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Abstract
A rectilinear-upward planar drawing of a digraph G is a crossing-free drawing of G where each
edge is either a horizontal or a vertical segment, and such that no directed edge points downward.
Rectilinear-Upward Planarity Testing is the problem of deciding whether a digraph G admits
a rectilinear-upward planar drawing. We show that: (i) Rectilinear-Upward Planarity Testing
is NP-complete, even if G is biconnected; (ii) it can be solved in linear time when an upward planar
embedding of G is fixed; (iii) the problem is polynomial-time solvable for biconnected digraphs of
treewidth at most two, i.e., for digraphs whose underlying undirected graph is a series-parallel graph;
(iv) for any biconnected digraph the problem is fixed-parameter tractable when parameterized by
the number of sources and sinks in the digraph.
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1 Introduction

A rectilinear planar drawing of a graph G is a crossing-free drawing of G where vertices
are placed at distinct points in the plane (possibly at grid points) and edges are drawn as
either horizontal segments or vertical segments. Rectilinear Planarity Testing is the
problem of deciding whether a planar graph admits a rectilinear planar drawing. Besides
the theoretical beauty of the problem, which belongs to the vast literature about graph
planarity testing (see, e.g. [10, 38, 39] for books and surveys), the question is at the heart of
those technologies that display networked data by means of orthogonal layouts, which find
applications in a variety of fields, from software engineering to bioinformatics, from data
bases to computer networks (see, e.g., [21, 36]).
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26:2 Rectilinear-Upward Planarity Testing of Digraphs

Rectilinear Planarity Testing has been proved to be NP-complete [29]. However,
polynomial-time solutions are known both for constrained versions of the problem and for
restricted families of graphs. Namely, Rectilinear Planarity Testing can be solved in
polynomial time in the so-called fixed-embedding setting, that is when the input is given with
a planar embedding and the testing algorithm is not allowed to change the embedding (see,
e.g. [42]). Also, polynomial-time solutions are known for graphs of bounded treewidth and
for sub-cubic graphs (see, e.g., [11, 12, 13, 22, 27, 31, 40, 41]).

In this paper we study rectilinear planar drawings of directed graphs (digraphs). We want
to test whether a digraph G admits a rectilinear planar drawing with the additional constraint
that no directed edge points downward. We call such a drawing a rectilinear-upward planar
drawing and the testing problem Rectilinear-Upward Planarity Testing. It may
be worth recalling that the problem of testing whether a digraph admits an upward planar
drawing, i.e., a planar drawing where each edge is monotonically increasing in the upward
direction according to its orientation, is NP-complete [29]. See also [1, 3, 4, 5, 7, 15, 32, 34]
for polynomial-time solutions and parameterized approaches on restricted graph families
or scenarios. Figure 1 shows an example of a digraph that admits both an upward planar
drawing and a rectilinear planar drawing, but that does not admit a rectilinear-upward
planar drawing. Our contributions can be summarized as follows.

We prove that Rectilinear-Upward Planarity Testing is NP-complete, even if the
input digraph is biconnected (Section 3).
We show that Rectilinear-Upward Planarity Testing can be solved in linear-time
when an upward planar embedding of G is fixed as part of the input (Section 4). We
remark that both the problem of testing rectilinear planarity and of testing upward
planarity in linear time in the fixed-embedding setting are among of the most famous
and long-standing open problems in graph drawing (see, e.g., [6, 43]).
We consider the variable-embedding setting, where the algorithm is free to chose the
planar embedding of the input graph, and we focus on families of biconnected digraphs
(Section 5). We show that Rectilinear-Upward Planarity Testing can be solved
in polynomial time for biconnected digraphs with treewidth at most two, i.e., when the
underlying undirected graph is series-parallel. We recall that polynomial-time testing
algorithms for series-parallel graphs are known in the literature both in the context of
upward planarity testing only and in the context of rectilinear planarity testing only (see,
e.g., [8, 19, 16]). We also show that Rectilinear-Upward Planarity Testing is FPT
when parameterized by the number k of sources and sinks of the digraph. Namely, for any
n-vertex digraph our FPT algorithm is single-exponential in k and has a quadratic factor
in n. We remark that parameterized complexities of upward and rectilinear planarity
testing are topics that have been receiving increasing attention (see, e.g., [7, 14, 35]).

From a technical point of view, our linear-time algorithm in the fixed-embedding setting
exploits a 2-SAT formulation, instead of using network-flow models as done in the standard
approaches for testing both rectilinear and upward planarity (see, e.g., [1, 3, 9, 28, 42]). In
the variable-embedding setting, we rely on the concept of rectilinear-upward spirality. It
combines the notion of spirality introduced in [11] to measure how much a triconnected
component of a rectilinear drawing can be “rolled up”, with additional information about
the orientation of the edges incident to the poles of the triconnected components.

For space restrictions some proofs are sketched or omitted. Full proofs will appear in an
extended journal version of the paper.
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Figure 1 A graph G that is upward planar, rectilinear planar, but not rectilinear-upward planar.
(a) An upward planar drawing of G. (b) A rectilinear planar drawing of G. (c) A rectilinear-upward
planar drawing of G without edge (6, 8).

2 Basic Definitions and Properties

For basic definitions on graph drawing and planarity refer to [10]. We assume to work
with connected graphs, as otherwise we can treat each connected component of the graph
independently. A 4-graph is a graph with vertex-degree at most four.

Upward planar drawings. In an upward drawing of a digraph G each edge is represented as
a Jordan arc monotonically increasing in the upward direction, according to its orientation;
see Figure 1a. A digraph G is upward planar if it admits an upward planar drawing. Clearly,
a necessary (but not sufficient) condition for G to be upward planar is that G is acyclic.

Orthogonal drawings and representations. Let G be a planar (undirected or directed)
4-graph, and let Γ be a planar drawing of G. We say that Γ is an orthogonal planar drawing
of G if each edge is drawn as a sequence of horizontal and vertical segments. A bend
on an edge is the contact point between a horizontal and a vertical segment of the edge.
An orthogonal planar representation H of a planar graph G is a class of shape equivalent
orthogonal planar drawings; namely, H describes the planar embedding of G, the sequence
of left/right bends along the edges, and the angles at every vertex of G, each angle formed
by two (possibly coincident) consecutive edges around the vertex and expressed as a value
in the set {90◦, 180◦, 270◦, 360◦}. If H is the orthogonal representation of an orthogonal
planar drawing Γ, we also say that Γ preserves H and that Γ is a drawing of H. A drawing
of H can be computed in linear time [42], thus we can concentrate on computing orthogonal
representations rather than drawings.

