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Abstract
The Euclidean Steiner Minimal Tree problem takes as input a set P of points in the Euclidean
plane and finds the minimum length network interconnecting all the points of P. In this paper, in
continuation to the works of [5] and [15], we study Euclidean Steiner Minimal Tree when P is
formed by the vertices of a pair of regular, concentric and parallel n-gons.

We restrict our attention to the cases where the two polygons are not very close to each other.
In such cases, we show that Euclidean Steiner Minimal Tree is polynomial-time solvable, and
we describe an explicit structure of a Euclidean Steiner minimal tree for P.

We also consider point sets P of size n where the number of input points not on the convex hull
of P is f(n) ≤ n. We give an exact algorithm with running time 2O(f(n) log n) for such input point
sets P. Note that when f(n) = O( n

log n
), our algorithm runs in single-exponential time, and when

f(n) = o(n) the running time is 2o(n log n) which is better than the known algorithm in [9].
We know that no FPTAS exists for Euclidean Steiner Minimal Tree unless P = NP [6]. On

the other hand FPTASes exist for Euclidean Steiner Minimal Tree on convex point sets [14].
In this paper, we show that if the number of input points in P not belonging to the convex hull of
P is O(log n), then an FPTAS exists for Euclidean Steiner Minimal Tree. In contrast, we show
that for any ϵ ∈ (0, 1], when there are Ω(nϵ) points not belonging to the convex hull of the input set,
then no FPTAS can exist for Euclidean Steiner Minimal Tree unless P = NP.
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1 Introduction

The Euclidean Steiner Minimal Tree problem asks for a network of minimum total
length interconnecting a given finite set P of n points in the Euclidean plane. Formally, we
define the problem as follows, taken from [2]:

Euclidean Steiner Minimal Tree
Input: A set P of n points in the Euclidean plane
Question: Find a connected plane graph T such that P is a subset of the vertex set
V (T ), and for the edge set E(T ), Σe∈E(T )e is minimized over all connected plane graphs
with P as a vertex subset.

Note that the metric being considered is the Euclidean metric, and for any edge e ∈ E(T ),
e denotes the Euclidean length of the edge. Here, the input set P of points is often called a
set of terminals, the points in S = V (T ) \ P are called Steiner points. A solution graph T is
referred to as a Euclidean Steiner minimal tree, or simply an SMT.
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25:2 ESMT on Near-Convex Terminal Sets

The Euclidean Steiner Minimal Tree problem is a classic problem in the field of
Computational Geometry. The origin of the problem dates back to Fermat (1601-1665) who
proposed the problem of finding a point in the plane such that the sum of its distance from
three given points is minimized. This is equivalent to finding the location of the Steiner
point when given three terminals as input. Torricelli proposed a geometric solution to this
special case of 3 terminal points. The idea was to construct equilateral triangles outside on
all three sides of the triangle formed by the terminals, and draw their circumcircles. The
three circles meet at a single point, which is our required Steiner point. This point came to
be known as the Torricelli point. When one of the angles in the triangle is at least 120◦, the
minimizing point coincides with the obtuse angle vertex of the triangle. In this case, the
Torricelli point lies outside the triangle and no longer minimizes the sum of distances from
the vertices. However, when vertices of polygons with more than 3 sides are considered as
a set of terminals, a solution to the Fermat problem does not in general lead to a solution
to the Euclidean Steiner Minimal Tree problem. For a more detailed survey on the
history of the problem, please refer to [2, 9]. For convenience, we refer to the Euclidean
Steiner Minimal Tree problem as ESMT.

ESMT is NP-hard. In [6], Garey et al. prove a discrete version of the problem (Discrete
ESMT) to be strongly NP-complete via a reduction from the Exact Cover by 3-Sets
(X3C) problem. Although it is not known if the ESMT problem is in NP, it is at least as
hard as any NP-complete problem. So, we do not expect a polynomial time algorithm for
it. A recursive method using only Euclidean constructions was given by Melzak in [11] for
constructing all the Steiner minimal trees for any set of n points in the plane by constructing
full Steiner trees of subsets of the points. Full Steiner trees are interconnecting trees having
the maximum number of newly introduced points (Steiner points) where all internal junctions
are of degree 3. Hwang improved the running time of Melzak’s original exponential algorithm
for full Steiner tree construction to linear time in [8]. Using this, we can construct an
Euclidean Steiner minimal tree in 2O(n log n) time for any set of n points. This was the first
algorithm for Euclidean Steiner Minimal Tree. The problem is known to be NP-hard
even if all the terminals lie on two parallel straight lines, or on a bent line segment where
the bend has an angle of less than 120◦ [13]. Since the above sets of terminals all lie on the
boundary of a convex polygon (or, are in convex position), this shows that ESMT is NP-hard
when restricted to a set of points that are in weakly convex position.

Although the ESMT problem is NP-hard, there are certain arrangements of points in
the plane for which the Euclidean Steiner minimal tree can be computed efficiently, say in
polynomial time. One such arrangement is placing the points on the vertices of a regular
polygon. This case was solved by Du et al. [5]. Their work gives exact topologies of the
Euclidean Steiner minimal trees. Weng et al. [15] generalized the problem by incorporating
the centre point of the regular polygon as part of the terminal set, along with the vertices.
This case was also found to be polynomial time solvable.

Tractability in the form of approximation algorithms for ESMT has been extensively
studied. It was proved in [6] that a fully polynomial time approximation scheme (FPTAS)
cannot exist for this problem unless P = NP. However, we do have an FPTAS when the
terminals are in convex position [14]. Arora’s celebrated polynomial time approximation
scheme (PTAS) for the ESMT and other related problems is described in [1]. Around
the same time, Rao and Smith gave an efficient polynomial time approximation scheme
(EPTAS) in [12]. In recent years, an EPTAS with an improved running time was designed
by Kisfaludi-Bak et al. [10].
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Our Results

In this paper, we first extend the work of [5] and [15]. We state this problem as ESMT on
k-Concentric Parallel Regular n-gons.

