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Abstract
Recently, many studies have been devoted to finding diverse solutions in classical combinatorial
problems, such as Vertex Cover (Baste et al., IJCAI’20), Matching (Fomin et al., ISAAC’20)
and Spanning Tree (Hanaka et al., AAAI’21). Finding diverse solutions is important in settings
where the user is not able to specify all criteria of the desired solution. Motivated by an application
in the field of system identification, we initiate the algorithmic study of k-Diverse Minimum s-t
Cuts which, given a directed graph G = (V, E), two specified vertices s, t ∈ V , and an integer k > 0,
asks for a collection of k minimum s-t cuts in G that has maximum diversity. We investigate the
complexity of the problem for two diversity measures for a collection of cuts: (i) the sum of all
pairwise Hamming distances, and (ii) the cardinality of the union of cuts in the collection. We prove
that k-Diverse Minimum s-t Cuts can be solved in strongly polynomial time for both diversity
measures via submodular function minimization. We obtain this result by establishing a connection
between ordered collections of minimum s-t cuts and the theory of distributive lattices. When
restricted to finding only collections of mutually disjoint solutions, we provide a more practical
algorithm that finds a maximum set of pairwise disjoint minimum s-t cuts. For graphs with small
minimum s-t cut, it runs in the time of a single max-flow computation. These results stand in
contrast to the problem of finding k diverse global minimum cuts – which is known to be NP-hard
even for the disjoint case (Hanaka et al., AAAI’23) – and partially answer a long-standing open
question of Wagner (Networks 1990) about improving the complexity of finding disjoint collections
of minimum s-t cuts.
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1 Introduction

The Minimum s-t Cut problem is a classic combinatorial optimization problem. Given a
directed graph G = (V, E) and two special vertices s, t ∈ V , the problem asks for a subset
S ⊆ E of minimum cardinality that separates vertices s and t, meaning that removing these
edges from G ensures there is no path from s to t. Such a set is called a minimum s-t cut
or s-t mincut, and it need not be unique. This problem has been studied extensively and
has numerous practical and theoretical applications. Moreover, it is known to be solvable
in polynomial time. Several variants and generalizations of the problem have been studied;
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24:2 Finding Diverse Minimum s-t Cuts

we mention the global minimum cut problem and the problem of enumerating all minimum
s-t cuts in a graph. In this paper, we initiate the algorithmic study of computing diverse
minimum s-t cuts. Concretely, we introduce the following optimization problem.

k-Diverse Minimum s-t Cuts (k-DMC). Given are a directed graph G = (V, E), vertices
s, t ∈ V , and an integer k > 0. Let ΓG(s, t) be the set of minimum s-t cuts in G, and
let Uk be the set of k-element multisets of ΓG(s, t). We want to find C ∈ Uk such that
d(C) = maxS∈Uk

d(S), where d : Uk → N is a measure of diversity.

Informally, given a directed graph G, vertices s and t, and an integer k, we are interested
in finding a collection of k s-t mincuts in G that are as different from each other as possible;
that is, a collection having maximum diversity. Finding diverse solution sets is important in
settings where the user is not able to specify all criteria of the desired solution. We mention
the synthesis problem as an application of diverse minimum s-t cuts [27, 28].

To formally capture the notion of diversity of a collection of sets, several measures have
been proposed (e.g., [30, 2, 15, 1, 13]). In this work, we choose two natural and general
measures as our notions of diversity. Given a collection (X1, X2, . . . , Xk) of subsets of
a set A (not necessarily distinct), we define dsum(X1, . . . , Xk) =

∑
1≤i<j≤k |Xi△Xj | and

dcov(X1, . . . , Xk) =
∣∣ ⋃

1≤i≤k Xi

∣∣, where Xi△Xj = (Xi ∪Xj) \ (Xi ∩Xj) is the symmetric
difference (or Hamming distance) of Xi and Xj . We call dsum and dcov the pairwise-sum and
coverage diversity measures, respectively.

Our results. We investigate the complexity of the following two variants of k-Diverse
Minimum s-t Cuts: (i) Sum k-Diverse Minimum s-t Cuts (Sum-k-DMC), and (ii)
Cover k-Diverse Minimum s-t Cuts (Cov-k-DMC). These are the problems obtained
when defining function d in k-DMC as diversity measures dsum and dcov, respectively. For a
graph G, we use n to denote the number of nodes and m to denote the number of edges.

Contrary to the hardness of finding diverse global mincuts in a graph [13], we show that
both Sum-k-DMC and Cov-k-DMC can be solved in polynomial time. We show this via a
reduction to the submodular function minimization problem (SFM) on a lattice, which is
known to be solvable in strongly polynomial time when the lattice is distributive [10, 16, 26].

▶ Theorem 1. Sum-k-DMC and Cov-k-DMC can be solved in strongly polynomial time.

At the core of this reduction is a generalization of an old result establishing a connection
between minimum s-t cuts and distributive lattices [7]. As will be elaborated in Section 3,
we obtain our results by showing that the pairwise-sum and coverage diversity measures
(reformulated as minimization objectives) are submodular functions on the lattice L∗ defined
by left-right ordered collections of s-t mincuts and that this lattice is in fact distributive.
Using the current fastest algorithm for SFM [17], together with an appropriate representation
of the lattice L∗, we can obtain an algorithm that solves these problems in O(k5n5) time.

In Section 4, we obtain better time bounds for the special case of finding collections of
s-t mincuts that are pairwise disjoint. Similar to SUM-k-DMC and COV-k-DMC, our
approach exploits the partial order structure of s-t mincuts. We use this to efficiently solve
the following optimization problem, which we call k-Disjoint Minimum s-t Cuts: given
a graph G = (V, E), vertices s, t ∈ V , and an integer k ≤ kmax, find k pairwise disjoint s-t
mincuts in G. Here, kmax denotes the maximum number of disjoint s-t mincuts in G. Our
algorithm is significantly simpler than the previous best algorithm by Wagner [29], which
runs in the time of a poly-logarithmic number of calls to any min-cost flow algorithm. Our
algorithm takes O(F (m, n)+mλ) time, where F (m, n) is the time required by a unit-capacity
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max-flow computation, and λ is the size of an s-t mincut in the graph. By plugging in the
running time of the current fastest deterministic max-flow algorithms [21, 18], we obtain the
following time bounds. When λ ≤ m1/3+o(1), our algorithm improves upon the previous best
runtime for this problem.

▶ Theorem 2. k-Disjoint Minimum s-t Cuts can be solved in time O(m4/3+o(1) + mλ).