Orthogonal planar drawings (resp. representations) without bends are called rectilinear
planar drawings (resp. rectilinear planar representations); see, e.g., Figure 1b. A graph G is
rectilinear planar if it admits a rectilinear planar drawing (or representation). We say that a
rectilinear planar representation H is oriented if it also specifies for each edge (u, v) of G

the relative position of u with respect to v, i.e., whether u must be to the left, to the right,
above, or below v in every rectilinear drawing of H; in particular, this information establishes
for each edge e of G if e is horizontal or vertical in H (it is actually enough to specify
the relative position of the end-vertices of one edge of H to establish the relative position
of the end-vertices for every other edge). Note that the definition of oriented rectilinear
representation H of G has nothing to do with the orientation of the edges when G is a
digraph. For a given rectilinear representation of G there are always four different oriented
versions of it, obtained by rotating one of them by an angle of k · 90◦, for k = 0, 1, 2, 3.

ISAAC 2023



26:4 Rectilinear-Upward Planarity Testing of Digraphs

Rectilinear-upward planar representations. In this paper we deal with drawings of digraphs
that are at the same time rectilinear and upward. More precisely, we do not require that an
edge is strictly upward (which would prevent us from drawing it as a horizontal segment), but
rather we exclude that it is drawn downward. Formally, let G be an acyclic planar 4-digraph
and let Γ be a planar drawing of G. We say that Γ is a rectilinear-upward planar drawing of G

if Γ is a rectilinear planar drawing of G with no directed edge that points downward; see, e.g.,
Figure 1c. This corresponds to saying that a rectilinear upward planar drawing Γ induces an
oriented rectilinear planar representation H of G with the property that for each directed
edge (u, v) of G, vertex u is never above vertex v. We say that H is a rectilinear-upward
planar representation of G. As for rectilinear representations, H describes a class of shape
equivalent rectilinear-upward planar drawings. A digraph G is rectilinear-upward planar if
it admits a rectilinear-upward planar drawing, or equivalently, a rectilinear-upward planar
representation. Clearly, rectilinear planarity is necessary for rectilinear-upward planarity.
The next property implies that also upward planarity is necessary for rectilinear-upward
planarity. As already observed, both rectilinear planarity and upward planarity are not
sufficient conditions when considered independently (see Figure 1).

▶ Property 1. If Γ is a rectilinear-upward planar drawing of a digraph G, then Γ can be
transformed into an upward planar drawing of G with the same planar embedding as Γ.

In the remainder we only consider planar 4-digraphs, thus we often omit the term “planar”
and we avoid to specify that the vertex-degree is at most four. Also, we often use the
abbreviation “RU” in place of “rectilinear-upward”. Finally, we implicitly assume that the
input digraphs are acyclic, as otherwise an upward drawing, and hence an RU drawing,
cannot exist. Acyclicity can be tested in linear time, by a classical depth first search.

3 NP-Completeness of Rectilinear-Upward Planarity Testing

To prove the hardness of Rectilinear-Upward Planarity Testing, we use a reduction
from the following 1-2-Switch-Flow problem, introduced in this paper and that may be
considered of independent interest. The hardness of 1-2-Switch-Flow can be proved with
a reduction from the problem Flow Orientation, which is shown to be NP-complete even
if edge capacities are O(

√
n), where n is the number of vertices of the graph [23].

Problem: 1-2-Switch-Flow (12SW)
Instance: A planar undirected graph G = (V, E) where each edge e ∈ E is labeled

with a value fe ∈ {1, 2}.
Question: Does there exist an orientation for the edges in E such that for each

vertex the sum of the values of the incoming edges equals the sum of
values of the outgoing edges?

We now sketch the reduction from 1-2-Switch-Flow (12SW) to Rectilinear-Upward
Planarity Testing. Let G = (V, E) be an instance of 12SW. We first compute a planar
embedding of G and planarly add extra edges with label [0] (called [0]-edges) in such a way
to obtain a maximal plane graph G+ (see Figure 2a). Second, we compute the dual plane
graph G∗ of G+ and label the edges of G∗ with the values of the corresponding edges of
G+ (see Figures 2b and 2c). Third, we compute an orthogonal drawing ΓG∗ of G∗ such
that each edge has at least one vertical segment (see Figure 3a). Fourth, we transform ΓG∗

into an auxiliary positive instance F of Rectilinear-Upward Planarity Testing by
replacing orthogonal and vertical segments with rectangular boxes. In particular, each edge
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Figure 2 The first two steps of the reduction from 12SW to Rectilinear-Upward Planarity
Testing.
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Figure 3 The last steps of the reduction from 12SW to Rectilinear-Upward Planarity
Testing.

segment of ΓG∗ is replaced with three parallel edges and each vertex or bend is replaced
with a 3 × 3 grid (see Figure 3b). Edges of the instance F are oriented so that F admits a
unique rectilinear-upward planar representation HF up to a horizontal flip. Fifth, for each
edge e of G∗ labeled [1] (labeled [2], respectively), we identify the three parallel edges of
F corresponding to a vertical segment of ΓG∗ belonging to e and replace them with the
subgraph T1 (the subgraph T2, respectively). Subgraphs T1 and T2, called tendrils, are
depicted in Figure 7a and Figure 7b, respectively. Finally, we add a framework all around
the graph and attach it to a vertex or bend in the upper part of ΓG∗ (as in Figure 3c) to
obtain the desired instance IRUPT of Rectilinear-Upward Planarity Testing.

▶ Theorem 1. Rectilinear-Upward Planarity Testing is NP-complete.

Sketch of Proof. The problem is in NP since the recognition of an RU representation is
polynomial-time solvable. As for the hardness, we show that the above described reduction
from 1-2-Switch-Flow constructs an instance IRUPT of Rectilinear-Upward Planarity
Testing that admits an RU representation if and only if its tendrils are embedded in such a
way that, for each face of ΓG∗ , the number of extra 270◦ angles provided by some tendrils
equals the number of extra 90◦ angles provided by the remaining tendrils of the same face and
this is equivalent to finding a feasible flow for the original 1-2-Switch-Flow instance. ◀

ISAAC 2023



26:6 Rectilinear-Upward Planarity Testing of Digraphs

4 Testing Upward Plane Digraphs in Linear Time

If we have in input a rectilinear planar representation H of a digraph G, testing whether H

is also an RU representation for one of the four possible orientations of H is a trivial problem.
On the contrary, given a plane graph G with a prescribed “upward planar embedding”,
testing whether it admits an RU representation is a relevant problem. In this section we
address this problem and present a linear-time algorithm to test whether an upward plane
digraph G admits an RU representation. We recall that an early paper in the graph drawing
literature [26] claims the result of this section. Unfortunately, that paper only gives a sketch
about the algorithm to test RU planarity without giving sufficient details and simultaneously
referring to a much more restrictive model [25].