▶ Definition 1 (k-Concentric Parallel Regular n-gons). k-Concentric Parallel Regular n-gons
are k regular n-gons that are concentric and where the corresponding sides of polygons are
parallel to each other.

Please refer to Figure 1(a) for an example of a 2-Concentric Parallel Regular 12-gon. We
call k-Concentric Parallel Regular n-gons as k-CPR n-gons for short.

We consider terminal sets where the terminals are placed on the vertices of 2-CPR n-gons.
In the case of k = 2, the n-gon with the smaller side length will be called the inner n-gon
and the other n-gon will be called the outer n-gon. Also, let a be the side length of the
inner n-gon, and b be the side length of the outer n-gon. We define λ = b

a and refer to it as
the aspect ratio of the two regular polygons. In Section 3, we derive the exact structures
of the SMTs for 2-CPR n-gons when the aspect ratio λ of the two polygons is greater than

1
1−4 sin (π/n) and n ≥ 13.

Next, we consider ESMT on an f(n)-Almost Convex Point Set.

▶ Definition 2 (f(n)-Almost Convex Point Set). An f(n)-Almost Convex Point Set P is a
set of n points in the Euclidean plane such that there is a partition P = P1 ⊎ P2 where P1
forms the convex hull of P and |P2| = f(n).

Please refer to Figure 1(b) for an example of a 5-Almost Convex Set of 13 points. In Section 4,
we give an exact algorithm for ESMT on f(n)-Almost Convex Sets of n terminals. The
running time of this algorithm is 2O(f(n) log n). Thus, when f(n) = O( n

log n ), then our
algorithm runs in 2O(n) time, and when f(n) = o(n) then the running time is 2o(n log n). This
is an improvement on the best known algorithm for the general case [9].

Next in Section 5, for f(n) = O(log n), we give an FPTAS. On the other hand we show
that, for all ϵ ∈ (0, 1], when f(n) ∈ Ω(nϵ), there cannot exist any FPTAS unless P = NP.

Due to paucity of space, we omit certain proofs that can be found in the full version of
the paper.

(a) 2-CPR 12-gons. (b) f(n)-Almost Convex Point Set for
n = 13, f(n) = 5.

Figure 1 Examples for Definition 1 and Definition 2.

2 Preliminaries

Notations. For a given positive integer k ∈ N, the set of integers {1, 2, . . . , k} is denoted for
short as [k]. Given a graph G, the vertex set is denoted as V (G) and the edge set as E(G).
Given two graphs G1 and G2, G1 ∪ G2 denotes the graph G where V (G) = V (G1) ∪ V (G2)
and E(G) = E(G1) ∪ E(G2).

ISAAC 2023
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In this paper, a regular n-gon is denoted by A1A2A3...An or B1B2B3...Bn. For conveni-
ence, we define An+1 := A1, Bn+1 := B1, A0 := An and B0 := Bn. We use the notation {Ai}
to denote the polygon A1A2A3 . . . An and {Bi} to denote the polygon B1B2B3 . . . Bn. For any
regular polygon A1A2A3...An, the circumcircle of the polygon is denoted as (A1A2A3...An).

Given two points P , Q in the Euclidean plane, we denote by dist(P, Q) the Euclidean
distance between P and Q. Given a line segment AB in the Euclidean plane, AB = dist(A, B).
For two distinct points A and B, LAB denotes the line containing A and B; and −−→

AB denotes
the ray originating from A and containing B.

When we refer to a graph G in the Euclidean plane then V (G) is a set of points in the
Euclidean plane, and E(G) is a subset of the family of line segments {P1P2|P1, P2 ∈ V (G)}.
For any tree T in the Euclidean plane, we denote by the notation |T | the value of Σe∈E(T )e.
A path in a tree T is uniquely specified by the sequence of vertices on the path; therefore,
P1, P2, P3, . . . , Pk (where Pi ∈ V (T ), ∀i ∈ [k] and PiPi+1 ∈ E(T ), ∀i ∈ [k − 1]) denotes
the path starting from the vertex P1, going through the vertices P2, P3, . . . , Pk−1 and
finally ending at Pk. Equivalently, we can specify the same path as the path from P1 to
Pk, since T is a tree. Consider the graph T such that V (T ) = {vP |P ∈ V (T )}, E(T ) =
{vP1vP2 |P1P2 is a line segment in E(T )}. Then T is said to be the topology of T while T is
said to realize the topology T . Given two trees T1, T2 in the Euclidean plane, T ′ = T1 ∪ T2
is the graph where V (T ′) = V (T1) ∪ V (T2) and E(T ′) = E(T1) ∪ E(T2).

Given any graph G, a Steiner minimal tree or SMT for a terminal set P ⊆ V (G) is the
minimum length connected subgraph G′ of G such that P ⊆ V (G′). The Steiner Minimal
Tree problem on graphs takes as input a set P of terminals and aims to find a minimum
length SMT for P. For the rest of the paper, we also refer to a Euclidean Steiner minimal
tree as an SMT. Given a set of points P in the Euclidean plane, the convex hull of P is
denoted as CH(P).

Properties of a Euclidean Steiner minimal tree. A Euclidean Steiner minimal tree (SMT)
has certain structural properties as given in [3]. We state them in the following Proposition.

▶ Proposition 3. Consider an SMT on n terminals.
1. No two edges of the SMT intersect with each other.
2. Each Steiner point has degree exactly 3 and the incident edges meet at 120◦ angles. The

terminals have degree at most 3 and the incident edges form angles that are at least 120◦.
3. The number of Steiner points is at most n − 2, where n is the number of terminals.

A full Steiner tree (FST) is a Steiner tree (need not be minimal, but may include Steiner
points) having exactly n − 2 Steiner points, where n is the number of terminals. In an FST,
all terminals are leaves and Steiner points are interior nodes. When the length of an FST is
minimized, it is called a minimum FST.

All SMTs can be decomposed into FST components such that, in each component a
terminal is always a leaf. This decomposition is unique for a given SMT [9]. A topology for
an FST is called a full Steiner topology and that of a Steiner tree is called a Steiner topology.