Related Work. Many efforts have been devoted to finding diverse solutions in combinatorial
problems. In their seminal paper [20], Kuo et al. were the first to explore this problem from
a complexity-theoretic perspective. They showed that the basic problem of maximizing a
distance norm over a set of elements is already NP-hard. Since then, the computational
complexity of finding diverse solutions in many other combinatorial problems has been
studied. For instance, diverse variants of Vertex Cover, Matching and Hitting Set
have been shown to be NP-hard, even when considering simple diversity measures like
the pairwise-sum of Hamming distances, or the minimum Hamming distance between sets.
This has motivated the study of these and similar problems from the perspective of fixed-
parameter tractable (FPT) algorithms [1, 2, 8]. Along the same line, Hanaka et al. [13]
recently developed a framework to design approximation algorithms for diverse variants of
combinatorial problems. On the positive side, diverse variants of other classic problems are
known to be polynomially solvable, such as Spanning Tree [15], Shortest Path [14, 30],
and Bipartite Matching [14], but not much is known about graph partitioning problems
in light of diversity.

The problem of finding multiple minimum cuts has received considerable attention
[13, 25, 29]. Picard and Queyranne [25] initiated the study of finding all minimum s-t cuts in
a graph, showing that these can be enumerated efficiently. They observe that the closures of
a naturally-defined poset over the vertices of the graph, correspond bijectively to minimum
s-t cuts. An earlier work of Escalante [7] already introduced an equivalent poset for minimum
s-t cuts, but contrary to Picard and Queyranne, no algorithmic implications were given.
Nonetheless, Escalante shows that the set of s-t mincuts in a graph, together with this poset,
defines a distributive lattice. Similar structural results for stable matchings and circulations
have been shown to have algorithmic implications [11, 19], but as far as we know, the lattice
structure of s-t mincuts has been seldomly exploited in the algorithmic literature.

Wagner [29] studied the problem of finding k pairwise-disjoint s-t cuts of minimum total
cost in an edge-weighted graph. He showed that this problem can be solved in polynomial
time by means of a reduction to a transshipment problem; where he raised the question of
whether improved complexity bounds were possible by further exploiting the structure of
the problem, as opposed to using a general purpose min-cost flow algorithm for solving the
transshipment formulation. In sharp contrast, Hanaka et al. [13] recently established that
the problem of finding k pairwise-disjoint global minimum cuts in a graph is NP-hard (for k

part of the input). We are not aware of any algorithm for minimum s-t cuts that runs in
polynomial time with theoretical guarantees on diversity.

2 Preliminaries

2.1 Distributive Lattices
In this paper, we use properties of distributive lattices. Here we introduce some basic concepts
and results. For a more detailed introduction to lattice theory see e.g., [3, 5, 9].

A partially ordered set (poset) P = (X,⪯) is a ground set X together with a binary
relation ⪯ on X that is reflexive, antisymmetric, and transitive. For a poset P = (X,⪯), an
ideal is a set U ⊆ X where u ∈ U implies that v ∈ U for all v ⪯ u. We use D(P ) to denote
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24:4 Finding Diverse Minimum s-t Cuts

the family of all ideals of P . When the binary operation ⪯ is clear from the context, we use
the same notation for a poset and its ground set. We consider the standard representation of
a poset P as a directed graph G(P ) containing a node for each element and edges from an
element to its predecessors. In terms of G(P ) = (V, E), a subset W of V is an ideal if and
only if there is no outgoing edge from W .

A lattice is a poset L = (X,⪯) in which any two elements x, y ∈ X have a (unique)
greatest lower bound, or meet, denoted by x ∧ y, as well as a (unique) least upper bound, or
join, denoted by x∨y. Hence, a lattice can also be identified by the tuple (X,∨,∧). A lattice
L′ is a sublattice of L if L′ ⊆ L and L′ has the same meet and join operations as L. In this
paper, we only consider distributive lattices, which are lattices whose meet and join operations
satisfy distributivity; that is, x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) and x∧ (y ∨ z) = (x∧ y)∨ (x∧ z),
for any x, y, z ∈ L. Note that a sublattice of a distributive lattice is also distributive.

Suppose we have a collection L1, . . . , Lk of lattices Li = (Xi,∨i,∧i) with i ∈ {1, ..., k}.
The (direct) product lattice L1×· · ·×Lk is a lattice with ground set X = {(x1, . . . , xk) : xi ∈
Xi} and join ∨ and meet ∧ acting component-wise; that is, x ∨ y = (x1 ∨1 y1, . . . , xk ∨k yk)
and x∧ y = (x1 ∧1 y1, . . . , xk ∧k yk) for any x, y ∈ X. The lattice Lk is the product lattice of
k copies of L and is called the kth power of L. If L is distributive, then Lk is also distributive.

A crucial notion in this work is that of join-irreducibles. An element x of a lattice L is
called join-irreducible if it cannot be expressed as the join of two elements y, z ∈ L with
y, z ≠ x. In a lattice, any element is equal to the join of all join-irreducible elements lower
than or equal to it. The set of join-irreducible elements of L is denoted by J(L). Note
that J(L) is a poset whose order is inherited from L. Due to Birkhoff’s representation
theorem every distributive lattice L is isomorphic to the lattice D(J(L)) of ideals of its
poset of join-irreducibles, with union and intersection as join and meet operations. Hence, a
distributive lattice L can be uniquely recovered from its poset J(L).

▶ Theorem 3 (Birkhoff’s Representation Theorem [3]). Any distributive lattice L can be
represented as the poset of its join-irreducibles J(L), with the order induced from L.

For a distributive lattice L, this implies that there is a compact representation of L as
the directed graph G(L) that characterizes its set of join-irreducibles. (The graph G(L) is
unique if we remove transitive edges.) This is useful when designing algorithms, as the size
of G(L) is O(|J(L)|2), while L can have as many as 2|J(L)| elements.

2.2 Submodular Function Minimization
Let f be a real-valued function on a lattice L = (X,⪯). We say that f is submodular on
L if f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y), for all x, y ∈ X. If −f is submodular in L, then
we say that f is supermodular in L and just modular if f is both sub and supermodular.
The submodular function minimization problem (SFM) on lattices is, given a submodular
function f on L, to find an element x ∈ L such that f(x) is minimum. An important fact
that we use in our work is that the sum of submodular functions is also submodular. Also,
note that minimizing f is equivalent to maximizing −f .

Consider the special case of a lattice whose ground set X ⊆ 2U is a family of subsets of a
set U , and meet and join are intersection and union of sets, respectively. It is known that
any submodular function f on such a lattice can be minimized in polynomial time in |U |
[10, 16, 26], assuming that for any Y ⊆ U , the value of f(Y ) is given by an evaluation oracle
that also runs in polynomial time in |U |. The current fastest algorithm for SFM on sets runs
in O(|U |3TEO) time [17], where TEO is the time required for one call to the evaluation oracle.
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Due to Birkhoff’s theorem, the seemingly more general case of SFM on distributive lattices
can be reduced to SFM on sets (see [4, Sec. 3.1] for details). Hence, any polynomial-time
algorithm for SFM on sets can be used to minimize a submodular function f defined on a
distributive lattice L. An important remark is that the running time now depends on the
size of the set J(L) of join-irreducibles.