Before describing our algorithm, we formalize the concept of upward plane digraph. In
any RU representation H of a digraph G each vertex v is bimodal, i.e., all the incoming edges
of v (as well as all the outgoing edges of v) are consecutive around v. More specifically, H

induces: (a) a planar embedding of G and, (b) for each vertex v of G, a linear left-to-right
(possibly empty) list of the incoming edges of v and a linear left-to-right (possibly empty)
list of the outgoing edges of v. The information (a) and (b) together are called an upward
planar embedding of G. A digraph G is upward plane if it comes with a given upward
planar embedding. An RU representation of an upward plane digraph G (if any) is an RU
representation of G that preserves its upward planar embedding. Note that, given information
(a) and (b) for a planar digraph G, it can be easily checked in linear time whether this pair
correctly defines an upward plane embedding, i.e., if there exists an upward planar drawing
of G whose upward plane embedding coincides with (a) and (b) (see e.g. [3]).

The main ingredient of our approach is a 2-SAT formulation of the testing problem. It
consists of three phases, summarized hereunder and then described in more detail.

Phase 1: For each vertex w and for each edge e outgoing w, we assign a set λout(e) of
labels to e, encoding the sides by which e can leave w. Each of these labels is chosen
in the set {E, W, N} (East, West, or North). Similarly, for each edge e incoming w, we
assign to e a set λin(e) of {E, W, S} (East, West, or South), encoding the sides by which
e can enter w.
Phase 2: Based on λout(e) and λin(e) for each directed edge e = (u, v), we compute a set
λ(e) of labels, each label taken in the set {L, U, R}, such that |λ(e)| ≤ 2. The set λ(e)
encodes the possible directions (L=leftward, U=upward, R=rightward, respectively) that
an edge can have in an RU representation. If λ(e) is an empty set then the input graph
does not have an RU representation. The function λ is a candidate set of labels for the
edges of G.
Phase 3: By exploiting the labels associated with the edges, RU planarity is modeled as a
2-SAT formula ϕ, which is then solved in linear time [37].

Details for Phase 1. We describe how to define the sets λout(·) and λin(·) for every edge
outgoing or incoming a vertex w of G. (i) If w has three outgoing (resp. incoming) edges
e1, e2, e3, in this left-to-right order in the upward planar embedding of G, then the sides
from which these edges are incident to w can be uniquely fixed. Namely, λout(e1) = {W},
λout(e2) = {N}, λout(e3) = {E} (resp. λin(e1) = {W}, λin(e2) = {S}, λin(e3) = {E}). (ii)
If w has two outgoing (resp. incoming) edges e1 and e2, in this left-to-right order, we set
λout(e1) = {W, N}, λout(e2) = {N, E} (resp. λin(e1) = {W, S}, λin(e2) = {S, E}). (iii) If
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w has one outgoing edge e1 we set λout(e1) = {W, N, E} in all cases except when w has
three incoming edges, in which case λout(e1) = {N}. (iv) If w has one incoming edge e1 we
set λin(e1) = {W, S, E} in all cases except when w has three outgoing edges, in which case
λin(e1) = {S}.

Details for Phase 2. For each edge e, given the label sets λout(e) and λin(e) for e, we first
initialize λ(e) as the empty set. If S ∈ λin(e) and N ∈ λout(e), we add label U to λ(e). If
E ∈ λout(e) and W ∈ λin(e), we add label R to λ(e). If W ∈ λout(e) and E ∈ λin(e), we add
label L to λ(e). We say that λ is a good labeling if it exists an RU representation H of G

such that each edge e ∈ H has a direction that corresponds to one of the labels of λ(e); if so,
H is said to be compatible with λ. Note that the labeling λ constructed as described above is
such that, for each edge e = (u, v), |λ(e)| ≤ 3. Also, if |λ(e)| = 3 then λ(e) = {L, U, R}, and
e is the only outgoing edge of u and the only incoming edge of v. Consider another labeling
λ′, derived from λ as follows: If |λ(e)| ≤ 2, let λ′(e) = λ(e); if |λ(e)| = 3, let λ′(e) = {U}.
Clearly, λ′ is constructed in linear time from λ and |λ′(e)| ≤ 2, for every edge e of the graph.
We call λ′ the reduction of λ. The following lemma is crucial for our 2-SAT model.

▶ Lemma 2. λ is a good labeling if and only if its reduction λ′ is a good labeling.

Proof. Clearly, if λ′ is a good labeling then λ is, because λ(e) is a superset of λ′(e). Suppose,
vice versa, that λ is a good labeling. We prove that λ′ is a good labeling by induction on the
number k of edges e for which |λ(e)| = 3. If k = 0, λ and λ′ coincides, and the statement is
obvious. Suppose that the statement is true for any k ≥ 1, and let e be any edge for which
|λ(e)| = 3. Let λ′′ be the labeling obtained from λ′ by setting λ′′(e) = λ(e) = {L, U, R}.
By the inductive hypothesis λ′′ is a good labeling. Consider an RU representation H of G

compatible with λ and let d be the direction of e in H. If d is the upward direction, then H

is also compatible with λ′, because λ′(e) = {U}. Otherwise (i.e., d is either the rightward or
the leftward direction) there is neither an edge of H that leaves u from North nor an edge of
H that enters v from South (because e is the only outgoing edge of u and the only incoming
edge of v). Hence, we can derive from H another RU representation H ′ such that e points
upward while all other edges of H ′ have the same direction as in H. The representation H ′

is now compatible with λ′, which implies that λ′ is a good labeling. ◀

Details for Phase 3. By Lemma 2, we can always assume that the labeling λ determined
in the previous phase is such that λ(e) contains either one or two labels, for each edge e of
G. Indeed, if this is not the case, we can restrict to consider its reduction λ′, obtained from
λ in linear time. Let w be a vertex of G and let e1 and e2 be two edges of G that are either
both outgoing w or both incoming w. Two labels X ∈ λ(e1) and Y ∈ λ(e2) are conflicting if
X = Y . This is true, because there cannot exist an RU representation of G such that the
directions of e1 and e2 coincide. Let e1 be an edge outgoing w and let e2 be an edge incoming
w. Two labels X ∈ λ(e1) and Y ∈ λ(e2) are conflicting if X and Y represent opposite
directions (i.e., X = L and Y = R or X = R and Y = L). This phase aims to assign a single
label to each edge, in such a way that there is no conflicting labels. Such an assignment (if
any) is a non-conflicting label assignment within λ. We use the notation L(λ) to denote any
non-conflicting assignment within λ. The next lemma establishes an equivalence between
non-conflicting label assignments and RU representations of G compatible with λ.