Steiner Hulls. A Steiner hull for a given set of points is defined to be a region which is
known to contain an SMT. We get the following propositions from [9].

▶ Proposition 4. For a given set of terminals, every SMT is always contained inside the
convex hull of those points. Thus, the convex hull is also a Steiner hull.

The next two propositions are useful in restricting the structure of SMTs and the location
of Steiner points.
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▶ Proposition 5 (The Lune property). Let UV be any edge of an SMT. Let L(U, V) be the
lune-shaped intersection of circles of radius |UV| centered on U and V. No other vertex of
the SMT can lie in L(U, V), except U and V themselves.

▶ Proposition 6 (The Wedge property). Let W be any open wedge-shaped region having angle
120◦ or more and containing none of the points from the input terminal set P. Then W

contains no Steiner points from an SMT of P.

Fully Polynomial Time Approximation Scheme (FPTAS). An algorithm is called a fully
polynomial time approximation scheme (FPTAS) for a problem if it takes an input instance
and a parameter ϵ > 0, and outputs a solution with approximation factor (1 + ϵ) for a
minimization problem in time (1/ϵ)O(1)nO(1) where n is the input size.

3 Polynomial cases for Euclidean Steiner Minimal Tree

In this section, we consider the Euclidean Steiner Minimal Tree problem for 2-CPR
n-gons. Throughout the section, we denote the inner n-gon as {Ai} and the outer n-gon
as {Bi}. First, we consider the configuration of an Euclidean Steiner minimal tree in a
subsection of the annular area between {Ai} and {Bi}, which will form an isosceles trapezoid.

Then we prove our result for all 2-CPR n-gons.

3.1 Isosceles Trapezoids and Vertical Forks
In this section, we discuss one particular Steiner topology when the terminal set is formed
by the four corners of a given isosceles trapezoid. However, we will limit the discussion to
only the isosceles trapezoids such that the angle between the non-parallel sides is of the form
2π
n where n ∈ N, n ≥ 4. The reason is that given 2-CPR n-gons {Ai}, {Bi}, for n ≥ 4 and

for any j ∈ {1, . . . , n − 1}, the region AjAj+1BjBj+1 is an isosceles trapezoid such that the
angle between the non-parallel sides is of the form 2π

n .

(a) Isosceles trapezoid with ∠AOB = 2π
8 . (b) The Vertical Fork, Tvf .

Figure 2 Isosceles Trapezoids and Vertical Forks.

Let ABQP be an isosceles trapezoid with AB, PQ as the parallel sides, and AP , BQ as
the non-parallel sides. Assume without loss of generality that AB is shorter than PQ. Let
AB = 1 and PQ = λ, where λ ≥

√
3+tan π

n√
3−tan π

n

. For brevity, we say λv =
√

3+tan π
n√

3−tan π
n

. Let LP A and
LQB be the lines containing the line segments PA and QB respectively. Also let O be the
point of intersection of LP A and LQB. Further, let M and N be the midpoints of AB and
PQ respectively (as in Figure 2(a)). As mentioned earlier, ∠AOB = 2π

n where n ∈ N, n ≥ 4.

ISAAC 2023



25:6 ESMT on Near-Convex Terminal Sets

Now, we explore the following Steiner topology of the terminal set {A, B, P, Q}:
1. A and B are connected to a Steiner point S1.
2. P and Q are connected to another Steiner point S2.
3. S1 and S2 are directly connected (Please see Figure 2(b)).
We call such a topology a vertical fork topology and the Steiner tree realising such a topology,
the vertical fork. Note that in a vertical fork topology the only unknowns are the locations
of the two Steiner points S1, S2. Therefore, we have the vertical fork topology as Tvf , with
E(Tvf ) = {AS1, BS1, S1S2, S2P, S2Q}. We show the existence of a vertical fork and calculate
its total length in the following lemma.

▶ Lemma 7. A vertical fork Tvf can be constructed for any n ≥ 4 and for any λ ≥ λv, where

λv =
√

3 + tan π
n√

3 − tan π
n

such that the length of the vertical fork

|Tvf | = (λ − 1)
2 tan π

n

+
√

3(λ + 1)
2

3.2 Euclidean Steiner Minimal Tree and Large Polygons with Large
Aspect Ratios

In this section, we consider the Euclidean Steiner Minimal Tree problem when the
terminal set is formed by the vertices of 2-CPR n-gons, namely {Ai} and {Bi}. As mentioned
earlier, {Ai} is the inner polygon and {Bi} is the outer polygon of this set of 2-CPR n-gons.
In particular, we consider the case when n ≥ 13; for n ≤ 12 these are constant sized input
instances and can be solved using any brute-force technique. We also require that the aspect
ratio λ has a lower bound λ1, i.e. we do not want the two polygons to have sides of very
similar length. The exact value of λ1 will be clear during the description of the algorithm.
Intuitively, when λ is very large, the SMT should look similar to what was derived in [15].
We call the topology of such an SMT a singly connected topology, as in Figure 3.

▶ Definition 8. A Steiner topology of {Ai} ∪ {Bi} is a singly connected topology, if it
has the following structure:

A vertical gadget i.e. five edges {AjSa, Aj+1Sa, SaSb, SbBj , SbBj+1} for some 1 ≤ j ≤ n,
where Sa and Sb are newly introduced Steiner points contained in the isosceles trapezoid
{Aj , Aj+1, Bj , Bj+1}.
All (n − 2) polygon edges of {Ai} excluding the edge AjAj+1
All (n − 2) polygon edges of {Bi} excluding the edge BjBj+1

For the rest of this section, we consider the SMTs for a large enough aspect ratio, λ and
show that there is an SMT that must be a realisation of a singly connected topology. We
refer to an SMT for the terminal set defined by the vertices of {Ai} and {Bi} as the SMT
for {Ai} ∪ {Bi} .

Without loss of generality, we consider the edge length of any side AiAi+1 in {Ai} to be
1 and that of any side BiBi+1 of {Bi} to be λ.

