we have

(a + b + c)2 ⩾ a2 + b2 + c2 + 2ab + 2ac.

Hence,

∥π(p, q)∥2 + ∥π(r, q)∥2 ⩽ (|qq′
1|+ ∥π(q′

1, p)∥)2 + (|qq′
2|+ ∥π(q′

2, r))2

= |qq′
1|2 + 2|qq′

1| · ∥π(q′
1, p)∥+ ∥π(q′

1, p)∥2 + |qq′
2|2 + 2|qq′

2| · ∥π(q′
2, r)∥+ ∥π(q′

2, r)∥2

= ∥π(q′
1, q′

2)∥2 + ∥π(q′
1, p)∥2 + ∥π(q′

2, r)∥2 + 2|qq′
1| · ∥π(q′

1, p)∥+ 2|qq′
2| · ∥π(q′

2, r)∥

⩽ (∥π(q′
1, q′

2)∥+ ∥π(q′
1, p)∥+ ∥π(q′

2, r)∥)2

= ∥π(p, r)∥2. ◀

We can now prove the following theorem.

▶ Theorem 3.4. Let D be a set of n points inside a simple polygon P with m vertices. For
any ε > 0 there is an ε-coreset C ⊂ D of size O(1/ε) for the 1-center problem. The coreset
can be constructed in time O

(
n log m+m

ε + 1
ε2 log 1

ε

)
.

Proof. The proof is similar to that of Badoiu et al. [4]: let Ci denote our coreset after i

points have been added to it and let B(ri, ci) denote its minimum enclosing ball. Observe
that r2 is a constant approximation for the optimal radius. Therefore, if one can show that
ri+1 ⩾

(
1 + ε

α

)
ri, for some constant α, it will follow that after O(1/ε) iterations, rC ⩾ rD.

By applying Lemma 3.2 we get ri+1 ⩾
√

r2
i + ∥π(ci+1, ci)∥2. By the triangle inequality we

get ri+1 > (1 + ε)ri − ∥π(ci+1, ci)∥. Using these two lower bounds for ri+1, one can indeed
get the desired relation between ri+1 and ri. For further details, refer to the proof in [4].

Regarding the construction of the coreset, if we follow the procedure described, then we
need to solve the 1-center problem O

(1
ε

)
times for a set of O(1

ε) points in a simple polygon
with m vertices. This can be done in O

(1
ε

(
m + 1

ε log 1
ε

))
time [18]. In each iteration, we also

need to find the point in D that is furthest from our current center. This takes O(n log m)
time per iteration [11]. Hence, the total running time is O

(
n log m+m

ε + 1
ε2 log 1

ε

)
. ◀

Extension to k-center. Theorem 3.4 combined with the methods from [5] yields a (1 + ε)-
approximate k-center for D. The algorithm starts with k, initially empty, sets S1, S2, ..., Sk.
In each iteration, the point p ∈ D furthest from cS1 , cS2 , ..., cSk

is found and added to

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:11

one of the sets. However, we do not know beforehand to which set the point p should
be added, so we simply guess (that is, try all possibilities). After O(k/ε) iterations, the
algorithm will terminate in the branch where all guesses of where the furthest point should
be added are correct. Therefore we also need to guess to which set to add p. We obtain
the following theorem, whose proof is the same as the proof of the corresponding result of
Bădoiu, Har-Peled, and Indyk [5].

▶ Theorem 3.5. Let D be a set of n points inside a simple polygon P with m vertices. For any
1 > ε > 0, a (1+ε)- approximate k-center for D can be found in time 2O(k log k/ε)(n log m+m).

4 Coresets for 1-center clustering with outliers

We now study the 1-center problem with outliers for points in the Euclidean plane (so, not
inside a polygon). We will prove that there is an ε-coreset of size O(z/ε) for this problem. To
obtain such a coreset, our algorithm will need a constant-factor approximation as a starting
point. To this end, we first show how to construct a coreset of size 2z + 2 that gives a
3-approximation. Interestingly, this latter algorithm works in any metric space, so also for
points inside a polygonal domain.

A coreset giving a 3-approximation in general metric spaces. Let D be a set of points
in a metric space with distance function d(·, ·). We show in Algorithm 1 how to compute a
coreset of size 2z + 2 that 3-approximates the 1-center problem on D with z outliers.

Note that if the size of D is at most 2z + 2, we return D in Algorithm 1 as the coreset.
Therefore, without loss of generality, we can assume that the size of D is greater than 2z + 2
for the rest of this section. We define optz(A) as the radius of an optimal solution for the
1-center problem on D with z outliers, where A represents any given set.