▶ Lemma 3. Let λ be a candidate set of labels for the edges of G. There exists an RU
representation H that is compatible with λ if and only if there exists a non-conflicting label
assignment within λ. The edge directions defined by H correspond to those defined by the
label assignment, and H preserves the planar embedding of G.

ISAAC 2023



26:8 Rectilinear-Upward Planarity Testing of Digraphs

Proof. If there exists an RU representation H that is compatible with λ, then choosing for
each edge e the label of λ(e) that corresponds to the direction of e in H immediately yields
a non-conflicting label assignment within λ.

Suppose vice versa that there exists a non-conflicting label assignment L(λ). We show
that from L(λ) we can derive an RU representation H of G that is compatible with λ. Since
by hypothesis G is upward planar and comes with an upward-planar embedding, there exists
a straight-line upward planar drawing Γ′ of G that preserves its upward planar embedding [2].
We can construct from Γ′ an orthogonal-upward drawing Γ′′ of G such that for each edge
e = (u, v): (i) the directions of the segments of e that are incident to u and v are coherent
with the label of e in L(λ); and (ii) moving from u to v along e, the number of right bends
equals the number of left bends.

U

L
U

R

e

v

δ(v, e)

Cε(v)

u

Cε(u)

(a)

U

L
U

R

(b)

U

L
U

R

(c)

Figure 4 An illustration for the proof of Lemma 3.

To construct Γ′′, proceed as follows. Let ε > 0 be a length such that the circular area
of radius ε around each vertex v does not intersect any other vertex and any other edge
that is not incident to v in Γ′. For each vertex v of Γ′, draw a circle Cε(v), centered at v,
of radius ε (see Figure 4a). Let e be an edge incident to v. Denote by δ(v, e) the smallest
vertical distance between v and the intersection of e with Cϵ(v) (see Figure 4a). Let δ be
the minimum of all δ(v, e). Draw a circle Cδ(v) of radius δ around each vertex v. Now
construct a drawing of G such that each edge e = (u, v) is non-decreasing with respect to
the y-coordinate, leaves the u vertex and enters vertex v with a straight segment of length δ

directed as prescribed by λ. This is possible because δ = minv,e{δ(v, e)} (see Figure 4b). To
finally obtain Γ′′, we replace each edge e by a sequence of horizontal and vertical segments
that follows the drawing of e at a distance that is small enough to guarantee that it does
not intersect any other edge or vertex of the drawing (see Figure 4a). Since the sequence of
horizontal and vertical segments of each edge e starts and ends with a segment that goes in
the same direction and is non-decreasing, the numbers of right and left turns are the same.

To construct the final RU representation H, consider the orthogonal representation H ′′ of
Γ′′. Since each edge of H ′′ has the same number of left and right turns, by [42] there exists
an orthogonal representation H of G without bends (i.e., a rectilinear representation of G)
such that H has the same embedding as H ′′ and such that each edge in H is incident to its
end-vertices from the same side as in H ′′. ◀

Given a non-conflicting label assignment L(λ) of G, an RU representation H of G

compatible with λ and whose edge directions correspond to the edge labels of L(λ), can be
easily constructed in linear time. Namely, since H preserves the planar embedding of G,
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for each vertex w of H the angles at w can be easily determined by the label assignment
L(λ) for the edges incident to w. Also, H is oriented in such a way that the directions of the
edges are coherent with λ. We now give the main result of this section.

▶ Theorem 4. Let G be an n-vertex upward plane digraph. There exists an O(n)-time
algorithm that tests whether G admits an RU representation, and that computes one in the
positive case.

Proof. Let λ be a candidate set of labels for the edges of G, computed as described in Phase
1 and Phase 2. By Lemma 2, we also assume that, for each edge e of G, λ(e) contains at most
two labels. Based on Lemma 3, deciding whether G admits an embedding-preserving RU
representation is equivalent to deciding whether G admits a non-conflicting labeling L(λ).
We model this problem as a 2-SAT problem, which is defined as follows.

For each edge e and for each label X ∈ λ(e), define a Boolean variable bX
e ; this variable

will be set to True if we select label X for edge e, and it will be set to False otherwise. We
define a formula cl(e) for every edge e and a formula cl(v) for every vertex v that has at
least one incident edge e with |λ(e)| = 2. Our 2-SAT formula Φ is the conjunction of all the
formulas defined for the edges and for the vertices of G.

For each edge e of G we define cl(e) as either the conjunction of two clauses or as a single
clause in Φ, depending on whether |λ(e)| = 2 or |λ(e)| = 1. More precisely, if λ(e) = {X, Y }
we have cl(e) = (bX

e ∨ bY
e ) ∧ (¬bX

e ∨ ¬bY
e ). This ensures that in order to satisfy Φ we have to

select exactly one of the two labels X and Y . If λ(e) = {X}, we have cl(e) = (bX
e ∨ bX

e ). For
cl(v) we have two cases: (i) v is a source or a sink; (ii) v is neither a source nor a sink.

Case (i). If v is a source (resp. a sink), let e1 and e2 be the two outgoing (resp. incoming)
edges from v, respectively. We set:

cl(v) = ¬bU
e1

∨ ¬bU
e2

Case (ii). We have four subcases: (a) deg(v) = 2; (b) deg(v) = 3 and v has two incoming
edges; (c) deg(v) = 3 and v has two outgoing edges; (d) deg(v) = 4 and v has two incoming
and two outgoing edges.
(a) Let e1 and e2 be the incoming edge and the outgoing edge of v, respectively. Suppose

λ(e1) = {U, X} and λ(e2) = {U, Y }, where X, Y ∈ {R, L}. If X = Y , we do not add any
clause associated with v, because any two labels for e1 and e2 in λ(e1) and in λ(e2) are
non-conflicting. If X ̸= Y , we set:

cl(v) = ¬bX
e1

∨ ¬bY
e2

.