We define the notion of a path in an SMT for the vertices of {Ai} and {Bi} where the
starting point is in {Ai} and the ending point is in {Bi}.

▶ Definition 9. An A-B path is a path in a Steiner tree of {Ai} ∪ {Bi} which starts from
a vertex in {Ai} and ends at a vertex in {Bi} with all intermediate nodes (if any) being
Steiner points.
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(a) SMT of 2-CPR 13-gons. (b) SMT of 2-CPR 20-gons.

Figure 3 Singly connected topology of 2-CPR n-gons n = 13 and n = 20.

The following Definition and Figure 4 is useful for the design of our algorithm.

▶ Definition 10. A counter-clockwise path is a path P1, P2, ...Pm in a Steiner tree
such that for all i ∈ {2, . . . , m − 1},∠Pi−1PiPi+1 = 2π

3 in the counter-clockwise direction.
Similarly, a clockwise path is a path P1, P2, ...Pm in a Steiner tree such that for all
i ∈ {2, . . . , m − 1},∠Pi−1PiPi+1 = 4π

3 in the counter-clockwise direction.

Figure 4 ∠Pi−1PiPi+1 = α in the counter-clockwise direction and ∠Pi−1PiPi+1 = β in the
z, as in Definition 10.

Now, we consider any Steiner point S in any SMT. Let P and Q be two neighbours of S.
We now prove that there is no point of the SMT inside the triangle PSQ.

▶ Observation 11. Let S be a Steiner point in any SMT for {Ai} ∪ {Bi}, with neighbours
P and Q. Then, no point of the SMT lies inside the triangle PSQ.

Next, we show that in an SMT for {Ai} ∪ {Bi} there cannot be any Steiner point, in
the interior of the polygon {Ai}, that is a direct neighbour of some point Bk in the polygon
{Bi}.

▶ Observation 12. For any SMT for {Ai} ∪ {Bi} , there cannot exist a Steiner point S lying
in the interior of the polygon {Ai} such that SBk is an edge in an SMT for some Bk ∈ {Bi}.

Proof. For the sake of contradiction, we assume that for some SMT for {Ai} ∪ {Bi} there
exists a Steiner point S lying in the interior of the polygon {Ai} such that SBk is an
edge in the SMT for some Bk ∈ {Bi}. Let AmAm+1 be the edge such that SBk intersects
AmAm+1. Without loss of generality, assume that Am is closer to Bk than Am+1. Therefore
∠BkAmS > ∠BkAmAm+1 ≥ π

2 + π
n > π

2 . This means that BkS is the longest edge in the
triangle BkSAm. Therefore we can remove the edge BkS from the SMT and replace it with
either BkAm or SAm to get another tree connecting the terminal set with a shorter total
length than what we started with, which is a contradiction. ◀

ISAAC 2023



25:8 ESMT on Near-Convex Terminal Sets

We further analyze SMTs for {Ai} ∪ {Bi}.

▶ Observation 13. Let V = {Aj , Aj+1, . . . , Ak} be the interval of consecutive vertices of
{Ai} lying between Aj and Ak (which includes Aj+1) such that Aj is distinct from Ak+1.
Let U be any point on the line segment AkAk+1. Then an SMT of V ∪ {U} is T , with
E(T ) = {AjAj+1, Aj+1Aj+2, . . . , Ak−1Ak} ∪ {AkU}.

We proceed by showing that in any SMT for {Ai} ∪ {Bi} there exists at least one A-B
path which is also a counter-clockwise path. Symmetrically, we also show that for any SMT
for {Ai} ∪ {Bi} there exists another clockwise A-B path which consists of only clockwise
turns. We can intuitively see that this is true because, if all clockwise paths starting at a
vertex in {Ai} also ended in a vertex in {Ai}, there would be enough paths to form a cycle,
which is not possible in a tree.

▶ Lemma 14. In any SMT for {Ai} ∪ {Bi} , there exists an A-B path which is also a
clockwise path and there exists an A-B path which is also a counter-clockwise path.

Our next step is to bound the number of “connections” that connect the inner polygon
{Ai} and the outer polygon {Bi} for a large aspect ratio, λ. As λ increases, the area
of the annular region between the two polygons increases as well. Therefore, an increase
in the number of connections would lead to a longer total length of the SMT considered.
Consequently, we will prove that after a certain positive constant λ1, for λ > λ1 any SMT
for {Ai} ∪ {Bi} will have a single “connection” between the two polygons. Moreover, [15]
gives us an evidence that as λ → ∞, there will indeed be a single connection connecting the
outer polygon and the inner polygon for n ≥ 12. We can formalize this notion of existence of
a single “connection” with the following lemma.

▶ Lemma 15. For any SMT for {Ai} ∪ {Bi} with n ≥ 13 and λ > λ1, the number of edges
needed to be removed in order to disconnect {Ai} and {Bi} is 1, where

λ1 = 1
1 − 4 sin π

n

We now proceed to further investigate the connectivity of {Ai} and {Bi}.

▶ Lemma 16. Consider an SMT for {Ai} ∪ {Bi} for n ≥ 13 and λ ≥ λ1. There must exist
j ∈ [n] and a Steiner point S1, such that terminals Aj , Aj+1 form a path Aj, S1, Aj+1 in
the SMT and each A-B path passes through S1.

Proof Sketch. From Lemma 14, we know that there exists one clockwise A-B path and one
counterclockwise A-B path in any SMT of {Ai} ∪ {Bi}. Let a clockwise A-B path start
from Ar and a counter-clockwise A-B path start from Al. Further following from Lemma 15,
as there is one edge common to all A-B paths, the clockwise A-B path from Ar and the
counter-clockwise A-B path from Al must share a common edge S1S2. Therefore, each A-B
path must pass through S1 and S2. Without loss of generality we assume that point S1 is
closer to the polygon {Ai} than S2. This means S1 is either a Stiener point or a terminal
vertex of {Ai}.

▷ Claim 17. S1 is not a vertex in {Ai}.