Algorithm 1 FindCoreset(D, z).

1: ▷ An algorithm to find a coreset for 1-center problem on D with z outliers
2: if |D| ⩽ 2z + 2 then
3: return D

4: C1 ← {an arbitrary point of D}
5: for i = 2 to 2z + 1 do
6: Let B(oi−1, ri−1) be a minimum-radius ball containing all points of Ci−1 but z outliers
7: Let fi be a point of D \ Ci−1 that is furthest away from oi−1
8: Ci ← Ci−1 ∪ {fi}
9: return C2z+2

▶ Lemma 4.1. For any 1 ⩽ i ⩽ 2z + 2, at least one of the following properties holds for the
set Ci constructed by Algorithm FindCoreset(D, z).

(i) optz(Ci) ⩾ optz(D)/3, or
(ii) for all r < optz(D)/3, any ball of radius r contains at most z + 1 points of Ci.

Proof. For i = 1, property (ii) is trivially satisfied since we have |Ci| = 1 and z + 1 ⩾ 1. For
i > 1, we prove the lemma by contradiction. Suppose the lemma is false, and let t ∈ [2, 2z +2]
be the smallest number such that properties (i) and(ii) do not hold for Ct. Then, there exists
a ball B(o′, r′) such that |B(o′, r′) ∩ Ct| > z + 1 and r′ < optz(D)/3.

Let ft be the point added to the coreset in line 8 of the algorithm, in the t-th iteration.
We first prove that ft ∈ B(o′, r′) and |B(o′, r′) ∩ Ct−1| = z + 1. Since Ct ⊃ Ct−1, we have
optz(Ct−1) ⩽ optz(Ct). Moreover, we assumed that property (i) does not hold for Ct,

ISAAC 2023

23:12 Clustering in Polygonal Domains

which means optz(Ct) < optz(D)/3. Therefore, rt−1 = optz(Ct−1) < optz(D)/3, which
means property (i) does not hold for Ct−1. As t is the smallest number such that both
properties do not hold for Ct, we conclude that property (ii) holds for Ct−1, which implies
|B(o′, r′)∩Ct−1| ⩽ z + 1. Adding it to |B(o′, r′)∩Ct| > z + 1 and Ct = Ct−1 ∪ {ft} we have
ft ∈ B(o′, r′) and also |B(o′, r′) ∩ Ct−1| = z + 1.

B(ot−1, rt−1) is a solution for the 1-center problem on Ct−1 with z outliers, and |B(o′, r′)∩
Ct−1| = z + 1. Then, there exists a point p∗ ∈ B(ot−1, rt−1) ∩ (Ct−1 ∩B(o′, r′)). Moreover,
by the triangle inequality we have d(ot−1, ft) ⩽ d(ot−1, p∗) + d(p∗, ft). As p∗ ∈ B(ot−1, rt−1),
we have d(ot−1, p∗) ⩽ rt−1, and as both p∗ and ft are in B(o′, r′) we have d(p∗, ft) ⩽ 2r′.
Thus, d(ot−1, ft) ⩽ rt−1 + 2r′, and since rt−1 < optz(D)/3 and r′ < optz(D)/3 we have
d(ot−1, ft) < optz(D).

On the other hand, we have d(ot−1, ft) ⩾ d(ot−1, p) for any p ∈ D \ Ct−1 since ft is
the furthest point in D/Ct−1 to ot−1. Furthermore, all but at most z points of Ct−1 are
in B(ot−1, rt−1). Also, d(ot−1, ft) ⩾ rt−1, since otherwise rt−1 = optz(Ct−1) ⩾ optz(D),
which is a contradiction to optz(Ct−1) < optz(D)/3. Therefore, B(ot−1, d(ot−1, ft)) is a
solution for the 1-center problem on D with z outliers, which implies optz(D) ⩽ d(ot−1, ft).
Hence, optz(D) ⩽ d(ot−1, ft) < optz(D), which is a contradiction. ◀

▶ Theorem 4.2. Let D be a set of n points in a metric space. Then there exists a coreset
C ⊂ D of size at most 2z + 2 such that optz(D)/3 ⩽ optz(C) ⩽ optz(D).