▶ Theorem 4 ([24, Note 10.15] & [22, Thm.1]). For any distributive lattice L, given by
its poset of join-irreducibles J(L), a submodular function f : L → R can be minimized in
polynomial time in |J(L)|, provided a polynomial time evaluation oracle for f .

2.3 Minimum Cuts
Throughout this paper, we restrict our discussion to directed graphs. All our results can be
extended to undirected graphs by means of well-known transformations. Likewise, we deal
only with edge-cuts, although our approach can be easily adapted to vertex-cuts as well.

Let G be a directed graph with vertex set V (G) and edge set E(G). As usual, we define
n := |V (G)| and m := |E(G)|. Given a source s ∈ V (G) and target t ∈ V (G) in G, we call a
subset X ⊂ E(G) an s-t cut if the removal of X from the graph ensures that no path from s

to t exists in G \X. The size of a cut is the total number of edges it contains. If an s-t cut
in G has smallest size λ(G), we call it a minimum s-t cut, or an s-t mincut. Note that such
a cut need not be unique (in fact, there can be exponentially many). To denote the set of all
s-t mincuts of G, we use ΓG(s, t).

A (directed) path starting in a vertex u and ending in a vertex v is called a u-v path. By
Menger’s theorem, the cardinality of a minimum s-t cut in G is equal to the maximum number
of internally edge-disjoint s-t paths in the graph. Let Ps,t(G) denote a maximum-sized set of
edge-disjoint paths from s to t in G. Note that any minimum s-t cut in G contains exactly
one edge from each path in Ps,t(G). For two distinct edges (resp. vertices) x and y in
a u-v path p, we say that x is a path-predecessor of y in p and write x ≺p y if the path
p meets x before y. We use this notation indistinctly for edges and vertices. It is easily
seen that the relation ≺p extends uniquely to a non-strict partial order. We denote this
partial order by x ⪯p y. Consider now any subset W ⊆ ΓG(s, t) of s-t mincuts in G. We
let E(W ) =

⋃
X∈W X. Two crucial notions in this work are those of leftmost and rightmost

s-t mincuts. The leftmost s-t mincut in W consists of the set of edges Smin(W ) ⊆ E(W )
such that, for every path p ∈ P(s, t), there is no edge e ∈ E(W ) satisfying e ≺p f for any
f ∈ Smin(W ). Similarly for the rightmost s-t mincut Smax(W ) ⊆ E(W ). Note that both
Smin(W ) and Smax(W ) are also s-t mincuts in G (see the proof of Proposition 5 in the full
version of the paper [6]). When W consists of the entire set of s-t mincuts in G, we denote
these extremal cuts by Smin(G) and Smax(G).

On the set of s-t cuts (not necessarily minimum), the following predecessor-successor
relation defines a partial order: an s-t cut X is a predecessor of another s-t cut Y , denoted
by X ≤ Y , if every path from s to t in G meets an edge of X at or before an edge of Y . The
set of s-t mincuts together with relation ≤ defines a distributive lattice L [7, 23]. Moreover,
a compact representation G(L) can be constructed from a maximum flow in linear time [25].
These two facts play a crucial role in the proof of our main result in the next section.

3 A Polynomial Time Algorithm for SUM-k-DMC and COV-k-DMC

This section is devoted to proving Theorem 1 by reducing SUM-k-DMC and COV-k-DMC
to SMF on distributive lattices. First, we show that the domain of solutions of SUM-k-DMC
and COV-k-DMC can be restricted to the set of k-tuples that satisfy a particular order, as
opposed to the set of k-sized multisets of s-t mincuts (see Corollary 6 below). The reason

ISAAC 2023



24:6 Finding Diverse Minimum s-t Cuts

for doing so is that the structure provided by the former set can be exploited to assess the
“modularity” of the total-sum and coverage objectives. Next, we introduce the notions of
left-right order and edge multiplicity, which are needed throughout the section.

Consider a graph G with specified s, t ∈ V (G), and let Uk be the set of all k-tuples
over ΓG(s, t). An element C ∈ Uk is a (ordered) collection or sequence [X1, . . . , Xk] of cuts
Xi ∈ ΓG(s, t), where i runs over the index set {1, . . . , k}. We say that C is in left-right
order if Xi ≤ Xj for all i < j. Let us denote by Uk

lr ⊆ Uk the set of all k-tuples over
ΓG(s, t) that are in left-right order. Then, for any two C1, C2 ∈ Uk

lr, with C1 = [X1, . . . , Xk],
C2 = [Y1, . . . , Yk], we say that C1 is a predecessor of C2 (and C2 a successor of C1) if Xi ≤ Yi

for all i ∈ [k], and denote this by C1 ⪯ C2. Now, consider again a collection C ∈ Uk. The
set of edges

⋃
X∈C X is denoted by E(C). We define the multiplicity of an edge e ∈ E(G)

with respect to (w.r.t.) C as the number of cuts in C that contain e and denote it by µe(C).
We say that an edge e ∈ E(C) is a shared edge if µe(C) ≥ 2. The set of shared edges in C is
denoted by Eshr(C). We make the following proposition, the proof of which is in the full
version of the paper [6].

▶ Proposition 5. For every C ∈ Uk there exists Ĉ ∈ Uk
lr such that µe(C) = µe(Ĉ) ∀e ∈ E(G).

In other words, given a k-tuple of s-t mincuts, there always exists a k-tuple on the
same set of edges that is in left-right order; each edge occurring with the same multiplicity.
Consider now the total-sum and the coverage diversity measures first introduced in Section 1.
We can rewrite them directly in terms of the multiplicity of shared edges as

dsum(C) = 2
[
λ(G)

(
k

2

)
−

∑
e∈Eshr(C)

(
µe(C)

2

)]
and (1)

dcov(C) = kλ(G)−
∑

e∈Eshr(C)
(µe(C)− 1) , (2)

where terms outside the summations are constant terms. Then, combining eq. (1) (resp. (2))
with Proposition 5, we obtain the following corollary. (For simplicity, we state this only for
the dsum diversity measure, but an analogous claim holds for the dcov measure.)

▶ Corollary 6. Let C ∈ Uk such that dsum(C) = maxS∈Uk dsum(S). Then there exists
C ′ ∈ Uk

lr such that dsum(C ′) = dsum(C).

This corollary tells us that in order to solve SUM-k-DMC (resp. COV-k-DMC) we do
not need to optimize over the set Uk of k-element multisets of ΓG(s, t). Instead, we can look
at the set Uk

lr ⊆ Uk of k-tuples that are in left-right order. Moreover, it follows from Eqs. (1)
and (2) that the problem of maximizing dsum(C) and dcov(C) is equivalent to minimizing

d̂sum(C) =
∑

e∈Eshr(C)

(
µe(C)

2

)
, and (3)

d̂cov(C) =
∑

e∈Eshr(C)
(µe(C)− 1) , (4)

respectively. In turn, the submodularity of d̂sum(C) (resp. d̂cov(C)) implies the supermodu-
larity of dsum(C) (resp. dcov(C)) and vice versa. In the remaining of the section, we shall
only focus on the minimization objectives d̂sum and d̂cov.