Therefore, S1 must be a Steiner point. Let P and Q be the neighbours of S1 other than
S2, such that ∠PS1S2 is a clockwise turn while ∠QS1S2 is a counter-clockwise turn. This
means that the clockwise A-B path from Ar passes through P and the counter-clockwise
A-B path from Al passes through Q. We prove the following for P and Q.
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▷ Claim 18. P and Q are consecutive vertices of {Ai} in any SMT of {Ai} ∪ {Bi}.

Therefore, P and Q are consecutive vertices Aj , Aj+1 of the polygon {Ai}, for some
j ∈ [n] such that Aj , S1, Aj+1 is a path in the SMT, where S1 is a Steiner point lying on all
A-B paths. ◀

Our next step is to investigate some more structural properties of an SMT for {Ai}∪{Bi}.
From [5], we may guess that there would be a lot of polygon edges of both {Ai} and {Bi} in
an SMT. We prove the following Lemma, stating that there is an SMT of {Ai} ∪ {Bi} which
contains (n − 2) polygon edges of {Ai}.

▶ Lemma 19. For an SMT for {Ai} ∪ {Bi} with aspect ratio λ, λ > λ1 = 1
1−4 sin π

n
, let S1

be the Steiner point such that all A-B paths pass through S1. Let Aj and Aj+1 be vertices of
{Ai} which are connected to S1. Then, there exists an SMT of {Ai} ∪ {Bi} having n − 2
polygon edges of {Ai} other than AjAj+1.

With these set of results in hand, we can now show that there exists an SMT of {Ai}∪{Bi}
following a singly connected topology. To show this, we start with any SMT for {Ai} ∪ {Bi} ,
T0, that satisfies all the results derived so far and transform it into a Steiner tree of singly
connected topology having total length not longer than the initial Steiner tree T0.

▶ Theorem 20. There exists an SMT for {Ai} ∪ {Bi} following a singly connected topology
for n ≥ 13 and λ ≥ λ1, where

λ1 = 1
1 − 4 sin π

n

Proof. Let T0 be any SMT of {Ai} ∪ {Bi} which satisfies the properties of Lemma 19.
Further, from Lemma 16, there is a Steiner point S1 which lies on all A-B paths, and there
are two consecutive vertices Aj , Aj+1 such that Aj , S1, Aj+1 is a path in T0. As T0 satisfies
the property of Lemma 19, T0 has n − 2 polygon edges of {Ai} excluding the edge AjAj+1.

Let H be the point in the interior of the polygon {Ai} such that HAjAj+1 form an
equilateral triangle. As n > 6, the common centre O of {Ai} and {Bi} does not lie inside
the triangle HAjAj+1. Now, we modify T0 as follows:
1. Remove edges AjS1, S1Aj+1 and add edge S1H to get the forest T1. We know from [9]

that S1, S2 and H are collinear and this transformation does not change the total length.
Therefore |T0| = |T1|. Here, |T1| denotes the sum of the lengths of edges present in T1.

2. Add edge HO and remove all polygon edges of {Ai} to get T2. Therefore |T2| =
|T1| + HO − (n − 2) = |T0| + HO − (n − 2). We observe that T2 is a tree connecting the
points in {Bi} ∪ {O}.

3. Let S0 be the Torricelli point of the triangle OBjBj+1. Let T3 be the Steiner tree of
{Bi} ∪ {O} with edges S0O, S0Bj , S0Bj+1 and other points in {Bi} connected through
(n − 2) polygon edges of the polygon {Bi}. From [15], we know that T3 is the SMT of
{Bi} ∪ {O}. Therefore |T3| ≤ |T2| = |T0| + HO − (n − 2). Further we know that H lies
on the edge OS0 (as O, S0 and H lie on the perpendicular bisector of Bj and Bj+1).

4. Remove edge S0O and add edge S0H to get T4. As H lies on the edge OS0, we have
|T4| = |T3| − OH ≤ |T0| − (n − 2).

5. Let S3 be the intersection of the circumcircle of triangle AjHAj+1 (from Lemma 7 the
intersection exists as λ1 ≥ λv for n ≥ 13). Remove the edge S3H and add the edges S3Aj

and S3Aj+1 to get T5. Again, from [9] we know that this transformation does not change
the total length. Hence |T5| = |T5| ≤ |T0| − (n − 2). Moreover, as λ > λv, we observe that
{Aj , Bj , Aj+1, Bj+1, S3, S0} form the vertices of the vertical gadget and points O, H, S3,
S0 appear in that order on the perpendicular bisector of Bj and Bj+1.
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6. Add back the (n − 2) polygon edges of {Ai} which were removed in the second step to
get T6. Therefore |T4| = |T5| + (n − 2) ≤ |T0|. We further observe that T6 is a Steiner
tree connecting the points {Ai} ∪ {Bi} with a singly connected topology.

Therefore we started with an arbitrary SMT T0 and transformed it into a Steiner tree
T6 with a singly connected topology (where {Aj , Bj , Aj+1, Bj+1, S3, S0} form the vertices of
the vertical gadget) which has a total length not worse than T0. Hence T6 must be an SMT
of {Ai} ∪ {Bi}. This proves the theorem. ◀

▶ Remark 21. Theorem 20 determines the exact structure of the SMT for {Ai} ∪ {Bi} .
Further from Section 3.1 we determine the exact method to construct the two additional
Steiner points in O(1) steps - note that this construction time is independent of the integer
n or the real number λ. Therefore, SMT for {Ai} ∪ {Bi} for n ≥ 13 and λ ≥ λ1 is solvable
in polynomial time.

Interestingly, λ1 converges to 1 very quickly with increasing n:

n 13 20 40 100 500
λ1 23.3987 2.6719 1.4574 1.1437 1.0258

4 Euclidean Steiner Minimal Tree on f(n)-Almost Convex Point Sets

In this section, we design an exact algorithm for Euclidean Steiner Minimal Tree on
f(n)-Almost Convex Point Sets running in time 2O(f(n) log n). Note that f(n) ≤ n is always
true. Therefore, we are given as input a set P of n points in the Euclidean Plane such that
P can be partitioned as P = P1 ⊎ P2, where P1 is the convex hull of P and |P2| = f(n).