(b) Let e1 and e2 be the two incoming edges of v, in this left-to-right order, and let e3
be the outgoing edge of v. We have λ(e1) = {U, R}, λ(e2) = {L, U}, and either
(1) λ(e3) = {L, U} or (2) λ(e3) = {U, R}. We define cl(v) as follows, depending on the
two sub-cases:

(1) cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bR
e1

∨ ¬bL
e3

)

(2) cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bL
e2

∨ ¬bR
e3

)

(c) Symmetric to (b).
(d) Let e1 and e2 be the two outgoing edges of v, and let e3 and e4 be the two incoming edges

of v, in this left-to-right order. We have: λ(e1) = {L, U}, λ(e2) = {U, R}; λ(e3) = {L, U},
λ(e4) = {U, R}. We define cl(v) as follows:

cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bR
e2

∨ ¬bL
e3

) ∧ (¬bU
e3

∨ ¬bU
e4

) ∧ (¬bL
e1

∨ ¬bR
e4

)
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Observe that, if a vertex is incident to an edge e with |λ(e)| = 1, we use the clauses
defined above, but in these cases they are simplified since the values bX

e are fixed (either to
True or to False) for any possible value of X. ◀

5 Testing in the Variable Embedding Setting

In this section we deal with biconnected planar digraphs whose embedding is not fixed. In
Section 5.1 we define the notion of rectilinear-upward spirality. In Section 5.2 we describe a
polynomial-time testing algorithm for digraphs whose underlying undiracted graph is series-
parallel. In Section 5.3 we consider the general case, and give a FPT algorithm parameterized
by the the number of sources and sinks in the digraph.

5.1 Rectilinear-Upward Spirality
We introduce the new concept of rectilinear-upward spirality, which specializes the notion of
orthogonal spirality defined in [11]. While the orthogonal spirality is a measure of how much
a given subgraph of an undirected graph G is rolled-up in an orthogonal representation of G,
our notion of spirality is for directed graphs and incorporates additional information about
the sides to which edges are incident to the poles of the triconnected components.

SPQR-trees. As in [11], our definition of spirality exploits the popular SPQR-tree data
structure introduced by Di Battista and Tamassia [10]. The SPQR-tree T of a biconnected
(di)graph G represents the decomposition of G into its triconnected components [33], and it
can be computed in linear time [10, 30]. Refer to Figure 8. Each triconnected component
corresponds to a non-leaf node ν of T ; the triconnected component itself is the skeleton of
ν and is denoted as skel(ν). Node ν can be: (i) an S-node (series composition), if skel(ν)
is a simple cycle of length at least three; (ii) a P-node (parallel composition), if skel(ν) is
a bundle of at least three parallel edges; (iii) an R-node (rigid composition), if skel(ν) is a
triconnected graph. A degree-1 node of T is a Q-node and represents a single edge of G.
A real edge (resp. virtual edge) in skel(ν) corresponds to a Q-node (resp., to an S-, P-, or
R-node) adjacent to ν in T . Let e be a designated edge of G, called the reference edge of
G, let ρ be the Q-node of T corresponding to e, and let T be rooted at ρ. For any P-, S-,
or R-node ν of T distinct from the root child, skel(ν) has a virtual edge, called reference
edge of skel(ν) and of ν, associated with a virtual edge in the skeleton of its parent. The
reference edge of the root child of T is the edge corresponding to ρ. For every node ν ≠ ρ,
the pertinent graph Gν of ν is the subgraph of G whose edges correspond to the Q-nodes in
the subtree of T rooted at ν. We also say that Gν is a component of G. The pertinent graph
Gρ of the root ρ coincides with the reference edge of G. If H is a rectilinear representation or
an RU rectilinear representation of G, its restriction Hν to Gν is a rectilinear component or
an RU rectilinear component of H. As in [7, 11, 15, 16, 18, 20, 23], we implicitly assume to
work with a normalized SPQR-tree, in which every S-node has exactly two children. Every
SPQR-tree can be normalized in O(n) time by recursively splitting an S-node with more
than two children into multiple S-nodes with two children. If G has n vertices, a normalized
SPQR-tree of G still has O(n) nodes.

RU-Spirality. Let G be a biconnected planar digraph and consider an SPQR-tree T of G

rooted at a Q-node ρ, corresponding to a reference edge (s, t). Assume for convenience that
the vertices of G are labeled with an st-numbering [24] of G (see, e.g., Figure 8a). Let H

be an orthogonal representation of G with the reference edge Gρ = (s, t) in the external
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Figure 5 Illustration of the concept of RU-spirality. The two representations in (b) and (c) have
the same value of σν but different RU spiralities.

face, let Hν be a component of H (i.e., the restriction of H to Gν), and let {u, v} be the
poles of ν, where u precedes v in the st-numbering. We say that u and v are the first-pole
and the second-pole of ν, respectively. Note that we are not assuming any relationship
between the st-numbering and the orientation of the edges of G. For each pole w ∈ {u, v},
let intdegν(w) and extdegν(w) be the degree of w inside and outside Hν , respectively. We
define two (possibly coincident) alias vertices of w, denoted by w′ and w′′, as follows: (i)
if intdegν(w) = 1, then w′ = w′′ = w; (ii) if intdegν(w) = extdegν(w) = 2, then w′ and
w′′ are dummy vertices, each splitting one of the two distinct edge segments incident to w

outside Hν ; (iii) if intdegν(w) > 1 and extdegν(w) = 1, then w′ = w′′ is a dummy vertex
that splits the edge segment incident to w outside Hν .

Let Aw be the set of distinct alias vertices of a pole w. Let P uv be any simple undirected
path from u to v inside Hν and let u′ ∈ Au and v′ ∈ Av be two alias vertices of u and of v,
respectively. The path Su′v′ obtained concatenating (u′, u), P uv, and (v, v′) is a spine of Hν .
Denote by n(Su′v′) the number of right turns minus the number of left turns encountered
along Su′v′ moving from u′ to v′. The rectilinear spirality σ(Hν) of Hν is either an integer or
a semi-integer number, defined based on the following cases: (i) If Au = {u′} and Av = {v′}
then σ(Hν) = n(Su′v′). (ii) If Au = {u′} and Av = {v′, v′′} then σ(Hν) = n(Su′v′

)+n(Su′v′′
)

2 .
(iii) If Au = {u′, u′′} and Av = {v′} then σ(Hν) = n(Su′v′

)+n(Su′′v′
)

2 . (iv) If Au = {u′, u′′}
and Av = {v′, v′′} assume, without loss of generality, that (u, u′) succeeds (u, u′′) clockwise
around u and that (v, v′) precedes (v, v′′) clockwise around v; then σ(Hν) = n(Su′v′

)+n(Su′′v′′
)