We are now ready to show that both SUM-k-DMC and COV-k-DMC can be reduced
to SFM. We first show that the poset L∗ = (Uk

lr,⪯) is a distributive lattice (Section 3.1).
Next we prove that the diversity measures d̂sum and d̂cov are submodular functions on L∗

(Section 3.2). Lastly, we show that there is a compact representation of the lattice L∗ and
that it can be constructed in polynomial time, concluding with the proof of Theorem 1
(Section 3.3).
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3.1 Proof of Distributivity
We use the following result of Escalante [7] (see also [12] or [23, Thm. 4]). Recall that ≤
denotes the predecessor-successor relation between two s-t mincuts.

▶ Lemma 7. The set ΓG(s, t) of s-t mincuts of G together with the binary relation ≤ forms
a distributive lattice L. For any two cuts X, Y ∈ L, the join and meet operations are given
by X ∨ Y := Smax(X ∪ Y ), and X ∧ Y := Smin(X ∪ Y ), respectively.

By the definition of product lattice, we can extend this result to the relation ⪯ on the set
Uk

lr of k-tuples of s-t mincuts that are in left-right order.

▶ Lemma 8. The set Uk
lr, together with relation ⪯, defines a distributive lattice L∗. For any

two elements C1 = [X1, . . . , Xk] and C2 = [Y1, . . . , Yk] in L∗, the join and meet operations
are given by C1 ∨ C2 = [Smax(X1 ∪ Y1), . . . , Smax(Xk ∪ Yk)] and C1 ∧ C2 = [Smin(X1 ∪
Y1), . . . , Smin(Xk ∪ Yk)], respectively.

Proof. This follows directly from Lemma 7 and the definition of product lattice (see Section
2.1). Let Lk = (Uk,⪯) be the kth power of the lattice L = (ΓG(s, t),≤) of minimum s-t
cuts, and let L∗ = (Uk

lr,⪯) with Uk
lr ⊆ Uk be the sublattice of left-right ordered k-tuples of

minimum s-t cuts. We know from Section 2 that since L is distributive, then so is the power
lattice Lk. Moreover, any sublattice of a distributive lattice is also distributive. Hence, it
follows that the lattice L∗ is also distributive. ◀

3.2 Proof of Submodularity
Now we prove that the functions d̂sum and d̂cov are submodular on the lattice L∗. We start
with two lemmas that establish useful properties of the multiplicity function µe(C) on L∗.
Due to space constraints, we defer the proofs to the full version of the paper [6].

▶ Lemma 9. The multiplicity function µe : Uk
lr → N is modular on L∗.

▶ Lemma 10. For any two C1, C2 ∈ L∗ and e ∈ E(C1) ∪ E(C2), it holds that max(µe(C1 ∨
C2), µe(C1 ∧ C2)) ≤ max(µe(C1), µe(C2)).

Lemma 10 plays an important role in the submodularity of d̂sum and d̂cov. In contrast to
Lemma 9, it does not hold on the kth power lattice of the distributive lattice L of Lemma 7.

Submodularity of d̂sum. Recall the definition of d̂sum(C) in equation (3), and let Be :
Uk

lr → N be the function defined by Be(C) =
(

µe(C)
2

)
. We can rewrite equation (3) as

d̂sum(C) =
∑

e∈Eshr(C) Be(C). The following is an immediate consequence of Lemmas 9–10
and the convexity of Be(C).

▷ Claim 11. For any two C1, C2 ∈ L∗ and e ∈ E(G), we have Be(C1 ∨C2) + Be(C1 ∧C2) ≤
Be(C1) + Be(C2).

In other words, the function Be(C) is submodular in the lattice L∗. Now, recall that the
sum of submodular functions is also submodular. Then, taking the sum of Be(C) over all
edges e ∈ E(G) results in a submodular function. From here, notice that Be(C) = 0 for
unshared edges; that is, when µe(C) < 2. This means that such edges do not contribute to
the sum. It follows that, for any two C1, C2 ∈ L∗, we have∑
e∈Eshr(C1∨C2)

Be(C1∨C2)+
∑

e∈Eshr(C1∧C2)

Be(C1∧C2) ≤
∑

e∈Eshr(C1)

Be(C1)+
∑

e∈Eshr(C2)

Be(C2).
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Observe that each sum in the inequality corresponds to the definition of d̂sum applied to the
arguments C1 ∨C2, C1 ∧C2, C1 and C2, respectively. Hence, by definition of submodularity,
we obtain our desired result.

▶ Theorem 12. The function d̂sum : Uk
lr → N is submodular on the lattice L∗.

Submodularity of d̂cov. Consider the function Fe(C) : Uk
lr → N defined by Fe(C) =

µe(C)− 1. It is an immediate corollary of Lemma 9 that Fe(C) is modular in L∗. Then, the
sum

∑
e Fe(C) taken over all edges e ∈ E(G) is also modular. Notice that only shared edges

in C contribute positively to the sum. The contribution of unshared edges is either neutral or
negative. We can split this sum into two parts: the sum over shared edges e ∈ Eshr(C), and
the sum over e ∈ E(G) \Eshr(C). The latter can be further simplified to |E(C)| − |E(G)| by
observing that only the edges e ∈ E(G) \E(C) make a (negative) contribution. Therefore,
we write∑

e∈E(G)
Fe(C) =

(∑
e∈Eshr(C)

(µe(C)− 1)
)

+ |E(C)| − |E(G)|. (5)

We know
∑

e Fe(C) to be a modular function on L∗, hence for any two C1, C2 ∈ L∗ we have∑
e∈E(G) Fe(C1 ∨ C2) +

∑
e∈E(G) Fe(C1 ∧ C2) =

∑
e∈E(G) Fe(C1) +

∑
e∈E(G) Fe(C2), which,

by equation (5), is equivalent to ∑
e∈Eshr(C1∨C2)

(µe(C1 ∨ C2)− 1) +
∑

e∈Eshr(C1∧C2)

(µe(C1 ∧ C2)− 1)


+ |E(C1 ∨ C2)|+ |E(C1 ∧ C2)| =

=

 ∑
e∈Eshr(C1)

(µe(C1)− 1) +
∑

e∈Eshr(C2)

(µe(C2)− 1)

 + |E(C1)|+ |E(C2)|. (6)

Now, from Lemmas 9 and 10, we have the following result, whose proof can be found in
the full version [6].

▷ Claim 13. For any two C1, C2 ∈ L∗ we have |E(C1∨C2)|+|E(C1∧C2)| ≥ |E(C1)|+|E(C2)|.