Proof. Let C be the coreset returned by FindCoreset(D, z), and assume |D| > 2z + 2 so
that C = C2z+2. Since C2z+2 ⊆ D, then optz(C2z+2) ⩽ optz(D) trivially holds. To prove
the other side of the inequality, suppose for a contradiction that optz(C) < optz(D)/3. Let
B(o, optz(C2z+2)) be the optimal solution for the 1-center problem on C2z+2 with z outliers.
Then, as |C2z+2| = 2z + 2 and at most z points are outliers, B(o, optz(C2z+2)) contains
at least z + 2 points. However, since we assume optz(C) < optz(D)/3, then B(o, C2z+2)
contains at most z + 1 points by Lemma 4.1, which is a contradiction. ◀

A (1 + ε)-coreset in the plane. The algorithm above works for any metric space, giving
a 3-approximation. Now we explain that if D is a set of points in R2, we can improve the
approximation ratio and obtain an ε-coreset, for any given ε > 0. To accomplish this, we add
O(z/ε) extra points to the coreset as follows. Let C2z+2 be the output of FindCoreset(D, z)
and B(o2z+2, r2z+2) be an optimal solution for the 1-center problem on C2z+2 with z outliers.
We partition the plane into ℓ =

⌈ 12π
ε

⌉
cones K1, K2, ..., Kℓ centered at o2z+2 with an opening

angle of at most ε/6 each. Then, for each cone, we add 2z +2 additional points to the coreset,
namely the z + 1 nearest points and the z + 1 furthest points to o2k+2 from the points in
D/C2k+2 that are located within that cone. Let A be the set of at most (12π/ε) · (2z + 2)
points selected in these cones, and define C := C2z+2 ∪A. We will show that C is an ε-coreset.

▶ Theorem 4.3. Let D be a set of points in R2. There exists an ε-coreset for the 1-center
problem with z outliers for D of size O(z/ε).

Proof. Consider the set C defined above and let B(ô, r̂) be an optimal solution for the
1-center problem on C with z outliers. It suffices to show that, for any point q ∈ D \ C, we
have that ∥ôq∥ ⩽ (1 + ε)r̂. Suppose for a contradiction that ∥ôq∥ > (1 + ε)r̂. Let K1, . . . , Kℓ

be the cones defined above, and recall that each cone has an angle of at most ε
6 . As already

mentioned, we place in our coreset the z + 1 furthest and z + 1 closest points to o2z+2.
Observe that |ôo2z+2| ⩽ 2r̂, since B(o2z+2, r2z+2) and B(ô, r̂) have to intersect (otherwise
there would be more than z outliers outside B(ô, r̂)). Note that this means that for any

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:13

point p ∈ ∂B(ô, r̂), we have that |o2z+2p| ⩽ 3r̂. Let Kj denote the cone containing q. Since
q /∈ A, there exist z + 1 points closer to o2z+2 than q and z + 1 points further to o2z+2 than
q. We denote the set of closer points by Aclose and the set of further points by Afar. We have
the following cases:

Case I: Kj does not intersect B(ô, r̂). Then we clearly have a contradiction since |Kj ∩A| ⩾
2z + 2 while we are allowed at most z outliers.

Case II: Kj contains B(ô, r̂). Then the opening angle of Kj is smallest when both of its
sides are tangent to B(ô, r̂). Let t denote one of the points of tangency. Then in the right
triangle △o2z+2ot we have ε

6 > sin
(

ε
6
)

= r̂
|o2z+2o| ⩾

1
2 , which is a contradiction.

Case III: Otherwise, at least one of the sides of Kj intersects B(ô, r̂). Let e1 denote this side
and e2 denote the other side. Also, let e denote the half-line through o2z+2, ô. Clearly e1
will then also intersect B(ô, (1 + ε)r̂). We will now show the following claim.

▷ Claim 1. The side e2 of Kj also has to intersect B(ô, (1 + ε)r̂).

Proof. Suppose for a contradiction that the claim is false. Then the opening angle of Kj is
smallest when both e1 and e2 are tangent to B(ô, r̂) and B(ô, (1 + ε)r̂), respectively. Let
p1, p2 denote the points of tangency as in Figure 6(i). Let p denote the point where the line
through ô and p1 intersects e2. Then since p has to lie outside B(ô, (1 + ε)r̂), we have that
|p1p| > εr̂. Moreover, |o2z+2p1| < |o2z+2ô| < 2r̂ and so in the right triangle △o2z+2p1p we
get tan

(
ε
6
)

= |p1p|
|o2z+2p1| > εr̂

2r̂ = ε
2 , which is a contradiction, as tan θ < 2θ for small enough θ.