2 .
For brevity, in the following we often denote by σν the rectilinear spirality of an RU

representation of Gν . Let {S, N, W, E} denote the set of the four possible sides (North,
South, East, West) by which an edge can be incident to a vertex in an RU representation.
The rectilinear-upward spirality (RU-spirality for short) of Hν , denoted by τ(Hν) (or simply
by τν), is a tuple ⟨σν , φu, φv⟩, where σν is the rectilinear spirality of Hν and where φw =
(Sw, Nw, Ww, Ew) specifies the arrangement of the internal and external edges of Hν incident
to a pole w ∈ {u, v}, with respect to the four sides S (South), N (North), W (West), and
E (East). Precisely, for each D ∈ {S, N, W, E} and w ∈ {u, v}, we have Dw ∈ {free, int, ext}
in such a way that: Dw = free if no edge is incident to w from side D; Dw = int if
there is an edge of Hν (i.e., an edge internal to Hν) incident to w from side D; Dw = ext
if there is an edge of H not in Hν (i.e., an edge external to Hν) incident to w from
side D. We call σν the rectilinear spirality of τν ; φu and φv the pole side specifications
of τν . Figure 5 shows an illustration of the concept of RU-spirality. In Figure 5a there
is a digraph G with a highlighted S-component Gν with first-pole u and second-pole v.
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Figure 6 Illustration of the concept of substitution. The RU representation H ′′ in (c) is obtained
by substituting Hν with H ′

ν in H. The first-pole of ν is vertex 1 and the second-pole of ν is vertex
6. We have τ(Hν) = τ(H ′

ν) = ⟨− 1
2 , (free, int, ext, int), (int, ext, int, ext)⟩.

Figure 5b and Figure 5c show two different RU representations H and H ′ of G. In H we have
τν = ⟨3, φu = (free, ext, int, ext), φv = (ext, int, ext, free)⟩ and in H ′ we have τν = ⟨3, φu =
(ext, int, free, ext), φv = (free, ext, ext, int)⟩.

Note that, denoted by G′ the subgraph of G consisting of Gν plus the external edges
incident to the poles of ν, the RU-spirality for an RU representation Hν of Gν can also be
defined referring to an RU representation of G′ that contains Hν , rather than to an RU
representation of G. If we are able to construct an RU representation H ′ of G′ such that
its restriction Hν to Gν has RU-spirality τν , then we say that Gν (or simply ν) admits
RU-spirality τν . Observe that, even if Hν admits RU-spirality τν , it might not exist an RU
representation of G whose restriction to Gν has spirality τν .

Substituting components with the same RU-spirality. We extend the results in [11, 18]
to show that components with the same RU spirality are “interchangeable”. Let H and H ′

be two different RU representations of G with the same reference edge Gρ on the external
face. Also let Hν and H ′

ν be the restrictions of H and H ′ to the same component Gν . If
τ(Hν) = τ(H ′

ν), the operation Sub(Hν , H ′
ν) of substituting Hν with H ′

ν in H defines a new
plane digraph H ′′ with an angle labeling such that the restriction of H ′′ to Gν coincides
with H ′

ν , while the restriction of H ′′ to G \ Gν stays as in H. More formally, let u and v be
the first-pole and second-pole of ν, respectively. The external boundary of Hν contains a left
path pl and a right path pr, such that pl (resp. pr) goes from u to v traversing the external
boundary of Hν clockwise (resp. counterclockwise). Let fl and fr be the faces of H outside
Hν and incident to pl and pr, respectively. With respect to H ′

ν and H ′, define p′
l, p′

r, f ′
l , f ′

r

analogously. Since τ(Hν) = τ(H ′
ν), the circular sequence of angles at each pole w ∈ {u, v} is

the same in H and in H ′, namely the angles at w internal and external to Gν are the same
in H and H ′. The digraph H ′′ is defined as follows:

H ′′ has the same set of vertices and edges as G.
The planar embedding of H ′′ is such that: all the faces of H outside Hν and distinct
from fl and fr, as well as all faces of H ′

ν , are also faces of H ′′. Further, H ′′ has two faces
f ′′

l and f ′′
r obtained by replacing pl with p′

l and pr with p′
r in the boundary of fl and of

fr, respectively.
The angle labeling of H ′′ is such that: (i) all the angles at the vertices of G not belonging
to Gν are those in H; (ii) all the angles at the vertices of Gν distinct from u and v are
those in H ′

ν ; (iii) for each pole w ∈ {u, v}, the internal and external angles at w are
defined as in H or, equivalently, as in H ′ (they are the same as τ(Hν) = τ(H ′

ν)).

The following result proves that H ′′ is an RU representation.
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▶ Theorem 5. Let G be a biconnected planar digraph, T be an SPQR-tree of G with respect
to a given reference e, and ν be a non-root node of T . Let H and H ′ be two different RU
representations of G with e on the external face, and let Hν and H ′

ν be the restrictions of H

and of H ′ to Gν , respectively. If τ(Hν) = τ(H ′
ν) then the graph H ′′ defined by Sub(Hν , H ′

ν)
is an RU representation of G.

Proof. The fact that the planar embedding and the labeling of H ′′ describe a rectilinear
planar representation of G is proved in [11, 18], as a consequence that Hν and H ′

ν have the
same rectilinear spirality. We now orient H ′′ in such a way that, for an arbitrarily chosen
edge e = (x, y) of H ′

ν , the vertices x and y have the same relative positions as in H ′
ν . This

implies that for each edge e′ of Gν , the relative position of the end-vertices of e′ in H ′′

remains the same as in H ′. Also, for each side {S, N, W, E} of w, either this side is free in
both H and H ′, or it is occupied either by an edge internal to Gν or by an edge external to
Gν in both H and H ′. This implies that, with the chosen orientation, for each edge e′′ of
G \ Gν the relative position of the end-vertices of e′′ in H ′′ is the same as in H. It follows
that, with the chosen orientation, no edge of H ′′ is downward. ◀

Based on Theorem 5, in order to test RU planarity of a biconnected digraph G with
a given reference edge on the external face, we exploit a dynamic programming technique
that visits a rooted SPQR-tree T of G bottom-up. At each visited node ν of T , and for
each RU spirality τν admitted by ν, we store at ν a pair ⟨τν , Hν⟩, where Hν is just one RU
representation of Gν with spirality τν , called a representative of τν . The set of all pairs
⟨τν , Hν⟩ is the feasible set of ν and is denoted by Σν . Observe that, if Gν has nν vertices
and if τν ∈ Σν , the rectilinear spirality σν in τν cannot exceed nν , as we can make at most
nν right or nν left turns. Also, for each value σν , the number of RU spiralities τν in Σν with
rectilinear spirality σν is bounded by a constant. Hence, we have the following.

▶ Property 2. For any component Gν with nν vertices, |Σν | = O(nν). Also, for each τν ∈ Σν ,
the corresponding rectilinear spirality σν belongs to the interval [−nν , nν ].

5.2 Testing Series-Parallel Digraphs in Polynomial Time
When the SPQR-tree T of a biconnected graph G does not have R-nodes, G is a series-parallel
graph, or simply an SP-graph. Also, T is called the SPQ-tree of G. In this section we assume
that G is an SP-digraph, i.e., a digraph whose underlying undirected graph is an SP-graph.
We also assume that T is normalized. We prove the following lemmas.