Given Claim 13, it is clear that to satisfy equality in equation (6) it must be that:∑
e∈Eshr(C1∨C2)

(µe(C1 ∨ C2)− 1) +
∑

e∈Eshr(C1∧C2)

(µe(C1 ∧ C2)− 1)

≤
∑

e∈Eshr(C1)

(µe(C1)− 1) +
∑

e∈Eshr(C2)

(µe(C2)− 1),

from which the submodularity of d̂cov immediately follows.

▶ Theorem 14. The function d̂cov : Uk
lr → N is submodular on the lattice L∗.

3.3 Finding the Set of Join-Irreducibles
We now turn to the final part of the reduction to SFM. By Lemma 8, we know that the
lattice L∗ of left-right ordered collections of s-t mincuts is distributive. Moreover, it follows
from Theorems 12 and 14 that the objective functions d̂sum and d̂cov are submodular in L∗.
As discussed in Section 2.2, it now suffices to find an appropriate (compact) representation
of L∗ in the form of its poset of join-irreducibles J(L∗).
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Recall the distributive lattice L of s-t mincuts of a graph G defined in Lemma 7. The
leftmost cut Smin(G) can be seen as the meet of all elements in L. In standard lattice
notation, this smallest element is often denoted by 0L :=

∨
x∈L x. We use the following result

of Picard and Queyranne.

▶ Lemma 15 ([25]). Let L be the distributive lattice of s-t mincuts in a graph G, there is a
compact representation G(L) of L with the following properties:
1. The vertex set is J(L) ∪ 0L,
2. |G(L)| ≤ |V (G)|,
3. Given G as input, G(L) can be constructed in F (n, m) + O(m) time.

In other words, the set J(L) is of size O(n) and can be recovered from G in the time
of a single max-flow computation. Moreover, each element of J(L) corresponds to an s-t
mincut in G. From this lemma, we obtain the following result for the poset J(L∗), the proof
of which is in the full version [6].

▶ Lemma 16. The set of join-irreducibles of L∗ is of size O(kn) and is given by

J(L∗) =
⋃k

i=1 Ji, where Ji := {(0L, . . . , 0L︸ ︷︷ ︸
i−1 times

, p, . . . , p︸ ︷︷ ︸
k−i+1 times

) : p ∈ J(L)}.

Given Lemma 16, a compact representation of the lattice L∗ can be obtained as the
directed graph G(L∗) that characterizes its poset of join-irreducibles J(L∗) in polynomial
time (since |J(L∗)| is polynomial). It is also clear that the functions d̂sum and d̂cov can be
computed in polynomial time. Then, by Theorem 4, the reduction to SFM is complete.

▶ Theorem 1. Sum-k-DMC and Cov-k-DMC can be solved in strongly polynomial time.

Due to space limitations, we refer the reader to the full version [6] for details on designing
O(k5n5)-time algorithms for these problems.

4 A Simple Algorithm for Finding Disjoint Minimum s-t Cuts

In the previous section, we looked at the problem of finding the k most diverse minimum s-t
cuts in a graph. Here, we consider a slightly different problem. Observe that for diversity
measures dsum and dcov, the maximum diversity is achieved when the elements of a collection
are all pairwise disjoint. Thus, it is natural to ask for a maximum cardinality collection of s-t
mincuts that are pairwise disjoint; i.e., that are as diverse as possible. We call this problem
Maximum Disjoint Minimum s-t Cuts (or Max-Disjoint MC for short).

Max-Disjoint MC. Given a graph G = (V, E) and vertices s, t ∈ V (G), find a set S ⊆
ΓG(s, t) such that X ∩ Y = ∅ for all X, Y ∈ S, and |S| is as large as possible.

Observe that a solution to Max-Disjoint MC immediately yields a solution to k-
Disjoint Minimum s-t Cuts. In this section, we prove Theorem 2 by giving an algorithm
for Max-Disjoint MC that runs in O(F (m, n) + λ(G)m) time, where F (m, n) is the time
required by a max-flow computation. First, we look at a restricted case when the input graph
can be decomposed into a collection of edge-disjoint s-t paths and (possibly) some additional
edges – we refer to such a graph as an s-t path graph – and devise an algorithm that handles
such graphs. Then, we use this algorithm as a subroutine to obtain an algorithm that makes
no assumption about the structure of the input graph.
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Figure 1 Example of an s-t path graph of height 4. Edges are labeled by integers corresponding
to the path they belong to. Path edges are drawn in black and non-path edges in gray.

4.1 When the input is an s-t path graph
Let Hs,t be a graph with designated vertices s and t. We call Hs,t an s-t path graph (or
path graph for short) if there is a collection P of edge-disjoint s-t paths such that P covers
all vertices in V (Hs,t). The height of Hs,t, denoted by λ(Hs,t), is the maximum number of
edge-disjoint s-t paths in the graph. For fixed P , we call the edges of Hs,t in P path edges
and edges of Hs,t not in P non-path edges. Two vertices in Hs,t are path neighbors if they are
joined by a path edge, and non-path neighbors if they are joined (exclusively) by a non-path
edge. See Figure 1 for an illustration.

Two remarks are in order. The first is that, by Menger’s theorem, the size of a minimum
s-t cut in an s-t path graph coincides with its height. The second remark is that, from a
graph G, one can easily obtain a path graph Hs,t of height λ(G) by finding a maximum-sized
set Ps,t of edge-disjoint s-t paths in G and letting Hs,t be the induced subgraph of their
union. Recall that, by Menger’s theorem, a minimum s-t cut in G must contain exactly one
edge from each path p ∈ Ps,t. Thus, every minimum s-t cut of G is in Hs,t. However, the
reverse is not always true. In the above construction, there could be multiple new minimum
s-t cuts introduced in Hs,t that arise from ignoring the reachability between vertices of Ps,t

in G. We will come back to this issue when discussing the general case in Section 4.2.

The algorithm. The goal in this subsection is to find a maximum cardinality collection Ĉ

of pairwise disjoint s-t mincuts in a path graph Hs,t. We now explain the main ideas behind
the algorithm. Without loss of generality, assume that the underlying set of edge-disjoint s-t
paths that define Hs,t is of maximum cardinality.

Let X be an s-t mincut in Hs,t, and suppose we are interested in finding an s-t mincut
Y disjoint from X such that X < Y . Consider any two edges e = (u, u′) and f = (v, v′) in
X, and let g = (w, w′) be a path successor of f ; that is f ≺p g with p ∈ Ps,t. If there is a
non-path edge h = (u′, z) such that w′ ≤ z, we say that h is crossing w.r.t. g, and that g is
invalid w.r.t. X (see Figure 2 for an illustration). The notions of crossing and invalid edges
provide the means to identify the edges that cannot possibly be contained in Y . Let Einv(X)
denote the set of invalid edges w.r.t. X. We make the following observation.

▶ Observation 17. Let Y > X. Then Y cannot contain an edge from Einv(X).