◁

Since both sides of Kj intersect B(ô, (1 + ε)r̂), we can partition Kj in two or three regions,
depending on the location of o2z+2. Namely, if o2z+2 lies inside B(ô, (1 + ε)r̂), then Kj can
be partitioned in a region inside B(ô, (1 + ε)r̂) and a region outside B(ô, (1 + ε)r̂). If o2z+2
lies outside B(ô, (1 + ε)r̂), then Kj can be partitioned in three regions as in Figure 6(ii).
Since the latter case is the most general, we will prove that one. The former case can be
handled similarly. Without loss of generality, we will assume that e2 lies above ô and that
the angle between e2 and e is at least ε

12 . The proof is slightly different, but essentially the
same, depending on whether e is contained in Kj . To handle both at the same time, from
now on we will let e3 ≡ e when e is contained in Kj and e3 ≡ e1 otherwise. Note that q has
to lie either in region R1 or R3. We will now consider these two subcases.
Subcase I: q ∈ R1. Observe that then the point x, where e2 enters B(ô, (1 + ε)r̂) is the

furthest q can be from o2z+2. To derive a contradiction, it suffices to show that every
point in Aclose lies outside B(ô, r̂). Since the point of Kj ∩B(ô, r̂) closest to o2z+2, is the
point where e3 enters B(ô, r̂) (denoted by y), it suffices to show that |o2z+2x| < |o2z+2y|.
We define ϕ = ∠xyo2z+2. Then, by the Law of Sines in the triangle △o2z+2xy we get
sin(ε/6)

|xy| = sin(ϕ)
|o2z+2x| . Therefore, sin ϕ < ε/6

εr |o2z+2x| = |o2z+2x|
6r̂ .

Now notice that |o2z+2x| < |o2z+2ô| < 2r̂. To see this, consider the tangent from o2z+2
to B(ô, r̂) that lies above (o2z+2, o) and let t be the point of tangency. Then x has to lie in
the triangle △o2z+2tô and so ∠o2z+2xô ⩾ π/2. Therefore we get that sin ϕ < 1

3 , which gives
us that ϕ < π

6 . Since we can assume ε < 1, we get that ∠o2z+2xy > π − π
6 −

ε
6 > π/2 and

therefore we have that |o2z+2x| < |o2z+2y|.

Subcase II: q ∈ R3. The approach is similar. The point x̂ where e2 exits B(ô, (1 + ε)r̂) is
the closest q can be to o2z+2. To derive a contradiction, it suffices to show that in that
case every point in Afar lies outside B(ô, r̂). Since the point of Kj ∩B(ô, r̂) furthest from

ISAAC 2023

23:14 Clustering in Polygonal Domains

o2z+2 ô

p2
p1

Kj

r̂

εr̂

e1
e2

p(i) (ii)

o2z+2 ô

r̂

εr̂

R1
x

y

R3

e2

e1 ≡ e3

x̂

ŷ

e

Figure 6 Illustrations for the proof of Theorem 4.3. Note that in (ii), e is not contained in the
cone and therefore here we have e3 ≡ e1.

o2z+2, is the point where e3 exits B(ô, r̂) – we denote this by ŷ – it suffices to show that
|o2z+2x̂| > |o2z+2ŷ|. We define ϕ̂ = ∠ŷx̂o2z+2. Then, by the Law of Sines in the triangle
△o2z+2x̂ŷ we have sin(ε/6)

|x̂ŷ| = sin(ϕ̂)
|o2z+2ŷ| . Hence, sin ϕ̂ < ε/6

εr |o2z+2ŷ| = |o2z+2ŷ|
6r̂ .

Now notice that |o2z+2ŷ| < 3r̂, as observed in the first paragraph of this proof. Therefore
we get that sin ϕ̂ < 1

2 , which gives us that ϕ̂ < π
6 . Since we can assume ε < 1, we get that

∠o2z+2ŷx̂ > π − π+1
6 > π

2 and therefore we have that |o2z+2x̂| > |o2z+2ŷ|. This again gives
a contradiction and concludes the proof. ◀

References
1 Pankaj K. Agarwal and Micha Sharir. Planar geometric location problems. Algorithmica,

11(2):185–195, 1994. doi:10.1007/BF01182774.
2 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and Eunjin

Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discret. Comput.
Geom., 56(4):836–859, 2016. doi:10.1007/s00454-016-9796-0.

3 Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous. TSP in a
Simple Polygon. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman,
editors, 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2022.5.

4 Mihai Bâdoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pages 801–802, 2003.

5 Mihai Bâdoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proc. 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 250–257,
2002. doi:10.1145/509907.509947.

6 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering
(with outliers) in mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB
Endow., 12(7):766–778, 2019. doi:10.14778/3317315.3317319.

7 Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in
the MPC and streaming model. In Proc. 37th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2023), pages 853–863, 2023. doi:10.1109/IPDPS54959.2023.
00090.