We know that the SMT of P can be decomposed uniquely into one or more full Steiner
subtrees, such that two full Steiner subtrees share at most one node [9]. In the following
lemma, we further characterize one full Steiner subtree, which we refer to as a leaf full Steiner
subtree.

▶ Lemma 22. Let F be the full Steiner decomposition of an SMT of P. Then there exists a
full Steiner subtree F ∈ F such that F has at most one common node with at most one other
full Steiner subtree in F.

Using the above Lemma, along with the bounds on the number of FSTs from [9], we can
obtain the following theorem (details can be found in the full version).

▶ Theorem 23. An SMT TP of a k-Almost Convex Set P of terminals can be computed in
O(nk · 5n) time.

The above theorem gives us several improvements in special classes of inputs.

▶ Corollary 24. Let P be a f(n)-Almost Convex Point Set. Then, then there is an algorithm
A for Euclidean Steiner Minimal Tree such that, A runs in 2O(n+f(n) log n) time. In
particular,
1. When f(n) = O(n), A runs in 2O(n log n) time.
2. When f(n) = Ω( n

log n ) and f(n) = o(n), A runs in 2o(n log n).
3. When f(n) = O( n

log n ), A runs in 2O(n) time.

Therefore, for f(n) = o(n), our algorithm for Euclidean Steiner Minimal Tree does
better on f(n)-Almost Convex Points Sets than the current best known algorithm [8].
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5 Approximation Algorithms for Euclidean Steiner Minimal Tree

The Euclidean Steiner Minimal Tree problem is NP-hard as shown by Garey et al.
in [6]. Garey et al. also prove that there cannot be an FPTAS (fully polynomial time
approximation scheme) for this problem unless P = NP . At the same time, the case when
all the terminals lie on the boundary of a convex region admits an FPTAS as given in [14]. In
this section, we aim to conduct a more fine-grained analysis for the problem by considering
f(n)-Almost Convex Point Sets of n terminals and studying the existence of FPTASes for
different functions f(n).

First, we present an FPTAS for Euclidean Steiner Minimal Tree on f(n)-Almost
Convex Sets of n terminals, when f(n) = O(log n). The FPTAS follows the strategy of [14]
and uses a variant of the Dreyfus-Wagnus Steiner tree algorithm [4] as a subroutine.

▶ Theorem 25. There exists an FPTAS for Euclidean Steiner Minimal Tree on an
f(n)-Almost Convex Set of n terminals, where f(n) = O(log n).

On the other hand, we prove in the next section that no FPTAS exists for the case when
f(n) = Ω(nϵ), where ϵ ∈ (0, 1].

5.1 Hardness of Approximation for Euclidean Steiner Minimal Tree on
Cases of Almost Convex Sets

In this section, we consider the Euclidean Steiner Minimal Tree problem on f(n)-
Almost Convex Sets of n terminal points, where f(n) = Ω(nϵ) for some ϵ ∈ (0, 1]. We
show that this problem cannot have an FPTAS. The proof strategy is similar to that in [6].
First, we give a reduction for the problem Exact Cover by 3-Sets (defined below) to
our problem to show that our problem is NP-hard. Next, we consider a discrete version
of our problem and reduce our problem to the discrete version. The discrete version is in
NP. Therefore, this chain of reductions imply that the discrete version of our problem is
Strongly NP-complete and therefore cannot have an FPTAS, following from [6]. Similar to
the arguments in [6], this also implies that our problem cannot have an FPTAS.

Before we describe our reductions, we take a look at the NP-hardness reduction of the
Euclidean Steiner Minimal Tree problem from the Exact Cover by 3-Sets (X3C)
problem in [6]. In the X3C problem, we are given a universe of elements U = {1, 2, . . . , 3n}
and a family F of 3-element subsets F1, F2, . . . , Ft of the 3n elements. The objective is to
decide if there exists a subcollection F′ ⊆ F such that: (i) the elements of F′ are disjoint,
and (ii)

⋃
F ′∈F′ F ′ = U . The X3C problem is NP-complete [7].

In [6], various gadgets are constructed, i.e. particular arrangements of a set of points.
These are then arranged on the plane in a way corresponding to the given X3C in-
stance. Figure 5 shows the reduced ESMT instance obtained for U = {1, 2, 3, 4, 5, 6} and
F = {{1, 2, 4}, {2, 3, 6}, {3, 5, 6}} (taken from [6]). The squares, hexagons (crossovers), shaded
circles (terminators) and lines (rows) all represent specific arrangements of a subset of points.
Let X(F) denote the reduced instance. The number of points in X(F) is bounded by a
polynomial in n and t. Let this polynomial be O(tγ), as we can assume t ≥ n since otherwise
it trivially becomes a NO instance. Here γ is some constant.

We restate Theorem 1 in [6].

▶ Proposition 26. Let S∗ denote an SMT of X(F), the instance obtained by reducing the X3C
instance (n,F), and |S∗| denote its length. If F has an exact cover, then |S∗| ≤ f(n, t, Ĉ),
otherwise |S∗| ≥ f(n, t, Ĉ)+ 1

200nt , where t = |F|, Ĉ is the number of crossovers, i.e. hexagonal
gadgets, and f is a positive real-valued function of n, t, Ĉ.
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Figure 5 Reduced instance of ESMT from X3C (taken from [6]).

We extend this construction to prove NP-hardness for instances of Euclidean Steiner
Minimal Tree where the terminal set P has Ω(nϵ) points inside CH(P). Here, ϵ ∈ (0, 1]
and n is the number of terminals.

Let us call the length of a gadget to be the maximum horizontal distance between any
two points in that gadget. Similarly, we define the breadth of a gadget to be the maximum
vertical distance between any two points in that gadget.

(a) The
Upward

Terminator
symbol.

(b) The
Downward
Terminator

symbol.

(c) The Downward Terminator
symbol.

Figure 6 The Terminator gadget symbol and arrangement of points.