Proof. For the sake of contradiction, suppose there exists an edge g = (w, w′) in Einv(X)∩Y .
Consider the path p1 ∈ Ps,t, and let f be the predecessor of g on p1 that is in X. Since
g ∈ Einv(X), there is a crossing edge h = (u′, z) w.r.t. g. Let p2 ∈ Ps,t be the path containing
u′, and let (u, u′) be the edge of p2 that is in X. Let p3 be the s-t path that follows p2 from
s to u, then follows the crossing edge h, and then continues along p1 to t. Since Y is an s-t
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. . . . . .

. . . e . . .

. . .
f g

. . .

h

Figure 2 Example illustrating the notions of crossing and invalid edges for an s-t mincut X.
Path and non-path edges are drawn in black and gray, respectively. Edges e, f ∈ X are highlighted
in blue. The edge g is invalid w.r.t. X since the edge h is crossing with respect to it.

cut it must contain an edge from this path. Since Y must contain exactly one edge from
each path in Ps,t, it cannot contain h. Moreover, Y already contains edge g from p1. Then Y
must contain an edge from the part of p2 from s to u′. But this contradicts our assumption
that Y > X. ◀

If we extend the definition of Einv(X) to also include all the edges that are path prede-
cessors of edges in X, we obtain that, for any s-t path p ∈ Ps,t, the set of invalid edges along
p is a prefix of the path. As a result, if we can identify the (extended) set Einv(X), then
we can restrict our search of cut Y to the set of valid edges Eval(X) := E(Hs,t) \ Einv(X).
This motivates the following iterative algorithm for finding a pairwise disjoint collection of
s-t mincuts: (1) Find the leftmost s-t mincut X in Hs,t, (2) identify the set Einv(X) and
find the leftmost s-t mincut Y amongst Eval(X), (3) set X = Y and repeat step (2) until
Eval(X) ∩ p = ∅ for any one path p ∈ Ps,t, and finally (4) output the union of identified cuts
as the returned collection Ĉ. Informally, notice that the s-t mincut identified at iteration i

is a successor of the mincuts identified at iterations j < i. Hence, the returned collection
will consist of left-right ordered and pairwise disjoint s-t mincuts. Moreover, picking the
leftmost cut at each iteration prevents the set of invalid edges from growing unnecessarily
large, which allows for more iterations and thus, a larger set returned. Next, we give a more
formal description of the algorithm, the details of which are presented in Algorithm 1.

Algorithm 1 Obtain a Maximum Set of Disjoint Minimum s-t Cuts.

Input: Path graph Hs,t.
Output: A maximum set Ĉ of disjoint s-t mincuts in Hs,t.

1: Initialize collection Ĉ ← ∅ and set M ← {s}.
2: while t is unmarked do ▷ Traverse the graph from left to right.
3: while M is not empty do ▷ Marking step.
4: for each vertex v ∈M do
5: for each path p ∈ Ps,t do ▷ Identify invalid edges.
6: Identify the rightmost neighbor u ∈ p of v reachable by a non-path edge.
7: if u is unmarked then
8: Mark u and all (unmarked) vertices that are path-predecessors of u.
9: Set M to the set of newly marked vertices.

10: X ←
⋃
{(x, y) ∈ Ps,t : x is marked, y is unmarked}. ▷ Cut-finding step.

11: Ĉ ← Ĉ ∪ {X}.
12: for each (x, y) ∈ X do ▷ Mark the head node of cut edges.
13: Mark y.
14: M ←

⋃
(x,y)∈X y. ▷ Newly marked vertices.

15: Return Ĉ.
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The algorithm works by traversing the graph from left to right in iterations while marking
the vertices it visits. Initially, all vertices are unmarked, except for s. Each iteration consists
of two parts: a marking, and a cut-finding step. In the marking step (Lines 3-9), the
algorithm identifies currently invalid edges by marking the non-path neighbors – and their
path-predecessors – of currently marked vertices. (Observe that a path edge becomes invalid
if both of its endpoints are marked.) In Algorithm 1, this is realized by a variable M that
keeps track of the vertices that have just been marked as a consequence of the marking of
vertices previously present in M . In the cut-finding step (Lines 10-14), the algorithm then
finds the leftmost minimum s-t cut amongst valid path edges. Notice that, for each s-t path
in Ps,t, removing its first valid edge prevents s from reaching t via that path. This means
that our leftmost cut of interest is the set of all path edges that have exactly one of their
endpoints marked. Following the identification of this cut, the step concludes by marking the
head vertices of the identified cut edges. Finally, the algorithm terminates when the target
vertex t is visited and marked. See Figure 3 for an example execution of the algorithm.

▷ Claim 18. The complexity of Algorithm 1 on an m-edge, n-vertex path graph is O(m log n).

Due to space limitations, we defer the proof of Claim 18 to the full version [6].

Correctness of Algorithm 1. We note an important property of collections of s-t mincuts.
(We use d(C) to denote any of dsum(C) or dcov(C).)

▷ Claim 19. Let C be a left-right ordered collection of minimum s-t cuts in a graph G,
the collection C̃ obtained by replacing Smin(

⋃
X∈C X) (resp. Smax(

⋃
X∈C X)) with Smin(G)

(resp. Smax(G)) has cost d(C̃) ≤ d(C).

Proof. We prove this only for Smin(·) as the proof for Smax(·) is analogous. For simplicity, let
us denote Smin(C) := Smin(

⋃
X∈C X). By definition, we know that no edge of

⋃
X∈C X lies

to the left of Smin(G). Then replacing Smin(C) with Smin(G) can only decrease the number
of pairwise intersections previously present between Smin(C) and the cuts in C \ Smin(C).
Notice that our measures of diversity only penalize edge intersections. Hence, the cost of
collection C̃ cannot be greater than that of C. ◁

Now, consider an arbitrary collection of k edge-disjoint s-t mincuts in a path graph
Hs,t. Corollary 6 implies that there also exists a collection of k edge-disjoint s-t mincuts
in Hs,t that is in left-right order. In particular, this is true for a collection of maximum
cardinality kmax. Together with Claim 19, this means that there always exists a collection
Ĉ of edge-disjoint s-t mincuts in Hs,t with the following properties:

I Ĉ has size kmax,
II Ĉ is in left-right order,

III Ĉ contains the leftmost s-t mincut of Hs,t, and
IV The set Smax(Ĉ) ∩ Smax(Hs,t) is not empty.

We devote the rest of the subsection to proving the following lemma, which serves to prove
the correctness of Algorithm 1.

▶ Lemma 20. Algorithm 1 returns a collection of edge-disjoint minimum s-t cuts that
satisfies Properties I–IV.