8 Hristo Djidjev and Shankar M. Venkatesan. Reduced constants for simple cycle graph
separation. Acta Informatica, 34(3):231–243, 1997. doi:10.1007/s002360050082.

9 Zvi Drezner. The p-centre problem-heuristic and optimal algorithms. The Journal of the
Operational Research Society, 35(8):741–748, 1984. URL: http://www.jstor.org/stable/
2581980.

https://doi.org/10.1007/BF01182774
https://doi.org/10.1007/s00454-016-9796-0
https://doi.org/10.4230/LIPIcs.ESA.2022.5
https://doi.org/10.1145/509907.509947
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.1109/IPDPS54959.2023.00090
https://doi.org/10.1109/IPDPS54959.2023.00090
https://doi.org/10.1007/s002360050082
http://www.jstor.org/stable/2581980
http://www.jstor.org/stable/2581980

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:15

10 Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neighbor queries in spa-
tial databases. In Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD 2009), pages 577–590, 2009. doi:10.1145/1559845.1559906.

11 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126–152, 1989. doi:10.1016/0022-0000(89)
90041-X.

12 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

13 R. Z. Hwang, Richard C. T. Lee, and R. C. Chang. The slab dividing approach to solve the
Euclidean p-center problem. Algorithmica, 9(1):1–22, 1993. doi:10.1007/BF01185335.

14 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2), 2022. doi:
10.1145/3483425.

15 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
In Proc. 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pages
329–338, 1982. doi:10.1109/SFCS.1982.24.

16 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM Journal on Computing, 13(1):182–196, 1984. doi:10.1137/0213014.

17 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal of
Computer and System Sciences, 32(3):265–279, 1986. doi:10.1016/0022-0000(86)90030-9.

18 Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn. Computing a geodesic two-center of points in
a simple polygon. Computational Geometry, 82:45–59, 2019. doi:10.1016/j.comgeo.2019.
05.001.

19 Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proc. 16th Annual Symposium
on Foundations of Computer Science (FOCS 1975), pages 151–162, 1975. doi:10.1109/SFCS.
1975.8.

20 J. J. Sylvester. A question in the geometry of situation. Quarterly Journal of Pure and Applied
Mathematics, 1857.

21 A.K.H. Tung, J. Hou, and Jiawei Han. Spatial clustering in the presence of obstacles.
In Proc. 17th International Conference on Data Engineering, pages 359–367, 2001. doi:
10.1109/ICDE.2001.914848.

22 Haitao Wang. On the planar two-center problem and circular hulls. Discrete & Computational
Geometry, 68(4):1175–1226, 2022. doi:10.1007/s00454-021-00358-5.

23 Xin Wang and Howard J. HHamilton. Clustering spatial data in the presence of ob-
stacles. International Journal on Artificial Intelligence Tools, 14:177–198, 2005. doi:
10.1142/S0218213005002053.

24 Chenyi Xia, David Hsu, and Anthony K. H. Tung. A fast filter for obstructed nearest neighbor
queries. In Key Technologies for Data Management, pages 203–215, 2004.

25 O.R. Zaiane and Chi-Hoon Lee. Clustering spatial data in the presence of obstacles: a density-
based approach. In Proc. International Database Engineering and Applications Symposium,
pages 214–223, 2002. doi:10.1109/IDEAS.2002.1029674.

ISAAC 2023

https://doi.org/10.1145/1559845.1559906
https://doi.org/10.1016/0022-0000(89)90041-X
https://doi.org/10.1016/0022-0000(89)90041-X
https://doi.org/10.1007/BF01228511
https://doi.org/10.1007/BF01185335
https://doi.org/10.1145/3483425
https://doi.org/10.1145/3483425
https://doi.org/10.1109/SFCS.1982.24
https://doi.org/10.1137/0213014
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1016/j.comgeo.2019.05.001
https://doi.org/10.1016/j.comgeo.2019.05.001
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/ICDE.2001.914848
https://doi.org/10.1109/ICDE.2001.914848
https://doi.org/10.1007/s00454-021-00358-5
https://doi.org/10.1142/S0218213005002053
https://doi.org/10.1142/S0218213005002053
https://doi.org/10.1109/IDEAS.2002.1029674

	1 Introduction
	2 k-Median and k-center with outliers in a polygonal domain
	2.1 Applying the Separator Theorem to {G}*
	2.2 Guessing and embedding the separator
	2.3 The k-Center problem with outliers

	3 A coreset for the k-center of points in a simple polygon
	4 Coresets for 1-center clustering with outliers