The terminator gadget used is shown in Figure 6. The straight lines represent a row of
at least 1000 points separated at distances of 1/10 or 1/11. The angles between them are as
shown. The upward terminator has the point A above the other points in the terminator,
whereas the downward terminator has the point A below the other points. Firstly, we adjust
the number of points in the long rows, such that the length and breadth of the terminators
is same as that of the hexagonal gadgets (crossovers). We can fix this length and breadth
to be some constants, such that the number of points in each gadget is also bounded by
some constant. In our construction, we modify the terminators Ω0, Ω1, and Ω2 as shown
in Figure 5 enclosed in squares. Ω1 is the terminator corresponding to the first occurrence
of the element 3n ∈ U in some set in F and Ω2 is the terminator corresponding to the last
occurrence of 3n in some set in F (if there are more than one occurrences of 3n). If there
are no occurrences of 3n, then it is trivially a no-instance. The modified gadgets are shown
in Figure 7. All the other gadgets remain unaltered.
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We define a Conic Set of points.

▶ Definition 27. A Conic Set is a set of points consisting of a point T , called the tip of the
cone, and the remaining points denoted by S. Let C be the circle with T as centre and radius
r. All the points in S lie on C, such that the angle at the tip formed by the two extreme
points L, R ∈ S, i.e. ∠LTR = 30◦ in the anticlockwise direction. So, we have TL = TR = r.
The distance between any two consecutive points in S is the same, say d. Let the number of
points in S be n. We denote the Conic Set as Cone(T, r, n) and S as Circ(T, r, n). We call
TL as the left slope of the Conic Set and TR as the right slope of the Conic Set.

(a) Ω′
0. (b) Ω′

1. (c) Ω′
2.

Figure 7 The modified terminator gadgets.

We use the Conic Set in the reduction for our problem (please see Figure 8). Now, we
give a sketch of the reduction of an X3C instance (n,F) to an instance X ′(F, ϵ) of ESMT.

Algorithm A for construction of ESMT instance X′(F, ϵ) from X3C instance (n, F):
Reduce the input X3C instance to the points configuration X(F) according to the
reduction given in [6].
Let DQCP be the smallest axis-parallel rectangle bounding X(F) after certain modi-
fications of gadgets described in [6] (details in the full version).
Take α = 1

ϵ . Define r = ctα = O(tα) and n′ = c′tγα = O(tγα), where t = |F| and c and
c′ are constants. Add the Cone(D, r, n′), such that D is the tip of the Conic Set, and
the left slope DE makes an angle of 120◦ with DP . The right slope DF also makes
an angle of 120◦ with DQ.

Figure 8 The reduced instance X ′(F, ϵ).

Now we state a few properties of the constructed instance X ′(F, ϵ) (detailed proofs can
be found in the full version).
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▶ Lemma 28. All the points in Circ(D, r, n′) (according to Definition 27) lie on the convex
hull of the reduced ESMT instance X ′(F, ϵ) constructed by Algorithm A, where ϵ ∈ (0, 1].

Let us denote the convex hull of X ′(F, ϵ) by CH(X ′(F, ϵ)) and that of the points lying
inside or on the bounding rectangle PDQC, i.e. X ′(F, ϵ) \ Circ(D, r, n′) by CH(X ′(F, ϵ) \
Circ(D, r, n′)).

▶ Lemma 29. The reduced ESMT instance X ′(F, ϵ) constructed by Algorithm A has Ω(N ϵ)
points inside the convex hull, where ϵ ∈ (0, 1] and N is the total number of terminals in
X ′(F, ϵ).

We further state structural properties of SMTs of the reduced instance X ′(F, ϵ) when
considering the modified gadgets Ω′

0, Ω′
1, and Ω′

2.

▶ Lemma 30. Consider an SMT S∗ of the ESMT instance X(F) obtained via reduction
from the X3C instance (n,F) as per [6]. Consider a tree S ′∗ on the terminal set of X ′(F, ϵ)
obtained from S∗ as follows: Consider the modified terminator gadgets Ω′

i, i ∈ {0, 1, 2} as in
Algorithm A. For each i ∈ {0, 1, 2}, the edge BiOi is excluded from S∗ and the edge DiOi is
included to form S ′∗. S ′∗ is an SMT for the terminal set of X ′(F, ϵ).

Now we focus on the structure of the SMT of X ′(F , ϵ). The SMT is basically the union
of the SMT S ′∗ of the points in the bounding rectangle PDQC as stated in Lemma 30 and
the SMT of the set of points Cone(D, r, n′).

CH(X ′(F, ϵ) \ Circ(D, r, n′)) is enclosed by the bounding rectangle PDQC and D must
lie on CH(X ′(F, ϵ) \ Circ(D, r, n′)). We label the vertices of CH(X ′(F, ϵ) \ Circ(D, r, n′)) as
D, P1, P2, . . . , Pk in the counter-clockwise order. Let CH(X ′(F, ϵ)) be the convex hull of all
the points. By Lemma 28, all the points in Circ(D, r, n′) lie on CH(X ′(F, ϵ)). Let EPi and
FPj be edges in CH(X ′(F, ϵ)), such that Pi, Pj /∈ Circ(D, r, n′).

The SMT of X ′(F, ϵ) clearly lies inside its convex hull, CH(X ′(F, ϵ)). We show that the
Steiner hull can be further restricted to the bounding rectangle PDQC and the convex
polygon formed by the points in Cone(D, r, n′). For this we use Theorem 1.5 in [9], as stated
below.

▶ Proposition 31 ([9]). Let H be a Steiner hull of N . By sequentially removing wedges abc
from the remaining region, where a, b, c are terminals but △abc contains no other terminal,
a and c are on the boundary and ∠abc ≥ 120◦, a Steiner hull H ′ invariant to the sequence
of removal is obtained.

▶ Lemma 32. The region comprising of the bounding rectangle PDQC according to Algorithm
A and the convex polygon formed by the set of points Cone(D, r, n′) is a Steiner hull of
X ′(F, ϵ).

Given the nature of the above Steiner hull, we show that we can treat X(F) and
Cone(D, r, n′) separately.