Let Ĉ denote the solution returned by the algorithm. First, we show that Ĉ contains
only disjoint cuts. This follows from the fact that a cut can only be found amongst valid
edges at any given iteration, and once an edge has been included in a cut, it becomes invalid
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at every subsequent iteration. Similarly, Properties II and III are consequences of the notion
of invalid edges. We start by proving the latter. Let X1 denote the leftmost cut in Ĉ. For
the sake of contradiction, assume there is a minimum s-t cut Y such that e ≺p f . Here,
e ∈ Y , f ∈ X1 and w.l.o.g. p is an s-t path from any arbitrary maximum collection of s-t
paths in Hs,t. For the algorithm to pick edge f = (u, u′) as part of X1 it must be that vertex
u is marked and u′ is not. We know that the predecessors of marked vertices must also
be marked. Hence we know that both endpoints of edge e are marked. But by definition,
this means that edge e is invalid, and cannot be in a minimum s-t cut. This gives us the
necessary contradiction, and X1 must be the leftmost cut in the graph.

We continue with Property II. This property follows from the fact that, at any given
iteration, the posets of invalid path-edges on each path of Hs,t are ideals of the set of path
edges. This means that the edges in the cut found by the algorithm at iteration i are all path
predecessors of an edge in the cut found at iteration i + 1. Carrying on with Property IV, we
prove that it follows from the fact that the algorithm terminates when the target node t is
marked. Suppose, for the sake of contradiction, that the cuts Smax(Ĉ) and Smax(Hs,t) do not
intersect. Then, given that Smax(Ĉ) is the last cut found by our algorithm, to mark node t

there must exist a non-path edge connecting the endpoint v of some edge e = (u, v) ∈ Smax(Ĉ)
to t. But this implies that no path-successor of edge e can be in an s-t mincut, which makes
e the rightmost edge on its path that belongs to an s-t mincut. Therefore, e must also be
contained in Smax(Hs,t), a contradiction.

It only remains to show Property I, which states that the collection Ĉ is of maximum
cardinality kmax. For this, we make the following claim, whose proof is analogous to the
proof of Property III. Let Ĉi be the collection of s-t mincuts maintained by the algorithm at
the end of iteration i.

▷ Claim 21. Consider set Ĉi−1 and let Xi be the minimum s-t cut found by the algorithm
at iteration i. Then, there is no minimum s-t cut Y such that: (i) Y is disjoint from each
X ∈ Ĉi−1, and (ii) Y contains an edge that is a path predecessor of an edge of Xi.

In other words, as the algorithm makes progress, no minimum s-t cut – that is disjoint
from the ones found so far by the algorithm – has edges to the left of the minimum s-t
cut found by the algorithm at the present iteration. Next, we show that this implies the
maximality of the size of the solution returned by the algorithm.

Let Cmax be a maximum-sized collection of s-t mincuts in the graph. Without loss of
generality, assume that Cmax is in left-right order (otherwise, by Corollary 6 we can always
obtain an equivalent collection that is left-right ordered) and that Smin(Hs,t) ∈ Cmax and
Smax(Hs,t) ∈ Cmax. For the sake of contradiction, suppose that the collection Ĉ returned by
our algorithm is of cardinality |Ĉ| = ℓ < kmax.

▶ Observation 22. There exists at least one minimum s-t cut Y ∈ Cmax such that Xi < Y

and Y contains at least one edge that is a path predecessor of an edge in Xi+1, with Xi and
Xi+1 two consecutive cuts in Ĉ.

Proof. Let Cmax = {Y1, Y2, . . . , Ykmax}, where Y1 = Smin(Hs,t) and Ykmax = Smax(Hs,t), and
let Ĉ = {X1, . . . , Xℓ}. We know by Property III that X1 = Smin(Hs,t). Hence, there is
always an s-t mincut in Cmax that is a strict successor of a cut in Ĉ, namely Y2 > X1. For
the sake of contradiction, suppose that the observation is false. Then, every cut Y ∈ Cmax
that is a strict successor of a cut Xi ∈ Ĉ is also a (not necessarily strict) successor of the cut
Xi+1 ∈ Ĉ, for i ∈ {1, . . . , ℓ− 1}. Let this be true for the first ℓ− 1 cuts of Ĉ. Then, the last
kmax − ℓ cuts of Cmax must be disjoint from the first ℓ− 1 cuts of Ĉ. The last cut Xℓ of Ĉ
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Figure 3 Example illustrating the first two iterations of Algorithm 1 on a path graph of height 4.
The black- and gray-shaded vertices represent vertices marked at the previous and current iterations,
respectively. The red edges correspond to the s-t mincut found at the end of the first (left) iteration.
Similarly, the blue edges correspond to the s-t mincut found at the second (right) iteration.

must then be located in or before the gap between the first ℓ cuts in Cmax and its remaining
k − ℓ cuts. But we know by Property IV that Xℓ ∩ Ykmax ̸= ∅, which gives the necessary
contradiction. ◀

Observation 22 stands in contrast with Claim 21, which states that such a cut Y cannot
exist. Hence, we obtain a contradiction, and the collection Ĉ returned by the algorithm must
be of maximum cardinality. This completes the proof of Lemma 20.

4.2 Handling the general case
We now consider Max-Disjoint MC in general graphs. Recall from the previous subsection
that, from a graph G, one can construct a path graph Hs,t such that every minimum s-t
cut in G is also a minimum s-t cut in Hs,t. We could propose to use Algorithm 1 in Hs,t to
solve Max-Disjoint MC in G. But, as we argued previously, the path graph Hs,t may not
have the same set of s-t mincuts as G. We can, however, solve this challenge by augmenting
Hs,t with edges such that its minimum s-t cuts correspond bijectively to those in G.

▶ Definition 23. An augmented s-t path graph of G is a path graph Hs,t(G) of height λ(G),
with additional non-path edges between any two vertices u, v ∈ V (Hs,t(G)) such that v is
reachable from u in G by a path whose internal vertices are exclusively in V (G) \V (Hs,t(G)).

In view of this definition, the following claim and lemma serve as the correctness and
complexity proofs of the proposed algorithm for the general case.

▷ Claim 24. An augmented s-t path graph of G has the same set of s-t mincuts as G.

Proof. By Menger’s theorem, we know that a minimum s-t cut in G must contain exactly
one edge from each path in Ps,t(G), where |Ps,t(G)| = |λ(G)|. W.l.o.g., let Hs,t(G) be the
augmented s-t path graph of G such that each path p ∈ Ps,t(G) is also present in Hs,t(G).
We now show that a minimum s-t cut in G is also present in Hs,t(G). The argument in the
other direction is similar and is thus omitted.

Consider an arbitrary minimum s-t cut X in G. For the sake of contradiction, assume
that X is not a minimum s-t cut in Hs,t(G). Then, after removing every edge of X in
Hs,t(G), there is still at least one s-t path left in the graph. Such a path must contain an
edge (u, v) such that u ≤ w and w′ ≤ v, where w and w′ are the tail and head nodes of two
(not necessarily distinct) edges in X, respectively. By definition of Hs,t(G), there is a path
from u to v in G that does not use edges in Ps,t(G). But then removing the edges of X

in G still leaves an s-t path in the graph. Thus X cannot be an s-t cut, and we reach our
contradiction. ◁
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▶ Lemma 25. An augmented s-t path graph H of a graph G can be constructed in time
O(F (m, n) + mλ(G)), where F (m, n) is the time required by a max-flow computation.