▶ Lemma 6. Let ν be a Q-node of T . We can compute Σν in O(1) time.

Proof. Gν is a directed edge e = (u, v) of G. In any RU representation of G, edge e is either
leftward, or rightward, or upward. For each of these three possibilities, we have to consider
the O(1) possible arrangements of the edges incident to e on the different sides of u and v,
each of them defining a different spirality τν . Thus Σν is constructed in O(1) time. ◀

▶ Lemma 7. Let ν be an S-node of T with children µ1 and µ2, and let nν
1 and nν

2 be the
number of nodes in Gµ1 and Gµ2 , respectively. If Σµ1 and Σµ2 are given, then we can compute
Σν in O(nν

1 · nν
2) time.

Sketch of Proof. For each pair τµ1 ∈ Σµ1 and τµ2 ∈ Σµ2 , let Hµ1 and Hµ2 be the rep-
resentatives of τµ1 and τµ2 , respectively. Let ui and vi be the first-and second-pole of µi,
respectively, with i = 1, 2. Clearly v1 = u2. Suppose that for each side D ∈ {S, N, W, E}
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one of these three cases holds: (i) Dv1 = free in τµ1 and Du2 = free in τµ2 ; (ii) Dv1 = int
in τµ1 and Du2 = ext in τµ2 ; (iii) Dv1 = ext in τµ1 and Du2 = int in τµ2 . If so the pole side
specifications of τµ1 and τµ2 are compatible, and we can construct an RU representation Hν

by gluing together Hµ1 and Hµ2 at the common pole v1 = u2; the rectilinear spirality σν in
τν is computed based on σµ1 , σµ2 , and on the pole side specifications in τµ1 and τµ2 . ◀

The next structural lemma, which is proven by induction on the depth of a normalized
rooted SPQ-tree T , is given in [17]. Corollary 9 follows by combining Lemma 7 and Lemma 8.

▶ Lemma 8 ([17]). Let T be a normalized rooted SPQ-tree of an n-vertex SP-digraph G, and
let S be the set of all S-nodes of T . We have

∑
ν∈S nν

1 · nν
2 = O(n2), where nν

1 and nν
2 are

the number of vertices in the pertinent graphs of the two children of ν.

▶ Corollary 9. Let T be a normalized rooted SPQ-tree of an n-vertex SP-digraph G. Assume
that T is visited bottom-up and that when we visit a node the feasible sets of its children are
known. Then, the feasible sets of all S-nodes of T can be computed in overall O(n2) time.

The next lemma is about the feasible sets of P-nodes. Theorem 11 summarizes the main
result of this subsection.

▶ Lemma 10. Let ν be a P-node of T with children µ1, µ2, . . . µh (h = 2, 3). If Σµ1 and Σµ2

are given, then we can compute Σν in O(n) time.

Proof. Let u and v be the first-pole and the second-pole of v, respectively. By definition of
P-node, u and v are also the first-pole and the second-pole of each child of ν. Denote by nν

the number of vertices of Gν . Suppose first that ν is a P-node with three children µ1, µ2,
and µ3. Any planar embedding of G defines a planar embedding of skel(ν). If for simplicity
we topologically imagine v above u, in any given embedding of skel(ν) the three children of ν

(namely, the edges of skel(ν) that correspond to these children) occur from left to right in some
order (equivalently, this order coincides with the circular order in which these children are
encountered around v moving counterclockwise from the reference edge of skel(ν)). Suppose
that for a given embedding ϕ of skel(ν), we rename the three children of ν as µl, µc, and µr,
if they occur in this left-to-right order in ϕ. Let H be any rectilinear representation of G that
induces for skel(ν) the embedding ϕ. Also denote by σν , σµl

, σµc
, and σµr

the rectilinear
spirality values of the restrictions of H to Gν , Gµl

, Gµc
, and Gµr

, respectively. It is proved
in [11] that the following relationship holds: σν = σµl

− 2 = σµc = σµr + 2. Clearly, since an
RU representation is in particular a rectilinear representation, then the same relationship
must be verified for any RU representation that induces the embedding ϕ for skel(ν). Hence,
as done in [11], for each candidate rectilinear spirality value σν ∈ [−nν , nν ] (see Property 2)
and for each possible embedding ϕ of skel(ν), one can check in O(1) time whether there exist
three elements τµl

∈ Σµl
, τµc

∈ Σµc
, and τµr

∈ Σµr
such that the corresponding rectilinear

spiralities σµl
, σµc

, and σµr
satisfy the above relationship. If not, then the target rectilinear

spirality value σν is not feasible, otherwise suppose that such elements τµl
, τµc , and τµr exist.

To check whether we can combine them into an RU spirality τν having rectilinear spirality
σν , we have to test the compatibility of the pole side specifications for each pole w ∈ {u, v}.
This compatibility can be checked with the following simple considerations. Since ν has
three children, w has degree four in G. Also, each of the three components Gµl

, Gµc
, and

Gµr
contains exactly one edge incident to w, while the fourth edge incident to w is external

to all the three components. Hence, to have compatibility, we must have that in the pole
specification of each τµj (j = l, c, r) there is exactly one side of w with value int and each
other side of w with value ext. In particular, call Dw the side of w in the pole specification
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of τµl
for which Dw = int. To fix the ideas, assume that Dw = Ww, i.e., the edge of Gµl

incident w occupies the West side of w (the cases Dw = Sw, Dw = Nw, and Dw = Ew are
treated in a similar way). This means that φw = (ext, ext, int, ext) in τµl

. Thus, in order to
have compatibility at w it must be φw = (int, ext, ext, ext) in τµc and φw = (ext, ext, ext, int)
in τµr

. If there is compatibility at the pole u and at the pole v, we can glue together the
representatives Hµl

, Hµc , Hµr into an RU representation Hν with rectilinear spirality σν ,
and we insert τν = ⟨σν , Hν⟩ in Σν ; otherwise we discard the triplet τµl

, τµc
, τµr

.
The described procedure for constructing Σν takes O(n) time because: (i) by Property 2

there are O(n) possible target rectilinear spirality values to consider; (ii) for each target
spirality value, skel(ν) has 6 distinct planar embeddings to consider; (iii) for each embedding
of skel(ν) we can check in O(1) time which triplets τµl

, τµc
, τµr

that satisfy the relation
σν = σµl

− 2 = σµc
= σµr

+ 2 (see also [11]), and for each of these triplets we can also check
in O(1) time the compatibility of the pole side specifications.