▶ Lemma 33. There is an SMT of X ′(F, ϵ) that is the union of an SMT of X(F) and an
SMT of the points in Cone(D, r, n′), with D being common to both of them.

We can identify a structure for an SMT of the points in Cone(D, r, n′) using [15].

▶ Lemma 34. There is an SMT of the points in Cone(D, r, n′) that is as shown in Figure 9.
In the SMT, D is connected to the two middle points in Circ(D, r, n′) via a Steiner point St.
The other points in Circ(D, r, n′) are connected along the circumference.



A. Dhar, S. Hait, and S. Kolay 25:15

Figure 9 SMT of Cone(D, r, n′).

Finally, we prove the NP-hardness of Euclidean Steiner Minimal Tree on f(n)-
Almost Convex Sets of n terminals, when f(n) = Ω(nϵ) for some ϵ ∈ (0, 1].

▶ Theorem 35. Let S∗
F,ϵ denote an SMT of X ′(F, ϵ) and |S∗

F,ϵ| denote its length. If F has an
exact cover, then |S∗

F,ϵ| ≤ f(n, t, Ĉ) + |T1|, otherwise |S∗
F,ϵ| ≥ f(n, t, Ĉ) + 1

200nt + |T1|, where
Ĉ is the number of crossovers, i.e. hexagonal gadgets, and f is a positive real-valued function
of n, t, Ĉ as stated in Proposition 26.

Since it is not known if the ESMT problem is in NP, Garey et al. [6] show the NP-
completeness of a related problem called the Discrete Euclidean Steiner Minimal
Tree (DESMT) problem, which is in NP. We define the DESMT problem as given in [6].
The DESMT problem takes as input a set X of integer-coordinate points in the plane and a
positive integer L, and asks if there exists a set Y ⊇ X of integer-coordinate points such that
some spanning tree T for Y satisfies |T |d ≤ L, where |T |d = Σe∈E(T )⌈e⌉, i.e. we round up
the length of each edge to the least integer not less than it.

In order to show that DESMT is NP-hard, the same reduction as that of the ESMT
problem can be used, followed by scaling and rounding the coordinates of the points. Theorem
4 of [6] proves that the DESMT problem is NP-Complete. Moreover, since it is Strongly
NP-Complete, the DESMT problem does not admit any FPTAS. Finally in Theorem 5 of [6],
Garey et al. show that as a consequence, the ESMT problem does not have any FPTAS as
well.

Now we show that the DESMT problem is NP-hard even on f(n)-Almost Convex Sets of
n terminals, when f(n) = Ω(nϵ) and where ϵ ∈ (0, 1].

In Section 7 of [6], the reduced instance X(F) of ESMT is converted into an instance
Xd(F) of DESMT. The conversion is as follows:
Xd(F) = {(⌈12M · 200nt · x1⌉, ⌈12M · 200nt · x2⌉) : x = (x1, x2) ∈ X(F)}, where M = |X(F)|.

We apply a similar conversion to the reduced ESMT instance X ′(F, ϵ), to convert it into
a DESMT instance of an Ω(nϵ)-Almost Convex Set. The conversion goes as follows:
X ′

d(F, ϵ) = {(⌈12N · 200nt · x1⌉, ⌈12N · 200nt · x2⌉) : x = (x1, x2) ∈ X ′(F, ϵ)}, where
N = |X ′(F, ϵ)|.

The next two lemmas establish the validity of X ′
d(F, ϵ) as an instance of DESMT and the

upper bounds on the size of the constructed instance. Note that the reduction from X3C
followed by the conversion can be done in polynomial time.

▶ Lemma 36. The instance X ′
d(F, ϵ) constructed above is a valid DESMT instance.

▶ Lemma 37. The reduced DESMT instance X ′
d(F, ϵ) has N distinct points, where N =

|X ′(F, ϵ)|.
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Now we present the following lemma for the constructed DESMT instance X ′
d(F, ϵ)

analogous to Lemma 29 for the ESMT instance X ′(F, ϵ).

▶ Lemma 38. The reduced DESMT instance X ′
d(F, ϵ) constructed is an Ω(N ϵ)-Almost

Convex Set, where N = |X ′
d(F, ϵ)|.

We get the following theorem from Lemmas 36–38.

▶ Theorem 39. The instance X ′
d(F, ϵ) constructed is a valid DESMT instance on an Ω(N ϵ)-

Almost Convex Set, where |X ′
d(F, ϵ)| = |X ′(F, ϵ)| = N .

Following Theorems 3 and 4 in [6], we get that the DESMT problem is NP-Complete
for Ω(N ϵ)-Almost Convex Sets, where N is the total number of terminals. Since we get the
reduced instance X ′

d(F, ϵ) from the X3C instance (n,F), the DESMT problem is strongly
NP-complete for Ω(N ϵ)-Almost Convex Sets, and does not admit any FPTAS.

Using Theorem 5 of [6], we get that if the ESMT problem has an FPTAS, then the
X3C problem can be solved in polynomial time. The Theorem also applies for our case of
Ω(N ϵ)-Almost Convex Sets. Therefore, we get the following theorem,

▶ Theorem 40. There does not exist any FPTAS for the ESMT problem on f(n)-Almost
Convex Sets of n terminals, where f(n) = Ω(nϵ) and ϵ ∈ (0, 1], unless P = NP.

6 Conclusion

In this paper, we first study ESMT on vertices of 2-CPR n-gons and design a polynomial
time algorithm. It remains open to design a polynomial time algorithm for ESMT on k-CPR
n-gons, or show NP-hardness for the problem. Next, we study the problem on f(n)-Almost
Convex Sets of n terminals. For this NP-hard problem, we obtain an algorithm that runs in
2O(f(n) log n) time. We also design an FPTAS when f(n) = O(log n). On the other hand, we
show that there cannot be an FPTAS if f(n) = Ω(nϵ) for any ϵ ∈ (0, 1], unless P = NP. The
question of existence of FPTASes when f(n) is a polylogarithmic function remains open.
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