Proof. The idea of the algorithm is rather simple. First, we find a maximum cardinality
collection of edge-disjoint s-t paths in G and take their union to construct a “skeleton” graph
H. Then, we augment the graph by drawing an edge between two path vertices u, v ∈ H if v

is reachable from u in G by using exclusively non-path vertices. By definition, the resulting
graph is an augmented s-t path graph of G.

Now we look into the algorithm’s implementation and analyze its running time. It is
folklore knowledge that the problem of finding a maximum-sized collection of edge-disjoint
s-t paths in a graph with n vertices and m edges can be formulated as a maximum flow
problem. Hence, the first step of the algorithm can be performed in F (m, n) time. Let
Ps,t(G) denote such found collection of s-t paths.

The second step of the algorithm could be computed in O(mn) time by means of an
all-pairs reachability algorithm. Notice, however, that for a path vertex v all we require for
a correct execution of Algorithm 1 is knowledge of the rightmost vertices it can reach on
each of the λ(G) paths (Line 6 of Algorithm 1). Hence, we do not need to draw every edge
between every pair of reachable path vertices, only λ(G) edges per vertex suffice. This can
be achieved in O(mλ(G)) time as follows.

In the original graph, first equip each vertex u ∈ V (G) with a set of λ(G) variables
R(p, u), one for each path p ∈ Ps,t(G). These variables will be used to store the rightmost
vertex v ∈ p that is reachable from u. Next, consider a path p ∈ Ps,t(G) represented as
a sequence [v1, v2, . . . , vp] of internal vertices (i.e., with s and t removed). For each vertex
v ∈ p, in descending order, execute the following procedure propagate(v, p): Find the set
N(v) of incoming neighbors of v in G and, for each w ∈ N(v) if R(p, w) has not been set,
let R(p, w) = v and mark w as visited. Then, for each node w ∈ N(v), if w is an unvisited
non-path vertex, execute propagate(w, p); otherwise, do nothing. Notice that, since we
iterate from the rightmost vertex in p, any node u such that R(u, p) = vi cannot change its
value when executing propagate(vj) with j < i. In other words, each vertex only stores
information about the rightmost vertex it can reach in p. Complexity-wise, every vertex v in
G will be operated upon at most deg(v) times. Hence, starting from an unmarked graph,
a call to propagate(v, p) takes O(m) time. Now, we want to execute the above for each
path p ∈ Ps,t(G) (unmarking all vertices before the start of each iteration). This then gives
us our claimed complexity of O(mλ(G)). The claim follows from combining the running time
of both steps of the algorithm. ◀

The following is an immediate consequence of Lemma 25 and Claim 18.

▶ Corollary 26. There is an algorithm that, given a graph G and two specified vertices
s, t ∈ V (G), in O(F (m, n) + mλ(G)) time finds a collection of maximum cardinality of
pairwise disjoint s-t mincuts in G.

By replacing F (m, n) in Corollary 26 with the running time of the current best algorithms
for finding a maximum flow [21, 18], we obtain the desired running time of Theorem 2.

5 Concluding remarks

We showed that k-DMC can be solved efficiently when considering two natural measures for
the diversity of a set of solutions. There exist, however, other sensible measures of diversity.
One that often arises in literature is that of maximizing the minimum pairwise Hamming
distance of a solution set. The complexity of k-DMC when considering this objective is still
open. It is not immediately clear how to apply our ordering results to this variant.
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For the special case of k-Disjoint Minimum s-t Cuts, we showed that faster algorithms
exist when compared to solving k-DMC on the total-sum and coverage diversity measures. It
is thus natural to ask whether there are faster algorithms for Sum-k-DMC and Cov-k-DMC
(or other variants of k-DMC) that do not require the sophisticated framework of submodular
function minimization. In this work, we relied on the algebraic structure of the problem
to obtain a polynomial time algorithm. We believe it is an interesting research direction
to assess whether the notion of diversity in other combinatorial problems leads to similar
structures, which could then be exploited for developing efficient algorithms.
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time, 2020. arXiv:2009.03260.

19 Samir Khuller, Joseph Naor, and Philip Klein. The lattice structure of flow in planar graphs.
SIAM Journal on Discrete Mathematics, 6(3):477–490, 1993.

20 Ching-Chung Kuo, Fred Glover, and Krishna S Dhir. Analyzing and modeling the maximum
diversity problem by zero-one programming. Decision Sciences, 24(6):1171–1185, 1993.

21 Yang P. Liu and Aaron Sidford. Faster divergence maximization for faster maximum flow,
2020. arXiv:2003.08929.

22 George Markowsky. An overview of the poset of irreducibles. Combinatorial And Computational
Mathematics, pages 162–177, 2001.

23 Bernd Meyer. On the lattices of cutsets in finite graphs. European Journal of Combinatorics,
3(2):153–157, 1982.

24 Kazuo Murota. Discrete Convex Analysis. Society for Industrial and Applied Mathematics,
2003. doi:10.1137/1.9780898718508.

25 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a
network and applications. Mathematical Programming Studies, 13:8–16, 1980.

26 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

27 Shengling Shi, Xiaodong Cheng, and Paul M.J. Van den Hof. Generic identifiability of
subnetworks in a linear dynamic network: The full measurement case. Automatica, 137:110093,
2022. doi:10.1016/j.automatica.2021.110093.

28 Shengling Shi, Xiaodong Cheng, and Paul M.J. Van den Hof. Personal communication, October
2021.

29 Donald K Wagner. Disjoint (s, t)-cuts in a network. Networks, 20(4):361–371, 1990.
30 Si-Qing Zheng, Bing Yang, Mei Yang, and Jianping Wang. Finding minimum-cost paths

with minimum sharability. In IEEE INFOCOM 2007-26th IEEE International Conference on
Computer Communications, pages 1532–1540. IEEE, 2007.

ISAAC 2023

https://arxiv.org/abs/2009.03260
https://arxiv.org/abs/2003.08929
https://doi.org/10.1137/1.9780898718508
https://doi.org/10.1016/j.automatica.2021.110093

	1 Introduction
	2 Preliminaries
	2.1 Distributive Lattices
	2.2 Submodular Function Minimization
	2.3 Minimum Cuts

	3 A Polynomial Time Algorithm for SUM-k-DMC and COV-k-DMC
	3.1 Proof of Distributivity
	3.2 Proof of Submodularity
	3.3 Finding the Set of Join-Irreducibles

	4 A Simple Algorithm for Finding Disjoint Minimum s-t Cuts
	4.1 When the input is an s-t path graph
	4.2 Handling the general case

	5 Concluding remarks