If ν is a P-node with two children, the strategy for constructing Σν is exactly the same.
However in this case, skel(ν) has only two embeddings to consider for each target value of
rectilinear spirality σν . Also, for each of these two embeddings, the relationship between σν

and the rectilinear spiralities of the children of ν, as well as the compatibility conditions for
the pole side specifications, may require to analyze more cases, whose number is however
still bounded by a constant (see [11] for details about the relationships between a rectilinear
representation of ν and those of its two children). ◀

▶ Theorem 11. Let G be an n-vertex SP-digraph. There exists an O(n3)-time algorithm that
tests whether G admits an RU representation, and that computes one in the affirmative case.

Sketch of Proof. Let T be the SPQ-tree of G. For each Q-node ρ of T , the algorithm
considers T rooted at ρ and performs a post-order visit of T to tests whether G admits an
RU representation with the reference edge Gρ on the external face. It first computes Σν

for each leaf ν of T , that is, for each Q-node of T distinct from ρ. Then, for each internal
node ν of T distinct from ρ the algorithm computes Σν by using the feasible sets of the
children of ν, by means of Lemma 7 or of Lemma 10 depending on whether ν is an S-node
or a P-node. If Σν is empty then G does not have an RU representation with Gρ on the
external face, and the algorithm starts visiting T rooted at another Q-node. Suppose vice
versa that the algorithm achieves the root child ν and that Σν is not empty. The algorithm
checks if there is τν ∈ Σν whose Hν can be glued together with a straight-line representation
of the reference edge Gρ, which is oriented either upward, or leftward, or rightward.

Regarding the time complexity, the algorithm has to test O(n) rooted SPQ-trees. For
each tree, the feasible sets of all Q-nodes can be computed in overall O(n) time by Lemma 6,
those of all S-nodes can be computed in O(n2) time by Corollary 9, and those of all P-nodes
can be computed in O(n2) time by Lemma 10. Finally, the condition at the root can be
checked in O(n) time. Hence, the whole algorithm can be executed in O(n3) time. ◀

5.3 FPT Testing Algorithm by the Number of Sources and Sinks
Let G be a biconnected digraph. A vertex of G that is either a source or a sink of G is called
a switch [10]. We sketch the description of an FPT algorithm for Rectilinear-Upward
Planarity Testing parameterized by the number k of switches of G.

Let T be a rooted SPQR-tree of G and let ν be any node of T . It can be shown that:
(i) if Gν does not contain any switches of G, then it can only admit a constant number of
rectilinear spirality values, and hence a constant number of RU spiralities; (ii) otherwise, the
possible values of rectilinear spirality admitted by Gν is a linear function of k.
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The FPT algorithm extends the dynamic programming of Section 5.2 so to handle R-nodes.
When an R-node ν of a rooted SPQR-tree is visited, we consider the two possible planar
embeddings of its skeleton, and for each of these two embeddings we consider every possible
upward planar embedding and every possible target RU spirality τν ; then, we test whether
Gν admits τν . If so, as for S-nodes and P-nodes, we construct an RU representation Hν

and we insert ⟨τν , Hν⟩ in Σν ; otherwise, τν is discarded. To perform the test for each target
value τν , we partition the children of ν into two sets A and B. Namely, a child µ of ν is
inserted in A if Gµ contains at least one switch of G, otherwise we insert µ in B. Clearly
|A| = O(k), while for each element in B the size of the feasible set is constant. Then, for
each combination of fixed RU spiralities in the feasible sets of the elements in A, we solve a
constrained RU planarity testing problem that: (a) forces Gν to have the target rectilinear
spirality σν (associated with τν); (b) preserves the chosen combination of RU spiralities for
the elements of A; and (c) guarantees that the pertinent graphs of the nodes in B have one
of the constantly many RU spiralities in their feasible sets. We prove that this test can be
executed in O(n) time by using the 2-SAT model of Section 4, enriched with O(n) number
of constraints. Since there are O(kk) = 2O(k log k) combinations of RU spiralities for the
elements in A, and since there are O(4k) = O(22k) upward planar embeddings for each of
the two possible planar embeddings of an R-node, we get the following.

▶ Lemma 12. Let ν be an R-node of T and let µ1, . . . , µh be its children. Given the feasible
set Σµi for each i ∈ {1, . . . , h}, we can compute Σν in 2O(k·log k+2k) · O(n) time.

By Lemma 12, for processing all R-nodes of T we spend in total 2O(k·log k+2k) · O(n2).
For an S-node or a P-node ν, we use exactly the same strategy as in Section 5.2. However,
since the sizes of the feasible sets of all children of ν, and of ν itself, are now O(k), Σν can
be constructed in O(k2) time if ν is an S-node and in time O(k) if ν is a P-node; hence we
spend O(nk2) for processing all S- and P-nodes of T . Finally, since every RU representation
of G has at least one source and one sink in its external face, it suffices to test O(k) possible
rooted SPQR-trees, thus saving the extra O(n) factor of Theorem 11. The following holds.

▶ Theorem 13. Let G be a planar digraph with k switches. There exists an 2O(k·log k+2k) ·
O(n2)-time algorithm that tests whether G is rectilinear-upward planar and that computes an
RU representation of G in the positive case.

A byproduct of the previous theorem is the following corollary for the well-known family
of st-digraphs, i.e., digraphs with a single source and a single sink.

▶ Corollary 14. The Rectilinear-Upward Planarity Testing problem can be solved in
O(n2) time for planar st-digraphs with n vertices.

6 Open Problems

The NP-hardness of Rectilinear-Upward Planarity Testing holds when the embed-
ding can vary while the linear-time solution holds for upward plane digraphs. Also the testing
is trivial if a rectilinear embedding is given. Establishing the complexity of the problem
when a planar embedding (neither rectilinear nor upward) is fixed remains an open question.
Moreover, our results in the variable embedding setting consider biconnected graphs; extend-
ing these results to simply connected instances is a topic for future exploration. Lastly, there
is potential for future research in improving the time complexity for series-parallel digraphs.
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A Appendix
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(a) Tentril T1.
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(b) Tendril T2.

Figure 7 Tendrils T1 (a) and T2 (b). Red vertices have three outgoing edges. Green vertices have
three incoming edges. Solid edges are incident either to a red or to a green vertex (or both).
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Figure 8 (a) A digraph G with three highlighted components (an S-, an R- and a P-component);
(b) an RU representation of G. (c) The SPQR-tree of G with reference edge (1, 14); the skeletons of
the highlighted components are shown: dashed edges are virtual and the reference edge is thicker.
Q-nodes are labeled with the end-vertices of their corresponding edges.
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